1 //===-- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing dwarf debug info into asm files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "DwarfDebug.h" 15 #include "ByteStreamer.h" 16 #include "DIEHash.h" 17 #include "DebugLocEntry.h" 18 #include "DwarfCompileUnit.h" 19 #include "DwarfExpression.h" 20 #include "DwarfUnit.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/CodeGen/DIE.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DebugInfo.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ValueHandle.h" 34 #include "llvm/MC/MCAsmInfo.h" 35 #include "llvm/MC/MCDwarf.h" 36 #include "llvm/MC/MCSection.h" 37 #include "llvm/MC/MCStreamer.h" 38 #include "llvm/MC/MCSymbol.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/Dwarf.h" 42 #include "llvm/Support/Endian.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/FormattedStream.h" 45 #include "llvm/Support/LEB128.h" 46 #include "llvm/Support/MD5.h" 47 #include "llvm/Support/Path.h" 48 #include "llvm/Support/Timer.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Target/TargetFrameLowering.h" 51 #include "llvm/Target/TargetLoweringObjectFile.h" 52 #include "llvm/Target/TargetMachine.h" 53 #include "llvm/Target/TargetOptions.h" 54 #include "llvm/Target/TargetRegisterInfo.h" 55 #include "llvm/Target/TargetSubtargetInfo.h" 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "dwarfdebug" 60 61 static cl::opt<bool> 62 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 63 cl::desc("Disable debug info printing")); 64 65 static cl::opt<bool> 66 GenerateGnuPubSections("generate-gnu-dwarf-pub-sections", cl::Hidden, 67 cl::desc("Generate GNU-style pubnames and pubtypes"), 68 cl::init(false)); 69 70 static cl::opt<bool> GenerateARangeSection("generate-arange-section", 71 cl::Hidden, 72 cl::desc("Generate dwarf aranges"), 73 cl::init(false)); 74 75 namespace { 76 enum DefaultOnOff { Default, Enable, Disable }; 77 } 78 79 static cl::opt<DefaultOnOff> UnknownLocations( 80 "use-unknown-locations", cl::Hidden, 81 cl::desc("Make an absence of debug location information explicit."), 82 cl::values(clEnumVal(Default, "At top of block or after label"), 83 clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")), 84 cl::init(Default)); 85 86 static cl::opt<DefaultOnOff> 87 DwarfAccelTables("dwarf-accel-tables", cl::Hidden, 88 cl::desc("Output prototype dwarf accelerator tables."), 89 cl::values(clEnumVal(Default, "Default for platform"), 90 clEnumVal(Enable, "Enabled"), 91 clEnumVal(Disable, "Disabled")), 92 cl::init(Default)); 93 94 static cl::opt<DefaultOnOff> 95 SplitDwarf("split-dwarf", cl::Hidden, 96 cl::desc("Output DWARF5 split debug info."), 97 cl::values(clEnumVal(Default, "Default for platform"), 98 clEnumVal(Enable, "Enabled"), 99 clEnumVal(Disable, "Disabled")), 100 cl::init(Default)); 101 102 static cl::opt<DefaultOnOff> 103 DwarfPubSections("generate-dwarf-pub-sections", cl::Hidden, 104 cl::desc("Generate DWARF pubnames and pubtypes sections"), 105 cl::values(clEnumVal(Default, "Default for platform"), 106 clEnumVal(Enable, "Enabled"), 107 clEnumVal(Disable, "Disabled")), 108 cl::init(Default)); 109 110 enum LinkageNameOption { 111 DefaultLinkageNames, 112 AllLinkageNames, 113 AbstractLinkageNames 114 }; 115 static cl::opt<LinkageNameOption> 116 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden, 117 cl::desc("Which DWARF linkage-name attributes to emit."), 118 cl::values(clEnumValN(DefaultLinkageNames, "Default", 119 "Default for platform"), 120 clEnumValN(AllLinkageNames, "All", "All"), 121 clEnumValN(AbstractLinkageNames, "Abstract", 122 "Abstract subprograms")), 123 cl::init(DefaultLinkageNames)); 124 125 static const char *const DWARFGroupName = "dwarf"; 126 static const char *const DWARFGroupDescription = "DWARF Emission"; 127 static const char *const DbgTimerName = "writer"; 128 static const char *const DbgTimerDescription = "DWARF Debug Writer"; 129 130 void DebugLocDwarfExpression::EmitOp(uint8_t Op, const char *Comment) { 131 BS.EmitInt8( 132 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op) 133 : dwarf::OperationEncodingString(Op)); 134 } 135 136 void DebugLocDwarfExpression::EmitSigned(int64_t Value) { 137 BS.EmitSLEB128(Value, Twine(Value)); 138 } 139 140 void DebugLocDwarfExpression::EmitUnsigned(uint64_t Value) { 141 BS.EmitULEB128(Value, Twine(Value)); 142 } 143 144 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI, 145 unsigned MachineReg) { 146 // This information is not available while emitting .debug_loc entries. 147 return false; 148 } 149 150 //===----------------------------------------------------------------------===// 151 152 bool DbgVariable::isBlockByrefVariable() const { 153 assert(Var && "Invalid complex DbgVariable!"); 154 return Var->getType().resolve()->isBlockByrefStruct(); 155 } 156 157 const DIType *DbgVariable::getType() const { 158 DIType *Ty = Var->getType().resolve(); 159 // FIXME: isBlockByrefVariable should be reformulated in terms of complex 160 // addresses instead. 161 if (Ty->isBlockByrefStruct()) { 162 /* Byref variables, in Blocks, are declared by the programmer as 163 "SomeType VarName;", but the compiler creates a 164 __Block_byref_x_VarName struct, and gives the variable VarName 165 either the struct, or a pointer to the struct, as its type. This 166 is necessary for various behind-the-scenes things the compiler 167 needs to do with by-reference variables in blocks. 168 169 However, as far as the original *programmer* is concerned, the 170 variable should still have type 'SomeType', as originally declared. 171 172 The following function dives into the __Block_byref_x_VarName 173 struct to find the original type of the variable. This will be 174 passed back to the code generating the type for the Debug 175 Information Entry for the variable 'VarName'. 'VarName' will then 176 have the original type 'SomeType' in its debug information. 177 178 The original type 'SomeType' will be the type of the field named 179 'VarName' inside the __Block_byref_x_VarName struct. 180 181 NOTE: In order for this to not completely fail on the debugger 182 side, the Debug Information Entry for the variable VarName needs to 183 have a DW_AT_location that tells the debugger how to unwind through 184 the pointers and __Block_byref_x_VarName struct to find the actual 185 value of the variable. The function addBlockByrefType does this. */ 186 DIType *subType = Ty; 187 uint16_t tag = Ty->getTag(); 188 189 if (tag == dwarf::DW_TAG_pointer_type) 190 subType = resolve(cast<DIDerivedType>(Ty)->getBaseType()); 191 192 auto Elements = cast<DICompositeType>(subType)->getElements(); 193 for (unsigned i = 0, N = Elements.size(); i < N; ++i) { 194 auto *DT = cast<DIDerivedType>(Elements[i]); 195 if (getName() == DT->getName()) 196 return resolve(DT->getBaseType()); 197 } 198 } 199 return Ty; 200 } 201 202 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const { 203 std::sort(FrameIndexExprs.begin(), FrameIndexExprs.end(), 204 [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool { 205 return A.Expr->getFragmentInfo()->OffsetInBits < 206 B.Expr->getFragmentInfo()->OffsetInBits; 207 }); 208 return FrameIndexExprs; 209 } 210 211 static const DwarfAccelTable::Atom TypeAtoms[] = { 212 DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset, dwarf::DW_FORM_data4), 213 DwarfAccelTable::Atom(dwarf::DW_ATOM_die_tag, dwarf::DW_FORM_data2), 214 DwarfAccelTable::Atom(dwarf::DW_ATOM_type_flags, dwarf::DW_FORM_data1)}; 215 216 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M) 217 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()), 218 InfoHolder(A, "info_string", DIEValueAllocator), 219 SkeletonHolder(A, "skel_string", DIEValueAllocator), 220 IsDarwin(A->TM.getTargetTriple().isOSDarwin()), 221 AccelNames(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset, 222 dwarf::DW_FORM_data4)), 223 AccelObjC(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset, 224 dwarf::DW_FORM_data4)), 225 AccelNamespace(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset, 226 dwarf::DW_FORM_data4)), 227 AccelTypes(TypeAtoms), DebuggerTuning(DebuggerKind::Default) { 228 229 CurFn = nullptr; 230 const Triple &TT = Asm->TM.getTargetTriple(); 231 232 // Make sure we know our "debugger tuning." The target option takes 233 // precedence; fall back to triple-based defaults. 234 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default) 235 DebuggerTuning = Asm->TM.Options.DebuggerTuning; 236 else if (IsDarwin) 237 DebuggerTuning = DebuggerKind::LLDB; 238 else if (TT.isPS4CPU()) 239 DebuggerTuning = DebuggerKind::SCE; 240 else 241 DebuggerTuning = DebuggerKind::GDB; 242 243 // Turn on accelerator tables for LLDB by default. 244 if (DwarfAccelTables == Default) 245 HasDwarfAccelTables = tuneForLLDB(); 246 else 247 HasDwarfAccelTables = DwarfAccelTables == Enable; 248 249 HasAppleExtensionAttributes = tuneForLLDB(); 250 251 // Handle split DWARF. Off by default for now. 252 if (SplitDwarf == Default) 253 HasSplitDwarf = false; 254 else 255 HasSplitDwarf = SplitDwarf == Enable; 256 257 // Pubnames/pubtypes on by default for GDB. 258 if (DwarfPubSections == Default) 259 HasDwarfPubSections = tuneForGDB(); 260 else 261 HasDwarfPubSections = DwarfPubSections == Enable; 262 263 // SCE defaults to linkage names only for abstract subprograms. 264 if (DwarfLinkageNames == DefaultLinkageNames) 265 UseAllLinkageNames = !tuneForSCE(); 266 else 267 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames; 268 269 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; 270 unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber 271 : MMI->getModule()->getDwarfVersion(); 272 // Use dwarf 4 by default if nothing is requested. 273 DwarfVersion = DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION; 274 275 // Work around a GDB bug. GDB doesn't support the standard opcode; 276 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which 277 // is defined as of DWARF 3. 278 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented 279 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616 280 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3; 281 282 // GDB does not fully support the DWARF 4 representation for bitfields. 283 UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB(); 284 285 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion); 286 } 287 288 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. 289 DwarfDebug::~DwarfDebug() { } 290 291 static bool isObjCClass(StringRef Name) { 292 return Name.startswith("+") || Name.startswith("-"); 293 } 294 295 static bool hasObjCCategory(StringRef Name) { 296 if (!isObjCClass(Name)) 297 return false; 298 299 return Name.find(") ") != StringRef::npos; 300 } 301 302 static void getObjCClassCategory(StringRef In, StringRef &Class, 303 StringRef &Category) { 304 if (!hasObjCCategory(In)) { 305 Class = In.slice(In.find('[') + 1, In.find(' ')); 306 Category = ""; 307 return; 308 } 309 310 Class = In.slice(In.find('[') + 1, In.find('(')); 311 Category = In.slice(In.find('[') + 1, In.find(' ')); 312 } 313 314 static StringRef getObjCMethodName(StringRef In) { 315 return In.slice(In.find(' ') + 1, In.find(']')); 316 } 317 318 // Add the various names to the Dwarf accelerator table names. 319 // TODO: Determine whether or not we should add names for programs 320 // that do not have a DW_AT_name or DW_AT_linkage_name field - this 321 // is only slightly different than the lookup of non-standard ObjC names. 322 void DwarfDebug::addSubprogramNames(const DISubprogram *SP, DIE &Die) { 323 if (!SP->isDefinition()) 324 return; 325 addAccelName(SP->getName(), Die); 326 327 // If the linkage name is different than the name, go ahead and output 328 // that as well into the name table. 329 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName()) 330 addAccelName(SP->getLinkageName(), Die); 331 332 // If this is an Objective-C selector name add it to the ObjC accelerator 333 // too. 334 if (isObjCClass(SP->getName())) { 335 StringRef Class, Category; 336 getObjCClassCategory(SP->getName(), Class, Category); 337 addAccelObjC(Class, Die); 338 if (Category != "") 339 addAccelObjC(Category, Die); 340 // Also add the base method name to the name table. 341 addAccelName(getObjCMethodName(SP->getName()), Die); 342 } 343 } 344 345 /// Check whether we should create a DIE for the given Scope, return true 346 /// if we don't create a DIE (the corresponding DIE is null). 347 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { 348 if (Scope->isAbstractScope()) 349 return false; 350 351 // We don't create a DIE if there is no Range. 352 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); 353 if (Ranges.empty()) 354 return true; 355 356 if (Ranges.size() > 1) 357 return false; 358 359 // We don't create a DIE if we have a single Range and the end label 360 // is null. 361 return !getLabelAfterInsn(Ranges.front().second); 362 } 363 364 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) { 365 F(CU); 366 if (auto *SkelCU = CU.getSkeleton()) 367 if (CU.getCUNode()->getSplitDebugInlining()) 368 F(*SkelCU); 369 } 370 371 void DwarfDebug::constructAbstractSubprogramScopeDIE(LexicalScope *Scope) { 372 assert(Scope && Scope->getScopeNode()); 373 assert(Scope->isAbstractScope()); 374 assert(!Scope->getInlinedAt()); 375 376 auto *SP = cast<DISubprogram>(Scope->getScopeNode()); 377 378 ProcessedSPNodes.insert(SP); 379 380 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram 381 // was inlined from another compile unit. 382 auto &CU = *CUMap.lookup(SP->getUnit()); 383 forBothCUs(CU, [&](DwarfCompileUnit &CU) { 384 CU.constructAbstractSubprogramScopeDIE(Scope); 385 }); 386 } 387 388 void DwarfDebug::addGnuPubAttributes(DwarfUnit &U, DIE &D) const { 389 if (!GenerateGnuPubSections) 390 return; 391 392 U.addFlag(D, dwarf::DW_AT_GNU_pubnames); 393 } 394 395 // Create new DwarfCompileUnit for the given metadata node with tag 396 // DW_TAG_compile_unit. 397 DwarfCompileUnit & 398 DwarfDebug::constructDwarfCompileUnit(const DICompileUnit *DIUnit) { 399 StringRef FN = DIUnit->getFilename(); 400 CompilationDir = DIUnit->getDirectory(); 401 402 auto OwnedUnit = make_unique<DwarfCompileUnit>( 403 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); 404 DwarfCompileUnit &NewCU = *OwnedUnit; 405 DIE &Die = NewCU.getUnitDie(); 406 InfoHolder.addUnit(std::move(OwnedUnit)); 407 if (useSplitDwarf()) { 408 NewCU.setSkeleton(constructSkeletonCU(NewCU)); 409 NewCU.addString(Die, dwarf::DW_AT_GNU_dwo_name, 410 DIUnit->getSplitDebugFilename()); 411 } 412 413 // LTO with assembly output shares a single line table amongst multiple CUs. 414 // To avoid the compilation directory being ambiguous, let the line table 415 // explicitly describe the directory of all files, never relying on the 416 // compilation directory. 417 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU) 418 Asm->OutStreamer->getContext().setMCLineTableCompilationDir( 419 NewCU.getUniqueID(), CompilationDir); 420 421 NewCU.addString(Die, dwarf::DW_AT_producer, DIUnit->getProducer()); 422 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 423 DIUnit->getSourceLanguage()); 424 NewCU.addString(Die, dwarf::DW_AT_name, FN); 425 426 if (!useSplitDwarf()) { 427 NewCU.initStmtList(); 428 429 // If we're using split dwarf the compilation dir is going to be in the 430 // skeleton CU and so we don't need to duplicate it here. 431 if (!CompilationDir.empty()) 432 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 433 434 addGnuPubAttributes(NewCU, Die); 435 } 436 437 if (useAppleExtensionAttributes()) { 438 if (DIUnit->isOptimized()) 439 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); 440 441 StringRef Flags = DIUnit->getFlags(); 442 if (!Flags.empty()) 443 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); 444 445 if (unsigned RVer = DIUnit->getRuntimeVersion()) 446 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, 447 dwarf::DW_FORM_data1, RVer); 448 } 449 450 if (useSplitDwarf()) 451 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection()); 452 else 453 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 454 455 if (DIUnit->getDWOId()) { 456 // This CU is either a clang module DWO or a skeleton CU. 457 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, 458 DIUnit->getDWOId()); 459 if (!DIUnit->getSplitDebugFilename().empty()) 460 // This is a prefabricated skeleton CU. 461 NewCU.addString(Die, dwarf::DW_AT_GNU_dwo_name, 462 DIUnit->getSplitDebugFilename()); 463 } 464 465 CUMap.insert({DIUnit, &NewCU}); 466 CUDieMap.insert({&Die, &NewCU}); 467 return NewCU; 468 } 469 470 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU, 471 const DIImportedEntity *N) { 472 if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope())) 473 D->addChild(TheCU.constructImportedEntityDIE(N)); 474 } 475 476 /// Sort and unique GVEs by comparing their fragment offset. 477 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & 478 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) { 479 std::sort(GVEs.begin(), GVEs.end(), 480 [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) { 481 if (A.Expr != B.Expr && A.Expr && B.Expr) { 482 auto FragmentA = A.Expr->getFragmentInfo(); 483 auto FragmentB = B.Expr->getFragmentInfo(); 484 if (FragmentA && FragmentB) 485 return FragmentA->OffsetInBits < FragmentB->OffsetInBits; 486 } 487 return false; 488 }); 489 GVEs.erase(std::unique(GVEs.begin(), GVEs.end(), 490 [](DwarfCompileUnit::GlobalExpr A, 491 DwarfCompileUnit::GlobalExpr B) { 492 return A.Expr == B.Expr; 493 }), 494 GVEs.end()); 495 return GVEs; 496 } 497 498 // Emit all Dwarf sections that should come prior to the content. Create 499 // global DIEs and emit initial debug info sections. This is invoked by 500 // the target AsmPrinter. 501 void DwarfDebug::beginModule() { 502 NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName, 503 DWARFGroupDescription, TimePassesIsEnabled); 504 if (DisableDebugInfoPrinting) 505 return; 506 507 const Module *M = MMI->getModule(); 508 509 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(), 510 M->debug_compile_units_end()); 511 // Tell MMI whether we have debug info. 512 MMI->setDebugInfoAvailability(NumDebugCUs > 0); 513 SingleCU = NumDebugCUs == 1; 514 DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>> 515 GVMap; 516 for (const GlobalVariable &Global : M->globals()) { 517 SmallVector<DIGlobalVariableExpression *, 1> GVs; 518 Global.getDebugInfo(GVs); 519 for (auto *GVE : GVs) 520 GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()}); 521 } 522 523 for (DICompileUnit *CUNode : M->debug_compile_units()) { 524 DwarfCompileUnit &CU = constructDwarfCompileUnit(CUNode); 525 for (auto *IE : CUNode->getImportedEntities()) 526 CU.addImportedEntity(IE); 527 528 // Global Variables. 529 for (auto *GVE : CUNode->getGlobalVariables()) 530 GVMap[GVE->getVariable()].push_back({nullptr, GVE->getExpression()}); 531 DenseSet<DIGlobalVariable *> Processed; 532 for (auto *GVE : CUNode->getGlobalVariables()) { 533 DIGlobalVariable *GV = GVE->getVariable(); 534 if (Processed.insert(GV).second) 535 CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV])); 536 } 537 538 for (auto *Ty : CUNode->getEnumTypes()) { 539 // The enum types array by design contains pointers to 540 // MDNodes rather than DIRefs. Unique them here. 541 CU.getOrCreateTypeDIE(cast<DIType>(Ty)); 542 } 543 for (auto *Ty : CUNode->getRetainedTypes()) { 544 // The retained types array by design contains pointers to 545 // MDNodes rather than DIRefs. Unique them here. 546 if (DIType *RT = dyn_cast<DIType>(Ty)) 547 if (!RT->isExternalTypeRef()) 548 // There is no point in force-emitting a forward declaration. 549 CU.getOrCreateTypeDIE(RT); 550 } 551 // Emit imported_modules last so that the relevant context is already 552 // available. 553 for (auto *IE : CUNode->getImportedEntities()) 554 constructAndAddImportedEntityDIE(CU, IE); 555 } 556 } 557 558 void DwarfDebug::finishVariableDefinitions() { 559 for (const auto &Var : ConcreteVariables) { 560 DIE *VariableDie = Var->getDIE(); 561 assert(VariableDie); 562 // FIXME: Consider the time-space tradeoff of just storing the unit pointer 563 // in the ConcreteVariables list, rather than looking it up again here. 564 // DIE::getUnit isn't simple - it walks parent pointers, etc. 565 DwarfCompileUnit *Unit = CUDieMap.lookup(VariableDie->getUnitDie()); 566 assert(Unit); 567 DbgVariable *AbsVar = getExistingAbstractVariable( 568 InlinedVariable(Var->getVariable(), Var->getInlinedAt())); 569 if (AbsVar && AbsVar->getDIE()) { 570 Unit->addDIEEntry(*VariableDie, dwarf::DW_AT_abstract_origin, 571 *AbsVar->getDIE()); 572 } else 573 Unit->applyVariableAttributes(*Var, *VariableDie); 574 } 575 } 576 577 void DwarfDebug::finishSubprogramDefinitions() { 578 for (const DISubprogram *SP : ProcessedSPNodes) 579 if (SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug) 580 forBothCUs(*CUMap.lookup(SP->getUnit()), [&](DwarfCompileUnit &CU) { 581 CU.finishSubprogramDefinition(SP); 582 }); 583 } 584 585 void DwarfDebug::finalizeModuleInfo() { 586 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 587 588 finishSubprogramDefinitions(); 589 590 finishVariableDefinitions(); 591 592 // Handle anything that needs to be done on a per-unit basis after 593 // all other generation. 594 for (const auto &P : CUMap) { 595 auto &TheCU = *P.second; 596 // Emit DW_AT_containing_type attribute to connect types with their 597 // vtable holding type. 598 TheCU.constructContainingTypeDIEs(); 599 600 // Add CU specific attributes if we need to add any. 601 // If we're splitting the dwarf out now that we've got the entire 602 // CU then add the dwo id to it. 603 auto *SkCU = TheCU.getSkeleton(); 604 if (useSplitDwarf()) { 605 // Emit a unique identifier for this CU. 606 uint64_t ID = DIEHash(Asm).computeCUSignature(TheCU.getUnitDie()); 607 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 608 dwarf::DW_FORM_data8, ID); 609 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 610 dwarf::DW_FORM_data8, ID); 611 612 // We don't keep track of which addresses are used in which CU so this 613 // is a bit pessimistic under LTO. 614 if (!AddrPool.isEmpty()) { 615 const MCSymbol *Sym = TLOF.getDwarfAddrSection()->getBeginSymbol(); 616 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_addr_base, 617 Sym, Sym); 618 } 619 if (!SkCU->getRangeLists().empty()) { 620 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol(); 621 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, 622 Sym, Sym); 623 } 624 } 625 626 // If we have code split among multiple sections or non-contiguous 627 // ranges of code then emit a DW_AT_ranges attribute on the unit that will 628 // remain in the .o file, otherwise add a DW_AT_low_pc. 629 // FIXME: We should use ranges allow reordering of code ala 630 // .subsections_via_symbols in mach-o. This would mean turning on 631 // ranges for all subprogram DIEs for mach-o. 632 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 633 if (unsigned NumRanges = TheCU.getRanges().size()) { 634 if (NumRanges > 1) 635 // A DW_AT_low_pc attribute may also be specified in combination with 636 // DW_AT_ranges to specify the default base address for use in 637 // location lists (see Section 2.6.2) and range lists (see Section 638 // 2.17.3). 639 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); 640 else 641 U.setBaseAddress(TheCU.getRanges().front().getStart()); 642 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); 643 } 644 645 auto *CUNode = cast<DICompileUnit>(P.first); 646 // If compile Unit has macros, emit "DW_AT_macro_info" attribute. 647 if (CUNode->getMacros()) 648 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info, 649 U.getMacroLabelBegin(), 650 TLOF.getDwarfMacinfoSection()->getBeginSymbol()); 651 } 652 653 // Compute DIE offsets and sizes. 654 InfoHolder.computeSizeAndOffsets(); 655 if (useSplitDwarf()) 656 SkeletonHolder.computeSizeAndOffsets(); 657 } 658 659 // Emit all Dwarf sections that should come after the content. 660 void DwarfDebug::endModule() { 661 assert(CurFn == nullptr); 662 assert(CurMI == nullptr); 663 664 // If we aren't actually generating debug info (check beginModule - 665 // conditionalized on !DisableDebugInfoPrinting and the presence of the 666 // llvm.dbg.cu metadata node) 667 if (!MMI->hasDebugInfo()) 668 return; 669 670 // Finalize the debug info for the module. 671 finalizeModuleInfo(); 672 673 emitDebugStr(); 674 675 if (useSplitDwarf()) 676 emitDebugLocDWO(); 677 else 678 // Emit info into a debug loc section. 679 emitDebugLoc(); 680 681 // Corresponding abbreviations into a abbrev section. 682 emitAbbreviations(); 683 684 // Emit all the DIEs into a debug info section. 685 emitDebugInfo(); 686 687 // Emit info into a debug aranges section. 688 if (GenerateARangeSection) 689 emitDebugARanges(); 690 691 // Emit info into a debug ranges section. 692 emitDebugRanges(); 693 694 // Emit info into a debug macinfo section. 695 emitDebugMacinfo(); 696 697 if (useSplitDwarf()) { 698 emitDebugStrDWO(); 699 emitDebugInfoDWO(); 700 emitDebugAbbrevDWO(); 701 emitDebugLineDWO(); 702 // Emit DWO addresses. 703 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection()); 704 } 705 706 // Emit info into the dwarf accelerator table sections. 707 if (useDwarfAccelTables()) { 708 emitAccelNames(); 709 emitAccelObjC(); 710 emitAccelNamespaces(); 711 emitAccelTypes(); 712 } 713 714 // Emit the pubnames and pubtypes sections if requested. 715 if (HasDwarfPubSections) { 716 emitDebugPubNames(GenerateGnuPubSections); 717 emitDebugPubTypes(GenerateGnuPubSections); 718 } 719 720 // clean up. 721 AbstractVariables.clear(); 722 } 723 724 // Find abstract variable, if any, associated with Var. 725 DbgVariable * 726 DwarfDebug::getExistingAbstractVariable(InlinedVariable IV, 727 const DILocalVariable *&Cleansed) { 728 // More then one inlined variable corresponds to one abstract variable. 729 Cleansed = IV.first; 730 auto I = AbstractVariables.find(Cleansed); 731 if (I != AbstractVariables.end()) 732 return I->second.get(); 733 return nullptr; 734 } 735 736 DbgVariable *DwarfDebug::getExistingAbstractVariable(InlinedVariable IV) { 737 const DILocalVariable *Cleansed; 738 return getExistingAbstractVariable(IV, Cleansed); 739 } 740 741 void DwarfDebug::createAbstractVariable(const DILocalVariable *Var, 742 LexicalScope *Scope) { 743 assert(Scope && Scope->isAbstractScope()); 744 auto AbsDbgVariable = make_unique<DbgVariable>(Var, /* IA */ nullptr); 745 InfoHolder.addScopeVariable(Scope, AbsDbgVariable.get()); 746 AbstractVariables[Var] = std::move(AbsDbgVariable); 747 } 748 749 void DwarfDebug::ensureAbstractVariableIsCreated(InlinedVariable IV, 750 const MDNode *ScopeNode) { 751 const DILocalVariable *Cleansed = nullptr; 752 if (getExistingAbstractVariable(IV, Cleansed)) 753 return; 754 755 createAbstractVariable(Cleansed, LScopes.getOrCreateAbstractScope( 756 cast<DILocalScope>(ScopeNode))); 757 } 758 759 void DwarfDebug::ensureAbstractVariableIsCreatedIfScoped( 760 InlinedVariable IV, const MDNode *ScopeNode) { 761 const DILocalVariable *Cleansed = nullptr; 762 if (getExistingAbstractVariable(IV, Cleansed)) 763 return; 764 765 if (LexicalScope *Scope = 766 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode))) 767 createAbstractVariable(Cleansed, Scope); 768 } 769 770 // Collect variable information from side table maintained by MF. 771 void DwarfDebug::collectVariableInfoFromMFTable( 772 DenseSet<InlinedVariable> &Processed) { 773 for (const auto &VI : Asm->MF->getVariableDbgInfo()) { 774 if (!VI.Var) 775 continue; 776 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 777 "Expected inlined-at fields to agree"); 778 779 InlinedVariable Var(VI.Var, VI.Loc->getInlinedAt()); 780 Processed.insert(Var); 781 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 782 783 // If variable scope is not found then skip this variable. 784 if (!Scope) 785 continue; 786 787 ensureAbstractVariableIsCreatedIfScoped(Var, Scope->getScopeNode()); 788 auto RegVar = make_unique<DbgVariable>(Var.first, Var.second); 789 RegVar->initializeMMI(VI.Expr, VI.Slot); 790 if (InfoHolder.addScopeVariable(Scope, RegVar.get())) 791 ConcreteVariables.push_back(std::move(RegVar)); 792 } 793 } 794 795 // Get .debug_loc entry for the instruction range starting at MI. 796 static DebugLocEntry::Value getDebugLocValue(const MachineInstr *MI) { 797 const DIExpression *Expr = MI->getDebugExpression(); 798 799 assert(MI->getNumOperands() == 4); 800 if (MI->getOperand(0).isReg()) { 801 MachineLocation MLoc; 802 // If the second operand is an immediate, this is a 803 // register-indirect address. 804 if (!MI->getOperand(1).isImm()) 805 MLoc.set(MI->getOperand(0).getReg()); 806 else 807 MLoc.set(MI->getOperand(0).getReg(), MI->getOperand(1).getImm()); 808 return DebugLocEntry::Value(Expr, MLoc); 809 } 810 if (MI->getOperand(0).isImm()) 811 return DebugLocEntry::Value(Expr, MI->getOperand(0).getImm()); 812 if (MI->getOperand(0).isFPImm()) 813 return DebugLocEntry::Value(Expr, MI->getOperand(0).getFPImm()); 814 if (MI->getOperand(0).isCImm()) 815 return DebugLocEntry::Value(Expr, MI->getOperand(0).getCImm()); 816 817 llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!"); 818 } 819 820 /// \brief If this and Next are describing different fragments of the same 821 /// variable, merge them by appending Next's values to the current 822 /// list of values. 823 /// Return true if the merge was successful. 824 bool DebugLocEntry::MergeValues(const DebugLocEntry &Next) { 825 if (Begin == Next.Begin) { 826 auto *FirstExpr = cast<DIExpression>(Values[0].Expression); 827 auto *FirstNextExpr = cast<DIExpression>(Next.Values[0].Expression); 828 if (!FirstExpr->isFragment() || !FirstNextExpr->isFragment()) 829 return false; 830 831 // We can only merge entries if none of the fragments overlap any others. 832 // In doing so, we can take advantage of the fact that both lists are 833 // sorted. 834 for (unsigned i = 0, j = 0; i < Values.size(); ++i) { 835 for (; j < Next.Values.size(); ++j) { 836 int res = DebugHandlerBase::fragmentCmp( 837 cast<DIExpression>(Values[i].Expression), 838 cast<DIExpression>(Next.Values[j].Expression)); 839 if (res == 0) // The two expressions overlap, we can't merge. 840 return false; 841 // Values[i] is entirely before Next.Values[j], 842 // so go back to the next entry of Values. 843 else if (res == -1) 844 break; 845 // Next.Values[j] is entirely before Values[i], so go on to the 846 // next entry of Next.Values. 847 } 848 } 849 850 addValues(Next.Values); 851 End = Next.End; 852 return true; 853 } 854 return false; 855 } 856 857 /// Build the location list for all DBG_VALUEs in the function that 858 /// describe the same variable. If the ranges of several independent 859 /// fragments of the same variable overlap partially, split them up and 860 /// combine the ranges. The resulting DebugLocEntries are will have 861 /// strict monotonically increasing begin addresses and will never 862 /// overlap. 863 // 864 // Input: 865 // 866 // Ranges History [var, loc, fragment ofs size] 867 // 0 | [x, (reg0, fragment 0, 32)] 868 // 1 | | [x, (reg1, fragment 32, 32)] <- IsFragmentOfPrevEntry 869 // 2 | | ... 870 // 3 | [clobber reg0] 871 // 4 [x, (mem, fragment 0, 64)] <- overlapping with both previous fragments of 872 // x. 873 // 874 // Output: 875 // 876 // [0-1] [x, (reg0, fragment 0, 32)] 877 // [1-3] [x, (reg0, fragment 0, 32), (reg1, fragment 32, 32)] 878 // [3-4] [x, (reg1, fragment 32, 32)] 879 // [4- ] [x, (mem, fragment 0, 64)] 880 void 881 DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc, 882 const DbgValueHistoryMap::InstrRanges &Ranges) { 883 SmallVector<DebugLocEntry::Value, 4> OpenRanges; 884 885 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 886 const MachineInstr *Begin = I->first; 887 const MachineInstr *End = I->second; 888 assert(Begin->isDebugValue() && "Invalid History entry"); 889 890 // Check if a variable is inaccessible in this range. 891 if (Begin->getNumOperands() > 1 && 892 Begin->getOperand(0).isReg() && !Begin->getOperand(0).getReg()) { 893 OpenRanges.clear(); 894 continue; 895 } 896 897 // If this fragment overlaps with any open ranges, truncate them. 898 const DIExpression *DIExpr = Begin->getDebugExpression(); 899 auto Last = remove_if(OpenRanges, [&](DebugLocEntry::Value R) { 900 return fragmentsOverlap(DIExpr, R.getExpression()); 901 }); 902 OpenRanges.erase(Last, OpenRanges.end()); 903 904 const MCSymbol *StartLabel = getLabelBeforeInsn(Begin); 905 assert(StartLabel && "Forgot label before DBG_VALUE starting a range!"); 906 907 const MCSymbol *EndLabel; 908 if (End != nullptr) 909 EndLabel = getLabelAfterInsn(End); 910 else if (std::next(I) == Ranges.end()) 911 EndLabel = Asm->getFunctionEnd(); 912 else 913 EndLabel = getLabelBeforeInsn(std::next(I)->first); 914 assert(EndLabel && "Forgot label after instruction ending a range!"); 915 916 DEBUG(dbgs() << "DotDebugLoc: " << *Begin << "\n"); 917 918 auto Value = getDebugLocValue(Begin); 919 DebugLocEntry Loc(StartLabel, EndLabel, Value); 920 bool couldMerge = false; 921 922 // If this is a fragment, it may belong to the current DebugLocEntry. 923 if (DIExpr->isFragment()) { 924 // Add this value to the list of open ranges. 925 OpenRanges.push_back(Value); 926 927 // Attempt to add the fragment to the last entry. 928 if (!DebugLoc.empty()) 929 if (DebugLoc.back().MergeValues(Loc)) 930 couldMerge = true; 931 } 932 933 if (!couldMerge) { 934 // Need to add a new DebugLocEntry. Add all values from still 935 // valid non-overlapping fragments. 936 if (OpenRanges.size()) 937 Loc.addValues(OpenRanges); 938 939 DebugLoc.push_back(std::move(Loc)); 940 } 941 942 // Attempt to coalesce the ranges of two otherwise identical 943 // DebugLocEntries. 944 auto CurEntry = DebugLoc.rbegin(); 945 DEBUG({ 946 dbgs() << CurEntry->getValues().size() << " Values:\n"; 947 for (auto &Value : CurEntry->getValues()) 948 Value.dump(); 949 dbgs() << "-----\n"; 950 }); 951 952 auto PrevEntry = std::next(CurEntry); 953 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) 954 DebugLoc.pop_back(); 955 } 956 } 957 958 DbgVariable *DwarfDebug::createConcreteVariable(LexicalScope &Scope, 959 InlinedVariable IV) { 960 ensureAbstractVariableIsCreatedIfScoped(IV, Scope.getScopeNode()); 961 ConcreteVariables.push_back(make_unique<DbgVariable>(IV.first, IV.second)); 962 InfoHolder.addScopeVariable(&Scope, ConcreteVariables.back().get()); 963 return ConcreteVariables.back().get(); 964 } 965 966 // Determine whether this DBG_VALUE is valid at the beginning of the function. 967 static bool validAtEntry(const MachineInstr *MInsn) { 968 auto MBB = MInsn->getParent(); 969 // Is it in the entry basic block? 970 if (!MBB->pred_empty()) 971 return false; 972 for (MachineBasicBlock::const_reverse_iterator I(MInsn); I != MBB->rend(); ++I) 973 if (!(I->isDebugValue() || I->getFlag(MachineInstr::FrameSetup))) 974 return false; 975 return true; 976 } 977 978 // Find variables for each lexical scope. 979 void DwarfDebug::collectVariableInfo(DwarfCompileUnit &TheCU, 980 const DISubprogram *SP, 981 DenseSet<InlinedVariable> &Processed) { 982 // Grab the variable info that was squirreled away in the MMI side-table. 983 collectVariableInfoFromMFTable(Processed); 984 985 for (const auto &I : DbgValues) { 986 InlinedVariable IV = I.first; 987 if (Processed.count(IV)) 988 continue; 989 990 // Instruction ranges, specifying where IV is accessible. 991 const auto &Ranges = I.second; 992 if (Ranges.empty()) 993 continue; 994 995 LexicalScope *Scope = nullptr; 996 if (const DILocation *IA = IV.second) 997 Scope = LScopes.findInlinedScope(IV.first->getScope(), IA); 998 else 999 Scope = LScopes.findLexicalScope(IV.first->getScope()); 1000 // If variable scope is not found then skip this variable. 1001 if (!Scope) 1002 continue; 1003 1004 Processed.insert(IV); 1005 DbgVariable *RegVar = createConcreteVariable(*Scope, IV); 1006 1007 const MachineInstr *MInsn = Ranges.front().first; 1008 assert(MInsn->isDebugValue() && "History must begin with debug value"); 1009 1010 // Check if there is a single DBG_VALUE, valid throughout the function. 1011 // A single constant is also considered valid for the entire function. 1012 if (Ranges.size() == 1 && 1013 (MInsn->getOperand(0).isImm() || 1014 (validAtEntry(MInsn) && Ranges.front().second == nullptr))) { 1015 RegVar->initializeDbgValue(MInsn); 1016 continue; 1017 } 1018 1019 // Handle multiple DBG_VALUE instructions describing one variable. 1020 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn); 1021 1022 // Build the location list for this variable. 1023 SmallVector<DebugLocEntry, 8> Entries; 1024 buildLocationList(Entries, Ranges); 1025 1026 // If the variable has a DIBasicType, extract it. Basic types cannot have 1027 // unique identifiers, so don't bother resolving the type with the 1028 // identifier map. 1029 const DIBasicType *BT = dyn_cast<DIBasicType>( 1030 static_cast<const Metadata *>(IV.first->getType())); 1031 1032 // Finalize the entry by lowering it into a DWARF bytestream. 1033 for (auto &Entry : Entries) 1034 Entry.finalize(*Asm, List, BT); 1035 } 1036 1037 // Collect info for variables that were optimized out. 1038 for (const DILocalVariable *DV : SP->getVariables()) { 1039 if (Processed.insert(InlinedVariable(DV, nullptr)).second) 1040 if (LexicalScope *Scope = LScopes.findLexicalScope(DV->getScope())) 1041 createConcreteVariable(*Scope, InlinedVariable(DV, nullptr)); 1042 } 1043 } 1044 1045 // Process beginning of an instruction. 1046 void DwarfDebug::beginInstruction(const MachineInstr *MI) { 1047 DebugHandlerBase::beginInstruction(MI); 1048 assert(CurMI); 1049 1050 // Check if source location changes, but ignore DBG_VALUE and CFI locations. 1051 if (MI->isDebugValue() || MI->isCFIInstruction()) 1052 return; 1053 const DebugLoc &DL = MI->getDebugLoc(); 1054 // When we emit a line-0 record, we don't update PrevInstLoc; so look at 1055 // the last line number actually emitted, to see if it was line 0. 1056 unsigned LastAsmLine = 1057 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine(); 1058 1059 if (DL == PrevInstLoc) { 1060 // If we have an ongoing unspecified location, nothing to do here. 1061 if (!DL) 1062 return; 1063 // We have an explicit location, same as the previous location. 1064 // But we might be coming back to it after a line 0 record. 1065 if (LastAsmLine == 0 && DL.getLine() != 0) { 1066 // Reinstate the source location but not marked as a statement. 1067 const MDNode *Scope = DL.getScope(); 1068 recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0); 1069 } 1070 return; 1071 } 1072 1073 if (!DL) { 1074 // We have an unspecified location, which might want to be line 0. 1075 // If we have already emitted a line-0 record, don't repeat it. 1076 if (LastAsmLine == 0) 1077 return; 1078 // If user said Don't Do That, don't do that. 1079 if (UnknownLocations == Disable) 1080 return; 1081 // See if we have a reason to emit a line-0 record now. 1082 // Reasons to emit a line-0 record include: 1083 // - User asked for it (UnknownLocations). 1084 // - Instruction has a label, so it's referenced from somewhere else, 1085 // possibly debug information; we want it to have a source location. 1086 // - Instruction is at the top of a block; we don't want to inherit the 1087 // location from the physically previous (maybe unrelated) block. 1088 if (UnknownLocations == Enable || PrevLabel || 1089 (PrevInstBB && PrevInstBB != MI->getParent())) { 1090 // Preserve the file and column numbers, if we can, to save space in 1091 // the encoded line table. 1092 // Do not update PrevInstLoc, it remembers the last non-0 line. 1093 const MDNode *Scope = nullptr; 1094 unsigned Column = 0; 1095 if (PrevInstLoc) { 1096 Scope = PrevInstLoc.getScope(); 1097 Column = PrevInstLoc.getCol(); 1098 } 1099 recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0); 1100 } 1101 return; 1102 } 1103 1104 // We have an explicit location, different from the previous location. 1105 // Don't repeat a line-0 record, but otherwise emit the new location. 1106 // (The new location might be an explicit line 0, which we do emit.) 1107 if (PrevInstLoc && DL.getLine() == 0 && LastAsmLine == 0) 1108 return; 1109 unsigned Flags = 0; 1110 if (DL == PrologEndLoc) { 1111 Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT; 1112 PrologEndLoc = DebugLoc(); 1113 } 1114 // If the line changed, we call that a new statement; unless we went to 1115 // line 0 and came back, in which case it is not a new statement. 1116 unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine; 1117 if (DL.getLine() && DL.getLine() != OldLine) 1118 Flags |= DWARF2_FLAG_IS_STMT; 1119 1120 const MDNode *Scope = DL.getScope(); 1121 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); 1122 1123 // If we're not at line 0, remember this location. 1124 if (DL.getLine()) 1125 PrevInstLoc = DL; 1126 } 1127 1128 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) { 1129 // First known non-DBG_VALUE and non-frame setup location marks 1130 // the beginning of the function body. 1131 for (const auto &MBB : *MF) 1132 for (const auto &MI : MBB) 1133 if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) && 1134 MI.getDebugLoc()) 1135 return MI.getDebugLoc(); 1136 return DebugLoc(); 1137 } 1138 1139 // Gather pre-function debug information. Assumes being called immediately 1140 // after the function entry point has been emitted. 1141 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) { 1142 CurFn = MF; 1143 1144 if (LScopes.empty()) 1145 return; 1146 1147 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function 1148 // belongs to so that we add to the correct per-cu line table in the 1149 // non-asm case. 1150 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 1151 // FnScope->getScopeNode() and DI->second should represent the same function, 1152 // though they may not be the same MDNode due to inline functions merged in 1153 // LTO where the debug info metadata still differs (either due to distinct 1154 // written differences - two versions of a linkonce_odr function 1155 // written/copied into two separate files, or some sub-optimal metadata that 1156 // isn't structurally identical (see: file path/name info from clang, which 1157 // includes the directory of the cpp file being built, even when the file name 1158 // is absolute (such as an <> lookup header))) 1159 auto *SP = cast<DISubprogram>(FnScope->getScopeNode()); 1160 DwarfCompileUnit *TheCU = CUMap.lookup(SP->getUnit()); 1161 if (!TheCU) { 1162 assert(SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug && 1163 "DICompileUnit missing from llvm.dbg.cu?"); 1164 return; 1165 } 1166 if (Asm->OutStreamer->hasRawTextSupport()) 1167 // Use a single line table if we are generating assembly. 1168 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 1169 else 1170 Asm->OutStreamer->getContext().setDwarfCompileUnitID(TheCU->getUniqueID()); 1171 1172 // Record beginning of function. 1173 PrologEndLoc = findPrologueEndLoc(MF); 1174 if (DILocation *L = PrologEndLoc) { 1175 // We'd like to list the prologue as "not statements" but GDB behaves 1176 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. 1177 auto *SP = L->getInlinedAtScope()->getSubprogram(); 1178 recordSourceLine(SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT); 1179 } 1180 } 1181 1182 void DwarfDebug::skippedNonDebugFunction() { 1183 // If we don't have a subprogram for this function then there will be a hole 1184 // in the range information. Keep note of this by setting the previously used 1185 // section to nullptr. 1186 PrevCU = nullptr; 1187 CurFn = nullptr; 1188 } 1189 1190 // Gather and emit post-function debug information. 1191 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) { 1192 const DISubprogram *SP = MF->getFunction()->getSubprogram(); 1193 1194 assert(CurFn == MF && 1195 "endFunction should be called with the same function as beginFunction"); 1196 1197 // Set DwarfDwarfCompileUnitID in MCContext to default value. 1198 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 1199 1200 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 1201 assert(!FnScope || SP == FnScope->getScopeNode()); 1202 DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit()); 1203 1204 DenseSet<InlinedVariable> ProcessedVars; 1205 collectVariableInfo(TheCU, SP, ProcessedVars); 1206 1207 // Add the range of this function to the list of ranges for the CU. 1208 TheCU.addRange(RangeSpan(Asm->getFunctionBegin(), Asm->getFunctionEnd())); 1209 1210 // Under -gmlt, skip building the subprogram if there are no inlined 1211 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram 1212 // is still needed as we need its source location. 1213 if (!TheCU.getCUNode()->getDebugInfoForProfiling() && 1214 TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly && 1215 LScopes.getAbstractScopesList().empty() && !IsDarwin) { 1216 assert(InfoHolder.getScopeVariables().empty()); 1217 PrevLabel = nullptr; 1218 CurFn = nullptr; 1219 return; 1220 } 1221 1222 #ifndef NDEBUG 1223 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size(); 1224 #endif 1225 // Construct abstract scopes. 1226 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { 1227 auto *SP = cast<DISubprogram>(AScope->getScopeNode()); 1228 // Collect info for variables that were optimized out. 1229 for (const DILocalVariable *DV : SP->getVariables()) { 1230 if (!ProcessedVars.insert(InlinedVariable(DV, nullptr)).second) 1231 continue; 1232 ensureAbstractVariableIsCreated(InlinedVariable(DV, nullptr), 1233 DV->getScope()); 1234 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes 1235 && "ensureAbstractVariableIsCreated inserted abstract scopes"); 1236 } 1237 constructAbstractSubprogramScopeDIE(AScope); 1238 } 1239 1240 ProcessedSPNodes.insert(SP); 1241 TheCU.constructSubprogramScopeDIE(SP, FnScope); 1242 if (auto *SkelCU = TheCU.getSkeleton()) 1243 if (!LScopes.getAbstractScopesList().empty() && 1244 TheCU.getCUNode()->getSplitDebugInlining()) 1245 SkelCU->constructSubprogramScopeDIE(SP, FnScope); 1246 1247 // Clear debug info 1248 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the 1249 // DbgVariables except those that are also in AbstractVariables (since they 1250 // can be used cross-function) 1251 InfoHolder.getScopeVariables().clear(); 1252 PrevLabel = nullptr; 1253 CurFn = nullptr; 1254 } 1255 1256 // Register a source line with debug info. Returns the unique label that was 1257 // emitted and which provides correspondence to the source line list. 1258 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, 1259 unsigned Flags) { 1260 StringRef Fn; 1261 StringRef Dir; 1262 unsigned Src = 1; 1263 unsigned Discriminator = 0; 1264 if (auto *Scope = cast_or_null<DIScope>(S)) { 1265 Fn = Scope->getFilename(); 1266 Dir = Scope->getDirectory(); 1267 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope)) 1268 if (getDwarfVersion() >= 4) 1269 Discriminator = LBF->getDiscriminator(); 1270 1271 unsigned CUID = Asm->OutStreamer->getContext().getDwarfCompileUnitID(); 1272 Src = static_cast<DwarfCompileUnit &>(*InfoHolder.getUnits()[CUID]) 1273 .getOrCreateSourceID(Fn, Dir); 1274 } 1275 Asm->OutStreamer->EmitDwarfLocDirective(Src, Line, Col, Flags, 0, 1276 Discriminator, Fn); 1277 } 1278 1279 //===----------------------------------------------------------------------===// 1280 // Emit Methods 1281 //===----------------------------------------------------------------------===// 1282 1283 // Emit the debug info section. 1284 void DwarfDebug::emitDebugInfo() { 1285 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1286 Holder.emitUnits(/* UseOffsets */ false); 1287 } 1288 1289 // Emit the abbreviation section. 1290 void DwarfDebug::emitAbbreviations() { 1291 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1292 1293 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); 1294 } 1295 1296 void DwarfDebug::emitAccel(DwarfAccelTable &Accel, MCSection *Section, 1297 StringRef TableName) { 1298 Accel.FinalizeTable(Asm, TableName); 1299 Asm->OutStreamer->SwitchSection(Section); 1300 1301 // Emit the full data. 1302 Accel.emit(Asm, Section->getBeginSymbol(), this); 1303 } 1304 1305 // Emit visible names into a hashed accelerator table section. 1306 void DwarfDebug::emitAccelNames() { 1307 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), 1308 "Names"); 1309 } 1310 1311 // Emit objective C classes and categories into a hashed accelerator table 1312 // section. 1313 void DwarfDebug::emitAccelObjC() { 1314 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), 1315 "ObjC"); 1316 } 1317 1318 // Emit namespace dies into a hashed accelerator table. 1319 void DwarfDebug::emitAccelNamespaces() { 1320 emitAccel(AccelNamespace, 1321 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), 1322 "namespac"); 1323 } 1324 1325 // Emit type dies into a hashed accelerator table. 1326 void DwarfDebug::emitAccelTypes() { 1327 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), 1328 "types"); 1329 } 1330 1331 // Public name handling. 1332 // The format for the various pubnames: 1333 // 1334 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU 1335 // for the DIE that is named. 1336 // 1337 // gnu pubnames - offset/index value/name tuples where the offset is the offset 1338 // into the CU and the index value is computed according to the type of value 1339 // for the DIE that is named. 1340 // 1341 // For type units the offset is the offset of the skeleton DIE. For split dwarf 1342 // it's the offset within the debug_info/debug_types dwo section, however, the 1343 // reference in the pubname header doesn't change. 1344 1345 /// computeIndexValue - Compute the gdb index value for the DIE and CU. 1346 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, 1347 const DIE *Die) { 1348 // Entities that ended up only in a Type Unit reference the CU instead (since 1349 // the pub entry has offsets within the CU there's no real offset that can be 1350 // provided anyway). As it happens all such entities (namespaces and types, 1351 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out 1352 // not to be true it would be necessary to persist this information from the 1353 // point at which the entry is added to the index data structure - since by 1354 // the time the index is built from that, the original type/namespace DIE in a 1355 // type unit has already been destroyed so it can't be queried for properties 1356 // like tag, etc. 1357 if (Die->getTag() == dwarf::DW_TAG_compile_unit) 1358 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, 1359 dwarf::GIEL_EXTERNAL); 1360 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; 1361 1362 // We could have a specification DIE that has our most of our knowledge, 1363 // look for that now. 1364 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) { 1365 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry(); 1366 if (SpecDIE.findAttribute(dwarf::DW_AT_external)) 1367 Linkage = dwarf::GIEL_EXTERNAL; 1368 } else if (Die->findAttribute(dwarf::DW_AT_external)) 1369 Linkage = dwarf::GIEL_EXTERNAL; 1370 1371 switch (Die->getTag()) { 1372 case dwarf::DW_TAG_class_type: 1373 case dwarf::DW_TAG_structure_type: 1374 case dwarf::DW_TAG_union_type: 1375 case dwarf::DW_TAG_enumeration_type: 1376 return dwarf::PubIndexEntryDescriptor( 1377 dwarf::GIEK_TYPE, CU->getLanguage() != dwarf::DW_LANG_C_plus_plus 1378 ? dwarf::GIEL_STATIC 1379 : dwarf::GIEL_EXTERNAL); 1380 case dwarf::DW_TAG_typedef: 1381 case dwarf::DW_TAG_base_type: 1382 case dwarf::DW_TAG_subrange_type: 1383 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); 1384 case dwarf::DW_TAG_namespace: 1385 return dwarf::GIEK_TYPE; 1386 case dwarf::DW_TAG_subprogram: 1387 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); 1388 case dwarf::DW_TAG_variable: 1389 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); 1390 case dwarf::DW_TAG_enumerator: 1391 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, 1392 dwarf::GIEL_STATIC); 1393 default: 1394 return dwarf::GIEK_NONE; 1395 } 1396 } 1397 1398 /// emitDebugPubNames - Emit visible names into a debug pubnames section. 1399 /// 1400 void DwarfDebug::emitDebugPubNames(bool GnuStyle) { 1401 MCSection *PSec = GnuStyle 1402 ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() 1403 : Asm->getObjFileLowering().getDwarfPubNamesSection(); 1404 1405 emitDebugPubSection(GnuStyle, PSec, "Names", 1406 &DwarfCompileUnit::getGlobalNames); 1407 } 1408 1409 void DwarfDebug::emitDebugPubSection( 1410 bool GnuStyle, MCSection *PSec, StringRef Name, 1411 const StringMap<const DIE *> &(DwarfCompileUnit::*Accessor)() const) { 1412 for (const auto &NU : CUMap) { 1413 DwarfCompileUnit *TheU = NU.second; 1414 1415 const auto &Globals = (TheU->*Accessor)(); 1416 1417 if (Globals.empty()) 1418 continue; 1419 1420 if (auto *Skeleton = TheU->getSkeleton()) 1421 TheU = Skeleton; 1422 1423 // Start the dwarf pubnames section. 1424 Asm->OutStreamer->SwitchSection(PSec); 1425 1426 // Emit the header. 1427 Asm->OutStreamer->AddComment("Length of Public " + Name + " Info"); 1428 MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin"); 1429 MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end"); 1430 Asm->EmitLabelDifference(EndLabel, BeginLabel, 4); 1431 1432 Asm->OutStreamer->EmitLabel(BeginLabel); 1433 1434 Asm->OutStreamer->AddComment("DWARF Version"); 1435 Asm->EmitInt16(dwarf::DW_PUBNAMES_VERSION); 1436 1437 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info"); 1438 Asm->emitDwarfSymbolReference(TheU->getLabelBegin()); 1439 1440 Asm->OutStreamer->AddComment("Compilation Unit Length"); 1441 Asm->EmitInt32(TheU->getLength()); 1442 1443 // Emit the pubnames for this compilation unit. 1444 for (const auto &GI : Globals) { 1445 const char *Name = GI.getKeyData(); 1446 const DIE *Entity = GI.second; 1447 1448 Asm->OutStreamer->AddComment("DIE offset"); 1449 Asm->EmitInt32(Entity->getOffset()); 1450 1451 if (GnuStyle) { 1452 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); 1453 Asm->OutStreamer->AddComment( 1454 Twine("Kind: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + ", " + 1455 dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); 1456 Asm->EmitInt8(Desc.toBits()); 1457 } 1458 1459 Asm->OutStreamer->AddComment("External Name"); 1460 Asm->OutStreamer->EmitBytes(StringRef(Name, GI.getKeyLength() + 1)); 1461 } 1462 1463 Asm->OutStreamer->AddComment("End Mark"); 1464 Asm->EmitInt32(0); 1465 Asm->OutStreamer->EmitLabel(EndLabel); 1466 } 1467 } 1468 1469 void DwarfDebug::emitDebugPubTypes(bool GnuStyle) { 1470 MCSection *PSec = GnuStyle 1471 ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() 1472 : Asm->getObjFileLowering().getDwarfPubTypesSection(); 1473 1474 emitDebugPubSection(GnuStyle, PSec, "Types", 1475 &DwarfCompileUnit::getGlobalTypes); 1476 } 1477 1478 /// Emit null-terminated strings into a debug str section. 1479 void DwarfDebug::emitDebugStr() { 1480 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1481 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection()); 1482 } 1483 1484 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, 1485 const DebugLocStream::Entry &Entry) { 1486 auto &&Comments = DebugLocs.getComments(Entry); 1487 auto Comment = Comments.begin(); 1488 auto End = Comments.end(); 1489 for (uint8_t Byte : DebugLocs.getBytes(Entry)) 1490 Streamer.EmitInt8(Byte, Comment != End ? *(Comment++) : ""); 1491 } 1492 1493 static void emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT, 1494 ByteStreamer &Streamer, 1495 const DebugLocEntry::Value &Value, 1496 DwarfExpression &DwarfExpr) { 1497 DIExpressionCursor ExprCursor(Value.getExpression()); 1498 DwarfExpr.addFragmentOffset(Value.getExpression()); 1499 // Regular entry. 1500 if (Value.isInt()) { 1501 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed || 1502 BT->getEncoding() == dwarf::DW_ATE_signed_char)) 1503 DwarfExpr.AddSignedConstant(Value.getInt()); 1504 else 1505 DwarfExpr.AddUnsignedConstant(Value.getInt()); 1506 } else if (Value.isLocation()) { 1507 MachineLocation Loc = Value.getLoc(); 1508 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 1509 if (Loc.getOffset()) 1510 DwarfExpr.AddMachineRegIndirect(TRI, Loc.getReg(), Loc.getOffset()); 1511 else 1512 DwarfExpr.AddMachineRegExpression(TRI, ExprCursor, Loc.getReg()); 1513 } else if (Value.isConstantFP()) { 1514 APInt RawBytes = Value.getConstantFP()->getValueAPF().bitcastToAPInt(); 1515 DwarfExpr.AddUnsignedConstant(RawBytes); 1516 } 1517 DwarfExpr.AddExpression(std::move(ExprCursor)); 1518 } 1519 1520 void DebugLocEntry::finalize(const AsmPrinter &AP, 1521 DebugLocStream::ListBuilder &List, 1522 const DIBasicType *BT) { 1523 DebugLocStream::EntryBuilder Entry(List, Begin, End); 1524 BufferByteStreamer Streamer = Entry.getStreamer(); 1525 DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer); 1526 const DebugLocEntry::Value &Value = Values[0]; 1527 if (Value.isFragment()) { 1528 // Emit all fragments that belong to the same variable and range. 1529 assert(all_of(Values, [](DebugLocEntry::Value P) { 1530 return P.isFragment(); 1531 }) && "all values are expected to be fragments"); 1532 assert(std::is_sorted(Values.begin(), Values.end()) && 1533 "fragments are expected to be sorted"); 1534 1535 for (auto Fragment : Values) 1536 emitDebugLocValue(AP, BT, Streamer, Fragment, DwarfExpr); 1537 1538 } else { 1539 assert(Values.size() == 1 && "only fragments may have >1 value"); 1540 emitDebugLocValue(AP, BT, Streamer, Value, DwarfExpr); 1541 } 1542 DwarfExpr.finalize(); 1543 } 1544 1545 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry) { 1546 // Emit the size. 1547 Asm->OutStreamer->AddComment("Loc expr size"); 1548 Asm->EmitInt16(DebugLocs.getBytes(Entry).size()); 1549 1550 // Emit the entry. 1551 APByteStreamer Streamer(*Asm); 1552 emitDebugLocEntry(Streamer, Entry); 1553 } 1554 1555 // Emit locations into the debug loc section. 1556 void DwarfDebug::emitDebugLoc() { 1557 // Start the dwarf loc section. 1558 Asm->OutStreamer->SwitchSection( 1559 Asm->getObjFileLowering().getDwarfLocSection()); 1560 unsigned char Size = Asm->getDataLayout().getPointerSize(); 1561 for (const auto &List : DebugLocs.getLists()) { 1562 Asm->OutStreamer->EmitLabel(List.Label); 1563 const DwarfCompileUnit *CU = List.CU; 1564 for (const auto &Entry : DebugLocs.getEntries(List)) { 1565 // Set up the range. This range is relative to the entry point of the 1566 // compile unit. This is a hard coded 0 for low_pc when we're emitting 1567 // ranges, or the DW_AT_low_pc on the compile unit otherwise. 1568 if (auto *Base = CU->getBaseAddress()) { 1569 Asm->EmitLabelDifference(Entry.BeginSym, Base, Size); 1570 Asm->EmitLabelDifference(Entry.EndSym, Base, Size); 1571 } else { 1572 Asm->OutStreamer->EmitSymbolValue(Entry.BeginSym, Size); 1573 Asm->OutStreamer->EmitSymbolValue(Entry.EndSym, Size); 1574 } 1575 1576 emitDebugLocEntryLocation(Entry); 1577 } 1578 Asm->OutStreamer->EmitIntValue(0, Size); 1579 Asm->OutStreamer->EmitIntValue(0, Size); 1580 } 1581 } 1582 1583 void DwarfDebug::emitDebugLocDWO() { 1584 Asm->OutStreamer->SwitchSection( 1585 Asm->getObjFileLowering().getDwarfLocDWOSection()); 1586 for (const auto &List : DebugLocs.getLists()) { 1587 Asm->OutStreamer->EmitLabel(List.Label); 1588 for (const auto &Entry : DebugLocs.getEntries(List)) { 1589 // Just always use start_length for now - at least that's one address 1590 // rather than two. We could get fancier and try to, say, reuse an 1591 // address we know we've emitted elsewhere (the start of the function? 1592 // The start of the CU or CU subrange that encloses this range?) 1593 Asm->EmitInt8(dwarf::DW_LLE_startx_length); 1594 unsigned idx = AddrPool.getIndex(Entry.BeginSym); 1595 Asm->EmitULEB128(idx); 1596 Asm->EmitLabelDifference(Entry.EndSym, Entry.BeginSym, 4); 1597 1598 emitDebugLocEntryLocation(Entry); 1599 } 1600 Asm->EmitInt8(dwarf::DW_LLE_end_of_list); 1601 } 1602 } 1603 1604 struct ArangeSpan { 1605 const MCSymbol *Start, *End; 1606 }; 1607 1608 // Emit a debug aranges section, containing a CU lookup for any 1609 // address we can tie back to a CU. 1610 void DwarfDebug::emitDebugARanges() { 1611 // Provides a unique id per text section. 1612 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap; 1613 1614 // Filter labels by section. 1615 for (const SymbolCU &SCU : ArangeLabels) { 1616 if (SCU.Sym->isInSection()) { 1617 // Make a note of this symbol and it's section. 1618 MCSection *Section = &SCU.Sym->getSection(); 1619 if (!Section->getKind().isMetadata()) 1620 SectionMap[Section].push_back(SCU); 1621 } else { 1622 // Some symbols (e.g. common/bss on mach-o) can have no section but still 1623 // appear in the output. This sucks as we rely on sections to build 1624 // arange spans. We can do it without, but it's icky. 1625 SectionMap[nullptr].push_back(SCU); 1626 } 1627 } 1628 1629 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans; 1630 1631 for (auto &I : SectionMap) { 1632 MCSection *Section = I.first; 1633 SmallVector<SymbolCU, 8> &List = I.second; 1634 if (List.size() < 1) 1635 continue; 1636 1637 // If we have no section (e.g. common), just write out 1638 // individual spans for each symbol. 1639 if (!Section) { 1640 for (const SymbolCU &Cur : List) { 1641 ArangeSpan Span; 1642 Span.Start = Cur.Sym; 1643 Span.End = nullptr; 1644 assert(Cur.CU); 1645 Spans[Cur.CU].push_back(Span); 1646 } 1647 continue; 1648 } 1649 1650 // Sort the symbols by offset within the section. 1651 std::sort( 1652 List.begin(), List.end(), [&](const SymbolCU &A, const SymbolCU &B) { 1653 unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0; 1654 unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0; 1655 1656 // Symbols with no order assigned should be placed at the end. 1657 // (e.g. section end labels) 1658 if (IA == 0) 1659 return false; 1660 if (IB == 0) 1661 return true; 1662 return IA < IB; 1663 }); 1664 1665 // Insert a final terminator. 1666 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section))); 1667 1668 // Build spans between each label. 1669 const MCSymbol *StartSym = List[0].Sym; 1670 for (size_t n = 1, e = List.size(); n < e; n++) { 1671 const SymbolCU &Prev = List[n - 1]; 1672 const SymbolCU &Cur = List[n]; 1673 1674 // Try and build the longest span we can within the same CU. 1675 if (Cur.CU != Prev.CU) { 1676 ArangeSpan Span; 1677 Span.Start = StartSym; 1678 Span.End = Cur.Sym; 1679 assert(Prev.CU); 1680 Spans[Prev.CU].push_back(Span); 1681 StartSym = Cur.Sym; 1682 } 1683 } 1684 } 1685 1686 // Start the dwarf aranges section. 1687 Asm->OutStreamer->SwitchSection( 1688 Asm->getObjFileLowering().getDwarfARangesSection()); 1689 1690 unsigned PtrSize = Asm->getDataLayout().getPointerSize(); 1691 1692 // Build a list of CUs used. 1693 std::vector<DwarfCompileUnit *> CUs; 1694 for (const auto &it : Spans) { 1695 DwarfCompileUnit *CU = it.first; 1696 CUs.push_back(CU); 1697 } 1698 1699 // Sort the CU list (again, to ensure consistent output order). 1700 std::sort(CUs.begin(), CUs.end(), 1701 [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) { 1702 return A->getUniqueID() < B->getUniqueID(); 1703 }); 1704 1705 // Emit an arange table for each CU we used. 1706 for (DwarfCompileUnit *CU : CUs) { 1707 std::vector<ArangeSpan> &List = Spans[CU]; 1708 1709 // Describe the skeleton CU's offset and length, not the dwo file's. 1710 if (auto *Skel = CU->getSkeleton()) 1711 CU = Skel; 1712 1713 // Emit size of content not including length itself. 1714 unsigned ContentSize = 1715 sizeof(int16_t) + // DWARF ARange version number 1716 sizeof(int32_t) + // Offset of CU in the .debug_info section 1717 sizeof(int8_t) + // Pointer Size (in bytes) 1718 sizeof(int8_t); // Segment Size (in bytes) 1719 1720 unsigned TupleSize = PtrSize * 2; 1721 1722 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. 1723 unsigned Padding = 1724 OffsetToAlignment(sizeof(int32_t) + ContentSize, TupleSize); 1725 1726 ContentSize += Padding; 1727 ContentSize += (List.size() + 1) * TupleSize; 1728 1729 // For each compile unit, write the list of spans it covers. 1730 Asm->OutStreamer->AddComment("Length of ARange Set"); 1731 Asm->EmitInt32(ContentSize); 1732 Asm->OutStreamer->AddComment("DWARF Arange version number"); 1733 Asm->EmitInt16(dwarf::DW_ARANGES_VERSION); 1734 Asm->OutStreamer->AddComment("Offset Into Debug Info Section"); 1735 Asm->emitDwarfSymbolReference(CU->getLabelBegin()); 1736 Asm->OutStreamer->AddComment("Address Size (in bytes)"); 1737 Asm->EmitInt8(PtrSize); 1738 Asm->OutStreamer->AddComment("Segment Size (in bytes)"); 1739 Asm->EmitInt8(0); 1740 1741 Asm->OutStreamer->emitFill(Padding, 0xff); 1742 1743 for (const ArangeSpan &Span : List) { 1744 Asm->EmitLabelReference(Span.Start, PtrSize); 1745 1746 // Calculate the size as being from the span start to it's end. 1747 if (Span.End) { 1748 Asm->EmitLabelDifference(Span.End, Span.Start, PtrSize); 1749 } else { 1750 // For symbols without an end marker (e.g. common), we 1751 // write a single arange entry containing just that one symbol. 1752 uint64_t Size = SymSize[Span.Start]; 1753 if (Size == 0) 1754 Size = 1; 1755 1756 Asm->OutStreamer->EmitIntValue(Size, PtrSize); 1757 } 1758 } 1759 1760 Asm->OutStreamer->AddComment("ARange terminator"); 1761 Asm->OutStreamer->EmitIntValue(0, PtrSize); 1762 Asm->OutStreamer->EmitIntValue(0, PtrSize); 1763 } 1764 } 1765 1766 /// Emit address ranges into a debug ranges section. 1767 void DwarfDebug::emitDebugRanges() { 1768 // Start the dwarf ranges section. 1769 Asm->OutStreamer->SwitchSection( 1770 Asm->getObjFileLowering().getDwarfRangesSection()); 1771 1772 // Size for our labels. 1773 unsigned char Size = Asm->getDataLayout().getPointerSize(); 1774 1775 // Grab the specific ranges for the compile units in the module. 1776 for (const auto &I : CUMap) { 1777 DwarfCompileUnit *TheCU = I.second; 1778 1779 if (auto *Skel = TheCU->getSkeleton()) 1780 TheCU = Skel; 1781 1782 // Iterate over the misc ranges for the compile units in the module. 1783 for (const RangeSpanList &List : TheCU->getRangeLists()) { 1784 // Emit our symbol so we can find the beginning of the range. 1785 Asm->OutStreamer->EmitLabel(List.getSym()); 1786 1787 for (const RangeSpan &Range : List.getRanges()) { 1788 const MCSymbol *Begin = Range.getStart(); 1789 const MCSymbol *End = Range.getEnd(); 1790 assert(Begin && "Range without a begin symbol?"); 1791 assert(End && "Range without an end symbol?"); 1792 if (auto *Base = TheCU->getBaseAddress()) { 1793 Asm->EmitLabelDifference(Begin, Base, Size); 1794 Asm->EmitLabelDifference(End, Base, Size); 1795 } else { 1796 Asm->OutStreamer->EmitSymbolValue(Begin, Size); 1797 Asm->OutStreamer->EmitSymbolValue(End, Size); 1798 } 1799 } 1800 1801 // And terminate the list with two 0 values. 1802 Asm->OutStreamer->EmitIntValue(0, Size); 1803 Asm->OutStreamer->EmitIntValue(0, Size); 1804 } 1805 } 1806 } 1807 1808 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) { 1809 for (auto *MN : Nodes) { 1810 if (auto *M = dyn_cast<DIMacro>(MN)) 1811 emitMacro(*M); 1812 else if (auto *F = dyn_cast<DIMacroFile>(MN)) 1813 emitMacroFile(*F, U); 1814 else 1815 llvm_unreachable("Unexpected DI type!"); 1816 } 1817 } 1818 1819 void DwarfDebug::emitMacro(DIMacro &M) { 1820 Asm->EmitULEB128(M.getMacinfoType()); 1821 Asm->EmitULEB128(M.getLine()); 1822 StringRef Name = M.getName(); 1823 StringRef Value = M.getValue(); 1824 Asm->OutStreamer->EmitBytes(Name); 1825 if (!Value.empty()) { 1826 // There should be one space between macro name and macro value. 1827 Asm->EmitInt8(' '); 1828 Asm->OutStreamer->EmitBytes(Value); 1829 } 1830 Asm->EmitInt8('\0'); 1831 } 1832 1833 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) { 1834 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file); 1835 Asm->EmitULEB128(dwarf::DW_MACINFO_start_file); 1836 Asm->EmitULEB128(F.getLine()); 1837 DIFile *File = F.getFile(); 1838 unsigned FID = 1839 U.getOrCreateSourceID(File->getFilename(), File->getDirectory()); 1840 Asm->EmitULEB128(FID); 1841 handleMacroNodes(F.getElements(), U); 1842 Asm->EmitULEB128(dwarf::DW_MACINFO_end_file); 1843 } 1844 1845 /// Emit macros into a debug macinfo section. 1846 void DwarfDebug::emitDebugMacinfo() { 1847 // Start the dwarf macinfo section. 1848 Asm->OutStreamer->SwitchSection( 1849 Asm->getObjFileLowering().getDwarfMacinfoSection()); 1850 1851 for (const auto &P : CUMap) { 1852 auto &TheCU = *P.second; 1853 auto *SkCU = TheCU.getSkeleton(); 1854 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 1855 auto *CUNode = cast<DICompileUnit>(P.first); 1856 Asm->OutStreamer->EmitLabel(U.getMacroLabelBegin()); 1857 handleMacroNodes(CUNode->getMacros(), U); 1858 } 1859 Asm->OutStreamer->AddComment("End Of Macro List Mark"); 1860 Asm->EmitInt8(0); 1861 } 1862 1863 // DWARF5 Experimental Separate Dwarf emitters. 1864 1865 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die, 1866 std::unique_ptr<DwarfCompileUnit> NewU) { 1867 NewU->addString(Die, dwarf::DW_AT_GNU_dwo_name, 1868 U.getCUNode()->getSplitDebugFilename()); 1869 1870 if (!CompilationDir.empty()) 1871 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 1872 1873 addGnuPubAttributes(*NewU, Die); 1874 1875 SkeletonHolder.addUnit(std::move(NewU)); 1876 } 1877 1878 // This DIE has the following attributes: DW_AT_comp_dir, DW_AT_stmt_list, 1879 // DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges, DW_AT_dwo_name, DW_AT_dwo_id, 1880 // DW_AT_addr_base, DW_AT_ranges_base. 1881 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) { 1882 1883 auto OwnedUnit = make_unique<DwarfCompileUnit>( 1884 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder); 1885 DwarfCompileUnit &NewCU = *OwnedUnit; 1886 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 1887 1888 NewCU.initStmtList(); 1889 1890 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit)); 1891 1892 return NewCU; 1893 } 1894 1895 // Emit the .debug_info.dwo section for separated dwarf. This contains the 1896 // compile units that would normally be in debug_info. 1897 void DwarfDebug::emitDebugInfoDWO() { 1898 assert(useSplitDwarf() && "No split dwarf debug info?"); 1899 // Don't emit relocations into the dwo file. 1900 InfoHolder.emitUnits(/* UseOffsets */ true); 1901 } 1902 1903 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the 1904 // abbreviations for the .debug_info.dwo section. 1905 void DwarfDebug::emitDebugAbbrevDWO() { 1906 assert(useSplitDwarf() && "No split dwarf?"); 1907 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection()); 1908 } 1909 1910 void DwarfDebug::emitDebugLineDWO() { 1911 assert(useSplitDwarf() && "No split dwarf?"); 1912 Asm->OutStreamer->SwitchSection( 1913 Asm->getObjFileLowering().getDwarfLineDWOSection()); 1914 SplitTypeUnitFileTable.Emit(*Asm->OutStreamer, MCDwarfLineTableParams()); 1915 } 1916 1917 // Emit the .debug_str.dwo section for separated dwarf. This contains the 1918 // string section and is identical in format to traditional .debug_str 1919 // sections. 1920 void DwarfDebug::emitDebugStrDWO() { 1921 assert(useSplitDwarf() && "No split dwarf?"); 1922 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection(); 1923 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), 1924 OffSec); 1925 } 1926 1927 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) { 1928 if (!useSplitDwarf()) 1929 return nullptr; 1930 if (SingleCU) 1931 SplitTypeUnitFileTable.setCompilationDir(CU.getCUNode()->getDirectory()); 1932 return &SplitTypeUnitFileTable; 1933 } 1934 1935 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) { 1936 MD5 Hash; 1937 Hash.update(Identifier); 1938 // ... take the least significant 8 bytes and return those. Our MD5 1939 // implementation always returns its results in little endian, swap bytes 1940 // appropriately. 1941 MD5::MD5Result Result; 1942 Hash.final(Result); 1943 return support::endian::read64le(Result + 8); 1944 } 1945 1946 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU, 1947 StringRef Identifier, DIE &RefDie, 1948 const DICompositeType *CTy) { 1949 // Fast path if we're building some type units and one has already used the 1950 // address pool we know we're going to throw away all this work anyway, so 1951 // don't bother building dependent types. 1952 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed()) 1953 return; 1954 1955 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0)); 1956 if (!Ins.second) { 1957 CU.addDIETypeSignature(RefDie, Ins.first->second); 1958 return; 1959 } 1960 1961 bool TopLevelType = TypeUnitsUnderConstruction.empty(); 1962 AddrPool.resetUsedFlag(); 1963 1964 auto OwnedUnit = make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder, 1965 getDwoLineTable(CU)); 1966 DwarfTypeUnit &NewTU = *OwnedUnit; 1967 DIE &UnitDie = NewTU.getUnitDie(); 1968 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy); 1969 1970 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 1971 CU.getLanguage()); 1972 1973 uint64_t Signature = makeTypeSignature(Identifier); 1974 NewTU.setTypeSignature(Signature); 1975 Ins.first->second = Signature; 1976 1977 if (useSplitDwarf()) 1978 NewTU.setSection(Asm->getObjFileLowering().getDwarfTypesDWOSection()); 1979 else { 1980 CU.applyStmtList(UnitDie); 1981 NewTU.setSection(Asm->getObjFileLowering().getDwarfTypesSection(Signature)); 1982 } 1983 1984 NewTU.setType(NewTU.createTypeDIE(CTy)); 1985 1986 if (TopLevelType) { 1987 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction); 1988 TypeUnitsUnderConstruction.clear(); 1989 1990 // Types referencing entries in the address table cannot be placed in type 1991 // units. 1992 if (AddrPool.hasBeenUsed()) { 1993 1994 // Remove all the types built while building this type. 1995 // This is pessimistic as some of these types might not be dependent on 1996 // the type that used an address. 1997 for (const auto &TU : TypeUnitsToAdd) 1998 TypeSignatures.erase(TU.second); 1999 2000 // Construct this type in the CU directly. 2001 // This is inefficient because all the dependent types will be rebuilt 2002 // from scratch, including building them in type units, discovering that 2003 // they depend on addresses, throwing them out and rebuilding them. 2004 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy)); 2005 return; 2006 } 2007 2008 // If the type wasn't dependent on fission addresses, finish adding the type 2009 // and all its dependent types. 2010 for (auto &TU : TypeUnitsToAdd) { 2011 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get()); 2012 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf()); 2013 } 2014 } 2015 CU.addDIETypeSignature(RefDie, Signature); 2016 } 2017 2018 // Accelerator table mutators - add each name along with its companion 2019 // DIE to the proper table while ensuring that the name that we're going 2020 // to reference is in the string table. We do this since the names we 2021 // add may not only be identical to the names in the DIE. 2022 void DwarfDebug::addAccelName(StringRef Name, const DIE &Die) { 2023 if (!useDwarfAccelTables()) 2024 return; 2025 AccelNames.AddName(InfoHolder.getStringPool().getEntry(*Asm, Name), &Die); 2026 } 2027 2028 void DwarfDebug::addAccelObjC(StringRef Name, const DIE &Die) { 2029 if (!useDwarfAccelTables()) 2030 return; 2031 AccelObjC.AddName(InfoHolder.getStringPool().getEntry(*Asm, Name), &Die); 2032 } 2033 2034 void DwarfDebug::addAccelNamespace(StringRef Name, const DIE &Die) { 2035 if (!useDwarfAccelTables()) 2036 return; 2037 AccelNamespace.AddName(InfoHolder.getStringPool().getEntry(*Asm, Name), &Die); 2038 } 2039 2040 void DwarfDebug::addAccelType(StringRef Name, const DIE &Die, char Flags) { 2041 if (!useDwarfAccelTables()) 2042 return; 2043 AccelTypes.AddName(InfoHolder.getStringPool().getEntry(*Asm, Name), &Die); 2044 } 2045 2046 uint16_t DwarfDebug::getDwarfVersion() const { 2047 return Asm->OutStreamer->getContext().getDwarfVersion(); 2048 } 2049