1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing dwarf debug info into asm files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "DwarfDebug.h"
14 #include "ByteStreamer.h"
15 #include "DIEHash.h"
16 #include "DebugLocEntry.h"
17 #include "DebugLocStream.h"
18 #include "DwarfCompileUnit.h"
19 #include "DwarfExpression.h"
20 #include "DwarfFile.h"
21 #include "DwarfUnit.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/DenseSet.h"
25 #include "llvm/ADT/MapVector.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/BinaryFormat/Dwarf.h"
33 #include "llvm/CodeGen/AccelTable.h"
34 #include "llvm/CodeGen/AsmPrinter.h"
35 #include "llvm/CodeGen/DIE.h"
36 #include "llvm/CodeGen/LexicalScopes.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineInstr.h"
40 #include "llvm/CodeGen/MachineModuleInfo.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/TargetInstrInfo.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/DebugInfo/DWARF/DWARFExpression.h"
47 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GlobalVariable.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/MC/MCAsmInfo.h"
55 #include "llvm/MC/MCContext.h"
56 #include "llvm/MC/MCDwarf.h"
57 #include "llvm/MC/MCSection.h"
58 #include "llvm/MC/MCStreamer.h"
59 #include "llvm/MC/MCSymbol.h"
60 #include "llvm/MC/MCTargetOptions.h"
61 #include "llvm/MC/MachineLocation.h"
62 #include "llvm/MC/SectionKind.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/MD5.h"
69 #include "llvm/Support/MathExtras.h"
70 #include "llvm/Support/Timer.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/Target/TargetLoweringObjectFile.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include "llvm/Target/TargetOptions.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <iterator>
80 #include <string>
81 #include <utility>
82 #include <vector>
83 
84 using namespace llvm;
85 
86 #define DEBUG_TYPE "dwarfdebug"
87 
88 STATISTIC(NumCSParams, "Number of dbg call site params created");
89 
90 static cl::opt<bool>
91 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
92                          cl::desc("Disable debug info printing"));
93 
94 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier(
95     "use-dwarf-ranges-base-address-specifier", cl::Hidden,
96     cl::desc("Use base address specifiers in debug_ranges"), cl::init(false));
97 
98 static cl::opt<bool> GenerateARangeSection("generate-arange-section",
99                                            cl::Hidden,
100                                            cl::desc("Generate dwarf aranges"),
101                                            cl::init(false));
102 
103 static cl::opt<bool>
104     GenerateDwarfTypeUnits("generate-type-units", cl::Hidden,
105                            cl::desc("Generate DWARF4 type units."),
106                            cl::init(false));
107 
108 static cl::opt<bool> SplitDwarfCrossCuReferences(
109     "split-dwarf-cross-cu-references", cl::Hidden,
110     cl::desc("Enable cross-cu references in DWO files"), cl::init(false));
111 
112 enum DefaultOnOff { Default, Enable, Disable };
113 
114 static cl::opt<DefaultOnOff> UnknownLocations(
115     "use-unknown-locations", cl::Hidden,
116     cl::desc("Make an absence of debug location information explicit."),
117     cl::values(clEnumVal(Default, "At top of block or after label"),
118                clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")),
119     cl::init(Default));
120 
121 static cl::opt<AccelTableKind> AccelTables(
122     "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."),
123     cl::values(clEnumValN(AccelTableKind::Default, "Default",
124                           "Default for platform"),
125                clEnumValN(AccelTableKind::None, "Disable", "Disabled."),
126                clEnumValN(AccelTableKind::Apple, "Apple", "Apple"),
127                clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")),
128     cl::init(AccelTableKind::Default));
129 
130 static cl::opt<DefaultOnOff>
131 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden,
132                  cl::desc("Use inlined strings rather than string section."),
133                  cl::values(clEnumVal(Default, "Default for platform"),
134                             clEnumVal(Enable, "Enabled"),
135                             clEnumVal(Disable, "Disabled")),
136                  cl::init(Default));
137 
138 static cl::opt<bool>
139     NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden,
140                          cl::desc("Disable emission .debug_ranges section."),
141                          cl::init(false));
142 
143 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences(
144     "dwarf-sections-as-references", cl::Hidden,
145     cl::desc("Use sections+offset as references rather than labels."),
146     cl::values(clEnumVal(Default, "Default for platform"),
147                clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
148     cl::init(Default));
149 
150 enum LinkageNameOption {
151   DefaultLinkageNames,
152   AllLinkageNames,
153   AbstractLinkageNames
154 };
155 
156 static cl::opt<LinkageNameOption>
157     DwarfLinkageNames("dwarf-linkage-names", cl::Hidden,
158                       cl::desc("Which DWARF linkage-name attributes to emit."),
159                       cl::values(clEnumValN(DefaultLinkageNames, "Default",
160                                             "Default for platform"),
161                                  clEnumValN(AllLinkageNames, "All", "All"),
162                                  clEnumValN(AbstractLinkageNames, "Abstract",
163                                             "Abstract subprograms")),
164                       cl::init(DefaultLinkageNames));
165 
166 static const char *const DWARFGroupName = "dwarf";
167 static const char *const DWARFGroupDescription = "DWARF Emission";
168 static const char *const DbgTimerName = "writer";
169 static const char *const DbgTimerDescription = "DWARF Debug Writer";
170 static constexpr unsigned ULEB128PadSize = 4;
171 
172 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) {
173   getActiveStreamer().EmitInt8(
174       Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op)
175                   : dwarf::OperationEncodingString(Op));
176 }
177 
178 void DebugLocDwarfExpression::emitSigned(int64_t Value) {
179   getActiveStreamer().EmitSLEB128(Value, Twine(Value));
180 }
181 
182 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) {
183   getActiveStreamer().EmitULEB128(Value, Twine(Value));
184 }
185 
186 void DebugLocDwarfExpression::emitData1(uint8_t Value) {
187   getActiveStreamer().EmitInt8(Value, Twine(Value));
188 }
189 
190 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) {
191   assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit");
192   getActiveStreamer().EmitULEB128(Idx, Twine(Idx), ULEB128PadSize);
193 }
194 
195 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI,
196                                               unsigned MachineReg) {
197   // This information is not available while emitting .debug_loc entries.
198   return false;
199 }
200 
201 void DebugLocDwarfExpression::enableTemporaryBuffer() {
202   assert(!IsBuffering && "Already buffering?");
203   if (!TmpBuf)
204     TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments);
205   IsBuffering = true;
206 }
207 
208 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; }
209 
210 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() {
211   return TmpBuf ? TmpBuf->Bytes.size() : 0;
212 }
213 
214 void DebugLocDwarfExpression::commitTemporaryBuffer() {
215   if (!TmpBuf)
216     return;
217   for (auto Byte : enumerate(TmpBuf->Bytes)) {
218     const char *Comment = (Byte.index() < TmpBuf->Comments.size())
219                               ? TmpBuf->Comments[Byte.index()].c_str()
220                               : "";
221     OutBS.EmitInt8(Byte.value(), Comment);
222   }
223   TmpBuf->Bytes.clear();
224   TmpBuf->Comments.clear();
225 }
226 
227 const DIType *DbgVariable::getType() const {
228   return getVariable()->getType();
229 }
230 
231 /// Get .debug_loc entry for the instruction range starting at MI.
232 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) {
233   const DIExpression *Expr = MI->getDebugExpression();
234   assert(MI->getNumOperands() == 4);
235   if (MI->getOperand(0).isReg()) {
236     auto RegOp = MI->getOperand(0);
237     auto Op1 = MI->getOperand(1);
238     // If the second operand is an immediate, this is a
239     // register-indirect address.
240     assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset");
241     MachineLocation MLoc(RegOp.getReg(), Op1.isImm());
242     return DbgValueLoc(Expr, MLoc);
243   }
244   if (MI->getOperand(0).isTargetIndex()) {
245     auto Op = MI->getOperand(0);
246     return DbgValueLoc(Expr,
247                        TargetIndexLocation(Op.getIndex(), Op.getOffset()));
248   }
249   if (MI->getOperand(0).isImm())
250     return DbgValueLoc(Expr, MI->getOperand(0).getImm());
251   if (MI->getOperand(0).isFPImm())
252     return DbgValueLoc(Expr, MI->getOperand(0).getFPImm());
253   if (MI->getOperand(0).isCImm())
254     return DbgValueLoc(Expr, MI->getOperand(0).getCImm());
255 
256   llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!");
257 }
258 
259 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) {
260   assert(FrameIndexExprs.empty() && "Already initialized?");
261   assert(!ValueLoc.get() && "Already initialized?");
262 
263   assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable");
264   assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() &&
265          "Wrong inlined-at");
266 
267   ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue));
268   if (auto *E = DbgValue->getDebugExpression())
269     if (E->getNumElements())
270       FrameIndexExprs.push_back({0, E});
271 }
272 
273 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const {
274   if (FrameIndexExprs.size() == 1)
275     return FrameIndexExprs;
276 
277   assert(llvm::all_of(FrameIndexExprs,
278                       [](const FrameIndexExpr &A) {
279                         return A.Expr->isFragment();
280                       }) &&
281          "multiple FI expressions without DW_OP_LLVM_fragment");
282   llvm::sort(FrameIndexExprs,
283              [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool {
284                return A.Expr->getFragmentInfo()->OffsetInBits <
285                       B.Expr->getFragmentInfo()->OffsetInBits;
286              });
287 
288   return FrameIndexExprs;
289 }
290 
291 void DbgVariable::addMMIEntry(const DbgVariable &V) {
292   assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry");
293   assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry");
294   assert(V.getVariable() == getVariable() && "conflicting variable");
295   assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location");
296 
297   assert(!FrameIndexExprs.empty() && "Expected an MMI entry");
298   assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry");
299 
300   // FIXME: This logic should not be necessary anymore, as we now have proper
301   // deduplication. However, without it, we currently run into the assertion
302   // below, which means that we are likely dealing with broken input, i.e. two
303   // non-fragment entries for the same variable at different frame indices.
304   if (FrameIndexExprs.size()) {
305     auto *Expr = FrameIndexExprs.back().Expr;
306     if (!Expr || !Expr->isFragment())
307       return;
308   }
309 
310   for (const auto &FIE : V.FrameIndexExprs)
311     // Ignore duplicate entries.
312     if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) {
313           return FIE.FI == Other.FI && FIE.Expr == Other.Expr;
314         }))
315       FrameIndexExprs.push_back(FIE);
316 
317   assert((FrameIndexExprs.size() == 1 ||
318           llvm::all_of(FrameIndexExprs,
319                        [](FrameIndexExpr &FIE) {
320                          return FIE.Expr && FIE.Expr->isFragment();
321                        })) &&
322          "conflicting locations for variable");
323 }
324 
325 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion,
326                                             bool GenerateTypeUnits,
327                                             DebuggerKind Tuning,
328                                             const Triple &TT) {
329   // Honor an explicit request.
330   if (AccelTables != AccelTableKind::Default)
331     return AccelTables;
332 
333   // Accelerator tables with type units are currently not supported.
334   if (GenerateTypeUnits)
335     return AccelTableKind::None;
336 
337   // Accelerator tables get emitted if targetting DWARF v5 or LLDB.  DWARF v5
338   // always implies debug_names. For lower standard versions we use apple
339   // accelerator tables on apple platforms and debug_names elsewhere.
340   if (DwarfVersion >= 5)
341     return AccelTableKind::Dwarf;
342   if (Tuning == DebuggerKind::LLDB)
343     return TT.isOSBinFormatMachO() ? AccelTableKind::Apple
344                                    : AccelTableKind::Dwarf;
345   return AccelTableKind::None;
346 }
347 
348 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M)
349     : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()),
350       InfoHolder(A, "info_string", DIEValueAllocator),
351       SkeletonHolder(A, "skel_string", DIEValueAllocator),
352       IsDarwin(A->TM.getTargetTriple().isOSDarwin()) {
353   const Triple &TT = Asm->TM.getTargetTriple();
354 
355   // Make sure we know our "debugger tuning".  The target option takes
356   // precedence; fall back to triple-based defaults.
357   if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default)
358     DebuggerTuning = Asm->TM.Options.DebuggerTuning;
359   else if (IsDarwin)
360     DebuggerTuning = DebuggerKind::LLDB;
361   else if (TT.isPS4CPU())
362     DebuggerTuning = DebuggerKind::SCE;
363   else
364     DebuggerTuning = DebuggerKind::GDB;
365 
366   if (DwarfInlinedStrings == Default)
367     UseInlineStrings = TT.isNVPTX();
368   else
369     UseInlineStrings = DwarfInlinedStrings == Enable;
370 
371   UseLocSection = !TT.isNVPTX();
372 
373   HasAppleExtensionAttributes = tuneForLLDB();
374 
375   // Handle split DWARF.
376   HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty();
377 
378   // SCE defaults to linkage names only for abstract subprograms.
379   if (DwarfLinkageNames == DefaultLinkageNames)
380     UseAllLinkageNames = !tuneForSCE();
381   else
382     UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames;
383 
384   unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
385   unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
386                                     : MMI->getModule()->getDwarfVersion();
387   // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2.
388   DwarfVersion =
389       TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION);
390 
391   UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX();
392 
393   // Use sections as references. Force for NVPTX.
394   if (DwarfSectionsAsReferences == Default)
395     UseSectionsAsReferences = TT.isNVPTX();
396   else
397     UseSectionsAsReferences = DwarfSectionsAsReferences == Enable;
398 
399   // Don't generate type units for unsupported object file formats.
400   GenerateTypeUnits =
401       A->TM.getTargetTriple().isOSBinFormatELF() && GenerateDwarfTypeUnits;
402 
403   TheAccelTableKind = computeAccelTableKind(
404       DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple());
405 
406   // Work around a GDB bug. GDB doesn't support the standard opcode;
407   // SCE doesn't support GNU's; LLDB prefers the standard opcode, which
408   // is defined as of DWARF 3.
409   // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented
410   // https://sourceware.org/bugzilla/show_bug.cgi?id=11616
411   UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3;
412 
413   // GDB does not fully support the DWARF 4 representation for bitfields.
414   UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB();
415 
416   // The DWARF v5 string offsets table has - possibly shared - contributions
417   // from each compile and type unit each preceded by a header. The string
418   // offsets table used by the pre-DWARF v5 split-DWARF implementation uses
419   // a monolithic string offsets table without any header.
420   UseSegmentedStringOffsetsTable = DwarfVersion >= 5;
421 
422   Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion);
423 }
424 
425 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
426 DwarfDebug::~DwarfDebug() = default;
427 
428 static bool isObjCClass(StringRef Name) {
429   return Name.startswith("+") || Name.startswith("-");
430 }
431 
432 static bool hasObjCCategory(StringRef Name) {
433   if (!isObjCClass(Name))
434     return false;
435 
436   return Name.find(") ") != StringRef::npos;
437 }
438 
439 static void getObjCClassCategory(StringRef In, StringRef &Class,
440                                  StringRef &Category) {
441   if (!hasObjCCategory(In)) {
442     Class = In.slice(In.find('[') + 1, In.find(' '));
443     Category = "";
444     return;
445   }
446 
447   Class = In.slice(In.find('[') + 1, In.find('('));
448   Category = In.slice(In.find('[') + 1, In.find(' '));
449 }
450 
451 static StringRef getObjCMethodName(StringRef In) {
452   return In.slice(In.find(' ') + 1, In.find(']'));
453 }
454 
455 // Add the various names to the Dwarf accelerator table names.
456 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU,
457                                     const DISubprogram *SP, DIE &Die) {
458   if (getAccelTableKind() != AccelTableKind::Apple &&
459       CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None)
460     return;
461 
462   if (!SP->isDefinition())
463     return;
464 
465   if (SP->getName() != "")
466     addAccelName(CU, SP->getName(), Die);
467 
468   // If the linkage name is different than the name, go ahead and output that as
469   // well into the name table. Only do that if we are going to actually emit
470   // that name.
471   if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() &&
472       (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP)))
473     addAccelName(CU, SP->getLinkageName(), Die);
474 
475   // If this is an Objective-C selector name add it to the ObjC accelerator
476   // too.
477   if (isObjCClass(SP->getName())) {
478     StringRef Class, Category;
479     getObjCClassCategory(SP->getName(), Class, Category);
480     addAccelObjC(CU, Class, Die);
481     if (Category != "")
482       addAccelObjC(CU, Category, Die);
483     // Also add the base method name to the name table.
484     addAccelName(CU, getObjCMethodName(SP->getName()), Die);
485   }
486 }
487 
488 /// Check whether we should create a DIE for the given Scope, return true
489 /// if we don't create a DIE (the corresponding DIE is null).
490 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
491   if (Scope->isAbstractScope())
492     return false;
493 
494   // We don't create a DIE if there is no Range.
495   const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
496   if (Ranges.empty())
497     return true;
498 
499   if (Ranges.size() > 1)
500     return false;
501 
502   // We don't create a DIE if we have a single Range and the end label
503   // is null.
504   return !getLabelAfterInsn(Ranges.front().second);
505 }
506 
507 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) {
508   F(CU);
509   if (auto *SkelCU = CU.getSkeleton())
510     if (CU.getCUNode()->getSplitDebugInlining())
511       F(*SkelCU);
512 }
513 
514 bool DwarfDebug::shareAcrossDWOCUs() const {
515   return SplitDwarfCrossCuReferences;
516 }
517 
518 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU,
519                                                      LexicalScope *Scope) {
520   assert(Scope && Scope->getScopeNode());
521   assert(Scope->isAbstractScope());
522   assert(!Scope->getInlinedAt());
523 
524   auto *SP = cast<DISubprogram>(Scope->getScopeNode());
525 
526   // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
527   // was inlined from another compile unit.
528   if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining())
529     // Avoid building the original CU if it won't be used
530     SrcCU.constructAbstractSubprogramScopeDIE(Scope);
531   else {
532     auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
533     if (auto *SkelCU = CU.getSkeleton()) {
534       (shareAcrossDWOCUs() ? CU : SrcCU)
535           .constructAbstractSubprogramScopeDIE(Scope);
536       if (CU.getCUNode()->getSplitDebugInlining())
537         SkelCU->constructAbstractSubprogramScopeDIE(Scope);
538     } else
539       CU.constructAbstractSubprogramScopeDIE(Scope);
540   }
541 }
542 
543 DIE &DwarfDebug::constructSubprogramDefinitionDIE(const DISubprogram *SP) {
544   DICompileUnit *Unit = SP->getUnit();
545   assert(SP->isDefinition() && "Subprogram not a definition");
546   assert(Unit && "Subprogram definition without parent unit");
547   auto &CU = getOrCreateDwarfCompileUnit(Unit);
548   return *CU.getOrCreateSubprogramDIE(SP);
549 }
550 
551 /// Try to interpret values loaded into registers that forward parameters
552 /// for \p CallMI. Store parameters with interpreted value into \p Params.
553 static void collectCallSiteParameters(const MachineInstr *CallMI,
554                                       ParamSet &Params) {
555   auto *MF = CallMI->getMF();
556   auto CalleesMap = MF->getCallSitesInfo();
557   auto CallFwdRegsInfo = CalleesMap.find(CallMI);
558 
559   // There is no information for the call instruction.
560   if (CallFwdRegsInfo == CalleesMap.end())
561     return;
562 
563   auto *MBB = CallMI->getParent();
564   const auto &TRI = MF->getSubtarget().getRegisterInfo();
565   const auto &TII = MF->getSubtarget().getInstrInfo();
566   const auto &TLI = MF->getSubtarget().getTargetLowering();
567 
568   // Skip the call instruction.
569   auto I = std::next(CallMI->getReverseIterator());
570 
571   DenseSet<unsigned> ForwardedRegWorklist;
572   // Add all the forwarding registers into the ForwardedRegWorklist.
573   for (auto ArgReg : CallFwdRegsInfo->second) {
574     bool InsertedReg = ForwardedRegWorklist.insert(ArgReg.Reg).second;
575     assert(InsertedReg && "Single register used to forward two arguments?");
576     (void)InsertedReg;
577   }
578 
579   // We erase, from the ForwardedRegWorklist, those forwarding registers for
580   // which we successfully describe a loaded value (by using
581   // the describeLoadedValue()). For those remaining arguments in the working
582   // list, for which we do not describe a loaded value by
583   // the describeLoadedValue(), we try to generate an entry value expression
584   // for their call site value desctipion, if the call is within the entry MBB.
585   // The RegsForEntryValues maps a forwarding register into the register holding
586   // the entry value.
587   // TODO: Handle situations when call site parameter value can be described
588   // as the entry value within basic blocks other then the first one.
589   bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin();
590   DenseMap<unsigned, unsigned> RegsForEntryValues;
591 
592   // If the MI is an instruction defining one or more parameters' forwarding
593   // registers, add those defines. We can currently only describe forwarded
594   // registers that are explicitly defined, but keep track of implicit defines
595   // also to remove those registers from the work list.
596   auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI,
597                                           SmallVectorImpl<unsigned> &Explicit,
598                                           SmallVectorImpl<unsigned> &Implicit) {
599     if (MI.isDebugInstr())
600       return;
601 
602     for (const MachineOperand &MO : MI.operands()) {
603       if (MO.isReg() && MO.isDef() &&
604           Register::isPhysicalRegister(MO.getReg())) {
605         for (auto FwdReg : ForwardedRegWorklist) {
606           if (TRI->regsOverlap(FwdReg, MO.getReg())) {
607             if (MO.isImplicit())
608               Implicit.push_back(FwdReg);
609             else
610               Explicit.push_back(FwdReg);
611           }
612         }
613       }
614     }
615   };
616 
617   auto finishCallSiteParam = [&](DbgValueLoc DbgLocVal, unsigned Reg) {
618     unsigned FwdReg = Reg;
619     if (ShouldTryEmitEntryVals) {
620       auto EntryValReg = RegsForEntryValues.find(Reg);
621       if (EntryValReg != RegsForEntryValues.end())
622         FwdReg = EntryValReg->second;
623     }
624 
625     DbgCallSiteParam CSParm(FwdReg, DbgLocVal);
626     Params.push_back(CSParm);
627     ++NumCSParams;
628   };
629 
630   // Search for a loading value in forwarding registers.
631   for (; I != MBB->rend(); ++I) {
632     // Skip bundle headers.
633     if (I->isBundle())
634       continue;
635 
636     // If the next instruction is a call we can not interpret parameter's
637     // forwarding registers or we finished the interpretation of all parameters.
638     if (I->isCall())
639       return;
640 
641     if (ForwardedRegWorklist.empty())
642       return;
643 
644     SmallVector<unsigned, 4> ExplicitFwdRegDefs;
645     SmallVector<unsigned, 4> ImplicitFwdRegDefs;
646     getForwardingRegsDefinedByMI(*I, ExplicitFwdRegDefs, ImplicitFwdRegDefs);
647     if (ExplicitFwdRegDefs.empty() && ImplicitFwdRegDefs.empty())
648       continue;
649 
650     // If the MI clobbers more then one forwarding register we must remove
651     // all of them from the working list.
652     for (auto Reg : concat<unsigned>(ExplicitFwdRegDefs, ImplicitFwdRegDefs))
653       ForwardedRegWorklist.erase(Reg);
654 
655     for (auto ParamFwdReg : ExplicitFwdRegDefs) {
656       if (auto ParamValue = TII->describeLoadedValue(*I, ParamFwdReg)) {
657         if (ParamValue->first.isImm()) {
658           int64_t Val = ParamValue->first.getImm();
659           DbgValueLoc DbgLocVal(ParamValue->second, Val);
660           finishCallSiteParam(DbgLocVal, ParamFwdReg);
661         } else if (ParamValue->first.isReg()) {
662           Register RegLoc = ParamValue->first.getReg();
663           // TODO: For now, there is no use of describing the value loaded into the
664           //       register that is also the source registers (e.g. $r0 = add $r0, x).
665           if (ParamFwdReg == RegLoc)
666             continue;
667 
668           unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
669           Register FP = TRI->getFrameRegister(*MF);
670           bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP);
671           if (TRI->isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) {
672             DbgValueLoc DbgLocVal(ParamValue->second,
673                                   MachineLocation(RegLoc,
674                                                   /*IsIndirect=*/IsSPorFP));
675             finishCallSiteParam(DbgLocVal, ParamFwdReg);
676           // TODO: Add support for entry value plus an expression.
677           } else if (ShouldTryEmitEntryVals &&
678                      ParamValue->second->getNumElements() == 0) {
679             ForwardedRegWorklist.insert(RegLoc);
680             RegsForEntryValues[RegLoc] = ParamFwdReg;
681           }
682         }
683       }
684     }
685   }
686 
687   // Emit the call site parameter's value as an entry value.
688   if (ShouldTryEmitEntryVals) {
689     // Create an expression where the register's entry value is used.
690     DIExpression *EntryExpr = DIExpression::get(
691         MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1});
692     for (auto RegEntry : ForwardedRegWorklist) {
693       unsigned FwdReg = RegEntry;
694       auto EntryValReg = RegsForEntryValues.find(RegEntry);
695         if (EntryValReg != RegsForEntryValues.end())
696           FwdReg = EntryValReg->second;
697 
698       DbgValueLoc DbgLocVal(EntryExpr, MachineLocation(RegEntry));
699       DbgCallSiteParam CSParm(FwdReg, DbgLocVal);
700       Params.push_back(CSParm);
701       ++NumCSParams;
702     }
703   }
704 }
705 
706 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP,
707                                             DwarfCompileUnit &CU, DIE &ScopeDIE,
708                                             const MachineFunction &MF) {
709   // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if
710   // the subprogram is required to have one.
711   if (!SP.areAllCallsDescribed() || !SP.isDefinition())
712     return;
713 
714   // Use DW_AT_call_all_calls to express that call site entries are present
715   // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls
716   // because one of its requirements is not met: call site entries for
717   // optimized-out calls are elided.
718   CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls));
719 
720   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
721   assert(TII && "TargetInstrInfo not found: cannot label tail calls");
722 
723   // Emit call site entries for each call or tail call in the function.
724   for (const MachineBasicBlock &MBB : MF) {
725     for (const MachineInstr &MI : MBB.instrs()) {
726       // Bundles with call in them will pass the isCall() test below but do not
727       // have callee operand information so skip them here. Iterator will
728       // eventually reach the call MI.
729       if (MI.isBundle())
730         continue;
731 
732       // Skip instructions which aren't calls. Both calls and tail-calling jump
733       // instructions (e.g TAILJMPd64) are classified correctly here.
734       if (!MI.isCall())
735         continue;
736 
737       // TODO: Add support for targets with delay slots (see: beginInstruction).
738       if (MI.hasDelaySlot())
739         return;
740 
741       // If this is a direct call, find the callee's subprogram.
742       // In the case of an indirect call find the register that holds
743       // the callee.
744       const MachineOperand &CalleeOp = MI.getOperand(0);
745       if (!CalleeOp.isGlobal() && !CalleeOp.isReg())
746         continue;
747 
748       unsigned CallReg = 0;
749       const DISubprogram *CalleeSP = nullptr;
750       const Function *CalleeDecl = nullptr;
751       if (CalleeOp.isReg()) {
752         CallReg = CalleeOp.getReg();
753         if (!CallReg)
754           continue;
755       } else {
756         CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal());
757         if (!CalleeDecl || !CalleeDecl->getSubprogram())
758           continue;
759         CalleeSP = CalleeDecl->getSubprogram();
760 
761         if (CalleeSP->isDefinition()) {
762           // Ensure that a subprogram DIE for the callee is available in the
763           // appropriate CU.
764           constructSubprogramDefinitionDIE(CalleeSP);
765         } else {
766           // Create the declaration DIE if it is missing. This is required to
767           // support compilation of old bitcode with an incomplete list of
768           // retained metadata.
769           CU.getOrCreateSubprogramDIE(CalleeSP);
770         }
771       }
772 
773       // TODO: Omit call site entries for runtime calls (objc_msgSend, etc).
774 
775       bool IsTail = TII->isTailCall(MI);
776 
777       // If MI is in a bundle, the label was created after the bundle since
778       // EmitFunctionBody iterates over top-level MIs. Get that top-level MI
779       // to search for that label below.
780       const MachineInstr *TopLevelCallMI =
781           MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI;
782 
783       // For tail calls, no return PC information is needed.
784       // For regular calls (and tail calls in GDB tuning), the return PC
785       // is needed to disambiguate paths in the call graph which could lead to
786       // some target function.
787       const MCSymbol *PCAddr =
788           (IsTail && !tuneForGDB())
789               ? nullptr
790               : const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI));
791 
792       assert((IsTail || PCAddr) && "Call without return PC information");
793 
794       LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> "
795                         << (CalleeDecl ? CalleeDecl->getName()
796                                        : StringRef(MF.getSubtarget()
797                                                        .getRegisterInfo()
798                                                        ->getName(CallReg)))
799                         << (IsTail ? " [IsTail]" : "") << "\n");
800 
801       DIE &CallSiteDIE = CU.constructCallSiteEntryDIE(ScopeDIE, CalleeSP,
802                                                       IsTail, PCAddr, CallReg);
803 
804       // GDB and LLDB support call site parameter debug info.
805       if (Asm->TM.Options.EnableDebugEntryValues &&
806           (tuneForGDB() || tuneForLLDB())) {
807         ParamSet Params;
808         // Try to interpret values of call site parameters.
809         collectCallSiteParameters(&MI, Params);
810         CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params);
811       }
812     }
813   }
814 }
815 
816 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const {
817   if (!U.hasDwarfPubSections())
818     return;
819 
820   U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
821 }
822 
823 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit,
824                                       DwarfCompileUnit &NewCU) {
825   DIE &Die = NewCU.getUnitDie();
826   StringRef FN = DIUnit->getFilename();
827 
828   StringRef Producer = DIUnit->getProducer();
829   StringRef Flags = DIUnit->getFlags();
830   if (!Flags.empty() && !useAppleExtensionAttributes()) {
831     std::string ProducerWithFlags = Producer.str() + " " + Flags.str();
832     NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags);
833   } else
834     NewCU.addString(Die, dwarf::DW_AT_producer, Producer);
835 
836   NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
837                 DIUnit->getSourceLanguage());
838   NewCU.addString(Die, dwarf::DW_AT_name, FN);
839 
840   // Add DW_str_offsets_base to the unit DIE, except for split units.
841   if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
842     NewCU.addStringOffsetsStart();
843 
844   if (!useSplitDwarf()) {
845     NewCU.initStmtList();
846 
847     // If we're using split dwarf the compilation dir is going to be in the
848     // skeleton CU and so we don't need to duplicate it here.
849     if (!CompilationDir.empty())
850       NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
851 
852     addGnuPubAttributes(NewCU, Die);
853   }
854 
855   if (useAppleExtensionAttributes()) {
856     if (DIUnit->isOptimized())
857       NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);
858 
859     StringRef Flags = DIUnit->getFlags();
860     if (!Flags.empty())
861       NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);
862 
863     if (unsigned RVer = DIUnit->getRuntimeVersion())
864       NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
865                     dwarf::DW_FORM_data1, RVer);
866   }
867 
868   if (DIUnit->getDWOId()) {
869     // This CU is either a clang module DWO or a skeleton CU.
870     NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8,
871                   DIUnit->getDWOId());
872     if (!DIUnit->getSplitDebugFilename().empty()) {
873       // This is a prefabricated skeleton CU.
874       dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
875                                          ? dwarf::DW_AT_dwo_name
876                                          : dwarf::DW_AT_GNU_dwo_name;
877       NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename());
878     }
879   }
880 }
881 // Create new DwarfCompileUnit for the given metadata node with tag
882 // DW_TAG_compile_unit.
883 DwarfCompileUnit &
884 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) {
885   if (auto *CU = CUMap.lookup(DIUnit))
886     return *CU;
887 
888   CompilationDir = DIUnit->getDirectory();
889 
890   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
891       InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
892   DwarfCompileUnit &NewCU = *OwnedUnit;
893   InfoHolder.addUnit(std::move(OwnedUnit));
894 
895   for (auto *IE : DIUnit->getImportedEntities())
896     NewCU.addImportedEntity(IE);
897 
898   // LTO with assembly output shares a single line table amongst multiple CUs.
899   // To avoid the compilation directory being ambiguous, let the line table
900   // explicitly describe the directory of all files, never relying on the
901   // compilation directory.
902   if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU)
903     Asm->OutStreamer->emitDwarfFile0Directive(
904         CompilationDir, DIUnit->getFilename(),
905         NewCU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource(),
906         NewCU.getUniqueID());
907 
908   if (useSplitDwarf()) {
909     NewCU.setSkeleton(constructSkeletonCU(NewCU));
910     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection());
911   } else {
912     finishUnitAttributes(DIUnit, NewCU);
913     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
914   }
915 
916   CUMap.insert({DIUnit, &NewCU});
917   CUDieMap.insert({&NewCU.getUnitDie(), &NewCU});
918   return NewCU;
919 }
920 
921 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU,
922                                                   const DIImportedEntity *N) {
923   if (isa<DILocalScope>(N->getScope()))
924     return;
925   if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope()))
926     D->addChild(TheCU.constructImportedEntityDIE(N));
927 }
928 
929 /// Sort and unique GVEs by comparing their fragment offset.
930 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &
931 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) {
932   llvm::sort(
933       GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) {
934         // Sort order: first null exprs, then exprs without fragment
935         // info, then sort by fragment offset in bits.
936         // FIXME: Come up with a more comprehensive comparator so
937         // the sorting isn't non-deterministic, and so the following
938         // std::unique call works correctly.
939         if (!A.Expr || !B.Expr)
940           return !!B.Expr;
941         auto FragmentA = A.Expr->getFragmentInfo();
942         auto FragmentB = B.Expr->getFragmentInfo();
943         if (!FragmentA || !FragmentB)
944           return !!FragmentB;
945         return FragmentA->OffsetInBits < FragmentB->OffsetInBits;
946       });
947   GVEs.erase(std::unique(GVEs.begin(), GVEs.end(),
948                          [](DwarfCompileUnit::GlobalExpr A,
949                             DwarfCompileUnit::GlobalExpr B) {
950                            return A.Expr == B.Expr;
951                          }),
952              GVEs.end());
953   return GVEs;
954 }
955 
956 // Emit all Dwarf sections that should come prior to the content. Create
957 // global DIEs and emit initial debug info sections. This is invoked by
958 // the target AsmPrinter.
959 void DwarfDebug::beginModule() {
960   NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName,
961                      DWARFGroupDescription, TimePassesIsEnabled);
962   if (DisableDebugInfoPrinting) {
963     MMI->setDebugInfoAvailability(false);
964     return;
965   }
966 
967   const Module *M = MMI->getModule();
968 
969   unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(),
970                                        M->debug_compile_units_end());
971   // Tell MMI whether we have debug info.
972   assert(MMI->hasDebugInfo() == (NumDebugCUs > 0) &&
973          "DebugInfoAvailabilty initialized unexpectedly");
974   SingleCU = NumDebugCUs == 1;
975   DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>>
976       GVMap;
977   for (const GlobalVariable &Global : M->globals()) {
978     SmallVector<DIGlobalVariableExpression *, 1> GVs;
979     Global.getDebugInfo(GVs);
980     for (auto *GVE : GVs)
981       GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()});
982   }
983 
984   // Create the symbol that designates the start of the unit's contribution
985   // to the string offsets table. In a split DWARF scenario, only the skeleton
986   // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol).
987   if (useSegmentedStringOffsetsTable())
988     (useSplitDwarf() ? SkeletonHolder : InfoHolder)
989         .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base"));
990 
991 
992   // Create the symbols that designates the start of the DWARF v5 range list
993   // and locations list tables. They are located past the table headers.
994   if (getDwarfVersion() >= 5) {
995     DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
996     Holder.setRnglistsTableBaseSym(
997         Asm->createTempSymbol("rnglists_table_base"));
998 
999     if (useSplitDwarf())
1000       InfoHolder.setRnglistsTableBaseSym(
1001           Asm->createTempSymbol("rnglists_dwo_table_base"));
1002   }
1003 
1004   // Create the symbol that points to the first entry following the debug
1005   // address table (.debug_addr) header.
1006   AddrPool.setLabel(Asm->createTempSymbol("addr_table_base"));
1007   DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base"));
1008 
1009   for (DICompileUnit *CUNode : M->debug_compile_units()) {
1010     // FIXME: Move local imported entities into a list attached to the
1011     // subprogram, then this search won't be needed and a
1012     // getImportedEntities().empty() test should go below with the rest.
1013     bool HasNonLocalImportedEntities = llvm::any_of(
1014         CUNode->getImportedEntities(), [](const DIImportedEntity *IE) {
1015           return !isa<DILocalScope>(IE->getScope());
1016         });
1017 
1018     if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() &&
1019         CUNode->getRetainedTypes().empty() &&
1020         CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty())
1021       continue;
1022 
1023     DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode);
1024 
1025     // Global Variables.
1026     for (auto *GVE : CUNode->getGlobalVariables()) {
1027       // Don't bother adding DIGlobalVariableExpressions listed in the CU if we
1028       // already know about the variable and it isn't adding a constant
1029       // expression.
1030       auto &GVMapEntry = GVMap[GVE->getVariable()];
1031       auto *Expr = GVE->getExpression();
1032       if (!GVMapEntry.size() || (Expr && Expr->isConstant()))
1033         GVMapEntry.push_back({nullptr, Expr});
1034     }
1035     DenseSet<DIGlobalVariable *> Processed;
1036     for (auto *GVE : CUNode->getGlobalVariables()) {
1037       DIGlobalVariable *GV = GVE->getVariable();
1038       if (Processed.insert(GV).second)
1039         CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV]));
1040     }
1041 
1042     for (auto *Ty : CUNode->getEnumTypes()) {
1043       // The enum types array by design contains pointers to
1044       // MDNodes rather than DIRefs. Unique them here.
1045       CU.getOrCreateTypeDIE(cast<DIType>(Ty));
1046     }
1047     for (auto *Ty : CUNode->getRetainedTypes()) {
1048       // The retained types array by design contains pointers to
1049       // MDNodes rather than DIRefs. Unique them here.
1050       if (DIType *RT = dyn_cast<DIType>(Ty))
1051           // There is no point in force-emitting a forward declaration.
1052           CU.getOrCreateTypeDIE(RT);
1053     }
1054     // Emit imported_modules last so that the relevant context is already
1055     // available.
1056     for (auto *IE : CUNode->getImportedEntities())
1057       constructAndAddImportedEntityDIE(CU, IE);
1058   }
1059 }
1060 
1061 void DwarfDebug::finishEntityDefinitions() {
1062   for (const auto &Entity : ConcreteEntities) {
1063     DIE *Die = Entity->getDIE();
1064     assert(Die);
1065     // FIXME: Consider the time-space tradeoff of just storing the unit pointer
1066     // in the ConcreteEntities list, rather than looking it up again here.
1067     // DIE::getUnit isn't simple - it walks parent pointers, etc.
1068     DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie());
1069     assert(Unit);
1070     Unit->finishEntityDefinition(Entity.get());
1071   }
1072 }
1073 
1074 void DwarfDebug::finishSubprogramDefinitions() {
1075   for (const DISubprogram *SP : ProcessedSPNodes) {
1076     assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug);
1077     forBothCUs(
1078         getOrCreateDwarfCompileUnit(SP->getUnit()),
1079         [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); });
1080   }
1081 }
1082 
1083 void DwarfDebug::finalizeModuleInfo() {
1084   const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
1085 
1086   finishSubprogramDefinitions();
1087 
1088   finishEntityDefinitions();
1089 
1090   // Include the DWO file name in the hash if there's more than one CU.
1091   // This handles ThinLTO's situation where imported CUs may very easily be
1092   // duplicate with the same CU partially imported into another ThinLTO unit.
1093   StringRef DWOName;
1094   if (CUMap.size() > 1)
1095     DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile;
1096 
1097   // Handle anything that needs to be done on a per-unit basis after
1098   // all other generation.
1099   for (const auto &P : CUMap) {
1100     auto &TheCU = *P.second;
1101     if (TheCU.getCUNode()->isDebugDirectivesOnly())
1102       continue;
1103     // Emit DW_AT_containing_type attribute to connect types with their
1104     // vtable holding type.
1105     TheCU.constructContainingTypeDIEs();
1106 
1107     // Add CU specific attributes if we need to add any.
1108     // If we're splitting the dwarf out now that we've got the entire
1109     // CU then add the dwo id to it.
1110     auto *SkCU = TheCU.getSkeleton();
1111 
1112     bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty();
1113 
1114     if (HasSplitUnit) {
1115       dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1116                                          ? dwarf::DW_AT_dwo_name
1117                                          : dwarf::DW_AT_GNU_dwo_name;
1118       finishUnitAttributes(TheCU.getCUNode(), TheCU);
1119       TheCU.addString(TheCU.getUnitDie(), attrDWOName,
1120                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1121       SkCU->addString(SkCU->getUnitDie(), attrDWOName,
1122                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1123       // Emit a unique identifier for this CU.
1124       uint64_t ID =
1125           DIEHash(Asm).computeCUSignature(DWOName, TheCU.getUnitDie());
1126       if (getDwarfVersion() >= 5) {
1127         TheCU.setDWOId(ID);
1128         SkCU->setDWOId(ID);
1129       } else {
1130         TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1131                       dwarf::DW_FORM_data8, ID);
1132         SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1133                       dwarf::DW_FORM_data8, ID);
1134       }
1135 
1136       if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) {
1137         const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol();
1138         SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
1139                               Sym, Sym);
1140       }
1141     } else if (SkCU) {
1142       finishUnitAttributes(SkCU->getCUNode(), *SkCU);
1143     }
1144 
1145     // If we have code split among multiple sections or non-contiguous
1146     // ranges of code then emit a DW_AT_ranges attribute on the unit that will
1147     // remain in the .o file, otherwise add a DW_AT_low_pc.
1148     // FIXME: We should use ranges allow reordering of code ala
1149     // .subsections_via_symbols in mach-o. This would mean turning on
1150     // ranges for all subprogram DIEs for mach-o.
1151     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
1152 
1153     if (unsigned NumRanges = TheCU.getRanges().size()) {
1154       if (NumRanges > 1 && useRangesSection())
1155         // A DW_AT_low_pc attribute may also be specified in combination with
1156         // DW_AT_ranges to specify the default base address for use in
1157         // location lists (see Section 2.6.2) and range lists (see Section
1158         // 2.17.3).
1159         U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
1160       else
1161         U.setBaseAddress(TheCU.getRanges().front().Begin);
1162       U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
1163     }
1164 
1165     // We don't keep track of which addresses are used in which CU so this
1166     // is a bit pessimistic under LTO.
1167     if ((!AddrPool.isEmpty() || TheCU.hasRangeLists()) &&
1168         (getDwarfVersion() >= 5 || HasSplitUnit))
1169       U.addAddrTableBase();
1170 
1171     if (getDwarfVersion() >= 5) {
1172       if (U.hasRangeLists())
1173         U.addRnglistsBase();
1174 
1175       if (!DebugLocs.getLists().empty()) {
1176         if (!useSplitDwarf())
1177           U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base,
1178                             DebugLocs.getSym(),
1179                             TLOF.getDwarfLoclistsSection()->getBeginSymbol());
1180       }
1181     }
1182 
1183     auto *CUNode = cast<DICompileUnit>(P.first);
1184     // If compile Unit has macros, emit "DW_AT_macro_info" attribute.
1185     if (CUNode->getMacros()) {
1186       if (useSplitDwarf())
1187         TheCU.addSectionDelta(TheCU.getUnitDie(), dwarf::DW_AT_macro_info,
1188                             U.getMacroLabelBegin(),
1189                             TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol());
1190       else
1191         U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info,
1192                           U.getMacroLabelBegin(),
1193                           TLOF.getDwarfMacinfoSection()->getBeginSymbol());
1194     }
1195   }
1196 
1197   // Emit all frontend-produced Skeleton CUs, i.e., Clang modules.
1198   for (auto *CUNode : MMI->getModule()->debug_compile_units())
1199     if (CUNode->getDWOId())
1200       getOrCreateDwarfCompileUnit(CUNode);
1201 
1202   // Compute DIE offsets and sizes.
1203   InfoHolder.computeSizeAndOffsets();
1204   if (useSplitDwarf())
1205     SkeletonHolder.computeSizeAndOffsets();
1206 }
1207 
1208 // Emit all Dwarf sections that should come after the content.
1209 void DwarfDebug::endModule() {
1210   assert(CurFn == nullptr);
1211   assert(CurMI == nullptr);
1212 
1213   for (const auto &P : CUMap) {
1214     auto &CU = *P.second;
1215     CU.createBaseTypeDIEs();
1216   }
1217 
1218   // If we aren't actually generating debug info (check beginModule -
1219   // conditionalized on !DisableDebugInfoPrinting and the presence of the
1220   // llvm.dbg.cu metadata node)
1221   if (!MMI->hasDebugInfo())
1222     return;
1223 
1224   // Finalize the debug info for the module.
1225   finalizeModuleInfo();
1226 
1227   emitDebugStr();
1228 
1229   if (useSplitDwarf())
1230     // Emit debug_loc.dwo/debug_loclists.dwo section.
1231     emitDebugLocDWO();
1232   else
1233     // Emit debug_loc/debug_loclists section.
1234     emitDebugLoc();
1235 
1236   // Corresponding abbreviations into a abbrev section.
1237   emitAbbreviations();
1238 
1239   // Emit all the DIEs into a debug info section.
1240   emitDebugInfo();
1241 
1242   // Emit info into a debug aranges section.
1243   if (GenerateARangeSection)
1244     emitDebugARanges();
1245 
1246   // Emit info into a debug ranges section.
1247   emitDebugRanges();
1248 
1249   if (useSplitDwarf())
1250   // Emit info into a debug macinfo.dwo section.
1251     emitDebugMacinfoDWO();
1252   else
1253   // Emit info into a debug macinfo section.
1254     emitDebugMacinfo();
1255 
1256   if (useSplitDwarf()) {
1257     emitDebugStrDWO();
1258     emitDebugInfoDWO();
1259     emitDebugAbbrevDWO();
1260     emitDebugLineDWO();
1261     emitDebugRangesDWO();
1262   }
1263 
1264   emitDebugAddr();
1265 
1266   // Emit info into the dwarf accelerator table sections.
1267   switch (getAccelTableKind()) {
1268   case AccelTableKind::Apple:
1269     emitAccelNames();
1270     emitAccelObjC();
1271     emitAccelNamespaces();
1272     emitAccelTypes();
1273     break;
1274   case AccelTableKind::Dwarf:
1275     emitAccelDebugNames();
1276     break;
1277   case AccelTableKind::None:
1278     break;
1279   case AccelTableKind::Default:
1280     llvm_unreachable("Default should have already been resolved.");
1281   }
1282 
1283   // Emit the pubnames and pubtypes sections if requested.
1284   emitDebugPubSections();
1285 
1286   // clean up.
1287   // FIXME: AbstractVariables.clear();
1288 }
1289 
1290 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU,
1291                                                const DINode *Node,
1292                                                const MDNode *ScopeNode) {
1293   if (CU.getExistingAbstractEntity(Node))
1294     return;
1295 
1296   CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope(
1297                                        cast<DILocalScope>(ScopeNode)));
1298 }
1299 
1300 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU,
1301     const DINode *Node, const MDNode *ScopeNode) {
1302   if (CU.getExistingAbstractEntity(Node))
1303     return;
1304 
1305   if (LexicalScope *Scope =
1306           LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode)))
1307     CU.createAbstractEntity(Node, Scope);
1308 }
1309 
1310 // Collect variable information from side table maintained by MF.
1311 void DwarfDebug::collectVariableInfoFromMFTable(
1312     DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) {
1313   SmallDenseMap<InlinedEntity, DbgVariable *> MFVars;
1314   for (const auto &VI : Asm->MF->getVariableDbgInfo()) {
1315     if (!VI.Var)
1316       continue;
1317     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1318            "Expected inlined-at fields to agree");
1319 
1320     InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt());
1321     Processed.insert(Var);
1322     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1323 
1324     // If variable scope is not found then skip this variable.
1325     if (!Scope)
1326       continue;
1327 
1328     ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode());
1329     auto RegVar = std::make_unique<DbgVariable>(
1330                     cast<DILocalVariable>(Var.first), Var.second);
1331     RegVar->initializeMMI(VI.Expr, VI.Slot);
1332     if (DbgVariable *DbgVar = MFVars.lookup(Var))
1333       DbgVar->addMMIEntry(*RegVar);
1334     else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) {
1335       MFVars.insert({Var, RegVar.get()});
1336       ConcreteEntities.push_back(std::move(RegVar));
1337     }
1338   }
1339 }
1340 
1341 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its
1342 /// enclosing lexical scope. The check ensures there are no other instructions
1343 /// in the same lexical scope preceding the DBG_VALUE and that its range is
1344 /// either open or otherwise rolls off the end of the scope.
1345 static bool validThroughout(LexicalScopes &LScopes,
1346                             const MachineInstr *DbgValue,
1347                             const MachineInstr *RangeEnd) {
1348   assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location");
1349   auto MBB = DbgValue->getParent();
1350   auto DL = DbgValue->getDebugLoc();
1351   auto *LScope = LScopes.findLexicalScope(DL);
1352   // Scope doesn't exist; this is a dead DBG_VALUE.
1353   if (!LScope)
1354     return false;
1355   auto &LSRange = LScope->getRanges();
1356   if (LSRange.size() == 0)
1357     return false;
1358 
1359   // Determine if the DBG_VALUE is valid at the beginning of its lexical block.
1360   const MachineInstr *LScopeBegin = LSRange.front().first;
1361   // Early exit if the lexical scope begins outside of the current block.
1362   if (LScopeBegin->getParent() != MBB)
1363     return false;
1364   MachineBasicBlock::const_reverse_iterator Pred(DbgValue);
1365   for (++Pred; Pred != MBB->rend(); ++Pred) {
1366     if (Pred->getFlag(MachineInstr::FrameSetup))
1367       break;
1368     auto PredDL = Pred->getDebugLoc();
1369     if (!PredDL || Pred->isMetaInstruction())
1370       continue;
1371     // Check whether the instruction preceding the DBG_VALUE is in the same
1372     // (sub)scope as the DBG_VALUE.
1373     if (DL->getScope() == PredDL->getScope())
1374       return false;
1375     auto *PredScope = LScopes.findLexicalScope(PredDL);
1376     if (!PredScope || LScope->dominates(PredScope))
1377       return false;
1378   }
1379 
1380   // If the range of the DBG_VALUE is open-ended, report success.
1381   if (!RangeEnd)
1382     return true;
1383 
1384   // Fail if there are instructions belonging to our scope in another block.
1385   const MachineInstr *LScopeEnd = LSRange.back().second;
1386   if (LScopeEnd->getParent() != MBB)
1387     return false;
1388 
1389   // Single, constant DBG_VALUEs in the prologue are promoted to be live
1390   // throughout the function. This is a hack, presumably for DWARF v2 and not
1391   // necessarily correct. It would be much better to use a dbg.declare instead
1392   // if we know the constant is live throughout the scope.
1393   if (DbgValue->getOperand(0).isImm() && MBB->pred_empty())
1394     return true;
1395 
1396   return false;
1397 }
1398 
1399 /// Build the location list for all DBG_VALUEs in the function that
1400 /// describe the same variable. The resulting DebugLocEntries will have
1401 /// strict monotonically increasing begin addresses and will never
1402 /// overlap. If the resulting list has only one entry that is valid
1403 /// throughout variable's scope return true.
1404 //
1405 // See the definition of DbgValueHistoryMap::Entry for an explanation of the
1406 // different kinds of history map entries. One thing to be aware of is that if
1407 // a debug value is ended by another entry (rather than being valid until the
1408 // end of the function), that entry's instruction may or may not be included in
1409 // the range, depending on if the entry is a clobbering entry (it has an
1410 // instruction that clobbers one or more preceding locations), or if it is an
1411 // (overlapping) debug value entry. This distinction can be seen in the example
1412 // below. The first debug value is ended by the clobbering entry 2, and the
1413 // second and third debug values are ended by the overlapping debug value entry
1414 // 4.
1415 //
1416 // Input:
1417 //
1418 //   History map entries [type, end index, mi]
1419 //
1420 // 0 |      [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)]
1421 // 1 | |    [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)]
1422 // 2 | |    [Clobber, $reg0 = [...], -, -]
1423 // 3   | |  [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)]
1424 // 4        [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)]
1425 //
1426 // Output [start, end) [Value...]:
1427 //
1428 // [0-1)    [(reg0, fragment 0, 32)]
1429 // [1-3)    [(reg0, fragment 0, 32), (reg1, fragment 32, 32)]
1430 // [3-4)    [(reg1, fragment 32, 32), (123, fragment 64, 32)]
1431 // [4-)     [(@g, fragment 0, 96)]
1432 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
1433                                    const DbgValueHistoryMap::Entries &Entries) {
1434   using OpenRange =
1435       std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>;
1436   SmallVector<OpenRange, 4> OpenRanges;
1437   bool isSafeForSingleLocation = true;
1438   const MachineInstr *StartDebugMI = nullptr;
1439   const MachineInstr *EndMI = nullptr;
1440 
1441   for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) {
1442     const MachineInstr *Instr = EI->getInstr();
1443 
1444     // Remove all values that are no longer live.
1445     size_t Index = std::distance(EB, EI);
1446     auto Last =
1447         remove_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; });
1448     OpenRanges.erase(Last, OpenRanges.end());
1449 
1450     // If we are dealing with a clobbering entry, this iteration will result in
1451     // a location list entry starting after the clobbering instruction.
1452     const MCSymbol *StartLabel =
1453         EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr);
1454     assert(StartLabel &&
1455            "Forgot label before/after instruction starting a range!");
1456 
1457     const MCSymbol *EndLabel;
1458     if (std::next(EI) == Entries.end()) {
1459       EndLabel = Asm->getFunctionEnd();
1460       if (EI->isClobber())
1461         EndMI = EI->getInstr();
1462     }
1463     else if (std::next(EI)->isClobber())
1464       EndLabel = getLabelAfterInsn(std::next(EI)->getInstr());
1465     else
1466       EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr());
1467     assert(EndLabel && "Forgot label after instruction ending a range!");
1468 
1469     if (EI->isDbgValue())
1470       LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n");
1471 
1472     // If this history map entry has a debug value, add that to the list of
1473     // open ranges and check if its location is valid for a single value
1474     // location.
1475     if (EI->isDbgValue()) {
1476       // Do not add undef debug values, as they are redundant information in
1477       // the location list entries. An undef debug results in an empty location
1478       // description. If there are any non-undef fragments then padding pieces
1479       // with empty location descriptions will automatically be inserted, and if
1480       // all fragments are undef then the whole location list entry is
1481       // redundant.
1482       if (!Instr->isUndefDebugValue()) {
1483         auto Value = getDebugLocValue(Instr);
1484         OpenRanges.emplace_back(EI->getEndIndex(), Value);
1485 
1486         // TODO: Add support for single value fragment locations.
1487         if (Instr->getDebugExpression()->isFragment())
1488           isSafeForSingleLocation = false;
1489 
1490         if (!StartDebugMI)
1491           StartDebugMI = Instr;
1492       } else {
1493         isSafeForSingleLocation = false;
1494       }
1495     }
1496 
1497     // Location list entries with empty location descriptions are redundant
1498     // information in DWARF, so do not emit those.
1499     if (OpenRanges.empty())
1500       continue;
1501 
1502     // Omit entries with empty ranges as they do not have any effect in DWARF.
1503     if (StartLabel == EndLabel) {
1504       LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n");
1505       continue;
1506     }
1507 
1508     SmallVector<DbgValueLoc, 4> Values;
1509     for (auto &R : OpenRanges)
1510       Values.push_back(R.second);
1511     DebugLoc.emplace_back(StartLabel, EndLabel, Values);
1512 
1513     // Attempt to coalesce the ranges of two otherwise identical
1514     // DebugLocEntries.
1515     auto CurEntry = DebugLoc.rbegin();
1516     LLVM_DEBUG({
1517       dbgs() << CurEntry->getValues().size() << " Values:\n";
1518       for (auto &Value : CurEntry->getValues())
1519         Value.dump();
1520       dbgs() << "-----\n";
1521     });
1522 
1523     auto PrevEntry = std::next(CurEntry);
1524     if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
1525       DebugLoc.pop_back();
1526   }
1527 
1528   return DebugLoc.size() == 1 && isSafeForSingleLocation &&
1529          validThroughout(LScopes, StartDebugMI, EndMI);
1530 }
1531 
1532 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU,
1533                                             LexicalScope &Scope,
1534                                             const DINode *Node,
1535                                             const DILocation *Location,
1536                                             const MCSymbol *Sym) {
1537   ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode());
1538   if (isa<const DILocalVariable>(Node)) {
1539     ConcreteEntities.push_back(
1540         std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node),
1541                                        Location));
1542     InfoHolder.addScopeVariable(&Scope,
1543         cast<DbgVariable>(ConcreteEntities.back().get()));
1544   } else if (isa<const DILabel>(Node)) {
1545     ConcreteEntities.push_back(
1546         std::make_unique<DbgLabel>(cast<const DILabel>(Node),
1547                                     Location, Sym));
1548     InfoHolder.addScopeLabel(&Scope,
1549         cast<DbgLabel>(ConcreteEntities.back().get()));
1550   }
1551   return ConcreteEntities.back().get();
1552 }
1553 
1554 // Find variables for each lexical scope.
1555 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU,
1556                                    const DISubprogram *SP,
1557                                    DenseSet<InlinedEntity> &Processed) {
1558   // Grab the variable info that was squirreled away in the MMI side-table.
1559   collectVariableInfoFromMFTable(TheCU, Processed);
1560 
1561   for (const auto &I : DbgValues) {
1562     InlinedEntity IV = I.first;
1563     if (Processed.count(IV))
1564       continue;
1565 
1566     // Instruction ranges, specifying where IV is accessible.
1567     const auto &HistoryMapEntries = I.second;
1568     if (HistoryMapEntries.empty())
1569       continue;
1570 
1571     LexicalScope *Scope = nullptr;
1572     const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first);
1573     if (const DILocation *IA = IV.second)
1574       Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA);
1575     else
1576       Scope = LScopes.findLexicalScope(LocalVar->getScope());
1577     // If variable scope is not found then skip this variable.
1578     if (!Scope)
1579       continue;
1580 
1581     Processed.insert(IV);
1582     DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU,
1583                                             *Scope, LocalVar, IV.second));
1584 
1585     const MachineInstr *MInsn = HistoryMapEntries.front().getInstr();
1586     assert(MInsn->isDebugValue() && "History must begin with debug value");
1587 
1588     // Check if there is a single DBG_VALUE, valid throughout the var's scope.
1589     // If the history map contains a single debug value, there may be an
1590     // additional entry which clobbers the debug value.
1591     size_t HistSize = HistoryMapEntries.size();
1592     bool SingleValueWithClobber =
1593         HistSize == 2 && HistoryMapEntries[1].isClobber();
1594     if (HistSize == 1 || SingleValueWithClobber) {
1595       const auto *End =
1596           SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr;
1597       if (validThroughout(LScopes, MInsn, End)) {
1598         RegVar->initializeDbgValue(MInsn);
1599         continue;
1600       }
1601     }
1602 
1603     // Do not emit location lists if .debug_loc secton is disabled.
1604     if (!useLocSection())
1605       continue;
1606 
1607     // Handle multiple DBG_VALUE instructions describing one variable.
1608     DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn);
1609 
1610     // Build the location list for this variable.
1611     SmallVector<DebugLocEntry, 8> Entries;
1612     bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries);
1613 
1614     // Check whether buildLocationList managed to merge all locations to one
1615     // that is valid throughout the variable's scope. If so, produce single
1616     // value location.
1617     if (isValidSingleLocation) {
1618       RegVar->initializeDbgValue(Entries[0].getValues()[0]);
1619       continue;
1620     }
1621 
1622     // If the variable has a DIBasicType, extract it.  Basic types cannot have
1623     // unique identifiers, so don't bother resolving the type with the
1624     // identifier map.
1625     const DIBasicType *BT = dyn_cast<DIBasicType>(
1626         static_cast<const Metadata *>(LocalVar->getType()));
1627 
1628     // Finalize the entry by lowering it into a DWARF bytestream.
1629     for (auto &Entry : Entries)
1630       Entry.finalize(*Asm, List, BT, TheCU);
1631   }
1632 
1633   // For each InlinedEntity collected from DBG_LABEL instructions, convert to
1634   // DWARF-related DbgLabel.
1635   for (const auto &I : DbgLabels) {
1636     InlinedEntity IL = I.first;
1637     const MachineInstr *MI = I.second;
1638     if (MI == nullptr)
1639       continue;
1640 
1641     LexicalScope *Scope = nullptr;
1642     const DILabel *Label = cast<DILabel>(IL.first);
1643     // The scope could have an extra lexical block file.
1644     const DILocalScope *LocalScope =
1645         Label->getScope()->getNonLexicalBlockFileScope();
1646     // Get inlined DILocation if it is inlined label.
1647     if (const DILocation *IA = IL.second)
1648       Scope = LScopes.findInlinedScope(LocalScope, IA);
1649     else
1650       Scope = LScopes.findLexicalScope(LocalScope);
1651     // If label scope is not found then skip this label.
1652     if (!Scope)
1653       continue;
1654 
1655     Processed.insert(IL);
1656     /// At this point, the temporary label is created.
1657     /// Save the temporary label to DbgLabel entity to get the
1658     /// actually address when generating Dwarf DIE.
1659     MCSymbol *Sym = getLabelBeforeInsn(MI);
1660     createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym);
1661   }
1662 
1663   // Collect info for variables/labels that were optimized out.
1664   for (const DINode *DN : SP->getRetainedNodes()) {
1665     if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
1666       continue;
1667     LexicalScope *Scope = nullptr;
1668     if (auto *DV = dyn_cast<DILocalVariable>(DN)) {
1669       Scope = LScopes.findLexicalScope(DV->getScope());
1670     } else if (auto *DL = dyn_cast<DILabel>(DN)) {
1671       Scope = LScopes.findLexicalScope(DL->getScope());
1672     }
1673 
1674     if (Scope)
1675       createConcreteEntity(TheCU, *Scope, DN, nullptr);
1676   }
1677 }
1678 
1679 // Process beginning of an instruction.
1680 void DwarfDebug::beginInstruction(const MachineInstr *MI) {
1681   DebugHandlerBase::beginInstruction(MI);
1682   assert(CurMI);
1683 
1684   const auto *SP = MI->getMF()->getFunction().getSubprogram();
1685   if (!SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
1686     return;
1687 
1688   // Check if source location changes, but ignore DBG_VALUE and CFI locations.
1689   // If the instruction is part of the function frame setup code, do not emit
1690   // any line record, as there is no correspondence with any user code.
1691   if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup))
1692     return;
1693   const DebugLoc &DL = MI->getDebugLoc();
1694   // When we emit a line-0 record, we don't update PrevInstLoc; so look at
1695   // the last line number actually emitted, to see if it was line 0.
1696   unsigned LastAsmLine =
1697       Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine();
1698 
1699   // Request a label after the call in order to emit AT_return_pc information
1700   // in call site entries. TODO: Add support for targets with delay slots.
1701   if (SP->areAllCallsDescribed() && MI->isCall() && !MI->hasDelaySlot())
1702     requestLabelAfterInsn(MI);
1703 
1704   if (DL == PrevInstLoc) {
1705     // If we have an ongoing unspecified location, nothing to do here.
1706     if (!DL)
1707       return;
1708     // We have an explicit location, same as the previous location.
1709     // But we might be coming back to it after a line 0 record.
1710     if (LastAsmLine == 0 && DL.getLine() != 0) {
1711       // Reinstate the source location but not marked as a statement.
1712       const MDNode *Scope = DL.getScope();
1713       recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0);
1714     }
1715     return;
1716   }
1717 
1718   if (!DL) {
1719     // We have an unspecified location, which might want to be line 0.
1720     // If we have already emitted a line-0 record, don't repeat it.
1721     if (LastAsmLine == 0)
1722       return;
1723     // If user said Don't Do That, don't do that.
1724     if (UnknownLocations == Disable)
1725       return;
1726     // See if we have a reason to emit a line-0 record now.
1727     // Reasons to emit a line-0 record include:
1728     // - User asked for it (UnknownLocations).
1729     // - Instruction has a label, so it's referenced from somewhere else,
1730     //   possibly debug information; we want it to have a source location.
1731     // - Instruction is at the top of a block; we don't want to inherit the
1732     //   location from the physically previous (maybe unrelated) block.
1733     if (UnknownLocations == Enable || PrevLabel ||
1734         (PrevInstBB && PrevInstBB != MI->getParent())) {
1735       // Preserve the file and column numbers, if we can, to save space in
1736       // the encoded line table.
1737       // Do not update PrevInstLoc, it remembers the last non-0 line.
1738       const MDNode *Scope = nullptr;
1739       unsigned Column = 0;
1740       if (PrevInstLoc) {
1741         Scope = PrevInstLoc.getScope();
1742         Column = PrevInstLoc.getCol();
1743       }
1744       recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0);
1745     }
1746     return;
1747   }
1748 
1749   // We have an explicit location, different from the previous location.
1750   // Don't repeat a line-0 record, but otherwise emit the new location.
1751   // (The new location might be an explicit line 0, which we do emit.)
1752   if (DL.getLine() == 0 && LastAsmLine == 0)
1753     return;
1754   unsigned Flags = 0;
1755   if (DL == PrologEndLoc) {
1756     Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT;
1757     PrologEndLoc = DebugLoc();
1758   }
1759   // If the line changed, we call that a new statement; unless we went to
1760   // line 0 and came back, in which case it is not a new statement.
1761   unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine;
1762   if (DL.getLine() && DL.getLine() != OldLine)
1763     Flags |= DWARF2_FLAG_IS_STMT;
1764 
1765   const MDNode *Scope = DL.getScope();
1766   recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
1767 
1768   // If we're not at line 0, remember this location.
1769   if (DL.getLine())
1770     PrevInstLoc = DL;
1771 }
1772 
1773 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) {
1774   // First known non-DBG_VALUE and non-frame setup location marks
1775   // the beginning of the function body.
1776   for (const auto &MBB : *MF)
1777     for (const auto &MI : MBB)
1778       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1779           MI.getDebugLoc())
1780         return MI.getDebugLoc();
1781   return DebugLoc();
1782 }
1783 
1784 /// Register a source line with debug info. Returns the  unique label that was
1785 /// emitted and which provides correspondence to the source line list.
1786 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col,
1787                              const MDNode *S, unsigned Flags, unsigned CUID,
1788                              uint16_t DwarfVersion,
1789                              ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) {
1790   StringRef Fn;
1791   unsigned FileNo = 1;
1792   unsigned Discriminator = 0;
1793   if (auto *Scope = cast_or_null<DIScope>(S)) {
1794     Fn = Scope->getFilename();
1795     if (Line != 0 && DwarfVersion >= 4)
1796       if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope))
1797         Discriminator = LBF->getDiscriminator();
1798 
1799     FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID])
1800                  .getOrCreateSourceID(Scope->getFile());
1801   }
1802   Asm.OutStreamer->EmitDwarfLocDirective(FileNo, Line, Col, Flags, 0,
1803                                          Discriminator, Fn);
1804 }
1805 
1806 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF,
1807                                              unsigned CUID) {
1808   // Get beginning of function.
1809   if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) {
1810     // Ensure the compile unit is created if the function is called before
1811     // beginFunction().
1812     (void)getOrCreateDwarfCompileUnit(
1813         MF.getFunction().getSubprogram()->getUnit());
1814     // We'd like to list the prologue as "not statements" but GDB behaves
1815     // poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
1816     const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram();
1817     ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT,
1818                        CUID, getDwarfVersion(), getUnits());
1819     return PrologEndLoc;
1820   }
1821   return DebugLoc();
1822 }
1823 
1824 // Gather pre-function debug information.  Assumes being called immediately
1825 // after the function entry point has been emitted.
1826 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) {
1827   CurFn = MF;
1828 
1829   auto *SP = MF->getFunction().getSubprogram();
1830   assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode());
1831   if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
1832     return;
1833 
1834   SectionLabels.insert(std::make_pair(&Asm->getFunctionBegin()->getSection(),
1835                                       Asm->getFunctionBegin()));
1836 
1837   DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
1838 
1839   // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
1840   // belongs to so that we add to the correct per-cu line table in the
1841   // non-asm case.
1842   if (Asm->OutStreamer->hasRawTextSupport())
1843     // Use a single line table if we are generating assembly.
1844     Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
1845   else
1846     Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID());
1847 
1848   // Record beginning of function.
1849   PrologEndLoc = emitInitialLocDirective(
1850       *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID());
1851 }
1852 
1853 void DwarfDebug::skippedNonDebugFunction() {
1854   // If we don't have a subprogram for this function then there will be a hole
1855   // in the range information. Keep note of this by setting the previously used
1856   // section to nullptr.
1857   PrevCU = nullptr;
1858   CurFn = nullptr;
1859 }
1860 
1861 // Gather and emit post-function debug information.
1862 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) {
1863   const DISubprogram *SP = MF->getFunction().getSubprogram();
1864 
1865   assert(CurFn == MF &&
1866       "endFunction should be called with the same function as beginFunction");
1867 
1868   // Set DwarfDwarfCompileUnitID in MCContext to default value.
1869   Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
1870 
1871   LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
1872   assert(!FnScope || SP == FnScope->getScopeNode());
1873   DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit());
1874   if (TheCU.getCUNode()->isDebugDirectivesOnly()) {
1875     PrevLabel = nullptr;
1876     CurFn = nullptr;
1877     return;
1878   }
1879 
1880   DenseSet<InlinedEntity> Processed;
1881   collectEntityInfo(TheCU, SP, Processed);
1882 
1883   // Add the range of this function to the list of ranges for the CU.
1884   TheCU.addRange({Asm->getFunctionBegin(), Asm->getFunctionEnd()});
1885 
1886   // Under -gmlt, skip building the subprogram if there are no inlined
1887   // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram
1888   // is still needed as we need its source location.
1889   if (!TheCU.getCUNode()->getDebugInfoForProfiling() &&
1890       TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly &&
1891       LScopes.getAbstractScopesList().empty() && !IsDarwin) {
1892     assert(InfoHolder.getScopeVariables().empty());
1893     PrevLabel = nullptr;
1894     CurFn = nullptr;
1895     return;
1896   }
1897 
1898 #ifndef NDEBUG
1899   size_t NumAbstractScopes = LScopes.getAbstractScopesList().size();
1900 #endif
1901   // Construct abstract scopes.
1902   for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
1903     auto *SP = cast<DISubprogram>(AScope->getScopeNode());
1904     for (const DINode *DN : SP->getRetainedNodes()) {
1905       if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
1906         continue;
1907 
1908       const MDNode *Scope = nullptr;
1909       if (auto *DV = dyn_cast<DILocalVariable>(DN))
1910         Scope = DV->getScope();
1911       else if (auto *DL = dyn_cast<DILabel>(DN))
1912         Scope = DL->getScope();
1913       else
1914         llvm_unreachable("Unexpected DI type!");
1915 
1916       // Collect info for variables/labels that were optimized out.
1917       ensureAbstractEntityIsCreated(TheCU, DN, Scope);
1918       assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes
1919              && "ensureAbstractEntityIsCreated inserted abstract scopes");
1920     }
1921     constructAbstractSubprogramScopeDIE(TheCU, AScope);
1922   }
1923 
1924   ProcessedSPNodes.insert(SP);
1925   DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope);
1926   if (auto *SkelCU = TheCU.getSkeleton())
1927     if (!LScopes.getAbstractScopesList().empty() &&
1928         TheCU.getCUNode()->getSplitDebugInlining())
1929       SkelCU->constructSubprogramScopeDIE(SP, FnScope);
1930 
1931   // Construct call site entries.
1932   constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF);
1933 
1934   // Clear debug info
1935   // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
1936   // DbgVariables except those that are also in AbstractVariables (since they
1937   // can be used cross-function)
1938   InfoHolder.getScopeVariables().clear();
1939   InfoHolder.getScopeLabels().clear();
1940   PrevLabel = nullptr;
1941   CurFn = nullptr;
1942 }
1943 
1944 // Register a source line with debug info. Returns the  unique label that was
1945 // emitted and which provides correspondence to the source line list.
1946 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
1947                                   unsigned Flags) {
1948   ::recordSourceLine(*Asm, Line, Col, S, Flags,
1949                      Asm->OutStreamer->getContext().getDwarfCompileUnitID(),
1950                      getDwarfVersion(), getUnits());
1951 }
1952 
1953 //===----------------------------------------------------------------------===//
1954 // Emit Methods
1955 //===----------------------------------------------------------------------===//
1956 
1957 // Emit the debug info section.
1958 void DwarfDebug::emitDebugInfo() {
1959   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1960   Holder.emitUnits(/* UseOffsets */ false);
1961 }
1962 
1963 // Emit the abbreviation section.
1964 void DwarfDebug::emitAbbreviations() {
1965   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1966 
1967   Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
1968 }
1969 
1970 void DwarfDebug::emitStringOffsetsTableHeader() {
1971   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1972   Holder.getStringPool().emitStringOffsetsTableHeader(
1973       *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(),
1974       Holder.getStringOffsetsStartSym());
1975 }
1976 
1977 template <typename AccelTableT>
1978 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section,
1979                            StringRef TableName) {
1980   Asm->OutStreamer->SwitchSection(Section);
1981 
1982   // Emit the full data.
1983   emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol());
1984 }
1985 
1986 void DwarfDebug::emitAccelDebugNames() {
1987   // Don't emit anything if we have no compilation units to index.
1988   if (getUnits().empty())
1989     return;
1990 
1991   emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits());
1992 }
1993 
1994 // Emit visible names into a hashed accelerator table section.
1995 void DwarfDebug::emitAccelNames() {
1996   emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
1997             "Names");
1998 }
1999 
2000 // Emit objective C classes and categories into a hashed accelerator table
2001 // section.
2002 void DwarfDebug::emitAccelObjC() {
2003   emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
2004             "ObjC");
2005 }
2006 
2007 // Emit namespace dies into a hashed accelerator table.
2008 void DwarfDebug::emitAccelNamespaces() {
2009   emitAccel(AccelNamespace,
2010             Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
2011             "namespac");
2012 }
2013 
2014 // Emit type dies into a hashed accelerator table.
2015 void DwarfDebug::emitAccelTypes() {
2016   emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
2017             "types");
2018 }
2019 
2020 // Public name handling.
2021 // The format for the various pubnames:
2022 //
2023 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU
2024 // for the DIE that is named.
2025 //
2026 // gnu pubnames - offset/index value/name tuples where the offset is the offset
2027 // into the CU and the index value is computed according to the type of value
2028 // for the DIE that is named.
2029 //
2030 // For type units the offset is the offset of the skeleton DIE. For split dwarf
2031 // it's the offset within the debug_info/debug_types dwo section, however, the
2032 // reference in the pubname header doesn't change.
2033 
2034 /// computeIndexValue - Compute the gdb index value for the DIE and CU.
2035 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
2036                                                         const DIE *Die) {
2037   // Entities that ended up only in a Type Unit reference the CU instead (since
2038   // the pub entry has offsets within the CU there's no real offset that can be
2039   // provided anyway). As it happens all such entities (namespaces and types,
2040   // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out
2041   // not to be true it would be necessary to persist this information from the
2042   // point at which the entry is added to the index data structure - since by
2043   // the time the index is built from that, the original type/namespace DIE in a
2044   // type unit has already been destroyed so it can't be queried for properties
2045   // like tag, etc.
2046   if (Die->getTag() == dwarf::DW_TAG_compile_unit)
2047     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE,
2048                                           dwarf::GIEL_EXTERNAL);
2049   dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
2050 
2051   // We could have a specification DIE that has our most of our knowledge,
2052   // look for that now.
2053   if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) {
2054     DIE &SpecDIE = SpecVal.getDIEEntry().getEntry();
2055     if (SpecDIE.findAttribute(dwarf::DW_AT_external))
2056       Linkage = dwarf::GIEL_EXTERNAL;
2057   } else if (Die->findAttribute(dwarf::DW_AT_external))
2058     Linkage = dwarf::GIEL_EXTERNAL;
2059 
2060   switch (Die->getTag()) {
2061   case dwarf::DW_TAG_class_type:
2062   case dwarf::DW_TAG_structure_type:
2063   case dwarf::DW_TAG_union_type:
2064   case dwarf::DW_TAG_enumeration_type:
2065     return dwarf::PubIndexEntryDescriptor(
2066         dwarf::GIEK_TYPE,
2067         dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage())
2068             ? dwarf::GIEL_EXTERNAL
2069             : dwarf::GIEL_STATIC);
2070   case dwarf::DW_TAG_typedef:
2071   case dwarf::DW_TAG_base_type:
2072   case dwarf::DW_TAG_subrange_type:
2073     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
2074   case dwarf::DW_TAG_namespace:
2075     return dwarf::GIEK_TYPE;
2076   case dwarf::DW_TAG_subprogram:
2077     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
2078   case dwarf::DW_TAG_variable:
2079     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
2080   case dwarf::DW_TAG_enumerator:
2081     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
2082                                           dwarf::GIEL_STATIC);
2083   default:
2084     return dwarf::GIEK_NONE;
2085   }
2086 }
2087 
2088 /// emitDebugPubSections - Emit visible names and types into debug pubnames and
2089 /// pubtypes sections.
2090 void DwarfDebug::emitDebugPubSections() {
2091   for (const auto &NU : CUMap) {
2092     DwarfCompileUnit *TheU = NU.second;
2093     if (!TheU->hasDwarfPubSections())
2094       continue;
2095 
2096     bool GnuStyle = TheU->getCUNode()->getNameTableKind() ==
2097                     DICompileUnit::DebugNameTableKind::GNU;
2098 
2099     Asm->OutStreamer->SwitchSection(
2100         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
2101                  : Asm->getObjFileLowering().getDwarfPubNamesSection());
2102     emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames());
2103 
2104     Asm->OutStreamer->SwitchSection(
2105         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
2106                  : Asm->getObjFileLowering().getDwarfPubTypesSection());
2107     emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes());
2108   }
2109 }
2110 
2111 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) {
2112   if (useSectionsAsReferences())
2113     Asm->EmitDwarfOffset(CU.getSection()->getBeginSymbol(),
2114                          CU.getDebugSectionOffset());
2115   else
2116     Asm->emitDwarfSymbolReference(CU.getLabelBegin());
2117 }
2118 
2119 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name,
2120                                      DwarfCompileUnit *TheU,
2121                                      const StringMap<const DIE *> &Globals) {
2122   if (auto *Skeleton = TheU->getSkeleton())
2123     TheU = Skeleton;
2124 
2125   // Emit the header.
2126   Asm->OutStreamer->AddComment("Length of Public " + Name + " Info");
2127   MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin");
2128   MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end");
2129   Asm->EmitLabelDifference(EndLabel, BeginLabel, 4);
2130 
2131   Asm->OutStreamer->EmitLabel(BeginLabel);
2132 
2133   Asm->OutStreamer->AddComment("DWARF Version");
2134   Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION);
2135 
2136   Asm->OutStreamer->AddComment("Offset of Compilation Unit Info");
2137   emitSectionReference(*TheU);
2138 
2139   Asm->OutStreamer->AddComment("Compilation Unit Length");
2140   Asm->emitInt32(TheU->getLength());
2141 
2142   // Emit the pubnames for this compilation unit.
2143   for (const auto &GI : Globals) {
2144     const char *Name = GI.getKeyData();
2145     const DIE *Entity = GI.second;
2146 
2147     Asm->OutStreamer->AddComment("DIE offset");
2148     Asm->emitInt32(Entity->getOffset());
2149 
2150     if (GnuStyle) {
2151       dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
2152       Asm->OutStreamer->AddComment(
2153           Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) +
2154           ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
2155       Asm->emitInt8(Desc.toBits());
2156     }
2157 
2158     Asm->OutStreamer->AddComment("External Name");
2159     Asm->OutStreamer->EmitBytes(StringRef(Name, GI.getKeyLength() + 1));
2160   }
2161 
2162   Asm->OutStreamer->AddComment("End Mark");
2163   Asm->emitInt32(0);
2164   Asm->OutStreamer->EmitLabel(EndLabel);
2165 }
2166 
2167 /// Emit null-terminated strings into a debug str section.
2168 void DwarfDebug::emitDebugStr() {
2169   MCSection *StringOffsetsSection = nullptr;
2170   if (useSegmentedStringOffsetsTable()) {
2171     emitStringOffsetsTableHeader();
2172     StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection();
2173   }
2174   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2175   Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(),
2176                      StringOffsetsSection, /* UseRelativeOffsets = */ true);
2177 }
2178 
2179 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
2180                                    const DebugLocStream::Entry &Entry,
2181                                    const DwarfCompileUnit *CU) {
2182   auto &&Comments = DebugLocs.getComments(Entry);
2183   auto Comment = Comments.begin();
2184   auto End = Comments.end();
2185 
2186   // The expressions are inserted into a byte stream rather early (see
2187   // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that
2188   // need to reference a base_type DIE the offset of that DIE is not yet known.
2189   // To deal with this we instead insert a placeholder early and then extract
2190   // it here and replace it with the real reference.
2191   unsigned PtrSize = Asm->MAI->getCodePointerSize();
2192   DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(),
2193                                     DebugLocs.getBytes(Entry).size()),
2194                           Asm->getDataLayout().isLittleEndian(), PtrSize);
2195   DWARFExpression Expr(Data, getDwarfVersion(), PtrSize);
2196 
2197   using Encoding = DWARFExpression::Operation::Encoding;
2198   uint64_t Offset = 0;
2199   for (auto &Op : Expr) {
2200     assert(Op.getCode() != dwarf::DW_OP_const_type &&
2201            "3 operand ops not yet supported");
2202     Streamer.EmitInt8(Op.getCode(), Comment != End ? *(Comment++) : "");
2203     Offset++;
2204     for (unsigned I = 0; I < 2; ++I) {
2205       if (Op.getDescription().Op[I] == Encoding::SizeNA)
2206         continue;
2207       if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) {
2208           if (CU) {
2209             uint64_t Offset = CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset();
2210             assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit");
2211             Asm->EmitULEB128(Offset, nullptr, ULEB128PadSize);
2212           } else {
2213             // Emit a reference to the 'generic type'.
2214             Asm->EmitULEB128(0, nullptr, ULEB128PadSize);
2215           }
2216           // Make sure comments stay aligned.
2217           for (unsigned J = 0; J < ULEB128PadSize; ++J)
2218             if (Comment != End)
2219               Comment++;
2220       } else {
2221         for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J)
2222           Streamer.EmitInt8(Data.getData()[J], Comment != End ? *(Comment++) : "");
2223       }
2224       Offset = Op.getOperandEndOffset(I);
2225     }
2226     assert(Offset == Op.getEndOffset());
2227   }
2228 }
2229 
2230 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT,
2231                                    const DbgValueLoc &Value,
2232                                    DwarfExpression &DwarfExpr) {
2233   auto *DIExpr = Value.getExpression();
2234   DIExpressionCursor ExprCursor(DIExpr);
2235   DwarfExpr.addFragmentOffset(DIExpr);
2236   // Regular entry.
2237   if (Value.isInt()) {
2238     if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed ||
2239                BT->getEncoding() == dwarf::DW_ATE_signed_char))
2240       DwarfExpr.addSignedConstant(Value.getInt());
2241     else
2242       DwarfExpr.addUnsignedConstant(Value.getInt());
2243   } else if (Value.isLocation()) {
2244     MachineLocation Location = Value.getLoc();
2245     if (Location.isIndirect())
2246       DwarfExpr.setMemoryLocationKind();
2247     DIExpressionCursor Cursor(DIExpr);
2248 
2249     if (DIExpr->isEntryValue()) {
2250       DwarfExpr.setEntryValueFlag();
2251       DwarfExpr.beginEntryValueExpression(Cursor);
2252     }
2253 
2254     const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
2255     if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg()))
2256       return;
2257     return DwarfExpr.addExpression(std::move(Cursor));
2258   } else if (Value.isTargetIndexLocation()) {
2259     TargetIndexLocation Loc = Value.getTargetIndexLocation();
2260     // TODO TargetIndexLocation is a target-independent. Currently only the WebAssembly-specific
2261     // encoding is supported.
2262     DwarfExpr.addWasmLocation(Loc.Index, Loc.Offset);
2263   } else if (Value.isConstantFP()) {
2264     APInt RawBytes = Value.getConstantFP()->getValueAPF().bitcastToAPInt();
2265     DwarfExpr.addUnsignedConstant(RawBytes);
2266   }
2267   DwarfExpr.addExpression(std::move(ExprCursor));
2268 }
2269 
2270 void DebugLocEntry::finalize(const AsmPrinter &AP,
2271                              DebugLocStream::ListBuilder &List,
2272                              const DIBasicType *BT,
2273                              DwarfCompileUnit &TheCU) {
2274   assert(!Values.empty() &&
2275          "location list entries without values are redundant");
2276   assert(Begin != End && "unexpected location list entry with empty range");
2277   DebugLocStream::EntryBuilder Entry(List, Begin, End);
2278   BufferByteStreamer Streamer = Entry.getStreamer();
2279   DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU);
2280   const DbgValueLoc &Value = Values[0];
2281   if (Value.isFragment()) {
2282     // Emit all fragments that belong to the same variable and range.
2283     assert(llvm::all_of(Values, [](DbgValueLoc P) {
2284           return P.isFragment();
2285         }) && "all values are expected to be fragments");
2286     assert(std::is_sorted(Values.begin(), Values.end()) &&
2287            "fragments are expected to be sorted");
2288 
2289     for (auto Fragment : Values)
2290       DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr);
2291 
2292   } else {
2293     assert(Values.size() == 1 && "only fragments may have >1 value");
2294     DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr);
2295   }
2296   DwarfExpr.finalize();
2297   if (DwarfExpr.TagOffset)
2298     List.setTagOffset(*DwarfExpr.TagOffset);
2299 }
2300 
2301 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry,
2302                                            const DwarfCompileUnit *CU) {
2303   // Emit the size.
2304   Asm->OutStreamer->AddComment("Loc expr size");
2305   if (getDwarfVersion() >= 5)
2306     Asm->EmitULEB128(DebugLocs.getBytes(Entry).size());
2307   else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max())
2308     Asm->emitInt16(DebugLocs.getBytes(Entry).size());
2309   else {
2310     // The entry is too big to fit into 16 bit, drop it as there is nothing we
2311     // can do.
2312     Asm->emitInt16(0);
2313     return;
2314   }
2315   // Emit the entry.
2316   APByteStreamer Streamer(*Asm);
2317   emitDebugLocEntry(Streamer, Entry, CU);
2318 }
2319 
2320 // Emit the common part of the DWARF 5 range/locations list tables header.
2321 static void emitListsTableHeaderStart(AsmPrinter *Asm,
2322                                       MCSymbol *TableStart,
2323                                       MCSymbol *TableEnd) {
2324   // Build the table header, which starts with the length field.
2325   Asm->OutStreamer->AddComment("Length");
2326   Asm->EmitLabelDifference(TableEnd, TableStart, 4);
2327   Asm->OutStreamer->EmitLabel(TableStart);
2328   // Version number (DWARF v5 and later).
2329   Asm->OutStreamer->AddComment("Version");
2330   Asm->emitInt16(Asm->OutStreamer->getContext().getDwarfVersion());
2331   // Address size.
2332   Asm->OutStreamer->AddComment("Address size");
2333   Asm->emitInt8(Asm->MAI->getCodePointerSize());
2334   // Segment selector size.
2335   Asm->OutStreamer->AddComment("Segment selector size");
2336   Asm->emitInt8(0);
2337 }
2338 
2339 // Emit the header of a DWARF 5 range list table list table. Returns the symbol
2340 // that designates the end of the table for the caller to emit when the table is
2341 // complete.
2342 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm,
2343                                          const DwarfFile &Holder) {
2344   MCSymbol *TableStart = Asm->createTempSymbol("debug_rnglist_table_start");
2345   MCSymbol *TableEnd = Asm->createTempSymbol("debug_rnglist_table_end");
2346   emitListsTableHeaderStart(Asm, TableStart, TableEnd);
2347 
2348   Asm->OutStreamer->AddComment("Offset entry count");
2349   Asm->emitInt32(Holder.getRangeLists().size());
2350   Asm->OutStreamer->EmitLabel(Holder.getRnglistsTableBaseSym());
2351 
2352   for (const RangeSpanList &List : Holder.getRangeLists())
2353     Asm->EmitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(),
2354                              4);
2355 
2356   return TableEnd;
2357 }
2358 
2359 // Emit the header of a DWARF 5 locations list table. Returns the symbol that
2360 // designates the end of the table for the caller to emit when the table is
2361 // complete.
2362 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm,
2363                                          const DwarfDebug &DD) {
2364   MCSymbol *TableStart = Asm->createTempSymbol("debug_loclist_table_start");
2365   MCSymbol *TableEnd = Asm->createTempSymbol("debug_loclist_table_end");
2366   emitListsTableHeaderStart(Asm, TableStart, TableEnd);
2367 
2368   const auto &DebugLocs = DD.getDebugLocs();
2369 
2370   Asm->OutStreamer->AddComment("Offset entry count");
2371   Asm->emitInt32(DebugLocs.getLists().size());
2372   Asm->OutStreamer->EmitLabel(DebugLocs.getSym());
2373 
2374   for (const auto &List : DebugLocs.getLists())
2375     Asm->EmitLabelDifference(List.Label, DebugLocs.getSym(), 4);
2376 
2377   return TableEnd;
2378 }
2379 
2380 template <typename Ranges, typename PayloadEmitter>
2381 static void emitRangeList(
2382     DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R,
2383     const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair,
2384     unsigned StartxLength, unsigned EndOfList,
2385     StringRef (*StringifyEnum)(unsigned),
2386     bool ShouldUseBaseAddress,
2387     PayloadEmitter EmitPayload) {
2388 
2389   auto Size = Asm->MAI->getCodePointerSize();
2390   bool UseDwarf5 = DD.getDwarfVersion() >= 5;
2391 
2392   // Emit our symbol so we can find the beginning of the range.
2393   Asm->OutStreamer->EmitLabel(Sym);
2394 
2395   // Gather all the ranges that apply to the same section so they can share
2396   // a base address entry.
2397   MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges;
2398 
2399   for (const auto &Range : R)
2400     SectionRanges[&Range.Begin->getSection()].push_back(&Range);
2401 
2402   const MCSymbol *CUBase = CU.getBaseAddress();
2403   bool BaseIsSet = false;
2404   for (const auto &P : SectionRanges) {
2405     auto *Base = CUBase;
2406     if (!Base && ShouldUseBaseAddress) {
2407       const MCSymbol *Begin = P.second.front()->Begin;
2408       const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection());
2409       if (!UseDwarf5) {
2410         Base = NewBase;
2411         BaseIsSet = true;
2412         Asm->OutStreamer->EmitIntValue(-1, Size);
2413         Asm->OutStreamer->AddComment("  base address");
2414         Asm->OutStreamer->EmitSymbolValue(Base, Size);
2415       } else if (NewBase != Begin || P.second.size() > 1) {
2416         // Only use a base address if
2417         //  * the existing pool address doesn't match (NewBase != Begin)
2418         //  * or, there's more than one entry to share the base address
2419         Base = NewBase;
2420         BaseIsSet = true;
2421         Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx));
2422         Asm->emitInt8(BaseAddressx);
2423         Asm->OutStreamer->AddComment("  base address index");
2424         Asm->EmitULEB128(DD.getAddressPool().getIndex(Base));
2425       }
2426     } else if (BaseIsSet && !UseDwarf5) {
2427       BaseIsSet = false;
2428       assert(!Base);
2429       Asm->OutStreamer->EmitIntValue(-1, Size);
2430       Asm->OutStreamer->EmitIntValue(0, Size);
2431     }
2432 
2433     for (const auto *RS : P.second) {
2434       const MCSymbol *Begin = RS->Begin;
2435       const MCSymbol *End = RS->End;
2436       assert(Begin && "Range without a begin symbol?");
2437       assert(End && "Range without an end symbol?");
2438       if (Base) {
2439         if (UseDwarf5) {
2440           // Emit offset_pair when we have a base.
2441           Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair));
2442           Asm->emitInt8(OffsetPair);
2443           Asm->OutStreamer->AddComment("  starting offset");
2444           Asm->EmitLabelDifferenceAsULEB128(Begin, Base);
2445           Asm->OutStreamer->AddComment("  ending offset");
2446           Asm->EmitLabelDifferenceAsULEB128(End, Base);
2447         } else {
2448           Asm->EmitLabelDifference(Begin, Base, Size);
2449           Asm->EmitLabelDifference(End, Base, Size);
2450         }
2451       } else if (UseDwarf5) {
2452         Asm->OutStreamer->AddComment(StringifyEnum(StartxLength));
2453         Asm->emitInt8(StartxLength);
2454         Asm->OutStreamer->AddComment("  start index");
2455         Asm->EmitULEB128(DD.getAddressPool().getIndex(Begin));
2456         Asm->OutStreamer->AddComment("  length");
2457         Asm->EmitLabelDifferenceAsULEB128(End, Begin);
2458       } else {
2459         Asm->OutStreamer->EmitSymbolValue(Begin, Size);
2460         Asm->OutStreamer->EmitSymbolValue(End, Size);
2461       }
2462       EmitPayload(*RS);
2463     }
2464   }
2465 
2466   if (UseDwarf5) {
2467     Asm->OutStreamer->AddComment(StringifyEnum(EndOfList));
2468     Asm->emitInt8(EndOfList);
2469   } else {
2470     // Terminate the list with two 0 values.
2471     Asm->OutStreamer->EmitIntValue(0, Size);
2472     Asm->OutStreamer->EmitIntValue(0, Size);
2473   }
2474 }
2475 
2476 // Handles emission of both debug_loclist / debug_loclist.dwo
2477 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) {
2478   emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List),
2479                 *List.CU, dwarf::DW_LLE_base_addressx,
2480                 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length,
2481                 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString,
2482                 /* ShouldUseBaseAddress */ true,
2483                 [&](const DebugLocStream::Entry &E) {
2484                   DD.emitDebugLocEntryLocation(E, List.CU);
2485                 });
2486 }
2487 
2488 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) {
2489   if (DebugLocs.getLists().empty())
2490     return;
2491 
2492   Asm->OutStreamer->SwitchSection(Sec);
2493 
2494   MCSymbol *TableEnd = nullptr;
2495   if (getDwarfVersion() >= 5)
2496     TableEnd = emitLoclistsTableHeader(Asm, *this);
2497 
2498   for (const auto &List : DebugLocs.getLists())
2499     emitLocList(*this, Asm, List);
2500 
2501   if (TableEnd)
2502     Asm->OutStreamer->EmitLabel(TableEnd);
2503 }
2504 
2505 // Emit locations into the .debug_loc/.debug_loclists section.
2506 void DwarfDebug::emitDebugLoc() {
2507   emitDebugLocImpl(
2508       getDwarfVersion() >= 5
2509           ? Asm->getObjFileLowering().getDwarfLoclistsSection()
2510           : Asm->getObjFileLowering().getDwarfLocSection());
2511 }
2512 
2513 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section.
2514 void DwarfDebug::emitDebugLocDWO() {
2515   if (getDwarfVersion() >= 5) {
2516     emitDebugLocImpl(
2517         Asm->getObjFileLowering().getDwarfLoclistsDWOSection());
2518 
2519     return;
2520   }
2521 
2522   for (const auto &List : DebugLocs.getLists()) {
2523     Asm->OutStreamer->SwitchSection(
2524         Asm->getObjFileLowering().getDwarfLocDWOSection());
2525     Asm->OutStreamer->EmitLabel(List.Label);
2526 
2527     for (const auto &Entry : DebugLocs.getEntries(List)) {
2528       // GDB only supports startx_length in pre-standard split-DWARF.
2529       // (in v5 standard loclists, it currently* /only/ supports base_address +
2530       // offset_pair, so the implementations can't really share much since they
2531       // need to use different representations)
2532       // * as of October 2018, at least
2533       // Ideally/in v5, this could use SectionLabels to reuse existing addresses
2534       // in the address pool to minimize object size/relocations.
2535       Asm->emitInt8(dwarf::DW_LLE_startx_length);
2536       unsigned idx = AddrPool.getIndex(Entry.Begin);
2537       Asm->EmitULEB128(idx);
2538       // Also the pre-standard encoding is slightly different, emitting this as
2539       // an address-length entry here, but its a ULEB128 in DWARFv5 loclists.
2540       Asm->EmitLabelDifference(Entry.End, Entry.Begin, 4);
2541       emitDebugLocEntryLocation(Entry, List.CU);
2542     }
2543     Asm->emitInt8(dwarf::DW_LLE_end_of_list);
2544   }
2545 }
2546 
2547 struct ArangeSpan {
2548   const MCSymbol *Start, *End;
2549 };
2550 
2551 // Emit a debug aranges section, containing a CU lookup for any
2552 // address we can tie back to a CU.
2553 void DwarfDebug::emitDebugARanges() {
2554   // Provides a unique id per text section.
2555   MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap;
2556 
2557   // Filter labels by section.
2558   for (const SymbolCU &SCU : ArangeLabels) {
2559     if (SCU.Sym->isInSection()) {
2560       // Make a note of this symbol and it's section.
2561       MCSection *Section = &SCU.Sym->getSection();
2562       if (!Section->getKind().isMetadata())
2563         SectionMap[Section].push_back(SCU);
2564     } else {
2565       // Some symbols (e.g. common/bss on mach-o) can have no section but still
2566       // appear in the output. This sucks as we rely on sections to build
2567       // arange spans. We can do it without, but it's icky.
2568       SectionMap[nullptr].push_back(SCU);
2569     }
2570   }
2571 
2572   DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans;
2573 
2574   for (auto &I : SectionMap) {
2575     MCSection *Section = I.first;
2576     SmallVector<SymbolCU, 8> &List = I.second;
2577     if (List.size() < 1)
2578       continue;
2579 
2580     // If we have no section (e.g. common), just write out
2581     // individual spans for each symbol.
2582     if (!Section) {
2583       for (const SymbolCU &Cur : List) {
2584         ArangeSpan Span;
2585         Span.Start = Cur.Sym;
2586         Span.End = nullptr;
2587         assert(Cur.CU);
2588         Spans[Cur.CU].push_back(Span);
2589       }
2590       continue;
2591     }
2592 
2593     // Sort the symbols by offset within the section.
2594     llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) {
2595       unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0;
2596       unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0;
2597 
2598       // Symbols with no order assigned should be placed at the end.
2599       // (e.g. section end labels)
2600       if (IA == 0)
2601         return false;
2602       if (IB == 0)
2603         return true;
2604       return IA < IB;
2605     });
2606 
2607     // Insert a final terminator.
2608     List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section)));
2609 
2610     // Build spans between each label.
2611     const MCSymbol *StartSym = List[0].Sym;
2612     for (size_t n = 1, e = List.size(); n < e; n++) {
2613       const SymbolCU &Prev = List[n - 1];
2614       const SymbolCU &Cur = List[n];
2615 
2616       // Try and build the longest span we can within the same CU.
2617       if (Cur.CU != Prev.CU) {
2618         ArangeSpan Span;
2619         Span.Start = StartSym;
2620         Span.End = Cur.Sym;
2621         assert(Prev.CU);
2622         Spans[Prev.CU].push_back(Span);
2623         StartSym = Cur.Sym;
2624       }
2625     }
2626   }
2627 
2628   // Start the dwarf aranges section.
2629   Asm->OutStreamer->SwitchSection(
2630       Asm->getObjFileLowering().getDwarfARangesSection());
2631 
2632   unsigned PtrSize = Asm->MAI->getCodePointerSize();
2633 
2634   // Build a list of CUs used.
2635   std::vector<DwarfCompileUnit *> CUs;
2636   for (const auto &it : Spans) {
2637     DwarfCompileUnit *CU = it.first;
2638     CUs.push_back(CU);
2639   }
2640 
2641   // Sort the CU list (again, to ensure consistent output order).
2642   llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) {
2643     return A->getUniqueID() < B->getUniqueID();
2644   });
2645 
2646   // Emit an arange table for each CU we used.
2647   for (DwarfCompileUnit *CU : CUs) {
2648     std::vector<ArangeSpan> &List = Spans[CU];
2649 
2650     // Describe the skeleton CU's offset and length, not the dwo file's.
2651     if (auto *Skel = CU->getSkeleton())
2652       CU = Skel;
2653 
2654     // Emit size of content not including length itself.
2655     unsigned ContentSize =
2656         sizeof(int16_t) + // DWARF ARange version number
2657         sizeof(int32_t) + // Offset of CU in the .debug_info section
2658         sizeof(int8_t) +  // Pointer Size (in bytes)
2659         sizeof(int8_t);   // Segment Size (in bytes)
2660 
2661     unsigned TupleSize = PtrSize * 2;
2662 
2663     // 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
2664     unsigned Padding =
2665         offsetToAlignment(sizeof(int32_t) + ContentSize, Align(TupleSize));
2666 
2667     ContentSize += Padding;
2668     ContentSize += (List.size() + 1) * TupleSize;
2669 
2670     // For each compile unit, write the list of spans it covers.
2671     Asm->OutStreamer->AddComment("Length of ARange Set");
2672     Asm->emitInt32(ContentSize);
2673     Asm->OutStreamer->AddComment("DWARF Arange version number");
2674     Asm->emitInt16(dwarf::DW_ARANGES_VERSION);
2675     Asm->OutStreamer->AddComment("Offset Into Debug Info Section");
2676     emitSectionReference(*CU);
2677     Asm->OutStreamer->AddComment("Address Size (in bytes)");
2678     Asm->emitInt8(PtrSize);
2679     Asm->OutStreamer->AddComment("Segment Size (in bytes)");
2680     Asm->emitInt8(0);
2681 
2682     Asm->OutStreamer->emitFill(Padding, 0xff);
2683 
2684     for (const ArangeSpan &Span : List) {
2685       Asm->EmitLabelReference(Span.Start, PtrSize);
2686 
2687       // Calculate the size as being from the span start to it's end.
2688       if (Span.End) {
2689         Asm->EmitLabelDifference(Span.End, Span.Start, PtrSize);
2690       } else {
2691         // For symbols without an end marker (e.g. common), we
2692         // write a single arange entry containing just that one symbol.
2693         uint64_t Size = SymSize[Span.Start];
2694         if (Size == 0)
2695           Size = 1;
2696 
2697         Asm->OutStreamer->EmitIntValue(Size, PtrSize);
2698       }
2699     }
2700 
2701     Asm->OutStreamer->AddComment("ARange terminator");
2702     Asm->OutStreamer->EmitIntValue(0, PtrSize);
2703     Asm->OutStreamer->EmitIntValue(0, PtrSize);
2704   }
2705 }
2706 
2707 /// Emit a single range list. We handle both DWARF v5 and earlier.
2708 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm,
2709                           const RangeSpanList &List) {
2710   emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU,
2711                 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair,
2712                 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list,
2713                 llvm::dwarf::RangeListEncodingString,
2714                 List.CU->getCUNode()->getRangesBaseAddress() ||
2715                     DD.getDwarfVersion() >= 5,
2716                 [](auto) {});
2717 }
2718 
2719 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) {
2720   if (Holder.getRangeLists().empty())
2721     return;
2722 
2723   assert(useRangesSection());
2724   assert(!CUMap.empty());
2725   assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) {
2726     return !Pair.second->getCUNode()->isDebugDirectivesOnly();
2727   }));
2728 
2729   Asm->OutStreamer->SwitchSection(Section);
2730 
2731   MCSymbol *TableEnd = nullptr;
2732   if (getDwarfVersion() >= 5)
2733     TableEnd = emitRnglistsTableHeader(Asm, Holder);
2734 
2735   for (const RangeSpanList &List : Holder.getRangeLists())
2736     emitRangeList(*this, Asm, List);
2737 
2738   if (TableEnd)
2739     Asm->OutStreamer->EmitLabel(TableEnd);
2740 }
2741 
2742 /// Emit address ranges into the .debug_ranges section or into the DWARF v5
2743 /// .debug_rnglists section.
2744 void DwarfDebug::emitDebugRanges() {
2745   const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2746 
2747   emitDebugRangesImpl(Holder,
2748                       getDwarfVersion() >= 5
2749                           ? Asm->getObjFileLowering().getDwarfRnglistsSection()
2750                           : Asm->getObjFileLowering().getDwarfRangesSection());
2751 }
2752 
2753 void DwarfDebug::emitDebugRangesDWO() {
2754   emitDebugRangesImpl(InfoHolder,
2755                       Asm->getObjFileLowering().getDwarfRnglistsDWOSection());
2756 }
2757 
2758 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) {
2759   for (auto *MN : Nodes) {
2760     if (auto *M = dyn_cast<DIMacro>(MN))
2761       emitMacro(*M);
2762     else if (auto *F = dyn_cast<DIMacroFile>(MN))
2763       emitMacroFile(*F, U);
2764     else
2765       llvm_unreachable("Unexpected DI type!");
2766   }
2767 }
2768 
2769 void DwarfDebug::emitMacro(DIMacro &M) {
2770   Asm->EmitULEB128(M.getMacinfoType());
2771   Asm->EmitULEB128(M.getLine());
2772   StringRef Name = M.getName();
2773   StringRef Value = M.getValue();
2774   Asm->OutStreamer->EmitBytes(Name);
2775   if (!Value.empty()) {
2776     // There should be one space between macro name and macro value.
2777     Asm->emitInt8(' ');
2778     Asm->OutStreamer->EmitBytes(Value);
2779   }
2780   Asm->emitInt8('\0');
2781 }
2782 
2783 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) {
2784   assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file);
2785   Asm->EmitULEB128(dwarf::DW_MACINFO_start_file);
2786   Asm->EmitULEB128(F.getLine());
2787   Asm->EmitULEB128(U.getOrCreateSourceID(F.getFile()));
2788   handleMacroNodes(F.getElements(), U);
2789   Asm->EmitULEB128(dwarf::DW_MACINFO_end_file);
2790 }
2791 
2792 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) {
2793   for (const auto &P : CUMap) {
2794     auto &TheCU = *P.second;
2795     auto *SkCU = TheCU.getSkeleton();
2796     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
2797     auto *CUNode = cast<DICompileUnit>(P.first);
2798     DIMacroNodeArray Macros = CUNode->getMacros();
2799     if (Macros.empty())
2800       continue;
2801     Asm->OutStreamer->SwitchSection(Section);
2802     Asm->OutStreamer->EmitLabel(U.getMacroLabelBegin());
2803     handleMacroNodes(Macros, U);
2804     Asm->OutStreamer->AddComment("End Of Macro List Mark");
2805     Asm->emitInt8(0);
2806   }
2807 }
2808 
2809 /// Emit macros into a debug macinfo section.
2810 void DwarfDebug::emitDebugMacinfo() {
2811   emitDebugMacinfoImpl(Asm->getObjFileLowering().getDwarfMacinfoSection());
2812 }
2813 
2814 void DwarfDebug::emitDebugMacinfoDWO() {
2815   emitDebugMacinfoImpl(Asm->getObjFileLowering().getDwarfMacinfoDWOSection());
2816 }
2817 
2818 // DWARF5 Experimental Separate Dwarf emitters.
2819 
2820 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
2821                                   std::unique_ptr<DwarfCompileUnit> NewU) {
2822 
2823   if (!CompilationDir.empty())
2824     NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
2825 
2826   addGnuPubAttributes(*NewU, Die);
2827 
2828   SkeletonHolder.addUnit(std::move(NewU));
2829 }
2830 
2831 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
2832 
2833   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
2834       CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder,
2835       UnitKind::Skeleton);
2836   DwarfCompileUnit &NewCU = *OwnedUnit;
2837   NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
2838 
2839   NewCU.initStmtList();
2840 
2841   if (useSegmentedStringOffsetsTable())
2842     NewCU.addStringOffsetsStart();
2843 
2844   initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));
2845 
2846   return NewCU;
2847 }
2848 
2849 // Emit the .debug_info.dwo section for separated dwarf. This contains the
2850 // compile units that would normally be in debug_info.
2851 void DwarfDebug::emitDebugInfoDWO() {
2852   assert(useSplitDwarf() && "No split dwarf debug info?");
2853   // Don't emit relocations into the dwo file.
2854   InfoHolder.emitUnits(/* UseOffsets */ true);
2855 }
2856 
2857 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
2858 // abbreviations for the .debug_info.dwo section.
2859 void DwarfDebug::emitDebugAbbrevDWO() {
2860   assert(useSplitDwarf() && "No split dwarf?");
2861   InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
2862 }
2863 
2864 void DwarfDebug::emitDebugLineDWO() {
2865   assert(useSplitDwarf() && "No split dwarf?");
2866   SplitTypeUnitFileTable.Emit(
2867       *Asm->OutStreamer, MCDwarfLineTableParams(),
2868       Asm->getObjFileLowering().getDwarfLineDWOSection());
2869 }
2870 
2871 void DwarfDebug::emitStringOffsetsTableHeaderDWO() {
2872   assert(useSplitDwarf() && "No split dwarf?");
2873   InfoHolder.getStringPool().emitStringOffsetsTableHeader(
2874       *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(),
2875       InfoHolder.getStringOffsetsStartSym());
2876 }
2877 
2878 // Emit the .debug_str.dwo section for separated dwarf. This contains the
2879 // string section and is identical in format to traditional .debug_str
2880 // sections.
2881 void DwarfDebug::emitDebugStrDWO() {
2882   if (useSegmentedStringOffsetsTable())
2883     emitStringOffsetsTableHeaderDWO();
2884   assert(useSplitDwarf() && "No split dwarf?");
2885   MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection();
2886   InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
2887                          OffSec, /* UseRelativeOffsets = */ false);
2888 }
2889 
2890 // Emit address pool.
2891 void DwarfDebug::emitDebugAddr() {
2892   AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
2893 }
2894 
2895 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
2896   if (!useSplitDwarf())
2897     return nullptr;
2898   const DICompileUnit *DIUnit = CU.getCUNode();
2899   SplitTypeUnitFileTable.maybeSetRootFile(
2900       DIUnit->getDirectory(), DIUnit->getFilename(),
2901       CU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource());
2902   return &SplitTypeUnitFileTable;
2903 }
2904 
2905 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) {
2906   MD5 Hash;
2907   Hash.update(Identifier);
2908   // ... take the least significant 8 bytes and return those. Our MD5
2909   // implementation always returns its results in little endian, so we actually
2910   // need the "high" word.
2911   MD5::MD5Result Result;
2912   Hash.final(Result);
2913   return Result.high();
2914 }
2915 
2916 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
2917                                       StringRef Identifier, DIE &RefDie,
2918                                       const DICompositeType *CTy) {
2919   // Fast path if we're building some type units and one has already used the
2920   // address pool we know we're going to throw away all this work anyway, so
2921   // don't bother building dependent types.
2922   if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
2923     return;
2924 
2925   auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0));
2926   if (!Ins.second) {
2927     CU.addDIETypeSignature(RefDie, Ins.first->second);
2928     return;
2929   }
2930 
2931   bool TopLevelType = TypeUnitsUnderConstruction.empty();
2932   AddrPool.resetUsedFlag();
2933 
2934   auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder,
2935                                                     getDwoLineTable(CU));
2936   DwarfTypeUnit &NewTU = *OwnedUnit;
2937   DIE &UnitDie = NewTU.getUnitDie();
2938   TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy);
2939 
2940   NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
2941                 CU.getLanguage());
2942 
2943   uint64_t Signature = makeTypeSignature(Identifier);
2944   NewTU.setTypeSignature(Signature);
2945   Ins.first->second = Signature;
2946 
2947   if (useSplitDwarf()) {
2948     MCSection *Section =
2949         getDwarfVersion() <= 4
2950             ? Asm->getObjFileLowering().getDwarfTypesDWOSection()
2951             : Asm->getObjFileLowering().getDwarfInfoDWOSection();
2952     NewTU.setSection(Section);
2953   } else {
2954     MCSection *Section =
2955         getDwarfVersion() <= 4
2956             ? Asm->getObjFileLowering().getDwarfTypesSection(Signature)
2957             : Asm->getObjFileLowering().getDwarfInfoSection(Signature);
2958     NewTU.setSection(Section);
2959     // Non-split type units reuse the compile unit's line table.
2960     CU.applyStmtList(UnitDie);
2961   }
2962 
2963   // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type
2964   // units.
2965   if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
2966     NewTU.addStringOffsetsStart();
2967 
2968   NewTU.setType(NewTU.createTypeDIE(CTy));
2969 
2970   if (TopLevelType) {
2971     auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
2972     TypeUnitsUnderConstruction.clear();
2973 
2974     // Types referencing entries in the address table cannot be placed in type
2975     // units.
2976     if (AddrPool.hasBeenUsed()) {
2977 
2978       // Remove all the types built while building this type.
2979       // This is pessimistic as some of these types might not be dependent on
2980       // the type that used an address.
2981       for (const auto &TU : TypeUnitsToAdd)
2982         TypeSignatures.erase(TU.second);
2983 
2984       // Construct this type in the CU directly.
2985       // This is inefficient because all the dependent types will be rebuilt
2986       // from scratch, including building them in type units, discovering that
2987       // they depend on addresses, throwing them out and rebuilding them.
2988       CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy));
2989       return;
2990     }
2991 
2992     // If the type wasn't dependent on fission addresses, finish adding the type
2993     // and all its dependent types.
2994     for (auto &TU : TypeUnitsToAdd) {
2995       InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get());
2996       InfoHolder.emitUnit(TU.first.get(), useSplitDwarf());
2997     }
2998   }
2999   CU.addDIETypeSignature(RefDie, Signature);
3000 }
3001 
3002 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD)
3003     : DD(DD),
3004       TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)) {
3005   DD->TypeUnitsUnderConstruction.clear();
3006   assert(TypeUnitsUnderConstruction.empty() || !DD->AddrPool.hasBeenUsed());
3007 }
3008 
3009 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() {
3010   DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction);
3011   DD->AddrPool.resetUsedFlag();
3012 }
3013 
3014 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() {
3015   return NonTypeUnitContext(this);
3016 }
3017 
3018 // Add the Name along with its companion DIE to the appropriate accelerator
3019 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for
3020 // AccelTableKind::Apple, we use the table we got as an argument). If
3021 // accelerator tables are disabled, this function does nothing.
3022 template <typename DataT>
3023 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU,
3024                                   AccelTable<DataT> &AppleAccel, StringRef Name,
3025                                   const DIE &Die) {
3026   if (getAccelTableKind() == AccelTableKind::None)
3027     return;
3028 
3029   if (getAccelTableKind() != AccelTableKind::Apple &&
3030       CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default)
3031     return;
3032 
3033   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
3034   DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name);
3035 
3036   switch (getAccelTableKind()) {
3037   case AccelTableKind::Apple:
3038     AppleAccel.addName(Ref, Die);
3039     break;
3040   case AccelTableKind::Dwarf:
3041     AccelDebugNames.addName(Ref, Die);
3042     break;
3043   case AccelTableKind::Default:
3044     llvm_unreachable("Default should have already been resolved.");
3045   case AccelTableKind::None:
3046     llvm_unreachable("None handled above");
3047   }
3048 }
3049 
3050 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name,
3051                               const DIE &Die) {
3052   addAccelNameImpl(CU, AccelNames, Name, Die);
3053 }
3054 
3055 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name,
3056                               const DIE &Die) {
3057   // ObjC names go only into the Apple accelerator tables.
3058   if (getAccelTableKind() == AccelTableKind::Apple)
3059     addAccelNameImpl(CU, AccelObjC, Name, Die);
3060 }
3061 
3062 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name,
3063                                    const DIE &Die) {
3064   addAccelNameImpl(CU, AccelNamespace, Name, Die);
3065 }
3066 
3067 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name,
3068                               const DIE &Die, char Flags) {
3069   addAccelNameImpl(CU, AccelTypes, Name, Die);
3070 }
3071 
3072 uint16_t DwarfDebug::getDwarfVersion() const {
3073   return Asm->OutStreamer->getContext().getDwarfVersion();
3074 }
3075 
3076 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) {
3077   return SectionLabels.find(S)->second;
3078 }
3079