1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing dwarf debug info into asm files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DwarfDebug.h" 14 #include "ByteStreamer.h" 15 #include "DIEHash.h" 16 #include "DebugLocEntry.h" 17 #include "DebugLocStream.h" 18 #include "DwarfCompileUnit.h" 19 #include "DwarfExpression.h" 20 #include "DwarfFile.h" 21 #include "DwarfUnit.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/DenseSet.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/BinaryFormat/Dwarf.h" 33 #include "llvm/CodeGen/AccelTable.h" 34 #include "llvm/CodeGen/AsmPrinter.h" 35 #include "llvm/CodeGen/DIE.h" 36 #include "llvm/CodeGen/LexicalScopes.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineInstr.h" 40 #include "llvm/CodeGen/MachineModuleInfo.h" 41 #include "llvm/CodeGen/MachineOperand.h" 42 #include "llvm/CodeGen/TargetInstrInfo.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/DebugInfo/DWARF/DWARFExpression.h" 47 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GlobalVariable.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/MC/MCAsmInfo.h" 55 #include "llvm/MC/MCContext.h" 56 #include "llvm/MC/MCDwarf.h" 57 #include "llvm/MC/MCSection.h" 58 #include "llvm/MC/MCStreamer.h" 59 #include "llvm/MC/MCSymbol.h" 60 #include "llvm/MC/MCTargetOptions.h" 61 #include "llvm/MC/MachineLocation.h" 62 #include "llvm/MC/SectionKind.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MD5.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/Timer.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Target/TargetLoweringObjectFile.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include "llvm/Target/TargetOptions.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <iterator> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 #define DEBUG_TYPE "dwarfdebug" 87 88 STATISTIC(NumCSParams, "Number of dbg call site params created"); 89 90 static cl::opt<bool> 91 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 92 cl::desc("Disable debug info printing")); 93 94 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier( 95 "use-dwarf-ranges-base-address-specifier", cl::Hidden, 96 cl::desc("Use base address specifiers in debug_ranges"), cl::init(false)); 97 98 static cl::opt<bool> GenerateARangeSection("generate-arange-section", 99 cl::Hidden, 100 cl::desc("Generate dwarf aranges"), 101 cl::init(false)); 102 103 static cl::opt<bool> 104 GenerateDwarfTypeUnits("generate-type-units", cl::Hidden, 105 cl::desc("Generate DWARF4 type units."), 106 cl::init(false)); 107 108 static cl::opt<bool> SplitDwarfCrossCuReferences( 109 "split-dwarf-cross-cu-references", cl::Hidden, 110 cl::desc("Enable cross-cu references in DWO files"), cl::init(false)); 111 112 enum DefaultOnOff { Default, Enable, Disable }; 113 114 static cl::opt<DefaultOnOff> UnknownLocations( 115 "use-unknown-locations", cl::Hidden, 116 cl::desc("Make an absence of debug location information explicit."), 117 cl::values(clEnumVal(Default, "At top of block or after label"), 118 clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")), 119 cl::init(Default)); 120 121 static cl::opt<AccelTableKind> AccelTables( 122 "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."), 123 cl::values(clEnumValN(AccelTableKind::Default, "Default", 124 "Default for platform"), 125 clEnumValN(AccelTableKind::None, "Disable", "Disabled."), 126 clEnumValN(AccelTableKind::Apple, "Apple", "Apple"), 127 clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")), 128 cl::init(AccelTableKind::Default)); 129 130 static cl::opt<DefaultOnOff> 131 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden, 132 cl::desc("Use inlined strings rather than string section."), 133 cl::values(clEnumVal(Default, "Default for platform"), 134 clEnumVal(Enable, "Enabled"), 135 clEnumVal(Disable, "Disabled")), 136 cl::init(Default)); 137 138 static cl::opt<bool> 139 NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden, 140 cl::desc("Disable emission .debug_ranges section."), 141 cl::init(false)); 142 143 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences( 144 "dwarf-sections-as-references", cl::Hidden, 145 cl::desc("Use sections+offset as references rather than labels."), 146 cl::values(clEnumVal(Default, "Default for platform"), 147 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 148 cl::init(Default)); 149 150 static cl::opt<bool> 151 UseGNUDebugMacro("use-gnu-debug-macro", cl::Hidden, 152 cl::desc("Emit the GNU .debug_macro format with DWARF <5"), 153 cl::init(false)); 154 155 enum LinkageNameOption { 156 DefaultLinkageNames, 157 AllLinkageNames, 158 AbstractLinkageNames 159 }; 160 161 static cl::opt<LinkageNameOption> 162 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden, 163 cl::desc("Which DWARF linkage-name attributes to emit."), 164 cl::values(clEnumValN(DefaultLinkageNames, "Default", 165 "Default for platform"), 166 clEnumValN(AllLinkageNames, "All", "All"), 167 clEnumValN(AbstractLinkageNames, "Abstract", 168 "Abstract subprograms")), 169 cl::init(DefaultLinkageNames)); 170 171 static cl::opt<unsigned> LocationAnalysisSizeLimit( 172 "singlevarlocation-input-bb-limit", 173 cl::desc("Maximum block size to analyze for single-location variables"), 174 cl::init(30000), cl::Hidden); 175 176 static const char *const DWARFGroupName = "dwarf"; 177 static const char *const DWARFGroupDescription = "DWARF Emission"; 178 static const char *const DbgTimerName = "writer"; 179 static const char *const DbgTimerDescription = "DWARF Debug Writer"; 180 static constexpr unsigned ULEB128PadSize = 4; 181 182 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) { 183 getActiveStreamer().EmitInt8( 184 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op) 185 : dwarf::OperationEncodingString(Op)); 186 } 187 188 void DebugLocDwarfExpression::emitSigned(int64_t Value) { 189 getActiveStreamer().emitSLEB128(Value, Twine(Value)); 190 } 191 192 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) { 193 getActiveStreamer().emitULEB128(Value, Twine(Value)); 194 } 195 196 void DebugLocDwarfExpression::emitData1(uint8_t Value) { 197 getActiveStreamer().EmitInt8(Value, Twine(Value)); 198 } 199 200 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) { 201 assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit"); 202 getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize); 203 } 204 205 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI, 206 unsigned MachineReg) { 207 // This information is not available while emitting .debug_loc entries. 208 return false; 209 } 210 211 void DebugLocDwarfExpression::enableTemporaryBuffer() { 212 assert(!IsBuffering && "Already buffering?"); 213 if (!TmpBuf) 214 TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments); 215 IsBuffering = true; 216 } 217 218 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; } 219 220 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() { 221 return TmpBuf ? TmpBuf->Bytes.size() : 0; 222 } 223 224 void DebugLocDwarfExpression::commitTemporaryBuffer() { 225 if (!TmpBuf) 226 return; 227 for (auto Byte : enumerate(TmpBuf->Bytes)) { 228 const char *Comment = (Byte.index() < TmpBuf->Comments.size()) 229 ? TmpBuf->Comments[Byte.index()].c_str() 230 : ""; 231 OutBS.EmitInt8(Byte.value(), Comment); 232 } 233 TmpBuf->Bytes.clear(); 234 TmpBuf->Comments.clear(); 235 } 236 237 const DIType *DbgVariable::getType() const { 238 return getVariable()->getType(); 239 } 240 241 /// Get .debug_loc entry for the instruction range starting at MI. 242 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) { 243 const DIExpression *Expr = MI->getDebugExpression(); 244 assert(MI->getNumOperands() == 4); 245 if (MI->getDebugOperand(0).isReg()) { 246 auto RegOp = MI->getDebugOperand(0); 247 auto Op1 = MI->getDebugOffset(); 248 // If the second operand is an immediate, this is a 249 // register-indirect address. 250 assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset"); 251 MachineLocation MLoc(RegOp.getReg(), Op1.isImm()); 252 return DbgValueLoc(Expr, MLoc); 253 } 254 if (MI->getDebugOperand(0).isTargetIndex()) { 255 auto Op = MI->getDebugOperand(0); 256 return DbgValueLoc(Expr, 257 TargetIndexLocation(Op.getIndex(), Op.getOffset())); 258 } 259 if (MI->getDebugOperand(0).isImm()) 260 return DbgValueLoc(Expr, MI->getDebugOperand(0).getImm()); 261 if (MI->getDebugOperand(0).isFPImm()) 262 return DbgValueLoc(Expr, MI->getDebugOperand(0).getFPImm()); 263 if (MI->getDebugOperand(0).isCImm()) 264 return DbgValueLoc(Expr, MI->getDebugOperand(0).getCImm()); 265 266 llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!"); 267 } 268 269 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) { 270 assert(FrameIndexExprs.empty() && "Already initialized?"); 271 assert(!ValueLoc.get() && "Already initialized?"); 272 273 assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable"); 274 assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() && 275 "Wrong inlined-at"); 276 277 ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue)); 278 if (auto *E = DbgValue->getDebugExpression()) 279 if (E->getNumElements()) 280 FrameIndexExprs.push_back({0, E}); 281 } 282 283 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const { 284 if (FrameIndexExprs.size() == 1) 285 return FrameIndexExprs; 286 287 assert(llvm::all_of(FrameIndexExprs, 288 [](const FrameIndexExpr &A) { 289 return A.Expr->isFragment(); 290 }) && 291 "multiple FI expressions without DW_OP_LLVM_fragment"); 292 llvm::sort(FrameIndexExprs, 293 [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool { 294 return A.Expr->getFragmentInfo()->OffsetInBits < 295 B.Expr->getFragmentInfo()->OffsetInBits; 296 }); 297 298 return FrameIndexExprs; 299 } 300 301 void DbgVariable::addMMIEntry(const DbgVariable &V) { 302 assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry"); 303 assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry"); 304 assert(V.getVariable() == getVariable() && "conflicting variable"); 305 assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location"); 306 307 assert(!FrameIndexExprs.empty() && "Expected an MMI entry"); 308 assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry"); 309 310 // FIXME: This logic should not be necessary anymore, as we now have proper 311 // deduplication. However, without it, we currently run into the assertion 312 // below, which means that we are likely dealing with broken input, i.e. two 313 // non-fragment entries for the same variable at different frame indices. 314 if (FrameIndexExprs.size()) { 315 auto *Expr = FrameIndexExprs.back().Expr; 316 if (!Expr || !Expr->isFragment()) 317 return; 318 } 319 320 for (const auto &FIE : V.FrameIndexExprs) 321 // Ignore duplicate entries. 322 if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) { 323 return FIE.FI == Other.FI && FIE.Expr == Other.Expr; 324 })) 325 FrameIndexExprs.push_back(FIE); 326 327 assert((FrameIndexExprs.size() == 1 || 328 llvm::all_of(FrameIndexExprs, 329 [](FrameIndexExpr &FIE) { 330 return FIE.Expr && FIE.Expr->isFragment(); 331 })) && 332 "conflicting locations for variable"); 333 } 334 335 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion, 336 bool GenerateTypeUnits, 337 DebuggerKind Tuning, 338 const Triple &TT) { 339 // Honor an explicit request. 340 if (AccelTables != AccelTableKind::Default) 341 return AccelTables; 342 343 // Accelerator tables with type units are currently not supported. 344 if (GenerateTypeUnits) 345 return AccelTableKind::None; 346 347 // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5 348 // always implies debug_names. For lower standard versions we use apple 349 // accelerator tables on apple platforms and debug_names elsewhere. 350 if (DwarfVersion >= 5) 351 return AccelTableKind::Dwarf; 352 if (Tuning == DebuggerKind::LLDB) 353 return TT.isOSBinFormatMachO() ? AccelTableKind::Apple 354 : AccelTableKind::Dwarf; 355 return AccelTableKind::None; 356 } 357 358 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M) 359 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()), 360 InfoHolder(A, "info_string", DIEValueAllocator), 361 SkeletonHolder(A, "skel_string", DIEValueAllocator), 362 IsDarwin(A->TM.getTargetTriple().isOSDarwin()) { 363 const Triple &TT = Asm->TM.getTargetTriple(); 364 365 // Make sure we know our "debugger tuning". The target option takes 366 // precedence; fall back to triple-based defaults. 367 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default) 368 DebuggerTuning = Asm->TM.Options.DebuggerTuning; 369 else if (IsDarwin) 370 DebuggerTuning = DebuggerKind::LLDB; 371 else if (TT.isPS4CPU()) 372 DebuggerTuning = DebuggerKind::SCE; 373 else 374 DebuggerTuning = DebuggerKind::GDB; 375 376 if (DwarfInlinedStrings == Default) 377 UseInlineStrings = TT.isNVPTX(); 378 else 379 UseInlineStrings = DwarfInlinedStrings == Enable; 380 381 UseLocSection = !TT.isNVPTX(); 382 383 HasAppleExtensionAttributes = tuneForLLDB(); 384 385 // Handle split DWARF. 386 HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty(); 387 388 // SCE defaults to linkage names only for abstract subprograms. 389 if (DwarfLinkageNames == DefaultLinkageNames) 390 UseAllLinkageNames = !tuneForSCE(); 391 else 392 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames; 393 394 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; 395 unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber 396 : MMI->getModule()->getDwarfVersion(); 397 // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2. 398 DwarfVersion = 399 TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION); 400 401 UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX(); 402 403 // Use sections as references. Force for NVPTX. 404 if (DwarfSectionsAsReferences == Default) 405 UseSectionsAsReferences = TT.isNVPTX(); 406 else 407 UseSectionsAsReferences = DwarfSectionsAsReferences == Enable; 408 409 // Don't generate type units for unsupported object file formats. 410 GenerateTypeUnits = 411 A->TM.getTargetTriple().isOSBinFormatELF() && GenerateDwarfTypeUnits; 412 413 TheAccelTableKind = computeAccelTableKind( 414 DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple()); 415 416 // Work around a GDB bug. GDB doesn't support the standard opcode; 417 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which 418 // is defined as of DWARF 3. 419 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented 420 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616 421 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3; 422 423 // GDB does not fully support the DWARF 4 representation for bitfields. 424 UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB(); 425 426 // The DWARF v5 string offsets table has - possibly shared - contributions 427 // from each compile and type unit each preceded by a header. The string 428 // offsets table used by the pre-DWARF v5 split-DWARF implementation uses 429 // a monolithic string offsets table without any header. 430 UseSegmentedStringOffsetsTable = DwarfVersion >= 5; 431 432 // Emit call-site-param debug info for GDB and LLDB, if the target supports 433 // the debug entry values feature. It can also be enabled explicitly. 434 EmitDebugEntryValues = Asm->TM.Options.ShouldEmitDebugEntryValues(); 435 436 // It is unclear if the GCC .debug_macro extension is well-specified 437 // for split DWARF. For now, do not allow LLVM to emit it. 438 UseDebugMacroSection = 439 DwarfVersion >= 5 || (UseGNUDebugMacro && !useSplitDwarf()); 440 441 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion); 442 } 443 444 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. 445 DwarfDebug::~DwarfDebug() = default; 446 447 static bool isObjCClass(StringRef Name) { 448 return Name.startswith("+") || Name.startswith("-"); 449 } 450 451 static bool hasObjCCategory(StringRef Name) { 452 if (!isObjCClass(Name)) 453 return false; 454 455 return Name.find(") ") != StringRef::npos; 456 } 457 458 static void getObjCClassCategory(StringRef In, StringRef &Class, 459 StringRef &Category) { 460 if (!hasObjCCategory(In)) { 461 Class = In.slice(In.find('[') + 1, In.find(' ')); 462 Category = ""; 463 return; 464 } 465 466 Class = In.slice(In.find('[') + 1, In.find('(')); 467 Category = In.slice(In.find('[') + 1, In.find(' ')); 468 } 469 470 static StringRef getObjCMethodName(StringRef In) { 471 return In.slice(In.find(' ') + 1, In.find(']')); 472 } 473 474 // Add the various names to the Dwarf accelerator table names. 475 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU, 476 const DISubprogram *SP, DIE &Die) { 477 if (getAccelTableKind() != AccelTableKind::Apple && 478 CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None) 479 return; 480 481 if (!SP->isDefinition()) 482 return; 483 484 if (SP->getName() != "") 485 addAccelName(CU, SP->getName(), Die); 486 487 // If the linkage name is different than the name, go ahead and output that as 488 // well into the name table. Only do that if we are going to actually emit 489 // that name. 490 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() && 491 (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP))) 492 addAccelName(CU, SP->getLinkageName(), Die); 493 494 // If this is an Objective-C selector name add it to the ObjC accelerator 495 // too. 496 if (isObjCClass(SP->getName())) { 497 StringRef Class, Category; 498 getObjCClassCategory(SP->getName(), Class, Category); 499 addAccelObjC(CU, Class, Die); 500 if (Category != "") 501 addAccelObjC(CU, Category, Die); 502 // Also add the base method name to the name table. 503 addAccelName(CU, getObjCMethodName(SP->getName()), Die); 504 } 505 } 506 507 /// Check whether we should create a DIE for the given Scope, return true 508 /// if we don't create a DIE (the corresponding DIE is null). 509 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { 510 if (Scope->isAbstractScope()) 511 return false; 512 513 // We don't create a DIE if there is no Range. 514 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); 515 if (Ranges.empty()) 516 return true; 517 518 if (Ranges.size() > 1) 519 return false; 520 521 // We don't create a DIE if we have a single Range and the end label 522 // is null. 523 return !getLabelAfterInsn(Ranges.front().second); 524 } 525 526 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) { 527 F(CU); 528 if (auto *SkelCU = CU.getSkeleton()) 529 if (CU.getCUNode()->getSplitDebugInlining()) 530 F(*SkelCU); 531 } 532 533 bool DwarfDebug::shareAcrossDWOCUs() const { 534 return SplitDwarfCrossCuReferences; 535 } 536 537 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU, 538 LexicalScope *Scope) { 539 assert(Scope && Scope->getScopeNode()); 540 assert(Scope->isAbstractScope()); 541 assert(!Scope->getInlinedAt()); 542 543 auto *SP = cast<DISubprogram>(Scope->getScopeNode()); 544 545 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram 546 // was inlined from another compile unit. 547 if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining()) 548 // Avoid building the original CU if it won't be used 549 SrcCU.constructAbstractSubprogramScopeDIE(Scope); 550 else { 551 auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 552 if (auto *SkelCU = CU.getSkeleton()) { 553 (shareAcrossDWOCUs() ? CU : SrcCU) 554 .constructAbstractSubprogramScopeDIE(Scope); 555 if (CU.getCUNode()->getSplitDebugInlining()) 556 SkelCU->constructAbstractSubprogramScopeDIE(Scope); 557 } else 558 CU.constructAbstractSubprogramScopeDIE(Scope); 559 } 560 } 561 562 DIE &DwarfDebug::constructSubprogramDefinitionDIE(const DISubprogram *SP) { 563 DICompileUnit *Unit = SP->getUnit(); 564 assert(SP->isDefinition() && "Subprogram not a definition"); 565 assert(Unit && "Subprogram definition without parent unit"); 566 auto &CU = getOrCreateDwarfCompileUnit(Unit); 567 return *CU.getOrCreateSubprogramDIE(SP); 568 } 569 570 /// Represents a parameter whose call site value can be described by applying a 571 /// debug expression to a register in the forwarded register worklist. 572 struct FwdRegParamInfo { 573 /// The described parameter register. 574 unsigned ParamReg; 575 576 /// Debug expression that has been built up when walking through the 577 /// instruction chain that produces the parameter's value. 578 const DIExpression *Expr; 579 }; 580 581 /// Register worklist for finding call site values. 582 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>; 583 584 /// Append the expression \p Addition to \p Original and return the result. 585 static const DIExpression *combineDIExpressions(const DIExpression *Original, 586 const DIExpression *Addition) { 587 std::vector<uint64_t> Elts = Addition->getElements().vec(); 588 // Avoid multiple DW_OP_stack_values. 589 if (Original->isImplicit() && Addition->isImplicit()) 590 erase_if(Elts, [](uint64_t Op) { return Op == dwarf::DW_OP_stack_value; }); 591 const DIExpression *CombinedExpr = 592 (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original; 593 return CombinedExpr; 594 } 595 596 /// Emit call site parameter entries that are described by the given value and 597 /// debug expression. 598 template <typename ValT> 599 static void finishCallSiteParams(ValT Val, const DIExpression *Expr, 600 ArrayRef<FwdRegParamInfo> DescribedParams, 601 ParamSet &Params) { 602 for (auto Param : DescribedParams) { 603 bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0; 604 605 // TODO: Entry value operations can currently not be combined with any 606 // other expressions, so we can't emit call site entries in those cases. 607 if (ShouldCombineExpressions && Expr->isEntryValue()) 608 continue; 609 610 // If a parameter's call site value is produced by a chain of 611 // instructions we may have already created an expression for the 612 // parameter when walking through the instructions. Append that to the 613 // base expression. 614 const DIExpression *CombinedExpr = 615 ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr) 616 : Expr; 617 assert((!CombinedExpr || CombinedExpr->isValid()) && 618 "Combined debug expression is invalid"); 619 620 DbgValueLoc DbgLocVal(CombinedExpr, Val); 621 DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal); 622 Params.push_back(CSParm); 623 ++NumCSParams; 624 } 625 } 626 627 /// Add \p Reg to the worklist, if it's not already present, and mark that the 628 /// given parameter registers' values can (potentially) be described using 629 /// that register and an debug expression. 630 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg, 631 const DIExpression *Expr, 632 ArrayRef<FwdRegParamInfo> ParamsToAdd) { 633 auto I = Worklist.insert({Reg, {}}); 634 auto &ParamsForFwdReg = I.first->second; 635 for (auto Param : ParamsToAdd) { 636 assert(none_of(ParamsForFwdReg, 637 [Param](const FwdRegParamInfo &D) { 638 return D.ParamReg == Param.ParamReg; 639 }) && 640 "Same parameter described twice by forwarding reg"); 641 642 // If a parameter's call site value is produced by a chain of 643 // instructions we may have already created an expression for the 644 // parameter when walking through the instructions. Append that to the 645 // new expression. 646 const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr); 647 ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr}); 648 } 649 } 650 651 /// Interpret values loaded into registers by \p CurMI. 652 static void interpretValues(const MachineInstr *CurMI, 653 FwdRegWorklist &ForwardedRegWorklist, 654 ParamSet &Params) { 655 656 const MachineFunction *MF = CurMI->getMF(); 657 const DIExpression *EmptyExpr = 658 DIExpression::get(MF->getFunction().getContext(), {}); 659 const auto &TRI = *MF->getSubtarget().getRegisterInfo(); 660 const auto &TII = *MF->getSubtarget().getInstrInfo(); 661 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 662 663 // If an instruction defines more than one item in the worklist, we may run 664 // into situations where a worklist register's value is (potentially) 665 // described by the previous value of another register that is also defined 666 // by that instruction. 667 // 668 // This can for example occur in cases like this: 669 // 670 // $r1 = mov 123 671 // $r0, $r1 = mvrr $r1, 456 672 // call @foo, $r0, $r1 673 // 674 // When describing $r1's value for the mvrr instruction, we need to make sure 675 // that we don't finalize an entry value for $r0, as that is dependent on the 676 // previous value of $r1 (123 rather than 456). 677 // 678 // In order to not have to distinguish between those cases when finalizing 679 // entry values, we simply postpone adding new parameter registers to the 680 // worklist, by first keeping them in this temporary container until the 681 // instruction has been handled. 682 FwdRegWorklist TmpWorklistItems; 683 684 // If the MI is an instruction defining one or more parameters' forwarding 685 // registers, add those defines. 686 auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI, 687 SmallSetVector<unsigned, 4> &Defs) { 688 if (MI.isDebugInstr()) 689 return; 690 691 for (const MachineOperand &MO : MI.operands()) { 692 if (MO.isReg() && MO.isDef() && 693 Register::isPhysicalRegister(MO.getReg())) { 694 for (auto FwdReg : ForwardedRegWorklist) 695 if (TRI.regsOverlap(FwdReg.first, MO.getReg())) 696 Defs.insert(FwdReg.first); 697 } 698 } 699 }; 700 701 // Set of worklist registers that are defined by this instruction. 702 SmallSetVector<unsigned, 4> FwdRegDefs; 703 704 getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs); 705 if (FwdRegDefs.empty()) 706 return; 707 708 for (auto ParamFwdReg : FwdRegDefs) { 709 if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) { 710 if (ParamValue->first.isImm()) { 711 int64_t Val = ParamValue->first.getImm(); 712 finishCallSiteParams(Val, ParamValue->second, 713 ForwardedRegWorklist[ParamFwdReg], Params); 714 } else if (ParamValue->first.isReg()) { 715 Register RegLoc = ParamValue->first.getReg(); 716 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 717 Register FP = TRI.getFrameRegister(*MF); 718 bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP); 719 if (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) { 720 MachineLocation MLoc(RegLoc, /*IsIndirect=*/IsSPorFP); 721 finishCallSiteParams(MLoc, ParamValue->second, 722 ForwardedRegWorklist[ParamFwdReg], Params); 723 } else { 724 // ParamFwdReg was described by the non-callee saved register 725 // RegLoc. Mark that the call site values for the parameters are 726 // dependent on that register instead of ParamFwdReg. Since RegLoc 727 // may be a register that will be handled in this iteration, we 728 // postpone adding the items to the worklist, and instead keep them 729 // in a temporary container. 730 addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second, 731 ForwardedRegWorklist[ParamFwdReg]); 732 } 733 } 734 } 735 } 736 737 // Remove all registers that this instruction defines from the worklist. 738 for (auto ParamFwdReg : FwdRegDefs) 739 ForwardedRegWorklist.erase(ParamFwdReg); 740 741 // Now that we are done handling this instruction, add items from the 742 // temporary worklist to the real one. 743 for (auto New : TmpWorklistItems) 744 addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second); 745 TmpWorklistItems.clear(); 746 } 747 748 static bool interpretNextInstr(const MachineInstr *CurMI, 749 FwdRegWorklist &ForwardedRegWorklist, 750 ParamSet &Params) { 751 // Skip bundle headers. 752 if (CurMI->isBundle()) 753 return true; 754 755 // If the next instruction is a call we can not interpret parameter's 756 // forwarding registers or we finished the interpretation of all 757 // parameters. 758 if (CurMI->isCall()) 759 return false; 760 761 if (ForwardedRegWorklist.empty()) 762 return false; 763 764 // Avoid NOP description. 765 if (CurMI->getNumOperands() == 0) 766 return true; 767 768 interpretValues(CurMI, ForwardedRegWorklist, Params); 769 770 return true; 771 } 772 773 /// Try to interpret values loaded into registers that forward parameters 774 /// for \p CallMI. Store parameters with interpreted value into \p Params. 775 static void collectCallSiteParameters(const MachineInstr *CallMI, 776 ParamSet &Params) { 777 const MachineFunction *MF = CallMI->getMF(); 778 auto CalleesMap = MF->getCallSitesInfo(); 779 auto CallFwdRegsInfo = CalleesMap.find(CallMI); 780 781 // There is no information for the call instruction. 782 if (CallFwdRegsInfo == CalleesMap.end()) 783 return; 784 785 const MachineBasicBlock *MBB = CallMI->getParent(); 786 787 // Skip the call instruction. 788 auto I = std::next(CallMI->getReverseIterator()); 789 790 FwdRegWorklist ForwardedRegWorklist; 791 792 const DIExpression *EmptyExpr = 793 DIExpression::get(MF->getFunction().getContext(), {}); 794 795 // Add all the forwarding registers into the ForwardedRegWorklist. 796 for (auto ArgReg : CallFwdRegsInfo->second) { 797 bool InsertedReg = 798 ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}}) 799 .second; 800 assert(InsertedReg && "Single register used to forward two arguments?"); 801 (void)InsertedReg; 802 } 803 804 // We erase, from the ForwardedRegWorklist, those forwarding registers for 805 // which we successfully describe a loaded value (by using 806 // the describeLoadedValue()). For those remaining arguments in the working 807 // list, for which we do not describe a loaded value by 808 // the describeLoadedValue(), we try to generate an entry value expression 809 // for their call site value description, if the call is within the entry MBB. 810 // TODO: Handle situations when call site parameter value can be described 811 // as the entry value within basic blocks other than the first one. 812 bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin(); 813 814 // Search for a loading value in forwarding registers inside call delay slot. 815 if (CallMI->hasDelaySlot()) { 816 auto Suc = std::next(CallMI->getIterator()); 817 // Only one-instruction delay slot is supported. 818 auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator()); 819 (void)BundleEnd; 820 assert(std::next(Suc) == BundleEnd && 821 "More than one instruction in call delay slot"); 822 // Try to interpret value loaded by instruction. 823 if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params)) 824 return; 825 } 826 827 // Search for a loading value in forwarding registers. 828 for (; I != MBB->rend(); ++I) { 829 // Try to interpret values loaded by instruction. 830 if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params)) 831 return; 832 } 833 834 // Emit the call site parameter's value as an entry value. 835 if (ShouldTryEmitEntryVals) { 836 // Create an expression where the register's entry value is used. 837 DIExpression *EntryExpr = DIExpression::get( 838 MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1}); 839 for (auto RegEntry : ForwardedRegWorklist) { 840 MachineLocation MLoc(RegEntry.first); 841 finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params); 842 } 843 } 844 } 845 846 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP, 847 DwarfCompileUnit &CU, DIE &ScopeDIE, 848 const MachineFunction &MF) { 849 // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if 850 // the subprogram is required to have one. 851 if (!SP.areAllCallsDescribed() || !SP.isDefinition()) 852 return; 853 854 // Use DW_AT_call_all_calls to express that call site entries are present 855 // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls 856 // because one of its requirements is not met: call site entries for 857 // optimized-out calls are elided. 858 CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls)); 859 860 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 861 assert(TII && "TargetInstrInfo not found: cannot label tail calls"); 862 863 // Delay slot support check. 864 auto delaySlotSupported = [&](const MachineInstr &MI) { 865 if (!MI.isBundledWithSucc()) 866 return false; 867 auto Suc = std::next(MI.getIterator()); 868 auto CallInstrBundle = getBundleStart(MI.getIterator()); 869 (void)CallInstrBundle; 870 auto DelaySlotBundle = getBundleStart(Suc); 871 (void)DelaySlotBundle; 872 // Ensure that label after call is following delay slot instruction. 873 // Ex. CALL_INSTRUCTION { 874 // DELAY_SLOT_INSTRUCTION } 875 // LABEL_AFTER_CALL 876 assert(getLabelAfterInsn(&*CallInstrBundle) == 877 getLabelAfterInsn(&*DelaySlotBundle) && 878 "Call and its successor instruction don't have same label after."); 879 return true; 880 }; 881 882 // Emit call site entries for each call or tail call in the function. 883 for (const MachineBasicBlock &MBB : MF) { 884 for (const MachineInstr &MI : MBB.instrs()) { 885 // Bundles with call in them will pass the isCall() test below but do not 886 // have callee operand information so skip them here. Iterator will 887 // eventually reach the call MI. 888 if (MI.isBundle()) 889 continue; 890 891 // Skip instructions which aren't calls. Both calls and tail-calling jump 892 // instructions (e.g TAILJMPd64) are classified correctly here. 893 if (!MI.isCandidateForCallSiteEntry()) 894 continue; 895 896 // Skip instructions marked as frame setup, as they are not interesting to 897 // the user. 898 if (MI.getFlag(MachineInstr::FrameSetup)) 899 continue; 900 901 // Check if delay slot support is enabled. 902 if (MI.hasDelaySlot() && !delaySlotSupported(*&MI)) 903 return; 904 905 // If this is a direct call, find the callee's subprogram. 906 // In the case of an indirect call find the register that holds 907 // the callee. 908 const MachineOperand &CalleeOp = MI.getOperand(0); 909 if (!CalleeOp.isGlobal() && !CalleeOp.isReg()) 910 continue; 911 912 unsigned CallReg = 0; 913 DIE *CalleeDIE = nullptr; 914 const Function *CalleeDecl = nullptr; 915 if (CalleeOp.isReg()) { 916 CallReg = CalleeOp.getReg(); 917 if (!CallReg) 918 continue; 919 } else { 920 CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal()); 921 if (!CalleeDecl || !CalleeDecl->getSubprogram()) 922 continue; 923 const DISubprogram *CalleeSP = CalleeDecl->getSubprogram(); 924 925 if (CalleeSP->isDefinition()) { 926 // Ensure that a subprogram DIE for the callee is available in the 927 // appropriate CU. 928 CalleeDIE = &constructSubprogramDefinitionDIE(CalleeSP); 929 } else { 930 // Create the declaration DIE if it is missing. This is required to 931 // support compilation of old bitcode with an incomplete list of 932 // retained metadata. 933 CalleeDIE = CU.getOrCreateSubprogramDIE(CalleeSP); 934 } 935 assert(CalleeDIE && "Must have a DIE for the callee"); 936 } 937 938 // TODO: Omit call site entries for runtime calls (objc_msgSend, etc). 939 940 bool IsTail = TII->isTailCall(MI); 941 942 // If MI is in a bundle, the label was created after the bundle since 943 // EmitFunctionBody iterates over top-level MIs. Get that top-level MI 944 // to search for that label below. 945 const MachineInstr *TopLevelCallMI = 946 MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI; 947 948 // For non-tail calls, the return PC is needed to disambiguate paths in 949 // the call graph which could lead to some target function. For tail 950 // calls, no return PC information is needed, unless tuning for GDB in 951 // DWARF4 mode in which case we fake a return PC for compatibility. 952 const MCSymbol *PCAddr = 953 (!IsTail || CU.useGNUAnalogForDwarf5Feature()) 954 ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI)) 955 : nullptr; 956 957 // For tail calls, it's necessary to record the address of the branch 958 // instruction so that the debugger can show where the tail call occurred. 959 const MCSymbol *CallAddr = 960 IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr; 961 962 assert((IsTail || PCAddr) && "Non-tail call without return PC"); 963 964 LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> " 965 << (CalleeDecl ? CalleeDecl->getName() 966 : StringRef(MF.getSubtarget() 967 .getRegisterInfo() 968 ->getName(CallReg))) 969 << (IsTail ? " [IsTail]" : "") << "\n"); 970 971 DIE &CallSiteDIE = CU.constructCallSiteEntryDIE( 972 ScopeDIE, CalleeDIE, IsTail, PCAddr, CallAddr, CallReg); 973 974 // Optionally emit call-site-param debug info. 975 if (emitDebugEntryValues()) { 976 ParamSet Params; 977 // Try to interpret values of call site parameters. 978 collectCallSiteParameters(&MI, Params); 979 CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params); 980 } 981 } 982 } 983 } 984 985 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const { 986 if (!U.hasDwarfPubSections()) 987 return; 988 989 U.addFlag(D, dwarf::DW_AT_GNU_pubnames); 990 } 991 992 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit, 993 DwarfCompileUnit &NewCU) { 994 DIE &Die = NewCU.getUnitDie(); 995 StringRef FN = DIUnit->getFilename(); 996 997 StringRef Producer = DIUnit->getProducer(); 998 StringRef Flags = DIUnit->getFlags(); 999 if (!Flags.empty() && !useAppleExtensionAttributes()) { 1000 std::string ProducerWithFlags = Producer.str() + " " + Flags.str(); 1001 NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags); 1002 } else 1003 NewCU.addString(Die, dwarf::DW_AT_producer, Producer); 1004 1005 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 1006 DIUnit->getSourceLanguage()); 1007 NewCU.addString(Die, dwarf::DW_AT_name, FN); 1008 StringRef SysRoot = DIUnit->getSysRoot(); 1009 if (!SysRoot.empty()) 1010 NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot); 1011 StringRef SDK = DIUnit->getSDK(); 1012 if (!SDK.empty()) 1013 NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK); 1014 1015 // Add DW_str_offsets_base to the unit DIE, except for split units. 1016 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 1017 NewCU.addStringOffsetsStart(); 1018 1019 if (!useSplitDwarf()) { 1020 NewCU.initStmtList(); 1021 1022 // If we're using split dwarf the compilation dir is going to be in the 1023 // skeleton CU and so we don't need to duplicate it here. 1024 if (!CompilationDir.empty()) 1025 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 1026 addGnuPubAttributes(NewCU, Die); 1027 } 1028 1029 if (useAppleExtensionAttributes()) { 1030 if (DIUnit->isOptimized()) 1031 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); 1032 1033 StringRef Flags = DIUnit->getFlags(); 1034 if (!Flags.empty()) 1035 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); 1036 1037 if (unsigned RVer = DIUnit->getRuntimeVersion()) 1038 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, 1039 dwarf::DW_FORM_data1, RVer); 1040 } 1041 1042 if (DIUnit->getDWOId()) { 1043 // This CU is either a clang module DWO or a skeleton CU. 1044 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, 1045 DIUnit->getDWOId()); 1046 if (!DIUnit->getSplitDebugFilename().empty()) { 1047 // This is a prefabricated skeleton CU. 1048 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1049 ? dwarf::DW_AT_dwo_name 1050 : dwarf::DW_AT_GNU_dwo_name; 1051 NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename()); 1052 } 1053 } 1054 } 1055 // Create new DwarfCompileUnit for the given metadata node with tag 1056 // DW_TAG_compile_unit. 1057 DwarfCompileUnit & 1058 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) { 1059 if (auto *CU = CUMap.lookup(DIUnit)) 1060 return *CU; 1061 1062 CompilationDir = DIUnit->getDirectory(); 1063 1064 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 1065 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); 1066 DwarfCompileUnit &NewCU = *OwnedUnit; 1067 InfoHolder.addUnit(std::move(OwnedUnit)); 1068 1069 for (auto *IE : DIUnit->getImportedEntities()) 1070 NewCU.addImportedEntity(IE); 1071 1072 // LTO with assembly output shares a single line table amongst multiple CUs. 1073 // To avoid the compilation directory being ambiguous, let the line table 1074 // explicitly describe the directory of all files, never relying on the 1075 // compilation directory. 1076 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU) 1077 Asm->OutStreamer->emitDwarfFile0Directive( 1078 CompilationDir, DIUnit->getFilename(), getMD5AsBytes(DIUnit->getFile()), 1079 DIUnit->getSource(), NewCU.getUniqueID()); 1080 1081 if (useSplitDwarf()) { 1082 NewCU.setSkeleton(constructSkeletonCU(NewCU)); 1083 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection()); 1084 } else { 1085 finishUnitAttributes(DIUnit, NewCU); 1086 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 1087 } 1088 1089 CUMap.insert({DIUnit, &NewCU}); 1090 CUDieMap.insert({&NewCU.getUnitDie(), &NewCU}); 1091 return NewCU; 1092 } 1093 1094 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU, 1095 const DIImportedEntity *N) { 1096 if (isa<DILocalScope>(N->getScope())) 1097 return; 1098 if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope())) 1099 D->addChild(TheCU.constructImportedEntityDIE(N)); 1100 } 1101 1102 /// Sort and unique GVEs by comparing their fragment offset. 1103 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & 1104 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) { 1105 llvm::sort( 1106 GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) { 1107 // Sort order: first null exprs, then exprs without fragment 1108 // info, then sort by fragment offset in bits. 1109 // FIXME: Come up with a more comprehensive comparator so 1110 // the sorting isn't non-deterministic, and so the following 1111 // std::unique call works correctly. 1112 if (!A.Expr || !B.Expr) 1113 return !!B.Expr; 1114 auto FragmentA = A.Expr->getFragmentInfo(); 1115 auto FragmentB = B.Expr->getFragmentInfo(); 1116 if (!FragmentA || !FragmentB) 1117 return !!FragmentB; 1118 return FragmentA->OffsetInBits < FragmentB->OffsetInBits; 1119 }); 1120 GVEs.erase(std::unique(GVEs.begin(), GVEs.end(), 1121 [](DwarfCompileUnit::GlobalExpr A, 1122 DwarfCompileUnit::GlobalExpr B) { 1123 return A.Expr == B.Expr; 1124 }), 1125 GVEs.end()); 1126 return GVEs; 1127 } 1128 1129 // Emit all Dwarf sections that should come prior to the content. Create 1130 // global DIEs and emit initial debug info sections. This is invoked by 1131 // the target AsmPrinter. 1132 void DwarfDebug::beginModule() { 1133 NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName, 1134 DWARFGroupDescription, TimePassesIsEnabled); 1135 if (DisableDebugInfoPrinting) { 1136 MMI->setDebugInfoAvailability(false); 1137 return; 1138 } 1139 1140 const Module *M = MMI->getModule(); 1141 1142 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(), 1143 M->debug_compile_units_end()); 1144 // Tell MMI whether we have debug info. 1145 assert(MMI->hasDebugInfo() == (NumDebugCUs > 0) && 1146 "DebugInfoAvailabilty initialized unexpectedly"); 1147 SingleCU = NumDebugCUs == 1; 1148 DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>> 1149 GVMap; 1150 for (const GlobalVariable &Global : M->globals()) { 1151 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1152 Global.getDebugInfo(GVs); 1153 for (auto *GVE : GVs) 1154 GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()}); 1155 } 1156 1157 // Create the symbol that designates the start of the unit's contribution 1158 // to the string offsets table. In a split DWARF scenario, only the skeleton 1159 // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol). 1160 if (useSegmentedStringOffsetsTable()) 1161 (useSplitDwarf() ? SkeletonHolder : InfoHolder) 1162 .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base")); 1163 1164 1165 // Create the symbols that designates the start of the DWARF v5 range list 1166 // and locations list tables. They are located past the table headers. 1167 if (getDwarfVersion() >= 5) { 1168 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1169 Holder.setRnglistsTableBaseSym( 1170 Asm->createTempSymbol("rnglists_table_base")); 1171 1172 if (useSplitDwarf()) 1173 InfoHolder.setRnglistsTableBaseSym( 1174 Asm->createTempSymbol("rnglists_dwo_table_base")); 1175 } 1176 1177 // Create the symbol that points to the first entry following the debug 1178 // address table (.debug_addr) header. 1179 AddrPool.setLabel(Asm->createTempSymbol("addr_table_base")); 1180 DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base")); 1181 1182 for (DICompileUnit *CUNode : M->debug_compile_units()) { 1183 // FIXME: Move local imported entities into a list attached to the 1184 // subprogram, then this search won't be needed and a 1185 // getImportedEntities().empty() test should go below with the rest. 1186 bool HasNonLocalImportedEntities = llvm::any_of( 1187 CUNode->getImportedEntities(), [](const DIImportedEntity *IE) { 1188 return !isa<DILocalScope>(IE->getScope()); 1189 }); 1190 1191 if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() && 1192 CUNode->getRetainedTypes().empty() && 1193 CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty()) 1194 continue; 1195 1196 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode); 1197 1198 // Global Variables. 1199 for (auto *GVE : CUNode->getGlobalVariables()) { 1200 // Don't bother adding DIGlobalVariableExpressions listed in the CU if we 1201 // already know about the variable and it isn't adding a constant 1202 // expression. 1203 auto &GVMapEntry = GVMap[GVE->getVariable()]; 1204 auto *Expr = GVE->getExpression(); 1205 if (!GVMapEntry.size() || (Expr && Expr->isConstant())) 1206 GVMapEntry.push_back({nullptr, Expr}); 1207 } 1208 DenseSet<DIGlobalVariable *> Processed; 1209 for (auto *GVE : CUNode->getGlobalVariables()) { 1210 DIGlobalVariable *GV = GVE->getVariable(); 1211 if (Processed.insert(GV).second) 1212 CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV])); 1213 } 1214 1215 for (auto *Ty : CUNode->getEnumTypes()) { 1216 // The enum types array by design contains pointers to 1217 // MDNodes rather than DIRefs. Unique them here. 1218 CU.getOrCreateTypeDIE(cast<DIType>(Ty)); 1219 } 1220 for (auto *Ty : CUNode->getRetainedTypes()) { 1221 // The retained types array by design contains pointers to 1222 // MDNodes rather than DIRefs. Unique them here. 1223 if (DIType *RT = dyn_cast<DIType>(Ty)) 1224 // There is no point in force-emitting a forward declaration. 1225 CU.getOrCreateTypeDIE(RT); 1226 } 1227 // Emit imported_modules last so that the relevant context is already 1228 // available. 1229 for (auto *IE : CUNode->getImportedEntities()) 1230 constructAndAddImportedEntityDIE(CU, IE); 1231 } 1232 } 1233 1234 void DwarfDebug::finishEntityDefinitions() { 1235 for (const auto &Entity : ConcreteEntities) { 1236 DIE *Die = Entity->getDIE(); 1237 assert(Die); 1238 // FIXME: Consider the time-space tradeoff of just storing the unit pointer 1239 // in the ConcreteEntities list, rather than looking it up again here. 1240 // DIE::getUnit isn't simple - it walks parent pointers, etc. 1241 DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie()); 1242 assert(Unit); 1243 Unit->finishEntityDefinition(Entity.get()); 1244 } 1245 } 1246 1247 void DwarfDebug::finishSubprogramDefinitions() { 1248 for (const DISubprogram *SP : ProcessedSPNodes) { 1249 assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug); 1250 forBothCUs( 1251 getOrCreateDwarfCompileUnit(SP->getUnit()), 1252 [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); }); 1253 } 1254 } 1255 1256 void DwarfDebug::finalizeModuleInfo() { 1257 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 1258 1259 finishSubprogramDefinitions(); 1260 1261 finishEntityDefinitions(); 1262 1263 // Include the DWO file name in the hash if there's more than one CU. 1264 // This handles ThinLTO's situation where imported CUs may very easily be 1265 // duplicate with the same CU partially imported into another ThinLTO unit. 1266 StringRef DWOName; 1267 if (CUMap.size() > 1) 1268 DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile; 1269 1270 // Handle anything that needs to be done on a per-unit basis after 1271 // all other generation. 1272 for (const auto &P : CUMap) { 1273 auto &TheCU = *P.second; 1274 if (TheCU.getCUNode()->isDebugDirectivesOnly()) 1275 continue; 1276 // Emit DW_AT_containing_type attribute to connect types with their 1277 // vtable holding type. 1278 TheCU.constructContainingTypeDIEs(); 1279 1280 // Add CU specific attributes if we need to add any. 1281 // If we're splitting the dwarf out now that we've got the entire 1282 // CU then add the dwo id to it. 1283 auto *SkCU = TheCU.getSkeleton(); 1284 1285 bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty(); 1286 1287 if (HasSplitUnit) { 1288 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1289 ? dwarf::DW_AT_dwo_name 1290 : dwarf::DW_AT_GNU_dwo_name; 1291 finishUnitAttributes(TheCU.getCUNode(), TheCU); 1292 TheCU.addString(TheCU.getUnitDie(), attrDWOName, 1293 Asm->TM.Options.MCOptions.SplitDwarfFile); 1294 SkCU->addString(SkCU->getUnitDie(), attrDWOName, 1295 Asm->TM.Options.MCOptions.SplitDwarfFile); 1296 // Emit a unique identifier for this CU. 1297 uint64_t ID = 1298 DIEHash(Asm).computeCUSignature(DWOName, TheCU.getUnitDie()); 1299 if (getDwarfVersion() >= 5) { 1300 TheCU.setDWOId(ID); 1301 SkCU->setDWOId(ID); 1302 } else { 1303 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1304 dwarf::DW_FORM_data8, ID); 1305 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1306 dwarf::DW_FORM_data8, ID); 1307 } 1308 1309 if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) { 1310 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol(); 1311 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, 1312 Sym, Sym); 1313 } 1314 } else if (SkCU) { 1315 finishUnitAttributes(SkCU->getCUNode(), *SkCU); 1316 } 1317 1318 // If we have code split among multiple sections or non-contiguous 1319 // ranges of code then emit a DW_AT_ranges attribute on the unit that will 1320 // remain in the .o file, otherwise add a DW_AT_low_pc. 1321 // FIXME: We should use ranges allow reordering of code ala 1322 // .subsections_via_symbols in mach-o. This would mean turning on 1323 // ranges for all subprogram DIEs for mach-o. 1324 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 1325 1326 if (unsigned NumRanges = TheCU.getRanges().size()) { 1327 if (NumRanges > 1 && useRangesSection()) 1328 // A DW_AT_low_pc attribute may also be specified in combination with 1329 // DW_AT_ranges to specify the default base address for use in 1330 // location lists (see Section 2.6.2) and range lists (see Section 1331 // 2.17.3). 1332 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); 1333 else 1334 U.setBaseAddress(TheCU.getRanges().front().Begin); 1335 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); 1336 } 1337 1338 // We don't keep track of which addresses are used in which CU so this 1339 // is a bit pessimistic under LTO. 1340 if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty()) 1341 U.addAddrTableBase(); 1342 1343 if (getDwarfVersion() >= 5) { 1344 if (U.hasRangeLists()) 1345 U.addRnglistsBase(); 1346 1347 if (!DebugLocs.getLists().empty()) { 1348 if (!useSplitDwarf()) 1349 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base, 1350 DebugLocs.getSym(), 1351 TLOF.getDwarfLoclistsSection()->getBeginSymbol()); 1352 } 1353 } 1354 1355 auto *CUNode = cast<DICompileUnit>(P.first); 1356 // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros" 1357 // attribute. 1358 if (CUNode->getMacros()) { 1359 if (UseDebugMacroSection) { 1360 if (useSplitDwarf()) 1361 TheCU.addSectionDelta( 1362 TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(), 1363 TLOF.getDwarfMacroDWOSection()->getBeginSymbol()); 1364 else { 1365 dwarf::Attribute MacrosAttr = getDwarfVersion() >= 5 1366 ? dwarf::DW_AT_macros 1367 : dwarf::DW_AT_GNU_macros; 1368 U.addSectionLabel(U.getUnitDie(), MacrosAttr, U.getMacroLabelBegin(), 1369 TLOF.getDwarfMacroSection()->getBeginSymbol()); 1370 } 1371 } else { 1372 if (useSplitDwarf()) 1373 TheCU.addSectionDelta( 1374 TheCU.getUnitDie(), dwarf::DW_AT_macro_info, 1375 U.getMacroLabelBegin(), 1376 TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol()); 1377 else 1378 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info, 1379 U.getMacroLabelBegin(), 1380 TLOF.getDwarfMacinfoSection()->getBeginSymbol()); 1381 } 1382 } 1383 } 1384 1385 // Emit all frontend-produced Skeleton CUs, i.e., Clang modules. 1386 for (auto *CUNode : MMI->getModule()->debug_compile_units()) 1387 if (CUNode->getDWOId()) 1388 getOrCreateDwarfCompileUnit(CUNode); 1389 1390 // Compute DIE offsets and sizes. 1391 InfoHolder.computeSizeAndOffsets(); 1392 if (useSplitDwarf()) 1393 SkeletonHolder.computeSizeAndOffsets(); 1394 } 1395 1396 // Emit all Dwarf sections that should come after the content. 1397 void DwarfDebug::endModule() { 1398 assert(CurFn == nullptr); 1399 assert(CurMI == nullptr); 1400 1401 for (const auto &P : CUMap) { 1402 auto &CU = *P.second; 1403 CU.createBaseTypeDIEs(); 1404 } 1405 1406 // If we aren't actually generating debug info (check beginModule - 1407 // conditionalized on !DisableDebugInfoPrinting and the presence of the 1408 // llvm.dbg.cu metadata node) 1409 if (!MMI->hasDebugInfo()) 1410 return; 1411 1412 // Finalize the debug info for the module. 1413 finalizeModuleInfo(); 1414 1415 if (useSplitDwarf()) 1416 // Emit debug_loc.dwo/debug_loclists.dwo section. 1417 emitDebugLocDWO(); 1418 else 1419 // Emit debug_loc/debug_loclists section. 1420 emitDebugLoc(); 1421 1422 // Corresponding abbreviations into a abbrev section. 1423 emitAbbreviations(); 1424 1425 // Emit all the DIEs into a debug info section. 1426 emitDebugInfo(); 1427 1428 // Emit info into a debug aranges section. 1429 if (GenerateARangeSection) 1430 emitDebugARanges(); 1431 1432 // Emit info into a debug ranges section. 1433 emitDebugRanges(); 1434 1435 if (useSplitDwarf()) 1436 // Emit info into a debug macinfo.dwo section. 1437 emitDebugMacinfoDWO(); 1438 else 1439 // Emit info into a debug macinfo/macro section. 1440 emitDebugMacinfo(); 1441 1442 emitDebugStr(); 1443 1444 if (useSplitDwarf()) { 1445 emitDebugStrDWO(); 1446 emitDebugInfoDWO(); 1447 emitDebugAbbrevDWO(); 1448 emitDebugLineDWO(); 1449 emitDebugRangesDWO(); 1450 } 1451 1452 emitDebugAddr(); 1453 1454 // Emit info into the dwarf accelerator table sections. 1455 switch (getAccelTableKind()) { 1456 case AccelTableKind::Apple: 1457 emitAccelNames(); 1458 emitAccelObjC(); 1459 emitAccelNamespaces(); 1460 emitAccelTypes(); 1461 break; 1462 case AccelTableKind::Dwarf: 1463 emitAccelDebugNames(); 1464 break; 1465 case AccelTableKind::None: 1466 break; 1467 case AccelTableKind::Default: 1468 llvm_unreachable("Default should have already been resolved."); 1469 } 1470 1471 // Emit the pubnames and pubtypes sections if requested. 1472 emitDebugPubSections(); 1473 1474 // clean up. 1475 // FIXME: AbstractVariables.clear(); 1476 } 1477 1478 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU, 1479 const DINode *Node, 1480 const MDNode *ScopeNode) { 1481 if (CU.getExistingAbstractEntity(Node)) 1482 return; 1483 1484 CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope( 1485 cast<DILocalScope>(ScopeNode))); 1486 } 1487 1488 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU, 1489 const DINode *Node, const MDNode *ScopeNode) { 1490 if (CU.getExistingAbstractEntity(Node)) 1491 return; 1492 1493 if (LexicalScope *Scope = 1494 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode))) 1495 CU.createAbstractEntity(Node, Scope); 1496 } 1497 1498 // Collect variable information from side table maintained by MF. 1499 void DwarfDebug::collectVariableInfoFromMFTable( 1500 DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) { 1501 SmallDenseMap<InlinedEntity, DbgVariable *> MFVars; 1502 LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n"); 1503 for (const auto &VI : Asm->MF->getVariableDbgInfo()) { 1504 if (!VI.Var) 1505 continue; 1506 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1507 "Expected inlined-at fields to agree"); 1508 1509 InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt()); 1510 Processed.insert(Var); 1511 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1512 1513 // If variable scope is not found then skip this variable. 1514 if (!Scope) { 1515 LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName() 1516 << ", no variable scope found\n"); 1517 continue; 1518 } 1519 1520 ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode()); 1521 auto RegVar = std::make_unique<DbgVariable>( 1522 cast<DILocalVariable>(Var.first), Var.second); 1523 RegVar->initializeMMI(VI.Expr, VI.Slot); 1524 LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName() 1525 << "\n"); 1526 if (DbgVariable *DbgVar = MFVars.lookup(Var)) 1527 DbgVar->addMMIEntry(*RegVar); 1528 else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) { 1529 MFVars.insert({Var, RegVar.get()}); 1530 ConcreteEntities.push_back(std::move(RegVar)); 1531 } 1532 } 1533 } 1534 1535 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its 1536 /// enclosing lexical scope. The check ensures there are no other instructions 1537 /// in the same lexical scope preceding the DBG_VALUE and that its range is 1538 /// either open or otherwise rolls off the end of the scope. 1539 static bool validThroughout(LexicalScopes &LScopes, 1540 const MachineInstr *DbgValue, 1541 const MachineInstr *RangeEnd) { 1542 assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location"); 1543 auto MBB = DbgValue->getParent(); 1544 auto DL = DbgValue->getDebugLoc(); 1545 auto *LScope = LScopes.findLexicalScope(DL); 1546 // Scope doesn't exist; this is a dead DBG_VALUE. 1547 if (!LScope) 1548 return false; 1549 auto &LSRange = LScope->getRanges(); 1550 if (LSRange.size() == 0) 1551 return false; 1552 1553 1554 // Determine if the DBG_VALUE is valid at the beginning of its lexical block. 1555 const MachineInstr *LScopeBegin = LSRange.front().first; 1556 // Early exit if the lexical scope begins outside of the current block. 1557 if (LScopeBegin->getParent() != MBB) 1558 return false; 1559 1560 // If there are instructions belonging to our scope in another block, and 1561 // we're not a constant (see DWARF2 comment below), then we can't be 1562 // validThroughout. 1563 const MachineInstr *LScopeEnd = LSRange.back().second; 1564 if (RangeEnd && LScopeEnd->getParent() != MBB) 1565 return false; 1566 1567 MachineBasicBlock::const_reverse_iterator Pred(DbgValue); 1568 for (++Pred; Pred != MBB->rend(); ++Pred) { 1569 if (Pred->getFlag(MachineInstr::FrameSetup)) 1570 break; 1571 auto PredDL = Pred->getDebugLoc(); 1572 if (!PredDL || Pred->isMetaInstruction()) 1573 continue; 1574 // Check whether the instruction preceding the DBG_VALUE is in the same 1575 // (sub)scope as the DBG_VALUE. 1576 if (DL->getScope() == PredDL->getScope()) 1577 return false; 1578 auto *PredScope = LScopes.findLexicalScope(PredDL); 1579 if (!PredScope || LScope->dominates(PredScope)) 1580 return false; 1581 } 1582 1583 // If the range of the DBG_VALUE is open-ended, report success. 1584 if (!RangeEnd) 1585 return true; 1586 1587 // Single, constant DBG_VALUEs in the prologue are promoted to be live 1588 // throughout the function. This is a hack, presumably for DWARF v2 and not 1589 // necessarily correct. It would be much better to use a dbg.declare instead 1590 // if we know the constant is live throughout the scope. 1591 if (DbgValue->getDebugOperand(0).isImm() && MBB->pred_empty()) 1592 return true; 1593 1594 // Now check for situations where an "open-ended" DBG_VALUE isn't enough to 1595 // determine eligibility for a single location, e.g. nested scopes, inlined 1596 // functions. 1597 // FIXME: For now we just handle a simple (but common) case where the scope 1598 // is contained in MBB. We could be smarter here. 1599 // 1600 // At this point we know that our scope ends in MBB. So, if RangeEnd exists 1601 // outside of the block we can ignore it; the location is just leaking outside 1602 // its scope. 1603 assert(LScopeEnd->getParent() == MBB && "Scope ends outside MBB"); 1604 if (RangeEnd->getParent() != DbgValue->getParent()) 1605 return true; 1606 1607 // The location range and variable's enclosing scope are both contained within 1608 // MBB, test if location terminates before end of scope. 1609 for (auto I = RangeEnd->getIterator(); I != MBB->end(); ++I) 1610 if (&*I == LScopeEnd) 1611 return false; 1612 1613 // There's a single location which starts at the scope start, and ends at or 1614 // after the scope end. 1615 return true; 1616 } 1617 1618 /// Build the location list for all DBG_VALUEs in the function that 1619 /// describe the same variable. The resulting DebugLocEntries will have 1620 /// strict monotonically increasing begin addresses and will never 1621 /// overlap. If the resulting list has only one entry that is valid 1622 /// throughout variable's scope return true. 1623 // 1624 // See the definition of DbgValueHistoryMap::Entry for an explanation of the 1625 // different kinds of history map entries. One thing to be aware of is that if 1626 // a debug value is ended by another entry (rather than being valid until the 1627 // end of the function), that entry's instruction may or may not be included in 1628 // the range, depending on if the entry is a clobbering entry (it has an 1629 // instruction that clobbers one or more preceding locations), or if it is an 1630 // (overlapping) debug value entry. This distinction can be seen in the example 1631 // below. The first debug value is ended by the clobbering entry 2, and the 1632 // second and third debug values are ended by the overlapping debug value entry 1633 // 4. 1634 // 1635 // Input: 1636 // 1637 // History map entries [type, end index, mi] 1638 // 1639 // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)] 1640 // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)] 1641 // 2 | | [Clobber, $reg0 = [...], -, -] 1642 // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)] 1643 // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)] 1644 // 1645 // Output [start, end) [Value...]: 1646 // 1647 // [0-1) [(reg0, fragment 0, 32)] 1648 // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)] 1649 // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)] 1650 // [4-) [(@g, fragment 0, 96)] 1651 bool DwarfDebug::buildLocationList( 1652 SmallVectorImpl<DebugLocEntry> &DebugLoc, 1653 const DbgValueHistoryMap::Entries &Entries, 1654 DenseSet<const MachineBasicBlock *> &VeryLargeBlocks) { 1655 using OpenRange = 1656 std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>; 1657 SmallVector<OpenRange, 4> OpenRanges; 1658 bool isSafeForSingleLocation = true; 1659 const MachineInstr *StartDebugMI = nullptr; 1660 const MachineInstr *EndMI = nullptr; 1661 1662 for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) { 1663 const MachineInstr *Instr = EI->getInstr(); 1664 1665 // Remove all values that are no longer live. 1666 size_t Index = std::distance(EB, EI); 1667 auto Last = 1668 remove_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; }); 1669 OpenRanges.erase(Last, OpenRanges.end()); 1670 1671 // If we are dealing with a clobbering entry, this iteration will result in 1672 // a location list entry starting after the clobbering instruction. 1673 const MCSymbol *StartLabel = 1674 EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr); 1675 assert(StartLabel && 1676 "Forgot label before/after instruction starting a range!"); 1677 1678 const MCSymbol *EndLabel; 1679 if (std::next(EI) == Entries.end()) { 1680 const MachineBasicBlock &EndMBB = Asm->MF->back(); 1681 EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionIDNum()].EndLabel; 1682 if (EI->isClobber()) 1683 EndMI = EI->getInstr(); 1684 } 1685 else if (std::next(EI)->isClobber()) 1686 EndLabel = getLabelAfterInsn(std::next(EI)->getInstr()); 1687 else 1688 EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr()); 1689 assert(EndLabel && "Forgot label after instruction ending a range!"); 1690 1691 if (EI->isDbgValue()) 1692 LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n"); 1693 1694 // If this history map entry has a debug value, add that to the list of 1695 // open ranges and check if its location is valid for a single value 1696 // location. 1697 if (EI->isDbgValue()) { 1698 // Do not add undef debug values, as they are redundant information in 1699 // the location list entries. An undef debug results in an empty location 1700 // description. If there are any non-undef fragments then padding pieces 1701 // with empty location descriptions will automatically be inserted, and if 1702 // all fragments are undef then the whole location list entry is 1703 // redundant. 1704 if (!Instr->isUndefDebugValue()) { 1705 auto Value = getDebugLocValue(Instr); 1706 OpenRanges.emplace_back(EI->getEndIndex(), Value); 1707 1708 // TODO: Add support for single value fragment locations. 1709 if (Instr->getDebugExpression()->isFragment()) 1710 isSafeForSingleLocation = false; 1711 1712 if (!StartDebugMI) 1713 StartDebugMI = Instr; 1714 } else { 1715 isSafeForSingleLocation = false; 1716 } 1717 } 1718 1719 // Location list entries with empty location descriptions are redundant 1720 // information in DWARF, so do not emit those. 1721 if (OpenRanges.empty()) 1722 continue; 1723 1724 // Omit entries with empty ranges as they do not have any effect in DWARF. 1725 if (StartLabel == EndLabel) { 1726 LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n"); 1727 continue; 1728 } 1729 1730 SmallVector<DbgValueLoc, 4> Values; 1731 for (auto &R : OpenRanges) 1732 Values.push_back(R.second); 1733 DebugLoc.emplace_back(StartLabel, EndLabel, Values); 1734 1735 // Attempt to coalesce the ranges of two otherwise identical 1736 // DebugLocEntries. 1737 auto CurEntry = DebugLoc.rbegin(); 1738 LLVM_DEBUG({ 1739 dbgs() << CurEntry->getValues().size() << " Values:\n"; 1740 for (auto &Value : CurEntry->getValues()) 1741 Value.dump(); 1742 dbgs() << "-----\n"; 1743 }); 1744 1745 auto PrevEntry = std::next(CurEntry); 1746 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) 1747 DebugLoc.pop_back(); 1748 } 1749 1750 // If there's a single entry, safe for a single location, and not part of 1751 // an over-sized basic block, then ask validThroughout whether this 1752 // location can be represented as a single variable location. 1753 if (DebugLoc.size() != 1 || !isSafeForSingleLocation) 1754 return false; 1755 if (VeryLargeBlocks.count(StartDebugMI->getParent())) 1756 return false; 1757 return validThroughout(LScopes, StartDebugMI, EndMI); 1758 } 1759 1760 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU, 1761 LexicalScope &Scope, 1762 const DINode *Node, 1763 const DILocation *Location, 1764 const MCSymbol *Sym) { 1765 ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode()); 1766 if (isa<const DILocalVariable>(Node)) { 1767 ConcreteEntities.push_back( 1768 std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node), 1769 Location)); 1770 InfoHolder.addScopeVariable(&Scope, 1771 cast<DbgVariable>(ConcreteEntities.back().get())); 1772 } else if (isa<const DILabel>(Node)) { 1773 ConcreteEntities.push_back( 1774 std::make_unique<DbgLabel>(cast<const DILabel>(Node), 1775 Location, Sym)); 1776 InfoHolder.addScopeLabel(&Scope, 1777 cast<DbgLabel>(ConcreteEntities.back().get())); 1778 } 1779 return ConcreteEntities.back().get(); 1780 } 1781 1782 // Find variables for each lexical scope. 1783 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU, 1784 const DISubprogram *SP, 1785 DenseSet<InlinedEntity> &Processed) { 1786 // Grab the variable info that was squirreled away in the MMI side-table. 1787 collectVariableInfoFromMFTable(TheCU, Processed); 1788 1789 // Identify blocks that are unreasonably sized, so that we can later 1790 // skip lexical scope analysis over them. 1791 DenseSet<const MachineBasicBlock *> VeryLargeBlocks; 1792 for (const auto &MBB : *CurFn) 1793 if (MBB.size() > LocationAnalysisSizeLimit) 1794 VeryLargeBlocks.insert(&MBB); 1795 1796 for (const auto &I : DbgValues) { 1797 InlinedEntity IV = I.first; 1798 if (Processed.count(IV)) 1799 continue; 1800 1801 // Instruction ranges, specifying where IV is accessible. 1802 const auto &HistoryMapEntries = I.second; 1803 if (HistoryMapEntries.empty()) 1804 continue; 1805 1806 LexicalScope *Scope = nullptr; 1807 const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first); 1808 if (const DILocation *IA = IV.second) 1809 Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA); 1810 else 1811 Scope = LScopes.findLexicalScope(LocalVar->getScope()); 1812 // If variable scope is not found then skip this variable. 1813 if (!Scope) 1814 continue; 1815 1816 Processed.insert(IV); 1817 DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU, 1818 *Scope, LocalVar, IV.second)); 1819 1820 const MachineInstr *MInsn = HistoryMapEntries.front().getInstr(); 1821 assert(MInsn->isDebugValue() && "History must begin with debug value"); 1822 1823 // Check if there is a single DBG_VALUE, valid throughout the var's scope. 1824 // If the history map contains a single debug value, there may be an 1825 // additional entry which clobbers the debug value. 1826 size_t HistSize = HistoryMapEntries.size(); 1827 bool SingleValueWithClobber = 1828 HistSize == 2 && HistoryMapEntries[1].isClobber(); 1829 if (HistSize == 1 || SingleValueWithClobber) { 1830 const auto *End = 1831 SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr; 1832 if (VeryLargeBlocks.count(MInsn->getParent()) == 0 && 1833 validThroughout(LScopes, MInsn, End)) { 1834 RegVar->initializeDbgValue(MInsn); 1835 continue; 1836 } 1837 } 1838 1839 // Do not emit location lists if .debug_loc secton is disabled. 1840 if (!useLocSection()) 1841 continue; 1842 1843 // Handle multiple DBG_VALUE instructions describing one variable. 1844 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn); 1845 1846 // Build the location list for this variable. 1847 SmallVector<DebugLocEntry, 8> Entries; 1848 bool isValidSingleLocation = 1849 buildLocationList(Entries, HistoryMapEntries, VeryLargeBlocks); 1850 1851 // Check whether buildLocationList managed to merge all locations to one 1852 // that is valid throughout the variable's scope. If so, produce single 1853 // value location. 1854 if (isValidSingleLocation) { 1855 RegVar->initializeDbgValue(Entries[0].getValues()[0]); 1856 continue; 1857 } 1858 1859 // If the variable has a DIBasicType, extract it. Basic types cannot have 1860 // unique identifiers, so don't bother resolving the type with the 1861 // identifier map. 1862 const DIBasicType *BT = dyn_cast<DIBasicType>( 1863 static_cast<const Metadata *>(LocalVar->getType())); 1864 1865 // Finalize the entry by lowering it into a DWARF bytestream. 1866 for (auto &Entry : Entries) 1867 Entry.finalize(*Asm, List, BT, TheCU); 1868 } 1869 1870 // For each InlinedEntity collected from DBG_LABEL instructions, convert to 1871 // DWARF-related DbgLabel. 1872 for (const auto &I : DbgLabels) { 1873 InlinedEntity IL = I.first; 1874 const MachineInstr *MI = I.second; 1875 if (MI == nullptr) 1876 continue; 1877 1878 LexicalScope *Scope = nullptr; 1879 const DILabel *Label = cast<DILabel>(IL.first); 1880 // The scope could have an extra lexical block file. 1881 const DILocalScope *LocalScope = 1882 Label->getScope()->getNonLexicalBlockFileScope(); 1883 // Get inlined DILocation if it is inlined label. 1884 if (const DILocation *IA = IL.second) 1885 Scope = LScopes.findInlinedScope(LocalScope, IA); 1886 else 1887 Scope = LScopes.findLexicalScope(LocalScope); 1888 // If label scope is not found then skip this label. 1889 if (!Scope) 1890 continue; 1891 1892 Processed.insert(IL); 1893 /// At this point, the temporary label is created. 1894 /// Save the temporary label to DbgLabel entity to get the 1895 /// actually address when generating Dwarf DIE. 1896 MCSymbol *Sym = getLabelBeforeInsn(MI); 1897 createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym); 1898 } 1899 1900 // Collect info for variables/labels that were optimized out. 1901 for (const DINode *DN : SP->getRetainedNodes()) { 1902 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 1903 continue; 1904 LexicalScope *Scope = nullptr; 1905 if (auto *DV = dyn_cast<DILocalVariable>(DN)) { 1906 Scope = LScopes.findLexicalScope(DV->getScope()); 1907 } else if (auto *DL = dyn_cast<DILabel>(DN)) { 1908 Scope = LScopes.findLexicalScope(DL->getScope()); 1909 } 1910 1911 if (Scope) 1912 createConcreteEntity(TheCU, *Scope, DN, nullptr); 1913 } 1914 } 1915 1916 // Process beginning of an instruction. 1917 void DwarfDebug::beginInstruction(const MachineInstr *MI) { 1918 const MachineFunction &MF = *MI->getMF(); 1919 const auto *SP = MF.getFunction().getSubprogram(); 1920 bool NoDebug = 1921 !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug; 1922 1923 // Delay slot support check. 1924 auto delaySlotSupported = [](const MachineInstr &MI) { 1925 if (!MI.isBundledWithSucc()) 1926 return false; 1927 auto Suc = std::next(MI.getIterator()); 1928 (void)Suc; 1929 // Ensure that delay slot instruction is successor of the call instruction. 1930 // Ex. CALL_INSTRUCTION { 1931 // DELAY_SLOT_INSTRUCTION } 1932 assert(Suc->isBundledWithPred() && 1933 "Call bundle instructions are out of order"); 1934 return true; 1935 }; 1936 1937 // When describing calls, we need a label for the call instruction. 1938 if (!NoDebug && SP->areAllCallsDescribed() && 1939 MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) && 1940 (!MI->hasDelaySlot() || delaySlotSupported(*MI))) { 1941 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1942 bool IsTail = TII->isTailCall(*MI); 1943 // For tail calls, we need the address of the branch instruction for 1944 // DW_AT_call_pc. 1945 if (IsTail) 1946 requestLabelBeforeInsn(MI); 1947 // For non-tail calls, we need the return address for the call for 1948 // DW_AT_call_return_pc. Under GDB tuning, this information is needed for 1949 // tail calls as well. 1950 requestLabelAfterInsn(MI); 1951 } 1952 1953 DebugHandlerBase::beginInstruction(MI); 1954 assert(CurMI); 1955 1956 if (NoDebug) 1957 return; 1958 1959 // Check if source location changes, but ignore DBG_VALUE and CFI locations. 1960 // If the instruction is part of the function frame setup code, do not emit 1961 // any line record, as there is no correspondence with any user code. 1962 if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup)) 1963 return; 1964 const DebugLoc &DL = MI->getDebugLoc(); 1965 // When we emit a line-0 record, we don't update PrevInstLoc; so look at 1966 // the last line number actually emitted, to see if it was line 0. 1967 unsigned LastAsmLine = 1968 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine(); 1969 1970 if (DL == PrevInstLoc) { 1971 // If we have an ongoing unspecified location, nothing to do here. 1972 if (!DL) 1973 return; 1974 // We have an explicit location, same as the previous location. 1975 // But we might be coming back to it after a line 0 record. 1976 if (LastAsmLine == 0 && DL.getLine() != 0) { 1977 // Reinstate the source location but not marked as a statement. 1978 const MDNode *Scope = DL.getScope(); 1979 recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0); 1980 } 1981 return; 1982 } 1983 1984 if (!DL) { 1985 // We have an unspecified location, which might want to be line 0. 1986 // If we have already emitted a line-0 record, don't repeat it. 1987 if (LastAsmLine == 0) 1988 return; 1989 // If user said Don't Do That, don't do that. 1990 if (UnknownLocations == Disable) 1991 return; 1992 // See if we have a reason to emit a line-0 record now. 1993 // Reasons to emit a line-0 record include: 1994 // - User asked for it (UnknownLocations). 1995 // - Instruction has a label, so it's referenced from somewhere else, 1996 // possibly debug information; we want it to have a source location. 1997 // - Instruction is at the top of a block; we don't want to inherit the 1998 // location from the physically previous (maybe unrelated) block. 1999 if (UnknownLocations == Enable || PrevLabel || 2000 (PrevInstBB && PrevInstBB != MI->getParent())) { 2001 // Preserve the file and column numbers, if we can, to save space in 2002 // the encoded line table. 2003 // Do not update PrevInstLoc, it remembers the last non-0 line. 2004 const MDNode *Scope = nullptr; 2005 unsigned Column = 0; 2006 if (PrevInstLoc) { 2007 Scope = PrevInstLoc.getScope(); 2008 Column = PrevInstLoc.getCol(); 2009 } 2010 recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0); 2011 } 2012 return; 2013 } 2014 2015 // We have an explicit location, different from the previous location. 2016 // Don't repeat a line-0 record, but otherwise emit the new location. 2017 // (The new location might be an explicit line 0, which we do emit.) 2018 if (DL.getLine() == 0 && LastAsmLine == 0) 2019 return; 2020 unsigned Flags = 0; 2021 if (DL == PrologEndLoc) { 2022 Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT; 2023 PrologEndLoc = DebugLoc(); 2024 } 2025 // If the line changed, we call that a new statement; unless we went to 2026 // line 0 and came back, in which case it is not a new statement. 2027 unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine; 2028 if (DL.getLine() && DL.getLine() != OldLine) 2029 Flags |= DWARF2_FLAG_IS_STMT; 2030 2031 const MDNode *Scope = DL.getScope(); 2032 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); 2033 2034 // If we're not at line 0, remember this location. 2035 if (DL.getLine()) 2036 PrevInstLoc = DL; 2037 } 2038 2039 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) { 2040 // First known non-DBG_VALUE and non-frame setup location marks 2041 // the beginning of the function body. 2042 for (const auto &MBB : *MF) 2043 for (const auto &MI : MBB) 2044 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 2045 MI.getDebugLoc()) 2046 return MI.getDebugLoc(); 2047 return DebugLoc(); 2048 } 2049 2050 /// Register a source line with debug info. Returns the unique label that was 2051 /// emitted and which provides correspondence to the source line list. 2052 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col, 2053 const MDNode *S, unsigned Flags, unsigned CUID, 2054 uint16_t DwarfVersion, 2055 ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) { 2056 StringRef Fn; 2057 unsigned FileNo = 1; 2058 unsigned Discriminator = 0; 2059 if (auto *Scope = cast_or_null<DIScope>(S)) { 2060 Fn = Scope->getFilename(); 2061 if (Line != 0 && DwarfVersion >= 4) 2062 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope)) 2063 Discriminator = LBF->getDiscriminator(); 2064 2065 FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID]) 2066 .getOrCreateSourceID(Scope->getFile()); 2067 } 2068 Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0, 2069 Discriminator, Fn); 2070 } 2071 2072 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF, 2073 unsigned CUID) { 2074 // Get beginning of function. 2075 if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) { 2076 // Ensure the compile unit is created if the function is called before 2077 // beginFunction(). 2078 (void)getOrCreateDwarfCompileUnit( 2079 MF.getFunction().getSubprogram()->getUnit()); 2080 // We'd like to list the prologue as "not statements" but GDB behaves 2081 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. 2082 const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram(); 2083 ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT, 2084 CUID, getDwarfVersion(), getUnits()); 2085 return PrologEndLoc; 2086 } 2087 return DebugLoc(); 2088 } 2089 2090 // Gather pre-function debug information. Assumes being called immediately 2091 // after the function entry point has been emitted. 2092 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) { 2093 CurFn = MF; 2094 2095 auto *SP = MF->getFunction().getSubprogram(); 2096 assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode()); 2097 if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 2098 return; 2099 2100 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 2101 2102 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function 2103 // belongs to so that we add to the correct per-cu line table in the 2104 // non-asm case. 2105 if (Asm->OutStreamer->hasRawTextSupport()) 2106 // Use a single line table if we are generating assembly. 2107 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 2108 else 2109 Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID()); 2110 2111 // Record beginning of function. 2112 PrologEndLoc = emitInitialLocDirective( 2113 *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID()); 2114 } 2115 2116 void DwarfDebug::skippedNonDebugFunction() { 2117 // If we don't have a subprogram for this function then there will be a hole 2118 // in the range information. Keep note of this by setting the previously used 2119 // section to nullptr. 2120 PrevCU = nullptr; 2121 CurFn = nullptr; 2122 } 2123 2124 // Gather and emit post-function debug information. 2125 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) { 2126 const DISubprogram *SP = MF->getFunction().getSubprogram(); 2127 2128 assert(CurFn == MF && 2129 "endFunction should be called with the same function as beginFunction"); 2130 2131 // Set DwarfDwarfCompileUnitID in MCContext to default value. 2132 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 2133 2134 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 2135 assert(!FnScope || SP == FnScope->getScopeNode()); 2136 DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit()); 2137 if (TheCU.getCUNode()->isDebugDirectivesOnly()) { 2138 PrevLabel = nullptr; 2139 CurFn = nullptr; 2140 return; 2141 } 2142 2143 DenseSet<InlinedEntity> Processed; 2144 collectEntityInfo(TheCU, SP, Processed); 2145 2146 // Add the range of this function to the list of ranges for the CU. 2147 // With basic block sections, add ranges for all basic block sections. 2148 for (const auto &R : Asm->MBBSectionRanges) 2149 TheCU.addRange({R.second.BeginLabel, R.second.EndLabel}); 2150 2151 // Under -gmlt, skip building the subprogram if there are no inlined 2152 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram 2153 // is still needed as we need its source location. 2154 if (!TheCU.getCUNode()->getDebugInfoForProfiling() && 2155 TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly && 2156 LScopes.getAbstractScopesList().empty() && !IsDarwin) { 2157 assert(InfoHolder.getScopeVariables().empty()); 2158 PrevLabel = nullptr; 2159 CurFn = nullptr; 2160 return; 2161 } 2162 2163 #ifndef NDEBUG 2164 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size(); 2165 #endif 2166 // Construct abstract scopes. 2167 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { 2168 auto *SP = cast<DISubprogram>(AScope->getScopeNode()); 2169 for (const DINode *DN : SP->getRetainedNodes()) { 2170 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 2171 continue; 2172 2173 const MDNode *Scope = nullptr; 2174 if (auto *DV = dyn_cast<DILocalVariable>(DN)) 2175 Scope = DV->getScope(); 2176 else if (auto *DL = dyn_cast<DILabel>(DN)) 2177 Scope = DL->getScope(); 2178 else 2179 llvm_unreachable("Unexpected DI type!"); 2180 2181 // Collect info for variables/labels that were optimized out. 2182 ensureAbstractEntityIsCreated(TheCU, DN, Scope); 2183 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes 2184 && "ensureAbstractEntityIsCreated inserted abstract scopes"); 2185 } 2186 constructAbstractSubprogramScopeDIE(TheCU, AScope); 2187 } 2188 2189 ProcessedSPNodes.insert(SP); 2190 DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope); 2191 if (auto *SkelCU = TheCU.getSkeleton()) 2192 if (!LScopes.getAbstractScopesList().empty() && 2193 TheCU.getCUNode()->getSplitDebugInlining()) 2194 SkelCU->constructSubprogramScopeDIE(SP, FnScope); 2195 2196 // Construct call site entries. 2197 constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF); 2198 2199 // Clear debug info 2200 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the 2201 // DbgVariables except those that are also in AbstractVariables (since they 2202 // can be used cross-function) 2203 InfoHolder.getScopeVariables().clear(); 2204 InfoHolder.getScopeLabels().clear(); 2205 PrevLabel = nullptr; 2206 CurFn = nullptr; 2207 } 2208 2209 // Register a source line with debug info. Returns the unique label that was 2210 // emitted and which provides correspondence to the source line list. 2211 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, 2212 unsigned Flags) { 2213 ::recordSourceLine(*Asm, Line, Col, S, Flags, 2214 Asm->OutStreamer->getContext().getDwarfCompileUnitID(), 2215 getDwarfVersion(), getUnits()); 2216 } 2217 2218 //===----------------------------------------------------------------------===// 2219 // Emit Methods 2220 //===----------------------------------------------------------------------===// 2221 2222 // Emit the debug info section. 2223 void DwarfDebug::emitDebugInfo() { 2224 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2225 Holder.emitUnits(/* UseOffsets */ false); 2226 } 2227 2228 // Emit the abbreviation section. 2229 void DwarfDebug::emitAbbreviations() { 2230 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2231 2232 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); 2233 } 2234 2235 void DwarfDebug::emitStringOffsetsTableHeader() { 2236 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2237 Holder.getStringPool().emitStringOffsetsTableHeader( 2238 *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(), 2239 Holder.getStringOffsetsStartSym()); 2240 } 2241 2242 template <typename AccelTableT> 2243 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section, 2244 StringRef TableName) { 2245 Asm->OutStreamer->SwitchSection(Section); 2246 2247 // Emit the full data. 2248 emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol()); 2249 } 2250 2251 void DwarfDebug::emitAccelDebugNames() { 2252 // Don't emit anything if we have no compilation units to index. 2253 if (getUnits().empty()) 2254 return; 2255 2256 emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits()); 2257 } 2258 2259 // Emit visible names into a hashed accelerator table section. 2260 void DwarfDebug::emitAccelNames() { 2261 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), 2262 "Names"); 2263 } 2264 2265 // Emit objective C classes and categories into a hashed accelerator table 2266 // section. 2267 void DwarfDebug::emitAccelObjC() { 2268 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), 2269 "ObjC"); 2270 } 2271 2272 // Emit namespace dies into a hashed accelerator table. 2273 void DwarfDebug::emitAccelNamespaces() { 2274 emitAccel(AccelNamespace, 2275 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), 2276 "namespac"); 2277 } 2278 2279 // Emit type dies into a hashed accelerator table. 2280 void DwarfDebug::emitAccelTypes() { 2281 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), 2282 "types"); 2283 } 2284 2285 // Public name handling. 2286 // The format for the various pubnames: 2287 // 2288 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU 2289 // for the DIE that is named. 2290 // 2291 // gnu pubnames - offset/index value/name tuples where the offset is the offset 2292 // into the CU and the index value is computed according to the type of value 2293 // for the DIE that is named. 2294 // 2295 // For type units the offset is the offset of the skeleton DIE. For split dwarf 2296 // it's the offset within the debug_info/debug_types dwo section, however, the 2297 // reference in the pubname header doesn't change. 2298 2299 /// computeIndexValue - Compute the gdb index value for the DIE and CU. 2300 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, 2301 const DIE *Die) { 2302 // Entities that ended up only in a Type Unit reference the CU instead (since 2303 // the pub entry has offsets within the CU there's no real offset that can be 2304 // provided anyway). As it happens all such entities (namespaces and types, 2305 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out 2306 // not to be true it would be necessary to persist this information from the 2307 // point at which the entry is added to the index data structure - since by 2308 // the time the index is built from that, the original type/namespace DIE in a 2309 // type unit has already been destroyed so it can't be queried for properties 2310 // like tag, etc. 2311 if (Die->getTag() == dwarf::DW_TAG_compile_unit) 2312 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, 2313 dwarf::GIEL_EXTERNAL); 2314 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; 2315 2316 // We could have a specification DIE that has our most of our knowledge, 2317 // look for that now. 2318 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) { 2319 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry(); 2320 if (SpecDIE.findAttribute(dwarf::DW_AT_external)) 2321 Linkage = dwarf::GIEL_EXTERNAL; 2322 } else if (Die->findAttribute(dwarf::DW_AT_external)) 2323 Linkage = dwarf::GIEL_EXTERNAL; 2324 2325 switch (Die->getTag()) { 2326 case dwarf::DW_TAG_class_type: 2327 case dwarf::DW_TAG_structure_type: 2328 case dwarf::DW_TAG_union_type: 2329 case dwarf::DW_TAG_enumeration_type: 2330 return dwarf::PubIndexEntryDescriptor( 2331 dwarf::GIEK_TYPE, 2332 dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage()) 2333 ? dwarf::GIEL_EXTERNAL 2334 : dwarf::GIEL_STATIC); 2335 case dwarf::DW_TAG_typedef: 2336 case dwarf::DW_TAG_base_type: 2337 case dwarf::DW_TAG_subrange_type: 2338 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); 2339 case dwarf::DW_TAG_namespace: 2340 return dwarf::GIEK_TYPE; 2341 case dwarf::DW_TAG_subprogram: 2342 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); 2343 case dwarf::DW_TAG_variable: 2344 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); 2345 case dwarf::DW_TAG_enumerator: 2346 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, 2347 dwarf::GIEL_STATIC); 2348 default: 2349 return dwarf::GIEK_NONE; 2350 } 2351 } 2352 2353 /// emitDebugPubSections - Emit visible names and types into debug pubnames and 2354 /// pubtypes sections. 2355 void DwarfDebug::emitDebugPubSections() { 2356 for (const auto &NU : CUMap) { 2357 DwarfCompileUnit *TheU = NU.second; 2358 if (!TheU->hasDwarfPubSections()) 2359 continue; 2360 2361 bool GnuStyle = TheU->getCUNode()->getNameTableKind() == 2362 DICompileUnit::DebugNameTableKind::GNU; 2363 2364 Asm->OutStreamer->SwitchSection( 2365 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() 2366 : Asm->getObjFileLowering().getDwarfPubNamesSection()); 2367 emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames()); 2368 2369 Asm->OutStreamer->SwitchSection( 2370 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() 2371 : Asm->getObjFileLowering().getDwarfPubTypesSection()); 2372 emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes()); 2373 } 2374 } 2375 2376 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) { 2377 if (useSectionsAsReferences()) 2378 Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(), 2379 CU.getDebugSectionOffset()); 2380 else 2381 Asm->emitDwarfSymbolReference(CU.getLabelBegin()); 2382 } 2383 2384 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name, 2385 DwarfCompileUnit *TheU, 2386 const StringMap<const DIE *> &Globals) { 2387 if (auto *Skeleton = TheU->getSkeleton()) 2388 TheU = Skeleton; 2389 2390 // Emit the header. 2391 Asm->OutStreamer->AddComment("Length of Public " + Name + " Info"); 2392 MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin"); 2393 MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end"); 2394 Asm->emitLabelDifference(EndLabel, BeginLabel, 4); 2395 2396 Asm->OutStreamer->emitLabel(BeginLabel); 2397 2398 Asm->OutStreamer->AddComment("DWARF Version"); 2399 Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION); 2400 2401 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info"); 2402 emitSectionReference(*TheU); 2403 2404 Asm->OutStreamer->AddComment("Compilation Unit Length"); 2405 Asm->emitInt32(TheU->getLength()); 2406 2407 // Emit the pubnames for this compilation unit. 2408 for (const auto &GI : Globals) { 2409 const char *Name = GI.getKeyData(); 2410 const DIE *Entity = GI.second; 2411 2412 Asm->OutStreamer->AddComment("DIE offset"); 2413 Asm->emitInt32(Entity->getOffset()); 2414 2415 if (GnuStyle) { 2416 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); 2417 Asm->OutStreamer->AddComment( 2418 Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + 2419 ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); 2420 Asm->emitInt8(Desc.toBits()); 2421 } 2422 2423 Asm->OutStreamer->AddComment("External Name"); 2424 Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1)); 2425 } 2426 2427 Asm->OutStreamer->AddComment("End Mark"); 2428 Asm->emitInt32(0); 2429 Asm->OutStreamer->emitLabel(EndLabel); 2430 } 2431 2432 /// Emit null-terminated strings into a debug str section. 2433 void DwarfDebug::emitDebugStr() { 2434 MCSection *StringOffsetsSection = nullptr; 2435 if (useSegmentedStringOffsetsTable()) { 2436 emitStringOffsetsTableHeader(); 2437 StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection(); 2438 } 2439 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2440 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(), 2441 StringOffsetsSection, /* UseRelativeOffsets = */ true); 2442 } 2443 2444 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, 2445 const DebugLocStream::Entry &Entry, 2446 const DwarfCompileUnit *CU) { 2447 auto &&Comments = DebugLocs.getComments(Entry); 2448 auto Comment = Comments.begin(); 2449 auto End = Comments.end(); 2450 2451 // The expressions are inserted into a byte stream rather early (see 2452 // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that 2453 // need to reference a base_type DIE the offset of that DIE is not yet known. 2454 // To deal with this we instead insert a placeholder early and then extract 2455 // it here and replace it with the real reference. 2456 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2457 DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(), 2458 DebugLocs.getBytes(Entry).size()), 2459 Asm->getDataLayout().isLittleEndian(), PtrSize); 2460 DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat()); 2461 2462 using Encoding = DWARFExpression::Operation::Encoding; 2463 uint64_t Offset = 0; 2464 for (auto &Op : Expr) { 2465 assert(Op.getCode() != dwarf::DW_OP_const_type && 2466 "3 operand ops not yet supported"); 2467 Streamer.EmitInt8(Op.getCode(), Comment != End ? *(Comment++) : ""); 2468 Offset++; 2469 for (unsigned I = 0; I < 2; ++I) { 2470 if (Op.getDescription().Op[I] == Encoding::SizeNA) 2471 continue; 2472 if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) { 2473 uint64_t Offset = 2474 CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset(); 2475 assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit"); 2476 Streamer.emitULEB128(Offset, "", ULEB128PadSize); 2477 // Make sure comments stay aligned. 2478 for (unsigned J = 0; J < ULEB128PadSize; ++J) 2479 if (Comment != End) 2480 Comment++; 2481 } else { 2482 for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J) 2483 Streamer.EmitInt8(Data.getData()[J], Comment != End ? *(Comment++) : ""); 2484 } 2485 Offset = Op.getOperandEndOffset(I); 2486 } 2487 assert(Offset == Op.getEndOffset()); 2488 } 2489 } 2490 2491 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT, 2492 const DbgValueLoc &Value, 2493 DwarfExpression &DwarfExpr) { 2494 auto *DIExpr = Value.getExpression(); 2495 DIExpressionCursor ExprCursor(DIExpr); 2496 DwarfExpr.addFragmentOffset(DIExpr); 2497 // Regular entry. 2498 if (Value.isInt()) { 2499 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed || 2500 BT->getEncoding() == dwarf::DW_ATE_signed_char)) 2501 DwarfExpr.addSignedConstant(Value.getInt()); 2502 else 2503 DwarfExpr.addUnsignedConstant(Value.getInt()); 2504 } else if (Value.isLocation()) { 2505 MachineLocation Location = Value.getLoc(); 2506 DwarfExpr.setLocation(Location, DIExpr); 2507 DIExpressionCursor Cursor(DIExpr); 2508 2509 if (DIExpr->isEntryValue()) 2510 DwarfExpr.beginEntryValueExpression(Cursor); 2511 2512 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2513 if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) 2514 return; 2515 return DwarfExpr.addExpression(std::move(Cursor)); 2516 } else if (Value.isTargetIndexLocation()) { 2517 TargetIndexLocation Loc = Value.getTargetIndexLocation(); 2518 // TODO TargetIndexLocation is a target-independent. Currently only the WebAssembly-specific 2519 // encoding is supported. 2520 DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset)); 2521 DwarfExpr.addExpression(std::move(ExprCursor)); 2522 return; 2523 } else if (Value.isConstantFP()) { 2524 APInt RawBytes = Value.getConstantFP()->getValueAPF().bitcastToAPInt(); 2525 DwarfExpr.addUnsignedConstant(RawBytes); 2526 } 2527 DwarfExpr.addExpression(std::move(ExprCursor)); 2528 } 2529 2530 void DebugLocEntry::finalize(const AsmPrinter &AP, 2531 DebugLocStream::ListBuilder &List, 2532 const DIBasicType *BT, 2533 DwarfCompileUnit &TheCU) { 2534 assert(!Values.empty() && 2535 "location list entries without values are redundant"); 2536 assert(Begin != End && "unexpected location list entry with empty range"); 2537 DebugLocStream::EntryBuilder Entry(List, Begin, End); 2538 BufferByteStreamer Streamer = Entry.getStreamer(); 2539 DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU); 2540 const DbgValueLoc &Value = Values[0]; 2541 if (Value.isFragment()) { 2542 // Emit all fragments that belong to the same variable and range. 2543 assert(llvm::all_of(Values, [](DbgValueLoc P) { 2544 return P.isFragment(); 2545 }) && "all values are expected to be fragments"); 2546 assert(llvm::is_sorted(Values) && "fragments are expected to be sorted"); 2547 2548 for (auto Fragment : Values) 2549 DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr); 2550 2551 } else { 2552 assert(Values.size() == 1 && "only fragments may have >1 value"); 2553 DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr); 2554 } 2555 DwarfExpr.finalize(); 2556 if (DwarfExpr.TagOffset) 2557 List.setTagOffset(*DwarfExpr.TagOffset); 2558 } 2559 2560 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry, 2561 const DwarfCompileUnit *CU) { 2562 // Emit the size. 2563 Asm->OutStreamer->AddComment("Loc expr size"); 2564 if (getDwarfVersion() >= 5) 2565 Asm->emitULEB128(DebugLocs.getBytes(Entry).size()); 2566 else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max()) 2567 Asm->emitInt16(DebugLocs.getBytes(Entry).size()); 2568 else { 2569 // The entry is too big to fit into 16 bit, drop it as there is nothing we 2570 // can do. 2571 Asm->emitInt16(0); 2572 return; 2573 } 2574 // Emit the entry. 2575 APByteStreamer Streamer(*Asm); 2576 emitDebugLocEntry(Streamer, Entry, CU); 2577 } 2578 2579 // Emit the header of a DWARF 5 range list table list table. Returns the symbol 2580 // that designates the end of the table for the caller to emit when the table is 2581 // complete. 2582 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm, 2583 const DwarfFile &Holder) { 2584 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2585 2586 Asm->OutStreamer->AddComment("Offset entry count"); 2587 Asm->emitInt32(Holder.getRangeLists().size()); 2588 Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym()); 2589 2590 for (const RangeSpanList &List : Holder.getRangeLists()) 2591 Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(), 4); 2592 2593 return TableEnd; 2594 } 2595 2596 // Emit the header of a DWARF 5 locations list table. Returns the symbol that 2597 // designates the end of the table for the caller to emit when the table is 2598 // complete. 2599 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm, 2600 const DwarfDebug &DD) { 2601 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2602 2603 const auto &DebugLocs = DD.getDebugLocs(); 2604 2605 Asm->OutStreamer->AddComment("Offset entry count"); 2606 Asm->emitInt32(DebugLocs.getLists().size()); 2607 Asm->OutStreamer->emitLabel(DebugLocs.getSym()); 2608 2609 for (const auto &List : DebugLocs.getLists()) 2610 Asm->emitLabelDifference(List.Label, DebugLocs.getSym(), 4); 2611 2612 return TableEnd; 2613 } 2614 2615 template <typename Ranges, typename PayloadEmitter> 2616 static void emitRangeList( 2617 DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R, 2618 const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair, 2619 unsigned StartxLength, unsigned EndOfList, 2620 StringRef (*StringifyEnum)(unsigned), 2621 bool ShouldUseBaseAddress, 2622 PayloadEmitter EmitPayload) { 2623 2624 auto Size = Asm->MAI->getCodePointerSize(); 2625 bool UseDwarf5 = DD.getDwarfVersion() >= 5; 2626 2627 // Emit our symbol so we can find the beginning of the range. 2628 Asm->OutStreamer->emitLabel(Sym); 2629 2630 // Gather all the ranges that apply to the same section so they can share 2631 // a base address entry. 2632 MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges; 2633 2634 for (const auto &Range : R) 2635 SectionRanges[&Range.Begin->getSection()].push_back(&Range); 2636 2637 const MCSymbol *CUBase = CU.getBaseAddress(); 2638 bool BaseIsSet = false; 2639 for (const auto &P : SectionRanges) { 2640 auto *Base = CUBase; 2641 if (!Base && ShouldUseBaseAddress) { 2642 const MCSymbol *Begin = P.second.front()->Begin; 2643 const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection()); 2644 if (!UseDwarf5) { 2645 Base = NewBase; 2646 BaseIsSet = true; 2647 Asm->OutStreamer->emitIntValue(-1, Size); 2648 Asm->OutStreamer->AddComment(" base address"); 2649 Asm->OutStreamer->emitSymbolValue(Base, Size); 2650 } else if (NewBase != Begin || P.second.size() > 1) { 2651 // Only use a base address if 2652 // * the existing pool address doesn't match (NewBase != Begin) 2653 // * or, there's more than one entry to share the base address 2654 Base = NewBase; 2655 BaseIsSet = true; 2656 Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx)); 2657 Asm->emitInt8(BaseAddressx); 2658 Asm->OutStreamer->AddComment(" base address index"); 2659 Asm->emitULEB128(DD.getAddressPool().getIndex(Base)); 2660 } 2661 } else if (BaseIsSet && !UseDwarf5) { 2662 BaseIsSet = false; 2663 assert(!Base); 2664 Asm->OutStreamer->emitIntValue(-1, Size); 2665 Asm->OutStreamer->emitIntValue(0, Size); 2666 } 2667 2668 for (const auto *RS : P.second) { 2669 const MCSymbol *Begin = RS->Begin; 2670 const MCSymbol *End = RS->End; 2671 assert(Begin && "Range without a begin symbol?"); 2672 assert(End && "Range without an end symbol?"); 2673 if (Base) { 2674 if (UseDwarf5) { 2675 // Emit offset_pair when we have a base. 2676 Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair)); 2677 Asm->emitInt8(OffsetPair); 2678 Asm->OutStreamer->AddComment(" starting offset"); 2679 Asm->emitLabelDifferenceAsULEB128(Begin, Base); 2680 Asm->OutStreamer->AddComment(" ending offset"); 2681 Asm->emitLabelDifferenceAsULEB128(End, Base); 2682 } else { 2683 Asm->emitLabelDifference(Begin, Base, Size); 2684 Asm->emitLabelDifference(End, Base, Size); 2685 } 2686 } else if (UseDwarf5) { 2687 Asm->OutStreamer->AddComment(StringifyEnum(StartxLength)); 2688 Asm->emitInt8(StartxLength); 2689 Asm->OutStreamer->AddComment(" start index"); 2690 Asm->emitULEB128(DD.getAddressPool().getIndex(Begin)); 2691 Asm->OutStreamer->AddComment(" length"); 2692 Asm->emitLabelDifferenceAsULEB128(End, Begin); 2693 } else { 2694 Asm->OutStreamer->emitSymbolValue(Begin, Size); 2695 Asm->OutStreamer->emitSymbolValue(End, Size); 2696 } 2697 EmitPayload(*RS); 2698 } 2699 } 2700 2701 if (UseDwarf5) { 2702 Asm->OutStreamer->AddComment(StringifyEnum(EndOfList)); 2703 Asm->emitInt8(EndOfList); 2704 } else { 2705 // Terminate the list with two 0 values. 2706 Asm->OutStreamer->emitIntValue(0, Size); 2707 Asm->OutStreamer->emitIntValue(0, Size); 2708 } 2709 } 2710 2711 // Handles emission of both debug_loclist / debug_loclist.dwo 2712 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) { 2713 emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List), 2714 *List.CU, dwarf::DW_LLE_base_addressx, 2715 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length, 2716 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString, 2717 /* ShouldUseBaseAddress */ true, 2718 [&](const DebugLocStream::Entry &E) { 2719 DD.emitDebugLocEntryLocation(E, List.CU); 2720 }); 2721 } 2722 2723 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) { 2724 if (DebugLocs.getLists().empty()) 2725 return; 2726 2727 Asm->OutStreamer->SwitchSection(Sec); 2728 2729 MCSymbol *TableEnd = nullptr; 2730 if (getDwarfVersion() >= 5) 2731 TableEnd = emitLoclistsTableHeader(Asm, *this); 2732 2733 for (const auto &List : DebugLocs.getLists()) 2734 emitLocList(*this, Asm, List); 2735 2736 if (TableEnd) 2737 Asm->OutStreamer->emitLabel(TableEnd); 2738 } 2739 2740 // Emit locations into the .debug_loc/.debug_loclists section. 2741 void DwarfDebug::emitDebugLoc() { 2742 emitDebugLocImpl( 2743 getDwarfVersion() >= 5 2744 ? Asm->getObjFileLowering().getDwarfLoclistsSection() 2745 : Asm->getObjFileLowering().getDwarfLocSection()); 2746 } 2747 2748 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section. 2749 void DwarfDebug::emitDebugLocDWO() { 2750 if (getDwarfVersion() >= 5) { 2751 emitDebugLocImpl( 2752 Asm->getObjFileLowering().getDwarfLoclistsDWOSection()); 2753 2754 return; 2755 } 2756 2757 for (const auto &List : DebugLocs.getLists()) { 2758 Asm->OutStreamer->SwitchSection( 2759 Asm->getObjFileLowering().getDwarfLocDWOSection()); 2760 Asm->OutStreamer->emitLabel(List.Label); 2761 2762 for (const auto &Entry : DebugLocs.getEntries(List)) { 2763 // GDB only supports startx_length in pre-standard split-DWARF. 2764 // (in v5 standard loclists, it currently* /only/ supports base_address + 2765 // offset_pair, so the implementations can't really share much since they 2766 // need to use different representations) 2767 // * as of October 2018, at least 2768 // 2769 // In v5 (see emitLocList), this uses SectionLabels to reuse existing 2770 // addresses in the address pool to minimize object size/relocations. 2771 Asm->emitInt8(dwarf::DW_LLE_startx_length); 2772 unsigned idx = AddrPool.getIndex(Entry.Begin); 2773 Asm->emitULEB128(idx); 2774 // Also the pre-standard encoding is slightly different, emitting this as 2775 // an address-length entry here, but its a ULEB128 in DWARFv5 loclists. 2776 Asm->emitLabelDifference(Entry.End, Entry.Begin, 4); 2777 emitDebugLocEntryLocation(Entry, List.CU); 2778 } 2779 Asm->emitInt8(dwarf::DW_LLE_end_of_list); 2780 } 2781 } 2782 2783 struct ArangeSpan { 2784 const MCSymbol *Start, *End; 2785 }; 2786 2787 // Emit a debug aranges section, containing a CU lookup for any 2788 // address we can tie back to a CU. 2789 void DwarfDebug::emitDebugARanges() { 2790 // Provides a unique id per text section. 2791 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap; 2792 2793 // Filter labels by section. 2794 for (const SymbolCU &SCU : ArangeLabels) { 2795 if (SCU.Sym->isInSection()) { 2796 // Make a note of this symbol and it's section. 2797 MCSection *Section = &SCU.Sym->getSection(); 2798 if (!Section->getKind().isMetadata()) 2799 SectionMap[Section].push_back(SCU); 2800 } else { 2801 // Some symbols (e.g. common/bss on mach-o) can have no section but still 2802 // appear in the output. This sucks as we rely on sections to build 2803 // arange spans. We can do it without, but it's icky. 2804 SectionMap[nullptr].push_back(SCU); 2805 } 2806 } 2807 2808 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans; 2809 2810 for (auto &I : SectionMap) { 2811 MCSection *Section = I.first; 2812 SmallVector<SymbolCU, 8> &List = I.second; 2813 if (List.size() < 1) 2814 continue; 2815 2816 // If we have no section (e.g. common), just write out 2817 // individual spans for each symbol. 2818 if (!Section) { 2819 for (const SymbolCU &Cur : List) { 2820 ArangeSpan Span; 2821 Span.Start = Cur.Sym; 2822 Span.End = nullptr; 2823 assert(Cur.CU); 2824 Spans[Cur.CU].push_back(Span); 2825 } 2826 continue; 2827 } 2828 2829 // Sort the symbols by offset within the section. 2830 llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) { 2831 unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0; 2832 unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0; 2833 2834 // Symbols with no order assigned should be placed at the end. 2835 // (e.g. section end labels) 2836 if (IA == 0) 2837 return false; 2838 if (IB == 0) 2839 return true; 2840 return IA < IB; 2841 }); 2842 2843 // Insert a final terminator. 2844 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section))); 2845 2846 // Build spans between each label. 2847 const MCSymbol *StartSym = List[0].Sym; 2848 for (size_t n = 1, e = List.size(); n < e; n++) { 2849 const SymbolCU &Prev = List[n - 1]; 2850 const SymbolCU &Cur = List[n]; 2851 2852 // Try and build the longest span we can within the same CU. 2853 if (Cur.CU != Prev.CU) { 2854 ArangeSpan Span; 2855 Span.Start = StartSym; 2856 Span.End = Cur.Sym; 2857 assert(Prev.CU); 2858 Spans[Prev.CU].push_back(Span); 2859 StartSym = Cur.Sym; 2860 } 2861 } 2862 } 2863 2864 // Start the dwarf aranges section. 2865 Asm->OutStreamer->SwitchSection( 2866 Asm->getObjFileLowering().getDwarfARangesSection()); 2867 2868 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2869 2870 // Build a list of CUs used. 2871 std::vector<DwarfCompileUnit *> CUs; 2872 for (const auto &it : Spans) { 2873 DwarfCompileUnit *CU = it.first; 2874 CUs.push_back(CU); 2875 } 2876 2877 // Sort the CU list (again, to ensure consistent output order). 2878 llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) { 2879 return A->getUniqueID() < B->getUniqueID(); 2880 }); 2881 2882 // Emit an arange table for each CU we used. 2883 for (DwarfCompileUnit *CU : CUs) { 2884 std::vector<ArangeSpan> &List = Spans[CU]; 2885 2886 // Describe the skeleton CU's offset and length, not the dwo file's. 2887 if (auto *Skel = CU->getSkeleton()) 2888 CU = Skel; 2889 2890 // Emit size of content not including length itself. 2891 unsigned ContentSize = 2892 sizeof(int16_t) + // DWARF ARange version number 2893 sizeof(int32_t) + // Offset of CU in the .debug_info section 2894 sizeof(int8_t) + // Pointer Size (in bytes) 2895 sizeof(int8_t); // Segment Size (in bytes) 2896 2897 unsigned TupleSize = PtrSize * 2; 2898 2899 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. 2900 unsigned Padding = 2901 offsetToAlignment(sizeof(int32_t) + ContentSize, Align(TupleSize)); 2902 2903 ContentSize += Padding; 2904 ContentSize += (List.size() + 1) * TupleSize; 2905 2906 // For each compile unit, write the list of spans it covers. 2907 Asm->OutStreamer->AddComment("Length of ARange Set"); 2908 Asm->emitInt32(ContentSize); 2909 Asm->OutStreamer->AddComment("DWARF Arange version number"); 2910 Asm->emitInt16(dwarf::DW_ARANGES_VERSION); 2911 Asm->OutStreamer->AddComment("Offset Into Debug Info Section"); 2912 emitSectionReference(*CU); 2913 Asm->OutStreamer->AddComment("Address Size (in bytes)"); 2914 Asm->emitInt8(PtrSize); 2915 Asm->OutStreamer->AddComment("Segment Size (in bytes)"); 2916 Asm->emitInt8(0); 2917 2918 Asm->OutStreamer->emitFill(Padding, 0xff); 2919 2920 for (const ArangeSpan &Span : List) { 2921 Asm->emitLabelReference(Span.Start, PtrSize); 2922 2923 // Calculate the size as being from the span start to it's end. 2924 if (Span.End) { 2925 Asm->emitLabelDifference(Span.End, Span.Start, PtrSize); 2926 } else { 2927 // For symbols without an end marker (e.g. common), we 2928 // write a single arange entry containing just that one symbol. 2929 uint64_t Size = SymSize[Span.Start]; 2930 if (Size == 0) 2931 Size = 1; 2932 2933 Asm->OutStreamer->emitIntValue(Size, PtrSize); 2934 } 2935 } 2936 2937 Asm->OutStreamer->AddComment("ARange terminator"); 2938 Asm->OutStreamer->emitIntValue(0, PtrSize); 2939 Asm->OutStreamer->emitIntValue(0, PtrSize); 2940 } 2941 } 2942 2943 /// Emit a single range list. We handle both DWARF v5 and earlier. 2944 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm, 2945 const RangeSpanList &List) { 2946 emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU, 2947 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair, 2948 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list, 2949 llvm::dwarf::RangeListEncodingString, 2950 List.CU->getCUNode()->getRangesBaseAddress() || 2951 DD.getDwarfVersion() >= 5, 2952 [](auto) {}); 2953 } 2954 2955 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) { 2956 if (Holder.getRangeLists().empty()) 2957 return; 2958 2959 assert(useRangesSection()); 2960 assert(!CUMap.empty()); 2961 assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { 2962 return !Pair.second->getCUNode()->isDebugDirectivesOnly(); 2963 })); 2964 2965 Asm->OutStreamer->SwitchSection(Section); 2966 2967 MCSymbol *TableEnd = nullptr; 2968 if (getDwarfVersion() >= 5) 2969 TableEnd = emitRnglistsTableHeader(Asm, Holder); 2970 2971 for (const RangeSpanList &List : Holder.getRangeLists()) 2972 emitRangeList(*this, Asm, List); 2973 2974 if (TableEnd) 2975 Asm->OutStreamer->emitLabel(TableEnd); 2976 } 2977 2978 /// Emit address ranges into the .debug_ranges section or into the DWARF v5 2979 /// .debug_rnglists section. 2980 void DwarfDebug::emitDebugRanges() { 2981 const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2982 2983 emitDebugRangesImpl(Holder, 2984 getDwarfVersion() >= 5 2985 ? Asm->getObjFileLowering().getDwarfRnglistsSection() 2986 : Asm->getObjFileLowering().getDwarfRangesSection()); 2987 } 2988 2989 void DwarfDebug::emitDebugRangesDWO() { 2990 emitDebugRangesImpl(InfoHolder, 2991 Asm->getObjFileLowering().getDwarfRnglistsDWOSection()); 2992 } 2993 2994 /// Emit the header of a DWARF 5 macro section, or the GNU extension for 2995 /// DWARF 4. 2996 static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD, 2997 const DwarfCompileUnit &CU, uint16_t DwarfVersion) { 2998 enum HeaderFlagMask { 2999 #define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID, 3000 #include "llvm/BinaryFormat/Dwarf.def" 3001 }; 3002 uint8_t Flags = 0; 3003 Asm->OutStreamer->AddComment("Macro information version"); 3004 Asm->emitInt16(DwarfVersion >= 5 ? DwarfVersion : 4); 3005 // We are setting Offset and line offset flags unconditionally here, 3006 // since we're only supporting DWARF32 and line offset should be mostly 3007 // present. 3008 // FIXME: Add support for DWARF64. 3009 Flags |= MACRO_FLAG_DEBUG_LINE_OFFSET; 3010 Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present"); 3011 Asm->emitInt8(Flags); 3012 Asm->OutStreamer->AddComment("debug_line_offset"); 3013 if (DD.useSplitDwarf()) 3014 Asm->OutStreamer->emitIntValue(0, /*Size=*/4); 3015 else 3016 Asm->OutStreamer->emitSymbolValue(CU.getLineTableStartSym(), /*Size=*/4); 3017 } 3018 3019 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) { 3020 for (auto *MN : Nodes) { 3021 if (auto *M = dyn_cast<DIMacro>(MN)) 3022 emitMacro(*M); 3023 else if (auto *F = dyn_cast<DIMacroFile>(MN)) 3024 emitMacroFile(*F, U); 3025 else 3026 llvm_unreachable("Unexpected DI type!"); 3027 } 3028 } 3029 3030 void DwarfDebug::emitMacro(DIMacro &M) { 3031 StringRef Name = M.getName(); 3032 StringRef Value = M.getValue(); 3033 3034 // There should be one space between the macro name and the macro value in 3035 // define entries. In undef entries, only the macro name is emitted. 3036 std::string Str = Value.empty() ? Name.str() : (Name + " " + Value).str(); 3037 3038 if (UseDebugMacroSection) { 3039 if (getDwarfVersion() >= 5) { 3040 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define 3041 ? dwarf::DW_MACRO_define_strx 3042 : dwarf::DW_MACRO_undef_strx; 3043 Asm->OutStreamer->AddComment(dwarf::MacroString(Type)); 3044 Asm->emitULEB128(Type); 3045 Asm->OutStreamer->AddComment("Line Number"); 3046 Asm->emitULEB128(M.getLine()); 3047 Asm->OutStreamer->AddComment("Macro String"); 3048 Asm->emitULEB128( 3049 InfoHolder.getStringPool().getIndexedEntry(*Asm, Str).getIndex()); 3050 } else { 3051 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define 3052 ? dwarf::DW_MACRO_GNU_define_indirect 3053 : dwarf::DW_MACRO_GNU_undef_indirect; 3054 Asm->OutStreamer->AddComment(dwarf::GnuMacroString(Type)); 3055 Asm->emitULEB128(Type); 3056 Asm->OutStreamer->AddComment("Line Number"); 3057 Asm->emitULEB128(M.getLine()); 3058 Asm->OutStreamer->AddComment("Macro String"); 3059 // FIXME: Add support for DWARF64. 3060 Asm->OutStreamer->emitSymbolValue( 3061 InfoHolder.getStringPool().getEntry(*Asm, Str).getSymbol(), 3062 /*Size=*/4); 3063 } 3064 } else { 3065 Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType())); 3066 Asm->emitULEB128(M.getMacinfoType()); 3067 Asm->OutStreamer->AddComment("Line Number"); 3068 Asm->emitULEB128(M.getLine()); 3069 Asm->OutStreamer->AddComment("Macro String"); 3070 Asm->OutStreamer->emitBytes(Str); 3071 Asm->emitInt8('\0'); 3072 } 3073 } 3074 3075 void DwarfDebug::emitMacroFileImpl( 3076 DIMacroFile &MF, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile, 3077 StringRef (*MacroFormToString)(unsigned Form)) { 3078 3079 Asm->OutStreamer->AddComment(MacroFormToString(StartFile)); 3080 Asm->emitULEB128(StartFile); 3081 Asm->OutStreamer->AddComment("Line Number"); 3082 Asm->emitULEB128(MF.getLine()); 3083 Asm->OutStreamer->AddComment("File Number"); 3084 DIFile &F = *MF.getFile(); 3085 if (useSplitDwarf()) 3086 Asm->emitULEB128(getDwoLineTable(U)->getFile( 3087 F.getDirectory(), F.getFilename(), getMD5AsBytes(&F), 3088 Asm->OutContext.getDwarfVersion(), F.getSource())); 3089 else 3090 Asm->emitULEB128(U.getOrCreateSourceID(&F)); 3091 handleMacroNodes(MF.getElements(), U); 3092 Asm->OutStreamer->AddComment(MacroFormToString(EndFile)); 3093 Asm->emitULEB128(EndFile); 3094 } 3095 3096 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) { 3097 // DWARFv5 macro and DWARFv4 macinfo share some common encodings, 3098 // so for readibility/uniformity, We are explicitly emitting those. 3099 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file); 3100 if (UseDebugMacroSection) 3101 emitMacroFileImpl( 3102 F, U, dwarf::DW_MACRO_start_file, dwarf::DW_MACRO_end_file, 3103 (getDwarfVersion() >= 5) ? dwarf::MacroString : dwarf::GnuMacroString); 3104 else 3105 emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file, 3106 dwarf::DW_MACINFO_end_file, dwarf::MacinfoString); 3107 } 3108 3109 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) { 3110 for (const auto &P : CUMap) { 3111 auto &TheCU = *P.second; 3112 auto *SkCU = TheCU.getSkeleton(); 3113 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 3114 auto *CUNode = cast<DICompileUnit>(P.first); 3115 DIMacroNodeArray Macros = CUNode->getMacros(); 3116 if (Macros.empty()) 3117 continue; 3118 Asm->OutStreamer->SwitchSection(Section); 3119 Asm->OutStreamer->emitLabel(U.getMacroLabelBegin()); 3120 if (UseDebugMacroSection) 3121 emitMacroHeader(Asm, *this, U, getDwarfVersion()); 3122 handleMacroNodes(Macros, U); 3123 Asm->OutStreamer->AddComment("End Of Macro List Mark"); 3124 Asm->emitInt8(0); 3125 } 3126 } 3127 3128 /// Emit macros into a debug macinfo/macro section. 3129 void DwarfDebug::emitDebugMacinfo() { 3130 auto &ObjLower = Asm->getObjFileLowering(); 3131 emitDebugMacinfoImpl(UseDebugMacroSection 3132 ? ObjLower.getDwarfMacroSection() 3133 : ObjLower.getDwarfMacinfoSection()); 3134 } 3135 3136 void DwarfDebug::emitDebugMacinfoDWO() { 3137 auto &ObjLower = Asm->getObjFileLowering(); 3138 emitDebugMacinfoImpl(UseDebugMacroSection 3139 ? ObjLower.getDwarfMacroDWOSection() 3140 : ObjLower.getDwarfMacinfoDWOSection()); 3141 } 3142 3143 // DWARF5 Experimental Separate Dwarf emitters. 3144 3145 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die, 3146 std::unique_ptr<DwarfCompileUnit> NewU) { 3147 3148 if (!CompilationDir.empty()) 3149 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 3150 addGnuPubAttributes(*NewU, Die); 3151 3152 SkeletonHolder.addUnit(std::move(NewU)); 3153 } 3154 3155 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) { 3156 3157 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 3158 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder, 3159 UnitKind::Skeleton); 3160 DwarfCompileUnit &NewCU = *OwnedUnit; 3161 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 3162 3163 NewCU.initStmtList(); 3164 3165 if (useSegmentedStringOffsetsTable()) 3166 NewCU.addStringOffsetsStart(); 3167 3168 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit)); 3169 3170 return NewCU; 3171 } 3172 3173 // Emit the .debug_info.dwo section for separated dwarf. This contains the 3174 // compile units that would normally be in debug_info. 3175 void DwarfDebug::emitDebugInfoDWO() { 3176 assert(useSplitDwarf() && "No split dwarf debug info?"); 3177 // Don't emit relocations into the dwo file. 3178 InfoHolder.emitUnits(/* UseOffsets */ true); 3179 } 3180 3181 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the 3182 // abbreviations for the .debug_info.dwo section. 3183 void DwarfDebug::emitDebugAbbrevDWO() { 3184 assert(useSplitDwarf() && "No split dwarf?"); 3185 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection()); 3186 } 3187 3188 void DwarfDebug::emitDebugLineDWO() { 3189 assert(useSplitDwarf() && "No split dwarf?"); 3190 SplitTypeUnitFileTable.Emit( 3191 *Asm->OutStreamer, MCDwarfLineTableParams(), 3192 Asm->getObjFileLowering().getDwarfLineDWOSection()); 3193 } 3194 3195 void DwarfDebug::emitStringOffsetsTableHeaderDWO() { 3196 assert(useSplitDwarf() && "No split dwarf?"); 3197 InfoHolder.getStringPool().emitStringOffsetsTableHeader( 3198 *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(), 3199 InfoHolder.getStringOffsetsStartSym()); 3200 } 3201 3202 // Emit the .debug_str.dwo section for separated dwarf. This contains the 3203 // string section and is identical in format to traditional .debug_str 3204 // sections. 3205 void DwarfDebug::emitDebugStrDWO() { 3206 if (useSegmentedStringOffsetsTable()) 3207 emitStringOffsetsTableHeaderDWO(); 3208 assert(useSplitDwarf() && "No split dwarf?"); 3209 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection(); 3210 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), 3211 OffSec, /* UseRelativeOffsets = */ false); 3212 } 3213 3214 // Emit address pool. 3215 void DwarfDebug::emitDebugAddr() { 3216 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection()); 3217 } 3218 3219 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) { 3220 if (!useSplitDwarf()) 3221 return nullptr; 3222 const DICompileUnit *DIUnit = CU.getCUNode(); 3223 SplitTypeUnitFileTable.maybeSetRootFile( 3224 DIUnit->getDirectory(), DIUnit->getFilename(), 3225 getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource()); 3226 return &SplitTypeUnitFileTable; 3227 } 3228 3229 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) { 3230 MD5 Hash; 3231 Hash.update(Identifier); 3232 // ... take the least significant 8 bytes and return those. Our MD5 3233 // implementation always returns its results in little endian, so we actually 3234 // need the "high" word. 3235 MD5::MD5Result Result; 3236 Hash.final(Result); 3237 return Result.high(); 3238 } 3239 3240 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU, 3241 StringRef Identifier, DIE &RefDie, 3242 const DICompositeType *CTy) { 3243 // Fast path if we're building some type units and one has already used the 3244 // address pool we know we're going to throw away all this work anyway, so 3245 // don't bother building dependent types. 3246 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed()) 3247 return; 3248 3249 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0)); 3250 if (!Ins.second) { 3251 CU.addDIETypeSignature(RefDie, Ins.first->second); 3252 return; 3253 } 3254 3255 bool TopLevelType = TypeUnitsUnderConstruction.empty(); 3256 AddrPool.resetUsedFlag(); 3257 3258 auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder, 3259 getDwoLineTable(CU)); 3260 DwarfTypeUnit &NewTU = *OwnedUnit; 3261 DIE &UnitDie = NewTU.getUnitDie(); 3262 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy); 3263 3264 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 3265 CU.getLanguage()); 3266 3267 uint64_t Signature = makeTypeSignature(Identifier); 3268 NewTU.setTypeSignature(Signature); 3269 Ins.first->second = Signature; 3270 3271 if (useSplitDwarf()) { 3272 MCSection *Section = 3273 getDwarfVersion() <= 4 3274 ? Asm->getObjFileLowering().getDwarfTypesDWOSection() 3275 : Asm->getObjFileLowering().getDwarfInfoDWOSection(); 3276 NewTU.setSection(Section); 3277 } else { 3278 MCSection *Section = 3279 getDwarfVersion() <= 4 3280 ? Asm->getObjFileLowering().getDwarfTypesSection(Signature) 3281 : Asm->getObjFileLowering().getDwarfInfoSection(Signature); 3282 NewTU.setSection(Section); 3283 // Non-split type units reuse the compile unit's line table. 3284 CU.applyStmtList(UnitDie); 3285 } 3286 3287 // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type 3288 // units. 3289 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 3290 NewTU.addStringOffsetsStart(); 3291 3292 NewTU.setType(NewTU.createTypeDIE(CTy)); 3293 3294 if (TopLevelType) { 3295 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction); 3296 TypeUnitsUnderConstruction.clear(); 3297 3298 // Types referencing entries in the address table cannot be placed in type 3299 // units. 3300 if (AddrPool.hasBeenUsed()) { 3301 3302 // Remove all the types built while building this type. 3303 // This is pessimistic as some of these types might not be dependent on 3304 // the type that used an address. 3305 for (const auto &TU : TypeUnitsToAdd) 3306 TypeSignatures.erase(TU.second); 3307 3308 // Construct this type in the CU directly. 3309 // This is inefficient because all the dependent types will be rebuilt 3310 // from scratch, including building them in type units, discovering that 3311 // they depend on addresses, throwing them out and rebuilding them. 3312 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy)); 3313 return; 3314 } 3315 3316 // If the type wasn't dependent on fission addresses, finish adding the type 3317 // and all its dependent types. 3318 for (auto &TU : TypeUnitsToAdd) { 3319 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get()); 3320 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf()); 3321 } 3322 } 3323 CU.addDIETypeSignature(RefDie, Signature); 3324 } 3325 3326 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD) 3327 : DD(DD), 3328 TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)) { 3329 DD->TypeUnitsUnderConstruction.clear(); 3330 assert(TypeUnitsUnderConstruction.empty() || !DD->AddrPool.hasBeenUsed()); 3331 } 3332 3333 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() { 3334 DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction); 3335 DD->AddrPool.resetUsedFlag(); 3336 } 3337 3338 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() { 3339 return NonTypeUnitContext(this); 3340 } 3341 3342 // Add the Name along with its companion DIE to the appropriate accelerator 3343 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for 3344 // AccelTableKind::Apple, we use the table we got as an argument). If 3345 // accelerator tables are disabled, this function does nothing. 3346 template <typename DataT> 3347 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU, 3348 AccelTable<DataT> &AppleAccel, StringRef Name, 3349 const DIE &Die) { 3350 if (getAccelTableKind() == AccelTableKind::None) 3351 return; 3352 3353 if (getAccelTableKind() != AccelTableKind::Apple && 3354 CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default) 3355 return; 3356 3357 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 3358 DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name); 3359 3360 switch (getAccelTableKind()) { 3361 case AccelTableKind::Apple: 3362 AppleAccel.addName(Ref, Die); 3363 break; 3364 case AccelTableKind::Dwarf: 3365 AccelDebugNames.addName(Ref, Die); 3366 break; 3367 case AccelTableKind::Default: 3368 llvm_unreachable("Default should have already been resolved."); 3369 case AccelTableKind::None: 3370 llvm_unreachable("None handled above"); 3371 } 3372 } 3373 3374 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name, 3375 const DIE &Die) { 3376 addAccelNameImpl(CU, AccelNames, Name, Die); 3377 } 3378 3379 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name, 3380 const DIE &Die) { 3381 // ObjC names go only into the Apple accelerator tables. 3382 if (getAccelTableKind() == AccelTableKind::Apple) 3383 addAccelNameImpl(CU, AccelObjC, Name, Die); 3384 } 3385 3386 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name, 3387 const DIE &Die) { 3388 addAccelNameImpl(CU, AccelNamespace, Name, Die); 3389 } 3390 3391 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name, 3392 const DIE &Die, char Flags) { 3393 addAccelNameImpl(CU, AccelTypes, Name, Die); 3394 } 3395 3396 uint16_t DwarfDebug::getDwarfVersion() const { 3397 return Asm->OutStreamer->getContext().getDwarfVersion(); 3398 } 3399 3400 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) { 3401 return SectionLabels.find(S)->second; 3402 } 3403 void DwarfDebug::insertSectionLabel(const MCSymbol *S) { 3404 if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second) 3405 if (useSplitDwarf() || getDwarfVersion() >= 5) 3406 AddrPool.getIndex(S); 3407 } 3408 3409 Optional<MD5::MD5Result> DwarfDebug::getMD5AsBytes(const DIFile *File) const { 3410 assert(File); 3411 if (getDwarfVersion() < 5) 3412 return None; 3413 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = File->getChecksum(); 3414 if (!Checksum || Checksum->Kind != DIFile::CSK_MD5) 3415 return None; 3416 3417 // Convert the string checksum to an MD5Result for the streamer. 3418 // The verifier validates the checksum so we assume it's okay. 3419 // An MD5 checksum is 16 bytes. 3420 std::string ChecksumString = fromHex(Checksum->Value); 3421 MD5::MD5Result CKMem; 3422 std::copy(ChecksumString.begin(), ChecksumString.end(), CKMem.Bytes.data()); 3423 return CKMem; 3424 } 3425