1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing dwarf debug info into asm files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DwarfDebug.h" 14 #include "ByteStreamer.h" 15 #include "DIEHash.h" 16 #include "DebugLocEntry.h" 17 #include "DebugLocStream.h" 18 #include "DwarfCompileUnit.h" 19 #include "DwarfExpression.h" 20 #include "DwarfFile.h" 21 #include "DwarfUnit.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/DenseSet.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/BinaryFormat/Dwarf.h" 33 #include "llvm/CodeGen/AccelTable.h" 34 #include "llvm/CodeGen/AsmPrinter.h" 35 #include "llvm/CodeGen/DIE.h" 36 #include "llvm/CodeGen/LexicalScopes.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineInstr.h" 40 #include "llvm/CodeGen/MachineModuleInfo.h" 41 #include "llvm/CodeGen/MachineOperand.h" 42 #include "llvm/CodeGen/TargetInstrInfo.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/DebugInfo/DWARF/DWARFExpression.h" 47 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GlobalVariable.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/MC/MCAsmInfo.h" 55 #include "llvm/MC/MCContext.h" 56 #include "llvm/MC/MCDwarf.h" 57 #include "llvm/MC/MCSection.h" 58 #include "llvm/MC/MCStreamer.h" 59 #include "llvm/MC/MCSymbol.h" 60 #include "llvm/MC/MCTargetOptions.h" 61 #include "llvm/MC/MachineLocation.h" 62 #include "llvm/MC/SectionKind.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MD5.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/Timer.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Target/TargetLoweringObjectFile.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include "llvm/Target/TargetOptions.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <iterator> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 #define DEBUG_TYPE "dwarfdebug" 87 88 STATISTIC(NumCSParams, "Number of dbg call site params created"); 89 90 static cl::opt<bool> 91 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 92 cl::desc("Disable debug info printing")); 93 94 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier( 95 "use-dwarf-ranges-base-address-specifier", cl::Hidden, 96 cl::desc("Use base address specifiers in debug_ranges"), cl::init(false)); 97 98 static cl::opt<bool> EmitDwarfDebugEntryValues( 99 "emit-debug-entry-values", cl::Hidden, 100 cl::desc("Emit the debug entry values"), cl::init(false)); 101 102 static cl::opt<bool> GenerateARangeSection("generate-arange-section", 103 cl::Hidden, 104 cl::desc("Generate dwarf aranges"), 105 cl::init(false)); 106 107 static cl::opt<bool> 108 GenerateDwarfTypeUnits("generate-type-units", cl::Hidden, 109 cl::desc("Generate DWARF4 type units."), 110 cl::init(false)); 111 112 static cl::opt<bool> SplitDwarfCrossCuReferences( 113 "split-dwarf-cross-cu-references", cl::Hidden, 114 cl::desc("Enable cross-cu references in DWO files"), cl::init(false)); 115 116 enum DefaultOnOff { Default, Enable, Disable }; 117 118 static cl::opt<DefaultOnOff> UnknownLocations( 119 "use-unknown-locations", cl::Hidden, 120 cl::desc("Make an absence of debug location information explicit."), 121 cl::values(clEnumVal(Default, "At top of block or after label"), 122 clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")), 123 cl::init(Default)); 124 125 static cl::opt<AccelTableKind> AccelTables( 126 "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."), 127 cl::values(clEnumValN(AccelTableKind::Default, "Default", 128 "Default for platform"), 129 clEnumValN(AccelTableKind::None, "Disable", "Disabled."), 130 clEnumValN(AccelTableKind::Apple, "Apple", "Apple"), 131 clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")), 132 cl::init(AccelTableKind::Default)); 133 134 static cl::opt<DefaultOnOff> 135 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden, 136 cl::desc("Use inlined strings rather than string section."), 137 cl::values(clEnumVal(Default, "Default for platform"), 138 clEnumVal(Enable, "Enabled"), 139 clEnumVal(Disable, "Disabled")), 140 cl::init(Default)); 141 142 static cl::opt<bool> 143 NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden, 144 cl::desc("Disable emission .debug_ranges section."), 145 cl::init(false)); 146 147 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences( 148 "dwarf-sections-as-references", cl::Hidden, 149 cl::desc("Use sections+offset as references rather than labels."), 150 cl::values(clEnumVal(Default, "Default for platform"), 151 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 152 cl::init(Default)); 153 154 enum LinkageNameOption { 155 DefaultLinkageNames, 156 AllLinkageNames, 157 AbstractLinkageNames 158 }; 159 160 static cl::opt<LinkageNameOption> 161 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden, 162 cl::desc("Which DWARF linkage-name attributes to emit."), 163 cl::values(clEnumValN(DefaultLinkageNames, "Default", 164 "Default for platform"), 165 clEnumValN(AllLinkageNames, "All", "All"), 166 clEnumValN(AbstractLinkageNames, "Abstract", 167 "Abstract subprograms")), 168 cl::init(DefaultLinkageNames)); 169 170 static const char *const DWARFGroupName = "dwarf"; 171 static const char *const DWARFGroupDescription = "DWARF Emission"; 172 static const char *const DbgTimerName = "writer"; 173 static const char *const DbgTimerDescription = "DWARF Debug Writer"; 174 static constexpr unsigned ULEB128PadSize = 4; 175 176 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) { 177 getActiveStreamer().EmitInt8( 178 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op) 179 : dwarf::OperationEncodingString(Op)); 180 } 181 182 void DebugLocDwarfExpression::emitSigned(int64_t Value) { 183 getActiveStreamer().emitSLEB128(Value, Twine(Value)); 184 } 185 186 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) { 187 getActiveStreamer().emitULEB128(Value, Twine(Value)); 188 } 189 190 void DebugLocDwarfExpression::emitData1(uint8_t Value) { 191 getActiveStreamer().EmitInt8(Value, Twine(Value)); 192 } 193 194 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) { 195 assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit"); 196 getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize); 197 } 198 199 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI, 200 unsigned MachineReg) { 201 // This information is not available while emitting .debug_loc entries. 202 return false; 203 } 204 205 void DebugLocDwarfExpression::enableTemporaryBuffer() { 206 assert(!IsBuffering && "Already buffering?"); 207 if (!TmpBuf) 208 TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments); 209 IsBuffering = true; 210 } 211 212 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; } 213 214 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() { 215 return TmpBuf ? TmpBuf->Bytes.size() : 0; 216 } 217 218 void DebugLocDwarfExpression::commitTemporaryBuffer() { 219 if (!TmpBuf) 220 return; 221 for (auto Byte : enumerate(TmpBuf->Bytes)) { 222 const char *Comment = (Byte.index() < TmpBuf->Comments.size()) 223 ? TmpBuf->Comments[Byte.index()].c_str() 224 : ""; 225 OutBS.EmitInt8(Byte.value(), Comment); 226 } 227 TmpBuf->Bytes.clear(); 228 TmpBuf->Comments.clear(); 229 } 230 231 const DIType *DbgVariable::getType() const { 232 return getVariable()->getType(); 233 } 234 235 /// Get .debug_loc entry for the instruction range starting at MI. 236 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) { 237 const DIExpression *Expr = MI->getDebugExpression(); 238 assert(MI->getNumOperands() == 4); 239 if (MI->getOperand(0).isReg()) { 240 auto RegOp = MI->getOperand(0); 241 auto Op1 = MI->getOperand(1); 242 // If the second operand is an immediate, this is a 243 // register-indirect address. 244 assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset"); 245 MachineLocation MLoc(RegOp.getReg(), Op1.isImm()); 246 return DbgValueLoc(Expr, MLoc); 247 } 248 if (MI->getOperand(0).isTargetIndex()) { 249 auto Op = MI->getOperand(0); 250 return DbgValueLoc(Expr, 251 TargetIndexLocation(Op.getIndex(), Op.getOffset())); 252 } 253 if (MI->getOperand(0).isImm()) 254 return DbgValueLoc(Expr, MI->getOperand(0).getImm()); 255 if (MI->getOperand(0).isFPImm()) 256 return DbgValueLoc(Expr, MI->getOperand(0).getFPImm()); 257 if (MI->getOperand(0).isCImm()) 258 return DbgValueLoc(Expr, MI->getOperand(0).getCImm()); 259 260 llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!"); 261 } 262 263 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) { 264 assert(FrameIndexExprs.empty() && "Already initialized?"); 265 assert(!ValueLoc.get() && "Already initialized?"); 266 267 assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable"); 268 assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() && 269 "Wrong inlined-at"); 270 271 ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue)); 272 if (auto *E = DbgValue->getDebugExpression()) 273 if (E->getNumElements()) 274 FrameIndexExprs.push_back({0, E}); 275 } 276 277 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const { 278 if (FrameIndexExprs.size() == 1) 279 return FrameIndexExprs; 280 281 assert(llvm::all_of(FrameIndexExprs, 282 [](const FrameIndexExpr &A) { 283 return A.Expr->isFragment(); 284 }) && 285 "multiple FI expressions without DW_OP_LLVM_fragment"); 286 llvm::sort(FrameIndexExprs, 287 [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool { 288 return A.Expr->getFragmentInfo()->OffsetInBits < 289 B.Expr->getFragmentInfo()->OffsetInBits; 290 }); 291 292 return FrameIndexExprs; 293 } 294 295 void DbgVariable::addMMIEntry(const DbgVariable &V) { 296 assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry"); 297 assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry"); 298 assert(V.getVariable() == getVariable() && "conflicting variable"); 299 assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location"); 300 301 assert(!FrameIndexExprs.empty() && "Expected an MMI entry"); 302 assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry"); 303 304 // FIXME: This logic should not be necessary anymore, as we now have proper 305 // deduplication. However, without it, we currently run into the assertion 306 // below, which means that we are likely dealing with broken input, i.e. two 307 // non-fragment entries for the same variable at different frame indices. 308 if (FrameIndexExprs.size()) { 309 auto *Expr = FrameIndexExprs.back().Expr; 310 if (!Expr || !Expr->isFragment()) 311 return; 312 } 313 314 for (const auto &FIE : V.FrameIndexExprs) 315 // Ignore duplicate entries. 316 if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) { 317 return FIE.FI == Other.FI && FIE.Expr == Other.Expr; 318 })) 319 FrameIndexExprs.push_back(FIE); 320 321 assert((FrameIndexExprs.size() == 1 || 322 llvm::all_of(FrameIndexExprs, 323 [](FrameIndexExpr &FIE) { 324 return FIE.Expr && FIE.Expr->isFragment(); 325 })) && 326 "conflicting locations for variable"); 327 } 328 329 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion, 330 bool GenerateTypeUnits, 331 DebuggerKind Tuning, 332 const Triple &TT) { 333 // Honor an explicit request. 334 if (AccelTables != AccelTableKind::Default) 335 return AccelTables; 336 337 // Accelerator tables with type units are currently not supported. 338 if (GenerateTypeUnits) 339 return AccelTableKind::None; 340 341 // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5 342 // always implies debug_names. For lower standard versions we use apple 343 // accelerator tables on apple platforms and debug_names elsewhere. 344 if (DwarfVersion >= 5) 345 return AccelTableKind::Dwarf; 346 if (Tuning == DebuggerKind::LLDB) 347 return TT.isOSBinFormatMachO() ? AccelTableKind::Apple 348 : AccelTableKind::Dwarf; 349 return AccelTableKind::None; 350 } 351 352 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M) 353 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()), 354 InfoHolder(A, "info_string", DIEValueAllocator), 355 SkeletonHolder(A, "skel_string", DIEValueAllocator), 356 IsDarwin(A->TM.getTargetTriple().isOSDarwin()) { 357 const Triple &TT = Asm->TM.getTargetTriple(); 358 359 // Make sure we know our "debugger tuning". The target option takes 360 // precedence; fall back to triple-based defaults. 361 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default) 362 DebuggerTuning = Asm->TM.Options.DebuggerTuning; 363 else if (IsDarwin) 364 DebuggerTuning = DebuggerKind::LLDB; 365 else if (TT.isPS4CPU()) 366 DebuggerTuning = DebuggerKind::SCE; 367 else 368 DebuggerTuning = DebuggerKind::GDB; 369 370 if (DwarfInlinedStrings == Default) 371 UseInlineStrings = TT.isNVPTX(); 372 else 373 UseInlineStrings = DwarfInlinedStrings == Enable; 374 375 UseLocSection = !TT.isNVPTX(); 376 377 HasAppleExtensionAttributes = tuneForLLDB(); 378 379 // Handle split DWARF. 380 HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty(); 381 382 // SCE defaults to linkage names only for abstract subprograms. 383 if (DwarfLinkageNames == DefaultLinkageNames) 384 UseAllLinkageNames = !tuneForSCE(); 385 else 386 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames; 387 388 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; 389 unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber 390 : MMI->getModule()->getDwarfVersion(); 391 // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2. 392 DwarfVersion = 393 TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION); 394 395 UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX(); 396 397 // Use sections as references. Force for NVPTX. 398 if (DwarfSectionsAsReferences == Default) 399 UseSectionsAsReferences = TT.isNVPTX(); 400 else 401 UseSectionsAsReferences = DwarfSectionsAsReferences == Enable; 402 403 // Don't generate type units for unsupported object file formats. 404 GenerateTypeUnits = 405 A->TM.getTargetTriple().isOSBinFormatELF() && GenerateDwarfTypeUnits; 406 407 TheAccelTableKind = computeAccelTableKind( 408 DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple()); 409 410 // Work around a GDB bug. GDB doesn't support the standard opcode; 411 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which 412 // is defined as of DWARF 3. 413 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented 414 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616 415 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3; 416 417 // GDB does not fully support the DWARF 4 representation for bitfields. 418 UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB(); 419 420 // The DWARF v5 string offsets table has - possibly shared - contributions 421 // from each compile and type unit each preceded by a header. The string 422 // offsets table used by the pre-DWARF v5 split-DWARF implementation uses 423 // a monolithic string offsets table without any header. 424 UseSegmentedStringOffsetsTable = DwarfVersion >= 5; 425 426 // Emit call-site-param debug info for GDB and LLDB, if the target supports 427 // the debug entry values feature. It can also be enabled explicitly. 428 EmitDebugEntryValues = (Asm->TM.Options.ShouldEmitDebugEntryValues() && 429 (tuneForGDB() || tuneForLLDB())) || 430 EmitDwarfDebugEntryValues; 431 432 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion); 433 } 434 435 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. 436 DwarfDebug::~DwarfDebug() = default; 437 438 static bool isObjCClass(StringRef Name) { 439 return Name.startswith("+") || Name.startswith("-"); 440 } 441 442 static bool hasObjCCategory(StringRef Name) { 443 if (!isObjCClass(Name)) 444 return false; 445 446 return Name.find(") ") != StringRef::npos; 447 } 448 449 static void getObjCClassCategory(StringRef In, StringRef &Class, 450 StringRef &Category) { 451 if (!hasObjCCategory(In)) { 452 Class = In.slice(In.find('[') + 1, In.find(' ')); 453 Category = ""; 454 return; 455 } 456 457 Class = In.slice(In.find('[') + 1, In.find('(')); 458 Category = In.slice(In.find('[') + 1, In.find(' ')); 459 } 460 461 static StringRef getObjCMethodName(StringRef In) { 462 return In.slice(In.find(' ') + 1, In.find(']')); 463 } 464 465 // Add the various names to the Dwarf accelerator table names. 466 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU, 467 const DISubprogram *SP, DIE &Die) { 468 if (getAccelTableKind() != AccelTableKind::Apple && 469 CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None) 470 return; 471 472 if (!SP->isDefinition()) 473 return; 474 475 if (SP->getName() != "") 476 addAccelName(CU, SP->getName(), Die); 477 478 // If the linkage name is different than the name, go ahead and output that as 479 // well into the name table. Only do that if we are going to actually emit 480 // that name. 481 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() && 482 (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP))) 483 addAccelName(CU, SP->getLinkageName(), Die); 484 485 // If this is an Objective-C selector name add it to the ObjC accelerator 486 // too. 487 if (isObjCClass(SP->getName())) { 488 StringRef Class, Category; 489 getObjCClassCategory(SP->getName(), Class, Category); 490 addAccelObjC(CU, Class, Die); 491 if (Category != "") 492 addAccelObjC(CU, Category, Die); 493 // Also add the base method name to the name table. 494 addAccelName(CU, getObjCMethodName(SP->getName()), Die); 495 } 496 } 497 498 /// Check whether we should create a DIE for the given Scope, return true 499 /// if we don't create a DIE (the corresponding DIE is null). 500 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { 501 if (Scope->isAbstractScope()) 502 return false; 503 504 // We don't create a DIE if there is no Range. 505 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); 506 if (Ranges.empty()) 507 return true; 508 509 if (Ranges.size() > 1) 510 return false; 511 512 // We don't create a DIE if we have a single Range and the end label 513 // is null. 514 return !getLabelAfterInsn(Ranges.front().second); 515 } 516 517 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) { 518 F(CU); 519 if (auto *SkelCU = CU.getSkeleton()) 520 if (CU.getCUNode()->getSplitDebugInlining()) 521 F(*SkelCU); 522 } 523 524 bool DwarfDebug::shareAcrossDWOCUs() const { 525 return SplitDwarfCrossCuReferences; 526 } 527 528 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU, 529 LexicalScope *Scope) { 530 assert(Scope && Scope->getScopeNode()); 531 assert(Scope->isAbstractScope()); 532 assert(!Scope->getInlinedAt()); 533 534 auto *SP = cast<DISubprogram>(Scope->getScopeNode()); 535 536 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram 537 // was inlined from another compile unit. 538 if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining()) 539 // Avoid building the original CU if it won't be used 540 SrcCU.constructAbstractSubprogramScopeDIE(Scope); 541 else { 542 auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 543 if (auto *SkelCU = CU.getSkeleton()) { 544 (shareAcrossDWOCUs() ? CU : SrcCU) 545 .constructAbstractSubprogramScopeDIE(Scope); 546 if (CU.getCUNode()->getSplitDebugInlining()) 547 SkelCU->constructAbstractSubprogramScopeDIE(Scope); 548 } else 549 CU.constructAbstractSubprogramScopeDIE(Scope); 550 } 551 } 552 553 DIE &DwarfDebug::constructSubprogramDefinitionDIE(const DISubprogram *SP) { 554 DICompileUnit *Unit = SP->getUnit(); 555 assert(SP->isDefinition() && "Subprogram not a definition"); 556 assert(Unit && "Subprogram definition without parent unit"); 557 auto &CU = getOrCreateDwarfCompileUnit(Unit); 558 return *CU.getOrCreateSubprogramDIE(SP); 559 } 560 561 /// Represents a parameter whose call site value can be described by applying a 562 /// debug expression to a register in the forwarded register worklist. 563 struct FwdRegParamInfo { 564 /// The described parameter register. 565 unsigned ParamReg; 566 567 /// Debug expression that has been built up when walking through the 568 /// instruction chain that produces the parameter's value. 569 const DIExpression *Expr; 570 }; 571 572 /// Register worklist for finding call site values. 573 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>; 574 575 /// Emit call site parameter entries that are described by the given value and 576 /// debug expression. 577 template <typename ValT> 578 static void finishCallSiteParams(ValT Val, const DIExpression *Expr, 579 ArrayRef<FwdRegParamInfo> DescribedParams, 580 ParamSet &Params) { 581 for (auto Param : DescribedParams) { 582 bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0; 583 584 // TODO: Entry value operations can currently not be combined with any 585 // other expressions, so we can't emit call site entries in those cases. 586 if (ShouldCombineExpressions && Expr->isEntryValue()) 587 continue; 588 589 // If a parameter's call site value is produced by a chain of 590 // instructions we may have already created an expression for the 591 // parameter when walking through the instructions. Append that to the 592 // base expression. 593 const DIExpression *CombinedExpr = 594 ShouldCombineExpressions 595 ? DIExpression::append(Expr, Param.Expr->getElements()) 596 : Expr; 597 assert((!CombinedExpr || CombinedExpr->isValid()) && 598 "Combined debug expression is invalid"); 599 600 DbgValueLoc DbgLocVal(CombinedExpr, Val); 601 DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal); 602 Params.push_back(CSParm); 603 ++NumCSParams; 604 } 605 } 606 607 /// Add \p Reg to the worklist, if it's not already present, and mark that the 608 /// given parameter registers' values can (potentially) be described using 609 /// that register and an debug expression. 610 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg, 611 const DIExpression *Expr, 612 ArrayRef<FwdRegParamInfo> ParamsToAdd) { 613 auto I = Worklist.insert({Reg, {}}); 614 auto &ParamsForFwdReg = I.first->second; 615 for (auto Param : ParamsToAdd) { 616 assert(none_of(ParamsForFwdReg, 617 [Param](const FwdRegParamInfo &D) { 618 return D.ParamReg == Param.ParamReg; 619 }) && 620 "Same parameter described twice by forwarding reg"); 621 622 // If a parameter's call site value is produced by a chain of 623 // instructions we may have already created an expression for the 624 // parameter when walking through the instructions. Append that to the 625 // new expression. 626 std::vector<uint64_t> ParamElts = Param.Expr->getElements().vec(); 627 // Avoid multiple DW_OP_stack_values. 628 if (Expr->isImplicit() && Param.Expr->isImplicit()) 629 erase_if(ParamElts, 630 [](uint64_t Op) { return Op == dwarf::DW_OP_stack_value; }); 631 const DIExpression *CombinedExpr = 632 (Param.Expr->getNumElements() > 0) 633 ? DIExpression::append(Expr, ParamElts) 634 : Expr; 635 ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr}); 636 } 637 } 638 639 /// Try to interpret values loaded into registers that forward parameters 640 /// for \p CallMI. Store parameters with interpreted value into \p Params. 641 static void collectCallSiteParameters(const MachineInstr *CallMI, 642 ParamSet &Params) { 643 auto *MF = CallMI->getMF(); 644 auto CalleesMap = MF->getCallSitesInfo(); 645 auto CallFwdRegsInfo = CalleesMap.find(CallMI); 646 647 // There is no information for the call instruction. 648 if (CallFwdRegsInfo == CalleesMap.end()) 649 return; 650 651 auto *MBB = CallMI->getParent(); 652 const auto &TRI = MF->getSubtarget().getRegisterInfo(); 653 const auto &TII = MF->getSubtarget().getInstrInfo(); 654 const auto &TLI = MF->getSubtarget().getTargetLowering(); 655 656 // Skip the call instruction. 657 auto I = std::next(CallMI->getReverseIterator()); 658 659 FwdRegWorklist ForwardedRegWorklist; 660 661 // If an instruction defines more than one item in the worklist, we may run 662 // into situations where a worklist register's value is (potentially) 663 // described by the previous value of another register that is also defined 664 // by that instruction. 665 // 666 // This can for example occur in cases like this: 667 // 668 // $r1 = mov 123 669 // $r0, $r1 = mvrr $r1, 456 670 // call @foo, $r0, $r1 671 // 672 // When describing $r1's value for the mvrr instruction, we need to make sure 673 // that we don't finalize an entry value for $r0, as that is dependent on the 674 // previous value of $r1 (123 rather than 456). 675 // 676 // In order to not have to distinguish between those cases when finalizing 677 // entry values, we simply postpone adding new parameter registers to the 678 // worklist, by first keeping them in this temporary container until the 679 // instruction has been handled. 680 FwdRegWorklist NewWorklistItems; 681 682 const DIExpression *EmptyExpr = 683 DIExpression::get(MF->getFunction().getContext(), {}); 684 685 // Add all the forwarding registers into the ForwardedRegWorklist. 686 for (auto ArgReg : CallFwdRegsInfo->second) { 687 bool InsertedReg = 688 ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}}) 689 .second; 690 assert(InsertedReg && "Single register used to forward two arguments?"); 691 (void)InsertedReg; 692 } 693 694 // We erase, from the ForwardedRegWorklist, those forwarding registers for 695 // which we successfully describe a loaded value (by using 696 // the describeLoadedValue()). For those remaining arguments in the working 697 // list, for which we do not describe a loaded value by 698 // the describeLoadedValue(), we try to generate an entry value expression 699 // for their call site value description, if the call is within the entry MBB. 700 // TODO: Handle situations when call site parameter value can be described 701 // as the entry value within basic blocks other than the first one. 702 bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin(); 703 704 // If the MI is an instruction defining one or more parameters' forwarding 705 // registers, add those defines. 706 auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI, 707 SmallSetVector<unsigned, 4> &Defs) { 708 if (MI.isDebugInstr()) 709 return; 710 711 for (const MachineOperand &MO : MI.operands()) { 712 if (MO.isReg() && MO.isDef() && 713 Register::isPhysicalRegister(MO.getReg())) { 714 for (auto FwdReg : ForwardedRegWorklist) 715 if (TRI->regsOverlap(FwdReg.first, MO.getReg())) 716 Defs.insert(FwdReg.first); 717 } 718 } 719 }; 720 721 // Search for a loading value in forwarding registers. 722 for (; I != MBB->rend(); ++I) { 723 // Skip bundle headers. 724 if (I->isBundle()) 725 continue; 726 727 // If the next instruction is a call we can not interpret parameter's 728 // forwarding registers or we finished the interpretation of all parameters. 729 if (I->isCall()) 730 return; 731 732 if (ForwardedRegWorklist.empty()) 733 return; 734 735 // Set of worklist registers that are defined by this instruction. 736 SmallSetVector<unsigned, 4> FwdRegDefs; 737 738 getForwardingRegsDefinedByMI(*I, FwdRegDefs); 739 if (FwdRegDefs.empty()) 740 continue; 741 742 for (auto ParamFwdReg : FwdRegDefs) { 743 if (auto ParamValue = TII->describeLoadedValue(*I, ParamFwdReg)) { 744 if (ParamValue->first.isImm()) { 745 int64_t Val = ParamValue->first.getImm(); 746 finishCallSiteParams(Val, ParamValue->second, 747 ForwardedRegWorklist[ParamFwdReg], Params); 748 } else if (ParamValue->first.isReg()) { 749 Register RegLoc = ParamValue->first.getReg(); 750 unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); 751 Register FP = TRI->getFrameRegister(*MF); 752 bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP); 753 if (TRI->isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) { 754 MachineLocation MLoc(RegLoc, /*IsIndirect=*/IsSPorFP); 755 finishCallSiteParams(MLoc, ParamValue->second, 756 ForwardedRegWorklist[ParamFwdReg], Params); 757 } else { 758 // ParamFwdReg was described by the non-callee saved register 759 // RegLoc. Mark that the call site values for the parameters are 760 // dependent on that register instead of ParamFwdReg. Since RegLoc 761 // may be a register that will be handled in this iteration, we 762 // postpone adding the items to the worklist, and instead keep them 763 // in a temporary container. 764 addToFwdRegWorklist(NewWorklistItems, RegLoc, ParamValue->second, 765 ForwardedRegWorklist[ParamFwdReg]); 766 } 767 } 768 } 769 } 770 771 // Remove all registers that this instruction defines from the worklist. 772 for (auto ParamFwdReg : FwdRegDefs) 773 ForwardedRegWorklist.erase(ParamFwdReg); 774 775 // Now that we are done handling this instruction, add items from the 776 // temporary worklist to the real one. 777 for (auto New : NewWorklistItems) 778 addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, 779 New.second); 780 NewWorklistItems.clear(); 781 } 782 783 // Emit the call site parameter's value as an entry value. 784 if (ShouldTryEmitEntryVals) { 785 // Create an expression where the register's entry value is used. 786 DIExpression *EntryExpr = DIExpression::get( 787 MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1}); 788 for (auto RegEntry : ForwardedRegWorklist) { 789 MachineLocation MLoc(RegEntry.first); 790 finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params); 791 } 792 } 793 } 794 795 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP, 796 DwarfCompileUnit &CU, DIE &ScopeDIE, 797 const MachineFunction &MF) { 798 // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if 799 // the subprogram is required to have one. 800 if (!SP.areAllCallsDescribed() || !SP.isDefinition()) 801 return; 802 803 // Use DW_AT_call_all_calls to express that call site entries are present 804 // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls 805 // because one of its requirements is not met: call site entries for 806 // optimized-out calls are elided. 807 CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls)); 808 809 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 810 assert(TII && "TargetInstrInfo not found: cannot label tail calls"); 811 812 // Emit call site entries for each call or tail call in the function. 813 for (const MachineBasicBlock &MBB : MF) { 814 for (const MachineInstr &MI : MBB.instrs()) { 815 // Bundles with call in them will pass the isCall() test below but do not 816 // have callee operand information so skip them here. Iterator will 817 // eventually reach the call MI. 818 if (MI.isBundle()) 819 continue; 820 821 // Skip instructions which aren't calls. Both calls and tail-calling jump 822 // instructions (e.g TAILJMPd64) are classified correctly here. 823 if (!MI.isCandidateForCallSiteEntry()) 824 continue; 825 826 // Skip instructions marked as frame setup, as they are not interesting to 827 // the user. 828 if (MI.getFlag(MachineInstr::FrameSetup)) 829 continue; 830 831 // TODO: Add support for targets with delay slots (see: beginInstruction). 832 if (MI.hasDelaySlot()) 833 return; 834 835 // If this is a direct call, find the callee's subprogram. 836 // In the case of an indirect call find the register that holds 837 // the callee. 838 const MachineOperand &CalleeOp = MI.getOperand(0); 839 if (!CalleeOp.isGlobal() && !CalleeOp.isReg()) 840 continue; 841 842 unsigned CallReg = 0; 843 DIE *CalleeDIE = nullptr; 844 const Function *CalleeDecl = nullptr; 845 if (CalleeOp.isReg()) { 846 CallReg = CalleeOp.getReg(); 847 if (!CallReg) 848 continue; 849 } else { 850 CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal()); 851 if (!CalleeDecl || !CalleeDecl->getSubprogram()) 852 continue; 853 const DISubprogram *CalleeSP = CalleeDecl->getSubprogram(); 854 855 if (CalleeSP->isDefinition()) { 856 // Ensure that a subprogram DIE for the callee is available in the 857 // appropriate CU. 858 CalleeDIE = &constructSubprogramDefinitionDIE(CalleeSP); 859 } else { 860 // Create the declaration DIE if it is missing. This is required to 861 // support compilation of old bitcode with an incomplete list of 862 // retained metadata. 863 CalleeDIE = CU.getOrCreateSubprogramDIE(CalleeSP); 864 } 865 assert(CalleeDIE && "Must have a DIE for the callee"); 866 } 867 868 // TODO: Omit call site entries for runtime calls (objc_msgSend, etc). 869 870 bool IsTail = TII->isTailCall(MI); 871 872 // If MI is in a bundle, the label was created after the bundle since 873 // EmitFunctionBody iterates over top-level MIs. Get that top-level MI 874 // to search for that label below. 875 const MachineInstr *TopLevelCallMI = 876 MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI; 877 878 // For tail calls, no return PC information is needed. 879 // For regular calls (and tail calls in GDB tuning), the return PC 880 // is needed to disambiguate paths in the call graph which could lead to 881 // some target function. 882 const MCSymbol *PCAddr = 883 (IsTail && !tuneForGDB()) 884 ? nullptr 885 : const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI)); 886 887 assert((IsTail || PCAddr) && "Call without return PC information"); 888 889 LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> " 890 << (CalleeDecl ? CalleeDecl->getName() 891 : StringRef(MF.getSubtarget() 892 .getRegisterInfo() 893 ->getName(CallReg))) 894 << (IsTail ? " [IsTail]" : "") << "\n"); 895 896 DIE &CallSiteDIE = CU.constructCallSiteEntryDIE(ScopeDIE, CalleeDIE, 897 IsTail, PCAddr, CallReg); 898 899 // Optionally emit call-site-param debug info. 900 if (emitDebugEntryValues()) { 901 ParamSet Params; 902 // Try to interpret values of call site parameters. 903 collectCallSiteParameters(&MI, Params); 904 CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params); 905 } 906 } 907 } 908 } 909 910 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const { 911 if (!U.hasDwarfPubSections()) 912 return; 913 914 U.addFlag(D, dwarf::DW_AT_GNU_pubnames); 915 } 916 917 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit, 918 DwarfCompileUnit &NewCU) { 919 DIE &Die = NewCU.getUnitDie(); 920 StringRef FN = DIUnit->getFilename(); 921 922 StringRef Producer = DIUnit->getProducer(); 923 StringRef Flags = DIUnit->getFlags(); 924 if (!Flags.empty() && !useAppleExtensionAttributes()) { 925 std::string ProducerWithFlags = Producer.str() + " " + Flags.str(); 926 NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags); 927 } else 928 NewCU.addString(Die, dwarf::DW_AT_producer, Producer); 929 930 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 931 DIUnit->getSourceLanguage()); 932 NewCU.addString(Die, dwarf::DW_AT_name, FN); 933 StringRef SysRoot = DIUnit->getSysRoot(); 934 if (!SysRoot.empty()) 935 NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot); 936 StringRef SDK = DIUnit->getSDK(); 937 if (!SDK.empty()) 938 NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK); 939 940 // Add DW_str_offsets_base to the unit DIE, except for split units. 941 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 942 NewCU.addStringOffsetsStart(); 943 944 if (!useSplitDwarf()) { 945 NewCU.initStmtList(); 946 947 // If we're using split dwarf the compilation dir is going to be in the 948 // skeleton CU and so we don't need to duplicate it here. 949 if (!CompilationDir.empty()) 950 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 951 addGnuPubAttributes(NewCU, Die); 952 } 953 954 if (useAppleExtensionAttributes()) { 955 if (DIUnit->isOptimized()) 956 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); 957 958 StringRef Flags = DIUnit->getFlags(); 959 if (!Flags.empty()) 960 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); 961 962 if (unsigned RVer = DIUnit->getRuntimeVersion()) 963 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, 964 dwarf::DW_FORM_data1, RVer); 965 } 966 967 if (DIUnit->getDWOId()) { 968 // This CU is either a clang module DWO or a skeleton CU. 969 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, 970 DIUnit->getDWOId()); 971 if (!DIUnit->getSplitDebugFilename().empty()) { 972 // This is a prefabricated skeleton CU. 973 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 974 ? dwarf::DW_AT_dwo_name 975 : dwarf::DW_AT_GNU_dwo_name; 976 NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename()); 977 } 978 } 979 } 980 // Create new DwarfCompileUnit for the given metadata node with tag 981 // DW_TAG_compile_unit. 982 DwarfCompileUnit & 983 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) { 984 if (auto *CU = CUMap.lookup(DIUnit)) 985 return *CU; 986 987 CompilationDir = DIUnit->getDirectory(); 988 989 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 990 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); 991 DwarfCompileUnit &NewCU = *OwnedUnit; 992 InfoHolder.addUnit(std::move(OwnedUnit)); 993 994 for (auto *IE : DIUnit->getImportedEntities()) 995 NewCU.addImportedEntity(IE); 996 997 // LTO with assembly output shares a single line table amongst multiple CUs. 998 // To avoid the compilation directory being ambiguous, let the line table 999 // explicitly describe the directory of all files, never relying on the 1000 // compilation directory. 1001 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU) 1002 Asm->OutStreamer->emitDwarfFile0Directive( 1003 CompilationDir, DIUnit->getFilename(), 1004 NewCU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource(), 1005 NewCU.getUniqueID()); 1006 1007 if (useSplitDwarf()) { 1008 NewCU.setSkeleton(constructSkeletonCU(NewCU)); 1009 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection()); 1010 } else { 1011 finishUnitAttributes(DIUnit, NewCU); 1012 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 1013 } 1014 1015 CUMap.insert({DIUnit, &NewCU}); 1016 CUDieMap.insert({&NewCU.getUnitDie(), &NewCU}); 1017 return NewCU; 1018 } 1019 1020 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU, 1021 const DIImportedEntity *N) { 1022 if (isa<DILocalScope>(N->getScope())) 1023 return; 1024 if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope())) 1025 D->addChild(TheCU.constructImportedEntityDIE(N)); 1026 } 1027 1028 /// Sort and unique GVEs by comparing their fragment offset. 1029 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & 1030 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) { 1031 llvm::sort( 1032 GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) { 1033 // Sort order: first null exprs, then exprs without fragment 1034 // info, then sort by fragment offset in bits. 1035 // FIXME: Come up with a more comprehensive comparator so 1036 // the sorting isn't non-deterministic, and so the following 1037 // std::unique call works correctly. 1038 if (!A.Expr || !B.Expr) 1039 return !!B.Expr; 1040 auto FragmentA = A.Expr->getFragmentInfo(); 1041 auto FragmentB = B.Expr->getFragmentInfo(); 1042 if (!FragmentA || !FragmentB) 1043 return !!FragmentB; 1044 return FragmentA->OffsetInBits < FragmentB->OffsetInBits; 1045 }); 1046 GVEs.erase(std::unique(GVEs.begin(), GVEs.end(), 1047 [](DwarfCompileUnit::GlobalExpr A, 1048 DwarfCompileUnit::GlobalExpr B) { 1049 return A.Expr == B.Expr; 1050 }), 1051 GVEs.end()); 1052 return GVEs; 1053 } 1054 1055 // Emit all Dwarf sections that should come prior to the content. Create 1056 // global DIEs and emit initial debug info sections. This is invoked by 1057 // the target AsmPrinter. 1058 void DwarfDebug::beginModule() { 1059 NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName, 1060 DWARFGroupDescription, TimePassesIsEnabled); 1061 if (DisableDebugInfoPrinting) { 1062 MMI->setDebugInfoAvailability(false); 1063 return; 1064 } 1065 1066 const Module *M = MMI->getModule(); 1067 1068 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(), 1069 M->debug_compile_units_end()); 1070 // Tell MMI whether we have debug info. 1071 assert(MMI->hasDebugInfo() == (NumDebugCUs > 0) && 1072 "DebugInfoAvailabilty initialized unexpectedly"); 1073 SingleCU = NumDebugCUs == 1; 1074 DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>> 1075 GVMap; 1076 for (const GlobalVariable &Global : M->globals()) { 1077 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1078 Global.getDebugInfo(GVs); 1079 for (auto *GVE : GVs) 1080 GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()}); 1081 } 1082 1083 // Create the symbol that designates the start of the unit's contribution 1084 // to the string offsets table. In a split DWARF scenario, only the skeleton 1085 // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol). 1086 if (useSegmentedStringOffsetsTable()) 1087 (useSplitDwarf() ? SkeletonHolder : InfoHolder) 1088 .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base")); 1089 1090 1091 // Create the symbols that designates the start of the DWARF v5 range list 1092 // and locations list tables. They are located past the table headers. 1093 if (getDwarfVersion() >= 5) { 1094 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1095 Holder.setRnglistsTableBaseSym( 1096 Asm->createTempSymbol("rnglists_table_base")); 1097 1098 if (useSplitDwarf()) 1099 InfoHolder.setRnglistsTableBaseSym( 1100 Asm->createTempSymbol("rnglists_dwo_table_base")); 1101 } 1102 1103 // Create the symbol that points to the first entry following the debug 1104 // address table (.debug_addr) header. 1105 AddrPool.setLabel(Asm->createTempSymbol("addr_table_base")); 1106 DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base")); 1107 1108 for (DICompileUnit *CUNode : M->debug_compile_units()) { 1109 // FIXME: Move local imported entities into a list attached to the 1110 // subprogram, then this search won't be needed and a 1111 // getImportedEntities().empty() test should go below with the rest. 1112 bool HasNonLocalImportedEntities = llvm::any_of( 1113 CUNode->getImportedEntities(), [](const DIImportedEntity *IE) { 1114 return !isa<DILocalScope>(IE->getScope()); 1115 }); 1116 1117 if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() && 1118 CUNode->getRetainedTypes().empty() && 1119 CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty()) 1120 continue; 1121 1122 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode); 1123 1124 // Global Variables. 1125 for (auto *GVE : CUNode->getGlobalVariables()) { 1126 // Don't bother adding DIGlobalVariableExpressions listed in the CU if we 1127 // already know about the variable and it isn't adding a constant 1128 // expression. 1129 auto &GVMapEntry = GVMap[GVE->getVariable()]; 1130 auto *Expr = GVE->getExpression(); 1131 if (!GVMapEntry.size() || (Expr && Expr->isConstant())) 1132 GVMapEntry.push_back({nullptr, Expr}); 1133 } 1134 DenseSet<DIGlobalVariable *> Processed; 1135 for (auto *GVE : CUNode->getGlobalVariables()) { 1136 DIGlobalVariable *GV = GVE->getVariable(); 1137 if (Processed.insert(GV).second) 1138 CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV])); 1139 } 1140 1141 for (auto *Ty : CUNode->getEnumTypes()) { 1142 // The enum types array by design contains pointers to 1143 // MDNodes rather than DIRefs. Unique them here. 1144 CU.getOrCreateTypeDIE(cast<DIType>(Ty)); 1145 } 1146 for (auto *Ty : CUNode->getRetainedTypes()) { 1147 // The retained types array by design contains pointers to 1148 // MDNodes rather than DIRefs. Unique them here. 1149 if (DIType *RT = dyn_cast<DIType>(Ty)) 1150 // There is no point in force-emitting a forward declaration. 1151 CU.getOrCreateTypeDIE(RT); 1152 } 1153 // Emit imported_modules last so that the relevant context is already 1154 // available. 1155 for (auto *IE : CUNode->getImportedEntities()) 1156 constructAndAddImportedEntityDIE(CU, IE); 1157 } 1158 } 1159 1160 void DwarfDebug::finishEntityDefinitions() { 1161 for (const auto &Entity : ConcreteEntities) { 1162 DIE *Die = Entity->getDIE(); 1163 assert(Die); 1164 // FIXME: Consider the time-space tradeoff of just storing the unit pointer 1165 // in the ConcreteEntities list, rather than looking it up again here. 1166 // DIE::getUnit isn't simple - it walks parent pointers, etc. 1167 DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie()); 1168 assert(Unit); 1169 Unit->finishEntityDefinition(Entity.get()); 1170 } 1171 } 1172 1173 void DwarfDebug::finishSubprogramDefinitions() { 1174 for (const DISubprogram *SP : ProcessedSPNodes) { 1175 assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug); 1176 forBothCUs( 1177 getOrCreateDwarfCompileUnit(SP->getUnit()), 1178 [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); }); 1179 } 1180 } 1181 1182 void DwarfDebug::finalizeModuleInfo() { 1183 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 1184 1185 finishSubprogramDefinitions(); 1186 1187 finishEntityDefinitions(); 1188 1189 // Include the DWO file name in the hash if there's more than one CU. 1190 // This handles ThinLTO's situation where imported CUs may very easily be 1191 // duplicate with the same CU partially imported into another ThinLTO unit. 1192 StringRef DWOName; 1193 if (CUMap.size() > 1) 1194 DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile; 1195 1196 // Handle anything that needs to be done on a per-unit basis after 1197 // all other generation. 1198 for (const auto &P : CUMap) { 1199 auto &TheCU = *P.second; 1200 if (TheCU.getCUNode()->isDebugDirectivesOnly()) 1201 continue; 1202 // Emit DW_AT_containing_type attribute to connect types with their 1203 // vtable holding type. 1204 TheCU.constructContainingTypeDIEs(); 1205 1206 // Add CU specific attributes if we need to add any. 1207 // If we're splitting the dwarf out now that we've got the entire 1208 // CU then add the dwo id to it. 1209 auto *SkCU = TheCU.getSkeleton(); 1210 1211 bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty(); 1212 1213 if (HasSplitUnit) { 1214 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1215 ? dwarf::DW_AT_dwo_name 1216 : dwarf::DW_AT_GNU_dwo_name; 1217 finishUnitAttributes(TheCU.getCUNode(), TheCU); 1218 TheCU.addString(TheCU.getUnitDie(), attrDWOName, 1219 Asm->TM.Options.MCOptions.SplitDwarfFile); 1220 SkCU->addString(SkCU->getUnitDie(), attrDWOName, 1221 Asm->TM.Options.MCOptions.SplitDwarfFile); 1222 // Emit a unique identifier for this CU. 1223 uint64_t ID = 1224 DIEHash(Asm).computeCUSignature(DWOName, TheCU.getUnitDie()); 1225 if (getDwarfVersion() >= 5) { 1226 TheCU.setDWOId(ID); 1227 SkCU->setDWOId(ID); 1228 } else { 1229 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1230 dwarf::DW_FORM_data8, ID); 1231 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1232 dwarf::DW_FORM_data8, ID); 1233 } 1234 1235 if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) { 1236 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol(); 1237 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, 1238 Sym, Sym); 1239 } 1240 } else if (SkCU) { 1241 finishUnitAttributes(SkCU->getCUNode(), *SkCU); 1242 } 1243 1244 // If we have code split among multiple sections or non-contiguous 1245 // ranges of code then emit a DW_AT_ranges attribute on the unit that will 1246 // remain in the .o file, otherwise add a DW_AT_low_pc. 1247 // FIXME: We should use ranges allow reordering of code ala 1248 // .subsections_via_symbols in mach-o. This would mean turning on 1249 // ranges for all subprogram DIEs for mach-o. 1250 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 1251 1252 if (unsigned NumRanges = TheCU.getRanges().size()) { 1253 if (NumRanges > 1 && useRangesSection()) 1254 // A DW_AT_low_pc attribute may also be specified in combination with 1255 // DW_AT_ranges to specify the default base address for use in 1256 // location lists (see Section 2.6.2) and range lists (see Section 1257 // 2.17.3). 1258 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); 1259 else 1260 U.setBaseAddress(TheCU.getRanges().front().Begin); 1261 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); 1262 } 1263 1264 // We don't keep track of which addresses are used in which CU so this 1265 // is a bit pessimistic under LTO. 1266 if ((!AddrPool.isEmpty() || TheCU.hasRangeLists()) && 1267 (getDwarfVersion() >= 5 || HasSplitUnit)) 1268 U.addAddrTableBase(); 1269 1270 if (getDwarfVersion() >= 5) { 1271 if (U.hasRangeLists()) 1272 U.addRnglistsBase(); 1273 1274 if (!DebugLocs.getLists().empty()) { 1275 if (!useSplitDwarf()) 1276 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base, 1277 DebugLocs.getSym(), 1278 TLOF.getDwarfLoclistsSection()->getBeginSymbol()); 1279 } 1280 } 1281 1282 auto *CUNode = cast<DICompileUnit>(P.first); 1283 // If compile Unit has macros, emit "DW_AT_macro_info" attribute. 1284 if (CUNode->getMacros()) { 1285 if (useSplitDwarf()) 1286 TheCU.addSectionDelta(TheCU.getUnitDie(), dwarf::DW_AT_macro_info, 1287 U.getMacroLabelBegin(), 1288 TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol()); 1289 else 1290 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info, 1291 U.getMacroLabelBegin(), 1292 TLOF.getDwarfMacinfoSection()->getBeginSymbol()); 1293 } 1294 } 1295 1296 // Emit all frontend-produced Skeleton CUs, i.e., Clang modules. 1297 for (auto *CUNode : MMI->getModule()->debug_compile_units()) 1298 if (CUNode->getDWOId()) 1299 getOrCreateDwarfCompileUnit(CUNode); 1300 1301 // Compute DIE offsets and sizes. 1302 InfoHolder.computeSizeAndOffsets(); 1303 if (useSplitDwarf()) 1304 SkeletonHolder.computeSizeAndOffsets(); 1305 } 1306 1307 // Emit all Dwarf sections that should come after the content. 1308 void DwarfDebug::endModule() { 1309 assert(CurFn == nullptr); 1310 assert(CurMI == nullptr); 1311 1312 for (const auto &P : CUMap) { 1313 auto &CU = *P.second; 1314 CU.createBaseTypeDIEs(); 1315 } 1316 1317 // If we aren't actually generating debug info (check beginModule - 1318 // conditionalized on !DisableDebugInfoPrinting and the presence of the 1319 // llvm.dbg.cu metadata node) 1320 if (!MMI->hasDebugInfo()) 1321 return; 1322 1323 // Finalize the debug info for the module. 1324 finalizeModuleInfo(); 1325 1326 if (useSplitDwarf()) 1327 // Emit debug_loc.dwo/debug_loclists.dwo section. 1328 emitDebugLocDWO(); 1329 else 1330 // Emit debug_loc/debug_loclists section. 1331 emitDebugLoc(); 1332 1333 // Corresponding abbreviations into a abbrev section. 1334 emitAbbreviations(); 1335 1336 // Emit all the DIEs into a debug info section. 1337 emitDebugInfo(); 1338 1339 // Emit info into a debug aranges section. 1340 if (GenerateARangeSection) 1341 emitDebugARanges(); 1342 1343 // Emit info into a debug ranges section. 1344 emitDebugRanges(); 1345 1346 if (useSplitDwarf()) 1347 // Emit info into a debug macinfo.dwo section. 1348 emitDebugMacinfoDWO(); 1349 else 1350 // Emit info into a debug macinfo section. 1351 emitDebugMacinfo(); 1352 1353 emitDebugStr(); 1354 1355 if (useSplitDwarf()) { 1356 emitDebugStrDWO(); 1357 emitDebugInfoDWO(); 1358 emitDebugAbbrevDWO(); 1359 emitDebugLineDWO(); 1360 emitDebugRangesDWO(); 1361 } 1362 1363 emitDebugAddr(); 1364 1365 // Emit info into the dwarf accelerator table sections. 1366 switch (getAccelTableKind()) { 1367 case AccelTableKind::Apple: 1368 emitAccelNames(); 1369 emitAccelObjC(); 1370 emitAccelNamespaces(); 1371 emitAccelTypes(); 1372 break; 1373 case AccelTableKind::Dwarf: 1374 emitAccelDebugNames(); 1375 break; 1376 case AccelTableKind::None: 1377 break; 1378 case AccelTableKind::Default: 1379 llvm_unreachable("Default should have already been resolved."); 1380 } 1381 1382 // Emit the pubnames and pubtypes sections if requested. 1383 emitDebugPubSections(); 1384 1385 // clean up. 1386 // FIXME: AbstractVariables.clear(); 1387 } 1388 1389 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU, 1390 const DINode *Node, 1391 const MDNode *ScopeNode) { 1392 if (CU.getExistingAbstractEntity(Node)) 1393 return; 1394 1395 CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope( 1396 cast<DILocalScope>(ScopeNode))); 1397 } 1398 1399 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU, 1400 const DINode *Node, const MDNode *ScopeNode) { 1401 if (CU.getExistingAbstractEntity(Node)) 1402 return; 1403 1404 if (LexicalScope *Scope = 1405 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode))) 1406 CU.createAbstractEntity(Node, Scope); 1407 } 1408 1409 // Collect variable information from side table maintained by MF. 1410 void DwarfDebug::collectVariableInfoFromMFTable( 1411 DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) { 1412 SmallDenseMap<InlinedEntity, DbgVariable *> MFVars; 1413 LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n"); 1414 for (const auto &VI : Asm->MF->getVariableDbgInfo()) { 1415 if (!VI.Var) 1416 continue; 1417 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1418 "Expected inlined-at fields to agree"); 1419 1420 InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt()); 1421 Processed.insert(Var); 1422 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1423 1424 // If variable scope is not found then skip this variable. 1425 if (!Scope) { 1426 LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName() 1427 << ", no variable scope found\n"); 1428 continue; 1429 } 1430 1431 ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode()); 1432 auto RegVar = std::make_unique<DbgVariable>( 1433 cast<DILocalVariable>(Var.first), Var.second); 1434 RegVar->initializeMMI(VI.Expr, VI.Slot); 1435 LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName() 1436 << "\n"); 1437 if (DbgVariable *DbgVar = MFVars.lookup(Var)) 1438 DbgVar->addMMIEntry(*RegVar); 1439 else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) { 1440 MFVars.insert({Var, RegVar.get()}); 1441 ConcreteEntities.push_back(std::move(RegVar)); 1442 } 1443 } 1444 } 1445 1446 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its 1447 /// enclosing lexical scope. The check ensures there are no other instructions 1448 /// in the same lexical scope preceding the DBG_VALUE and that its range is 1449 /// either open or otherwise rolls off the end of the scope. 1450 static bool validThroughout(LexicalScopes &LScopes, 1451 const MachineInstr *DbgValue, 1452 const MachineInstr *RangeEnd) { 1453 assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location"); 1454 auto MBB = DbgValue->getParent(); 1455 auto DL = DbgValue->getDebugLoc(); 1456 auto *LScope = LScopes.findLexicalScope(DL); 1457 // Scope doesn't exist; this is a dead DBG_VALUE. 1458 if (!LScope) 1459 return false; 1460 auto &LSRange = LScope->getRanges(); 1461 if (LSRange.size() == 0) 1462 return false; 1463 1464 // Determine if the DBG_VALUE is valid at the beginning of its lexical block. 1465 const MachineInstr *LScopeBegin = LSRange.front().first; 1466 // Early exit if the lexical scope begins outside of the current block. 1467 if (LScopeBegin->getParent() != MBB) 1468 return false; 1469 MachineBasicBlock::const_reverse_iterator Pred(DbgValue); 1470 for (++Pred; Pred != MBB->rend(); ++Pred) { 1471 if (Pred->getFlag(MachineInstr::FrameSetup)) 1472 break; 1473 auto PredDL = Pred->getDebugLoc(); 1474 if (!PredDL || Pred->isMetaInstruction()) 1475 continue; 1476 // Check whether the instruction preceding the DBG_VALUE is in the same 1477 // (sub)scope as the DBG_VALUE. 1478 if (DL->getScope() == PredDL->getScope()) 1479 return false; 1480 auto *PredScope = LScopes.findLexicalScope(PredDL); 1481 if (!PredScope || LScope->dominates(PredScope)) 1482 return false; 1483 } 1484 1485 // If the range of the DBG_VALUE is open-ended, report success. 1486 if (!RangeEnd) 1487 return true; 1488 1489 // Fail if there are instructions belonging to our scope in another block. 1490 const MachineInstr *LScopeEnd = LSRange.back().second; 1491 if (LScopeEnd->getParent() != MBB) 1492 return false; 1493 1494 // Single, constant DBG_VALUEs in the prologue are promoted to be live 1495 // throughout the function. This is a hack, presumably for DWARF v2 and not 1496 // necessarily correct. It would be much better to use a dbg.declare instead 1497 // if we know the constant is live throughout the scope. 1498 if (DbgValue->getOperand(0).isImm() && MBB->pred_empty()) 1499 return true; 1500 1501 return false; 1502 } 1503 1504 /// Build the location list for all DBG_VALUEs in the function that 1505 /// describe the same variable. The resulting DebugLocEntries will have 1506 /// strict monotonically increasing begin addresses and will never 1507 /// overlap. If the resulting list has only one entry that is valid 1508 /// throughout variable's scope return true. 1509 // 1510 // See the definition of DbgValueHistoryMap::Entry for an explanation of the 1511 // different kinds of history map entries. One thing to be aware of is that if 1512 // a debug value is ended by another entry (rather than being valid until the 1513 // end of the function), that entry's instruction may or may not be included in 1514 // the range, depending on if the entry is a clobbering entry (it has an 1515 // instruction that clobbers one or more preceding locations), or if it is an 1516 // (overlapping) debug value entry. This distinction can be seen in the example 1517 // below. The first debug value is ended by the clobbering entry 2, and the 1518 // second and third debug values are ended by the overlapping debug value entry 1519 // 4. 1520 // 1521 // Input: 1522 // 1523 // History map entries [type, end index, mi] 1524 // 1525 // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)] 1526 // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)] 1527 // 2 | | [Clobber, $reg0 = [...], -, -] 1528 // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)] 1529 // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)] 1530 // 1531 // Output [start, end) [Value...]: 1532 // 1533 // [0-1) [(reg0, fragment 0, 32)] 1534 // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)] 1535 // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)] 1536 // [4-) [(@g, fragment 0, 96)] 1537 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc, 1538 const DbgValueHistoryMap::Entries &Entries) { 1539 using OpenRange = 1540 std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>; 1541 SmallVector<OpenRange, 4> OpenRanges; 1542 bool isSafeForSingleLocation = true; 1543 const MachineInstr *StartDebugMI = nullptr; 1544 const MachineInstr *EndMI = nullptr; 1545 1546 for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) { 1547 const MachineInstr *Instr = EI->getInstr(); 1548 1549 // Remove all values that are no longer live. 1550 size_t Index = std::distance(EB, EI); 1551 auto Last = 1552 remove_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; }); 1553 OpenRanges.erase(Last, OpenRanges.end()); 1554 1555 // If we are dealing with a clobbering entry, this iteration will result in 1556 // a location list entry starting after the clobbering instruction. 1557 const MCSymbol *StartLabel = 1558 EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr); 1559 assert(StartLabel && 1560 "Forgot label before/after instruction starting a range!"); 1561 1562 const MCSymbol *EndLabel; 1563 if (std::next(EI) == Entries.end()) { 1564 EndLabel = Asm->getFunctionEnd(); 1565 if (EI->isClobber()) 1566 EndMI = EI->getInstr(); 1567 } 1568 else if (std::next(EI)->isClobber()) 1569 EndLabel = getLabelAfterInsn(std::next(EI)->getInstr()); 1570 else 1571 EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr()); 1572 assert(EndLabel && "Forgot label after instruction ending a range!"); 1573 1574 if (EI->isDbgValue()) 1575 LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n"); 1576 1577 // If this history map entry has a debug value, add that to the list of 1578 // open ranges and check if its location is valid for a single value 1579 // location. 1580 if (EI->isDbgValue()) { 1581 // Do not add undef debug values, as they are redundant information in 1582 // the location list entries. An undef debug results in an empty location 1583 // description. If there are any non-undef fragments then padding pieces 1584 // with empty location descriptions will automatically be inserted, and if 1585 // all fragments are undef then the whole location list entry is 1586 // redundant. 1587 if (!Instr->isUndefDebugValue()) { 1588 auto Value = getDebugLocValue(Instr); 1589 OpenRanges.emplace_back(EI->getEndIndex(), Value); 1590 1591 // TODO: Add support for single value fragment locations. 1592 if (Instr->getDebugExpression()->isFragment()) 1593 isSafeForSingleLocation = false; 1594 1595 if (!StartDebugMI) 1596 StartDebugMI = Instr; 1597 } else { 1598 isSafeForSingleLocation = false; 1599 } 1600 } 1601 1602 // Location list entries with empty location descriptions are redundant 1603 // information in DWARF, so do not emit those. 1604 if (OpenRanges.empty()) 1605 continue; 1606 1607 // Omit entries with empty ranges as they do not have any effect in DWARF. 1608 if (StartLabel == EndLabel) { 1609 LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n"); 1610 continue; 1611 } 1612 1613 SmallVector<DbgValueLoc, 4> Values; 1614 for (auto &R : OpenRanges) 1615 Values.push_back(R.second); 1616 DebugLoc.emplace_back(StartLabel, EndLabel, Values); 1617 1618 // Attempt to coalesce the ranges of two otherwise identical 1619 // DebugLocEntries. 1620 auto CurEntry = DebugLoc.rbegin(); 1621 LLVM_DEBUG({ 1622 dbgs() << CurEntry->getValues().size() << " Values:\n"; 1623 for (auto &Value : CurEntry->getValues()) 1624 Value.dump(); 1625 dbgs() << "-----\n"; 1626 }); 1627 1628 auto PrevEntry = std::next(CurEntry); 1629 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) 1630 DebugLoc.pop_back(); 1631 } 1632 1633 return DebugLoc.size() == 1 && isSafeForSingleLocation && 1634 validThroughout(LScopes, StartDebugMI, EndMI); 1635 } 1636 1637 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU, 1638 LexicalScope &Scope, 1639 const DINode *Node, 1640 const DILocation *Location, 1641 const MCSymbol *Sym) { 1642 ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode()); 1643 if (isa<const DILocalVariable>(Node)) { 1644 ConcreteEntities.push_back( 1645 std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node), 1646 Location)); 1647 InfoHolder.addScopeVariable(&Scope, 1648 cast<DbgVariable>(ConcreteEntities.back().get())); 1649 } else if (isa<const DILabel>(Node)) { 1650 ConcreteEntities.push_back( 1651 std::make_unique<DbgLabel>(cast<const DILabel>(Node), 1652 Location, Sym)); 1653 InfoHolder.addScopeLabel(&Scope, 1654 cast<DbgLabel>(ConcreteEntities.back().get())); 1655 } 1656 return ConcreteEntities.back().get(); 1657 } 1658 1659 // Find variables for each lexical scope. 1660 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU, 1661 const DISubprogram *SP, 1662 DenseSet<InlinedEntity> &Processed) { 1663 // Grab the variable info that was squirreled away in the MMI side-table. 1664 collectVariableInfoFromMFTable(TheCU, Processed); 1665 1666 for (const auto &I : DbgValues) { 1667 InlinedEntity IV = I.first; 1668 if (Processed.count(IV)) 1669 continue; 1670 1671 // Instruction ranges, specifying where IV is accessible. 1672 const auto &HistoryMapEntries = I.second; 1673 if (HistoryMapEntries.empty()) 1674 continue; 1675 1676 LexicalScope *Scope = nullptr; 1677 const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first); 1678 if (const DILocation *IA = IV.second) 1679 Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA); 1680 else 1681 Scope = LScopes.findLexicalScope(LocalVar->getScope()); 1682 // If variable scope is not found then skip this variable. 1683 if (!Scope) 1684 continue; 1685 1686 Processed.insert(IV); 1687 DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU, 1688 *Scope, LocalVar, IV.second)); 1689 1690 const MachineInstr *MInsn = HistoryMapEntries.front().getInstr(); 1691 assert(MInsn->isDebugValue() && "History must begin with debug value"); 1692 1693 // Check if there is a single DBG_VALUE, valid throughout the var's scope. 1694 // If the history map contains a single debug value, there may be an 1695 // additional entry which clobbers the debug value. 1696 size_t HistSize = HistoryMapEntries.size(); 1697 bool SingleValueWithClobber = 1698 HistSize == 2 && HistoryMapEntries[1].isClobber(); 1699 if (HistSize == 1 || SingleValueWithClobber) { 1700 const auto *End = 1701 SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr; 1702 if (validThroughout(LScopes, MInsn, End)) { 1703 RegVar->initializeDbgValue(MInsn); 1704 continue; 1705 } 1706 } 1707 1708 // Do not emit location lists if .debug_loc secton is disabled. 1709 if (!useLocSection()) 1710 continue; 1711 1712 // Handle multiple DBG_VALUE instructions describing one variable. 1713 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn); 1714 1715 // Build the location list for this variable. 1716 SmallVector<DebugLocEntry, 8> Entries; 1717 bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries); 1718 1719 // Check whether buildLocationList managed to merge all locations to one 1720 // that is valid throughout the variable's scope. If so, produce single 1721 // value location. 1722 if (isValidSingleLocation) { 1723 RegVar->initializeDbgValue(Entries[0].getValues()[0]); 1724 continue; 1725 } 1726 1727 // If the variable has a DIBasicType, extract it. Basic types cannot have 1728 // unique identifiers, so don't bother resolving the type with the 1729 // identifier map. 1730 const DIBasicType *BT = dyn_cast<DIBasicType>( 1731 static_cast<const Metadata *>(LocalVar->getType())); 1732 1733 // Finalize the entry by lowering it into a DWARF bytestream. 1734 for (auto &Entry : Entries) 1735 Entry.finalize(*Asm, List, BT, TheCU); 1736 } 1737 1738 // For each InlinedEntity collected from DBG_LABEL instructions, convert to 1739 // DWARF-related DbgLabel. 1740 for (const auto &I : DbgLabels) { 1741 InlinedEntity IL = I.first; 1742 const MachineInstr *MI = I.second; 1743 if (MI == nullptr) 1744 continue; 1745 1746 LexicalScope *Scope = nullptr; 1747 const DILabel *Label = cast<DILabel>(IL.first); 1748 // The scope could have an extra lexical block file. 1749 const DILocalScope *LocalScope = 1750 Label->getScope()->getNonLexicalBlockFileScope(); 1751 // Get inlined DILocation if it is inlined label. 1752 if (const DILocation *IA = IL.second) 1753 Scope = LScopes.findInlinedScope(LocalScope, IA); 1754 else 1755 Scope = LScopes.findLexicalScope(LocalScope); 1756 // If label scope is not found then skip this label. 1757 if (!Scope) 1758 continue; 1759 1760 Processed.insert(IL); 1761 /// At this point, the temporary label is created. 1762 /// Save the temporary label to DbgLabel entity to get the 1763 /// actually address when generating Dwarf DIE. 1764 MCSymbol *Sym = getLabelBeforeInsn(MI); 1765 createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym); 1766 } 1767 1768 // Collect info for variables/labels that were optimized out. 1769 for (const DINode *DN : SP->getRetainedNodes()) { 1770 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 1771 continue; 1772 LexicalScope *Scope = nullptr; 1773 if (auto *DV = dyn_cast<DILocalVariable>(DN)) { 1774 Scope = LScopes.findLexicalScope(DV->getScope()); 1775 } else if (auto *DL = dyn_cast<DILabel>(DN)) { 1776 Scope = LScopes.findLexicalScope(DL->getScope()); 1777 } 1778 1779 if (Scope) 1780 createConcreteEntity(TheCU, *Scope, DN, nullptr); 1781 } 1782 } 1783 1784 // Process beginning of an instruction. 1785 void DwarfDebug::beginInstruction(const MachineInstr *MI) { 1786 DebugHandlerBase::beginInstruction(MI); 1787 assert(CurMI); 1788 1789 const auto *SP = MI->getMF()->getFunction().getSubprogram(); 1790 if (!SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 1791 return; 1792 1793 // Check if source location changes, but ignore DBG_VALUE and CFI locations. 1794 // If the instruction is part of the function frame setup code, do not emit 1795 // any line record, as there is no correspondence with any user code. 1796 if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup)) 1797 return; 1798 const DebugLoc &DL = MI->getDebugLoc(); 1799 // When we emit a line-0 record, we don't update PrevInstLoc; so look at 1800 // the last line number actually emitted, to see if it was line 0. 1801 unsigned LastAsmLine = 1802 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine(); 1803 1804 // Request a label after the call in order to emit AT_return_pc information 1805 // in call site entries. TODO: Add support for targets with delay slots. 1806 if (SP->areAllCallsDescribed() && MI->isCall() && !MI->hasDelaySlot()) 1807 requestLabelAfterInsn(MI); 1808 1809 if (DL == PrevInstLoc) { 1810 // If we have an ongoing unspecified location, nothing to do here. 1811 if (!DL) 1812 return; 1813 // We have an explicit location, same as the previous location. 1814 // But we might be coming back to it after a line 0 record. 1815 if (LastAsmLine == 0 && DL.getLine() != 0) { 1816 // Reinstate the source location but not marked as a statement. 1817 const MDNode *Scope = DL.getScope(); 1818 recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0); 1819 } 1820 return; 1821 } 1822 1823 if (!DL) { 1824 // We have an unspecified location, which might want to be line 0. 1825 // If we have already emitted a line-0 record, don't repeat it. 1826 if (LastAsmLine == 0) 1827 return; 1828 // If user said Don't Do That, don't do that. 1829 if (UnknownLocations == Disable) 1830 return; 1831 // See if we have a reason to emit a line-0 record now. 1832 // Reasons to emit a line-0 record include: 1833 // - User asked for it (UnknownLocations). 1834 // - Instruction has a label, so it's referenced from somewhere else, 1835 // possibly debug information; we want it to have a source location. 1836 // - Instruction is at the top of a block; we don't want to inherit the 1837 // location from the physically previous (maybe unrelated) block. 1838 if (UnknownLocations == Enable || PrevLabel || 1839 (PrevInstBB && PrevInstBB != MI->getParent())) { 1840 // Preserve the file and column numbers, if we can, to save space in 1841 // the encoded line table. 1842 // Do not update PrevInstLoc, it remembers the last non-0 line. 1843 const MDNode *Scope = nullptr; 1844 unsigned Column = 0; 1845 if (PrevInstLoc) { 1846 Scope = PrevInstLoc.getScope(); 1847 Column = PrevInstLoc.getCol(); 1848 } 1849 recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0); 1850 } 1851 return; 1852 } 1853 1854 // We have an explicit location, different from the previous location. 1855 // Don't repeat a line-0 record, but otherwise emit the new location. 1856 // (The new location might be an explicit line 0, which we do emit.) 1857 if (DL.getLine() == 0 && LastAsmLine == 0) 1858 return; 1859 unsigned Flags = 0; 1860 if (DL == PrologEndLoc) { 1861 Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT; 1862 PrologEndLoc = DebugLoc(); 1863 } 1864 // If the line changed, we call that a new statement; unless we went to 1865 // line 0 and came back, in which case it is not a new statement. 1866 unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine; 1867 if (DL.getLine() && DL.getLine() != OldLine) 1868 Flags |= DWARF2_FLAG_IS_STMT; 1869 1870 const MDNode *Scope = DL.getScope(); 1871 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); 1872 1873 // If we're not at line 0, remember this location. 1874 if (DL.getLine()) 1875 PrevInstLoc = DL; 1876 } 1877 1878 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) { 1879 // First known non-DBG_VALUE and non-frame setup location marks 1880 // the beginning of the function body. 1881 for (const auto &MBB : *MF) 1882 for (const auto &MI : MBB) 1883 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1884 MI.getDebugLoc()) 1885 return MI.getDebugLoc(); 1886 return DebugLoc(); 1887 } 1888 1889 /// Register a source line with debug info. Returns the unique label that was 1890 /// emitted and which provides correspondence to the source line list. 1891 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col, 1892 const MDNode *S, unsigned Flags, unsigned CUID, 1893 uint16_t DwarfVersion, 1894 ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) { 1895 StringRef Fn; 1896 unsigned FileNo = 1; 1897 unsigned Discriminator = 0; 1898 if (auto *Scope = cast_or_null<DIScope>(S)) { 1899 Fn = Scope->getFilename(); 1900 if (Line != 0 && DwarfVersion >= 4) 1901 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope)) 1902 Discriminator = LBF->getDiscriminator(); 1903 1904 FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID]) 1905 .getOrCreateSourceID(Scope->getFile()); 1906 } 1907 Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0, 1908 Discriminator, Fn); 1909 } 1910 1911 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF, 1912 unsigned CUID) { 1913 // Get beginning of function. 1914 if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) { 1915 // Ensure the compile unit is created if the function is called before 1916 // beginFunction(). 1917 (void)getOrCreateDwarfCompileUnit( 1918 MF.getFunction().getSubprogram()->getUnit()); 1919 // We'd like to list the prologue as "not statements" but GDB behaves 1920 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. 1921 const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram(); 1922 ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT, 1923 CUID, getDwarfVersion(), getUnits()); 1924 return PrologEndLoc; 1925 } 1926 return DebugLoc(); 1927 } 1928 1929 // Gather pre-function debug information. Assumes being called immediately 1930 // after the function entry point has been emitted. 1931 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) { 1932 CurFn = MF; 1933 1934 auto *SP = MF->getFunction().getSubprogram(); 1935 assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode()); 1936 if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 1937 return; 1938 1939 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 1940 1941 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function 1942 // belongs to so that we add to the correct per-cu line table in the 1943 // non-asm case. 1944 if (Asm->OutStreamer->hasRawTextSupport()) 1945 // Use a single line table if we are generating assembly. 1946 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 1947 else 1948 Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID()); 1949 1950 // Record beginning of function. 1951 PrologEndLoc = emitInitialLocDirective( 1952 *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID()); 1953 } 1954 1955 void DwarfDebug::skippedNonDebugFunction() { 1956 // If we don't have a subprogram for this function then there will be a hole 1957 // in the range information. Keep note of this by setting the previously used 1958 // section to nullptr. 1959 PrevCU = nullptr; 1960 CurFn = nullptr; 1961 } 1962 1963 // Gather and emit post-function debug information. 1964 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) { 1965 const DISubprogram *SP = MF->getFunction().getSubprogram(); 1966 1967 assert(CurFn == MF && 1968 "endFunction should be called with the same function as beginFunction"); 1969 1970 // Set DwarfDwarfCompileUnitID in MCContext to default value. 1971 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 1972 1973 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 1974 assert(!FnScope || SP == FnScope->getScopeNode()); 1975 DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit()); 1976 if (TheCU.getCUNode()->isDebugDirectivesOnly()) { 1977 PrevLabel = nullptr; 1978 CurFn = nullptr; 1979 return; 1980 } 1981 1982 DenseSet<InlinedEntity> Processed; 1983 collectEntityInfo(TheCU, SP, Processed); 1984 1985 // Add the range of this function to the list of ranges for the CU. 1986 TheCU.addRange({Asm->getFunctionBegin(), Asm->getFunctionEnd()}); 1987 1988 // Under -gmlt, skip building the subprogram if there are no inlined 1989 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram 1990 // is still needed as we need its source location. 1991 if (!TheCU.getCUNode()->getDebugInfoForProfiling() && 1992 TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly && 1993 LScopes.getAbstractScopesList().empty() && !IsDarwin) { 1994 assert(InfoHolder.getScopeVariables().empty()); 1995 PrevLabel = nullptr; 1996 CurFn = nullptr; 1997 return; 1998 } 1999 2000 #ifndef NDEBUG 2001 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size(); 2002 #endif 2003 // Construct abstract scopes. 2004 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { 2005 auto *SP = cast<DISubprogram>(AScope->getScopeNode()); 2006 for (const DINode *DN : SP->getRetainedNodes()) { 2007 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 2008 continue; 2009 2010 const MDNode *Scope = nullptr; 2011 if (auto *DV = dyn_cast<DILocalVariable>(DN)) 2012 Scope = DV->getScope(); 2013 else if (auto *DL = dyn_cast<DILabel>(DN)) 2014 Scope = DL->getScope(); 2015 else 2016 llvm_unreachable("Unexpected DI type!"); 2017 2018 // Collect info for variables/labels that were optimized out. 2019 ensureAbstractEntityIsCreated(TheCU, DN, Scope); 2020 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes 2021 && "ensureAbstractEntityIsCreated inserted abstract scopes"); 2022 } 2023 constructAbstractSubprogramScopeDIE(TheCU, AScope); 2024 } 2025 2026 ProcessedSPNodes.insert(SP); 2027 DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope); 2028 if (auto *SkelCU = TheCU.getSkeleton()) 2029 if (!LScopes.getAbstractScopesList().empty() && 2030 TheCU.getCUNode()->getSplitDebugInlining()) 2031 SkelCU->constructSubprogramScopeDIE(SP, FnScope); 2032 2033 // Construct call site entries. 2034 constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF); 2035 2036 // Clear debug info 2037 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the 2038 // DbgVariables except those that are also in AbstractVariables (since they 2039 // can be used cross-function) 2040 InfoHolder.getScopeVariables().clear(); 2041 InfoHolder.getScopeLabels().clear(); 2042 PrevLabel = nullptr; 2043 CurFn = nullptr; 2044 } 2045 2046 // Register a source line with debug info. Returns the unique label that was 2047 // emitted and which provides correspondence to the source line list. 2048 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, 2049 unsigned Flags) { 2050 ::recordSourceLine(*Asm, Line, Col, S, Flags, 2051 Asm->OutStreamer->getContext().getDwarfCompileUnitID(), 2052 getDwarfVersion(), getUnits()); 2053 } 2054 2055 //===----------------------------------------------------------------------===// 2056 // Emit Methods 2057 //===----------------------------------------------------------------------===// 2058 2059 // Emit the debug info section. 2060 void DwarfDebug::emitDebugInfo() { 2061 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2062 Holder.emitUnits(/* UseOffsets */ false); 2063 } 2064 2065 // Emit the abbreviation section. 2066 void DwarfDebug::emitAbbreviations() { 2067 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2068 2069 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); 2070 } 2071 2072 void DwarfDebug::emitStringOffsetsTableHeader() { 2073 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2074 Holder.getStringPool().emitStringOffsetsTableHeader( 2075 *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(), 2076 Holder.getStringOffsetsStartSym()); 2077 } 2078 2079 template <typename AccelTableT> 2080 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section, 2081 StringRef TableName) { 2082 Asm->OutStreamer->SwitchSection(Section); 2083 2084 // Emit the full data. 2085 emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol()); 2086 } 2087 2088 void DwarfDebug::emitAccelDebugNames() { 2089 // Don't emit anything if we have no compilation units to index. 2090 if (getUnits().empty()) 2091 return; 2092 2093 emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits()); 2094 } 2095 2096 // Emit visible names into a hashed accelerator table section. 2097 void DwarfDebug::emitAccelNames() { 2098 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), 2099 "Names"); 2100 } 2101 2102 // Emit objective C classes and categories into a hashed accelerator table 2103 // section. 2104 void DwarfDebug::emitAccelObjC() { 2105 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), 2106 "ObjC"); 2107 } 2108 2109 // Emit namespace dies into a hashed accelerator table. 2110 void DwarfDebug::emitAccelNamespaces() { 2111 emitAccel(AccelNamespace, 2112 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), 2113 "namespac"); 2114 } 2115 2116 // Emit type dies into a hashed accelerator table. 2117 void DwarfDebug::emitAccelTypes() { 2118 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), 2119 "types"); 2120 } 2121 2122 // Public name handling. 2123 // The format for the various pubnames: 2124 // 2125 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU 2126 // for the DIE that is named. 2127 // 2128 // gnu pubnames - offset/index value/name tuples where the offset is the offset 2129 // into the CU and the index value is computed according to the type of value 2130 // for the DIE that is named. 2131 // 2132 // For type units the offset is the offset of the skeleton DIE. For split dwarf 2133 // it's the offset within the debug_info/debug_types dwo section, however, the 2134 // reference in the pubname header doesn't change. 2135 2136 /// computeIndexValue - Compute the gdb index value for the DIE and CU. 2137 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, 2138 const DIE *Die) { 2139 // Entities that ended up only in a Type Unit reference the CU instead (since 2140 // the pub entry has offsets within the CU there's no real offset that can be 2141 // provided anyway). As it happens all such entities (namespaces and types, 2142 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out 2143 // not to be true it would be necessary to persist this information from the 2144 // point at which the entry is added to the index data structure - since by 2145 // the time the index is built from that, the original type/namespace DIE in a 2146 // type unit has already been destroyed so it can't be queried for properties 2147 // like tag, etc. 2148 if (Die->getTag() == dwarf::DW_TAG_compile_unit) 2149 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, 2150 dwarf::GIEL_EXTERNAL); 2151 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; 2152 2153 // We could have a specification DIE that has our most of our knowledge, 2154 // look for that now. 2155 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) { 2156 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry(); 2157 if (SpecDIE.findAttribute(dwarf::DW_AT_external)) 2158 Linkage = dwarf::GIEL_EXTERNAL; 2159 } else if (Die->findAttribute(dwarf::DW_AT_external)) 2160 Linkage = dwarf::GIEL_EXTERNAL; 2161 2162 switch (Die->getTag()) { 2163 case dwarf::DW_TAG_class_type: 2164 case dwarf::DW_TAG_structure_type: 2165 case dwarf::DW_TAG_union_type: 2166 case dwarf::DW_TAG_enumeration_type: 2167 return dwarf::PubIndexEntryDescriptor( 2168 dwarf::GIEK_TYPE, 2169 dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage()) 2170 ? dwarf::GIEL_EXTERNAL 2171 : dwarf::GIEL_STATIC); 2172 case dwarf::DW_TAG_typedef: 2173 case dwarf::DW_TAG_base_type: 2174 case dwarf::DW_TAG_subrange_type: 2175 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); 2176 case dwarf::DW_TAG_namespace: 2177 return dwarf::GIEK_TYPE; 2178 case dwarf::DW_TAG_subprogram: 2179 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); 2180 case dwarf::DW_TAG_variable: 2181 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); 2182 case dwarf::DW_TAG_enumerator: 2183 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, 2184 dwarf::GIEL_STATIC); 2185 default: 2186 return dwarf::GIEK_NONE; 2187 } 2188 } 2189 2190 /// emitDebugPubSections - Emit visible names and types into debug pubnames and 2191 /// pubtypes sections. 2192 void DwarfDebug::emitDebugPubSections() { 2193 for (const auto &NU : CUMap) { 2194 DwarfCompileUnit *TheU = NU.second; 2195 if (!TheU->hasDwarfPubSections()) 2196 continue; 2197 2198 bool GnuStyle = TheU->getCUNode()->getNameTableKind() == 2199 DICompileUnit::DebugNameTableKind::GNU; 2200 2201 Asm->OutStreamer->SwitchSection( 2202 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() 2203 : Asm->getObjFileLowering().getDwarfPubNamesSection()); 2204 emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames()); 2205 2206 Asm->OutStreamer->SwitchSection( 2207 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() 2208 : Asm->getObjFileLowering().getDwarfPubTypesSection()); 2209 emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes()); 2210 } 2211 } 2212 2213 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) { 2214 if (useSectionsAsReferences()) 2215 Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(), 2216 CU.getDebugSectionOffset()); 2217 else 2218 Asm->emitDwarfSymbolReference(CU.getLabelBegin()); 2219 } 2220 2221 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name, 2222 DwarfCompileUnit *TheU, 2223 const StringMap<const DIE *> &Globals) { 2224 if (auto *Skeleton = TheU->getSkeleton()) 2225 TheU = Skeleton; 2226 2227 // Emit the header. 2228 Asm->OutStreamer->AddComment("Length of Public " + Name + " Info"); 2229 MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin"); 2230 MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end"); 2231 Asm->emitLabelDifference(EndLabel, BeginLabel, 4); 2232 2233 Asm->OutStreamer->emitLabel(BeginLabel); 2234 2235 Asm->OutStreamer->AddComment("DWARF Version"); 2236 Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION); 2237 2238 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info"); 2239 emitSectionReference(*TheU); 2240 2241 Asm->OutStreamer->AddComment("Compilation Unit Length"); 2242 Asm->emitInt32(TheU->getLength()); 2243 2244 // Emit the pubnames for this compilation unit. 2245 for (const auto &GI : Globals) { 2246 const char *Name = GI.getKeyData(); 2247 const DIE *Entity = GI.second; 2248 2249 Asm->OutStreamer->AddComment("DIE offset"); 2250 Asm->emitInt32(Entity->getOffset()); 2251 2252 if (GnuStyle) { 2253 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); 2254 Asm->OutStreamer->AddComment( 2255 Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + 2256 ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); 2257 Asm->emitInt8(Desc.toBits()); 2258 } 2259 2260 Asm->OutStreamer->AddComment("External Name"); 2261 Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1)); 2262 } 2263 2264 Asm->OutStreamer->AddComment("End Mark"); 2265 Asm->emitInt32(0); 2266 Asm->OutStreamer->emitLabel(EndLabel); 2267 } 2268 2269 /// Emit null-terminated strings into a debug str section. 2270 void DwarfDebug::emitDebugStr() { 2271 MCSection *StringOffsetsSection = nullptr; 2272 if (useSegmentedStringOffsetsTable()) { 2273 emitStringOffsetsTableHeader(); 2274 StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection(); 2275 } 2276 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2277 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(), 2278 StringOffsetsSection, /* UseRelativeOffsets = */ true); 2279 } 2280 2281 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, 2282 const DebugLocStream::Entry &Entry, 2283 const DwarfCompileUnit *CU) { 2284 auto &&Comments = DebugLocs.getComments(Entry); 2285 auto Comment = Comments.begin(); 2286 auto End = Comments.end(); 2287 2288 // The expressions are inserted into a byte stream rather early (see 2289 // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that 2290 // need to reference a base_type DIE the offset of that DIE is not yet known. 2291 // To deal with this we instead insert a placeholder early and then extract 2292 // it here and replace it with the real reference. 2293 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2294 DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(), 2295 DebugLocs.getBytes(Entry).size()), 2296 Asm->getDataLayout().isLittleEndian(), PtrSize); 2297 DWARFExpression Expr(Data, PtrSize); 2298 2299 using Encoding = DWARFExpression::Operation::Encoding; 2300 uint64_t Offset = 0; 2301 for (auto &Op : Expr) { 2302 assert(Op.getCode() != dwarf::DW_OP_const_type && 2303 "3 operand ops not yet supported"); 2304 Streamer.EmitInt8(Op.getCode(), Comment != End ? *(Comment++) : ""); 2305 Offset++; 2306 for (unsigned I = 0; I < 2; ++I) { 2307 if (Op.getDescription().Op[I] == Encoding::SizeNA) 2308 continue; 2309 if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) { 2310 uint64_t Offset = 2311 CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset(); 2312 assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit"); 2313 Streamer.emitULEB128(Offset, "", ULEB128PadSize); 2314 // Make sure comments stay aligned. 2315 for (unsigned J = 0; J < ULEB128PadSize; ++J) 2316 if (Comment != End) 2317 Comment++; 2318 } else { 2319 for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J) 2320 Streamer.EmitInt8(Data.getData()[J], Comment != End ? *(Comment++) : ""); 2321 } 2322 Offset = Op.getOperandEndOffset(I); 2323 } 2324 assert(Offset == Op.getEndOffset()); 2325 } 2326 } 2327 2328 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT, 2329 const DbgValueLoc &Value, 2330 DwarfExpression &DwarfExpr) { 2331 auto *DIExpr = Value.getExpression(); 2332 DIExpressionCursor ExprCursor(DIExpr); 2333 DwarfExpr.addFragmentOffset(DIExpr); 2334 // Regular entry. 2335 if (Value.isInt()) { 2336 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed || 2337 BT->getEncoding() == dwarf::DW_ATE_signed_char)) 2338 DwarfExpr.addSignedConstant(Value.getInt()); 2339 else 2340 DwarfExpr.addUnsignedConstant(Value.getInt()); 2341 } else if (Value.isLocation()) { 2342 MachineLocation Location = Value.getLoc(); 2343 if (Location.isIndirect()) 2344 DwarfExpr.setMemoryLocationKind(); 2345 DIExpressionCursor Cursor(DIExpr); 2346 2347 if (DIExpr->isEntryValue()) { 2348 DwarfExpr.setEntryValueFlag(); 2349 DwarfExpr.beginEntryValueExpression(Cursor); 2350 } 2351 2352 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2353 if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) 2354 return; 2355 return DwarfExpr.addExpression(std::move(Cursor)); 2356 } else if (Value.isTargetIndexLocation()) { 2357 TargetIndexLocation Loc = Value.getTargetIndexLocation(); 2358 // TODO TargetIndexLocation is a target-independent. Currently only the WebAssembly-specific 2359 // encoding is supported. 2360 DwarfExpr.addWasmLocation(Loc.Index, Loc.Offset); 2361 } else if (Value.isConstantFP()) { 2362 APInt RawBytes = Value.getConstantFP()->getValueAPF().bitcastToAPInt(); 2363 DwarfExpr.addUnsignedConstant(RawBytes); 2364 } 2365 DwarfExpr.addExpression(std::move(ExprCursor)); 2366 } 2367 2368 void DebugLocEntry::finalize(const AsmPrinter &AP, 2369 DebugLocStream::ListBuilder &List, 2370 const DIBasicType *BT, 2371 DwarfCompileUnit &TheCU) { 2372 assert(!Values.empty() && 2373 "location list entries without values are redundant"); 2374 assert(Begin != End && "unexpected location list entry with empty range"); 2375 DebugLocStream::EntryBuilder Entry(List, Begin, End); 2376 BufferByteStreamer Streamer = Entry.getStreamer(); 2377 DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU); 2378 const DbgValueLoc &Value = Values[0]; 2379 if (Value.isFragment()) { 2380 // Emit all fragments that belong to the same variable and range. 2381 assert(llvm::all_of(Values, [](DbgValueLoc P) { 2382 return P.isFragment(); 2383 }) && "all values are expected to be fragments"); 2384 assert(std::is_sorted(Values.begin(), Values.end()) && 2385 "fragments are expected to be sorted"); 2386 2387 for (auto Fragment : Values) 2388 DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr); 2389 2390 } else { 2391 assert(Values.size() == 1 && "only fragments may have >1 value"); 2392 DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr); 2393 } 2394 DwarfExpr.finalize(); 2395 if (DwarfExpr.TagOffset) 2396 List.setTagOffset(*DwarfExpr.TagOffset); 2397 } 2398 2399 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry, 2400 const DwarfCompileUnit *CU) { 2401 // Emit the size. 2402 Asm->OutStreamer->AddComment("Loc expr size"); 2403 if (getDwarfVersion() >= 5) 2404 Asm->emitULEB128(DebugLocs.getBytes(Entry).size()); 2405 else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max()) 2406 Asm->emitInt16(DebugLocs.getBytes(Entry).size()); 2407 else { 2408 // The entry is too big to fit into 16 bit, drop it as there is nothing we 2409 // can do. 2410 Asm->emitInt16(0); 2411 return; 2412 } 2413 // Emit the entry. 2414 APByteStreamer Streamer(*Asm); 2415 emitDebugLocEntry(Streamer, Entry, CU); 2416 } 2417 2418 // Emit the header of a DWARF 5 range list table list table. Returns the symbol 2419 // that designates the end of the table for the caller to emit when the table is 2420 // complete. 2421 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm, 2422 const DwarfFile &Holder) { 2423 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2424 2425 Asm->OutStreamer->AddComment("Offset entry count"); 2426 Asm->emitInt32(Holder.getRangeLists().size()); 2427 Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym()); 2428 2429 for (const RangeSpanList &List : Holder.getRangeLists()) 2430 Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(), 4); 2431 2432 return TableEnd; 2433 } 2434 2435 // Emit the header of a DWARF 5 locations list table. Returns the symbol that 2436 // designates the end of the table for the caller to emit when the table is 2437 // complete. 2438 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm, 2439 const DwarfDebug &DD) { 2440 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2441 2442 const auto &DebugLocs = DD.getDebugLocs(); 2443 2444 Asm->OutStreamer->AddComment("Offset entry count"); 2445 Asm->emitInt32(DebugLocs.getLists().size()); 2446 Asm->OutStreamer->emitLabel(DebugLocs.getSym()); 2447 2448 for (const auto &List : DebugLocs.getLists()) 2449 Asm->emitLabelDifference(List.Label, DebugLocs.getSym(), 4); 2450 2451 return TableEnd; 2452 } 2453 2454 template <typename Ranges, typename PayloadEmitter> 2455 static void emitRangeList( 2456 DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R, 2457 const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair, 2458 unsigned StartxLength, unsigned EndOfList, 2459 StringRef (*StringifyEnum)(unsigned), 2460 bool ShouldUseBaseAddress, 2461 PayloadEmitter EmitPayload) { 2462 2463 auto Size = Asm->MAI->getCodePointerSize(); 2464 bool UseDwarf5 = DD.getDwarfVersion() >= 5; 2465 2466 // Emit our symbol so we can find the beginning of the range. 2467 Asm->OutStreamer->emitLabel(Sym); 2468 2469 // Gather all the ranges that apply to the same section so they can share 2470 // a base address entry. 2471 MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges; 2472 2473 for (const auto &Range : R) 2474 SectionRanges[&Range.Begin->getSection()].push_back(&Range); 2475 2476 const MCSymbol *CUBase = CU.getBaseAddress(); 2477 bool BaseIsSet = false; 2478 for (const auto &P : SectionRanges) { 2479 auto *Base = CUBase; 2480 if (!Base && ShouldUseBaseAddress) { 2481 const MCSymbol *Begin = P.second.front()->Begin; 2482 const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection()); 2483 if (!UseDwarf5) { 2484 Base = NewBase; 2485 BaseIsSet = true; 2486 Asm->OutStreamer->emitIntValue(-1, Size); 2487 Asm->OutStreamer->AddComment(" base address"); 2488 Asm->OutStreamer->emitSymbolValue(Base, Size); 2489 } else if (NewBase != Begin || P.second.size() > 1) { 2490 // Only use a base address if 2491 // * the existing pool address doesn't match (NewBase != Begin) 2492 // * or, there's more than one entry to share the base address 2493 Base = NewBase; 2494 BaseIsSet = true; 2495 Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx)); 2496 Asm->emitInt8(BaseAddressx); 2497 Asm->OutStreamer->AddComment(" base address index"); 2498 Asm->emitULEB128(DD.getAddressPool().getIndex(Base)); 2499 } 2500 } else if (BaseIsSet && !UseDwarf5) { 2501 BaseIsSet = false; 2502 assert(!Base); 2503 Asm->OutStreamer->emitIntValue(-1, Size); 2504 Asm->OutStreamer->emitIntValue(0, Size); 2505 } 2506 2507 for (const auto *RS : P.second) { 2508 const MCSymbol *Begin = RS->Begin; 2509 const MCSymbol *End = RS->End; 2510 assert(Begin && "Range without a begin symbol?"); 2511 assert(End && "Range without an end symbol?"); 2512 if (Base) { 2513 if (UseDwarf5) { 2514 // Emit offset_pair when we have a base. 2515 Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair)); 2516 Asm->emitInt8(OffsetPair); 2517 Asm->OutStreamer->AddComment(" starting offset"); 2518 Asm->emitLabelDifferenceAsULEB128(Begin, Base); 2519 Asm->OutStreamer->AddComment(" ending offset"); 2520 Asm->emitLabelDifferenceAsULEB128(End, Base); 2521 } else { 2522 Asm->emitLabelDifference(Begin, Base, Size); 2523 Asm->emitLabelDifference(End, Base, Size); 2524 } 2525 } else if (UseDwarf5) { 2526 Asm->OutStreamer->AddComment(StringifyEnum(StartxLength)); 2527 Asm->emitInt8(StartxLength); 2528 Asm->OutStreamer->AddComment(" start index"); 2529 Asm->emitULEB128(DD.getAddressPool().getIndex(Begin)); 2530 Asm->OutStreamer->AddComment(" length"); 2531 Asm->emitLabelDifferenceAsULEB128(End, Begin); 2532 } else { 2533 Asm->OutStreamer->emitSymbolValue(Begin, Size); 2534 Asm->OutStreamer->emitSymbolValue(End, Size); 2535 } 2536 EmitPayload(*RS); 2537 } 2538 } 2539 2540 if (UseDwarf5) { 2541 Asm->OutStreamer->AddComment(StringifyEnum(EndOfList)); 2542 Asm->emitInt8(EndOfList); 2543 } else { 2544 // Terminate the list with two 0 values. 2545 Asm->OutStreamer->emitIntValue(0, Size); 2546 Asm->OutStreamer->emitIntValue(0, Size); 2547 } 2548 } 2549 2550 // Handles emission of both debug_loclist / debug_loclist.dwo 2551 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) { 2552 emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List), 2553 *List.CU, dwarf::DW_LLE_base_addressx, 2554 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length, 2555 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString, 2556 /* ShouldUseBaseAddress */ true, 2557 [&](const DebugLocStream::Entry &E) { 2558 DD.emitDebugLocEntryLocation(E, List.CU); 2559 }); 2560 } 2561 2562 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) { 2563 if (DebugLocs.getLists().empty()) 2564 return; 2565 2566 Asm->OutStreamer->SwitchSection(Sec); 2567 2568 MCSymbol *TableEnd = nullptr; 2569 if (getDwarfVersion() >= 5) 2570 TableEnd = emitLoclistsTableHeader(Asm, *this); 2571 2572 for (const auto &List : DebugLocs.getLists()) 2573 emitLocList(*this, Asm, List); 2574 2575 if (TableEnd) 2576 Asm->OutStreamer->emitLabel(TableEnd); 2577 } 2578 2579 // Emit locations into the .debug_loc/.debug_loclists section. 2580 void DwarfDebug::emitDebugLoc() { 2581 emitDebugLocImpl( 2582 getDwarfVersion() >= 5 2583 ? Asm->getObjFileLowering().getDwarfLoclistsSection() 2584 : Asm->getObjFileLowering().getDwarfLocSection()); 2585 } 2586 2587 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section. 2588 void DwarfDebug::emitDebugLocDWO() { 2589 if (getDwarfVersion() >= 5) { 2590 emitDebugLocImpl( 2591 Asm->getObjFileLowering().getDwarfLoclistsDWOSection()); 2592 2593 return; 2594 } 2595 2596 for (const auto &List : DebugLocs.getLists()) { 2597 Asm->OutStreamer->SwitchSection( 2598 Asm->getObjFileLowering().getDwarfLocDWOSection()); 2599 Asm->OutStreamer->emitLabel(List.Label); 2600 2601 for (const auto &Entry : DebugLocs.getEntries(List)) { 2602 // GDB only supports startx_length in pre-standard split-DWARF. 2603 // (in v5 standard loclists, it currently* /only/ supports base_address + 2604 // offset_pair, so the implementations can't really share much since they 2605 // need to use different representations) 2606 // * as of October 2018, at least 2607 // 2608 // In v5 (see emitLocList), this uses SectionLabels to reuse existing 2609 // addresses in the address pool to minimize object size/relocations. 2610 Asm->emitInt8(dwarf::DW_LLE_startx_length); 2611 unsigned idx = AddrPool.getIndex(Entry.Begin); 2612 Asm->emitULEB128(idx); 2613 // Also the pre-standard encoding is slightly different, emitting this as 2614 // an address-length entry here, but its a ULEB128 in DWARFv5 loclists. 2615 Asm->emitLabelDifference(Entry.End, Entry.Begin, 4); 2616 emitDebugLocEntryLocation(Entry, List.CU); 2617 } 2618 Asm->emitInt8(dwarf::DW_LLE_end_of_list); 2619 } 2620 } 2621 2622 struct ArangeSpan { 2623 const MCSymbol *Start, *End; 2624 }; 2625 2626 // Emit a debug aranges section, containing a CU lookup for any 2627 // address we can tie back to a CU. 2628 void DwarfDebug::emitDebugARanges() { 2629 // Provides a unique id per text section. 2630 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap; 2631 2632 // Filter labels by section. 2633 for (const SymbolCU &SCU : ArangeLabels) { 2634 if (SCU.Sym->isInSection()) { 2635 // Make a note of this symbol and it's section. 2636 MCSection *Section = &SCU.Sym->getSection(); 2637 if (!Section->getKind().isMetadata()) 2638 SectionMap[Section].push_back(SCU); 2639 } else { 2640 // Some symbols (e.g. common/bss on mach-o) can have no section but still 2641 // appear in the output. This sucks as we rely on sections to build 2642 // arange spans. We can do it without, but it's icky. 2643 SectionMap[nullptr].push_back(SCU); 2644 } 2645 } 2646 2647 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans; 2648 2649 for (auto &I : SectionMap) { 2650 MCSection *Section = I.first; 2651 SmallVector<SymbolCU, 8> &List = I.second; 2652 if (List.size() < 1) 2653 continue; 2654 2655 // If we have no section (e.g. common), just write out 2656 // individual spans for each symbol. 2657 if (!Section) { 2658 for (const SymbolCU &Cur : List) { 2659 ArangeSpan Span; 2660 Span.Start = Cur.Sym; 2661 Span.End = nullptr; 2662 assert(Cur.CU); 2663 Spans[Cur.CU].push_back(Span); 2664 } 2665 continue; 2666 } 2667 2668 // Sort the symbols by offset within the section. 2669 llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) { 2670 unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0; 2671 unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0; 2672 2673 // Symbols with no order assigned should be placed at the end. 2674 // (e.g. section end labels) 2675 if (IA == 0) 2676 return false; 2677 if (IB == 0) 2678 return true; 2679 return IA < IB; 2680 }); 2681 2682 // Insert a final terminator. 2683 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section))); 2684 2685 // Build spans between each label. 2686 const MCSymbol *StartSym = List[0].Sym; 2687 for (size_t n = 1, e = List.size(); n < e; n++) { 2688 const SymbolCU &Prev = List[n - 1]; 2689 const SymbolCU &Cur = List[n]; 2690 2691 // Try and build the longest span we can within the same CU. 2692 if (Cur.CU != Prev.CU) { 2693 ArangeSpan Span; 2694 Span.Start = StartSym; 2695 Span.End = Cur.Sym; 2696 assert(Prev.CU); 2697 Spans[Prev.CU].push_back(Span); 2698 StartSym = Cur.Sym; 2699 } 2700 } 2701 } 2702 2703 // Start the dwarf aranges section. 2704 Asm->OutStreamer->SwitchSection( 2705 Asm->getObjFileLowering().getDwarfARangesSection()); 2706 2707 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2708 2709 // Build a list of CUs used. 2710 std::vector<DwarfCompileUnit *> CUs; 2711 for (const auto &it : Spans) { 2712 DwarfCompileUnit *CU = it.first; 2713 CUs.push_back(CU); 2714 } 2715 2716 // Sort the CU list (again, to ensure consistent output order). 2717 llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) { 2718 return A->getUniqueID() < B->getUniqueID(); 2719 }); 2720 2721 // Emit an arange table for each CU we used. 2722 for (DwarfCompileUnit *CU : CUs) { 2723 std::vector<ArangeSpan> &List = Spans[CU]; 2724 2725 // Describe the skeleton CU's offset and length, not the dwo file's. 2726 if (auto *Skel = CU->getSkeleton()) 2727 CU = Skel; 2728 2729 // Emit size of content not including length itself. 2730 unsigned ContentSize = 2731 sizeof(int16_t) + // DWARF ARange version number 2732 sizeof(int32_t) + // Offset of CU in the .debug_info section 2733 sizeof(int8_t) + // Pointer Size (in bytes) 2734 sizeof(int8_t); // Segment Size (in bytes) 2735 2736 unsigned TupleSize = PtrSize * 2; 2737 2738 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. 2739 unsigned Padding = 2740 offsetToAlignment(sizeof(int32_t) + ContentSize, Align(TupleSize)); 2741 2742 ContentSize += Padding; 2743 ContentSize += (List.size() + 1) * TupleSize; 2744 2745 // For each compile unit, write the list of spans it covers. 2746 Asm->OutStreamer->AddComment("Length of ARange Set"); 2747 Asm->emitInt32(ContentSize); 2748 Asm->OutStreamer->AddComment("DWARF Arange version number"); 2749 Asm->emitInt16(dwarf::DW_ARANGES_VERSION); 2750 Asm->OutStreamer->AddComment("Offset Into Debug Info Section"); 2751 emitSectionReference(*CU); 2752 Asm->OutStreamer->AddComment("Address Size (in bytes)"); 2753 Asm->emitInt8(PtrSize); 2754 Asm->OutStreamer->AddComment("Segment Size (in bytes)"); 2755 Asm->emitInt8(0); 2756 2757 Asm->OutStreamer->emitFill(Padding, 0xff); 2758 2759 for (const ArangeSpan &Span : List) { 2760 Asm->emitLabelReference(Span.Start, PtrSize); 2761 2762 // Calculate the size as being from the span start to it's end. 2763 if (Span.End) { 2764 Asm->emitLabelDifference(Span.End, Span.Start, PtrSize); 2765 } else { 2766 // For symbols without an end marker (e.g. common), we 2767 // write a single arange entry containing just that one symbol. 2768 uint64_t Size = SymSize[Span.Start]; 2769 if (Size == 0) 2770 Size = 1; 2771 2772 Asm->OutStreamer->emitIntValue(Size, PtrSize); 2773 } 2774 } 2775 2776 Asm->OutStreamer->AddComment("ARange terminator"); 2777 Asm->OutStreamer->emitIntValue(0, PtrSize); 2778 Asm->OutStreamer->emitIntValue(0, PtrSize); 2779 } 2780 } 2781 2782 /// Emit a single range list. We handle both DWARF v5 and earlier. 2783 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm, 2784 const RangeSpanList &List) { 2785 emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU, 2786 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair, 2787 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list, 2788 llvm::dwarf::RangeListEncodingString, 2789 List.CU->getCUNode()->getRangesBaseAddress() || 2790 DD.getDwarfVersion() >= 5, 2791 [](auto) {}); 2792 } 2793 2794 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) { 2795 if (Holder.getRangeLists().empty()) 2796 return; 2797 2798 assert(useRangesSection()); 2799 assert(!CUMap.empty()); 2800 assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { 2801 return !Pair.second->getCUNode()->isDebugDirectivesOnly(); 2802 })); 2803 2804 Asm->OutStreamer->SwitchSection(Section); 2805 2806 MCSymbol *TableEnd = nullptr; 2807 if (getDwarfVersion() >= 5) 2808 TableEnd = emitRnglistsTableHeader(Asm, Holder); 2809 2810 for (const RangeSpanList &List : Holder.getRangeLists()) 2811 emitRangeList(*this, Asm, List); 2812 2813 if (TableEnd) 2814 Asm->OutStreamer->emitLabel(TableEnd); 2815 } 2816 2817 /// Emit address ranges into the .debug_ranges section or into the DWARF v5 2818 /// .debug_rnglists section. 2819 void DwarfDebug::emitDebugRanges() { 2820 const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2821 2822 emitDebugRangesImpl(Holder, 2823 getDwarfVersion() >= 5 2824 ? Asm->getObjFileLowering().getDwarfRnglistsSection() 2825 : Asm->getObjFileLowering().getDwarfRangesSection()); 2826 } 2827 2828 void DwarfDebug::emitDebugRangesDWO() { 2829 emitDebugRangesImpl(InfoHolder, 2830 Asm->getObjFileLowering().getDwarfRnglistsDWOSection()); 2831 } 2832 2833 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) { 2834 for (auto *MN : Nodes) { 2835 if (auto *M = dyn_cast<DIMacro>(MN)) 2836 emitMacro(*M); 2837 else if (auto *F = dyn_cast<DIMacroFile>(MN)) 2838 emitMacroFile(*F, U); 2839 else 2840 llvm_unreachable("Unexpected DI type!"); 2841 } 2842 } 2843 2844 void DwarfDebug::emitMacro(DIMacro &M) { 2845 Asm->emitULEB128(M.getMacinfoType()); 2846 Asm->emitULEB128(M.getLine()); 2847 StringRef Name = M.getName(); 2848 StringRef Value = M.getValue(); 2849 Asm->OutStreamer->emitBytes(Name); 2850 if (!Value.empty()) { 2851 // There should be one space between macro name and macro value. 2852 Asm->emitInt8(' '); 2853 Asm->OutStreamer->emitBytes(Value); 2854 } 2855 Asm->emitInt8('\0'); 2856 } 2857 2858 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) { 2859 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file); 2860 Asm->emitULEB128(dwarf::DW_MACINFO_start_file); 2861 Asm->emitULEB128(F.getLine()); 2862 Asm->emitULEB128(U.getOrCreateSourceID(F.getFile())); 2863 handleMacroNodes(F.getElements(), U); 2864 Asm->emitULEB128(dwarf::DW_MACINFO_end_file); 2865 } 2866 2867 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) { 2868 for (const auto &P : CUMap) { 2869 auto &TheCU = *P.second; 2870 auto *SkCU = TheCU.getSkeleton(); 2871 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 2872 auto *CUNode = cast<DICompileUnit>(P.first); 2873 DIMacroNodeArray Macros = CUNode->getMacros(); 2874 if (Macros.empty()) 2875 continue; 2876 Asm->OutStreamer->SwitchSection(Section); 2877 Asm->OutStreamer->emitLabel(U.getMacroLabelBegin()); 2878 handleMacroNodes(Macros, U); 2879 Asm->OutStreamer->AddComment("End Of Macro List Mark"); 2880 Asm->emitInt8(0); 2881 } 2882 } 2883 2884 /// Emit macros into a debug macinfo section. 2885 void DwarfDebug::emitDebugMacinfo() { 2886 emitDebugMacinfoImpl(Asm->getObjFileLowering().getDwarfMacinfoSection()); 2887 } 2888 2889 void DwarfDebug::emitDebugMacinfoDWO() { 2890 emitDebugMacinfoImpl(Asm->getObjFileLowering().getDwarfMacinfoDWOSection()); 2891 } 2892 2893 // DWARF5 Experimental Separate Dwarf emitters. 2894 2895 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die, 2896 std::unique_ptr<DwarfCompileUnit> NewU) { 2897 2898 if (!CompilationDir.empty()) 2899 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 2900 addGnuPubAttributes(*NewU, Die); 2901 2902 SkeletonHolder.addUnit(std::move(NewU)); 2903 } 2904 2905 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) { 2906 2907 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 2908 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder, 2909 UnitKind::Skeleton); 2910 DwarfCompileUnit &NewCU = *OwnedUnit; 2911 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 2912 2913 NewCU.initStmtList(); 2914 2915 if (useSegmentedStringOffsetsTable()) 2916 NewCU.addStringOffsetsStart(); 2917 2918 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit)); 2919 2920 return NewCU; 2921 } 2922 2923 // Emit the .debug_info.dwo section for separated dwarf. This contains the 2924 // compile units that would normally be in debug_info. 2925 void DwarfDebug::emitDebugInfoDWO() { 2926 assert(useSplitDwarf() && "No split dwarf debug info?"); 2927 // Don't emit relocations into the dwo file. 2928 InfoHolder.emitUnits(/* UseOffsets */ true); 2929 } 2930 2931 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the 2932 // abbreviations for the .debug_info.dwo section. 2933 void DwarfDebug::emitDebugAbbrevDWO() { 2934 assert(useSplitDwarf() && "No split dwarf?"); 2935 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection()); 2936 } 2937 2938 void DwarfDebug::emitDebugLineDWO() { 2939 assert(useSplitDwarf() && "No split dwarf?"); 2940 SplitTypeUnitFileTable.Emit( 2941 *Asm->OutStreamer, MCDwarfLineTableParams(), 2942 Asm->getObjFileLowering().getDwarfLineDWOSection()); 2943 } 2944 2945 void DwarfDebug::emitStringOffsetsTableHeaderDWO() { 2946 assert(useSplitDwarf() && "No split dwarf?"); 2947 InfoHolder.getStringPool().emitStringOffsetsTableHeader( 2948 *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(), 2949 InfoHolder.getStringOffsetsStartSym()); 2950 } 2951 2952 // Emit the .debug_str.dwo section for separated dwarf. This contains the 2953 // string section and is identical in format to traditional .debug_str 2954 // sections. 2955 void DwarfDebug::emitDebugStrDWO() { 2956 if (useSegmentedStringOffsetsTable()) 2957 emitStringOffsetsTableHeaderDWO(); 2958 assert(useSplitDwarf() && "No split dwarf?"); 2959 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection(); 2960 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), 2961 OffSec, /* UseRelativeOffsets = */ false); 2962 } 2963 2964 // Emit address pool. 2965 void DwarfDebug::emitDebugAddr() { 2966 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection()); 2967 } 2968 2969 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) { 2970 if (!useSplitDwarf()) 2971 return nullptr; 2972 const DICompileUnit *DIUnit = CU.getCUNode(); 2973 SplitTypeUnitFileTable.maybeSetRootFile( 2974 DIUnit->getDirectory(), DIUnit->getFilename(), 2975 CU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource()); 2976 return &SplitTypeUnitFileTable; 2977 } 2978 2979 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) { 2980 MD5 Hash; 2981 Hash.update(Identifier); 2982 // ... take the least significant 8 bytes and return those. Our MD5 2983 // implementation always returns its results in little endian, so we actually 2984 // need the "high" word. 2985 MD5::MD5Result Result; 2986 Hash.final(Result); 2987 return Result.high(); 2988 } 2989 2990 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU, 2991 StringRef Identifier, DIE &RefDie, 2992 const DICompositeType *CTy) { 2993 // Fast path if we're building some type units and one has already used the 2994 // address pool we know we're going to throw away all this work anyway, so 2995 // don't bother building dependent types. 2996 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed()) 2997 return; 2998 2999 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0)); 3000 if (!Ins.second) { 3001 CU.addDIETypeSignature(RefDie, Ins.first->second); 3002 return; 3003 } 3004 3005 bool TopLevelType = TypeUnitsUnderConstruction.empty(); 3006 AddrPool.resetUsedFlag(); 3007 3008 auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder, 3009 getDwoLineTable(CU)); 3010 DwarfTypeUnit &NewTU = *OwnedUnit; 3011 DIE &UnitDie = NewTU.getUnitDie(); 3012 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy); 3013 3014 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 3015 CU.getLanguage()); 3016 3017 uint64_t Signature = makeTypeSignature(Identifier); 3018 NewTU.setTypeSignature(Signature); 3019 Ins.first->second = Signature; 3020 3021 if (useSplitDwarf()) { 3022 MCSection *Section = 3023 getDwarfVersion() <= 4 3024 ? Asm->getObjFileLowering().getDwarfTypesDWOSection() 3025 : Asm->getObjFileLowering().getDwarfInfoDWOSection(); 3026 NewTU.setSection(Section); 3027 } else { 3028 MCSection *Section = 3029 getDwarfVersion() <= 4 3030 ? Asm->getObjFileLowering().getDwarfTypesSection(Signature) 3031 : Asm->getObjFileLowering().getDwarfInfoSection(Signature); 3032 NewTU.setSection(Section); 3033 // Non-split type units reuse the compile unit's line table. 3034 CU.applyStmtList(UnitDie); 3035 } 3036 3037 // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type 3038 // units. 3039 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 3040 NewTU.addStringOffsetsStart(); 3041 3042 NewTU.setType(NewTU.createTypeDIE(CTy)); 3043 3044 if (TopLevelType) { 3045 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction); 3046 TypeUnitsUnderConstruction.clear(); 3047 3048 // Types referencing entries in the address table cannot be placed in type 3049 // units. 3050 if (AddrPool.hasBeenUsed()) { 3051 3052 // Remove all the types built while building this type. 3053 // This is pessimistic as some of these types might not be dependent on 3054 // the type that used an address. 3055 for (const auto &TU : TypeUnitsToAdd) 3056 TypeSignatures.erase(TU.second); 3057 3058 // Construct this type in the CU directly. 3059 // This is inefficient because all the dependent types will be rebuilt 3060 // from scratch, including building them in type units, discovering that 3061 // they depend on addresses, throwing them out and rebuilding them. 3062 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy)); 3063 return; 3064 } 3065 3066 // If the type wasn't dependent on fission addresses, finish adding the type 3067 // and all its dependent types. 3068 for (auto &TU : TypeUnitsToAdd) { 3069 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get()); 3070 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf()); 3071 } 3072 } 3073 CU.addDIETypeSignature(RefDie, Signature); 3074 } 3075 3076 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD) 3077 : DD(DD), 3078 TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)) { 3079 DD->TypeUnitsUnderConstruction.clear(); 3080 assert(TypeUnitsUnderConstruction.empty() || !DD->AddrPool.hasBeenUsed()); 3081 } 3082 3083 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() { 3084 DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction); 3085 DD->AddrPool.resetUsedFlag(); 3086 } 3087 3088 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() { 3089 return NonTypeUnitContext(this); 3090 } 3091 3092 // Add the Name along with its companion DIE to the appropriate accelerator 3093 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for 3094 // AccelTableKind::Apple, we use the table we got as an argument). If 3095 // accelerator tables are disabled, this function does nothing. 3096 template <typename DataT> 3097 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU, 3098 AccelTable<DataT> &AppleAccel, StringRef Name, 3099 const DIE &Die) { 3100 if (getAccelTableKind() == AccelTableKind::None) 3101 return; 3102 3103 if (getAccelTableKind() != AccelTableKind::Apple && 3104 CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default) 3105 return; 3106 3107 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 3108 DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name); 3109 3110 switch (getAccelTableKind()) { 3111 case AccelTableKind::Apple: 3112 AppleAccel.addName(Ref, Die); 3113 break; 3114 case AccelTableKind::Dwarf: 3115 AccelDebugNames.addName(Ref, Die); 3116 break; 3117 case AccelTableKind::Default: 3118 llvm_unreachable("Default should have already been resolved."); 3119 case AccelTableKind::None: 3120 llvm_unreachable("None handled above"); 3121 } 3122 } 3123 3124 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name, 3125 const DIE &Die) { 3126 addAccelNameImpl(CU, AccelNames, Name, Die); 3127 } 3128 3129 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name, 3130 const DIE &Die) { 3131 // ObjC names go only into the Apple accelerator tables. 3132 if (getAccelTableKind() == AccelTableKind::Apple) 3133 addAccelNameImpl(CU, AccelObjC, Name, Die); 3134 } 3135 3136 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name, 3137 const DIE &Die) { 3138 addAccelNameImpl(CU, AccelNamespace, Name, Die); 3139 } 3140 3141 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name, 3142 const DIE &Die, char Flags) { 3143 addAccelNameImpl(CU, AccelTypes, Name, Die); 3144 } 3145 3146 uint16_t DwarfDebug::getDwarfVersion() const { 3147 return Asm->OutStreamer->getContext().getDwarfVersion(); 3148 } 3149 3150 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) { 3151 return SectionLabels.find(S)->second; 3152 } 3153 void DwarfDebug::insertSectionLabel(const MCSymbol *S) { 3154 SectionLabels.insert(std::make_pair(&S->getSection(), S)); 3155 } 3156