1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing dwarf debug info into asm files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DwarfDebug.h" 14 #include "ByteStreamer.h" 15 #include "DIEHash.h" 16 #include "DebugLocEntry.h" 17 #include "DebugLocStream.h" 18 #include "DwarfCompileUnit.h" 19 #include "DwarfExpression.h" 20 #include "DwarfFile.h" 21 #include "DwarfUnit.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/DenseSet.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/BinaryFormat/Dwarf.h" 33 #include "llvm/CodeGen/AccelTable.h" 34 #include "llvm/CodeGen/AsmPrinter.h" 35 #include "llvm/CodeGen/DIE.h" 36 #include "llvm/CodeGen/LexicalScopes.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineInstr.h" 40 #include "llvm/CodeGen/MachineModuleInfo.h" 41 #include "llvm/CodeGen/MachineOperand.h" 42 #include "llvm/CodeGen/TargetInstrInfo.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/DebugInfo/DWARF/DWARFExpression.h" 47 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GlobalVariable.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/MC/MCAsmInfo.h" 55 #include "llvm/MC/MCContext.h" 56 #include "llvm/MC/MCDwarf.h" 57 #include "llvm/MC/MCSection.h" 58 #include "llvm/MC/MCStreamer.h" 59 #include "llvm/MC/MCSymbol.h" 60 #include "llvm/MC/MCTargetOptions.h" 61 #include "llvm/MC/MachineLocation.h" 62 #include "llvm/MC/SectionKind.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MD5.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/Timer.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Target/TargetLoweringObjectFile.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include "llvm/Target/TargetOptions.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <iterator> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 #define DEBUG_TYPE "dwarfdebug" 87 88 STATISTIC(NumCSParams, "Number of dbg call site params created"); 89 90 static cl::opt<bool> 91 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 92 cl::desc("Disable debug info printing")); 93 94 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier( 95 "use-dwarf-ranges-base-address-specifier", cl::Hidden, 96 cl::desc("Use base address specifiers in debug_ranges"), cl::init(false)); 97 98 static cl::opt<bool> GenerateARangeSection("generate-arange-section", 99 cl::Hidden, 100 cl::desc("Generate dwarf aranges"), 101 cl::init(false)); 102 103 static cl::opt<bool> 104 GenerateDwarfTypeUnits("generate-type-units", cl::Hidden, 105 cl::desc("Generate DWARF4 type units."), 106 cl::init(false)); 107 108 static cl::opt<bool> SplitDwarfCrossCuReferences( 109 "split-dwarf-cross-cu-references", cl::Hidden, 110 cl::desc("Enable cross-cu references in DWO files"), cl::init(false)); 111 112 enum DefaultOnOff { Default, Enable, Disable }; 113 114 static cl::opt<DefaultOnOff> UnknownLocations( 115 "use-unknown-locations", cl::Hidden, 116 cl::desc("Make an absence of debug location information explicit."), 117 cl::values(clEnumVal(Default, "At top of block or after label"), 118 clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")), 119 cl::init(Default)); 120 121 static cl::opt<AccelTableKind> AccelTables( 122 "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."), 123 cl::values(clEnumValN(AccelTableKind::Default, "Default", 124 "Default for platform"), 125 clEnumValN(AccelTableKind::None, "Disable", "Disabled."), 126 clEnumValN(AccelTableKind::Apple, "Apple", "Apple"), 127 clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")), 128 cl::init(AccelTableKind::Default)); 129 130 static cl::opt<DefaultOnOff> 131 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden, 132 cl::desc("Use inlined strings rather than string section."), 133 cl::values(clEnumVal(Default, "Default for platform"), 134 clEnumVal(Enable, "Enabled"), 135 clEnumVal(Disable, "Disabled")), 136 cl::init(Default)); 137 138 static cl::opt<bool> 139 NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden, 140 cl::desc("Disable emission .debug_ranges section."), 141 cl::init(false)); 142 143 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences( 144 "dwarf-sections-as-references", cl::Hidden, 145 cl::desc("Use sections+offset as references rather than labels."), 146 cl::values(clEnumVal(Default, "Default for platform"), 147 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 148 cl::init(Default)); 149 150 enum LinkageNameOption { 151 DefaultLinkageNames, 152 AllLinkageNames, 153 AbstractLinkageNames 154 }; 155 156 static cl::opt<LinkageNameOption> 157 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden, 158 cl::desc("Which DWARF linkage-name attributes to emit."), 159 cl::values(clEnumValN(DefaultLinkageNames, "Default", 160 "Default for platform"), 161 clEnumValN(AllLinkageNames, "All", "All"), 162 clEnumValN(AbstractLinkageNames, "Abstract", 163 "Abstract subprograms")), 164 cl::init(DefaultLinkageNames)); 165 166 static const char *const DWARFGroupName = "dwarf"; 167 static const char *const DWARFGroupDescription = "DWARF Emission"; 168 static const char *const DbgTimerName = "writer"; 169 static const char *const DbgTimerDescription = "DWARF Debug Writer"; 170 static constexpr unsigned ULEB128PadSize = 4; 171 172 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) { 173 getActiveStreamer().EmitInt8( 174 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op) 175 : dwarf::OperationEncodingString(Op)); 176 } 177 178 void DebugLocDwarfExpression::emitSigned(int64_t Value) { 179 getActiveStreamer().EmitSLEB128(Value, Twine(Value)); 180 } 181 182 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) { 183 getActiveStreamer().EmitULEB128(Value, Twine(Value)); 184 } 185 186 void DebugLocDwarfExpression::emitData1(uint8_t Value) { 187 getActiveStreamer().EmitInt8(Value, Twine(Value)); 188 } 189 190 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) { 191 assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit"); 192 getActiveStreamer().EmitULEB128(Idx, Twine(Idx), ULEB128PadSize); 193 } 194 195 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI, 196 unsigned MachineReg) { 197 // This information is not available while emitting .debug_loc entries. 198 return false; 199 } 200 201 void DebugLocDwarfExpression::enableTemporaryBuffer() { 202 assert(!IsBuffering && "Already buffering?"); 203 if (!TmpBuf) 204 TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments); 205 IsBuffering = true; 206 } 207 208 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; } 209 210 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() { 211 return TmpBuf ? TmpBuf->Bytes.size() : 0; 212 } 213 214 void DebugLocDwarfExpression::commitTemporaryBuffer() { 215 if (!TmpBuf) 216 return; 217 for (auto Byte : enumerate(TmpBuf->Bytes)) { 218 const char *Comment = (Byte.index() < TmpBuf->Comments.size()) 219 ? TmpBuf->Comments[Byte.index()].c_str() 220 : ""; 221 OutBS.EmitInt8(Byte.value(), Comment); 222 } 223 TmpBuf->Bytes.clear(); 224 TmpBuf->Comments.clear(); 225 } 226 227 const DIType *DbgVariable::getType() const { 228 return getVariable()->getType(); 229 } 230 231 /// Get .debug_loc entry for the instruction range starting at MI. 232 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) { 233 const DIExpression *Expr = MI->getDebugExpression(); 234 assert(MI->getNumOperands() == 4); 235 if (MI->getOperand(0).isReg()) { 236 auto RegOp = MI->getOperand(0); 237 auto Op1 = MI->getOperand(1); 238 // If the second operand is an immediate, this is a 239 // register-indirect address. 240 assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset"); 241 MachineLocation MLoc(RegOp.getReg(), Op1.isImm()); 242 return DbgValueLoc(Expr, MLoc); 243 } 244 if (MI->getOperand(0).isImm()) 245 return DbgValueLoc(Expr, MI->getOperand(0).getImm()); 246 if (MI->getOperand(0).isFPImm()) 247 return DbgValueLoc(Expr, MI->getOperand(0).getFPImm()); 248 if (MI->getOperand(0).isCImm()) 249 return DbgValueLoc(Expr, MI->getOperand(0).getCImm()); 250 251 llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!"); 252 } 253 254 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) { 255 assert(FrameIndexExprs.empty() && "Already initialized?"); 256 assert(!ValueLoc.get() && "Already initialized?"); 257 258 assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable"); 259 assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() && 260 "Wrong inlined-at"); 261 262 ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue)); 263 if (auto *E = DbgValue->getDebugExpression()) 264 if (E->getNumElements()) 265 FrameIndexExprs.push_back({0, E}); 266 } 267 268 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const { 269 if (FrameIndexExprs.size() == 1) 270 return FrameIndexExprs; 271 272 assert(llvm::all_of(FrameIndexExprs, 273 [](const FrameIndexExpr &A) { 274 return A.Expr->isFragment(); 275 }) && 276 "multiple FI expressions without DW_OP_LLVM_fragment"); 277 llvm::sort(FrameIndexExprs, 278 [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool { 279 return A.Expr->getFragmentInfo()->OffsetInBits < 280 B.Expr->getFragmentInfo()->OffsetInBits; 281 }); 282 283 return FrameIndexExprs; 284 } 285 286 void DbgVariable::addMMIEntry(const DbgVariable &V) { 287 assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry"); 288 assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry"); 289 assert(V.getVariable() == getVariable() && "conflicting variable"); 290 assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location"); 291 292 assert(!FrameIndexExprs.empty() && "Expected an MMI entry"); 293 assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry"); 294 295 // FIXME: This logic should not be necessary anymore, as we now have proper 296 // deduplication. However, without it, we currently run into the assertion 297 // below, which means that we are likely dealing with broken input, i.e. two 298 // non-fragment entries for the same variable at different frame indices. 299 if (FrameIndexExprs.size()) { 300 auto *Expr = FrameIndexExprs.back().Expr; 301 if (!Expr || !Expr->isFragment()) 302 return; 303 } 304 305 for (const auto &FIE : V.FrameIndexExprs) 306 // Ignore duplicate entries. 307 if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) { 308 return FIE.FI == Other.FI && FIE.Expr == Other.Expr; 309 })) 310 FrameIndexExprs.push_back(FIE); 311 312 assert((FrameIndexExprs.size() == 1 || 313 llvm::all_of(FrameIndexExprs, 314 [](FrameIndexExpr &FIE) { 315 return FIE.Expr && FIE.Expr->isFragment(); 316 })) && 317 "conflicting locations for variable"); 318 } 319 320 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion, 321 bool GenerateTypeUnits, 322 DebuggerKind Tuning, 323 const Triple &TT) { 324 // Honor an explicit request. 325 if (AccelTables != AccelTableKind::Default) 326 return AccelTables; 327 328 // Accelerator tables with type units are currently not supported. 329 if (GenerateTypeUnits) 330 return AccelTableKind::None; 331 332 // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5 333 // always implies debug_names. For lower standard versions we use apple 334 // accelerator tables on apple platforms and debug_names elsewhere. 335 if (DwarfVersion >= 5) 336 return AccelTableKind::Dwarf; 337 if (Tuning == DebuggerKind::LLDB) 338 return TT.isOSBinFormatMachO() ? AccelTableKind::Apple 339 : AccelTableKind::Dwarf; 340 return AccelTableKind::None; 341 } 342 343 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M) 344 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()), 345 InfoHolder(A, "info_string", DIEValueAllocator), 346 SkeletonHolder(A, "skel_string", DIEValueAllocator), 347 IsDarwin(A->TM.getTargetTriple().isOSDarwin()) { 348 const Triple &TT = Asm->TM.getTargetTriple(); 349 350 // Make sure we know our "debugger tuning". The target option takes 351 // precedence; fall back to triple-based defaults. 352 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default) 353 DebuggerTuning = Asm->TM.Options.DebuggerTuning; 354 else if (IsDarwin) 355 DebuggerTuning = DebuggerKind::LLDB; 356 else if (TT.isPS4CPU()) 357 DebuggerTuning = DebuggerKind::SCE; 358 else 359 DebuggerTuning = DebuggerKind::GDB; 360 361 if (DwarfInlinedStrings == Default) 362 UseInlineStrings = TT.isNVPTX(); 363 else 364 UseInlineStrings = DwarfInlinedStrings == Enable; 365 366 UseLocSection = !TT.isNVPTX(); 367 368 HasAppleExtensionAttributes = tuneForLLDB(); 369 370 // Handle split DWARF. 371 HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty(); 372 373 // SCE defaults to linkage names only for abstract subprograms. 374 if (DwarfLinkageNames == DefaultLinkageNames) 375 UseAllLinkageNames = !tuneForSCE(); 376 else 377 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames; 378 379 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; 380 unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber 381 : MMI->getModule()->getDwarfVersion(); 382 // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2. 383 DwarfVersion = 384 TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION); 385 386 UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX(); 387 388 // Use sections as references. Force for NVPTX. 389 if (DwarfSectionsAsReferences == Default) 390 UseSectionsAsReferences = TT.isNVPTX(); 391 else 392 UseSectionsAsReferences = DwarfSectionsAsReferences == Enable; 393 394 // Don't generate type units for unsupported object file formats. 395 GenerateTypeUnits = 396 A->TM.getTargetTriple().isOSBinFormatELF() && GenerateDwarfTypeUnits; 397 398 TheAccelTableKind = computeAccelTableKind( 399 DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple()); 400 401 // Work around a GDB bug. GDB doesn't support the standard opcode; 402 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which 403 // is defined as of DWARF 3. 404 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented 405 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616 406 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3; 407 408 // GDB does not fully support the DWARF 4 representation for bitfields. 409 UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB(); 410 411 // The DWARF v5 string offsets table has - possibly shared - contributions 412 // from each compile and type unit each preceded by a header. The string 413 // offsets table used by the pre-DWARF v5 split-DWARF implementation uses 414 // a monolithic string offsets table without any header. 415 UseSegmentedStringOffsetsTable = DwarfVersion >= 5; 416 417 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion); 418 } 419 420 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. 421 DwarfDebug::~DwarfDebug() = default; 422 423 static bool isObjCClass(StringRef Name) { 424 return Name.startswith("+") || Name.startswith("-"); 425 } 426 427 static bool hasObjCCategory(StringRef Name) { 428 if (!isObjCClass(Name)) 429 return false; 430 431 return Name.find(") ") != StringRef::npos; 432 } 433 434 static void getObjCClassCategory(StringRef In, StringRef &Class, 435 StringRef &Category) { 436 if (!hasObjCCategory(In)) { 437 Class = In.slice(In.find('[') + 1, In.find(' ')); 438 Category = ""; 439 return; 440 } 441 442 Class = In.slice(In.find('[') + 1, In.find('(')); 443 Category = In.slice(In.find('[') + 1, In.find(' ')); 444 } 445 446 static StringRef getObjCMethodName(StringRef In) { 447 return In.slice(In.find(' ') + 1, In.find(']')); 448 } 449 450 // Add the various names to the Dwarf accelerator table names. 451 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU, 452 const DISubprogram *SP, DIE &Die) { 453 if (getAccelTableKind() != AccelTableKind::Apple && 454 CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None) 455 return; 456 457 if (!SP->isDefinition()) 458 return; 459 460 if (SP->getName() != "") 461 addAccelName(CU, SP->getName(), Die); 462 463 // If the linkage name is different than the name, go ahead and output that as 464 // well into the name table. Only do that if we are going to actually emit 465 // that name. 466 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() && 467 (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP))) 468 addAccelName(CU, SP->getLinkageName(), Die); 469 470 // If this is an Objective-C selector name add it to the ObjC accelerator 471 // too. 472 if (isObjCClass(SP->getName())) { 473 StringRef Class, Category; 474 getObjCClassCategory(SP->getName(), Class, Category); 475 addAccelObjC(CU, Class, Die); 476 if (Category != "") 477 addAccelObjC(CU, Category, Die); 478 // Also add the base method name to the name table. 479 addAccelName(CU, getObjCMethodName(SP->getName()), Die); 480 } 481 } 482 483 /// Check whether we should create a DIE for the given Scope, return true 484 /// if we don't create a DIE (the corresponding DIE is null). 485 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { 486 if (Scope->isAbstractScope()) 487 return false; 488 489 // We don't create a DIE if there is no Range. 490 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); 491 if (Ranges.empty()) 492 return true; 493 494 if (Ranges.size() > 1) 495 return false; 496 497 // We don't create a DIE if we have a single Range and the end label 498 // is null. 499 return !getLabelAfterInsn(Ranges.front().second); 500 } 501 502 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) { 503 F(CU); 504 if (auto *SkelCU = CU.getSkeleton()) 505 if (CU.getCUNode()->getSplitDebugInlining()) 506 F(*SkelCU); 507 } 508 509 bool DwarfDebug::shareAcrossDWOCUs() const { 510 return SplitDwarfCrossCuReferences; 511 } 512 513 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU, 514 LexicalScope *Scope) { 515 assert(Scope && Scope->getScopeNode()); 516 assert(Scope->isAbstractScope()); 517 assert(!Scope->getInlinedAt()); 518 519 auto *SP = cast<DISubprogram>(Scope->getScopeNode()); 520 521 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram 522 // was inlined from another compile unit. 523 if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining()) 524 // Avoid building the original CU if it won't be used 525 SrcCU.constructAbstractSubprogramScopeDIE(Scope); 526 else { 527 auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 528 if (auto *SkelCU = CU.getSkeleton()) { 529 (shareAcrossDWOCUs() ? CU : SrcCU) 530 .constructAbstractSubprogramScopeDIE(Scope); 531 if (CU.getCUNode()->getSplitDebugInlining()) 532 SkelCU->constructAbstractSubprogramScopeDIE(Scope); 533 } else 534 CU.constructAbstractSubprogramScopeDIE(Scope); 535 } 536 } 537 538 /// Try to interpret values loaded into registers that forward parameters 539 /// for \p CallMI. Store parameters with interpreted value into \p Params. 540 static void collectCallSiteParameters(const MachineInstr *CallMI, 541 ParamSet &Params) { 542 auto *MF = CallMI->getMF(); 543 auto CalleesMap = MF->getCallSitesInfo(); 544 auto CallFwdRegsInfo = CalleesMap.find(CallMI); 545 546 // There is no information for the call instruction. 547 if (CallFwdRegsInfo == CalleesMap.end()) 548 return; 549 550 auto *MBB = CallMI->getParent(); 551 const auto &TRI = MF->getSubtarget().getRegisterInfo(); 552 const auto &TII = MF->getSubtarget().getInstrInfo(); 553 const auto &TLI = MF->getSubtarget().getTargetLowering(); 554 555 // Skip the call instruction. 556 auto I = std::next(CallMI->getReverseIterator()); 557 558 DenseSet<unsigned> ForwardedRegWorklist; 559 // Add all the forwarding registers into the ForwardedRegWorklist. 560 for (auto ArgReg : CallFwdRegsInfo->second) { 561 bool InsertedReg = ForwardedRegWorklist.insert(ArgReg.Reg).second; 562 assert(InsertedReg && "Single register used to forward two arguments?"); 563 (void)InsertedReg; 564 } 565 566 // We erase, from the ForwardedRegWorklist, those forwarding registers for 567 // which we successfully describe a loaded value (by using 568 // the describeLoadedValue()). For those remaining arguments in the working 569 // list, for which we do not describe a loaded value by 570 // the describeLoadedValue(), we try to generate an entry value expression 571 // for their call site value desctipion, if the call is within the entry MBB. 572 // The RegsForEntryValues maps a forwarding register into the register holding 573 // the entry value. 574 // TODO: Handle situations when call site parameter value can be described 575 // as the entry value within basic blocks other then the first one. 576 bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin(); 577 DenseMap<unsigned, unsigned> RegsForEntryValues; 578 579 // If the MI is an instruction defining one or more parameters' forwarding 580 // registers, add those defines. We can currently only describe forwarded 581 // registers that are explicitly defined, but keep track of implicit defines 582 // also to remove those registers from the work list. 583 auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI, 584 SmallVectorImpl<unsigned> &Explicit, 585 SmallVectorImpl<unsigned> &Implicit) { 586 if (MI.isDebugInstr()) 587 return; 588 589 for (const MachineOperand &MO : MI.operands()) { 590 if (MO.isReg() && MO.isDef() && 591 Register::isPhysicalRegister(MO.getReg())) { 592 for (auto FwdReg : ForwardedRegWorklist) { 593 if (TRI->regsOverlap(FwdReg, MO.getReg())) { 594 if (MO.isImplicit()) 595 Implicit.push_back(FwdReg); 596 else 597 Explicit.push_back(FwdReg); 598 break; 599 } 600 } 601 } 602 } 603 }; 604 605 auto finishCallSiteParam = [&](DbgValueLoc DbgLocVal, unsigned Reg) { 606 unsigned FwdReg = Reg; 607 if (ShouldTryEmitEntryVals) { 608 auto EntryValReg = RegsForEntryValues.find(Reg); 609 if (EntryValReg != RegsForEntryValues.end()) 610 FwdReg = EntryValReg->second; 611 } 612 613 DbgCallSiteParam CSParm(FwdReg, DbgLocVal); 614 Params.push_back(CSParm); 615 ++NumCSParams; 616 }; 617 618 // Search for a loading value in forwaring registers. 619 for (; I != MBB->rend(); ++I) { 620 // If the next instruction is a call we can not interpret parameter's 621 // forwarding registers or we finished the interpretation of all parameters. 622 if (I->isCall()) 623 return; 624 625 if (ForwardedRegWorklist.empty()) 626 return; 627 628 SmallVector<unsigned, 4> ExplicitFwdRegDefs; 629 SmallVector<unsigned, 4> ImplicitFwdRegDefs; 630 getForwardingRegsDefinedByMI(*I, ExplicitFwdRegDefs, ImplicitFwdRegDefs); 631 if (ExplicitFwdRegDefs.empty() && ImplicitFwdRegDefs.empty()) 632 continue; 633 634 // If the MI clobbers more then one forwarding register we must remove 635 // all of them from the working list. 636 for (auto Reg : concat<unsigned>(ExplicitFwdRegDefs, ImplicitFwdRegDefs)) 637 ForwardedRegWorklist.erase(Reg); 638 639 // The describeLoadedValue() hook currently does not have any information 640 // about which register it should describe in case of multiple defines, so 641 // for now we only handle instructions where a forwarded register is (at 642 // least partially) defined by the instruction's single explicit define. 643 if (I->getNumExplicitDefs() != 1 || ExplicitFwdRegDefs.empty()) 644 continue; 645 unsigned ParamFwdReg = ExplicitFwdRegDefs[0]; 646 647 if (auto ParamValue = TII->describeLoadedValue(*I)) { 648 if (ParamValue->first.isImm()) { 649 int64_t Val = ParamValue->first.getImm(); 650 DbgValueLoc DbgLocVal(ParamValue->second, Val); 651 finishCallSiteParam(DbgLocVal, ParamFwdReg); 652 } else if (ParamValue->first.isReg()) { 653 Register RegLoc = ParamValue->first.getReg(); 654 // TODO: For now, there is no use of describing the value loaded into the 655 // register that is also the source registers (e.g. $r0 = add $r0, x). 656 if (ParamFwdReg == RegLoc) 657 continue; 658 659 unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); 660 Register FP = TRI->getFrameRegister(*MF); 661 bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP); 662 if (TRI->isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) { 663 DbgValueLoc DbgLocVal(ParamValue->second, 664 MachineLocation(RegLoc, 665 /*IsIndirect=*/IsSPorFP)); 666 finishCallSiteParam(DbgLocVal, ParamFwdReg); 667 // TODO: Add support for entry value plus an expression. 668 } else if (ShouldTryEmitEntryVals && 669 ParamValue->second->getNumElements() == 0) { 670 ForwardedRegWorklist.insert(RegLoc); 671 RegsForEntryValues[RegLoc] = ParamFwdReg; 672 } 673 } 674 } 675 } 676 677 // Emit the call site parameter's value as an entry value. 678 if (ShouldTryEmitEntryVals) { 679 // Create an expression where the register's entry value is used. 680 DIExpression *EntryExpr = DIExpression::get( 681 MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1}); 682 for (auto RegEntry : ForwardedRegWorklist) { 683 unsigned FwdReg = RegEntry; 684 auto EntryValReg = RegsForEntryValues.find(RegEntry); 685 if (EntryValReg != RegsForEntryValues.end()) 686 FwdReg = EntryValReg->second; 687 688 DbgValueLoc DbgLocVal(EntryExpr, MachineLocation(RegEntry)); 689 DbgCallSiteParam CSParm(FwdReg, DbgLocVal); 690 Params.push_back(CSParm); 691 ++NumCSParams; 692 } 693 } 694 } 695 696 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP, 697 DwarfCompileUnit &CU, DIE &ScopeDIE, 698 const MachineFunction &MF) { 699 // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if 700 // the subprogram is required to have one. 701 if (!SP.areAllCallsDescribed() || !SP.isDefinition()) 702 return; 703 704 // Use DW_AT_call_all_calls to express that call site entries are present 705 // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls 706 // because one of its requirements is not met: call site entries for 707 // optimized-out calls are elided. 708 CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls)); 709 710 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 711 assert(TII && "TargetInstrInfo not found: cannot label tail calls"); 712 bool ApplyGNUExtensions = getDwarfVersion() == 4 && tuneForGDB(); 713 714 // Emit call site entries for each call or tail call in the function. 715 for (const MachineBasicBlock &MBB : MF) { 716 for (const MachineInstr &MI : MBB.instrs()) { 717 // Skip instructions which aren't calls. Both calls and tail-calling jump 718 // instructions (e.g TAILJMPd64) are classified correctly here. 719 if (!MI.isCall()) 720 continue; 721 722 // TODO: Add support for targets with delay slots (see: beginInstruction). 723 if (MI.hasDelaySlot()) 724 return; 725 726 // If this is a direct call, find the callee's subprogram. 727 // In the case of an indirect call find the register that holds 728 // the callee. 729 const MachineOperand &CalleeOp = MI.getOperand(0); 730 if (!CalleeOp.isGlobal() && !CalleeOp.isReg()) 731 continue; 732 733 unsigned CallReg = 0; 734 const DISubprogram *CalleeSP = nullptr; 735 const Function *CalleeDecl = nullptr; 736 if (CalleeOp.isReg()) { 737 CallReg = CalleeOp.getReg(); 738 if (!CallReg) 739 continue; 740 } else { 741 CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal()); 742 if (!CalleeDecl || !CalleeDecl->getSubprogram()) 743 continue; 744 CalleeSP = CalleeDecl->getSubprogram(); 745 } 746 747 // TODO: Omit call site entries for runtime calls (objc_msgSend, etc). 748 749 bool IsTail = TII->isTailCall(MI); 750 751 // For tail calls, for non-gdb tuning, no return PC information is needed. 752 // For regular calls (and tail calls in GDB tuning), the return PC 753 // is needed to disambiguate paths in the call graph which could lead to 754 // some target function. 755 const MCExpr *PCOffset = 756 (IsTail && !tuneForGDB()) ? nullptr 757 : getFunctionLocalOffsetAfterInsn(&MI); 758 759 // Address of a call-like instruction for a normal call or a jump-like 760 // instruction for a tail call. This is needed for GDB + DWARF 4 tuning. 761 const MCSymbol *PCAddr = 762 ApplyGNUExtensions ? const_cast<MCSymbol*>(getLabelAfterInsn(&MI)) 763 : nullptr; 764 765 assert((IsTail || PCOffset || PCAddr) && 766 "Call without return PC information"); 767 768 LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> " 769 << (CalleeDecl ? CalleeDecl->getName() 770 : StringRef(MF.getSubtarget() 771 .getRegisterInfo() 772 ->getName(CallReg))) 773 << (IsTail ? " [IsTail]" : "") << "\n"); 774 775 DIE &CallSiteDIE = 776 CU.constructCallSiteEntryDIE(ScopeDIE, CalleeSP, IsTail, PCAddr, 777 PCOffset, CallReg); 778 779 // GDB and LLDB support call site parameter debug info. 780 if (Asm->TM.Options.EnableDebugEntryValues && 781 (tuneForGDB() || tuneForLLDB())) { 782 ParamSet Params; 783 // Try to interpret values of call site parameters. 784 collectCallSiteParameters(&MI, Params); 785 CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params); 786 } 787 } 788 } 789 } 790 791 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const { 792 if (!U.hasDwarfPubSections()) 793 return; 794 795 U.addFlag(D, dwarf::DW_AT_GNU_pubnames); 796 } 797 798 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit, 799 DwarfCompileUnit &NewCU) { 800 DIE &Die = NewCU.getUnitDie(); 801 StringRef FN = DIUnit->getFilename(); 802 803 StringRef Producer = DIUnit->getProducer(); 804 StringRef Flags = DIUnit->getFlags(); 805 if (!Flags.empty() && !useAppleExtensionAttributes()) { 806 std::string ProducerWithFlags = Producer.str() + " " + Flags.str(); 807 NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags); 808 } else 809 NewCU.addString(Die, dwarf::DW_AT_producer, Producer); 810 811 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 812 DIUnit->getSourceLanguage()); 813 NewCU.addString(Die, dwarf::DW_AT_name, FN); 814 815 // Add DW_str_offsets_base to the unit DIE, except for split units. 816 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 817 NewCU.addStringOffsetsStart(); 818 819 if (!useSplitDwarf()) { 820 NewCU.initStmtList(); 821 822 // If we're using split dwarf the compilation dir is going to be in the 823 // skeleton CU and so we don't need to duplicate it here. 824 if (!CompilationDir.empty()) 825 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 826 827 addGnuPubAttributes(NewCU, Die); 828 } 829 830 if (useAppleExtensionAttributes()) { 831 if (DIUnit->isOptimized()) 832 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); 833 834 StringRef Flags = DIUnit->getFlags(); 835 if (!Flags.empty()) 836 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); 837 838 if (unsigned RVer = DIUnit->getRuntimeVersion()) 839 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, 840 dwarf::DW_FORM_data1, RVer); 841 } 842 843 if (DIUnit->getDWOId()) { 844 // This CU is either a clang module DWO or a skeleton CU. 845 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, 846 DIUnit->getDWOId()); 847 if (!DIUnit->getSplitDebugFilename().empty()) 848 // This is a prefabricated skeleton CU. 849 NewCU.addString(Die, dwarf::DW_AT_GNU_dwo_name, 850 DIUnit->getSplitDebugFilename()); 851 } 852 } 853 // Create new DwarfCompileUnit for the given metadata node with tag 854 // DW_TAG_compile_unit. 855 DwarfCompileUnit & 856 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) { 857 if (auto *CU = CUMap.lookup(DIUnit)) 858 return *CU; 859 860 CompilationDir = DIUnit->getDirectory(); 861 862 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 863 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); 864 DwarfCompileUnit &NewCU = *OwnedUnit; 865 InfoHolder.addUnit(std::move(OwnedUnit)); 866 867 for (auto *IE : DIUnit->getImportedEntities()) 868 NewCU.addImportedEntity(IE); 869 870 // LTO with assembly output shares a single line table amongst multiple CUs. 871 // To avoid the compilation directory being ambiguous, let the line table 872 // explicitly describe the directory of all files, never relying on the 873 // compilation directory. 874 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU) 875 Asm->OutStreamer->emitDwarfFile0Directive( 876 CompilationDir, DIUnit->getFilename(), 877 NewCU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource(), 878 NewCU.getUniqueID()); 879 880 if (useSplitDwarf()) { 881 NewCU.setSkeleton(constructSkeletonCU(NewCU)); 882 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection()); 883 } else { 884 finishUnitAttributes(DIUnit, NewCU); 885 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 886 } 887 888 // Create DIEs for function declarations used for call site debug info. 889 for (auto Scope : DIUnit->getRetainedTypes()) 890 if (auto *SP = dyn_cast_or_null<DISubprogram>(Scope)) 891 NewCU.getOrCreateSubprogramDIE(SP); 892 893 CUMap.insert({DIUnit, &NewCU}); 894 CUDieMap.insert({&NewCU.getUnitDie(), &NewCU}); 895 return NewCU; 896 } 897 898 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU, 899 const DIImportedEntity *N) { 900 if (isa<DILocalScope>(N->getScope())) 901 return; 902 if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope())) 903 D->addChild(TheCU.constructImportedEntityDIE(N)); 904 } 905 906 /// Sort and unique GVEs by comparing their fragment offset. 907 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & 908 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) { 909 llvm::sort( 910 GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) { 911 // Sort order: first null exprs, then exprs without fragment 912 // info, then sort by fragment offset in bits. 913 // FIXME: Come up with a more comprehensive comparator so 914 // the sorting isn't non-deterministic, and so the following 915 // std::unique call works correctly. 916 if (!A.Expr || !B.Expr) 917 return !!B.Expr; 918 auto FragmentA = A.Expr->getFragmentInfo(); 919 auto FragmentB = B.Expr->getFragmentInfo(); 920 if (!FragmentA || !FragmentB) 921 return !!FragmentB; 922 return FragmentA->OffsetInBits < FragmentB->OffsetInBits; 923 }); 924 GVEs.erase(std::unique(GVEs.begin(), GVEs.end(), 925 [](DwarfCompileUnit::GlobalExpr A, 926 DwarfCompileUnit::GlobalExpr B) { 927 return A.Expr == B.Expr; 928 }), 929 GVEs.end()); 930 return GVEs; 931 } 932 933 // Emit all Dwarf sections that should come prior to the content. Create 934 // global DIEs and emit initial debug info sections. This is invoked by 935 // the target AsmPrinter. 936 void DwarfDebug::beginModule() { 937 NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName, 938 DWARFGroupDescription, TimePassesIsEnabled); 939 if (DisableDebugInfoPrinting) { 940 MMI->setDebugInfoAvailability(false); 941 return; 942 } 943 944 const Module *M = MMI->getModule(); 945 946 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(), 947 M->debug_compile_units_end()); 948 // Tell MMI whether we have debug info. 949 assert(MMI->hasDebugInfo() == (NumDebugCUs > 0) && 950 "DebugInfoAvailabilty initialized unexpectedly"); 951 SingleCU = NumDebugCUs == 1; 952 DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>> 953 GVMap; 954 for (const GlobalVariable &Global : M->globals()) { 955 SmallVector<DIGlobalVariableExpression *, 1> GVs; 956 Global.getDebugInfo(GVs); 957 for (auto *GVE : GVs) 958 GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()}); 959 } 960 961 // Create the symbol that designates the start of the unit's contribution 962 // to the string offsets table. In a split DWARF scenario, only the skeleton 963 // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol). 964 if (useSegmentedStringOffsetsTable()) 965 (useSplitDwarf() ? SkeletonHolder : InfoHolder) 966 .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base")); 967 968 969 // Create the symbols that designates the start of the DWARF v5 range list 970 // and locations list tables. They are located past the table headers. 971 if (getDwarfVersion() >= 5) { 972 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 973 Holder.setRnglistsTableBaseSym( 974 Asm->createTempSymbol("rnglists_table_base")); 975 976 if (useSplitDwarf()) 977 InfoHolder.setRnglistsTableBaseSym( 978 Asm->createTempSymbol("rnglists_dwo_table_base")); 979 } 980 981 // Create the symbol that points to the first entry following the debug 982 // address table (.debug_addr) header. 983 AddrPool.setLabel(Asm->createTempSymbol("addr_table_base")); 984 985 for (DICompileUnit *CUNode : M->debug_compile_units()) { 986 // FIXME: Move local imported entities into a list attached to the 987 // subprogram, then this search won't be needed and a 988 // getImportedEntities().empty() test should go below with the rest. 989 bool HasNonLocalImportedEntities = llvm::any_of( 990 CUNode->getImportedEntities(), [](const DIImportedEntity *IE) { 991 return !isa<DILocalScope>(IE->getScope()); 992 }); 993 994 if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() && 995 CUNode->getRetainedTypes().empty() && 996 CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty()) 997 continue; 998 999 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode); 1000 1001 // Global Variables. 1002 for (auto *GVE : CUNode->getGlobalVariables()) { 1003 // Don't bother adding DIGlobalVariableExpressions listed in the CU if we 1004 // already know about the variable and it isn't adding a constant 1005 // expression. 1006 auto &GVMapEntry = GVMap[GVE->getVariable()]; 1007 auto *Expr = GVE->getExpression(); 1008 if (!GVMapEntry.size() || (Expr && Expr->isConstant())) 1009 GVMapEntry.push_back({nullptr, Expr}); 1010 } 1011 DenseSet<DIGlobalVariable *> Processed; 1012 for (auto *GVE : CUNode->getGlobalVariables()) { 1013 DIGlobalVariable *GV = GVE->getVariable(); 1014 if (Processed.insert(GV).second) 1015 CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV])); 1016 } 1017 1018 for (auto *Ty : CUNode->getEnumTypes()) { 1019 // The enum types array by design contains pointers to 1020 // MDNodes rather than DIRefs. Unique them here. 1021 CU.getOrCreateTypeDIE(cast<DIType>(Ty)); 1022 } 1023 for (auto *Ty : CUNode->getRetainedTypes()) { 1024 // The retained types array by design contains pointers to 1025 // MDNodes rather than DIRefs. Unique them here. 1026 if (DIType *RT = dyn_cast<DIType>(Ty)) 1027 // There is no point in force-emitting a forward declaration. 1028 CU.getOrCreateTypeDIE(RT); 1029 } 1030 // Emit imported_modules last so that the relevant context is already 1031 // available. 1032 for (auto *IE : CUNode->getImportedEntities()) 1033 constructAndAddImportedEntityDIE(CU, IE); 1034 } 1035 } 1036 1037 void DwarfDebug::finishEntityDefinitions() { 1038 for (const auto &Entity : ConcreteEntities) { 1039 DIE *Die = Entity->getDIE(); 1040 assert(Die); 1041 // FIXME: Consider the time-space tradeoff of just storing the unit pointer 1042 // in the ConcreteEntities list, rather than looking it up again here. 1043 // DIE::getUnit isn't simple - it walks parent pointers, etc. 1044 DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie()); 1045 assert(Unit); 1046 Unit->finishEntityDefinition(Entity.get()); 1047 } 1048 } 1049 1050 void DwarfDebug::finishSubprogramDefinitions() { 1051 for (const DISubprogram *SP : ProcessedSPNodes) { 1052 assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug); 1053 forBothCUs( 1054 getOrCreateDwarfCompileUnit(SP->getUnit()), 1055 [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); }); 1056 } 1057 } 1058 1059 void DwarfDebug::finalizeModuleInfo() { 1060 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 1061 1062 finishSubprogramDefinitions(); 1063 1064 finishEntityDefinitions(); 1065 1066 // Include the DWO file name in the hash if there's more than one CU. 1067 // This handles ThinLTO's situation where imported CUs may very easily be 1068 // duplicate with the same CU partially imported into another ThinLTO unit. 1069 StringRef DWOName; 1070 if (CUMap.size() > 1) 1071 DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile; 1072 1073 // Handle anything that needs to be done on a per-unit basis after 1074 // all other generation. 1075 for (const auto &P : CUMap) { 1076 auto &TheCU = *P.second; 1077 if (TheCU.getCUNode()->isDebugDirectivesOnly()) 1078 continue; 1079 // Emit DW_AT_containing_type attribute to connect types with their 1080 // vtable holding type. 1081 TheCU.constructContainingTypeDIEs(); 1082 1083 // Add CU specific attributes if we need to add any. 1084 // If we're splitting the dwarf out now that we've got the entire 1085 // CU then add the dwo id to it. 1086 auto *SkCU = TheCU.getSkeleton(); 1087 if (useSplitDwarf() && !TheCU.getUnitDie().children().empty()) { 1088 finishUnitAttributes(TheCU.getCUNode(), TheCU); 1089 TheCU.addString(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_name, 1090 Asm->TM.Options.MCOptions.SplitDwarfFile); 1091 SkCU->addString(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_name, 1092 Asm->TM.Options.MCOptions.SplitDwarfFile); 1093 // Emit a unique identifier for this CU. 1094 uint64_t ID = 1095 DIEHash(Asm).computeCUSignature(DWOName, TheCU.getUnitDie()); 1096 if (getDwarfVersion() >= 5) { 1097 TheCU.setDWOId(ID); 1098 SkCU->setDWOId(ID); 1099 } else { 1100 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1101 dwarf::DW_FORM_data8, ID); 1102 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1103 dwarf::DW_FORM_data8, ID); 1104 } 1105 1106 if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) { 1107 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol(); 1108 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, 1109 Sym, Sym); 1110 } 1111 } else if (SkCU) { 1112 finishUnitAttributes(SkCU->getCUNode(), *SkCU); 1113 } 1114 1115 // If we have code split among multiple sections or non-contiguous 1116 // ranges of code then emit a DW_AT_ranges attribute on the unit that will 1117 // remain in the .o file, otherwise add a DW_AT_low_pc. 1118 // FIXME: We should use ranges allow reordering of code ala 1119 // .subsections_via_symbols in mach-o. This would mean turning on 1120 // ranges for all subprogram DIEs for mach-o. 1121 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 1122 1123 if (unsigned NumRanges = TheCU.getRanges().size()) { 1124 if (NumRanges > 1 && useRangesSection()) 1125 // A DW_AT_low_pc attribute may also be specified in combination with 1126 // DW_AT_ranges to specify the default base address for use in 1127 // location lists (see Section 2.6.2) and range lists (see Section 1128 // 2.17.3). 1129 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); 1130 else 1131 U.setBaseAddress(TheCU.getRanges().front().Begin); 1132 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); 1133 } 1134 1135 // We don't keep track of which addresses are used in which CU so this 1136 // is a bit pessimistic under LTO. 1137 if (!AddrPool.isEmpty() && 1138 (getDwarfVersion() >= 5 || 1139 (SkCU && !TheCU.getUnitDie().children().empty()))) 1140 U.addAddrTableBase(); 1141 1142 if (getDwarfVersion() >= 5) { 1143 if (U.hasRangeLists()) 1144 U.addRnglistsBase(); 1145 1146 if (!DebugLocs.getLists().empty() && !useSplitDwarf()) { 1147 DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base")); 1148 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base, 1149 DebugLocs.getSym(), 1150 TLOF.getDwarfLoclistsSection()->getBeginSymbol()); 1151 } 1152 } 1153 1154 auto *CUNode = cast<DICompileUnit>(P.first); 1155 // If compile Unit has macros, emit "DW_AT_macro_info" attribute. 1156 if (CUNode->getMacros()) 1157 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info, 1158 U.getMacroLabelBegin(), 1159 TLOF.getDwarfMacinfoSection()->getBeginSymbol()); 1160 } 1161 1162 // Emit all frontend-produced Skeleton CUs, i.e., Clang modules. 1163 for (auto *CUNode : MMI->getModule()->debug_compile_units()) 1164 if (CUNode->getDWOId()) 1165 getOrCreateDwarfCompileUnit(CUNode); 1166 1167 // Compute DIE offsets and sizes. 1168 InfoHolder.computeSizeAndOffsets(); 1169 if (useSplitDwarf()) 1170 SkeletonHolder.computeSizeAndOffsets(); 1171 } 1172 1173 // Emit all Dwarf sections that should come after the content. 1174 void DwarfDebug::endModule() { 1175 assert(CurFn == nullptr); 1176 assert(CurMI == nullptr); 1177 1178 for (const auto &P : CUMap) { 1179 auto &CU = *P.second; 1180 CU.createBaseTypeDIEs(); 1181 } 1182 1183 // If we aren't actually generating debug info (check beginModule - 1184 // conditionalized on !DisableDebugInfoPrinting and the presence of the 1185 // llvm.dbg.cu metadata node) 1186 if (!MMI->hasDebugInfo()) 1187 return; 1188 1189 // Finalize the debug info for the module. 1190 finalizeModuleInfo(); 1191 1192 emitDebugStr(); 1193 1194 if (useSplitDwarf()) 1195 emitDebugLocDWO(); 1196 else 1197 // Emit info into a debug loc section. 1198 emitDebugLoc(); 1199 1200 // Corresponding abbreviations into a abbrev section. 1201 emitAbbreviations(); 1202 1203 // Emit all the DIEs into a debug info section. 1204 emitDebugInfo(); 1205 1206 // Emit info into a debug aranges section. 1207 if (GenerateARangeSection) 1208 emitDebugARanges(); 1209 1210 // Emit info into a debug ranges section. 1211 emitDebugRanges(); 1212 1213 // Emit info into a debug macinfo section. 1214 emitDebugMacinfo(); 1215 1216 if (useSplitDwarf()) { 1217 emitDebugStrDWO(); 1218 emitDebugInfoDWO(); 1219 emitDebugAbbrevDWO(); 1220 emitDebugLineDWO(); 1221 emitDebugRangesDWO(); 1222 } 1223 1224 emitDebugAddr(); 1225 1226 // Emit info into the dwarf accelerator table sections. 1227 switch (getAccelTableKind()) { 1228 case AccelTableKind::Apple: 1229 emitAccelNames(); 1230 emitAccelObjC(); 1231 emitAccelNamespaces(); 1232 emitAccelTypes(); 1233 break; 1234 case AccelTableKind::Dwarf: 1235 emitAccelDebugNames(); 1236 break; 1237 case AccelTableKind::None: 1238 break; 1239 case AccelTableKind::Default: 1240 llvm_unreachable("Default should have already been resolved."); 1241 } 1242 1243 // Emit the pubnames and pubtypes sections if requested. 1244 emitDebugPubSections(); 1245 1246 // clean up. 1247 // FIXME: AbstractVariables.clear(); 1248 } 1249 1250 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU, 1251 const DINode *Node, 1252 const MDNode *ScopeNode) { 1253 if (CU.getExistingAbstractEntity(Node)) 1254 return; 1255 1256 CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope( 1257 cast<DILocalScope>(ScopeNode))); 1258 } 1259 1260 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU, 1261 const DINode *Node, const MDNode *ScopeNode) { 1262 if (CU.getExistingAbstractEntity(Node)) 1263 return; 1264 1265 if (LexicalScope *Scope = 1266 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode))) 1267 CU.createAbstractEntity(Node, Scope); 1268 } 1269 1270 // Collect variable information from side table maintained by MF. 1271 void DwarfDebug::collectVariableInfoFromMFTable( 1272 DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) { 1273 SmallDenseMap<InlinedEntity, DbgVariable *> MFVars; 1274 for (const auto &VI : Asm->MF->getVariableDbgInfo()) { 1275 if (!VI.Var) 1276 continue; 1277 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1278 "Expected inlined-at fields to agree"); 1279 1280 InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt()); 1281 Processed.insert(Var); 1282 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1283 1284 // If variable scope is not found then skip this variable. 1285 if (!Scope) 1286 continue; 1287 1288 ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode()); 1289 auto RegVar = std::make_unique<DbgVariable>( 1290 cast<DILocalVariable>(Var.first), Var.second); 1291 RegVar->initializeMMI(VI.Expr, VI.Slot); 1292 if (DbgVariable *DbgVar = MFVars.lookup(Var)) 1293 DbgVar->addMMIEntry(*RegVar); 1294 else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) { 1295 MFVars.insert({Var, RegVar.get()}); 1296 ConcreteEntities.push_back(std::move(RegVar)); 1297 } 1298 } 1299 } 1300 1301 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its 1302 /// enclosing lexical scope. The check ensures there are no other instructions 1303 /// in the same lexical scope preceding the DBG_VALUE and that its range is 1304 /// either open or otherwise rolls off the end of the scope. 1305 static bool validThroughout(LexicalScopes &LScopes, 1306 const MachineInstr *DbgValue, 1307 const MachineInstr *RangeEnd) { 1308 assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location"); 1309 auto MBB = DbgValue->getParent(); 1310 auto DL = DbgValue->getDebugLoc(); 1311 auto *LScope = LScopes.findLexicalScope(DL); 1312 // Scope doesn't exist; this is a dead DBG_VALUE. 1313 if (!LScope) 1314 return false; 1315 auto &LSRange = LScope->getRanges(); 1316 if (LSRange.size() == 0) 1317 return false; 1318 1319 // Determine if the DBG_VALUE is valid at the beginning of its lexical block. 1320 const MachineInstr *LScopeBegin = LSRange.front().first; 1321 // Early exit if the lexical scope begins outside of the current block. 1322 if (LScopeBegin->getParent() != MBB) 1323 return false; 1324 MachineBasicBlock::const_reverse_iterator Pred(DbgValue); 1325 for (++Pred; Pred != MBB->rend(); ++Pred) { 1326 if (Pred->getFlag(MachineInstr::FrameSetup)) 1327 break; 1328 auto PredDL = Pred->getDebugLoc(); 1329 if (!PredDL || Pred->isMetaInstruction()) 1330 continue; 1331 // Check whether the instruction preceding the DBG_VALUE is in the same 1332 // (sub)scope as the DBG_VALUE. 1333 if (DL->getScope() == PredDL->getScope()) 1334 return false; 1335 auto *PredScope = LScopes.findLexicalScope(PredDL); 1336 if (!PredScope || LScope->dominates(PredScope)) 1337 return false; 1338 } 1339 1340 // If the range of the DBG_VALUE is open-ended, report success. 1341 if (!RangeEnd) 1342 return true; 1343 1344 // Fail if there are instructions belonging to our scope in another block. 1345 const MachineInstr *LScopeEnd = LSRange.back().second; 1346 if (LScopeEnd->getParent() != MBB) 1347 return false; 1348 1349 // Single, constant DBG_VALUEs in the prologue are promoted to be live 1350 // throughout the function. This is a hack, presumably for DWARF v2 and not 1351 // necessarily correct. It would be much better to use a dbg.declare instead 1352 // if we know the constant is live throughout the scope. 1353 if (DbgValue->getOperand(0).isImm() && MBB->pred_empty()) 1354 return true; 1355 1356 return false; 1357 } 1358 1359 /// Build the location list for all DBG_VALUEs in the function that 1360 /// describe the same variable. The resulting DebugLocEntries will have 1361 /// strict monotonically increasing begin addresses and will never 1362 /// overlap. If the resulting list has only one entry that is valid 1363 /// throughout variable's scope return true. 1364 // 1365 // See the definition of DbgValueHistoryMap::Entry for an explanation of the 1366 // different kinds of history map entries. One thing to be aware of is that if 1367 // a debug value is ended by another entry (rather than being valid until the 1368 // end of the function), that entry's instruction may or may not be included in 1369 // the range, depending on if the entry is a clobbering entry (it has an 1370 // instruction that clobbers one or more preceding locations), or if it is an 1371 // (overlapping) debug value entry. This distinction can be seen in the example 1372 // below. The first debug value is ended by the clobbering entry 2, and the 1373 // second and third debug values are ended by the overlapping debug value entry 1374 // 4. 1375 // 1376 // Input: 1377 // 1378 // History map entries [type, end index, mi] 1379 // 1380 // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)] 1381 // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)] 1382 // 2 | | [Clobber, $reg0 = [...], -, -] 1383 // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)] 1384 // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)] 1385 // 1386 // Output [start, end) [Value...]: 1387 // 1388 // [0-1) [(reg0, fragment 0, 32)] 1389 // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)] 1390 // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)] 1391 // [4-) [(@g, fragment 0, 96)] 1392 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc, 1393 const DbgValueHistoryMap::Entries &Entries) { 1394 using OpenRange = 1395 std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>; 1396 SmallVector<OpenRange, 4> OpenRanges; 1397 bool isSafeForSingleLocation = true; 1398 const MachineInstr *StartDebugMI = nullptr; 1399 const MachineInstr *EndMI = nullptr; 1400 1401 for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) { 1402 const MachineInstr *Instr = EI->getInstr(); 1403 1404 // Remove all values that are no longer live. 1405 size_t Index = std::distance(EB, EI); 1406 auto Last = 1407 remove_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; }); 1408 OpenRanges.erase(Last, OpenRanges.end()); 1409 1410 // If we are dealing with a clobbering entry, this iteration will result in 1411 // a location list entry starting after the clobbering instruction. 1412 const MCSymbol *StartLabel = 1413 EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr); 1414 assert(StartLabel && 1415 "Forgot label before/after instruction starting a range!"); 1416 1417 const MCSymbol *EndLabel; 1418 if (std::next(EI) == Entries.end()) { 1419 EndLabel = Asm->getFunctionEnd(); 1420 if (EI->isClobber()) 1421 EndMI = EI->getInstr(); 1422 } 1423 else if (std::next(EI)->isClobber()) 1424 EndLabel = getLabelAfterInsn(std::next(EI)->getInstr()); 1425 else 1426 EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr()); 1427 assert(EndLabel && "Forgot label after instruction ending a range!"); 1428 1429 if (EI->isDbgValue()) 1430 LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n"); 1431 1432 // If this history map entry has a debug value, add that to the list of 1433 // open ranges and check if its location is valid for a single value 1434 // location. 1435 if (EI->isDbgValue()) { 1436 // Do not add undef debug values, as they are redundant information in 1437 // the location list entries. An undef debug results in an empty location 1438 // description. If there are any non-undef fragments then padding pieces 1439 // with empty location descriptions will automatically be inserted, and if 1440 // all fragments are undef then the whole location list entry is 1441 // redundant. 1442 if (!Instr->isUndefDebugValue()) { 1443 auto Value = getDebugLocValue(Instr); 1444 OpenRanges.emplace_back(EI->getEndIndex(), Value); 1445 1446 // TODO: Add support for single value fragment locations. 1447 if (Instr->getDebugExpression()->isFragment()) 1448 isSafeForSingleLocation = false; 1449 1450 if (!StartDebugMI) 1451 StartDebugMI = Instr; 1452 } else { 1453 isSafeForSingleLocation = false; 1454 } 1455 } 1456 1457 // Location list entries with empty location descriptions are redundant 1458 // information in DWARF, so do not emit those. 1459 if (OpenRanges.empty()) 1460 continue; 1461 1462 // Omit entries with empty ranges as they do not have any effect in DWARF. 1463 if (StartLabel == EndLabel) { 1464 LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n"); 1465 continue; 1466 } 1467 1468 SmallVector<DbgValueLoc, 4> Values; 1469 for (auto &R : OpenRanges) 1470 Values.push_back(R.second); 1471 DebugLoc.emplace_back(StartLabel, EndLabel, Values); 1472 1473 // Attempt to coalesce the ranges of two otherwise identical 1474 // DebugLocEntries. 1475 auto CurEntry = DebugLoc.rbegin(); 1476 LLVM_DEBUG({ 1477 dbgs() << CurEntry->getValues().size() << " Values:\n"; 1478 for (auto &Value : CurEntry->getValues()) 1479 Value.dump(); 1480 dbgs() << "-----\n"; 1481 }); 1482 1483 auto PrevEntry = std::next(CurEntry); 1484 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) 1485 DebugLoc.pop_back(); 1486 } 1487 1488 return DebugLoc.size() == 1 && isSafeForSingleLocation && 1489 validThroughout(LScopes, StartDebugMI, EndMI); 1490 } 1491 1492 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU, 1493 LexicalScope &Scope, 1494 const DINode *Node, 1495 const DILocation *Location, 1496 const MCSymbol *Sym) { 1497 ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode()); 1498 if (isa<const DILocalVariable>(Node)) { 1499 ConcreteEntities.push_back( 1500 std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node), 1501 Location)); 1502 InfoHolder.addScopeVariable(&Scope, 1503 cast<DbgVariable>(ConcreteEntities.back().get())); 1504 } else if (isa<const DILabel>(Node)) { 1505 ConcreteEntities.push_back( 1506 std::make_unique<DbgLabel>(cast<const DILabel>(Node), 1507 Location, Sym)); 1508 InfoHolder.addScopeLabel(&Scope, 1509 cast<DbgLabel>(ConcreteEntities.back().get())); 1510 } 1511 return ConcreteEntities.back().get(); 1512 } 1513 1514 // Find variables for each lexical scope. 1515 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU, 1516 const DISubprogram *SP, 1517 DenseSet<InlinedEntity> &Processed) { 1518 // Grab the variable info that was squirreled away in the MMI side-table. 1519 collectVariableInfoFromMFTable(TheCU, Processed); 1520 1521 for (const auto &I : DbgValues) { 1522 InlinedEntity IV = I.first; 1523 if (Processed.count(IV)) 1524 continue; 1525 1526 // Instruction ranges, specifying where IV is accessible. 1527 const auto &HistoryMapEntries = I.second; 1528 if (HistoryMapEntries.empty()) 1529 continue; 1530 1531 LexicalScope *Scope = nullptr; 1532 const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first); 1533 if (const DILocation *IA = IV.second) 1534 Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA); 1535 else 1536 Scope = LScopes.findLexicalScope(LocalVar->getScope()); 1537 // If variable scope is not found then skip this variable. 1538 if (!Scope) 1539 continue; 1540 1541 Processed.insert(IV); 1542 DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU, 1543 *Scope, LocalVar, IV.second)); 1544 1545 const MachineInstr *MInsn = HistoryMapEntries.front().getInstr(); 1546 assert(MInsn->isDebugValue() && "History must begin with debug value"); 1547 1548 // Check if there is a single DBG_VALUE, valid throughout the var's scope. 1549 // If the history map contains a single debug value, there may be an 1550 // additional entry which clobbers the debug value. 1551 size_t HistSize = HistoryMapEntries.size(); 1552 bool SingleValueWithClobber = 1553 HistSize == 2 && HistoryMapEntries[1].isClobber(); 1554 if (HistSize == 1 || SingleValueWithClobber) { 1555 const auto *End = 1556 SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr; 1557 if (validThroughout(LScopes, MInsn, End)) { 1558 RegVar->initializeDbgValue(MInsn); 1559 continue; 1560 } 1561 } 1562 1563 // Do not emit location lists if .debug_loc secton is disabled. 1564 if (!useLocSection()) 1565 continue; 1566 1567 // Handle multiple DBG_VALUE instructions describing one variable. 1568 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn); 1569 1570 // Build the location list for this variable. 1571 SmallVector<DebugLocEntry, 8> Entries; 1572 bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries); 1573 1574 // Check whether buildLocationList managed to merge all locations to one 1575 // that is valid throughout the variable's scope. If so, produce single 1576 // value location. 1577 if (isValidSingleLocation) { 1578 RegVar->initializeDbgValue(Entries[0].getValues()[0]); 1579 continue; 1580 } 1581 1582 // If the variable has a DIBasicType, extract it. Basic types cannot have 1583 // unique identifiers, so don't bother resolving the type with the 1584 // identifier map. 1585 const DIBasicType *BT = dyn_cast<DIBasicType>( 1586 static_cast<const Metadata *>(LocalVar->getType())); 1587 1588 // Finalize the entry by lowering it into a DWARF bytestream. 1589 for (auto &Entry : Entries) 1590 Entry.finalize(*Asm, List, BT, TheCU); 1591 } 1592 1593 // For each InlinedEntity collected from DBG_LABEL instructions, convert to 1594 // DWARF-related DbgLabel. 1595 for (const auto &I : DbgLabels) { 1596 InlinedEntity IL = I.first; 1597 const MachineInstr *MI = I.second; 1598 if (MI == nullptr) 1599 continue; 1600 1601 LexicalScope *Scope = nullptr; 1602 const DILabel *Label = cast<DILabel>(IL.first); 1603 // The scope could have an extra lexical block file. 1604 const DILocalScope *LocalScope = 1605 Label->getScope()->getNonLexicalBlockFileScope(); 1606 // Get inlined DILocation if it is inlined label. 1607 if (const DILocation *IA = IL.second) 1608 Scope = LScopes.findInlinedScope(LocalScope, IA); 1609 else 1610 Scope = LScopes.findLexicalScope(LocalScope); 1611 // If label scope is not found then skip this label. 1612 if (!Scope) 1613 continue; 1614 1615 Processed.insert(IL); 1616 /// At this point, the temporary label is created. 1617 /// Save the temporary label to DbgLabel entity to get the 1618 /// actually address when generating Dwarf DIE. 1619 MCSymbol *Sym = getLabelBeforeInsn(MI); 1620 createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym); 1621 } 1622 1623 // Collect info for variables/labels that were optimized out. 1624 for (const DINode *DN : SP->getRetainedNodes()) { 1625 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 1626 continue; 1627 LexicalScope *Scope = nullptr; 1628 if (auto *DV = dyn_cast<DILocalVariable>(DN)) { 1629 Scope = LScopes.findLexicalScope(DV->getScope()); 1630 } else if (auto *DL = dyn_cast<DILabel>(DN)) { 1631 Scope = LScopes.findLexicalScope(DL->getScope()); 1632 } 1633 1634 if (Scope) 1635 createConcreteEntity(TheCU, *Scope, DN, nullptr); 1636 } 1637 } 1638 1639 // Process beginning of an instruction. 1640 void DwarfDebug::beginInstruction(const MachineInstr *MI) { 1641 DebugHandlerBase::beginInstruction(MI); 1642 assert(CurMI); 1643 1644 const auto *SP = MI->getMF()->getFunction().getSubprogram(); 1645 if (!SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 1646 return; 1647 1648 // Check if source location changes, but ignore DBG_VALUE and CFI locations. 1649 // If the instruction is part of the function frame setup code, do not emit 1650 // any line record, as there is no correspondence with any user code. 1651 if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup)) 1652 return; 1653 const DebugLoc &DL = MI->getDebugLoc(); 1654 // When we emit a line-0 record, we don't update PrevInstLoc; so look at 1655 // the last line number actually emitted, to see if it was line 0. 1656 unsigned LastAsmLine = 1657 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine(); 1658 1659 // Request a label after the call in order to emit AT_return_pc information 1660 // in call site entries. TODO: Add support for targets with delay slots. 1661 if (SP->areAllCallsDescribed() && MI->isCall() && !MI->hasDelaySlot()) 1662 requestLabelAfterInsn(MI); 1663 1664 if (DL == PrevInstLoc) { 1665 // If we have an ongoing unspecified location, nothing to do here. 1666 if (!DL) 1667 return; 1668 // We have an explicit location, same as the previous location. 1669 // But we might be coming back to it after a line 0 record. 1670 if (LastAsmLine == 0 && DL.getLine() != 0) { 1671 // Reinstate the source location but not marked as a statement. 1672 const MDNode *Scope = DL.getScope(); 1673 recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0); 1674 } 1675 return; 1676 } 1677 1678 if (!DL) { 1679 // We have an unspecified location, which might want to be line 0. 1680 // If we have already emitted a line-0 record, don't repeat it. 1681 if (LastAsmLine == 0) 1682 return; 1683 // If user said Don't Do That, don't do that. 1684 if (UnknownLocations == Disable) 1685 return; 1686 // See if we have a reason to emit a line-0 record now. 1687 // Reasons to emit a line-0 record include: 1688 // - User asked for it (UnknownLocations). 1689 // - Instruction has a label, so it's referenced from somewhere else, 1690 // possibly debug information; we want it to have a source location. 1691 // - Instruction is at the top of a block; we don't want to inherit the 1692 // location from the physically previous (maybe unrelated) block. 1693 if (UnknownLocations == Enable || PrevLabel || 1694 (PrevInstBB && PrevInstBB != MI->getParent())) { 1695 // Preserve the file and column numbers, if we can, to save space in 1696 // the encoded line table. 1697 // Do not update PrevInstLoc, it remembers the last non-0 line. 1698 const MDNode *Scope = nullptr; 1699 unsigned Column = 0; 1700 if (PrevInstLoc) { 1701 Scope = PrevInstLoc.getScope(); 1702 Column = PrevInstLoc.getCol(); 1703 } 1704 recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0); 1705 } 1706 return; 1707 } 1708 1709 // We have an explicit location, different from the previous location. 1710 // Don't repeat a line-0 record, but otherwise emit the new location. 1711 // (The new location might be an explicit line 0, which we do emit.) 1712 if (DL.getLine() == 0 && LastAsmLine == 0) 1713 return; 1714 unsigned Flags = 0; 1715 if (DL == PrologEndLoc) { 1716 Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT; 1717 PrologEndLoc = DebugLoc(); 1718 } 1719 // If the line changed, we call that a new statement; unless we went to 1720 // line 0 and came back, in which case it is not a new statement. 1721 unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine; 1722 if (DL.getLine() && DL.getLine() != OldLine) 1723 Flags |= DWARF2_FLAG_IS_STMT; 1724 1725 const MDNode *Scope = DL.getScope(); 1726 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); 1727 1728 // If we're not at line 0, remember this location. 1729 if (DL.getLine()) 1730 PrevInstLoc = DL; 1731 } 1732 1733 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) { 1734 // First known non-DBG_VALUE and non-frame setup location marks 1735 // the beginning of the function body. 1736 for (const auto &MBB : *MF) 1737 for (const auto &MI : MBB) 1738 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1739 MI.getDebugLoc()) 1740 return MI.getDebugLoc(); 1741 return DebugLoc(); 1742 } 1743 1744 /// Register a source line with debug info. Returns the unique label that was 1745 /// emitted and which provides correspondence to the source line list. 1746 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col, 1747 const MDNode *S, unsigned Flags, unsigned CUID, 1748 uint16_t DwarfVersion, 1749 ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) { 1750 StringRef Fn; 1751 unsigned FileNo = 1; 1752 unsigned Discriminator = 0; 1753 if (auto *Scope = cast_or_null<DIScope>(S)) { 1754 Fn = Scope->getFilename(); 1755 if (Line != 0 && DwarfVersion >= 4) 1756 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope)) 1757 Discriminator = LBF->getDiscriminator(); 1758 1759 FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID]) 1760 .getOrCreateSourceID(Scope->getFile()); 1761 } 1762 Asm.OutStreamer->EmitDwarfLocDirective(FileNo, Line, Col, Flags, 0, 1763 Discriminator, Fn); 1764 } 1765 1766 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF, 1767 unsigned CUID) { 1768 // Get beginning of function. 1769 if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) { 1770 // Ensure the compile unit is created if the function is called before 1771 // beginFunction(). 1772 (void)getOrCreateDwarfCompileUnit( 1773 MF.getFunction().getSubprogram()->getUnit()); 1774 // We'd like to list the prologue as "not statements" but GDB behaves 1775 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. 1776 const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram(); 1777 ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT, 1778 CUID, getDwarfVersion(), getUnits()); 1779 return PrologEndLoc; 1780 } 1781 return DebugLoc(); 1782 } 1783 1784 // Gather pre-function debug information. Assumes being called immediately 1785 // after the function entry point has been emitted. 1786 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) { 1787 CurFn = MF; 1788 1789 auto *SP = MF->getFunction().getSubprogram(); 1790 assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode()); 1791 if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 1792 return; 1793 1794 SectionLabels.insert(std::make_pair(&Asm->getFunctionBegin()->getSection(), 1795 Asm->getFunctionBegin())); 1796 1797 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 1798 1799 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function 1800 // belongs to so that we add to the correct per-cu line table in the 1801 // non-asm case. 1802 if (Asm->OutStreamer->hasRawTextSupport()) 1803 // Use a single line table if we are generating assembly. 1804 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 1805 else 1806 Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID()); 1807 1808 // Record beginning of function. 1809 PrologEndLoc = emitInitialLocDirective( 1810 *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID()); 1811 } 1812 1813 void DwarfDebug::skippedNonDebugFunction() { 1814 // If we don't have a subprogram for this function then there will be a hole 1815 // in the range information. Keep note of this by setting the previously used 1816 // section to nullptr. 1817 PrevCU = nullptr; 1818 CurFn = nullptr; 1819 } 1820 1821 // Gather and emit post-function debug information. 1822 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) { 1823 const DISubprogram *SP = MF->getFunction().getSubprogram(); 1824 1825 assert(CurFn == MF && 1826 "endFunction should be called with the same function as beginFunction"); 1827 1828 // Set DwarfDwarfCompileUnitID in MCContext to default value. 1829 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 1830 1831 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 1832 assert(!FnScope || SP == FnScope->getScopeNode()); 1833 DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit()); 1834 if (TheCU.getCUNode()->isDebugDirectivesOnly()) { 1835 PrevLabel = nullptr; 1836 CurFn = nullptr; 1837 return; 1838 } 1839 1840 DenseSet<InlinedEntity> Processed; 1841 collectEntityInfo(TheCU, SP, Processed); 1842 1843 // Add the range of this function to the list of ranges for the CU. 1844 TheCU.addRange({Asm->getFunctionBegin(), Asm->getFunctionEnd()}); 1845 1846 // Under -gmlt, skip building the subprogram if there are no inlined 1847 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram 1848 // is still needed as we need its source location. 1849 if (!TheCU.getCUNode()->getDebugInfoForProfiling() && 1850 TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly && 1851 LScopes.getAbstractScopesList().empty() && !IsDarwin) { 1852 assert(InfoHolder.getScopeVariables().empty()); 1853 PrevLabel = nullptr; 1854 CurFn = nullptr; 1855 return; 1856 } 1857 1858 #ifndef NDEBUG 1859 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size(); 1860 #endif 1861 // Construct abstract scopes. 1862 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { 1863 auto *SP = cast<DISubprogram>(AScope->getScopeNode()); 1864 for (const DINode *DN : SP->getRetainedNodes()) { 1865 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 1866 continue; 1867 1868 const MDNode *Scope = nullptr; 1869 if (auto *DV = dyn_cast<DILocalVariable>(DN)) 1870 Scope = DV->getScope(); 1871 else if (auto *DL = dyn_cast<DILabel>(DN)) 1872 Scope = DL->getScope(); 1873 else 1874 llvm_unreachable("Unexpected DI type!"); 1875 1876 // Collect info for variables/labels that were optimized out. 1877 ensureAbstractEntityIsCreated(TheCU, DN, Scope); 1878 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes 1879 && "ensureAbstractEntityIsCreated inserted abstract scopes"); 1880 } 1881 constructAbstractSubprogramScopeDIE(TheCU, AScope); 1882 } 1883 1884 ProcessedSPNodes.insert(SP); 1885 DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope); 1886 if (auto *SkelCU = TheCU.getSkeleton()) 1887 if (!LScopes.getAbstractScopesList().empty() && 1888 TheCU.getCUNode()->getSplitDebugInlining()) 1889 SkelCU->constructSubprogramScopeDIE(SP, FnScope); 1890 1891 // Construct call site entries. 1892 constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF); 1893 1894 // Clear debug info 1895 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the 1896 // DbgVariables except those that are also in AbstractVariables (since they 1897 // can be used cross-function) 1898 InfoHolder.getScopeVariables().clear(); 1899 InfoHolder.getScopeLabels().clear(); 1900 PrevLabel = nullptr; 1901 CurFn = nullptr; 1902 } 1903 1904 // Register a source line with debug info. Returns the unique label that was 1905 // emitted and which provides correspondence to the source line list. 1906 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, 1907 unsigned Flags) { 1908 ::recordSourceLine(*Asm, Line, Col, S, Flags, 1909 Asm->OutStreamer->getContext().getDwarfCompileUnitID(), 1910 getDwarfVersion(), getUnits()); 1911 } 1912 1913 //===----------------------------------------------------------------------===// 1914 // Emit Methods 1915 //===----------------------------------------------------------------------===// 1916 1917 // Emit the debug info section. 1918 void DwarfDebug::emitDebugInfo() { 1919 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1920 Holder.emitUnits(/* UseOffsets */ false); 1921 } 1922 1923 // Emit the abbreviation section. 1924 void DwarfDebug::emitAbbreviations() { 1925 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1926 1927 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); 1928 } 1929 1930 void DwarfDebug::emitStringOffsetsTableHeader() { 1931 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1932 Holder.getStringPool().emitStringOffsetsTableHeader( 1933 *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(), 1934 Holder.getStringOffsetsStartSym()); 1935 } 1936 1937 template <typename AccelTableT> 1938 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section, 1939 StringRef TableName) { 1940 Asm->OutStreamer->SwitchSection(Section); 1941 1942 // Emit the full data. 1943 emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol()); 1944 } 1945 1946 void DwarfDebug::emitAccelDebugNames() { 1947 // Don't emit anything if we have no compilation units to index. 1948 if (getUnits().empty()) 1949 return; 1950 1951 emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits()); 1952 } 1953 1954 // Emit visible names into a hashed accelerator table section. 1955 void DwarfDebug::emitAccelNames() { 1956 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), 1957 "Names"); 1958 } 1959 1960 // Emit objective C classes and categories into a hashed accelerator table 1961 // section. 1962 void DwarfDebug::emitAccelObjC() { 1963 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), 1964 "ObjC"); 1965 } 1966 1967 // Emit namespace dies into a hashed accelerator table. 1968 void DwarfDebug::emitAccelNamespaces() { 1969 emitAccel(AccelNamespace, 1970 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), 1971 "namespac"); 1972 } 1973 1974 // Emit type dies into a hashed accelerator table. 1975 void DwarfDebug::emitAccelTypes() { 1976 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), 1977 "types"); 1978 } 1979 1980 // Public name handling. 1981 // The format for the various pubnames: 1982 // 1983 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU 1984 // for the DIE that is named. 1985 // 1986 // gnu pubnames - offset/index value/name tuples where the offset is the offset 1987 // into the CU and the index value is computed according to the type of value 1988 // for the DIE that is named. 1989 // 1990 // For type units the offset is the offset of the skeleton DIE. For split dwarf 1991 // it's the offset within the debug_info/debug_types dwo section, however, the 1992 // reference in the pubname header doesn't change. 1993 1994 /// computeIndexValue - Compute the gdb index value for the DIE and CU. 1995 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, 1996 const DIE *Die) { 1997 // Entities that ended up only in a Type Unit reference the CU instead (since 1998 // the pub entry has offsets within the CU there's no real offset that can be 1999 // provided anyway). As it happens all such entities (namespaces and types, 2000 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out 2001 // not to be true it would be necessary to persist this information from the 2002 // point at which the entry is added to the index data structure - since by 2003 // the time the index is built from that, the original type/namespace DIE in a 2004 // type unit has already been destroyed so it can't be queried for properties 2005 // like tag, etc. 2006 if (Die->getTag() == dwarf::DW_TAG_compile_unit) 2007 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, 2008 dwarf::GIEL_EXTERNAL); 2009 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; 2010 2011 // We could have a specification DIE that has our most of our knowledge, 2012 // look for that now. 2013 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) { 2014 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry(); 2015 if (SpecDIE.findAttribute(dwarf::DW_AT_external)) 2016 Linkage = dwarf::GIEL_EXTERNAL; 2017 } else if (Die->findAttribute(dwarf::DW_AT_external)) 2018 Linkage = dwarf::GIEL_EXTERNAL; 2019 2020 switch (Die->getTag()) { 2021 case dwarf::DW_TAG_class_type: 2022 case dwarf::DW_TAG_structure_type: 2023 case dwarf::DW_TAG_union_type: 2024 case dwarf::DW_TAG_enumeration_type: 2025 return dwarf::PubIndexEntryDescriptor( 2026 dwarf::GIEK_TYPE, 2027 dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage()) 2028 ? dwarf::GIEL_EXTERNAL 2029 : dwarf::GIEL_STATIC); 2030 case dwarf::DW_TAG_typedef: 2031 case dwarf::DW_TAG_base_type: 2032 case dwarf::DW_TAG_subrange_type: 2033 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); 2034 case dwarf::DW_TAG_namespace: 2035 return dwarf::GIEK_TYPE; 2036 case dwarf::DW_TAG_subprogram: 2037 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); 2038 case dwarf::DW_TAG_variable: 2039 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); 2040 case dwarf::DW_TAG_enumerator: 2041 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, 2042 dwarf::GIEL_STATIC); 2043 default: 2044 return dwarf::GIEK_NONE; 2045 } 2046 } 2047 2048 /// emitDebugPubSections - Emit visible names and types into debug pubnames and 2049 /// pubtypes sections. 2050 void DwarfDebug::emitDebugPubSections() { 2051 for (const auto &NU : CUMap) { 2052 DwarfCompileUnit *TheU = NU.second; 2053 if (!TheU->hasDwarfPubSections()) 2054 continue; 2055 2056 bool GnuStyle = TheU->getCUNode()->getNameTableKind() == 2057 DICompileUnit::DebugNameTableKind::GNU; 2058 2059 Asm->OutStreamer->SwitchSection( 2060 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() 2061 : Asm->getObjFileLowering().getDwarfPubNamesSection()); 2062 emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames()); 2063 2064 Asm->OutStreamer->SwitchSection( 2065 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() 2066 : Asm->getObjFileLowering().getDwarfPubTypesSection()); 2067 emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes()); 2068 } 2069 } 2070 2071 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) { 2072 if (useSectionsAsReferences()) 2073 Asm->EmitDwarfOffset(CU.getSection()->getBeginSymbol(), 2074 CU.getDebugSectionOffset()); 2075 else 2076 Asm->emitDwarfSymbolReference(CU.getLabelBegin()); 2077 } 2078 2079 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name, 2080 DwarfCompileUnit *TheU, 2081 const StringMap<const DIE *> &Globals) { 2082 if (auto *Skeleton = TheU->getSkeleton()) 2083 TheU = Skeleton; 2084 2085 // Emit the header. 2086 Asm->OutStreamer->AddComment("Length of Public " + Name + " Info"); 2087 MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin"); 2088 MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end"); 2089 Asm->EmitLabelDifference(EndLabel, BeginLabel, 4); 2090 2091 Asm->OutStreamer->EmitLabel(BeginLabel); 2092 2093 Asm->OutStreamer->AddComment("DWARF Version"); 2094 Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION); 2095 2096 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info"); 2097 emitSectionReference(*TheU); 2098 2099 Asm->OutStreamer->AddComment("Compilation Unit Length"); 2100 Asm->emitInt32(TheU->getLength()); 2101 2102 // Emit the pubnames for this compilation unit. 2103 for (const auto &GI : Globals) { 2104 const char *Name = GI.getKeyData(); 2105 const DIE *Entity = GI.second; 2106 2107 Asm->OutStreamer->AddComment("DIE offset"); 2108 Asm->emitInt32(Entity->getOffset()); 2109 2110 if (GnuStyle) { 2111 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); 2112 Asm->OutStreamer->AddComment( 2113 Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + 2114 ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); 2115 Asm->emitInt8(Desc.toBits()); 2116 } 2117 2118 Asm->OutStreamer->AddComment("External Name"); 2119 Asm->OutStreamer->EmitBytes(StringRef(Name, GI.getKeyLength() + 1)); 2120 } 2121 2122 Asm->OutStreamer->AddComment("End Mark"); 2123 Asm->emitInt32(0); 2124 Asm->OutStreamer->EmitLabel(EndLabel); 2125 } 2126 2127 /// Emit null-terminated strings into a debug str section. 2128 void DwarfDebug::emitDebugStr() { 2129 MCSection *StringOffsetsSection = nullptr; 2130 if (useSegmentedStringOffsetsTable()) { 2131 emitStringOffsetsTableHeader(); 2132 StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection(); 2133 } 2134 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2135 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(), 2136 StringOffsetsSection, /* UseRelativeOffsets = */ true); 2137 } 2138 2139 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, 2140 const DebugLocStream::Entry &Entry, 2141 const DwarfCompileUnit *CU) { 2142 auto &&Comments = DebugLocs.getComments(Entry); 2143 auto Comment = Comments.begin(); 2144 auto End = Comments.end(); 2145 2146 // The expressions are inserted into a byte stream rather early (see 2147 // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that 2148 // need to reference a base_type DIE the offset of that DIE is not yet known. 2149 // To deal with this we instead insert a placeholder early and then extract 2150 // it here and replace it with the real reference. 2151 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2152 DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(), 2153 DebugLocs.getBytes(Entry).size()), 2154 Asm->getDataLayout().isLittleEndian(), PtrSize); 2155 DWARFExpression Expr(Data, getDwarfVersion(), PtrSize); 2156 2157 using Encoding = DWARFExpression::Operation::Encoding; 2158 uint64_t Offset = 0; 2159 for (auto &Op : Expr) { 2160 assert(Op.getCode() != dwarf::DW_OP_const_type && 2161 "3 operand ops not yet supported"); 2162 Streamer.EmitInt8(Op.getCode(), Comment != End ? *(Comment++) : ""); 2163 Offset++; 2164 for (unsigned I = 0; I < 2; ++I) { 2165 if (Op.getDescription().Op[I] == Encoding::SizeNA) 2166 continue; 2167 if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) { 2168 if (CU) { 2169 uint64_t Offset = CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset(); 2170 assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit"); 2171 Asm->EmitULEB128(Offset, nullptr, ULEB128PadSize); 2172 } else { 2173 // Emit a reference to the 'generic type'. 2174 Asm->EmitULEB128(0, nullptr, ULEB128PadSize); 2175 } 2176 // Make sure comments stay aligned. 2177 for (unsigned J = 0; J < ULEB128PadSize; ++J) 2178 if (Comment != End) 2179 Comment++; 2180 } else { 2181 for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J) 2182 Streamer.EmitInt8(Data.getData()[J], Comment != End ? *(Comment++) : ""); 2183 } 2184 Offset = Op.getOperandEndOffset(I); 2185 } 2186 assert(Offset == Op.getEndOffset()); 2187 } 2188 } 2189 2190 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT, 2191 const DbgValueLoc &Value, 2192 DwarfExpression &DwarfExpr) { 2193 auto *DIExpr = Value.getExpression(); 2194 DIExpressionCursor ExprCursor(DIExpr); 2195 DwarfExpr.addFragmentOffset(DIExpr); 2196 // Regular entry. 2197 if (Value.isInt()) { 2198 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed || 2199 BT->getEncoding() == dwarf::DW_ATE_signed_char)) 2200 DwarfExpr.addSignedConstant(Value.getInt()); 2201 else 2202 DwarfExpr.addUnsignedConstant(Value.getInt()); 2203 } else if (Value.isLocation()) { 2204 MachineLocation Location = Value.getLoc(); 2205 if (Location.isIndirect()) 2206 DwarfExpr.setMemoryLocationKind(); 2207 DIExpressionCursor Cursor(DIExpr); 2208 2209 if (DIExpr->isEntryValue()) { 2210 DwarfExpr.setEntryValueFlag(); 2211 DwarfExpr.beginEntryValueExpression(Cursor); 2212 } 2213 2214 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2215 if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) 2216 return; 2217 return DwarfExpr.addExpression(std::move(Cursor)); 2218 } else if (Value.isConstantFP()) { 2219 APInt RawBytes = Value.getConstantFP()->getValueAPF().bitcastToAPInt(); 2220 DwarfExpr.addUnsignedConstant(RawBytes); 2221 } 2222 DwarfExpr.addExpression(std::move(ExprCursor)); 2223 } 2224 2225 void DebugLocEntry::finalize(const AsmPrinter &AP, 2226 DebugLocStream::ListBuilder &List, 2227 const DIBasicType *BT, 2228 DwarfCompileUnit &TheCU) { 2229 assert(!Values.empty() && 2230 "location list entries without values are redundant"); 2231 assert(Begin != End && "unexpected location list entry with empty range"); 2232 DebugLocStream::EntryBuilder Entry(List, Begin, End); 2233 BufferByteStreamer Streamer = Entry.getStreamer(); 2234 DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU); 2235 const DbgValueLoc &Value = Values[0]; 2236 if (Value.isFragment()) { 2237 // Emit all fragments that belong to the same variable and range. 2238 assert(llvm::all_of(Values, [](DbgValueLoc P) { 2239 return P.isFragment(); 2240 }) && "all values are expected to be fragments"); 2241 assert(std::is_sorted(Values.begin(), Values.end()) && 2242 "fragments are expected to be sorted"); 2243 2244 for (auto Fragment : Values) 2245 DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr); 2246 2247 } else { 2248 assert(Values.size() == 1 && "only fragments may have >1 value"); 2249 DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr); 2250 } 2251 DwarfExpr.finalize(); 2252 } 2253 2254 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry, 2255 const DwarfCompileUnit *CU) { 2256 // Emit the size. 2257 Asm->OutStreamer->AddComment("Loc expr size"); 2258 if (getDwarfVersion() >= 5) 2259 Asm->EmitULEB128(DebugLocs.getBytes(Entry).size()); 2260 else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max()) 2261 Asm->emitInt16(DebugLocs.getBytes(Entry).size()); 2262 else { 2263 // The entry is too big to fit into 16 bit, drop it as there is nothing we 2264 // can do. 2265 Asm->emitInt16(0); 2266 return; 2267 } 2268 // Emit the entry. 2269 APByteStreamer Streamer(*Asm); 2270 emitDebugLocEntry(Streamer, Entry, CU); 2271 } 2272 2273 // Emit the common part of the DWARF 5 range/locations list tables header. 2274 static void emitListsTableHeaderStart(AsmPrinter *Asm, 2275 MCSymbol *TableStart, 2276 MCSymbol *TableEnd) { 2277 // Build the table header, which starts with the length field. 2278 Asm->OutStreamer->AddComment("Length"); 2279 Asm->EmitLabelDifference(TableEnd, TableStart, 4); 2280 Asm->OutStreamer->EmitLabel(TableStart); 2281 // Version number (DWARF v5 and later). 2282 Asm->OutStreamer->AddComment("Version"); 2283 Asm->emitInt16(Asm->OutStreamer->getContext().getDwarfVersion()); 2284 // Address size. 2285 Asm->OutStreamer->AddComment("Address size"); 2286 Asm->emitInt8(Asm->MAI->getCodePointerSize()); 2287 // Segment selector size. 2288 Asm->OutStreamer->AddComment("Segment selector size"); 2289 Asm->emitInt8(0); 2290 } 2291 2292 // Emit the header of a DWARF 5 range list table list table. Returns the symbol 2293 // that designates the end of the table for the caller to emit when the table is 2294 // complete. 2295 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm, 2296 const DwarfFile &Holder) { 2297 MCSymbol *TableStart = Asm->createTempSymbol("debug_rnglist_table_start"); 2298 MCSymbol *TableEnd = Asm->createTempSymbol("debug_rnglist_table_end"); 2299 emitListsTableHeaderStart(Asm, TableStart, TableEnd); 2300 2301 Asm->OutStreamer->AddComment("Offset entry count"); 2302 Asm->emitInt32(Holder.getRangeLists().size()); 2303 Asm->OutStreamer->EmitLabel(Holder.getRnglistsTableBaseSym()); 2304 2305 for (const RangeSpanList &List : Holder.getRangeLists()) 2306 Asm->EmitLabelDifference(List.getSym(), Holder.getRnglistsTableBaseSym(), 2307 4); 2308 2309 return TableEnd; 2310 } 2311 2312 // Emit the header of a DWARF 5 locations list table. Returns the symbol that 2313 // designates the end of the table for the caller to emit when the table is 2314 // complete. 2315 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm, 2316 const DwarfDebug &DD) { 2317 MCSymbol *TableStart = Asm->createTempSymbol("debug_loclist_table_start"); 2318 MCSymbol *TableEnd = Asm->createTempSymbol("debug_loclist_table_end"); 2319 emitListsTableHeaderStart(Asm, TableStart, TableEnd); 2320 2321 const auto &DebugLocs = DD.getDebugLocs(); 2322 2323 // FIXME: Generate the offsets table and use DW_FORM_loclistx with the 2324 // DW_AT_loclists_base attribute. Until then set the number of offsets to 0. 2325 Asm->OutStreamer->AddComment("Offset entry count"); 2326 Asm->emitInt32(0); 2327 Asm->OutStreamer->EmitLabel(DebugLocs.getSym()); 2328 2329 return TableEnd; 2330 } 2331 2332 template <typename Ranges, typename PayloadEmitter> 2333 static void emitRangeList( 2334 DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R, 2335 const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair, 2336 unsigned StartxLength, unsigned EndOfList, 2337 StringRef (*StringifyEnum)(unsigned), 2338 bool ShouldUseBaseAddress, 2339 PayloadEmitter EmitPayload) { 2340 2341 auto Size = Asm->MAI->getCodePointerSize(); 2342 bool UseDwarf5 = DD.getDwarfVersion() >= 5; 2343 2344 // Emit our symbol so we can find the beginning of the range. 2345 Asm->OutStreamer->EmitLabel(Sym); 2346 2347 // Gather all the ranges that apply to the same section so they can share 2348 // a base address entry. 2349 MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges; 2350 2351 for (const auto &Range : R) 2352 SectionRanges[&Range.Begin->getSection()].push_back(&Range); 2353 2354 const MCSymbol *CUBase = CU.getBaseAddress(); 2355 bool BaseIsSet = false; 2356 for (const auto &P : SectionRanges) { 2357 auto *Base = CUBase; 2358 if (!Base && ShouldUseBaseAddress) { 2359 const MCSymbol *Begin = P.second.front()->Begin; 2360 const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection()); 2361 if (!UseDwarf5) { 2362 Base = NewBase; 2363 BaseIsSet = true; 2364 Asm->OutStreamer->EmitIntValue(-1, Size); 2365 Asm->OutStreamer->AddComment(" base address"); 2366 Asm->OutStreamer->EmitSymbolValue(Base, Size); 2367 } else if (NewBase != Begin || P.second.size() > 1) { 2368 // Only use a base address if 2369 // * the existing pool address doesn't match (NewBase != Begin) 2370 // * or, there's more than one entry to share the base address 2371 Base = NewBase; 2372 BaseIsSet = true; 2373 Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx)); 2374 Asm->emitInt8(BaseAddressx); 2375 Asm->OutStreamer->AddComment(" base address index"); 2376 Asm->EmitULEB128(DD.getAddressPool().getIndex(Base)); 2377 } 2378 } else if (BaseIsSet && !UseDwarf5) { 2379 BaseIsSet = false; 2380 assert(!Base); 2381 Asm->OutStreamer->EmitIntValue(-1, Size); 2382 Asm->OutStreamer->EmitIntValue(0, Size); 2383 } 2384 2385 for (const auto *RS : P.second) { 2386 const MCSymbol *Begin = RS->Begin; 2387 const MCSymbol *End = RS->End; 2388 assert(Begin && "Range without a begin symbol?"); 2389 assert(End && "Range without an end symbol?"); 2390 if (Base) { 2391 if (UseDwarf5) { 2392 // Emit offset_pair when we have a base. 2393 Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair)); 2394 Asm->emitInt8(OffsetPair); 2395 Asm->OutStreamer->AddComment(" starting offset"); 2396 Asm->EmitLabelDifferenceAsULEB128(Begin, Base); 2397 Asm->OutStreamer->AddComment(" ending offset"); 2398 Asm->EmitLabelDifferenceAsULEB128(End, Base); 2399 } else { 2400 Asm->EmitLabelDifference(Begin, Base, Size); 2401 Asm->EmitLabelDifference(End, Base, Size); 2402 } 2403 } else if (UseDwarf5) { 2404 Asm->OutStreamer->AddComment(StringifyEnum(StartxLength)); 2405 Asm->emitInt8(StartxLength); 2406 Asm->OutStreamer->AddComment(" start index"); 2407 Asm->EmitULEB128(DD.getAddressPool().getIndex(Begin)); 2408 Asm->OutStreamer->AddComment(" length"); 2409 Asm->EmitLabelDifferenceAsULEB128(End, Begin); 2410 } else { 2411 Asm->OutStreamer->EmitSymbolValue(Begin, Size); 2412 Asm->OutStreamer->EmitSymbolValue(End, Size); 2413 } 2414 EmitPayload(*RS); 2415 } 2416 } 2417 2418 if (UseDwarf5) { 2419 Asm->OutStreamer->AddComment(StringifyEnum(EndOfList)); 2420 Asm->emitInt8(EndOfList); 2421 } else { 2422 // Terminate the list with two 0 values. 2423 Asm->OutStreamer->EmitIntValue(0, Size); 2424 Asm->OutStreamer->EmitIntValue(0, Size); 2425 } 2426 } 2427 2428 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) { 2429 emitRangeList( 2430 DD, Asm, List.Label, DD.getDebugLocs().getEntries(List), *List.CU, 2431 dwarf::DW_LLE_base_addressx, dwarf::DW_LLE_offset_pair, 2432 dwarf::DW_LLE_startx_length, dwarf::DW_LLE_end_of_list, 2433 llvm::dwarf::LocListEncodingString, 2434 /* ShouldUseBaseAddress */ true, 2435 [&](const DebugLocStream::Entry &E) { 2436 DD.emitDebugLocEntryLocation(E, List.CU); 2437 }); 2438 } 2439 2440 // Emit locations into the .debug_loc/.debug_rnglists section. 2441 void DwarfDebug::emitDebugLoc() { 2442 if (DebugLocs.getLists().empty()) 2443 return; 2444 2445 MCSymbol *TableEnd = nullptr; 2446 if (getDwarfVersion() >= 5) { 2447 Asm->OutStreamer->SwitchSection( 2448 Asm->getObjFileLowering().getDwarfLoclistsSection()); 2449 TableEnd = emitLoclistsTableHeader(Asm, *this); 2450 } else { 2451 Asm->OutStreamer->SwitchSection( 2452 Asm->getObjFileLowering().getDwarfLocSection()); 2453 } 2454 2455 for (const auto &List : DebugLocs.getLists()) 2456 emitLocList(*this, Asm, List); 2457 2458 if (TableEnd) 2459 Asm->OutStreamer->EmitLabel(TableEnd); 2460 } 2461 2462 void DwarfDebug::emitDebugLocDWO() { 2463 for (const auto &List : DebugLocs.getLists()) { 2464 Asm->OutStreamer->SwitchSection( 2465 Asm->getObjFileLowering().getDwarfLocDWOSection()); 2466 Asm->OutStreamer->EmitLabel(List.Label); 2467 for (const auto &Entry : DebugLocs.getEntries(List)) { 2468 // GDB only supports startx_length in pre-standard split-DWARF. 2469 // (in v5 standard loclists, it currently* /only/ supports base_address + 2470 // offset_pair, so the implementations can't really share much since they 2471 // need to use different representations) 2472 // * as of October 2018, at least 2473 // Ideally/in v5, this could use SectionLabels to reuse existing addresses 2474 // in the address pool to minimize object size/relocations. 2475 Asm->emitInt8(dwarf::DW_LLE_startx_length); 2476 unsigned idx = AddrPool.getIndex(Entry.Begin); 2477 Asm->EmitULEB128(idx); 2478 Asm->EmitLabelDifference(Entry.End, Entry.Begin, 4); 2479 2480 emitDebugLocEntryLocation(Entry, List.CU); 2481 } 2482 Asm->emitInt8(dwarf::DW_LLE_end_of_list); 2483 } 2484 } 2485 2486 struct ArangeSpan { 2487 const MCSymbol *Start, *End; 2488 }; 2489 2490 // Emit a debug aranges section, containing a CU lookup for any 2491 // address we can tie back to a CU. 2492 void DwarfDebug::emitDebugARanges() { 2493 // Provides a unique id per text section. 2494 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap; 2495 2496 // Filter labels by section. 2497 for (const SymbolCU &SCU : ArangeLabels) { 2498 if (SCU.Sym->isInSection()) { 2499 // Make a note of this symbol and it's section. 2500 MCSection *Section = &SCU.Sym->getSection(); 2501 if (!Section->getKind().isMetadata()) 2502 SectionMap[Section].push_back(SCU); 2503 } else { 2504 // Some symbols (e.g. common/bss on mach-o) can have no section but still 2505 // appear in the output. This sucks as we rely on sections to build 2506 // arange spans. We can do it without, but it's icky. 2507 SectionMap[nullptr].push_back(SCU); 2508 } 2509 } 2510 2511 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans; 2512 2513 for (auto &I : SectionMap) { 2514 MCSection *Section = I.first; 2515 SmallVector<SymbolCU, 8> &List = I.second; 2516 if (List.size() < 1) 2517 continue; 2518 2519 // If we have no section (e.g. common), just write out 2520 // individual spans for each symbol. 2521 if (!Section) { 2522 for (const SymbolCU &Cur : List) { 2523 ArangeSpan Span; 2524 Span.Start = Cur.Sym; 2525 Span.End = nullptr; 2526 assert(Cur.CU); 2527 Spans[Cur.CU].push_back(Span); 2528 } 2529 continue; 2530 } 2531 2532 // Sort the symbols by offset within the section. 2533 llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) { 2534 unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0; 2535 unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0; 2536 2537 // Symbols with no order assigned should be placed at the end. 2538 // (e.g. section end labels) 2539 if (IA == 0) 2540 return false; 2541 if (IB == 0) 2542 return true; 2543 return IA < IB; 2544 }); 2545 2546 // Insert a final terminator. 2547 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section))); 2548 2549 // Build spans between each label. 2550 const MCSymbol *StartSym = List[0].Sym; 2551 for (size_t n = 1, e = List.size(); n < e; n++) { 2552 const SymbolCU &Prev = List[n - 1]; 2553 const SymbolCU &Cur = List[n]; 2554 2555 // Try and build the longest span we can within the same CU. 2556 if (Cur.CU != Prev.CU) { 2557 ArangeSpan Span; 2558 Span.Start = StartSym; 2559 Span.End = Cur.Sym; 2560 assert(Prev.CU); 2561 Spans[Prev.CU].push_back(Span); 2562 StartSym = Cur.Sym; 2563 } 2564 } 2565 } 2566 2567 // Start the dwarf aranges section. 2568 Asm->OutStreamer->SwitchSection( 2569 Asm->getObjFileLowering().getDwarfARangesSection()); 2570 2571 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2572 2573 // Build a list of CUs used. 2574 std::vector<DwarfCompileUnit *> CUs; 2575 for (const auto &it : Spans) { 2576 DwarfCompileUnit *CU = it.first; 2577 CUs.push_back(CU); 2578 } 2579 2580 // Sort the CU list (again, to ensure consistent output order). 2581 llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) { 2582 return A->getUniqueID() < B->getUniqueID(); 2583 }); 2584 2585 // Emit an arange table for each CU we used. 2586 for (DwarfCompileUnit *CU : CUs) { 2587 std::vector<ArangeSpan> &List = Spans[CU]; 2588 2589 // Describe the skeleton CU's offset and length, not the dwo file's. 2590 if (auto *Skel = CU->getSkeleton()) 2591 CU = Skel; 2592 2593 // Emit size of content not including length itself. 2594 unsigned ContentSize = 2595 sizeof(int16_t) + // DWARF ARange version number 2596 sizeof(int32_t) + // Offset of CU in the .debug_info section 2597 sizeof(int8_t) + // Pointer Size (in bytes) 2598 sizeof(int8_t); // Segment Size (in bytes) 2599 2600 unsigned TupleSize = PtrSize * 2; 2601 2602 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. 2603 unsigned Padding = 2604 offsetToAlignment(sizeof(int32_t) + ContentSize, Align(TupleSize)); 2605 2606 ContentSize += Padding; 2607 ContentSize += (List.size() + 1) * TupleSize; 2608 2609 // For each compile unit, write the list of spans it covers. 2610 Asm->OutStreamer->AddComment("Length of ARange Set"); 2611 Asm->emitInt32(ContentSize); 2612 Asm->OutStreamer->AddComment("DWARF Arange version number"); 2613 Asm->emitInt16(dwarf::DW_ARANGES_VERSION); 2614 Asm->OutStreamer->AddComment("Offset Into Debug Info Section"); 2615 emitSectionReference(*CU); 2616 Asm->OutStreamer->AddComment("Address Size (in bytes)"); 2617 Asm->emitInt8(PtrSize); 2618 Asm->OutStreamer->AddComment("Segment Size (in bytes)"); 2619 Asm->emitInt8(0); 2620 2621 Asm->OutStreamer->emitFill(Padding, 0xff); 2622 2623 for (const ArangeSpan &Span : List) { 2624 Asm->EmitLabelReference(Span.Start, PtrSize); 2625 2626 // Calculate the size as being from the span start to it's end. 2627 if (Span.End) { 2628 Asm->EmitLabelDifference(Span.End, Span.Start, PtrSize); 2629 } else { 2630 // For symbols without an end marker (e.g. common), we 2631 // write a single arange entry containing just that one symbol. 2632 uint64_t Size = SymSize[Span.Start]; 2633 if (Size == 0) 2634 Size = 1; 2635 2636 Asm->OutStreamer->EmitIntValue(Size, PtrSize); 2637 } 2638 } 2639 2640 Asm->OutStreamer->AddComment("ARange terminator"); 2641 Asm->OutStreamer->EmitIntValue(0, PtrSize); 2642 Asm->OutStreamer->EmitIntValue(0, PtrSize); 2643 } 2644 } 2645 2646 /// Emit a single range list. We handle both DWARF v5 and earlier. 2647 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm, 2648 const RangeSpanList &List) { 2649 emitRangeList(DD, Asm, List.getSym(), List.getRanges(), List.getCU(), 2650 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair, 2651 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list, 2652 llvm::dwarf::RangeListEncodingString, 2653 List.getCU().getCUNode()->getRangesBaseAddress() || 2654 DD.getDwarfVersion() >= 5, 2655 [](auto) {}); 2656 } 2657 2658 static void emitDebugRangesImpl(DwarfDebug &DD, AsmPrinter *Asm, 2659 const DwarfFile &Holder, MCSymbol *TableEnd) { 2660 for (const RangeSpanList &List : Holder.getRangeLists()) 2661 emitRangeList(DD, Asm, List); 2662 2663 if (TableEnd) 2664 Asm->OutStreamer->EmitLabel(TableEnd); 2665 } 2666 2667 /// Emit address ranges into the .debug_ranges section or into the DWARF v5 2668 /// .debug_rnglists section. 2669 void DwarfDebug::emitDebugRanges() { 2670 if (CUMap.empty()) 2671 return; 2672 2673 const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2674 2675 if (Holder.getRangeLists().empty()) 2676 return; 2677 2678 assert(useRangesSection()); 2679 assert(llvm::none_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { 2680 return Pair.second->getCUNode()->isDebugDirectivesOnly(); 2681 })); 2682 2683 // Start the dwarf ranges section. 2684 MCSymbol *TableEnd = nullptr; 2685 if (getDwarfVersion() >= 5) { 2686 Asm->OutStreamer->SwitchSection( 2687 Asm->getObjFileLowering().getDwarfRnglistsSection()); 2688 TableEnd = emitRnglistsTableHeader(Asm, Holder); 2689 } else 2690 Asm->OutStreamer->SwitchSection( 2691 Asm->getObjFileLowering().getDwarfRangesSection()); 2692 2693 emitDebugRangesImpl(*this, Asm, Holder, TableEnd); 2694 } 2695 2696 void DwarfDebug::emitDebugRangesDWO() { 2697 assert(useSplitDwarf()); 2698 2699 if (CUMap.empty()) 2700 return; 2701 2702 const auto &Holder = InfoHolder; 2703 2704 if (Holder.getRangeLists().empty()) 2705 return; 2706 2707 assert(getDwarfVersion() >= 5); 2708 assert(useRangesSection()); 2709 assert(llvm::none_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { 2710 return Pair.second->getCUNode()->isDebugDirectivesOnly(); 2711 })); 2712 2713 // Start the dwarf ranges section. 2714 Asm->OutStreamer->SwitchSection( 2715 Asm->getObjFileLowering().getDwarfRnglistsDWOSection()); 2716 MCSymbol *TableEnd = emitRnglistsTableHeader(Asm, Holder); 2717 2718 emitDebugRangesImpl(*this, Asm, Holder, TableEnd); 2719 } 2720 2721 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) { 2722 for (auto *MN : Nodes) { 2723 if (auto *M = dyn_cast<DIMacro>(MN)) 2724 emitMacro(*M); 2725 else if (auto *F = dyn_cast<DIMacroFile>(MN)) 2726 emitMacroFile(*F, U); 2727 else 2728 llvm_unreachable("Unexpected DI type!"); 2729 } 2730 } 2731 2732 void DwarfDebug::emitMacro(DIMacro &M) { 2733 Asm->EmitULEB128(M.getMacinfoType()); 2734 Asm->EmitULEB128(M.getLine()); 2735 StringRef Name = M.getName(); 2736 StringRef Value = M.getValue(); 2737 Asm->OutStreamer->EmitBytes(Name); 2738 if (!Value.empty()) { 2739 // There should be one space between macro name and macro value. 2740 Asm->emitInt8(' '); 2741 Asm->OutStreamer->EmitBytes(Value); 2742 } 2743 Asm->emitInt8('\0'); 2744 } 2745 2746 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) { 2747 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file); 2748 Asm->EmitULEB128(dwarf::DW_MACINFO_start_file); 2749 Asm->EmitULEB128(F.getLine()); 2750 Asm->EmitULEB128(U.getOrCreateSourceID(F.getFile())); 2751 handleMacroNodes(F.getElements(), U); 2752 Asm->EmitULEB128(dwarf::DW_MACINFO_end_file); 2753 } 2754 2755 /// Emit macros into a debug macinfo section. 2756 void DwarfDebug::emitDebugMacinfo() { 2757 if (CUMap.empty()) 2758 return; 2759 2760 if (llvm::all_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { 2761 return Pair.second->getCUNode()->isDebugDirectivesOnly(); 2762 })) 2763 return; 2764 2765 // Start the dwarf macinfo section. 2766 Asm->OutStreamer->SwitchSection( 2767 Asm->getObjFileLowering().getDwarfMacinfoSection()); 2768 2769 for (const auto &P : CUMap) { 2770 auto &TheCU = *P.second; 2771 if (TheCU.getCUNode()->isDebugDirectivesOnly()) 2772 continue; 2773 auto *SkCU = TheCU.getSkeleton(); 2774 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 2775 auto *CUNode = cast<DICompileUnit>(P.first); 2776 DIMacroNodeArray Macros = CUNode->getMacros(); 2777 if (!Macros.empty()) { 2778 Asm->OutStreamer->EmitLabel(U.getMacroLabelBegin()); 2779 handleMacroNodes(Macros, U); 2780 } 2781 } 2782 Asm->OutStreamer->AddComment("End Of Macro List Mark"); 2783 Asm->emitInt8(0); 2784 } 2785 2786 // DWARF5 Experimental Separate Dwarf emitters. 2787 2788 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die, 2789 std::unique_ptr<DwarfCompileUnit> NewU) { 2790 2791 if (!CompilationDir.empty()) 2792 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 2793 2794 addGnuPubAttributes(*NewU, Die); 2795 2796 SkeletonHolder.addUnit(std::move(NewU)); 2797 } 2798 2799 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) { 2800 2801 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 2802 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder); 2803 DwarfCompileUnit &NewCU = *OwnedUnit; 2804 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 2805 2806 NewCU.initStmtList(); 2807 2808 if (useSegmentedStringOffsetsTable()) 2809 NewCU.addStringOffsetsStart(); 2810 2811 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit)); 2812 2813 return NewCU; 2814 } 2815 2816 // Emit the .debug_info.dwo section for separated dwarf. This contains the 2817 // compile units that would normally be in debug_info. 2818 void DwarfDebug::emitDebugInfoDWO() { 2819 assert(useSplitDwarf() && "No split dwarf debug info?"); 2820 // Don't emit relocations into the dwo file. 2821 InfoHolder.emitUnits(/* UseOffsets */ true); 2822 } 2823 2824 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the 2825 // abbreviations for the .debug_info.dwo section. 2826 void DwarfDebug::emitDebugAbbrevDWO() { 2827 assert(useSplitDwarf() && "No split dwarf?"); 2828 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection()); 2829 } 2830 2831 void DwarfDebug::emitDebugLineDWO() { 2832 assert(useSplitDwarf() && "No split dwarf?"); 2833 SplitTypeUnitFileTable.Emit( 2834 *Asm->OutStreamer, MCDwarfLineTableParams(), 2835 Asm->getObjFileLowering().getDwarfLineDWOSection()); 2836 } 2837 2838 void DwarfDebug::emitStringOffsetsTableHeaderDWO() { 2839 assert(useSplitDwarf() && "No split dwarf?"); 2840 InfoHolder.getStringPool().emitStringOffsetsTableHeader( 2841 *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(), 2842 InfoHolder.getStringOffsetsStartSym()); 2843 } 2844 2845 // Emit the .debug_str.dwo section for separated dwarf. This contains the 2846 // string section and is identical in format to traditional .debug_str 2847 // sections. 2848 void DwarfDebug::emitDebugStrDWO() { 2849 if (useSegmentedStringOffsetsTable()) 2850 emitStringOffsetsTableHeaderDWO(); 2851 assert(useSplitDwarf() && "No split dwarf?"); 2852 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection(); 2853 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), 2854 OffSec, /* UseRelativeOffsets = */ false); 2855 } 2856 2857 // Emit address pool. 2858 void DwarfDebug::emitDebugAddr() { 2859 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection()); 2860 } 2861 2862 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) { 2863 if (!useSplitDwarf()) 2864 return nullptr; 2865 const DICompileUnit *DIUnit = CU.getCUNode(); 2866 SplitTypeUnitFileTable.maybeSetRootFile( 2867 DIUnit->getDirectory(), DIUnit->getFilename(), 2868 CU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource()); 2869 return &SplitTypeUnitFileTable; 2870 } 2871 2872 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) { 2873 MD5 Hash; 2874 Hash.update(Identifier); 2875 // ... take the least significant 8 bytes and return those. Our MD5 2876 // implementation always returns its results in little endian, so we actually 2877 // need the "high" word. 2878 MD5::MD5Result Result; 2879 Hash.final(Result); 2880 return Result.high(); 2881 } 2882 2883 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU, 2884 StringRef Identifier, DIE &RefDie, 2885 const DICompositeType *CTy) { 2886 // Fast path if we're building some type units and one has already used the 2887 // address pool we know we're going to throw away all this work anyway, so 2888 // don't bother building dependent types. 2889 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed()) 2890 return; 2891 2892 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0)); 2893 if (!Ins.second) { 2894 CU.addDIETypeSignature(RefDie, Ins.first->second); 2895 return; 2896 } 2897 2898 bool TopLevelType = TypeUnitsUnderConstruction.empty(); 2899 AddrPool.resetUsedFlag(); 2900 2901 auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder, 2902 getDwoLineTable(CU)); 2903 DwarfTypeUnit &NewTU = *OwnedUnit; 2904 DIE &UnitDie = NewTU.getUnitDie(); 2905 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy); 2906 2907 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 2908 CU.getLanguage()); 2909 2910 uint64_t Signature = makeTypeSignature(Identifier); 2911 NewTU.setTypeSignature(Signature); 2912 Ins.first->second = Signature; 2913 2914 if (useSplitDwarf()) { 2915 MCSection *Section = 2916 getDwarfVersion() <= 4 2917 ? Asm->getObjFileLowering().getDwarfTypesDWOSection() 2918 : Asm->getObjFileLowering().getDwarfInfoDWOSection(); 2919 NewTU.setSection(Section); 2920 } else { 2921 MCSection *Section = 2922 getDwarfVersion() <= 4 2923 ? Asm->getObjFileLowering().getDwarfTypesSection(Signature) 2924 : Asm->getObjFileLowering().getDwarfInfoSection(Signature); 2925 NewTU.setSection(Section); 2926 // Non-split type units reuse the compile unit's line table. 2927 CU.applyStmtList(UnitDie); 2928 } 2929 2930 // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type 2931 // units. 2932 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 2933 NewTU.addStringOffsetsStart(); 2934 2935 NewTU.setType(NewTU.createTypeDIE(CTy)); 2936 2937 if (TopLevelType) { 2938 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction); 2939 TypeUnitsUnderConstruction.clear(); 2940 2941 // Types referencing entries in the address table cannot be placed in type 2942 // units. 2943 if (AddrPool.hasBeenUsed()) { 2944 2945 // Remove all the types built while building this type. 2946 // This is pessimistic as some of these types might not be dependent on 2947 // the type that used an address. 2948 for (const auto &TU : TypeUnitsToAdd) 2949 TypeSignatures.erase(TU.second); 2950 2951 // Construct this type in the CU directly. 2952 // This is inefficient because all the dependent types will be rebuilt 2953 // from scratch, including building them in type units, discovering that 2954 // they depend on addresses, throwing them out and rebuilding them. 2955 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy)); 2956 return; 2957 } 2958 2959 // If the type wasn't dependent on fission addresses, finish adding the type 2960 // and all its dependent types. 2961 for (auto &TU : TypeUnitsToAdd) { 2962 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get()); 2963 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf()); 2964 } 2965 } 2966 CU.addDIETypeSignature(RefDie, Signature); 2967 } 2968 2969 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD) 2970 : DD(DD), 2971 TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)) { 2972 DD->TypeUnitsUnderConstruction.clear(); 2973 assert(TypeUnitsUnderConstruction.empty() || !DD->AddrPool.hasBeenUsed()); 2974 } 2975 2976 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() { 2977 DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction); 2978 DD->AddrPool.resetUsedFlag(); 2979 } 2980 2981 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() { 2982 return NonTypeUnitContext(this); 2983 } 2984 2985 // Add the Name along with its companion DIE to the appropriate accelerator 2986 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for 2987 // AccelTableKind::Apple, we use the table we got as an argument). If 2988 // accelerator tables are disabled, this function does nothing. 2989 template <typename DataT> 2990 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU, 2991 AccelTable<DataT> &AppleAccel, StringRef Name, 2992 const DIE &Die) { 2993 if (getAccelTableKind() == AccelTableKind::None) 2994 return; 2995 2996 if (getAccelTableKind() != AccelTableKind::Apple && 2997 CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default) 2998 return; 2999 3000 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 3001 DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name); 3002 3003 switch (getAccelTableKind()) { 3004 case AccelTableKind::Apple: 3005 AppleAccel.addName(Ref, Die); 3006 break; 3007 case AccelTableKind::Dwarf: 3008 AccelDebugNames.addName(Ref, Die); 3009 break; 3010 case AccelTableKind::Default: 3011 llvm_unreachable("Default should have already been resolved."); 3012 case AccelTableKind::None: 3013 llvm_unreachable("None handled above"); 3014 } 3015 } 3016 3017 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name, 3018 const DIE &Die) { 3019 addAccelNameImpl(CU, AccelNames, Name, Die); 3020 } 3021 3022 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name, 3023 const DIE &Die) { 3024 // ObjC names go only into the Apple accelerator tables. 3025 if (getAccelTableKind() == AccelTableKind::Apple) 3026 addAccelNameImpl(CU, AccelObjC, Name, Die); 3027 } 3028 3029 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name, 3030 const DIE &Die) { 3031 addAccelNameImpl(CU, AccelNamespace, Name, Die); 3032 } 3033 3034 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name, 3035 const DIE &Die, char Flags) { 3036 addAccelNameImpl(CU, AccelTypes, Name, Die); 3037 } 3038 3039 uint16_t DwarfDebug::getDwarfVersion() const { 3040 return Asm->OutStreamer->getContext().getDwarfVersion(); 3041 } 3042 3043 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) { 3044 return SectionLabels.find(S)->second; 3045 } 3046