1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing dwarf debug info into asm files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "DwarfDebug.h"
14 #include "ByteStreamer.h"
15 #include "DIEHash.h"
16 #include "DwarfCompileUnit.h"
17 #include "DwarfExpression.h"
18 #include "DwarfUnit.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/CodeGen/AsmPrinter.h"
24 #include "llvm/CodeGen/DIE.h"
25 #include "llvm/CodeGen/LexicalScopes.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/CodeGen/TargetRegisterInfo.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/DebugInfo/DWARF/DWARFExpression.h"
35 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/MC/MCAsmInfo.h"
41 #include "llvm/MC/MCContext.h"
42 #include "llvm/MC/MCSection.h"
43 #include "llvm/MC/MCStreamer.h"
44 #include "llvm/MC/MCSymbol.h"
45 #include "llvm/MC/MCTargetOptions.h"
46 #include "llvm/MC/MachineLocation.h"
47 #include "llvm/MC/SectionKind.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MD5.h"
54 #include "llvm/Support/MathExtras.h"
55 #include "llvm/Support/Timer.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Target/TargetLoweringObjectFile.h"
58 #include "llvm/Target/TargetMachine.h"
59 #include <algorithm>
60 #include <cstddef>
61 #include <iterator>
62 #include <string>
63 
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "dwarfdebug"
67 
68 STATISTIC(NumCSParams, "Number of dbg call site params created");
69 
70 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier(
71     "use-dwarf-ranges-base-address-specifier", cl::Hidden,
72     cl::desc("Use base address specifiers in debug_ranges"), cl::init(false));
73 
74 static cl::opt<bool> GenerateARangeSection("generate-arange-section",
75                                            cl::Hidden,
76                                            cl::desc("Generate dwarf aranges"),
77                                            cl::init(false));
78 
79 static cl::opt<bool>
80     GenerateDwarfTypeUnits("generate-type-units", cl::Hidden,
81                            cl::desc("Generate DWARF4 type units."),
82                            cl::init(false));
83 
84 static cl::opt<bool> SplitDwarfCrossCuReferences(
85     "split-dwarf-cross-cu-references", cl::Hidden,
86     cl::desc("Enable cross-cu references in DWO files"), cl::init(false));
87 
88 enum DefaultOnOff { Default, Enable, Disable };
89 
90 static cl::opt<DefaultOnOff> UnknownLocations(
91     "use-unknown-locations", cl::Hidden,
92     cl::desc("Make an absence of debug location information explicit."),
93     cl::values(clEnumVal(Default, "At top of block or after label"),
94                clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")),
95     cl::init(Default));
96 
97 static cl::opt<AccelTableKind> AccelTables(
98     "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."),
99     cl::values(clEnumValN(AccelTableKind::Default, "Default",
100                           "Default for platform"),
101                clEnumValN(AccelTableKind::None, "Disable", "Disabled."),
102                clEnumValN(AccelTableKind::Apple, "Apple", "Apple"),
103                clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")),
104     cl::init(AccelTableKind::Default));
105 
106 static cl::opt<DefaultOnOff>
107 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden,
108                  cl::desc("Use inlined strings rather than string section."),
109                  cl::values(clEnumVal(Default, "Default for platform"),
110                             clEnumVal(Enable, "Enabled"),
111                             clEnumVal(Disable, "Disabled")),
112                  cl::init(Default));
113 
114 static cl::opt<bool>
115     NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden,
116                          cl::desc("Disable emission .debug_ranges section."),
117                          cl::init(false));
118 
119 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences(
120     "dwarf-sections-as-references", cl::Hidden,
121     cl::desc("Use sections+offset as references rather than labels."),
122     cl::values(clEnumVal(Default, "Default for platform"),
123                clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
124     cl::init(Default));
125 
126 static cl::opt<bool>
127     UseGNUDebugMacro("use-gnu-debug-macro", cl::Hidden,
128                      cl::desc("Emit the GNU .debug_macro format with DWARF <5"),
129                      cl::init(false));
130 
131 static cl::opt<DefaultOnOff> DwarfOpConvert(
132     "dwarf-op-convert", cl::Hidden,
133     cl::desc("Enable use of the DWARFv5 DW_OP_convert operator"),
134     cl::values(clEnumVal(Default, "Default for platform"),
135                clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
136     cl::init(Default));
137 
138 enum LinkageNameOption {
139   DefaultLinkageNames,
140   AllLinkageNames,
141   AbstractLinkageNames
142 };
143 
144 static cl::opt<LinkageNameOption>
145     DwarfLinkageNames("dwarf-linkage-names", cl::Hidden,
146                       cl::desc("Which DWARF linkage-name attributes to emit."),
147                       cl::values(clEnumValN(DefaultLinkageNames, "Default",
148                                             "Default for platform"),
149                                  clEnumValN(AllLinkageNames, "All", "All"),
150                                  clEnumValN(AbstractLinkageNames, "Abstract",
151                                             "Abstract subprograms")),
152                       cl::init(DefaultLinkageNames));
153 
154 static constexpr unsigned ULEB128PadSize = 4;
155 
156 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) {
157   getActiveStreamer().emitInt8(
158       Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op)
159                   : dwarf::OperationEncodingString(Op));
160 }
161 
162 void DebugLocDwarfExpression::emitSigned(int64_t Value) {
163   getActiveStreamer().emitSLEB128(Value, Twine(Value));
164 }
165 
166 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) {
167   getActiveStreamer().emitULEB128(Value, Twine(Value));
168 }
169 
170 void DebugLocDwarfExpression::emitData1(uint8_t Value) {
171   getActiveStreamer().emitInt8(Value, Twine(Value));
172 }
173 
174 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) {
175   assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit");
176   getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize);
177 }
178 
179 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI,
180                                               llvm::Register MachineReg) {
181   // This information is not available while emitting .debug_loc entries.
182   return false;
183 }
184 
185 void DebugLocDwarfExpression::enableTemporaryBuffer() {
186   assert(!IsBuffering && "Already buffering?");
187   if (!TmpBuf)
188     TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments);
189   IsBuffering = true;
190 }
191 
192 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; }
193 
194 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() {
195   return TmpBuf ? TmpBuf->Bytes.size() : 0;
196 }
197 
198 void DebugLocDwarfExpression::commitTemporaryBuffer() {
199   if (!TmpBuf)
200     return;
201   for (auto Byte : enumerate(TmpBuf->Bytes)) {
202     const char *Comment = (Byte.index() < TmpBuf->Comments.size())
203                               ? TmpBuf->Comments[Byte.index()].c_str()
204                               : "";
205     OutBS.emitInt8(Byte.value(), Comment);
206   }
207   TmpBuf->Bytes.clear();
208   TmpBuf->Comments.clear();
209 }
210 
211 const DIType *DbgVariable::getType() const {
212   return getVariable()->getType();
213 }
214 
215 /// Get .debug_loc entry for the instruction range starting at MI.
216 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) {
217   const DIExpression *Expr = MI->getDebugExpression();
218   assert(MI->getNumOperands() == 4);
219   if (MI->getDebugOperand(0).isReg()) {
220     const auto &RegOp = MI->getDebugOperand(0);
221     const auto &Op1 = MI->getDebugOffset();
222     // If the second operand is an immediate, this is a
223     // register-indirect address.
224     assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset");
225     MachineLocation MLoc(RegOp.getReg(), Op1.isImm());
226     return DbgValueLoc(Expr, MLoc);
227   }
228   if (MI->getDebugOperand(0).isTargetIndex()) {
229     const auto &Op = MI->getDebugOperand(0);
230     return DbgValueLoc(Expr,
231                        TargetIndexLocation(Op.getIndex(), Op.getOffset()));
232   }
233   if (MI->getDebugOperand(0).isImm())
234     return DbgValueLoc(Expr, MI->getDebugOperand(0).getImm());
235   if (MI->getDebugOperand(0).isFPImm())
236     return DbgValueLoc(Expr, MI->getDebugOperand(0).getFPImm());
237   if (MI->getDebugOperand(0).isCImm())
238     return DbgValueLoc(Expr, MI->getDebugOperand(0).getCImm());
239 
240   llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!");
241 }
242 
243 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) {
244   assert(FrameIndexExprs.empty() && "Already initialized?");
245   assert(!ValueLoc.get() && "Already initialized?");
246 
247   assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable");
248   assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() &&
249          "Wrong inlined-at");
250 
251   ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue));
252   if (auto *E = DbgValue->getDebugExpression())
253     if (E->getNumElements())
254       FrameIndexExprs.push_back({0, E});
255 }
256 
257 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const {
258   if (FrameIndexExprs.size() == 1)
259     return FrameIndexExprs;
260 
261   assert(llvm::all_of(FrameIndexExprs,
262                       [](const FrameIndexExpr &A) {
263                         return A.Expr->isFragment();
264                       }) &&
265          "multiple FI expressions without DW_OP_LLVM_fragment");
266   llvm::sort(FrameIndexExprs,
267              [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool {
268                return A.Expr->getFragmentInfo()->OffsetInBits <
269                       B.Expr->getFragmentInfo()->OffsetInBits;
270              });
271 
272   return FrameIndexExprs;
273 }
274 
275 void DbgVariable::addMMIEntry(const DbgVariable &V) {
276   assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry");
277   assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry");
278   assert(V.getVariable() == getVariable() && "conflicting variable");
279   assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location");
280 
281   assert(!FrameIndexExprs.empty() && "Expected an MMI entry");
282   assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry");
283 
284   // FIXME: This logic should not be necessary anymore, as we now have proper
285   // deduplication. However, without it, we currently run into the assertion
286   // below, which means that we are likely dealing with broken input, i.e. two
287   // non-fragment entries for the same variable at different frame indices.
288   if (FrameIndexExprs.size()) {
289     auto *Expr = FrameIndexExprs.back().Expr;
290     if (!Expr || !Expr->isFragment())
291       return;
292   }
293 
294   for (const auto &FIE : V.FrameIndexExprs)
295     // Ignore duplicate entries.
296     if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) {
297           return FIE.FI == Other.FI && FIE.Expr == Other.Expr;
298         }))
299       FrameIndexExprs.push_back(FIE);
300 
301   assert((FrameIndexExprs.size() == 1 ||
302           llvm::all_of(FrameIndexExprs,
303                        [](FrameIndexExpr &FIE) {
304                          return FIE.Expr && FIE.Expr->isFragment();
305                        })) &&
306          "conflicting locations for variable");
307 }
308 
309 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion,
310                                             bool GenerateTypeUnits,
311                                             DebuggerKind Tuning,
312                                             const Triple &TT) {
313   // Honor an explicit request.
314   if (AccelTables != AccelTableKind::Default)
315     return AccelTables;
316 
317   // Accelerator tables with type units are currently not supported.
318   if (GenerateTypeUnits)
319     return AccelTableKind::None;
320 
321   // Accelerator tables get emitted if targetting DWARF v5 or LLDB.  DWARF v5
322   // always implies debug_names. For lower standard versions we use apple
323   // accelerator tables on apple platforms and debug_names elsewhere.
324   if (DwarfVersion >= 5)
325     return AccelTableKind::Dwarf;
326   if (Tuning == DebuggerKind::LLDB)
327     return TT.isOSBinFormatMachO() ? AccelTableKind::Apple
328                                    : AccelTableKind::Dwarf;
329   return AccelTableKind::None;
330 }
331 
332 DwarfDebug::DwarfDebug(AsmPrinter *A)
333     : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()),
334       InfoHolder(A, "info_string", DIEValueAllocator),
335       SkeletonHolder(A, "skel_string", DIEValueAllocator),
336       IsDarwin(A->TM.getTargetTriple().isOSDarwin()) {
337   const Triple &TT = Asm->TM.getTargetTriple();
338 
339   // Make sure we know our "debugger tuning".  The target option takes
340   // precedence; fall back to triple-based defaults.
341   if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default)
342     DebuggerTuning = Asm->TM.Options.DebuggerTuning;
343   else if (IsDarwin)
344     DebuggerTuning = DebuggerKind::LLDB;
345   else if (TT.isPS4CPU())
346     DebuggerTuning = DebuggerKind::SCE;
347   else
348     DebuggerTuning = DebuggerKind::GDB;
349 
350   if (DwarfInlinedStrings == Default)
351     UseInlineStrings = TT.isNVPTX();
352   else
353     UseInlineStrings = DwarfInlinedStrings == Enable;
354 
355   UseLocSection = !TT.isNVPTX();
356 
357   HasAppleExtensionAttributes = tuneForLLDB();
358 
359   // Handle split DWARF.
360   HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty();
361 
362   // SCE defaults to linkage names only for abstract subprograms.
363   if (DwarfLinkageNames == DefaultLinkageNames)
364     UseAllLinkageNames = !tuneForSCE();
365   else
366     UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames;
367 
368   unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
369   unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
370                                     : MMI->getModule()->getDwarfVersion();
371   // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2.
372   DwarfVersion =
373       TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION);
374 
375   bool Dwarf64 = Asm->TM.Options.MCOptions.Dwarf64 &&
376                  DwarfVersion >= 3 &&   // DWARF64 was introduced in DWARFv3.
377                  TT.isArch64Bit() &&    // DWARF64 requires 64-bit relocations.
378                  TT.isOSBinFormatELF(); // Support only ELF for now.
379 
380   UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX();
381 
382   // Use sections as references. Force for NVPTX.
383   if (DwarfSectionsAsReferences == Default)
384     UseSectionsAsReferences = TT.isNVPTX();
385   else
386     UseSectionsAsReferences = DwarfSectionsAsReferences == Enable;
387 
388   // Don't generate type units for unsupported object file formats.
389   GenerateTypeUnits = (A->TM.getTargetTriple().isOSBinFormatELF() ||
390                        A->TM.getTargetTriple().isOSBinFormatWasm()) &&
391                       GenerateDwarfTypeUnits;
392 
393   TheAccelTableKind = computeAccelTableKind(
394       DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple());
395 
396   // Work around a GDB bug. GDB doesn't support the standard opcode;
397   // SCE doesn't support GNU's; LLDB prefers the standard opcode, which
398   // is defined as of DWARF 3.
399   // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented
400   // https://sourceware.org/bugzilla/show_bug.cgi?id=11616
401   UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3;
402 
403   // GDB does not fully support the DWARF 4 representation for bitfields.
404   UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB();
405 
406   // The DWARF v5 string offsets table has - possibly shared - contributions
407   // from each compile and type unit each preceded by a header. The string
408   // offsets table used by the pre-DWARF v5 split-DWARF implementation uses
409   // a monolithic string offsets table without any header.
410   UseSegmentedStringOffsetsTable = DwarfVersion >= 5;
411 
412   // Emit call-site-param debug info for GDB and LLDB, if the target supports
413   // the debug entry values feature. It can also be enabled explicitly.
414   EmitDebugEntryValues = Asm->TM.Options.ShouldEmitDebugEntryValues();
415 
416   // It is unclear if the GCC .debug_macro extension is well-specified
417   // for split DWARF. For now, do not allow LLVM to emit it.
418   UseDebugMacroSection =
419       DwarfVersion >= 5 || (UseGNUDebugMacro && !useSplitDwarf());
420   if (DwarfOpConvert == Default)
421     EnableOpConvert = !((tuneForGDB() && useSplitDwarf()) || (tuneForLLDB() && !TT.isOSBinFormatMachO()));
422   else
423     EnableOpConvert = (DwarfOpConvert == Enable);
424 
425   Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion);
426   Asm->OutStreamer->getContext().setDwarfFormat(Dwarf64 ? dwarf::DWARF64
427                                                         : dwarf::DWARF32);
428 }
429 
430 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
431 DwarfDebug::~DwarfDebug() = default;
432 
433 static bool isObjCClass(StringRef Name) {
434   return Name.startswith("+") || Name.startswith("-");
435 }
436 
437 static bool hasObjCCategory(StringRef Name) {
438   if (!isObjCClass(Name))
439     return false;
440 
441   return Name.find(") ") != StringRef::npos;
442 }
443 
444 static void getObjCClassCategory(StringRef In, StringRef &Class,
445                                  StringRef &Category) {
446   if (!hasObjCCategory(In)) {
447     Class = In.slice(In.find('[') + 1, In.find(' '));
448     Category = "";
449     return;
450   }
451 
452   Class = In.slice(In.find('[') + 1, In.find('('));
453   Category = In.slice(In.find('[') + 1, In.find(' '));
454 }
455 
456 static StringRef getObjCMethodName(StringRef In) {
457   return In.slice(In.find(' ') + 1, In.find(']'));
458 }
459 
460 // Add the various names to the Dwarf accelerator table names.
461 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU,
462                                     const DISubprogram *SP, DIE &Die) {
463   if (getAccelTableKind() != AccelTableKind::Apple &&
464       CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None)
465     return;
466 
467   if (!SP->isDefinition())
468     return;
469 
470   if (SP->getName() != "")
471     addAccelName(CU, SP->getName(), Die);
472 
473   // If the linkage name is different than the name, go ahead and output that as
474   // well into the name table. Only do that if we are going to actually emit
475   // that name.
476   if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() &&
477       (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP)))
478     addAccelName(CU, SP->getLinkageName(), Die);
479 
480   // If this is an Objective-C selector name add it to the ObjC accelerator
481   // too.
482   if (isObjCClass(SP->getName())) {
483     StringRef Class, Category;
484     getObjCClassCategory(SP->getName(), Class, Category);
485     addAccelObjC(CU, Class, Die);
486     if (Category != "")
487       addAccelObjC(CU, Category, Die);
488     // Also add the base method name to the name table.
489     addAccelName(CU, getObjCMethodName(SP->getName()), Die);
490   }
491 }
492 
493 /// Check whether we should create a DIE for the given Scope, return true
494 /// if we don't create a DIE (the corresponding DIE is null).
495 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
496   if (Scope->isAbstractScope())
497     return false;
498 
499   // We don't create a DIE if there is no Range.
500   const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
501   if (Ranges.empty())
502     return true;
503 
504   if (Ranges.size() > 1)
505     return false;
506 
507   // We don't create a DIE if we have a single Range and the end label
508   // is null.
509   return !getLabelAfterInsn(Ranges.front().second);
510 }
511 
512 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) {
513   F(CU);
514   if (auto *SkelCU = CU.getSkeleton())
515     if (CU.getCUNode()->getSplitDebugInlining())
516       F(*SkelCU);
517 }
518 
519 bool DwarfDebug::shareAcrossDWOCUs() const {
520   return SplitDwarfCrossCuReferences;
521 }
522 
523 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU,
524                                                      LexicalScope *Scope) {
525   assert(Scope && Scope->getScopeNode());
526   assert(Scope->isAbstractScope());
527   assert(!Scope->getInlinedAt());
528 
529   auto *SP = cast<DISubprogram>(Scope->getScopeNode());
530 
531   // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
532   // was inlined from another compile unit.
533   if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining())
534     // Avoid building the original CU if it won't be used
535     SrcCU.constructAbstractSubprogramScopeDIE(Scope);
536   else {
537     auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
538     if (auto *SkelCU = CU.getSkeleton()) {
539       (shareAcrossDWOCUs() ? CU : SrcCU)
540           .constructAbstractSubprogramScopeDIE(Scope);
541       if (CU.getCUNode()->getSplitDebugInlining())
542         SkelCU->constructAbstractSubprogramScopeDIE(Scope);
543     } else
544       CU.constructAbstractSubprogramScopeDIE(Scope);
545   }
546 }
547 
548 DIE &DwarfDebug::constructSubprogramDefinitionDIE(const DISubprogram *SP) {
549   DICompileUnit *Unit = SP->getUnit();
550   assert(SP->isDefinition() && "Subprogram not a definition");
551   assert(Unit && "Subprogram definition without parent unit");
552   auto &CU = getOrCreateDwarfCompileUnit(Unit);
553   return *CU.getOrCreateSubprogramDIE(SP);
554 }
555 
556 /// Represents a parameter whose call site value can be described by applying a
557 /// debug expression to a register in the forwarded register worklist.
558 struct FwdRegParamInfo {
559   /// The described parameter register.
560   unsigned ParamReg;
561 
562   /// Debug expression that has been built up when walking through the
563   /// instruction chain that produces the parameter's value.
564   const DIExpression *Expr;
565 };
566 
567 /// Register worklist for finding call site values.
568 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>;
569 
570 /// Append the expression \p Addition to \p Original and return the result.
571 static const DIExpression *combineDIExpressions(const DIExpression *Original,
572                                                 const DIExpression *Addition) {
573   std::vector<uint64_t> Elts = Addition->getElements().vec();
574   // Avoid multiple DW_OP_stack_values.
575   if (Original->isImplicit() && Addition->isImplicit())
576     erase_if(Elts, [](uint64_t Op) { return Op == dwarf::DW_OP_stack_value; });
577   const DIExpression *CombinedExpr =
578       (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original;
579   return CombinedExpr;
580 }
581 
582 /// Emit call site parameter entries that are described by the given value and
583 /// debug expression.
584 template <typename ValT>
585 static void finishCallSiteParams(ValT Val, const DIExpression *Expr,
586                                  ArrayRef<FwdRegParamInfo> DescribedParams,
587                                  ParamSet &Params) {
588   for (auto Param : DescribedParams) {
589     bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0;
590 
591     // TODO: Entry value operations can currently not be combined with any
592     // other expressions, so we can't emit call site entries in those cases.
593     if (ShouldCombineExpressions && Expr->isEntryValue())
594       continue;
595 
596     // If a parameter's call site value is produced by a chain of
597     // instructions we may have already created an expression for the
598     // parameter when walking through the instructions. Append that to the
599     // base expression.
600     const DIExpression *CombinedExpr =
601         ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr)
602                                  : Expr;
603     assert((!CombinedExpr || CombinedExpr->isValid()) &&
604            "Combined debug expression is invalid");
605 
606     DbgValueLoc DbgLocVal(CombinedExpr, Val);
607     DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal);
608     Params.push_back(CSParm);
609     ++NumCSParams;
610   }
611 }
612 
613 /// Add \p Reg to the worklist, if it's not already present, and mark that the
614 /// given parameter registers' values can (potentially) be described using
615 /// that register and an debug expression.
616 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg,
617                                 const DIExpression *Expr,
618                                 ArrayRef<FwdRegParamInfo> ParamsToAdd) {
619   auto I = Worklist.insert({Reg, {}});
620   auto &ParamsForFwdReg = I.first->second;
621   for (auto Param : ParamsToAdd) {
622     assert(none_of(ParamsForFwdReg,
623                    [Param](const FwdRegParamInfo &D) {
624                      return D.ParamReg == Param.ParamReg;
625                    }) &&
626            "Same parameter described twice by forwarding reg");
627 
628     // If a parameter's call site value is produced by a chain of
629     // instructions we may have already created an expression for the
630     // parameter when walking through the instructions. Append that to the
631     // new expression.
632     const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr);
633     ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr});
634   }
635 }
636 
637 /// Interpret values loaded into registers by \p CurMI.
638 static void interpretValues(const MachineInstr *CurMI,
639                             FwdRegWorklist &ForwardedRegWorklist,
640                             ParamSet &Params) {
641 
642   const MachineFunction *MF = CurMI->getMF();
643   const DIExpression *EmptyExpr =
644       DIExpression::get(MF->getFunction().getContext(), {});
645   const auto &TRI = *MF->getSubtarget().getRegisterInfo();
646   const auto &TII = *MF->getSubtarget().getInstrInfo();
647   const auto &TLI = *MF->getSubtarget().getTargetLowering();
648 
649   // If an instruction defines more than one item in the worklist, we may run
650   // into situations where a worklist register's value is (potentially)
651   // described by the previous value of another register that is also defined
652   // by that instruction.
653   //
654   // This can for example occur in cases like this:
655   //
656   //   $r1 = mov 123
657   //   $r0, $r1 = mvrr $r1, 456
658   //   call @foo, $r0, $r1
659   //
660   // When describing $r1's value for the mvrr instruction, we need to make sure
661   // that we don't finalize an entry value for $r0, as that is dependent on the
662   // previous value of $r1 (123 rather than 456).
663   //
664   // In order to not have to distinguish between those cases when finalizing
665   // entry values, we simply postpone adding new parameter registers to the
666   // worklist, by first keeping them in this temporary container until the
667   // instruction has been handled.
668   FwdRegWorklist TmpWorklistItems;
669 
670   // If the MI is an instruction defining one or more parameters' forwarding
671   // registers, add those defines.
672   auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI,
673                                           SmallSetVector<unsigned, 4> &Defs) {
674     if (MI.isDebugInstr())
675       return;
676 
677     for (const MachineOperand &MO : MI.operands()) {
678       if (MO.isReg() && MO.isDef() &&
679           Register::isPhysicalRegister(MO.getReg())) {
680         for (auto FwdReg : ForwardedRegWorklist)
681           if (TRI.regsOverlap(FwdReg.first, MO.getReg()))
682             Defs.insert(FwdReg.first);
683       }
684     }
685   };
686 
687   // Set of worklist registers that are defined by this instruction.
688   SmallSetVector<unsigned, 4> FwdRegDefs;
689 
690   getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs);
691   if (FwdRegDefs.empty())
692     return;
693 
694   for (auto ParamFwdReg : FwdRegDefs) {
695     if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) {
696       if (ParamValue->first.isImm()) {
697         int64_t Val = ParamValue->first.getImm();
698         finishCallSiteParams(Val, ParamValue->second,
699                              ForwardedRegWorklist[ParamFwdReg], Params);
700       } else if (ParamValue->first.isReg()) {
701         Register RegLoc = ParamValue->first.getReg();
702         Register SP = TLI.getStackPointerRegisterToSaveRestore();
703         Register FP = TRI.getFrameRegister(*MF);
704         bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP);
705         if (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) {
706           MachineLocation MLoc(RegLoc, /*Indirect=*/IsSPorFP);
707           finishCallSiteParams(MLoc, ParamValue->second,
708                                ForwardedRegWorklist[ParamFwdReg], Params);
709         } else {
710           // ParamFwdReg was described by the non-callee saved register
711           // RegLoc. Mark that the call site values for the parameters are
712           // dependent on that register instead of ParamFwdReg. Since RegLoc
713           // may be a register that will be handled in this iteration, we
714           // postpone adding the items to the worklist, and instead keep them
715           // in a temporary container.
716           addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second,
717                               ForwardedRegWorklist[ParamFwdReg]);
718         }
719       }
720     }
721   }
722 
723   // Remove all registers that this instruction defines from the worklist.
724   for (auto ParamFwdReg : FwdRegDefs)
725     ForwardedRegWorklist.erase(ParamFwdReg);
726 
727   // Now that we are done handling this instruction, add items from the
728   // temporary worklist to the real one.
729   for (auto New : TmpWorklistItems)
730     addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second);
731   TmpWorklistItems.clear();
732 }
733 
734 static bool interpretNextInstr(const MachineInstr *CurMI,
735                                FwdRegWorklist &ForwardedRegWorklist,
736                                ParamSet &Params) {
737   // Skip bundle headers.
738   if (CurMI->isBundle())
739     return true;
740 
741   // If the next instruction is a call we can not interpret parameter's
742   // forwarding registers or we finished the interpretation of all
743   // parameters.
744   if (CurMI->isCall())
745     return false;
746 
747   if (ForwardedRegWorklist.empty())
748     return false;
749 
750   // Avoid NOP description.
751   if (CurMI->getNumOperands() == 0)
752     return true;
753 
754   interpretValues(CurMI, ForwardedRegWorklist, Params);
755 
756   return true;
757 }
758 
759 /// Try to interpret values loaded into registers that forward parameters
760 /// for \p CallMI. Store parameters with interpreted value into \p Params.
761 static void collectCallSiteParameters(const MachineInstr *CallMI,
762                                       ParamSet &Params) {
763   const MachineFunction *MF = CallMI->getMF();
764   auto CalleesMap = MF->getCallSitesInfo();
765   auto CallFwdRegsInfo = CalleesMap.find(CallMI);
766 
767   // There is no information for the call instruction.
768   if (CallFwdRegsInfo == CalleesMap.end())
769     return;
770 
771   const MachineBasicBlock *MBB = CallMI->getParent();
772 
773   // Skip the call instruction.
774   auto I = std::next(CallMI->getReverseIterator());
775 
776   FwdRegWorklist ForwardedRegWorklist;
777 
778   const DIExpression *EmptyExpr =
779       DIExpression::get(MF->getFunction().getContext(), {});
780 
781   // Add all the forwarding registers into the ForwardedRegWorklist.
782   for (auto ArgReg : CallFwdRegsInfo->second) {
783     bool InsertedReg =
784         ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}})
785             .second;
786     assert(InsertedReg && "Single register used to forward two arguments?");
787     (void)InsertedReg;
788   }
789 
790   // We erase, from the ForwardedRegWorklist, those forwarding registers for
791   // which we successfully describe a loaded value (by using
792   // the describeLoadedValue()). For those remaining arguments in the working
793   // list, for which we do not describe a loaded value by
794   // the describeLoadedValue(), we try to generate an entry value expression
795   // for their call site value description, if the call is within the entry MBB.
796   // TODO: Handle situations when call site parameter value can be described
797   // as the entry value within basic blocks other than the first one.
798   bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin();
799 
800   // Search for a loading value in forwarding registers inside call delay slot.
801   if (CallMI->hasDelaySlot()) {
802     auto Suc = std::next(CallMI->getIterator());
803     // Only one-instruction delay slot is supported.
804     auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator());
805     (void)BundleEnd;
806     assert(std::next(Suc) == BundleEnd &&
807            "More than one instruction in call delay slot");
808     // Try to interpret value loaded by instruction.
809     if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params))
810       return;
811   }
812 
813   // Search for a loading value in forwarding registers.
814   for (; I != MBB->rend(); ++I) {
815     // Try to interpret values loaded by instruction.
816     if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params))
817       return;
818   }
819 
820   // Emit the call site parameter's value as an entry value.
821   if (ShouldTryEmitEntryVals) {
822     // Create an expression where the register's entry value is used.
823     DIExpression *EntryExpr = DIExpression::get(
824         MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1});
825     for (auto RegEntry : ForwardedRegWorklist) {
826       MachineLocation MLoc(RegEntry.first);
827       finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params);
828     }
829   }
830 }
831 
832 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP,
833                                             DwarfCompileUnit &CU, DIE &ScopeDIE,
834                                             const MachineFunction &MF) {
835   // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if
836   // the subprogram is required to have one.
837   if (!SP.areAllCallsDescribed() || !SP.isDefinition())
838     return;
839 
840   // Use DW_AT_call_all_calls to express that call site entries are present
841   // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls
842   // because one of its requirements is not met: call site entries for
843   // optimized-out calls are elided.
844   CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls));
845 
846   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
847   assert(TII && "TargetInstrInfo not found: cannot label tail calls");
848 
849   // Delay slot support check.
850   auto delaySlotSupported = [&](const MachineInstr &MI) {
851     if (!MI.isBundledWithSucc())
852       return false;
853     auto Suc = std::next(MI.getIterator());
854     auto CallInstrBundle = getBundleStart(MI.getIterator());
855     (void)CallInstrBundle;
856     auto DelaySlotBundle = getBundleStart(Suc);
857     (void)DelaySlotBundle;
858     // Ensure that label after call is following delay slot instruction.
859     // Ex. CALL_INSTRUCTION {
860     //       DELAY_SLOT_INSTRUCTION }
861     //      LABEL_AFTER_CALL
862     assert(getLabelAfterInsn(&*CallInstrBundle) ==
863                getLabelAfterInsn(&*DelaySlotBundle) &&
864            "Call and its successor instruction don't have same label after.");
865     return true;
866   };
867 
868   // Emit call site entries for each call or tail call in the function.
869   for (const MachineBasicBlock &MBB : MF) {
870     for (const MachineInstr &MI : MBB.instrs()) {
871       // Bundles with call in them will pass the isCall() test below but do not
872       // have callee operand information so skip them here. Iterator will
873       // eventually reach the call MI.
874       if (MI.isBundle())
875         continue;
876 
877       // Skip instructions which aren't calls. Both calls and tail-calling jump
878       // instructions (e.g TAILJMPd64) are classified correctly here.
879       if (!MI.isCandidateForCallSiteEntry())
880         continue;
881 
882       // Skip instructions marked as frame setup, as they are not interesting to
883       // the user.
884       if (MI.getFlag(MachineInstr::FrameSetup))
885         continue;
886 
887       // Check if delay slot support is enabled.
888       if (MI.hasDelaySlot() && !delaySlotSupported(*&MI))
889         return;
890 
891       // If this is a direct call, find the callee's subprogram.
892       // In the case of an indirect call find the register that holds
893       // the callee.
894       const MachineOperand &CalleeOp = MI.getOperand(0);
895       if (!CalleeOp.isGlobal() && !CalleeOp.isReg())
896         continue;
897 
898       unsigned CallReg = 0;
899       DIE *CalleeDIE = nullptr;
900       const Function *CalleeDecl = nullptr;
901       if (CalleeOp.isReg()) {
902         CallReg = CalleeOp.getReg();
903         if (!CallReg)
904           continue;
905       } else {
906         CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal());
907         if (!CalleeDecl || !CalleeDecl->getSubprogram())
908           continue;
909         const DISubprogram *CalleeSP = CalleeDecl->getSubprogram();
910 
911         if (CalleeSP->isDefinition()) {
912           // Ensure that a subprogram DIE for the callee is available in the
913           // appropriate CU.
914           CalleeDIE = &constructSubprogramDefinitionDIE(CalleeSP);
915         } else {
916           // Create the declaration DIE if it is missing. This is required to
917           // support compilation of old bitcode with an incomplete list of
918           // retained metadata.
919           CalleeDIE = CU.getOrCreateSubprogramDIE(CalleeSP);
920         }
921         assert(CalleeDIE && "Must have a DIE for the callee");
922       }
923 
924       // TODO: Omit call site entries for runtime calls (objc_msgSend, etc).
925 
926       bool IsTail = TII->isTailCall(MI);
927 
928       // If MI is in a bundle, the label was created after the bundle since
929       // EmitFunctionBody iterates over top-level MIs. Get that top-level MI
930       // to search for that label below.
931       const MachineInstr *TopLevelCallMI =
932           MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI;
933 
934       // For non-tail calls, the return PC is needed to disambiguate paths in
935       // the call graph which could lead to some target function. For tail
936       // calls, no return PC information is needed, unless tuning for GDB in
937       // DWARF4 mode in which case we fake a return PC for compatibility.
938       const MCSymbol *PCAddr =
939           (!IsTail || CU.useGNUAnalogForDwarf5Feature())
940               ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI))
941               : nullptr;
942 
943       // For tail calls, it's necessary to record the address of the branch
944       // instruction so that the debugger can show where the tail call occurred.
945       const MCSymbol *CallAddr =
946           IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr;
947 
948       assert((IsTail || PCAddr) && "Non-tail call without return PC");
949 
950       LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> "
951                         << (CalleeDecl ? CalleeDecl->getName()
952                                        : StringRef(MF.getSubtarget()
953                                                        .getRegisterInfo()
954                                                        ->getName(CallReg)))
955                         << (IsTail ? " [IsTail]" : "") << "\n");
956 
957       DIE &CallSiteDIE = CU.constructCallSiteEntryDIE(
958           ScopeDIE, CalleeDIE, IsTail, PCAddr, CallAddr, CallReg);
959 
960       // Optionally emit call-site-param debug info.
961       if (emitDebugEntryValues()) {
962         ParamSet Params;
963         // Try to interpret values of call site parameters.
964         collectCallSiteParameters(&MI, Params);
965         CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params);
966       }
967     }
968   }
969 }
970 
971 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const {
972   if (!U.hasDwarfPubSections())
973     return;
974 
975   U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
976 }
977 
978 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit,
979                                       DwarfCompileUnit &NewCU) {
980   DIE &Die = NewCU.getUnitDie();
981   StringRef FN = DIUnit->getFilename();
982 
983   StringRef Producer = DIUnit->getProducer();
984   StringRef Flags = DIUnit->getFlags();
985   if (!Flags.empty() && !useAppleExtensionAttributes()) {
986     std::string ProducerWithFlags = Producer.str() + " " + Flags.str();
987     NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags);
988   } else
989     NewCU.addString(Die, dwarf::DW_AT_producer, Producer);
990 
991   NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
992                 DIUnit->getSourceLanguage());
993   NewCU.addString(Die, dwarf::DW_AT_name, FN);
994   StringRef SysRoot = DIUnit->getSysRoot();
995   if (!SysRoot.empty())
996     NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot);
997   StringRef SDK = DIUnit->getSDK();
998   if (!SDK.empty())
999     NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK);
1000 
1001   // Add DW_str_offsets_base to the unit DIE, except for split units.
1002   if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
1003     NewCU.addStringOffsetsStart();
1004 
1005   if (!useSplitDwarf()) {
1006     NewCU.initStmtList();
1007 
1008     // If we're using split dwarf the compilation dir is going to be in the
1009     // skeleton CU and so we don't need to duplicate it here.
1010     if (!CompilationDir.empty())
1011       NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
1012     addGnuPubAttributes(NewCU, Die);
1013   }
1014 
1015   if (useAppleExtensionAttributes()) {
1016     if (DIUnit->isOptimized())
1017       NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);
1018 
1019     StringRef Flags = DIUnit->getFlags();
1020     if (!Flags.empty())
1021       NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);
1022 
1023     if (unsigned RVer = DIUnit->getRuntimeVersion())
1024       NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
1025                     dwarf::DW_FORM_data1, RVer);
1026   }
1027 
1028   if (DIUnit->getDWOId()) {
1029     // This CU is either a clang module DWO or a skeleton CU.
1030     NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8,
1031                   DIUnit->getDWOId());
1032     if (!DIUnit->getSplitDebugFilename().empty()) {
1033       // This is a prefabricated skeleton CU.
1034       dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1035                                          ? dwarf::DW_AT_dwo_name
1036                                          : dwarf::DW_AT_GNU_dwo_name;
1037       NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename());
1038     }
1039   }
1040 }
1041 // Create new DwarfCompileUnit for the given metadata node with tag
1042 // DW_TAG_compile_unit.
1043 DwarfCompileUnit &
1044 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) {
1045   if (auto *CU = CUMap.lookup(DIUnit))
1046     return *CU;
1047 
1048   CompilationDir = DIUnit->getDirectory();
1049 
1050   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
1051       InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
1052   DwarfCompileUnit &NewCU = *OwnedUnit;
1053   InfoHolder.addUnit(std::move(OwnedUnit));
1054 
1055   for (auto *IE : DIUnit->getImportedEntities())
1056     NewCU.addImportedEntity(IE);
1057 
1058   // LTO with assembly output shares a single line table amongst multiple CUs.
1059   // To avoid the compilation directory being ambiguous, let the line table
1060   // explicitly describe the directory of all files, never relying on the
1061   // compilation directory.
1062   if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU)
1063     Asm->OutStreamer->emitDwarfFile0Directive(
1064         CompilationDir, DIUnit->getFilename(), getMD5AsBytes(DIUnit->getFile()),
1065         DIUnit->getSource(), NewCU.getUniqueID());
1066 
1067   if (useSplitDwarf()) {
1068     NewCU.setSkeleton(constructSkeletonCU(NewCU));
1069     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection());
1070   } else {
1071     finishUnitAttributes(DIUnit, NewCU);
1072     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
1073   }
1074 
1075   CUMap.insert({DIUnit, &NewCU});
1076   CUDieMap.insert({&NewCU.getUnitDie(), &NewCU});
1077   return NewCU;
1078 }
1079 
1080 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU,
1081                                                   const DIImportedEntity *N) {
1082   if (isa<DILocalScope>(N->getScope()))
1083     return;
1084   if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope()))
1085     D->addChild(TheCU.constructImportedEntityDIE(N));
1086 }
1087 
1088 /// Sort and unique GVEs by comparing their fragment offset.
1089 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &
1090 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) {
1091   llvm::sort(
1092       GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) {
1093         // Sort order: first null exprs, then exprs without fragment
1094         // info, then sort by fragment offset in bits.
1095         // FIXME: Come up with a more comprehensive comparator so
1096         // the sorting isn't non-deterministic, and so the following
1097         // std::unique call works correctly.
1098         if (!A.Expr || !B.Expr)
1099           return !!B.Expr;
1100         auto FragmentA = A.Expr->getFragmentInfo();
1101         auto FragmentB = B.Expr->getFragmentInfo();
1102         if (!FragmentA || !FragmentB)
1103           return !!FragmentB;
1104         return FragmentA->OffsetInBits < FragmentB->OffsetInBits;
1105       });
1106   GVEs.erase(std::unique(GVEs.begin(), GVEs.end(),
1107                          [](DwarfCompileUnit::GlobalExpr A,
1108                             DwarfCompileUnit::GlobalExpr B) {
1109                            return A.Expr == B.Expr;
1110                          }),
1111              GVEs.end());
1112   return GVEs;
1113 }
1114 
1115 // Emit all Dwarf sections that should come prior to the content. Create
1116 // global DIEs and emit initial debug info sections. This is invoked by
1117 // the target AsmPrinter.
1118 void DwarfDebug::beginModule(Module *M) {
1119   DebugHandlerBase::beginModule(M);
1120 
1121   if (!Asm || !MMI->hasDebugInfo())
1122     return;
1123 
1124   unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(),
1125                                        M->debug_compile_units_end());
1126   assert(NumDebugCUs > 0 && "Asm unexpectedly initialized");
1127   assert(MMI->hasDebugInfo() &&
1128          "DebugInfoAvailabilty unexpectedly not initialized");
1129   SingleCU = NumDebugCUs == 1;
1130   DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>>
1131       GVMap;
1132   for (const GlobalVariable &Global : M->globals()) {
1133     SmallVector<DIGlobalVariableExpression *, 1> GVs;
1134     Global.getDebugInfo(GVs);
1135     for (auto *GVE : GVs)
1136       GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()});
1137   }
1138 
1139   // Create the symbol that designates the start of the unit's contribution
1140   // to the string offsets table. In a split DWARF scenario, only the skeleton
1141   // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol).
1142   if (useSegmentedStringOffsetsTable())
1143     (useSplitDwarf() ? SkeletonHolder : InfoHolder)
1144         .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base"));
1145 
1146 
1147   // Create the symbols that designates the start of the DWARF v5 range list
1148   // and locations list tables. They are located past the table headers.
1149   if (getDwarfVersion() >= 5) {
1150     DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1151     Holder.setRnglistsTableBaseSym(
1152         Asm->createTempSymbol("rnglists_table_base"));
1153 
1154     if (useSplitDwarf())
1155       InfoHolder.setRnglistsTableBaseSym(
1156           Asm->createTempSymbol("rnglists_dwo_table_base"));
1157   }
1158 
1159   // Create the symbol that points to the first entry following the debug
1160   // address table (.debug_addr) header.
1161   AddrPool.setLabel(Asm->createTempSymbol("addr_table_base"));
1162   DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base"));
1163 
1164   for (DICompileUnit *CUNode : M->debug_compile_units()) {
1165     // FIXME: Move local imported entities into a list attached to the
1166     // subprogram, then this search won't be needed and a
1167     // getImportedEntities().empty() test should go below with the rest.
1168     bool HasNonLocalImportedEntities = llvm::any_of(
1169         CUNode->getImportedEntities(), [](const DIImportedEntity *IE) {
1170           return !isa<DILocalScope>(IE->getScope());
1171         });
1172 
1173     if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() &&
1174         CUNode->getRetainedTypes().empty() &&
1175         CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty())
1176       continue;
1177 
1178     DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode);
1179 
1180     // Global Variables.
1181     for (auto *GVE : CUNode->getGlobalVariables()) {
1182       // Don't bother adding DIGlobalVariableExpressions listed in the CU if we
1183       // already know about the variable and it isn't adding a constant
1184       // expression.
1185       auto &GVMapEntry = GVMap[GVE->getVariable()];
1186       auto *Expr = GVE->getExpression();
1187       if (!GVMapEntry.size() || (Expr && Expr->isConstant()))
1188         GVMapEntry.push_back({nullptr, Expr});
1189     }
1190     DenseSet<DIGlobalVariable *> Processed;
1191     for (auto *GVE : CUNode->getGlobalVariables()) {
1192       DIGlobalVariable *GV = GVE->getVariable();
1193       if (Processed.insert(GV).second)
1194         CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV]));
1195     }
1196 
1197     for (auto *Ty : CUNode->getEnumTypes()) {
1198       // The enum types array by design contains pointers to
1199       // MDNodes rather than DIRefs. Unique them here.
1200       CU.getOrCreateTypeDIE(cast<DIType>(Ty));
1201     }
1202     for (auto *Ty : CUNode->getRetainedTypes()) {
1203       // The retained types array by design contains pointers to
1204       // MDNodes rather than DIRefs. Unique them here.
1205       if (DIType *RT = dyn_cast<DIType>(Ty))
1206           // There is no point in force-emitting a forward declaration.
1207           CU.getOrCreateTypeDIE(RT);
1208     }
1209     // Emit imported_modules last so that the relevant context is already
1210     // available.
1211     for (auto *IE : CUNode->getImportedEntities())
1212       constructAndAddImportedEntityDIE(CU, IE);
1213   }
1214 }
1215 
1216 void DwarfDebug::finishEntityDefinitions() {
1217   for (const auto &Entity : ConcreteEntities) {
1218     DIE *Die = Entity->getDIE();
1219     assert(Die);
1220     // FIXME: Consider the time-space tradeoff of just storing the unit pointer
1221     // in the ConcreteEntities list, rather than looking it up again here.
1222     // DIE::getUnit isn't simple - it walks parent pointers, etc.
1223     DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie());
1224     assert(Unit);
1225     Unit->finishEntityDefinition(Entity.get());
1226   }
1227 }
1228 
1229 void DwarfDebug::finishSubprogramDefinitions() {
1230   for (const DISubprogram *SP : ProcessedSPNodes) {
1231     assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug);
1232     forBothCUs(
1233         getOrCreateDwarfCompileUnit(SP->getUnit()),
1234         [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); });
1235   }
1236 }
1237 
1238 void DwarfDebug::finalizeModuleInfo() {
1239   const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
1240 
1241   finishSubprogramDefinitions();
1242 
1243   finishEntityDefinitions();
1244 
1245   // Include the DWO file name in the hash if there's more than one CU.
1246   // This handles ThinLTO's situation where imported CUs may very easily be
1247   // duplicate with the same CU partially imported into another ThinLTO unit.
1248   StringRef DWOName;
1249   if (CUMap.size() > 1)
1250     DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile;
1251 
1252   // Handle anything that needs to be done on a per-unit basis after
1253   // all other generation.
1254   for (const auto &P : CUMap) {
1255     auto &TheCU = *P.second;
1256     if (TheCU.getCUNode()->isDebugDirectivesOnly())
1257       continue;
1258     // Emit DW_AT_containing_type attribute to connect types with their
1259     // vtable holding type.
1260     TheCU.constructContainingTypeDIEs();
1261 
1262     // Add CU specific attributes if we need to add any.
1263     // If we're splitting the dwarf out now that we've got the entire
1264     // CU then add the dwo id to it.
1265     auto *SkCU = TheCU.getSkeleton();
1266 
1267     bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty();
1268 
1269     if (HasSplitUnit) {
1270       dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1271                                          ? dwarf::DW_AT_dwo_name
1272                                          : dwarf::DW_AT_GNU_dwo_name;
1273       finishUnitAttributes(TheCU.getCUNode(), TheCU);
1274       TheCU.addString(TheCU.getUnitDie(), attrDWOName,
1275                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1276       SkCU->addString(SkCU->getUnitDie(), attrDWOName,
1277                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1278       // Emit a unique identifier for this CU.
1279       uint64_t ID =
1280           DIEHash(Asm, &TheCU).computeCUSignature(DWOName, TheCU.getUnitDie());
1281       if (getDwarfVersion() >= 5) {
1282         TheCU.setDWOId(ID);
1283         SkCU->setDWOId(ID);
1284       } else {
1285         TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1286                       dwarf::DW_FORM_data8, ID);
1287         SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1288                       dwarf::DW_FORM_data8, ID);
1289       }
1290 
1291       if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) {
1292         const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol();
1293         SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
1294                               Sym, Sym);
1295       }
1296     } else if (SkCU) {
1297       finishUnitAttributes(SkCU->getCUNode(), *SkCU);
1298     }
1299 
1300     // If we have code split among multiple sections or non-contiguous
1301     // ranges of code then emit a DW_AT_ranges attribute on the unit that will
1302     // remain in the .o file, otherwise add a DW_AT_low_pc.
1303     // FIXME: We should use ranges allow reordering of code ala
1304     // .subsections_via_symbols in mach-o. This would mean turning on
1305     // ranges for all subprogram DIEs for mach-o.
1306     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
1307 
1308     if (unsigned NumRanges = TheCU.getRanges().size()) {
1309       if (NumRanges > 1 && useRangesSection())
1310         // A DW_AT_low_pc attribute may also be specified in combination with
1311         // DW_AT_ranges to specify the default base address for use in
1312         // location lists (see Section 2.6.2) and range lists (see Section
1313         // 2.17.3).
1314         U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
1315       else
1316         U.setBaseAddress(TheCU.getRanges().front().Begin);
1317       U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
1318     }
1319 
1320     // We don't keep track of which addresses are used in which CU so this
1321     // is a bit pessimistic under LTO.
1322     if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty())
1323       U.addAddrTableBase();
1324 
1325     if (getDwarfVersion() >= 5) {
1326       if (U.hasRangeLists())
1327         U.addRnglistsBase();
1328 
1329       if (!DebugLocs.getLists().empty()) {
1330         if (!useSplitDwarf())
1331           U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base,
1332                             DebugLocs.getSym(),
1333                             TLOF.getDwarfLoclistsSection()->getBeginSymbol());
1334       }
1335     }
1336 
1337     auto *CUNode = cast<DICompileUnit>(P.first);
1338     // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros"
1339     // attribute.
1340     if (CUNode->getMacros()) {
1341       if (UseDebugMacroSection) {
1342         if (useSplitDwarf())
1343           TheCU.addSectionDelta(
1344               TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(),
1345               TLOF.getDwarfMacroDWOSection()->getBeginSymbol());
1346         else {
1347           dwarf::Attribute MacrosAttr = getDwarfVersion() >= 5
1348                                             ? dwarf::DW_AT_macros
1349                                             : dwarf::DW_AT_GNU_macros;
1350           U.addSectionLabel(U.getUnitDie(), MacrosAttr, U.getMacroLabelBegin(),
1351                             TLOF.getDwarfMacroSection()->getBeginSymbol());
1352         }
1353       } else {
1354         if (useSplitDwarf())
1355           TheCU.addSectionDelta(
1356               TheCU.getUnitDie(), dwarf::DW_AT_macro_info,
1357               U.getMacroLabelBegin(),
1358               TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol());
1359         else
1360           U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info,
1361                             U.getMacroLabelBegin(),
1362                             TLOF.getDwarfMacinfoSection()->getBeginSymbol());
1363       }
1364     }
1365     }
1366 
1367   // Emit all frontend-produced Skeleton CUs, i.e., Clang modules.
1368   for (auto *CUNode : MMI->getModule()->debug_compile_units())
1369     if (CUNode->getDWOId())
1370       getOrCreateDwarfCompileUnit(CUNode);
1371 
1372   // Compute DIE offsets and sizes.
1373   InfoHolder.computeSizeAndOffsets();
1374   if (useSplitDwarf())
1375     SkeletonHolder.computeSizeAndOffsets();
1376 }
1377 
1378 // Emit all Dwarf sections that should come after the content.
1379 void DwarfDebug::endModule() {
1380   assert(CurFn == nullptr);
1381   assert(CurMI == nullptr);
1382 
1383   for (const auto &P : CUMap) {
1384     auto &CU = *P.second;
1385     CU.createBaseTypeDIEs();
1386   }
1387 
1388   // If we aren't actually generating debug info (check beginModule -
1389   // conditionalized on the presence of the llvm.dbg.cu metadata node)
1390   if (!Asm || !MMI->hasDebugInfo())
1391     return;
1392 
1393   // Finalize the debug info for the module.
1394   finalizeModuleInfo();
1395 
1396   if (useSplitDwarf())
1397     // Emit debug_loc.dwo/debug_loclists.dwo section.
1398     emitDebugLocDWO();
1399   else
1400     // Emit debug_loc/debug_loclists section.
1401     emitDebugLoc();
1402 
1403   // Corresponding abbreviations into a abbrev section.
1404   emitAbbreviations();
1405 
1406   // Emit all the DIEs into a debug info section.
1407   emitDebugInfo();
1408 
1409   // Emit info into a debug aranges section.
1410   if (GenerateARangeSection)
1411     emitDebugARanges();
1412 
1413   // Emit info into a debug ranges section.
1414   emitDebugRanges();
1415 
1416   if (useSplitDwarf())
1417   // Emit info into a debug macinfo.dwo section.
1418     emitDebugMacinfoDWO();
1419   else
1420     // Emit info into a debug macinfo/macro section.
1421     emitDebugMacinfo();
1422 
1423   emitDebugStr();
1424 
1425   if (useSplitDwarf()) {
1426     emitDebugStrDWO();
1427     emitDebugInfoDWO();
1428     emitDebugAbbrevDWO();
1429     emitDebugLineDWO();
1430     emitDebugRangesDWO();
1431   }
1432 
1433   emitDebugAddr();
1434 
1435   // Emit info into the dwarf accelerator table sections.
1436   switch (getAccelTableKind()) {
1437   case AccelTableKind::Apple:
1438     emitAccelNames();
1439     emitAccelObjC();
1440     emitAccelNamespaces();
1441     emitAccelTypes();
1442     break;
1443   case AccelTableKind::Dwarf:
1444     emitAccelDebugNames();
1445     break;
1446   case AccelTableKind::None:
1447     break;
1448   case AccelTableKind::Default:
1449     llvm_unreachable("Default should have already been resolved.");
1450   }
1451 
1452   // Emit the pubnames and pubtypes sections if requested.
1453   emitDebugPubSections();
1454 
1455   // clean up.
1456   // FIXME: AbstractVariables.clear();
1457 }
1458 
1459 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU,
1460                                                const DINode *Node,
1461                                                const MDNode *ScopeNode) {
1462   if (CU.getExistingAbstractEntity(Node))
1463     return;
1464 
1465   CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope(
1466                                        cast<DILocalScope>(ScopeNode)));
1467 }
1468 
1469 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU,
1470     const DINode *Node, const MDNode *ScopeNode) {
1471   if (CU.getExistingAbstractEntity(Node))
1472     return;
1473 
1474   if (LexicalScope *Scope =
1475           LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode)))
1476     CU.createAbstractEntity(Node, Scope);
1477 }
1478 
1479 // Collect variable information from side table maintained by MF.
1480 void DwarfDebug::collectVariableInfoFromMFTable(
1481     DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) {
1482   SmallDenseMap<InlinedEntity, DbgVariable *> MFVars;
1483   LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n");
1484   for (const auto &VI : Asm->MF->getVariableDbgInfo()) {
1485     if (!VI.Var)
1486       continue;
1487     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1488            "Expected inlined-at fields to agree");
1489 
1490     InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt());
1491     Processed.insert(Var);
1492     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1493 
1494     // If variable scope is not found then skip this variable.
1495     if (!Scope) {
1496       LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName()
1497                         << ", no variable scope found\n");
1498       continue;
1499     }
1500 
1501     ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode());
1502     auto RegVar = std::make_unique<DbgVariable>(
1503                     cast<DILocalVariable>(Var.first), Var.second);
1504     RegVar->initializeMMI(VI.Expr, VI.Slot);
1505     LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName()
1506                       << "\n");
1507     if (DbgVariable *DbgVar = MFVars.lookup(Var))
1508       DbgVar->addMMIEntry(*RegVar);
1509     else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) {
1510       MFVars.insert({Var, RegVar.get()});
1511       ConcreteEntities.push_back(std::move(RegVar));
1512     }
1513   }
1514 }
1515 
1516 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its
1517 /// enclosing lexical scope. The check ensures there are no other instructions
1518 /// in the same lexical scope preceding the DBG_VALUE and that its range is
1519 /// either open or otherwise rolls off the end of the scope.
1520 static bool validThroughout(LexicalScopes &LScopes,
1521                             const MachineInstr *DbgValue,
1522                             const MachineInstr *RangeEnd,
1523                             const InstructionOrdering &Ordering) {
1524   assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location");
1525   auto MBB = DbgValue->getParent();
1526   auto DL = DbgValue->getDebugLoc();
1527   auto *LScope = LScopes.findLexicalScope(DL);
1528   // Scope doesn't exist; this is a dead DBG_VALUE.
1529   if (!LScope)
1530     return false;
1531   auto &LSRange = LScope->getRanges();
1532   if (LSRange.size() == 0)
1533     return false;
1534 
1535   const MachineInstr *LScopeBegin = LSRange.front().first;
1536   // If the scope starts before the DBG_VALUE then we may have a negative
1537   // result. Otherwise the location is live coming into the scope and we
1538   // can skip the following checks.
1539   if (!Ordering.isBefore(DbgValue, LScopeBegin)) {
1540     // Exit if the lexical scope begins outside of the current block.
1541     if (LScopeBegin->getParent() != MBB)
1542       return false;
1543 
1544     MachineBasicBlock::const_reverse_iterator Pred(DbgValue);
1545     for (++Pred; Pred != MBB->rend(); ++Pred) {
1546       if (Pred->getFlag(MachineInstr::FrameSetup))
1547         break;
1548       auto PredDL = Pred->getDebugLoc();
1549       if (!PredDL || Pred->isMetaInstruction())
1550         continue;
1551       // Check whether the instruction preceding the DBG_VALUE is in the same
1552       // (sub)scope as the DBG_VALUE.
1553       if (DL->getScope() == PredDL->getScope())
1554         return false;
1555       auto *PredScope = LScopes.findLexicalScope(PredDL);
1556       if (!PredScope || LScope->dominates(PredScope))
1557         return false;
1558     }
1559   }
1560 
1561   // If the range of the DBG_VALUE is open-ended, report success.
1562   if (!RangeEnd)
1563     return true;
1564 
1565   // Single, constant DBG_VALUEs in the prologue are promoted to be live
1566   // throughout the function. This is a hack, presumably for DWARF v2 and not
1567   // necessarily correct. It would be much better to use a dbg.declare instead
1568   // if we know the constant is live throughout the scope.
1569   if (DbgValue->getDebugOperand(0).isImm() && MBB->pred_empty())
1570     return true;
1571 
1572   // Test if the location terminates before the end of the scope.
1573   const MachineInstr *LScopeEnd = LSRange.back().second;
1574   if (Ordering.isBefore(RangeEnd, LScopeEnd))
1575     return false;
1576 
1577   // There's a single location which starts at the scope start, and ends at or
1578   // after the scope end.
1579   return true;
1580 }
1581 
1582 /// Build the location list for all DBG_VALUEs in the function that
1583 /// describe the same variable. The resulting DebugLocEntries will have
1584 /// strict monotonically increasing begin addresses and will never
1585 /// overlap. If the resulting list has only one entry that is valid
1586 /// throughout variable's scope return true.
1587 //
1588 // See the definition of DbgValueHistoryMap::Entry for an explanation of the
1589 // different kinds of history map entries. One thing to be aware of is that if
1590 // a debug value is ended by another entry (rather than being valid until the
1591 // end of the function), that entry's instruction may or may not be included in
1592 // the range, depending on if the entry is a clobbering entry (it has an
1593 // instruction that clobbers one or more preceding locations), or if it is an
1594 // (overlapping) debug value entry. This distinction can be seen in the example
1595 // below. The first debug value is ended by the clobbering entry 2, and the
1596 // second and third debug values are ended by the overlapping debug value entry
1597 // 4.
1598 //
1599 // Input:
1600 //
1601 //   History map entries [type, end index, mi]
1602 //
1603 // 0 |      [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)]
1604 // 1 | |    [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)]
1605 // 2 | |    [Clobber, $reg0 = [...], -, -]
1606 // 3   | |  [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)]
1607 // 4        [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)]
1608 //
1609 // Output [start, end) [Value...]:
1610 //
1611 // [0-1)    [(reg0, fragment 0, 32)]
1612 // [1-3)    [(reg0, fragment 0, 32), (reg1, fragment 32, 32)]
1613 // [3-4)    [(reg1, fragment 32, 32), (123, fragment 64, 32)]
1614 // [4-)     [(@g, fragment 0, 96)]
1615 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
1616                                    const DbgValueHistoryMap::Entries &Entries) {
1617   using OpenRange =
1618       std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>;
1619   SmallVector<OpenRange, 4> OpenRanges;
1620   bool isSafeForSingleLocation = true;
1621   const MachineInstr *StartDebugMI = nullptr;
1622   const MachineInstr *EndMI = nullptr;
1623 
1624   for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) {
1625     const MachineInstr *Instr = EI->getInstr();
1626 
1627     // Remove all values that are no longer live.
1628     size_t Index = std::distance(EB, EI);
1629     auto Last =
1630         remove_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; });
1631     OpenRanges.erase(Last, OpenRanges.end());
1632 
1633     // If we are dealing with a clobbering entry, this iteration will result in
1634     // a location list entry starting after the clobbering instruction.
1635     const MCSymbol *StartLabel =
1636         EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr);
1637     assert(StartLabel &&
1638            "Forgot label before/after instruction starting a range!");
1639 
1640     const MCSymbol *EndLabel;
1641     if (std::next(EI) == Entries.end()) {
1642       const MachineBasicBlock &EndMBB = Asm->MF->back();
1643       EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionIDNum()].EndLabel;
1644       if (EI->isClobber())
1645         EndMI = EI->getInstr();
1646     }
1647     else if (std::next(EI)->isClobber())
1648       EndLabel = getLabelAfterInsn(std::next(EI)->getInstr());
1649     else
1650       EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr());
1651     assert(EndLabel && "Forgot label after instruction ending a range!");
1652 
1653     if (EI->isDbgValue())
1654       LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n");
1655 
1656     // If this history map entry has a debug value, add that to the list of
1657     // open ranges and check if its location is valid for a single value
1658     // location.
1659     if (EI->isDbgValue()) {
1660       // Do not add undef debug values, as they are redundant information in
1661       // the location list entries. An undef debug results in an empty location
1662       // description. If there are any non-undef fragments then padding pieces
1663       // with empty location descriptions will automatically be inserted, and if
1664       // all fragments are undef then the whole location list entry is
1665       // redundant.
1666       if (!Instr->isUndefDebugValue()) {
1667         auto Value = getDebugLocValue(Instr);
1668         OpenRanges.emplace_back(EI->getEndIndex(), Value);
1669 
1670         // TODO: Add support for single value fragment locations.
1671         if (Instr->getDebugExpression()->isFragment())
1672           isSafeForSingleLocation = false;
1673 
1674         if (!StartDebugMI)
1675           StartDebugMI = Instr;
1676       } else {
1677         isSafeForSingleLocation = false;
1678       }
1679     }
1680 
1681     // Location list entries with empty location descriptions are redundant
1682     // information in DWARF, so do not emit those.
1683     if (OpenRanges.empty())
1684       continue;
1685 
1686     // Omit entries with empty ranges as they do not have any effect in DWARF.
1687     if (StartLabel == EndLabel) {
1688       LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n");
1689       continue;
1690     }
1691 
1692     SmallVector<DbgValueLoc, 4> Values;
1693     for (auto &R : OpenRanges)
1694       Values.push_back(R.second);
1695     DebugLoc.emplace_back(StartLabel, EndLabel, Values);
1696 
1697     // Attempt to coalesce the ranges of two otherwise identical
1698     // DebugLocEntries.
1699     auto CurEntry = DebugLoc.rbegin();
1700     LLVM_DEBUG({
1701       dbgs() << CurEntry->getValues().size() << " Values:\n";
1702       for (auto &Value : CurEntry->getValues())
1703         Value.dump();
1704       dbgs() << "-----\n";
1705     });
1706 
1707     auto PrevEntry = std::next(CurEntry);
1708     if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
1709       DebugLoc.pop_back();
1710   }
1711 
1712   return DebugLoc.size() == 1 && isSafeForSingleLocation &&
1713          validThroughout(LScopes, StartDebugMI, EndMI, getInstOrdering());
1714 }
1715 
1716 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU,
1717                                             LexicalScope &Scope,
1718                                             const DINode *Node,
1719                                             const DILocation *Location,
1720                                             const MCSymbol *Sym) {
1721   ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode());
1722   if (isa<const DILocalVariable>(Node)) {
1723     ConcreteEntities.push_back(
1724         std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node),
1725                                        Location));
1726     InfoHolder.addScopeVariable(&Scope,
1727         cast<DbgVariable>(ConcreteEntities.back().get()));
1728   } else if (isa<const DILabel>(Node)) {
1729     ConcreteEntities.push_back(
1730         std::make_unique<DbgLabel>(cast<const DILabel>(Node),
1731                                     Location, Sym));
1732     InfoHolder.addScopeLabel(&Scope,
1733         cast<DbgLabel>(ConcreteEntities.back().get()));
1734   }
1735   return ConcreteEntities.back().get();
1736 }
1737 
1738 // Find variables for each lexical scope.
1739 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU,
1740                                    const DISubprogram *SP,
1741                                    DenseSet<InlinedEntity> &Processed) {
1742   // Grab the variable info that was squirreled away in the MMI side-table.
1743   collectVariableInfoFromMFTable(TheCU, Processed);
1744 
1745   for (const auto &I : DbgValues) {
1746     InlinedEntity IV = I.first;
1747     if (Processed.count(IV))
1748       continue;
1749 
1750     // Instruction ranges, specifying where IV is accessible.
1751     const auto &HistoryMapEntries = I.second;
1752     if (HistoryMapEntries.empty())
1753       continue;
1754 
1755     LexicalScope *Scope = nullptr;
1756     const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first);
1757     if (const DILocation *IA = IV.second)
1758       Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA);
1759     else
1760       Scope = LScopes.findLexicalScope(LocalVar->getScope());
1761     // If variable scope is not found then skip this variable.
1762     if (!Scope)
1763       continue;
1764 
1765     Processed.insert(IV);
1766     DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU,
1767                                             *Scope, LocalVar, IV.second));
1768 
1769     const MachineInstr *MInsn = HistoryMapEntries.front().getInstr();
1770     assert(MInsn->isDebugValue() && "History must begin with debug value");
1771 
1772     // Check if there is a single DBG_VALUE, valid throughout the var's scope.
1773     // If the history map contains a single debug value, there may be an
1774     // additional entry which clobbers the debug value.
1775     size_t HistSize = HistoryMapEntries.size();
1776     bool SingleValueWithClobber =
1777         HistSize == 2 && HistoryMapEntries[1].isClobber();
1778     if (HistSize == 1 || SingleValueWithClobber) {
1779       const auto *End =
1780           SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr;
1781       if (validThroughout(LScopes, MInsn, End, getInstOrdering())) {
1782         RegVar->initializeDbgValue(MInsn);
1783         continue;
1784       }
1785     }
1786 
1787     // Do not emit location lists if .debug_loc secton is disabled.
1788     if (!useLocSection())
1789       continue;
1790 
1791     // Handle multiple DBG_VALUE instructions describing one variable.
1792     DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn);
1793 
1794     // Build the location list for this variable.
1795     SmallVector<DebugLocEntry, 8> Entries;
1796     bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries);
1797 
1798     // Check whether buildLocationList managed to merge all locations to one
1799     // that is valid throughout the variable's scope. If so, produce single
1800     // value location.
1801     if (isValidSingleLocation) {
1802       RegVar->initializeDbgValue(Entries[0].getValues()[0]);
1803       continue;
1804     }
1805 
1806     // If the variable has a DIBasicType, extract it.  Basic types cannot have
1807     // unique identifiers, so don't bother resolving the type with the
1808     // identifier map.
1809     const DIBasicType *BT = dyn_cast<DIBasicType>(
1810         static_cast<const Metadata *>(LocalVar->getType()));
1811 
1812     // Finalize the entry by lowering it into a DWARF bytestream.
1813     for (auto &Entry : Entries)
1814       Entry.finalize(*Asm, List, BT, TheCU);
1815   }
1816 
1817   // For each InlinedEntity collected from DBG_LABEL instructions, convert to
1818   // DWARF-related DbgLabel.
1819   for (const auto &I : DbgLabels) {
1820     InlinedEntity IL = I.first;
1821     const MachineInstr *MI = I.second;
1822     if (MI == nullptr)
1823       continue;
1824 
1825     LexicalScope *Scope = nullptr;
1826     const DILabel *Label = cast<DILabel>(IL.first);
1827     // The scope could have an extra lexical block file.
1828     const DILocalScope *LocalScope =
1829         Label->getScope()->getNonLexicalBlockFileScope();
1830     // Get inlined DILocation if it is inlined label.
1831     if (const DILocation *IA = IL.second)
1832       Scope = LScopes.findInlinedScope(LocalScope, IA);
1833     else
1834       Scope = LScopes.findLexicalScope(LocalScope);
1835     // If label scope is not found then skip this label.
1836     if (!Scope)
1837       continue;
1838 
1839     Processed.insert(IL);
1840     /// At this point, the temporary label is created.
1841     /// Save the temporary label to DbgLabel entity to get the
1842     /// actually address when generating Dwarf DIE.
1843     MCSymbol *Sym = getLabelBeforeInsn(MI);
1844     createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym);
1845   }
1846 
1847   // Collect info for variables/labels that were optimized out.
1848   for (const DINode *DN : SP->getRetainedNodes()) {
1849     if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
1850       continue;
1851     LexicalScope *Scope = nullptr;
1852     if (auto *DV = dyn_cast<DILocalVariable>(DN)) {
1853       Scope = LScopes.findLexicalScope(DV->getScope());
1854     } else if (auto *DL = dyn_cast<DILabel>(DN)) {
1855       Scope = LScopes.findLexicalScope(DL->getScope());
1856     }
1857 
1858     if (Scope)
1859       createConcreteEntity(TheCU, *Scope, DN, nullptr);
1860   }
1861 }
1862 
1863 // Process beginning of an instruction.
1864 void DwarfDebug::beginInstruction(const MachineInstr *MI) {
1865   const MachineFunction &MF = *MI->getMF();
1866   const auto *SP = MF.getFunction().getSubprogram();
1867   bool NoDebug =
1868       !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug;
1869 
1870   // Delay slot support check.
1871   auto delaySlotSupported = [](const MachineInstr &MI) {
1872     if (!MI.isBundledWithSucc())
1873       return false;
1874     auto Suc = std::next(MI.getIterator());
1875     (void)Suc;
1876     // Ensure that delay slot instruction is successor of the call instruction.
1877     // Ex. CALL_INSTRUCTION {
1878     //        DELAY_SLOT_INSTRUCTION }
1879     assert(Suc->isBundledWithPred() &&
1880            "Call bundle instructions are out of order");
1881     return true;
1882   };
1883 
1884   // When describing calls, we need a label for the call instruction.
1885   if (!NoDebug && SP->areAllCallsDescribed() &&
1886       MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) &&
1887       (!MI->hasDelaySlot() || delaySlotSupported(*MI))) {
1888     const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1889     bool IsTail = TII->isTailCall(*MI);
1890     // For tail calls, we need the address of the branch instruction for
1891     // DW_AT_call_pc.
1892     if (IsTail)
1893       requestLabelBeforeInsn(MI);
1894     // For non-tail calls, we need the return address for the call for
1895     // DW_AT_call_return_pc. Under GDB tuning, this information is needed for
1896     // tail calls as well.
1897     requestLabelAfterInsn(MI);
1898   }
1899 
1900   DebugHandlerBase::beginInstruction(MI);
1901   if (!CurMI)
1902     return;
1903 
1904   if (NoDebug)
1905     return;
1906 
1907   // Check if source location changes, but ignore DBG_VALUE and CFI locations.
1908   // If the instruction is part of the function frame setup code, do not emit
1909   // any line record, as there is no correspondence with any user code.
1910   if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup))
1911     return;
1912   const DebugLoc &DL = MI->getDebugLoc();
1913   // When we emit a line-0 record, we don't update PrevInstLoc; so look at
1914   // the last line number actually emitted, to see if it was line 0.
1915   unsigned LastAsmLine =
1916       Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine();
1917 
1918   if (DL == PrevInstLoc) {
1919     // If we have an ongoing unspecified location, nothing to do here.
1920     if (!DL)
1921       return;
1922     // We have an explicit location, same as the previous location.
1923     // But we might be coming back to it after a line 0 record.
1924     if (LastAsmLine == 0 && DL.getLine() != 0) {
1925       // Reinstate the source location but not marked as a statement.
1926       const MDNode *Scope = DL.getScope();
1927       recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0);
1928     }
1929     return;
1930   }
1931 
1932   if (!DL) {
1933     // We have an unspecified location, which might want to be line 0.
1934     // If we have already emitted a line-0 record, don't repeat it.
1935     if (LastAsmLine == 0)
1936       return;
1937     // If user said Don't Do That, don't do that.
1938     if (UnknownLocations == Disable)
1939       return;
1940     // See if we have a reason to emit a line-0 record now.
1941     // Reasons to emit a line-0 record include:
1942     // - User asked for it (UnknownLocations).
1943     // - Instruction has a label, so it's referenced from somewhere else,
1944     //   possibly debug information; we want it to have a source location.
1945     // - Instruction is at the top of a block; we don't want to inherit the
1946     //   location from the physically previous (maybe unrelated) block.
1947     if (UnknownLocations == Enable || PrevLabel ||
1948         (PrevInstBB && PrevInstBB != MI->getParent())) {
1949       // Preserve the file and column numbers, if we can, to save space in
1950       // the encoded line table.
1951       // Do not update PrevInstLoc, it remembers the last non-0 line.
1952       const MDNode *Scope = nullptr;
1953       unsigned Column = 0;
1954       if (PrevInstLoc) {
1955         Scope = PrevInstLoc.getScope();
1956         Column = PrevInstLoc.getCol();
1957       }
1958       recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0);
1959     }
1960     return;
1961   }
1962 
1963   // We have an explicit location, different from the previous location.
1964   // Don't repeat a line-0 record, but otherwise emit the new location.
1965   // (The new location might be an explicit line 0, which we do emit.)
1966   if (DL.getLine() == 0 && LastAsmLine == 0)
1967     return;
1968   unsigned Flags = 0;
1969   if (DL == PrologEndLoc) {
1970     Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT;
1971     PrologEndLoc = DebugLoc();
1972   }
1973   // If the line changed, we call that a new statement; unless we went to
1974   // line 0 and came back, in which case it is not a new statement.
1975   unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine;
1976   if (DL.getLine() && DL.getLine() != OldLine)
1977     Flags |= DWARF2_FLAG_IS_STMT;
1978 
1979   const MDNode *Scope = DL.getScope();
1980   recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
1981 
1982   // If we're not at line 0, remember this location.
1983   if (DL.getLine())
1984     PrevInstLoc = DL;
1985 }
1986 
1987 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) {
1988   // First known non-DBG_VALUE and non-frame setup location marks
1989   // the beginning of the function body.
1990   for (const auto &MBB : *MF)
1991     for (const auto &MI : MBB)
1992       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1993           MI.getDebugLoc())
1994         return MI.getDebugLoc();
1995   return DebugLoc();
1996 }
1997 
1998 /// Register a source line with debug info. Returns the  unique label that was
1999 /// emitted and which provides correspondence to the source line list.
2000 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col,
2001                              const MDNode *S, unsigned Flags, unsigned CUID,
2002                              uint16_t DwarfVersion,
2003                              ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) {
2004   StringRef Fn;
2005   unsigned FileNo = 1;
2006   unsigned Discriminator = 0;
2007   if (auto *Scope = cast_or_null<DIScope>(S)) {
2008     Fn = Scope->getFilename();
2009     if (Line != 0 && DwarfVersion >= 4)
2010       if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope))
2011         Discriminator = LBF->getDiscriminator();
2012 
2013     FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID])
2014                  .getOrCreateSourceID(Scope->getFile());
2015   }
2016   Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0,
2017                                          Discriminator, Fn);
2018 }
2019 
2020 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF,
2021                                              unsigned CUID) {
2022   // Get beginning of function.
2023   if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) {
2024     // Ensure the compile unit is created if the function is called before
2025     // beginFunction().
2026     (void)getOrCreateDwarfCompileUnit(
2027         MF.getFunction().getSubprogram()->getUnit());
2028     // We'd like to list the prologue as "not statements" but GDB behaves
2029     // poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
2030     const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram();
2031     ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT,
2032                        CUID, getDwarfVersion(), getUnits());
2033     return PrologEndLoc;
2034   }
2035   return DebugLoc();
2036 }
2037 
2038 // Gather pre-function debug information.  Assumes being called immediately
2039 // after the function entry point has been emitted.
2040 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) {
2041   CurFn = MF;
2042 
2043   auto *SP = MF->getFunction().getSubprogram();
2044   assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode());
2045   if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
2046     return;
2047 
2048   DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
2049 
2050   // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
2051   // belongs to so that we add to the correct per-cu line table in the
2052   // non-asm case.
2053   if (Asm->OutStreamer->hasRawTextSupport())
2054     // Use a single line table if we are generating assembly.
2055     Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
2056   else
2057     Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID());
2058 
2059   // Record beginning of function.
2060   PrologEndLoc = emitInitialLocDirective(
2061       *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID());
2062 }
2063 
2064 void DwarfDebug::skippedNonDebugFunction() {
2065   // If we don't have a subprogram for this function then there will be a hole
2066   // in the range information. Keep note of this by setting the previously used
2067   // section to nullptr.
2068   PrevCU = nullptr;
2069   CurFn = nullptr;
2070 }
2071 
2072 // Gather and emit post-function debug information.
2073 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) {
2074   const DISubprogram *SP = MF->getFunction().getSubprogram();
2075 
2076   assert(CurFn == MF &&
2077       "endFunction should be called with the same function as beginFunction");
2078 
2079   // Set DwarfDwarfCompileUnitID in MCContext to default value.
2080   Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
2081 
2082   LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
2083   assert(!FnScope || SP == FnScope->getScopeNode());
2084   DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit());
2085   if (TheCU.getCUNode()->isDebugDirectivesOnly()) {
2086     PrevLabel = nullptr;
2087     CurFn = nullptr;
2088     return;
2089   }
2090 
2091   DenseSet<InlinedEntity> Processed;
2092   collectEntityInfo(TheCU, SP, Processed);
2093 
2094   // Add the range of this function to the list of ranges for the CU.
2095   // With basic block sections, add ranges for all basic block sections.
2096   for (const auto &R : Asm->MBBSectionRanges)
2097     TheCU.addRange({R.second.BeginLabel, R.second.EndLabel});
2098 
2099   // Under -gmlt, skip building the subprogram if there are no inlined
2100   // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram
2101   // is still needed as we need its source location.
2102   if (!TheCU.getCUNode()->getDebugInfoForProfiling() &&
2103       TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly &&
2104       LScopes.getAbstractScopesList().empty() && !IsDarwin) {
2105     assert(InfoHolder.getScopeVariables().empty());
2106     PrevLabel = nullptr;
2107     CurFn = nullptr;
2108     return;
2109   }
2110 
2111 #ifndef NDEBUG
2112   size_t NumAbstractScopes = LScopes.getAbstractScopesList().size();
2113 #endif
2114   // Construct abstract scopes.
2115   for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
2116     auto *SP = cast<DISubprogram>(AScope->getScopeNode());
2117     for (const DINode *DN : SP->getRetainedNodes()) {
2118       if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
2119         continue;
2120 
2121       const MDNode *Scope = nullptr;
2122       if (auto *DV = dyn_cast<DILocalVariable>(DN))
2123         Scope = DV->getScope();
2124       else if (auto *DL = dyn_cast<DILabel>(DN))
2125         Scope = DL->getScope();
2126       else
2127         llvm_unreachable("Unexpected DI type!");
2128 
2129       // Collect info for variables/labels that were optimized out.
2130       ensureAbstractEntityIsCreated(TheCU, DN, Scope);
2131       assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes
2132              && "ensureAbstractEntityIsCreated inserted abstract scopes");
2133     }
2134     constructAbstractSubprogramScopeDIE(TheCU, AScope);
2135   }
2136 
2137   ProcessedSPNodes.insert(SP);
2138   DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope);
2139   if (auto *SkelCU = TheCU.getSkeleton())
2140     if (!LScopes.getAbstractScopesList().empty() &&
2141         TheCU.getCUNode()->getSplitDebugInlining())
2142       SkelCU->constructSubprogramScopeDIE(SP, FnScope);
2143 
2144   // Construct call site entries.
2145   constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF);
2146 
2147   // Clear debug info
2148   // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
2149   // DbgVariables except those that are also in AbstractVariables (since they
2150   // can be used cross-function)
2151   InfoHolder.getScopeVariables().clear();
2152   InfoHolder.getScopeLabels().clear();
2153   PrevLabel = nullptr;
2154   CurFn = nullptr;
2155 }
2156 
2157 // Register a source line with debug info. Returns the  unique label that was
2158 // emitted and which provides correspondence to the source line list.
2159 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
2160                                   unsigned Flags) {
2161   ::recordSourceLine(*Asm, Line, Col, S, Flags,
2162                      Asm->OutStreamer->getContext().getDwarfCompileUnitID(),
2163                      getDwarfVersion(), getUnits());
2164 }
2165 
2166 //===----------------------------------------------------------------------===//
2167 // Emit Methods
2168 //===----------------------------------------------------------------------===//
2169 
2170 // Emit the debug info section.
2171 void DwarfDebug::emitDebugInfo() {
2172   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2173   Holder.emitUnits(/* UseOffsets */ false);
2174 }
2175 
2176 // Emit the abbreviation section.
2177 void DwarfDebug::emitAbbreviations() {
2178   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2179 
2180   Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
2181 }
2182 
2183 void DwarfDebug::emitStringOffsetsTableHeader() {
2184   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2185   Holder.getStringPool().emitStringOffsetsTableHeader(
2186       *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(),
2187       Holder.getStringOffsetsStartSym());
2188 }
2189 
2190 template <typename AccelTableT>
2191 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section,
2192                            StringRef TableName) {
2193   Asm->OutStreamer->SwitchSection(Section);
2194 
2195   // Emit the full data.
2196   emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol());
2197 }
2198 
2199 void DwarfDebug::emitAccelDebugNames() {
2200   // Don't emit anything if we have no compilation units to index.
2201   if (getUnits().empty())
2202     return;
2203 
2204   emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits());
2205 }
2206 
2207 // Emit visible names into a hashed accelerator table section.
2208 void DwarfDebug::emitAccelNames() {
2209   emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
2210             "Names");
2211 }
2212 
2213 // Emit objective C classes and categories into a hashed accelerator table
2214 // section.
2215 void DwarfDebug::emitAccelObjC() {
2216   emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
2217             "ObjC");
2218 }
2219 
2220 // Emit namespace dies into a hashed accelerator table.
2221 void DwarfDebug::emitAccelNamespaces() {
2222   emitAccel(AccelNamespace,
2223             Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
2224             "namespac");
2225 }
2226 
2227 // Emit type dies into a hashed accelerator table.
2228 void DwarfDebug::emitAccelTypes() {
2229   emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
2230             "types");
2231 }
2232 
2233 // Public name handling.
2234 // The format for the various pubnames:
2235 //
2236 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU
2237 // for the DIE that is named.
2238 //
2239 // gnu pubnames - offset/index value/name tuples where the offset is the offset
2240 // into the CU and the index value is computed according to the type of value
2241 // for the DIE that is named.
2242 //
2243 // For type units the offset is the offset of the skeleton DIE. For split dwarf
2244 // it's the offset within the debug_info/debug_types dwo section, however, the
2245 // reference in the pubname header doesn't change.
2246 
2247 /// computeIndexValue - Compute the gdb index value for the DIE and CU.
2248 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
2249                                                         const DIE *Die) {
2250   // Entities that ended up only in a Type Unit reference the CU instead (since
2251   // the pub entry has offsets within the CU there's no real offset that can be
2252   // provided anyway). As it happens all such entities (namespaces and types,
2253   // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out
2254   // not to be true it would be necessary to persist this information from the
2255   // point at which the entry is added to the index data structure - since by
2256   // the time the index is built from that, the original type/namespace DIE in a
2257   // type unit has already been destroyed so it can't be queried for properties
2258   // like tag, etc.
2259   if (Die->getTag() == dwarf::DW_TAG_compile_unit)
2260     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE,
2261                                           dwarf::GIEL_EXTERNAL);
2262   dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
2263 
2264   // We could have a specification DIE that has our most of our knowledge,
2265   // look for that now.
2266   if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) {
2267     DIE &SpecDIE = SpecVal.getDIEEntry().getEntry();
2268     if (SpecDIE.findAttribute(dwarf::DW_AT_external))
2269       Linkage = dwarf::GIEL_EXTERNAL;
2270   } else if (Die->findAttribute(dwarf::DW_AT_external))
2271     Linkage = dwarf::GIEL_EXTERNAL;
2272 
2273   switch (Die->getTag()) {
2274   case dwarf::DW_TAG_class_type:
2275   case dwarf::DW_TAG_structure_type:
2276   case dwarf::DW_TAG_union_type:
2277   case dwarf::DW_TAG_enumeration_type:
2278     return dwarf::PubIndexEntryDescriptor(
2279         dwarf::GIEK_TYPE,
2280         dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage())
2281             ? dwarf::GIEL_EXTERNAL
2282             : dwarf::GIEL_STATIC);
2283   case dwarf::DW_TAG_typedef:
2284   case dwarf::DW_TAG_base_type:
2285   case dwarf::DW_TAG_subrange_type:
2286     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
2287   case dwarf::DW_TAG_namespace:
2288     return dwarf::GIEK_TYPE;
2289   case dwarf::DW_TAG_subprogram:
2290     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
2291   case dwarf::DW_TAG_variable:
2292     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
2293   case dwarf::DW_TAG_enumerator:
2294     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
2295                                           dwarf::GIEL_STATIC);
2296   default:
2297     return dwarf::GIEK_NONE;
2298   }
2299 }
2300 
2301 /// emitDebugPubSections - Emit visible names and types into debug pubnames and
2302 /// pubtypes sections.
2303 void DwarfDebug::emitDebugPubSections() {
2304   for (const auto &NU : CUMap) {
2305     DwarfCompileUnit *TheU = NU.second;
2306     if (!TheU->hasDwarfPubSections())
2307       continue;
2308 
2309     bool GnuStyle = TheU->getCUNode()->getNameTableKind() ==
2310                     DICompileUnit::DebugNameTableKind::GNU;
2311 
2312     Asm->OutStreamer->SwitchSection(
2313         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
2314                  : Asm->getObjFileLowering().getDwarfPubNamesSection());
2315     emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames());
2316 
2317     Asm->OutStreamer->SwitchSection(
2318         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
2319                  : Asm->getObjFileLowering().getDwarfPubTypesSection());
2320     emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes());
2321   }
2322 }
2323 
2324 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) {
2325   if (useSectionsAsReferences())
2326     Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(),
2327                          CU.getDebugSectionOffset());
2328   else
2329     Asm->emitDwarfSymbolReference(CU.getLabelBegin());
2330 }
2331 
2332 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name,
2333                                      DwarfCompileUnit *TheU,
2334                                      const StringMap<const DIE *> &Globals) {
2335   if (auto *Skeleton = TheU->getSkeleton())
2336     TheU = Skeleton;
2337 
2338   // Emit the header.
2339   MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin");
2340   MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end");
2341   Asm->emitDwarfUnitLength(EndLabel, BeginLabel,
2342                            "Length of Public " + Name + " Info");
2343 
2344   Asm->OutStreamer->emitLabel(BeginLabel);
2345 
2346   Asm->OutStreamer->AddComment("DWARF Version");
2347   Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION);
2348 
2349   Asm->OutStreamer->AddComment("Offset of Compilation Unit Info");
2350   emitSectionReference(*TheU);
2351 
2352   Asm->OutStreamer->AddComment("Compilation Unit Length");
2353   Asm->emitDwarfLengthOrOffset(TheU->getLength());
2354 
2355   // Emit the pubnames for this compilation unit.
2356   for (const auto &GI : Globals) {
2357     const char *Name = GI.getKeyData();
2358     const DIE *Entity = GI.second;
2359 
2360     Asm->OutStreamer->AddComment("DIE offset");
2361     Asm->emitDwarfLengthOrOffset(Entity->getOffset());
2362 
2363     if (GnuStyle) {
2364       dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
2365       Asm->OutStreamer->AddComment(
2366           Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) +
2367           ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
2368       Asm->emitInt8(Desc.toBits());
2369     }
2370 
2371     Asm->OutStreamer->AddComment("External Name");
2372     Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1));
2373   }
2374 
2375   Asm->OutStreamer->AddComment("End Mark");
2376   Asm->emitDwarfLengthOrOffset(0);
2377   Asm->OutStreamer->emitLabel(EndLabel);
2378 }
2379 
2380 /// Emit null-terminated strings into a debug str section.
2381 void DwarfDebug::emitDebugStr() {
2382   MCSection *StringOffsetsSection = nullptr;
2383   if (useSegmentedStringOffsetsTable()) {
2384     emitStringOffsetsTableHeader();
2385     StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection();
2386   }
2387   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2388   Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(),
2389                      StringOffsetsSection, /* UseRelativeOffsets = */ true);
2390 }
2391 
2392 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
2393                                    const DebugLocStream::Entry &Entry,
2394                                    const DwarfCompileUnit *CU) {
2395   auto &&Comments = DebugLocs.getComments(Entry);
2396   auto Comment = Comments.begin();
2397   auto End = Comments.end();
2398 
2399   // The expressions are inserted into a byte stream rather early (see
2400   // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that
2401   // need to reference a base_type DIE the offset of that DIE is not yet known.
2402   // To deal with this we instead insert a placeholder early and then extract
2403   // it here and replace it with the real reference.
2404   unsigned PtrSize = Asm->MAI->getCodePointerSize();
2405   DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(),
2406                                     DebugLocs.getBytes(Entry).size()),
2407                           Asm->getDataLayout().isLittleEndian(), PtrSize);
2408   DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat());
2409 
2410   using Encoding = DWARFExpression::Operation::Encoding;
2411   uint64_t Offset = 0;
2412   for (auto &Op : Expr) {
2413     assert(Op.getCode() != dwarf::DW_OP_const_type &&
2414            "3 operand ops not yet supported");
2415     Streamer.emitInt8(Op.getCode(), Comment != End ? *(Comment++) : "");
2416     Offset++;
2417     for (unsigned I = 0; I < 2; ++I) {
2418       if (Op.getDescription().Op[I] == Encoding::SizeNA)
2419         continue;
2420       if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) {
2421         uint64_t Offset =
2422             CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset();
2423         assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit");
2424         Streamer.emitULEB128(Offset, "", ULEB128PadSize);
2425         // Make sure comments stay aligned.
2426         for (unsigned J = 0; J < ULEB128PadSize; ++J)
2427           if (Comment != End)
2428             Comment++;
2429       } else {
2430         for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J)
2431           Streamer.emitInt8(Data.getData()[J], Comment != End ? *(Comment++) : "");
2432       }
2433       Offset = Op.getOperandEndOffset(I);
2434     }
2435     assert(Offset == Op.getEndOffset());
2436   }
2437 }
2438 
2439 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT,
2440                                    const DbgValueLoc &Value,
2441                                    DwarfExpression &DwarfExpr) {
2442   auto *DIExpr = Value.getExpression();
2443   DIExpressionCursor ExprCursor(DIExpr);
2444   DwarfExpr.addFragmentOffset(DIExpr);
2445   // Regular entry.
2446   if (Value.isInt()) {
2447     if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed ||
2448                BT->getEncoding() == dwarf::DW_ATE_signed_char))
2449       DwarfExpr.addSignedConstant(Value.getInt());
2450     else
2451       DwarfExpr.addUnsignedConstant(Value.getInt());
2452   } else if (Value.isLocation()) {
2453     MachineLocation Location = Value.getLoc();
2454     DwarfExpr.setLocation(Location, DIExpr);
2455     DIExpressionCursor Cursor(DIExpr);
2456 
2457     if (DIExpr->isEntryValue())
2458       DwarfExpr.beginEntryValueExpression(Cursor);
2459 
2460     const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
2461     if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg()))
2462       return;
2463     return DwarfExpr.addExpression(std::move(Cursor));
2464   } else if (Value.isTargetIndexLocation()) {
2465     TargetIndexLocation Loc = Value.getTargetIndexLocation();
2466     // TODO TargetIndexLocation is a target-independent. Currently only the WebAssembly-specific
2467     // encoding is supported.
2468     DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset));
2469       DwarfExpr.addExpression(std::move(ExprCursor));
2470       return;
2471   } else if (Value.isConstantFP()) {
2472     if (AP.getDwarfVersion() >= 4 && !AP.getDwarfDebug()->tuneForSCE()) {
2473       DwarfExpr.addConstantFP(Value.getConstantFP()->getValueAPF(), AP);
2474       return;
2475     } else if (Value.getConstantFP()
2476                    ->getValueAPF()
2477                    .bitcastToAPInt()
2478                    .getBitWidth() <= 64 /*bits*/)
2479       DwarfExpr.addUnsignedConstant(
2480           Value.getConstantFP()->getValueAPF().bitcastToAPInt());
2481     else
2482       LLVM_DEBUG(
2483           dbgs()
2484           << "Skipped DwarfExpression creation for ConstantFP of size"
2485           << Value.getConstantFP()->getValueAPF().bitcastToAPInt().getBitWidth()
2486           << " bits\n");
2487   }
2488   DwarfExpr.addExpression(std::move(ExprCursor));
2489 }
2490 
2491 void DebugLocEntry::finalize(const AsmPrinter &AP,
2492                              DebugLocStream::ListBuilder &List,
2493                              const DIBasicType *BT,
2494                              DwarfCompileUnit &TheCU) {
2495   assert(!Values.empty() &&
2496          "location list entries without values are redundant");
2497   assert(Begin != End && "unexpected location list entry with empty range");
2498   DebugLocStream::EntryBuilder Entry(List, Begin, End);
2499   BufferByteStreamer Streamer = Entry.getStreamer();
2500   DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU);
2501   const DbgValueLoc &Value = Values[0];
2502   if (Value.isFragment()) {
2503     // Emit all fragments that belong to the same variable and range.
2504     assert(llvm::all_of(Values, [](DbgValueLoc P) {
2505           return P.isFragment();
2506         }) && "all values are expected to be fragments");
2507     assert(llvm::is_sorted(Values) && "fragments are expected to be sorted");
2508 
2509     for (const auto &Fragment : Values)
2510       DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr);
2511 
2512   } else {
2513     assert(Values.size() == 1 && "only fragments may have >1 value");
2514     DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr);
2515   }
2516   DwarfExpr.finalize();
2517   if (DwarfExpr.TagOffset)
2518     List.setTagOffset(*DwarfExpr.TagOffset);
2519 }
2520 
2521 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry,
2522                                            const DwarfCompileUnit *CU) {
2523   // Emit the size.
2524   Asm->OutStreamer->AddComment("Loc expr size");
2525   if (getDwarfVersion() >= 5)
2526     Asm->emitULEB128(DebugLocs.getBytes(Entry).size());
2527   else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max())
2528     Asm->emitInt16(DebugLocs.getBytes(Entry).size());
2529   else {
2530     // The entry is too big to fit into 16 bit, drop it as there is nothing we
2531     // can do.
2532     Asm->emitInt16(0);
2533     return;
2534   }
2535   // Emit the entry.
2536   APByteStreamer Streamer(*Asm);
2537   emitDebugLocEntry(Streamer, Entry, CU);
2538 }
2539 
2540 // Emit the header of a DWARF 5 range list table list table. Returns the symbol
2541 // that designates the end of the table for the caller to emit when the table is
2542 // complete.
2543 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm,
2544                                          const DwarfFile &Holder) {
2545   MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2546 
2547   Asm->OutStreamer->AddComment("Offset entry count");
2548   Asm->emitInt32(Holder.getRangeLists().size());
2549   Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym());
2550 
2551   for (const RangeSpanList &List : Holder.getRangeLists())
2552     Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(),
2553                              Asm->getDwarfOffsetByteSize());
2554 
2555   return TableEnd;
2556 }
2557 
2558 // Emit the header of a DWARF 5 locations list table. Returns the symbol that
2559 // designates the end of the table for the caller to emit when the table is
2560 // complete.
2561 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm,
2562                                          const DwarfDebug &DD) {
2563   MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2564 
2565   const auto &DebugLocs = DD.getDebugLocs();
2566 
2567   Asm->OutStreamer->AddComment("Offset entry count");
2568   Asm->emitInt32(DebugLocs.getLists().size());
2569   Asm->OutStreamer->emitLabel(DebugLocs.getSym());
2570 
2571   for (const auto &List : DebugLocs.getLists())
2572     Asm->emitLabelDifference(List.Label, DebugLocs.getSym(),
2573                              Asm->getDwarfOffsetByteSize());
2574 
2575   return TableEnd;
2576 }
2577 
2578 template <typename Ranges, typename PayloadEmitter>
2579 static void emitRangeList(
2580     DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R,
2581     const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair,
2582     unsigned StartxLength, unsigned EndOfList,
2583     StringRef (*StringifyEnum)(unsigned),
2584     bool ShouldUseBaseAddress,
2585     PayloadEmitter EmitPayload) {
2586 
2587   auto Size = Asm->MAI->getCodePointerSize();
2588   bool UseDwarf5 = DD.getDwarfVersion() >= 5;
2589 
2590   // Emit our symbol so we can find the beginning of the range.
2591   Asm->OutStreamer->emitLabel(Sym);
2592 
2593   // Gather all the ranges that apply to the same section so they can share
2594   // a base address entry.
2595   MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges;
2596 
2597   for (const auto &Range : R)
2598     SectionRanges[&Range.Begin->getSection()].push_back(&Range);
2599 
2600   const MCSymbol *CUBase = CU.getBaseAddress();
2601   bool BaseIsSet = false;
2602   for (const auto &P : SectionRanges) {
2603     auto *Base = CUBase;
2604     if (!Base && ShouldUseBaseAddress) {
2605       const MCSymbol *Begin = P.second.front()->Begin;
2606       const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection());
2607       if (!UseDwarf5) {
2608         Base = NewBase;
2609         BaseIsSet = true;
2610         Asm->OutStreamer->emitIntValue(-1, Size);
2611         Asm->OutStreamer->AddComment("  base address");
2612         Asm->OutStreamer->emitSymbolValue(Base, Size);
2613       } else if (NewBase != Begin || P.second.size() > 1) {
2614         // Only use a base address if
2615         //  * the existing pool address doesn't match (NewBase != Begin)
2616         //  * or, there's more than one entry to share the base address
2617         Base = NewBase;
2618         BaseIsSet = true;
2619         Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx));
2620         Asm->emitInt8(BaseAddressx);
2621         Asm->OutStreamer->AddComment("  base address index");
2622         Asm->emitULEB128(DD.getAddressPool().getIndex(Base));
2623       }
2624     } else if (BaseIsSet && !UseDwarf5) {
2625       BaseIsSet = false;
2626       assert(!Base);
2627       Asm->OutStreamer->emitIntValue(-1, Size);
2628       Asm->OutStreamer->emitIntValue(0, Size);
2629     }
2630 
2631     for (const auto *RS : P.second) {
2632       const MCSymbol *Begin = RS->Begin;
2633       const MCSymbol *End = RS->End;
2634       assert(Begin && "Range without a begin symbol?");
2635       assert(End && "Range without an end symbol?");
2636       if (Base) {
2637         if (UseDwarf5) {
2638           // Emit offset_pair when we have a base.
2639           Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair));
2640           Asm->emitInt8(OffsetPair);
2641           Asm->OutStreamer->AddComment("  starting offset");
2642           Asm->emitLabelDifferenceAsULEB128(Begin, Base);
2643           Asm->OutStreamer->AddComment("  ending offset");
2644           Asm->emitLabelDifferenceAsULEB128(End, Base);
2645         } else {
2646           Asm->emitLabelDifference(Begin, Base, Size);
2647           Asm->emitLabelDifference(End, Base, Size);
2648         }
2649       } else if (UseDwarf5) {
2650         Asm->OutStreamer->AddComment(StringifyEnum(StartxLength));
2651         Asm->emitInt8(StartxLength);
2652         Asm->OutStreamer->AddComment("  start index");
2653         Asm->emitULEB128(DD.getAddressPool().getIndex(Begin));
2654         Asm->OutStreamer->AddComment("  length");
2655         Asm->emitLabelDifferenceAsULEB128(End, Begin);
2656       } else {
2657         Asm->OutStreamer->emitSymbolValue(Begin, Size);
2658         Asm->OutStreamer->emitSymbolValue(End, Size);
2659       }
2660       EmitPayload(*RS);
2661     }
2662   }
2663 
2664   if (UseDwarf5) {
2665     Asm->OutStreamer->AddComment(StringifyEnum(EndOfList));
2666     Asm->emitInt8(EndOfList);
2667   } else {
2668     // Terminate the list with two 0 values.
2669     Asm->OutStreamer->emitIntValue(0, Size);
2670     Asm->OutStreamer->emitIntValue(0, Size);
2671   }
2672 }
2673 
2674 // Handles emission of both debug_loclist / debug_loclist.dwo
2675 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) {
2676   emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List),
2677                 *List.CU, dwarf::DW_LLE_base_addressx,
2678                 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length,
2679                 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString,
2680                 /* ShouldUseBaseAddress */ true,
2681                 [&](const DebugLocStream::Entry &E) {
2682                   DD.emitDebugLocEntryLocation(E, List.CU);
2683                 });
2684 }
2685 
2686 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) {
2687   if (DebugLocs.getLists().empty())
2688     return;
2689 
2690   Asm->OutStreamer->SwitchSection(Sec);
2691 
2692   MCSymbol *TableEnd = nullptr;
2693   if (getDwarfVersion() >= 5)
2694     TableEnd = emitLoclistsTableHeader(Asm, *this);
2695 
2696   for (const auto &List : DebugLocs.getLists())
2697     emitLocList(*this, Asm, List);
2698 
2699   if (TableEnd)
2700     Asm->OutStreamer->emitLabel(TableEnd);
2701 }
2702 
2703 // Emit locations into the .debug_loc/.debug_loclists section.
2704 void DwarfDebug::emitDebugLoc() {
2705   emitDebugLocImpl(
2706       getDwarfVersion() >= 5
2707           ? Asm->getObjFileLowering().getDwarfLoclistsSection()
2708           : Asm->getObjFileLowering().getDwarfLocSection());
2709 }
2710 
2711 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section.
2712 void DwarfDebug::emitDebugLocDWO() {
2713   if (getDwarfVersion() >= 5) {
2714     emitDebugLocImpl(
2715         Asm->getObjFileLowering().getDwarfLoclistsDWOSection());
2716 
2717     return;
2718   }
2719 
2720   for (const auto &List : DebugLocs.getLists()) {
2721     Asm->OutStreamer->SwitchSection(
2722         Asm->getObjFileLowering().getDwarfLocDWOSection());
2723     Asm->OutStreamer->emitLabel(List.Label);
2724 
2725     for (const auto &Entry : DebugLocs.getEntries(List)) {
2726       // GDB only supports startx_length in pre-standard split-DWARF.
2727       // (in v5 standard loclists, it currently* /only/ supports base_address +
2728       // offset_pair, so the implementations can't really share much since they
2729       // need to use different representations)
2730       // * as of October 2018, at least
2731       //
2732       // In v5 (see emitLocList), this uses SectionLabels to reuse existing
2733       // addresses in the address pool to minimize object size/relocations.
2734       Asm->emitInt8(dwarf::DW_LLE_startx_length);
2735       unsigned idx = AddrPool.getIndex(Entry.Begin);
2736       Asm->emitULEB128(idx);
2737       // Also the pre-standard encoding is slightly different, emitting this as
2738       // an address-length entry here, but its a ULEB128 in DWARFv5 loclists.
2739       Asm->emitLabelDifference(Entry.End, Entry.Begin, 4);
2740       emitDebugLocEntryLocation(Entry, List.CU);
2741     }
2742     Asm->emitInt8(dwarf::DW_LLE_end_of_list);
2743   }
2744 }
2745 
2746 struct ArangeSpan {
2747   const MCSymbol *Start, *End;
2748 };
2749 
2750 // Emit a debug aranges section, containing a CU lookup for any
2751 // address we can tie back to a CU.
2752 void DwarfDebug::emitDebugARanges() {
2753   // Provides a unique id per text section.
2754   MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap;
2755 
2756   // Filter labels by section.
2757   for (const SymbolCU &SCU : ArangeLabels) {
2758     if (SCU.Sym->isInSection()) {
2759       // Make a note of this symbol and it's section.
2760       MCSection *Section = &SCU.Sym->getSection();
2761       if (!Section->getKind().isMetadata())
2762         SectionMap[Section].push_back(SCU);
2763     } else {
2764       // Some symbols (e.g. common/bss on mach-o) can have no section but still
2765       // appear in the output. This sucks as we rely on sections to build
2766       // arange spans. We can do it without, but it's icky.
2767       SectionMap[nullptr].push_back(SCU);
2768     }
2769   }
2770 
2771   DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans;
2772 
2773   for (auto &I : SectionMap) {
2774     MCSection *Section = I.first;
2775     SmallVector<SymbolCU, 8> &List = I.second;
2776     if (List.size() < 1)
2777       continue;
2778 
2779     // If we have no section (e.g. common), just write out
2780     // individual spans for each symbol.
2781     if (!Section) {
2782       for (const SymbolCU &Cur : List) {
2783         ArangeSpan Span;
2784         Span.Start = Cur.Sym;
2785         Span.End = nullptr;
2786         assert(Cur.CU);
2787         Spans[Cur.CU].push_back(Span);
2788       }
2789       continue;
2790     }
2791 
2792     // Sort the symbols by offset within the section.
2793     llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) {
2794       unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0;
2795       unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0;
2796 
2797       // Symbols with no order assigned should be placed at the end.
2798       // (e.g. section end labels)
2799       if (IA == 0)
2800         return false;
2801       if (IB == 0)
2802         return true;
2803       return IA < IB;
2804     });
2805 
2806     // Insert a final terminator.
2807     List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section)));
2808 
2809     // Build spans between each label.
2810     const MCSymbol *StartSym = List[0].Sym;
2811     for (size_t n = 1, e = List.size(); n < e; n++) {
2812       const SymbolCU &Prev = List[n - 1];
2813       const SymbolCU &Cur = List[n];
2814 
2815       // Try and build the longest span we can within the same CU.
2816       if (Cur.CU != Prev.CU) {
2817         ArangeSpan Span;
2818         Span.Start = StartSym;
2819         Span.End = Cur.Sym;
2820         assert(Prev.CU);
2821         Spans[Prev.CU].push_back(Span);
2822         StartSym = Cur.Sym;
2823       }
2824     }
2825   }
2826 
2827   // Start the dwarf aranges section.
2828   Asm->OutStreamer->SwitchSection(
2829       Asm->getObjFileLowering().getDwarfARangesSection());
2830 
2831   unsigned PtrSize = Asm->MAI->getCodePointerSize();
2832 
2833   // Build a list of CUs used.
2834   std::vector<DwarfCompileUnit *> CUs;
2835   for (const auto &it : Spans) {
2836     DwarfCompileUnit *CU = it.first;
2837     CUs.push_back(CU);
2838   }
2839 
2840   // Sort the CU list (again, to ensure consistent output order).
2841   llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) {
2842     return A->getUniqueID() < B->getUniqueID();
2843   });
2844 
2845   // Emit an arange table for each CU we used.
2846   for (DwarfCompileUnit *CU : CUs) {
2847     std::vector<ArangeSpan> &List = Spans[CU];
2848 
2849     // Describe the skeleton CU's offset and length, not the dwo file's.
2850     if (auto *Skel = CU->getSkeleton())
2851       CU = Skel;
2852 
2853     // Emit size of content not including length itself.
2854     unsigned ContentSize =
2855         sizeof(int16_t) +               // DWARF ARange version number
2856         Asm->getDwarfOffsetByteSize() + // Offset of CU in the .debug_info
2857                                         // section
2858         sizeof(int8_t) +                // Pointer Size (in bytes)
2859         sizeof(int8_t);                 // Segment Size (in bytes)
2860 
2861     unsigned TupleSize = PtrSize * 2;
2862 
2863     // 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
2864     unsigned Padding = offsetToAlignment(
2865         Asm->getUnitLengthFieldByteSize() + ContentSize, Align(TupleSize));
2866 
2867     ContentSize += Padding;
2868     ContentSize += (List.size() + 1) * TupleSize;
2869 
2870     // For each compile unit, write the list of spans it covers.
2871     Asm->emitDwarfUnitLength(ContentSize, "Length of ARange Set");
2872     Asm->OutStreamer->AddComment("DWARF Arange version number");
2873     Asm->emitInt16(dwarf::DW_ARANGES_VERSION);
2874     Asm->OutStreamer->AddComment("Offset Into Debug Info Section");
2875     emitSectionReference(*CU);
2876     Asm->OutStreamer->AddComment("Address Size (in bytes)");
2877     Asm->emitInt8(PtrSize);
2878     Asm->OutStreamer->AddComment("Segment Size (in bytes)");
2879     Asm->emitInt8(0);
2880 
2881     Asm->OutStreamer->emitFill(Padding, 0xff);
2882 
2883     for (const ArangeSpan &Span : List) {
2884       Asm->emitLabelReference(Span.Start, PtrSize);
2885 
2886       // Calculate the size as being from the span start to it's end.
2887       if (Span.End) {
2888         Asm->emitLabelDifference(Span.End, Span.Start, PtrSize);
2889       } else {
2890         // For symbols without an end marker (e.g. common), we
2891         // write a single arange entry containing just that one symbol.
2892         uint64_t Size = SymSize[Span.Start];
2893         if (Size == 0)
2894           Size = 1;
2895 
2896         Asm->OutStreamer->emitIntValue(Size, PtrSize);
2897       }
2898     }
2899 
2900     Asm->OutStreamer->AddComment("ARange terminator");
2901     Asm->OutStreamer->emitIntValue(0, PtrSize);
2902     Asm->OutStreamer->emitIntValue(0, PtrSize);
2903   }
2904 }
2905 
2906 /// Emit a single range list. We handle both DWARF v5 and earlier.
2907 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm,
2908                           const RangeSpanList &List) {
2909   emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU,
2910                 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair,
2911                 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list,
2912                 llvm::dwarf::RangeListEncodingString,
2913                 List.CU->getCUNode()->getRangesBaseAddress() ||
2914                     DD.getDwarfVersion() >= 5,
2915                 [](auto) {});
2916 }
2917 
2918 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) {
2919   if (Holder.getRangeLists().empty())
2920     return;
2921 
2922   assert(useRangesSection());
2923   assert(!CUMap.empty());
2924   assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) {
2925     return !Pair.second->getCUNode()->isDebugDirectivesOnly();
2926   }));
2927 
2928   Asm->OutStreamer->SwitchSection(Section);
2929 
2930   MCSymbol *TableEnd = nullptr;
2931   if (getDwarfVersion() >= 5)
2932     TableEnd = emitRnglistsTableHeader(Asm, Holder);
2933 
2934   for (const RangeSpanList &List : Holder.getRangeLists())
2935     emitRangeList(*this, Asm, List);
2936 
2937   if (TableEnd)
2938     Asm->OutStreamer->emitLabel(TableEnd);
2939 }
2940 
2941 /// Emit address ranges into the .debug_ranges section or into the DWARF v5
2942 /// .debug_rnglists section.
2943 void DwarfDebug::emitDebugRanges() {
2944   const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2945 
2946   emitDebugRangesImpl(Holder,
2947                       getDwarfVersion() >= 5
2948                           ? Asm->getObjFileLowering().getDwarfRnglistsSection()
2949                           : Asm->getObjFileLowering().getDwarfRangesSection());
2950 }
2951 
2952 void DwarfDebug::emitDebugRangesDWO() {
2953   emitDebugRangesImpl(InfoHolder,
2954                       Asm->getObjFileLowering().getDwarfRnglistsDWOSection());
2955 }
2956 
2957 /// Emit the header of a DWARF 5 macro section, or the GNU extension for
2958 /// DWARF 4.
2959 static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD,
2960                             const DwarfCompileUnit &CU, uint16_t DwarfVersion) {
2961   enum HeaderFlagMask {
2962 #define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID,
2963 #include "llvm/BinaryFormat/Dwarf.def"
2964   };
2965   Asm->OutStreamer->AddComment("Macro information version");
2966   Asm->emitInt16(DwarfVersion >= 5 ? DwarfVersion : 4);
2967   // We emit the line offset flag unconditionally here, since line offset should
2968   // be mostly present.
2969   if (Asm->isDwarf64()) {
2970     Asm->OutStreamer->AddComment("Flags: 64 bit, debug_line_offset present");
2971     Asm->emitInt8(MACRO_FLAG_OFFSET_SIZE | MACRO_FLAG_DEBUG_LINE_OFFSET);
2972   } else {
2973     Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present");
2974     Asm->emitInt8(MACRO_FLAG_DEBUG_LINE_OFFSET);
2975   }
2976   Asm->OutStreamer->AddComment("debug_line_offset");
2977   if (DD.useSplitDwarf())
2978     Asm->emitDwarfLengthOrOffset(0);
2979   else
2980     Asm->emitDwarfSymbolReference(CU.getLineTableStartSym());
2981 }
2982 
2983 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) {
2984   for (auto *MN : Nodes) {
2985     if (auto *M = dyn_cast<DIMacro>(MN))
2986       emitMacro(*M);
2987     else if (auto *F = dyn_cast<DIMacroFile>(MN))
2988       emitMacroFile(*F, U);
2989     else
2990       llvm_unreachable("Unexpected DI type!");
2991   }
2992 }
2993 
2994 void DwarfDebug::emitMacro(DIMacro &M) {
2995   StringRef Name = M.getName();
2996   StringRef Value = M.getValue();
2997 
2998   // There should be one space between the macro name and the macro value in
2999   // define entries. In undef entries, only the macro name is emitted.
3000   std::string Str = Value.empty() ? Name.str() : (Name + " " + Value).str();
3001 
3002   if (UseDebugMacroSection) {
3003     if (getDwarfVersion() >= 5) {
3004       unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
3005                           ? dwarf::DW_MACRO_define_strx
3006                           : dwarf::DW_MACRO_undef_strx;
3007       Asm->OutStreamer->AddComment(dwarf::MacroString(Type));
3008       Asm->emitULEB128(Type);
3009       Asm->OutStreamer->AddComment("Line Number");
3010       Asm->emitULEB128(M.getLine());
3011       Asm->OutStreamer->AddComment("Macro String");
3012       Asm->emitULEB128(
3013           InfoHolder.getStringPool().getIndexedEntry(*Asm, Str).getIndex());
3014     } else {
3015       unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
3016                           ? dwarf::DW_MACRO_GNU_define_indirect
3017                           : dwarf::DW_MACRO_GNU_undef_indirect;
3018       Asm->OutStreamer->AddComment(dwarf::GnuMacroString(Type));
3019       Asm->emitULEB128(Type);
3020       Asm->OutStreamer->AddComment("Line Number");
3021       Asm->emitULEB128(M.getLine());
3022       Asm->OutStreamer->AddComment("Macro String");
3023       Asm->emitDwarfSymbolReference(
3024           InfoHolder.getStringPool().getEntry(*Asm, Str).getSymbol());
3025     }
3026   } else {
3027     Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType()));
3028     Asm->emitULEB128(M.getMacinfoType());
3029     Asm->OutStreamer->AddComment("Line Number");
3030     Asm->emitULEB128(M.getLine());
3031     Asm->OutStreamer->AddComment("Macro String");
3032     Asm->OutStreamer->emitBytes(Str);
3033     Asm->emitInt8('\0');
3034   }
3035 }
3036 
3037 void DwarfDebug::emitMacroFileImpl(
3038     DIMacroFile &MF, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile,
3039     StringRef (*MacroFormToString)(unsigned Form)) {
3040 
3041   Asm->OutStreamer->AddComment(MacroFormToString(StartFile));
3042   Asm->emitULEB128(StartFile);
3043   Asm->OutStreamer->AddComment("Line Number");
3044   Asm->emitULEB128(MF.getLine());
3045   Asm->OutStreamer->AddComment("File Number");
3046   DIFile &F = *MF.getFile();
3047   if (useSplitDwarf())
3048     Asm->emitULEB128(getDwoLineTable(U)->getFile(
3049         F.getDirectory(), F.getFilename(), getMD5AsBytes(&F),
3050         Asm->OutContext.getDwarfVersion(), F.getSource()));
3051   else
3052     Asm->emitULEB128(U.getOrCreateSourceID(&F));
3053   handleMacroNodes(MF.getElements(), U);
3054   Asm->OutStreamer->AddComment(MacroFormToString(EndFile));
3055   Asm->emitULEB128(EndFile);
3056 }
3057 
3058 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) {
3059   // DWARFv5 macro and DWARFv4 macinfo share some common encodings,
3060   // so for readibility/uniformity, We are explicitly emitting those.
3061   assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file);
3062   if (UseDebugMacroSection)
3063     emitMacroFileImpl(
3064         F, U, dwarf::DW_MACRO_start_file, dwarf::DW_MACRO_end_file,
3065         (getDwarfVersion() >= 5) ? dwarf::MacroString : dwarf::GnuMacroString);
3066   else
3067     emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file,
3068                       dwarf::DW_MACINFO_end_file, dwarf::MacinfoString);
3069 }
3070 
3071 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) {
3072   for (const auto &P : CUMap) {
3073     auto &TheCU = *P.second;
3074     auto *SkCU = TheCU.getSkeleton();
3075     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
3076     auto *CUNode = cast<DICompileUnit>(P.first);
3077     DIMacroNodeArray Macros = CUNode->getMacros();
3078     if (Macros.empty())
3079       continue;
3080     Asm->OutStreamer->SwitchSection(Section);
3081     Asm->OutStreamer->emitLabel(U.getMacroLabelBegin());
3082     if (UseDebugMacroSection)
3083       emitMacroHeader(Asm, *this, U, getDwarfVersion());
3084     handleMacroNodes(Macros, U);
3085     Asm->OutStreamer->AddComment("End Of Macro List Mark");
3086     Asm->emitInt8(0);
3087   }
3088 }
3089 
3090 /// Emit macros into a debug macinfo/macro section.
3091 void DwarfDebug::emitDebugMacinfo() {
3092   auto &ObjLower = Asm->getObjFileLowering();
3093   emitDebugMacinfoImpl(UseDebugMacroSection
3094                            ? ObjLower.getDwarfMacroSection()
3095                            : ObjLower.getDwarfMacinfoSection());
3096 }
3097 
3098 void DwarfDebug::emitDebugMacinfoDWO() {
3099   auto &ObjLower = Asm->getObjFileLowering();
3100   emitDebugMacinfoImpl(UseDebugMacroSection
3101                            ? ObjLower.getDwarfMacroDWOSection()
3102                            : ObjLower.getDwarfMacinfoDWOSection());
3103 }
3104 
3105 // DWARF5 Experimental Separate Dwarf emitters.
3106 
3107 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
3108                                   std::unique_ptr<DwarfCompileUnit> NewU) {
3109 
3110   if (!CompilationDir.empty())
3111     NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
3112   addGnuPubAttributes(*NewU, Die);
3113 
3114   SkeletonHolder.addUnit(std::move(NewU));
3115 }
3116 
3117 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
3118 
3119   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
3120       CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder,
3121       UnitKind::Skeleton);
3122   DwarfCompileUnit &NewCU = *OwnedUnit;
3123   NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
3124 
3125   NewCU.initStmtList();
3126 
3127   if (useSegmentedStringOffsetsTable())
3128     NewCU.addStringOffsetsStart();
3129 
3130   initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));
3131 
3132   return NewCU;
3133 }
3134 
3135 // Emit the .debug_info.dwo section for separated dwarf. This contains the
3136 // compile units that would normally be in debug_info.
3137 void DwarfDebug::emitDebugInfoDWO() {
3138   assert(useSplitDwarf() && "No split dwarf debug info?");
3139   // Don't emit relocations into the dwo file.
3140   InfoHolder.emitUnits(/* UseOffsets */ true);
3141 }
3142 
3143 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
3144 // abbreviations for the .debug_info.dwo section.
3145 void DwarfDebug::emitDebugAbbrevDWO() {
3146   assert(useSplitDwarf() && "No split dwarf?");
3147   InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
3148 }
3149 
3150 void DwarfDebug::emitDebugLineDWO() {
3151   assert(useSplitDwarf() && "No split dwarf?");
3152   SplitTypeUnitFileTable.Emit(
3153       *Asm->OutStreamer, MCDwarfLineTableParams(),
3154       Asm->getObjFileLowering().getDwarfLineDWOSection());
3155 }
3156 
3157 void DwarfDebug::emitStringOffsetsTableHeaderDWO() {
3158   assert(useSplitDwarf() && "No split dwarf?");
3159   InfoHolder.getStringPool().emitStringOffsetsTableHeader(
3160       *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(),
3161       InfoHolder.getStringOffsetsStartSym());
3162 }
3163 
3164 // Emit the .debug_str.dwo section for separated dwarf. This contains the
3165 // string section and is identical in format to traditional .debug_str
3166 // sections.
3167 void DwarfDebug::emitDebugStrDWO() {
3168   if (useSegmentedStringOffsetsTable())
3169     emitStringOffsetsTableHeaderDWO();
3170   assert(useSplitDwarf() && "No split dwarf?");
3171   MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection();
3172   InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
3173                          OffSec, /* UseRelativeOffsets = */ false);
3174 }
3175 
3176 // Emit address pool.
3177 void DwarfDebug::emitDebugAddr() {
3178   AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
3179 }
3180 
3181 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
3182   if (!useSplitDwarf())
3183     return nullptr;
3184   const DICompileUnit *DIUnit = CU.getCUNode();
3185   SplitTypeUnitFileTable.maybeSetRootFile(
3186       DIUnit->getDirectory(), DIUnit->getFilename(),
3187       getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource());
3188   return &SplitTypeUnitFileTable;
3189 }
3190 
3191 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) {
3192   MD5 Hash;
3193   Hash.update(Identifier);
3194   // ... take the least significant 8 bytes and return those. Our MD5
3195   // implementation always returns its results in little endian, so we actually
3196   // need the "high" word.
3197   MD5::MD5Result Result;
3198   Hash.final(Result);
3199   return Result.high();
3200 }
3201 
3202 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
3203                                       StringRef Identifier, DIE &RefDie,
3204                                       const DICompositeType *CTy) {
3205   // Fast path if we're building some type units and one has already used the
3206   // address pool we know we're going to throw away all this work anyway, so
3207   // don't bother building dependent types.
3208   if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
3209     return;
3210 
3211   auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0));
3212   if (!Ins.second) {
3213     CU.addDIETypeSignature(RefDie, Ins.first->second);
3214     return;
3215   }
3216 
3217   bool TopLevelType = TypeUnitsUnderConstruction.empty();
3218   AddrPool.resetUsedFlag();
3219 
3220   auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder,
3221                                                     getDwoLineTable(CU));
3222   DwarfTypeUnit &NewTU = *OwnedUnit;
3223   DIE &UnitDie = NewTU.getUnitDie();
3224   TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy);
3225 
3226   NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
3227                 CU.getLanguage());
3228 
3229   uint64_t Signature = makeTypeSignature(Identifier);
3230   NewTU.setTypeSignature(Signature);
3231   Ins.first->second = Signature;
3232 
3233   if (useSplitDwarf()) {
3234     MCSection *Section =
3235         getDwarfVersion() <= 4
3236             ? Asm->getObjFileLowering().getDwarfTypesDWOSection()
3237             : Asm->getObjFileLowering().getDwarfInfoDWOSection();
3238     NewTU.setSection(Section);
3239   } else {
3240     MCSection *Section =
3241         getDwarfVersion() <= 4
3242             ? Asm->getObjFileLowering().getDwarfTypesSection(Signature)
3243             : Asm->getObjFileLowering().getDwarfInfoSection(Signature);
3244     NewTU.setSection(Section);
3245     // Non-split type units reuse the compile unit's line table.
3246     CU.applyStmtList(UnitDie);
3247   }
3248 
3249   // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type
3250   // units.
3251   if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
3252     NewTU.addStringOffsetsStart();
3253 
3254   NewTU.setType(NewTU.createTypeDIE(CTy));
3255 
3256   if (TopLevelType) {
3257     auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
3258     TypeUnitsUnderConstruction.clear();
3259 
3260     // Types referencing entries in the address table cannot be placed in type
3261     // units.
3262     if (AddrPool.hasBeenUsed()) {
3263 
3264       // Remove all the types built while building this type.
3265       // This is pessimistic as some of these types might not be dependent on
3266       // the type that used an address.
3267       for (const auto &TU : TypeUnitsToAdd)
3268         TypeSignatures.erase(TU.second);
3269 
3270       // Construct this type in the CU directly.
3271       // This is inefficient because all the dependent types will be rebuilt
3272       // from scratch, including building them in type units, discovering that
3273       // they depend on addresses, throwing them out and rebuilding them.
3274       CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy));
3275       return;
3276     }
3277 
3278     // If the type wasn't dependent on fission addresses, finish adding the type
3279     // and all its dependent types.
3280     for (auto &TU : TypeUnitsToAdd) {
3281       InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get());
3282       InfoHolder.emitUnit(TU.first.get(), useSplitDwarf());
3283     }
3284   }
3285   CU.addDIETypeSignature(RefDie, Signature);
3286 }
3287 
3288 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD)
3289     : DD(DD),
3290       TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)), AddrPoolUsed(DD->AddrPool.hasBeenUsed()) {
3291   DD->TypeUnitsUnderConstruction.clear();
3292   DD->AddrPool.resetUsedFlag();
3293 }
3294 
3295 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() {
3296   DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction);
3297   DD->AddrPool.resetUsedFlag(AddrPoolUsed);
3298 }
3299 
3300 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() {
3301   return NonTypeUnitContext(this);
3302 }
3303 
3304 // Add the Name along with its companion DIE to the appropriate accelerator
3305 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for
3306 // AccelTableKind::Apple, we use the table we got as an argument). If
3307 // accelerator tables are disabled, this function does nothing.
3308 template <typename DataT>
3309 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU,
3310                                   AccelTable<DataT> &AppleAccel, StringRef Name,
3311                                   const DIE &Die) {
3312   if (getAccelTableKind() == AccelTableKind::None)
3313     return;
3314 
3315   if (getAccelTableKind() != AccelTableKind::Apple &&
3316       CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default)
3317     return;
3318 
3319   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
3320   DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name);
3321 
3322   switch (getAccelTableKind()) {
3323   case AccelTableKind::Apple:
3324     AppleAccel.addName(Ref, Die);
3325     break;
3326   case AccelTableKind::Dwarf:
3327     AccelDebugNames.addName(Ref, Die);
3328     break;
3329   case AccelTableKind::Default:
3330     llvm_unreachable("Default should have already been resolved.");
3331   case AccelTableKind::None:
3332     llvm_unreachable("None handled above");
3333   }
3334 }
3335 
3336 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name,
3337                               const DIE &Die) {
3338   addAccelNameImpl(CU, AccelNames, Name, Die);
3339 }
3340 
3341 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name,
3342                               const DIE &Die) {
3343   // ObjC names go only into the Apple accelerator tables.
3344   if (getAccelTableKind() == AccelTableKind::Apple)
3345     addAccelNameImpl(CU, AccelObjC, Name, Die);
3346 }
3347 
3348 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name,
3349                                    const DIE &Die) {
3350   addAccelNameImpl(CU, AccelNamespace, Name, Die);
3351 }
3352 
3353 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name,
3354                               const DIE &Die, char Flags) {
3355   addAccelNameImpl(CU, AccelTypes, Name, Die);
3356 }
3357 
3358 uint16_t DwarfDebug::getDwarfVersion() const {
3359   return Asm->OutStreamer->getContext().getDwarfVersion();
3360 }
3361 
3362 dwarf::Form DwarfDebug::getDwarfSectionOffsetForm() const {
3363   if (Asm->getDwarfVersion() >= 4)
3364     return dwarf::Form::DW_FORM_sec_offset;
3365   assert((!Asm->isDwarf64() || (Asm->getDwarfVersion() == 3)) &&
3366          "DWARF64 is not defined prior DWARFv3");
3367   return Asm->isDwarf64() ? dwarf::Form::DW_FORM_data8
3368                           : dwarf::Form::DW_FORM_data4;
3369 }
3370 
3371 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) {
3372   return SectionLabels.find(S)->second;
3373 }
3374 void DwarfDebug::insertSectionLabel(const MCSymbol *S) {
3375   if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second)
3376     if (useSplitDwarf() || getDwarfVersion() >= 5)
3377       AddrPool.getIndex(S);
3378 }
3379 
3380 Optional<MD5::MD5Result> DwarfDebug::getMD5AsBytes(const DIFile *File) const {
3381   assert(File);
3382   if (getDwarfVersion() < 5)
3383     return None;
3384   Optional<DIFile::ChecksumInfo<StringRef>> Checksum = File->getChecksum();
3385   if (!Checksum || Checksum->Kind != DIFile::CSK_MD5)
3386     return None;
3387 
3388   // Convert the string checksum to an MD5Result for the streamer.
3389   // The verifier validates the checksum so we assume it's okay.
3390   // An MD5 checksum is 16 bytes.
3391   std::string ChecksumString = fromHex(Checksum->Value);
3392   MD5::MD5Result CKMem;
3393   std::copy(ChecksumString.begin(), ChecksumString.end(), CKMem.Bytes.data());
3394   return CKMem;
3395 }
3396