1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing dwarf debug info into asm files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DwarfDebug.h" 14 #include "ByteStreamer.h" 15 #include "DIEHash.h" 16 #include "DwarfCompileUnit.h" 17 #include "DwarfExpression.h" 18 #include "DwarfUnit.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/CodeGen/AsmPrinter.h" 24 #include "llvm/CodeGen/DIE.h" 25 #include "llvm/CodeGen/LexicalScopes.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineModuleInfo.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/TargetInstrInfo.h" 31 #include "llvm/CodeGen/TargetLowering.h" 32 #include "llvm/CodeGen/TargetRegisterInfo.h" 33 #include "llvm/CodeGen/TargetSubtargetInfo.h" 34 #include "llvm/DebugInfo/DWARF/DWARFExpression.h" 35 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/MC/MCAsmInfo.h" 41 #include "llvm/MC/MCContext.h" 42 #include "llvm/MC/MCSection.h" 43 #include "llvm/MC/MCStreamer.h" 44 #include "llvm/MC/MCSymbol.h" 45 #include "llvm/MC/MCTargetOptions.h" 46 #include "llvm/MC/MachineLocation.h" 47 #include "llvm/MC/SectionKind.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MD5.h" 54 #include "llvm/Support/MathExtras.h" 55 #include "llvm/Support/Timer.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include "llvm/Target/TargetLoweringObjectFile.h" 58 #include "llvm/Target/TargetMachine.h" 59 #include <algorithm> 60 #include <cstddef> 61 #include <iterator> 62 #include <string> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "dwarfdebug" 67 68 STATISTIC(NumCSParams, "Number of dbg call site params created"); 69 70 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier( 71 "use-dwarf-ranges-base-address-specifier", cl::Hidden, 72 cl::desc("Use base address specifiers in debug_ranges"), cl::init(false)); 73 74 static cl::opt<bool> GenerateARangeSection("generate-arange-section", 75 cl::Hidden, 76 cl::desc("Generate dwarf aranges"), 77 cl::init(false)); 78 79 static cl::opt<bool> 80 GenerateDwarfTypeUnits("generate-type-units", cl::Hidden, 81 cl::desc("Generate DWARF4 type units."), 82 cl::init(false)); 83 84 static cl::opt<bool> SplitDwarfCrossCuReferences( 85 "split-dwarf-cross-cu-references", cl::Hidden, 86 cl::desc("Enable cross-cu references in DWO files"), cl::init(false)); 87 88 enum DefaultOnOff { Default, Enable, Disable }; 89 90 static cl::opt<DefaultOnOff> UnknownLocations( 91 "use-unknown-locations", cl::Hidden, 92 cl::desc("Make an absence of debug location information explicit."), 93 cl::values(clEnumVal(Default, "At top of block or after label"), 94 clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")), 95 cl::init(Default)); 96 97 static cl::opt<AccelTableKind> AccelTables( 98 "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."), 99 cl::values(clEnumValN(AccelTableKind::Default, "Default", 100 "Default for platform"), 101 clEnumValN(AccelTableKind::None, "Disable", "Disabled."), 102 clEnumValN(AccelTableKind::Apple, "Apple", "Apple"), 103 clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")), 104 cl::init(AccelTableKind::Default)); 105 106 static cl::opt<DefaultOnOff> 107 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden, 108 cl::desc("Use inlined strings rather than string section."), 109 cl::values(clEnumVal(Default, "Default for platform"), 110 clEnumVal(Enable, "Enabled"), 111 clEnumVal(Disable, "Disabled")), 112 cl::init(Default)); 113 114 static cl::opt<bool> 115 NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden, 116 cl::desc("Disable emission .debug_ranges section."), 117 cl::init(false)); 118 119 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences( 120 "dwarf-sections-as-references", cl::Hidden, 121 cl::desc("Use sections+offset as references rather than labels."), 122 cl::values(clEnumVal(Default, "Default for platform"), 123 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 124 cl::init(Default)); 125 126 static cl::opt<bool> 127 UseGNUDebugMacro("use-gnu-debug-macro", cl::Hidden, 128 cl::desc("Emit the GNU .debug_macro format with DWARF <5"), 129 cl::init(false)); 130 131 static cl::opt<DefaultOnOff> DwarfOpConvert( 132 "dwarf-op-convert", cl::Hidden, 133 cl::desc("Enable use of the DWARFv5 DW_OP_convert operator"), 134 cl::values(clEnumVal(Default, "Default for platform"), 135 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 136 cl::init(Default)); 137 138 enum LinkageNameOption { 139 DefaultLinkageNames, 140 AllLinkageNames, 141 AbstractLinkageNames 142 }; 143 144 static cl::opt<LinkageNameOption> 145 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden, 146 cl::desc("Which DWARF linkage-name attributes to emit."), 147 cl::values(clEnumValN(DefaultLinkageNames, "Default", 148 "Default for platform"), 149 clEnumValN(AllLinkageNames, "All", "All"), 150 clEnumValN(AbstractLinkageNames, "Abstract", 151 "Abstract subprograms")), 152 cl::init(DefaultLinkageNames)); 153 154 static cl::opt<DwarfDebug::MinimizeAddrInV5> MinimizeAddrInV5Option( 155 "minimize-addr-in-v5", cl::Hidden, 156 cl::desc("Always use DW_AT_ranges in DWARFv5 whenever it could allow more " 157 "address pool entry sharing to reduce relocations/object size"), 158 cl::values(clEnumValN(DwarfDebug::MinimizeAddrInV5::Default, "Default", 159 "Default address minimization strategy"), 160 clEnumValN(DwarfDebug::MinimizeAddrInV5::Ranges, "Ranges", 161 "Use rnglists for contiguous ranges if that allows " 162 "using a pre-existing base address"), 163 clEnumValN(DwarfDebug::MinimizeAddrInV5::Expressions, 164 "Expressions", 165 "Use exprloc addrx+offset expressions for any " 166 "address with a prior base address"), 167 clEnumValN(DwarfDebug::MinimizeAddrInV5::Form, "Form", 168 "Use addrx+offset extension form for any address " 169 "with a prior base address"), 170 clEnumValN(DwarfDebug::MinimizeAddrInV5::Disabled, "Disabled", 171 "Stuff")), 172 cl::init(DwarfDebug::MinimizeAddrInV5::Default)); 173 174 static constexpr unsigned ULEB128PadSize = 4; 175 176 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) { 177 getActiveStreamer().emitInt8( 178 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op) 179 : dwarf::OperationEncodingString(Op)); 180 } 181 182 void DebugLocDwarfExpression::emitSigned(int64_t Value) { 183 getActiveStreamer().emitSLEB128(Value, Twine(Value)); 184 } 185 186 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) { 187 getActiveStreamer().emitULEB128(Value, Twine(Value)); 188 } 189 190 void DebugLocDwarfExpression::emitData1(uint8_t Value) { 191 getActiveStreamer().emitInt8(Value, Twine(Value)); 192 } 193 194 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) { 195 assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit"); 196 getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize); 197 } 198 199 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI, 200 llvm::Register MachineReg) { 201 // This information is not available while emitting .debug_loc entries. 202 return false; 203 } 204 205 void DebugLocDwarfExpression::enableTemporaryBuffer() { 206 assert(!IsBuffering && "Already buffering?"); 207 if (!TmpBuf) 208 TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments); 209 IsBuffering = true; 210 } 211 212 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; } 213 214 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() { 215 return TmpBuf ? TmpBuf->Bytes.size() : 0; 216 } 217 218 void DebugLocDwarfExpression::commitTemporaryBuffer() { 219 if (!TmpBuf) 220 return; 221 for (auto Byte : enumerate(TmpBuf->Bytes)) { 222 const char *Comment = (Byte.index() < TmpBuf->Comments.size()) 223 ? TmpBuf->Comments[Byte.index()].c_str() 224 : ""; 225 OutBS.emitInt8(Byte.value(), Comment); 226 } 227 TmpBuf->Bytes.clear(); 228 TmpBuf->Comments.clear(); 229 } 230 231 const DIType *DbgVariable::getType() const { 232 return getVariable()->getType(); 233 } 234 235 /// Get .debug_loc entry for the instruction range starting at MI. 236 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) { 237 const DIExpression *Expr = MI->getDebugExpression(); 238 const bool IsVariadic = MI->isDebugValueList(); 239 assert(MI->getNumOperands() >= 3); 240 SmallVector<DbgValueLocEntry, 4> DbgValueLocEntries; 241 for (const MachineOperand &Op : MI->debug_operands()) { 242 if (Op.isReg()) { 243 MachineLocation MLoc(Op.getReg(), 244 MI->isNonListDebugValue() && MI->isDebugOffsetImm()); 245 DbgValueLocEntries.push_back(DbgValueLocEntry(MLoc)); 246 } else if (Op.isTargetIndex()) { 247 DbgValueLocEntries.push_back( 248 DbgValueLocEntry(TargetIndexLocation(Op.getIndex(), Op.getOffset()))); 249 } else if (Op.isImm()) 250 DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getImm())); 251 else if (Op.isFPImm()) 252 DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getFPImm())); 253 else if (Op.isCImm()) 254 DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getCImm())); 255 else 256 llvm_unreachable("Unexpected debug operand in DBG_VALUE* instruction!"); 257 } 258 return DbgValueLoc(Expr, DbgValueLocEntries, IsVariadic); 259 } 260 261 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) { 262 assert(FrameIndexExprs.empty() && "Already initialized?"); 263 assert(!ValueLoc.get() && "Already initialized?"); 264 265 assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable"); 266 assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() && 267 "Wrong inlined-at"); 268 269 ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue)); 270 if (auto *E = DbgValue->getDebugExpression()) 271 if (E->getNumElements()) 272 FrameIndexExprs.push_back({0, E}); 273 } 274 275 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const { 276 if (FrameIndexExprs.size() == 1) 277 return FrameIndexExprs; 278 279 assert(llvm::all_of(FrameIndexExprs, 280 [](const FrameIndexExpr &A) { 281 return A.Expr->isFragment(); 282 }) && 283 "multiple FI expressions without DW_OP_LLVM_fragment"); 284 llvm::sort(FrameIndexExprs, 285 [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool { 286 return A.Expr->getFragmentInfo()->OffsetInBits < 287 B.Expr->getFragmentInfo()->OffsetInBits; 288 }); 289 290 return FrameIndexExprs; 291 } 292 293 void DbgVariable::addMMIEntry(const DbgVariable &V) { 294 assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry"); 295 assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry"); 296 assert(V.getVariable() == getVariable() && "conflicting variable"); 297 assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location"); 298 299 assert(!FrameIndexExprs.empty() && "Expected an MMI entry"); 300 assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry"); 301 302 // FIXME: This logic should not be necessary anymore, as we now have proper 303 // deduplication. However, without it, we currently run into the assertion 304 // below, which means that we are likely dealing with broken input, i.e. two 305 // non-fragment entries for the same variable at different frame indices. 306 if (FrameIndexExprs.size()) { 307 auto *Expr = FrameIndexExprs.back().Expr; 308 if (!Expr || !Expr->isFragment()) 309 return; 310 } 311 312 for (const auto &FIE : V.FrameIndexExprs) 313 // Ignore duplicate entries. 314 if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) { 315 return FIE.FI == Other.FI && FIE.Expr == Other.Expr; 316 })) 317 FrameIndexExprs.push_back(FIE); 318 319 assert((FrameIndexExprs.size() == 1 || 320 llvm::all_of(FrameIndexExprs, 321 [](FrameIndexExpr &FIE) { 322 return FIE.Expr && FIE.Expr->isFragment(); 323 })) && 324 "conflicting locations for variable"); 325 } 326 327 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion, 328 bool GenerateTypeUnits, 329 DebuggerKind Tuning, 330 const Triple &TT) { 331 // Honor an explicit request. 332 if (AccelTables != AccelTableKind::Default) 333 return AccelTables; 334 335 // Accelerator tables with type units are currently not supported. 336 if (GenerateTypeUnits) 337 return AccelTableKind::None; 338 339 // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5 340 // always implies debug_names. For lower standard versions we use apple 341 // accelerator tables on apple platforms and debug_names elsewhere. 342 if (DwarfVersion >= 5) 343 return AccelTableKind::Dwarf; 344 if (Tuning == DebuggerKind::LLDB) 345 return TT.isOSBinFormatMachO() ? AccelTableKind::Apple 346 : AccelTableKind::Dwarf; 347 return AccelTableKind::None; 348 } 349 350 DwarfDebug::DwarfDebug(AsmPrinter *A) 351 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()), 352 InfoHolder(A, "info_string", DIEValueAllocator), 353 SkeletonHolder(A, "skel_string", DIEValueAllocator), 354 IsDarwin(A->TM.getTargetTriple().isOSDarwin()) { 355 const Triple &TT = Asm->TM.getTargetTriple(); 356 357 // Make sure we know our "debugger tuning". The target option takes 358 // precedence; fall back to triple-based defaults. 359 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default) 360 DebuggerTuning = Asm->TM.Options.DebuggerTuning; 361 else if (IsDarwin) 362 DebuggerTuning = DebuggerKind::LLDB; 363 else if (TT.isPS4CPU()) 364 DebuggerTuning = DebuggerKind::SCE; 365 else 366 DebuggerTuning = DebuggerKind::GDB; 367 368 if (DwarfInlinedStrings == Default) 369 UseInlineStrings = TT.isNVPTX() || tuneForDBX(); 370 else 371 UseInlineStrings = DwarfInlinedStrings == Enable; 372 373 UseLocSection = !TT.isNVPTX(); 374 375 HasAppleExtensionAttributes = tuneForLLDB(); 376 377 // Handle split DWARF. 378 HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty(); 379 380 // SCE defaults to linkage names only for abstract subprograms. 381 if (DwarfLinkageNames == DefaultLinkageNames) 382 UseAllLinkageNames = !tuneForSCE(); 383 else 384 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames; 385 386 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; 387 unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber 388 : MMI->getModule()->getDwarfVersion(); 389 // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2. 390 DwarfVersion = 391 TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION); 392 393 bool Dwarf64 = DwarfVersion >= 3 && // DWARF64 was introduced in DWARFv3. 394 TT.isArch64Bit(); // DWARF64 requires 64-bit relocations. 395 396 // Support DWARF64 397 // 1: For ELF when requested. 398 // 2: For XCOFF64: the AIX assembler will fill in debug section lengths 399 // according to the DWARF64 format for 64-bit assembly, so we must use 400 // DWARF64 in the compiler too for 64-bit mode. 401 Dwarf64 &= 402 ((Asm->TM.Options.MCOptions.Dwarf64 || MMI->getModule()->isDwarf64()) && 403 TT.isOSBinFormatELF()) || 404 TT.isOSBinFormatXCOFF(); 405 406 if (!Dwarf64 && TT.isArch64Bit() && TT.isOSBinFormatXCOFF()) 407 report_fatal_error("XCOFF requires DWARF64 for 64-bit mode!"); 408 409 UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX(); 410 411 // Use sections as references. Force for NVPTX. 412 if (DwarfSectionsAsReferences == Default) 413 UseSectionsAsReferences = TT.isNVPTX(); 414 else 415 UseSectionsAsReferences = DwarfSectionsAsReferences == Enable; 416 417 // Don't generate type units for unsupported object file formats. 418 GenerateTypeUnits = (A->TM.getTargetTriple().isOSBinFormatELF() || 419 A->TM.getTargetTriple().isOSBinFormatWasm()) && 420 GenerateDwarfTypeUnits; 421 422 TheAccelTableKind = computeAccelTableKind( 423 DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple()); 424 425 // Work around a GDB bug. GDB doesn't support the standard opcode; 426 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which 427 // is defined as of DWARF 3. 428 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented 429 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616 430 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3; 431 432 // GDB does not fully support the DWARF 4 representation for bitfields. 433 UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB(); 434 435 // The DWARF v5 string offsets table has - possibly shared - contributions 436 // from each compile and type unit each preceded by a header. The string 437 // offsets table used by the pre-DWARF v5 split-DWARF implementation uses 438 // a monolithic string offsets table without any header. 439 UseSegmentedStringOffsetsTable = DwarfVersion >= 5; 440 441 // Emit call-site-param debug info for GDB and LLDB, if the target supports 442 // the debug entry values feature. It can also be enabled explicitly. 443 EmitDebugEntryValues = Asm->TM.Options.ShouldEmitDebugEntryValues(); 444 445 // It is unclear if the GCC .debug_macro extension is well-specified 446 // for split DWARF. For now, do not allow LLVM to emit it. 447 UseDebugMacroSection = 448 DwarfVersion >= 5 || (UseGNUDebugMacro && !useSplitDwarf()); 449 if (DwarfOpConvert == Default) 450 EnableOpConvert = !((tuneForGDB() && useSplitDwarf()) || (tuneForLLDB() && !TT.isOSBinFormatMachO())); 451 else 452 EnableOpConvert = (DwarfOpConvert == Enable); 453 454 // Split DWARF would benefit object size significantly by trading reductions 455 // in address pool usage for slightly increased range list encodings. 456 if (DwarfVersion >= 5) { 457 MinimizeAddr = MinimizeAddrInV5Option; 458 // FIXME: In the future, enable this by default for Split DWARF where the 459 // tradeoff is more pronounced due to being able to offload the range 460 // lists to the dwo file and shrink object files/reduce relocations there. 461 if (MinimizeAddr == MinimizeAddrInV5::Default) 462 MinimizeAddr = MinimizeAddrInV5::Disabled; 463 } 464 465 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion); 466 Asm->OutStreamer->getContext().setDwarfFormat(Dwarf64 ? dwarf::DWARF64 467 : dwarf::DWARF32); 468 } 469 470 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. 471 DwarfDebug::~DwarfDebug() = default; 472 473 static bool isObjCClass(StringRef Name) { 474 return Name.startswith("+") || Name.startswith("-"); 475 } 476 477 static bool hasObjCCategory(StringRef Name) { 478 if (!isObjCClass(Name)) 479 return false; 480 481 return Name.find(") ") != StringRef::npos; 482 } 483 484 static void getObjCClassCategory(StringRef In, StringRef &Class, 485 StringRef &Category) { 486 if (!hasObjCCategory(In)) { 487 Class = In.slice(In.find('[') + 1, In.find(' ')); 488 Category = ""; 489 return; 490 } 491 492 Class = In.slice(In.find('[') + 1, In.find('(')); 493 Category = In.slice(In.find('[') + 1, In.find(' ')); 494 } 495 496 static StringRef getObjCMethodName(StringRef In) { 497 return In.slice(In.find(' ') + 1, In.find(']')); 498 } 499 500 // Add the various names to the Dwarf accelerator table names. 501 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU, 502 const DISubprogram *SP, DIE &Die) { 503 if (getAccelTableKind() != AccelTableKind::Apple && 504 CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None) 505 return; 506 507 if (!SP->isDefinition()) 508 return; 509 510 if (SP->getName() != "") 511 addAccelName(CU, SP->getName(), Die); 512 513 // If the linkage name is different than the name, go ahead and output that as 514 // well into the name table. Only do that if we are going to actually emit 515 // that name. 516 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() && 517 (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP))) 518 addAccelName(CU, SP->getLinkageName(), Die); 519 520 // If this is an Objective-C selector name add it to the ObjC accelerator 521 // too. 522 if (isObjCClass(SP->getName())) { 523 StringRef Class, Category; 524 getObjCClassCategory(SP->getName(), Class, Category); 525 addAccelObjC(CU, Class, Die); 526 if (Category != "") 527 addAccelObjC(CU, Category, Die); 528 // Also add the base method name to the name table. 529 addAccelName(CU, getObjCMethodName(SP->getName()), Die); 530 } 531 } 532 533 /// Check whether we should create a DIE for the given Scope, return true 534 /// if we don't create a DIE (the corresponding DIE is null). 535 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { 536 if (Scope->isAbstractScope()) 537 return false; 538 539 // We don't create a DIE if there is no Range. 540 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); 541 if (Ranges.empty()) 542 return true; 543 544 if (Ranges.size() > 1) 545 return false; 546 547 // We don't create a DIE if we have a single Range and the end label 548 // is null. 549 return !getLabelAfterInsn(Ranges.front().second); 550 } 551 552 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) { 553 F(CU); 554 if (auto *SkelCU = CU.getSkeleton()) 555 if (CU.getCUNode()->getSplitDebugInlining()) 556 F(*SkelCU); 557 } 558 559 bool DwarfDebug::shareAcrossDWOCUs() const { 560 return SplitDwarfCrossCuReferences; 561 } 562 563 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU, 564 LexicalScope *Scope) { 565 assert(Scope && Scope->getScopeNode()); 566 assert(Scope->isAbstractScope()); 567 assert(!Scope->getInlinedAt()); 568 569 auto *SP = cast<DISubprogram>(Scope->getScopeNode()); 570 571 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram 572 // was inlined from another compile unit. 573 if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining()) 574 // Avoid building the original CU if it won't be used 575 SrcCU.constructAbstractSubprogramScopeDIE(Scope); 576 else { 577 auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 578 if (auto *SkelCU = CU.getSkeleton()) { 579 (shareAcrossDWOCUs() ? CU : SrcCU) 580 .constructAbstractSubprogramScopeDIE(Scope); 581 if (CU.getCUNode()->getSplitDebugInlining()) 582 SkelCU->constructAbstractSubprogramScopeDIE(Scope); 583 } else 584 CU.constructAbstractSubprogramScopeDIE(Scope); 585 } 586 } 587 588 DIE &DwarfDebug::constructSubprogramDefinitionDIE(const DISubprogram *SP) { 589 DICompileUnit *Unit = SP->getUnit(); 590 assert(SP->isDefinition() && "Subprogram not a definition"); 591 assert(Unit && "Subprogram definition without parent unit"); 592 auto &CU = getOrCreateDwarfCompileUnit(Unit); 593 return *CU.getOrCreateSubprogramDIE(SP); 594 } 595 596 /// Represents a parameter whose call site value can be described by applying a 597 /// debug expression to a register in the forwarded register worklist. 598 struct FwdRegParamInfo { 599 /// The described parameter register. 600 unsigned ParamReg; 601 602 /// Debug expression that has been built up when walking through the 603 /// instruction chain that produces the parameter's value. 604 const DIExpression *Expr; 605 }; 606 607 /// Register worklist for finding call site values. 608 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>; 609 610 /// Append the expression \p Addition to \p Original and return the result. 611 static const DIExpression *combineDIExpressions(const DIExpression *Original, 612 const DIExpression *Addition) { 613 std::vector<uint64_t> Elts = Addition->getElements().vec(); 614 // Avoid multiple DW_OP_stack_values. 615 if (Original->isImplicit() && Addition->isImplicit()) 616 erase_value(Elts, dwarf::DW_OP_stack_value); 617 const DIExpression *CombinedExpr = 618 (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original; 619 return CombinedExpr; 620 } 621 622 /// Emit call site parameter entries that are described by the given value and 623 /// debug expression. 624 template <typename ValT> 625 static void finishCallSiteParams(ValT Val, const DIExpression *Expr, 626 ArrayRef<FwdRegParamInfo> DescribedParams, 627 ParamSet &Params) { 628 for (auto Param : DescribedParams) { 629 bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0; 630 631 // TODO: Entry value operations can currently not be combined with any 632 // other expressions, so we can't emit call site entries in those cases. 633 if (ShouldCombineExpressions && Expr->isEntryValue()) 634 continue; 635 636 // If a parameter's call site value is produced by a chain of 637 // instructions we may have already created an expression for the 638 // parameter when walking through the instructions. Append that to the 639 // base expression. 640 const DIExpression *CombinedExpr = 641 ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr) 642 : Expr; 643 assert((!CombinedExpr || CombinedExpr->isValid()) && 644 "Combined debug expression is invalid"); 645 646 DbgValueLoc DbgLocVal(CombinedExpr, DbgValueLocEntry(Val)); 647 DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal); 648 Params.push_back(CSParm); 649 ++NumCSParams; 650 } 651 } 652 653 /// Add \p Reg to the worklist, if it's not already present, and mark that the 654 /// given parameter registers' values can (potentially) be described using 655 /// that register and an debug expression. 656 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg, 657 const DIExpression *Expr, 658 ArrayRef<FwdRegParamInfo> ParamsToAdd) { 659 auto I = Worklist.insert({Reg, {}}); 660 auto &ParamsForFwdReg = I.first->second; 661 for (auto Param : ParamsToAdd) { 662 assert(none_of(ParamsForFwdReg, 663 [Param](const FwdRegParamInfo &D) { 664 return D.ParamReg == Param.ParamReg; 665 }) && 666 "Same parameter described twice by forwarding reg"); 667 668 // If a parameter's call site value is produced by a chain of 669 // instructions we may have already created an expression for the 670 // parameter when walking through the instructions. Append that to the 671 // new expression. 672 const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr); 673 ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr}); 674 } 675 } 676 677 /// Interpret values loaded into registers by \p CurMI. 678 static void interpretValues(const MachineInstr *CurMI, 679 FwdRegWorklist &ForwardedRegWorklist, 680 ParamSet &Params) { 681 682 const MachineFunction *MF = CurMI->getMF(); 683 const DIExpression *EmptyExpr = 684 DIExpression::get(MF->getFunction().getContext(), {}); 685 const auto &TRI = *MF->getSubtarget().getRegisterInfo(); 686 const auto &TII = *MF->getSubtarget().getInstrInfo(); 687 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 688 689 // If an instruction defines more than one item in the worklist, we may run 690 // into situations where a worklist register's value is (potentially) 691 // described by the previous value of another register that is also defined 692 // by that instruction. 693 // 694 // This can for example occur in cases like this: 695 // 696 // $r1 = mov 123 697 // $r0, $r1 = mvrr $r1, 456 698 // call @foo, $r0, $r1 699 // 700 // When describing $r1's value for the mvrr instruction, we need to make sure 701 // that we don't finalize an entry value for $r0, as that is dependent on the 702 // previous value of $r1 (123 rather than 456). 703 // 704 // In order to not have to distinguish between those cases when finalizing 705 // entry values, we simply postpone adding new parameter registers to the 706 // worklist, by first keeping them in this temporary container until the 707 // instruction has been handled. 708 FwdRegWorklist TmpWorklistItems; 709 710 // If the MI is an instruction defining one or more parameters' forwarding 711 // registers, add those defines. 712 auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI, 713 SmallSetVector<unsigned, 4> &Defs) { 714 if (MI.isDebugInstr()) 715 return; 716 717 for (const MachineOperand &MO : MI.operands()) { 718 if (MO.isReg() && MO.isDef() && 719 Register::isPhysicalRegister(MO.getReg())) { 720 for (auto &FwdReg : ForwardedRegWorklist) 721 if (TRI.regsOverlap(FwdReg.first, MO.getReg())) 722 Defs.insert(FwdReg.first); 723 } 724 } 725 }; 726 727 // Set of worklist registers that are defined by this instruction. 728 SmallSetVector<unsigned, 4> FwdRegDefs; 729 730 getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs); 731 if (FwdRegDefs.empty()) 732 return; 733 734 for (auto ParamFwdReg : FwdRegDefs) { 735 if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) { 736 if (ParamValue->first.isImm()) { 737 int64_t Val = ParamValue->first.getImm(); 738 finishCallSiteParams(Val, ParamValue->second, 739 ForwardedRegWorklist[ParamFwdReg], Params); 740 } else if (ParamValue->first.isReg()) { 741 Register RegLoc = ParamValue->first.getReg(); 742 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 743 Register FP = TRI.getFrameRegister(*MF); 744 bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP); 745 if (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) { 746 MachineLocation MLoc(RegLoc, /*Indirect=*/IsSPorFP); 747 finishCallSiteParams(MLoc, ParamValue->second, 748 ForwardedRegWorklist[ParamFwdReg], Params); 749 } else { 750 // ParamFwdReg was described by the non-callee saved register 751 // RegLoc. Mark that the call site values for the parameters are 752 // dependent on that register instead of ParamFwdReg. Since RegLoc 753 // may be a register that will be handled in this iteration, we 754 // postpone adding the items to the worklist, and instead keep them 755 // in a temporary container. 756 addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second, 757 ForwardedRegWorklist[ParamFwdReg]); 758 } 759 } 760 } 761 } 762 763 // Remove all registers that this instruction defines from the worklist. 764 for (auto ParamFwdReg : FwdRegDefs) 765 ForwardedRegWorklist.erase(ParamFwdReg); 766 767 // Now that we are done handling this instruction, add items from the 768 // temporary worklist to the real one. 769 for (auto &New : TmpWorklistItems) 770 addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second); 771 TmpWorklistItems.clear(); 772 } 773 774 static bool interpretNextInstr(const MachineInstr *CurMI, 775 FwdRegWorklist &ForwardedRegWorklist, 776 ParamSet &Params) { 777 // Skip bundle headers. 778 if (CurMI->isBundle()) 779 return true; 780 781 // If the next instruction is a call we can not interpret parameter's 782 // forwarding registers or we finished the interpretation of all 783 // parameters. 784 if (CurMI->isCall()) 785 return false; 786 787 if (ForwardedRegWorklist.empty()) 788 return false; 789 790 // Avoid NOP description. 791 if (CurMI->getNumOperands() == 0) 792 return true; 793 794 interpretValues(CurMI, ForwardedRegWorklist, Params); 795 796 return true; 797 } 798 799 /// Try to interpret values loaded into registers that forward parameters 800 /// for \p CallMI. Store parameters with interpreted value into \p Params. 801 static void collectCallSiteParameters(const MachineInstr *CallMI, 802 ParamSet &Params) { 803 const MachineFunction *MF = CallMI->getMF(); 804 const auto &CalleesMap = MF->getCallSitesInfo(); 805 auto CallFwdRegsInfo = CalleesMap.find(CallMI); 806 807 // There is no information for the call instruction. 808 if (CallFwdRegsInfo == CalleesMap.end()) 809 return; 810 811 const MachineBasicBlock *MBB = CallMI->getParent(); 812 813 // Skip the call instruction. 814 auto I = std::next(CallMI->getReverseIterator()); 815 816 FwdRegWorklist ForwardedRegWorklist; 817 818 const DIExpression *EmptyExpr = 819 DIExpression::get(MF->getFunction().getContext(), {}); 820 821 // Add all the forwarding registers into the ForwardedRegWorklist. 822 for (const auto &ArgReg : CallFwdRegsInfo->second) { 823 bool InsertedReg = 824 ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}}) 825 .second; 826 assert(InsertedReg && "Single register used to forward two arguments?"); 827 (void)InsertedReg; 828 } 829 830 // Do not emit CSInfo for undef forwarding registers. 831 for (auto &MO : CallMI->uses()) 832 if (MO.isReg() && MO.isUndef()) 833 ForwardedRegWorklist.erase(MO.getReg()); 834 835 // We erase, from the ForwardedRegWorklist, those forwarding registers for 836 // which we successfully describe a loaded value (by using 837 // the describeLoadedValue()). For those remaining arguments in the working 838 // list, for which we do not describe a loaded value by 839 // the describeLoadedValue(), we try to generate an entry value expression 840 // for their call site value description, if the call is within the entry MBB. 841 // TODO: Handle situations when call site parameter value can be described 842 // as the entry value within basic blocks other than the first one. 843 bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin(); 844 845 // Search for a loading value in forwarding registers inside call delay slot. 846 if (CallMI->hasDelaySlot()) { 847 auto Suc = std::next(CallMI->getIterator()); 848 // Only one-instruction delay slot is supported. 849 auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator()); 850 (void)BundleEnd; 851 assert(std::next(Suc) == BundleEnd && 852 "More than one instruction in call delay slot"); 853 // Try to interpret value loaded by instruction. 854 if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params)) 855 return; 856 } 857 858 // Search for a loading value in forwarding registers. 859 for (; I != MBB->rend(); ++I) { 860 // Try to interpret values loaded by instruction. 861 if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params)) 862 return; 863 } 864 865 // Emit the call site parameter's value as an entry value. 866 if (ShouldTryEmitEntryVals) { 867 // Create an expression where the register's entry value is used. 868 DIExpression *EntryExpr = DIExpression::get( 869 MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1}); 870 for (auto &RegEntry : ForwardedRegWorklist) { 871 MachineLocation MLoc(RegEntry.first); 872 finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params); 873 } 874 } 875 } 876 877 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP, 878 DwarfCompileUnit &CU, DIE &ScopeDIE, 879 const MachineFunction &MF) { 880 // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if 881 // the subprogram is required to have one. 882 if (!SP.areAllCallsDescribed() || !SP.isDefinition()) 883 return; 884 885 // Use DW_AT_call_all_calls to express that call site entries are present 886 // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls 887 // because one of its requirements is not met: call site entries for 888 // optimized-out calls are elided. 889 CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls)); 890 891 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 892 assert(TII && "TargetInstrInfo not found: cannot label tail calls"); 893 894 // Delay slot support check. 895 auto delaySlotSupported = [&](const MachineInstr &MI) { 896 if (!MI.isBundledWithSucc()) 897 return false; 898 auto Suc = std::next(MI.getIterator()); 899 auto CallInstrBundle = getBundleStart(MI.getIterator()); 900 (void)CallInstrBundle; 901 auto DelaySlotBundle = getBundleStart(Suc); 902 (void)DelaySlotBundle; 903 // Ensure that label after call is following delay slot instruction. 904 // Ex. CALL_INSTRUCTION { 905 // DELAY_SLOT_INSTRUCTION } 906 // LABEL_AFTER_CALL 907 assert(getLabelAfterInsn(&*CallInstrBundle) == 908 getLabelAfterInsn(&*DelaySlotBundle) && 909 "Call and its successor instruction don't have same label after."); 910 return true; 911 }; 912 913 // Emit call site entries for each call or tail call in the function. 914 for (const MachineBasicBlock &MBB : MF) { 915 for (const MachineInstr &MI : MBB.instrs()) { 916 // Bundles with call in them will pass the isCall() test below but do not 917 // have callee operand information so skip them here. Iterator will 918 // eventually reach the call MI. 919 if (MI.isBundle()) 920 continue; 921 922 // Skip instructions which aren't calls. Both calls and tail-calling jump 923 // instructions (e.g TAILJMPd64) are classified correctly here. 924 if (!MI.isCandidateForCallSiteEntry()) 925 continue; 926 927 // Skip instructions marked as frame setup, as they are not interesting to 928 // the user. 929 if (MI.getFlag(MachineInstr::FrameSetup)) 930 continue; 931 932 // Check if delay slot support is enabled. 933 if (MI.hasDelaySlot() && !delaySlotSupported(*&MI)) 934 return; 935 936 // If this is a direct call, find the callee's subprogram. 937 // In the case of an indirect call find the register that holds 938 // the callee. 939 const MachineOperand &CalleeOp = MI.getOperand(0); 940 if (!CalleeOp.isGlobal() && !CalleeOp.isReg()) 941 continue; 942 943 unsigned CallReg = 0; 944 DIE *CalleeDIE = nullptr; 945 const Function *CalleeDecl = nullptr; 946 if (CalleeOp.isReg()) { 947 CallReg = CalleeOp.getReg(); 948 if (!CallReg) 949 continue; 950 } else { 951 CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal()); 952 if (!CalleeDecl || !CalleeDecl->getSubprogram()) 953 continue; 954 const DISubprogram *CalleeSP = CalleeDecl->getSubprogram(); 955 956 if (CalleeSP->isDefinition()) { 957 // Ensure that a subprogram DIE for the callee is available in the 958 // appropriate CU. 959 CalleeDIE = &constructSubprogramDefinitionDIE(CalleeSP); 960 } else { 961 // Create the declaration DIE if it is missing. This is required to 962 // support compilation of old bitcode with an incomplete list of 963 // retained metadata. 964 CalleeDIE = CU.getOrCreateSubprogramDIE(CalleeSP); 965 } 966 assert(CalleeDIE && "Must have a DIE for the callee"); 967 } 968 969 // TODO: Omit call site entries for runtime calls (objc_msgSend, etc). 970 971 bool IsTail = TII->isTailCall(MI); 972 973 // If MI is in a bundle, the label was created after the bundle since 974 // EmitFunctionBody iterates over top-level MIs. Get that top-level MI 975 // to search for that label below. 976 const MachineInstr *TopLevelCallMI = 977 MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI; 978 979 // For non-tail calls, the return PC is needed to disambiguate paths in 980 // the call graph which could lead to some target function. For tail 981 // calls, no return PC information is needed, unless tuning for GDB in 982 // DWARF4 mode in which case we fake a return PC for compatibility. 983 const MCSymbol *PCAddr = 984 (!IsTail || CU.useGNUAnalogForDwarf5Feature()) 985 ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI)) 986 : nullptr; 987 988 // For tail calls, it's necessary to record the address of the branch 989 // instruction so that the debugger can show where the tail call occurred. 990 const MCSymbol *CallAddr = 991 IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr; 992 993 assert((IsTail || PCAddr) && "Non-tail call without return PC"); 994 995 LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> " 996 << (CalleeDecl ? CalleeDecl->getName() 997 : StringRef(MF.getSubtarget() 998 .getRegisterInfo() 999 ->getName(CallReg))) 1000 << (IsTail ? " [IsTail]" : "") << "\n"); 1001 1002 DIE &CallSiteDIE = CU.constructCallSiteEntryDIE( 1003 ScopeDIE, CalleeDIE, IsTail, PCAddr, CallAddr, CallReg); 1004 1005 // Optionally emit call-site-param debug info. 1006 if (emitDebugEntryValues()) { 1007 ParamSet Params; 1008 // Try to interpret values of call site parameters. 1009 collectCallSiteParameters(&MI, Params); 1010 CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params); 1011 } 1012 } 1013 } 1014 } 1015 1016 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const { 1017 if (!U.hasDwarfPubSections()) 1018 return; 1019 1020 U.addFlag(D, dwarf::DW_AT_GNU_pubnames); 1021 } 1022 1023 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit, 1024 DwarfCompileUnit &NewCU) { 1025 DIE &Die = NewCU.getUnitDie(); 1026 StringRef FN = DIUnit->getFilename(); 1027 1028 StringRef Producer = DIUnit->getProducer(); 1029 StringRef Flags = DIUnit->getFlags(); 1030 if (!Flags.empty() && !useAppleExtensionAttributes()) { 1031 std::string ProducerWithFlags = Producer.str() + " " + Flags.str(); 1032 NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags); 1033 } else 1034 NewCU.addString(Die, dwarf::DW_AT_producer, Producer); 1035 1036 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 1037 DIUnit->getSourceLanguage()); 1038 NewCU.addString(Die, dwarf::DW_AT_name, FN); 1039 StringRef SysRoot = DIUnit->getSysRoot(); 1040 if (!SysRoot.empty()) 1041 NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot); 1042 StringRef SDK = DIUnit->getSDK(); 1043 if (!SDK.empty()) 1044 NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK); 1045 1046 // Add DW_str_offsets_base to the unit DIE, except for split units. 1047 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 1048 NewCU.addStringOffsetsStart(); 1049 1050 if (!useSplitDwarf()) { 1051 NewCU.initStmtList(); 1052 1053 // If we're using split dwarf the compilation dir is going to be in the 1054 // skeleton CU and so we don't need to duplicate it here. 1055 if (!CompilationDir.empty()) 1056 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 1057 addGnuPubAttributes(NewCU, Die); 1058 } 1059 1060 if (useAppleExtensionAttributes()) { 1061 if (DIUnit->isOptimized()) 1062 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); 1063 1064 StringRef Flags = DIUnit->getFlags(); 1065 if (!Flags.empty()) 1066 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); 1067 1068 if (unsigned RVer = DIUnit->getRuntimeVersion()) 1069 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, 1070 dwarf::DW_FORM_data1, RVer); 1071 } 1072 1073 if (DIUnit->getDWOId()) { 1074 // This CU is either a clang module DWO or a skeleton CU. 1075 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, 1076 DIUnit->getDWOId()); 1077 if (!DIUnit->getSplitDebugFilename().empty()) { 1078 // This is a prefabricated skeleton CU. 1079 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1080 ? dwarf::DW_AT_dwo_name 1081 : dwarf::DW_AT_GNU_dwo_name; 1082 NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename()); 1083 } 1084 } 1085 } 1086 // Create new DwarfCompileUnit for the given metadata node with tag 1087 // DW_TAG_compile_unit. 1088 DwarfCompileUnit & 1089 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) { 1090 if (auto *CU = CUMap.lookup(DIUnit)) 1091 return *CU; 1092 1093 CompilationDir = DIUnit->getDirectory(); 1094 1095 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 1096 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); 1097 DwarfCompileUnit &NewCU = *OwnedUnit; 1098 InfoHolder.addUnit(std::move(OwnedUnit)); 1099 1100 for (auto *IE : DIUnit->getImportedEntities()) 1101 NewCU.addImportedEntity(IE); 1102 1103 // LTO with assembly output shares a single line table amongst multiple CUs. 1104 // To avoid the compilation directory being ambiguous, let the line table 1105 // explicitly describe the directory of all files, never relying on the 1106 // compilation directory. 1107 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU) 1108 Asm->OutStreamer->emitDwarfFile0Directive( 1109 CompilationDir, DIUnit->getFilename(), getMD5AsBytes(DIUnit->getFile()), 1110 DIUnit->getSource(), NewCU.getUniqueID()); 1111 1112 if (useSplitDwarf()) { 1113 NewCU.setSkeleton(constructSkeletonCU(NewCU)); 1114 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection()); 1115 } else { 1116 finishUnitAttributes(DIUnit, NewCU); 1117 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 1118 } 1119 1120 CUMap.insert({DIUnit, &NewCU}); 1121 CUDieMap.insert({&NewCU.getUnitDie(), &NewCU}); 1122 return NewCU; 1123 } 1124 1125 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU, 1126 const DIImportedEntity *N) { 1127 if (isa<DILocalScope>(N->getScope())) 1128 return; 1129 if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope())) 1130 D->addChild(TheCU.constructImportedEntityDIE(N)); 1131 } 1132 1133 /// Sort and unique GVEs by comparing their fragment offset. 1134 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & 1135 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) { 1136 llvm::sort( 1137 GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) { 1138 // Sort order: first null exprs, then exprs without fragment 1139 // info, then sort by fragment offset in bits. 1140 // FIXME: Come up with a more comprehensive comparator so 1141 // the sorting isn't non-deterministic, and so the following 1142 // std::unique call works correctly. 1143 if (!A.Expr || !B.Expr) 1144 return !!B.Expr; 1145 auto FragmentA = A.Expr->getFragmentInfo(); 1146 auto FragmentB = B.Expr->getFragmentInfo(); 1147 if (!FragmentA || !FragmentB) 1148 return !!FragmentB; 1149 return FragmentA->OffsetInBits < FragmentB->OffsetInBits; 1150 }); 1151 GVEs.erase(std::unique(GVEs.begin(), GVEs.end(), 1152 [](DwarfCompileUnit::GlobalExpr A, 1153 DwarfCompileUnit::GlobalExpr B) { 1154 return A.Expr == B.Expr; 1155 }), 1156 GVEs.end()); 1157 return GVEs; 1158 } 1159 1160 // Emit all Dwarf sections that should come prior to the content. Create 1161 // global DIEs and emit initial debug info sections. This is invoked by 1162 // the target AsmPrinter. 1163 void DwarfDebug::beginModule(Module *M) { 1164 DebugHandlerBase::beginModule(M); 1165 1166 if (!Asm || !MMI->hasDebugInfo()) 1167 return; 1168 1169 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(), 1170 M->debug_compile_units_end()); 1171 assert(NumDebugCUs > 0 && "Asm unexpectedly initialized"); 1172 assert(MMI->hasDebugInfo() && 1173 "DebugInfoAvailabilty unexpectedly not initialized"); 1174 SingleCU = NumDebugCUs == 1; 1175 DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>> 1176 GVMap; 1177 for (const GlobalVariable &Global : M->globals()) { 1178 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1179 Global.getDebugInfo(GVs); 1180 for (auto *GVE : GVs) 1181 GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()}); 1182 } 1183 1184 // Create the symbol that designates the start of the unit's contribution 1185 // to the string offsets table. In a split DWARF scenario, only the skeleton 1186 // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol). 1187 if (useSegmentedStringOffsetsTable()) 1188 (useSplitDwarf() ? SkeletonHolder : InfoHolder) 1189 .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base")); 1190 1191 1192 // Create the symbols that designates the start of the DWARF v5 range list 1193 // and locations list tables. They are located past the table headers. 1194 if (getDwarfVersion() >= 5) { 1195 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1196 Holder.setRnglistsTableBaseSym( 1197 Asm->createTempSymbol("rnglists_table_base")); 1198 1199 if (useSplitDwarf()) 1200 InfoHolder.setRnglistsTableBaseSym( 1201 Asm->createTempSymbol("rnglists_dwo_table_base")); 1202 } 1203 1204 // Create the symbol that points to the first entry following the debug 1205 // address table (.debug_addr) header. 1206 AddrPool.setLabel(Asm->createTempSymbol("addr_table_base")); 1207 DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base")); 1208 1209 for (DICompileUnit *CUNode : M->debug_compile_units()) { 1210 // FIXME: Move local imported entities into a list attached to the 1211 // subprogram, then this search won't be needed and a 1212 // getImportedEntities().empty() test should go below with the rest. 1213 bool HasNonLocalImportedEntities = llvm::any_of( 1214 CUNode->getImportedEntities(), [](const DIImportedEntity *IE) { 1215 return !isa<DILocalScope>(IE->getScope()); 1216 }); 1217 1218 if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() && 1219 CUNode->getRetainedTypes().empty() && 1220 CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty()) 1221 continue; 1222 1223 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode); 1224 1225 // Global Variables. 1226 for (auto *GVE : CUNode->getGlobalVariables()) { 1227 // Don't bother adding DIGlobalVariableExpressions listed in the CU if we 1228 // already know about the variable and it isn't adding a constant 1229 // expression. 1230 auto &GVMapEntry = GVMap[GVE->getVariable()]; 1231 auto *Expr = GVE->getExpression(); 1232 if (!GVMapEntry.size() || (Expr && Expr->isConstant())) 1233 GVMapEntry.push_back({nullptr, Expr}); 1234 } 1235 DenseSet<DIGlobalVariable *> Processed; 1236 for (auto *GVE : CUNode->getGlobalVariables()) { 1237 DIGlobalVariable *GV = GVE->getVariable(); 1238 if (Processed.insert(GV).second) 1239 CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV])); 1240 } 1241 1242 for (auto *Ty : CUNode->getEnumTypes()) { 1243 // The enum types array by design contains pointers to 1244 // MDNodes rather than DIRefs. Unique them here. 1245 CU.getOrCreateTypeDIE(cast<DIType>(Ty)); 1246 } 1247 for (auto *Ty : CUNode->getRetainedTypes()) { 1248 // The retained types array by design contains pointers to 1249 // MDNodes rather than DIRefs. Unique them here. 1250 if (DIType *RT = dyn_cast<DIType>(Ty)) 1251 // There is no point in force-emitting a forward declaration. 1252 CU.getOrCreateTypeDIE(RT); 1253 } 1254 // Emit imported_modules last so that the relevant context is already 1255 // available. 1256 for (auto *IE : CUNode->getImportedEntities()) 1257 constructAndAddImportedEntityDIE(CU, IE); 1258 } 1259 } 1260 1261 void DwarfDebug::finishEntityDefinitions() { 1262 for (const auto &Entity : ConcreteEntities) { 1263 DIE *Die = Entity->getDIE(); 1264 assert(Die); 1265 // FIXME: Consider the time-space tradeoff of just storing the unit pointer 1266 // in the ConcreteEntities list, rather than looking it up again here. 1267 // DIE::getUnit isn't simple - it walks parent pointers, etc. 1268 DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie()); 1269 assert(Unit); 1270 Unit->finishEntityDefinition(Entity.get()); 1271 } 1272 } 1273 1274 void DwarfDebug::finishSubprogramDefinitions() { 1275 for (const DISubprogram *SP : ProcessedSPNodes) { 1276 assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug); 1277 forBothCUs( 1278 getOrCreateDwarfCompileUnit(SP->getUnit()), 1279 [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); }); 1280 } 1281 } 1282 1283 void DwarfDebug::finalizeModuleInfo() { 1284 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 1285 1286 finishSubprogramDefinitions(); 1287 1288 finishEntityDefinitions(); 1289 1290 // Include the DWO file name in the hash if there's more than one CU. 1291 // This handles ThinLTO's situation where imported CUs may very easily be 1292 // duplicate with the same CU partially imported into another ThinLTO unit. 1293 StringRef DWOName; 1294 if (CUMap.size() > 1) 1295 DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile; 1296 1297 // Handle anything that needs to be done on a per-unit basis after 1298 // all other generation. 1299 for (const auto &P : CUMap) { 1300 auto &TheCU = *P.second; 1301 if (TheCU.getCUNode()->isDebugDirectivesOnly()) 1302 continue; 1303 // Emit DW_AT_containing_type attribute to connect types with their 1304 // vtable holding type. 1305 TheCU.constructContainingTypeDIEs(); 1306 1307 // Add CU specific attributes if we need to add any. 1308 // If we're splitting the dwarf out now that we've got the entire 1309 // CU then add the dwo id to it. 1310 auto *SkCU = TheCU.getSkeleton(); 1311 1312 bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty(); 1313 1314 if (HasSplitUnit) { 1315 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1316 ? dwarf::DW_AT_dwo_name 1317 : dwarf::DW_AT_GNU_dwo_name; 1318 finishUnitAttributes(TheCU.getCUNode(), TheCU); 1319 TheCU.addString(TheCU.getUnitDie(), attrDWOName, 1320 Asm->TM.Options.MCOptions.SplitDwarfFile); 1321 SkCU->addString(SkCU->getUnitDie(), attrDWOName, 1322 Asm->TM.Options.MCOptions.SplitDwarfFile); 1323 // Emit a unique identifier for this CU. 1324 uint64_t ID = 1325 DIEHash(Asm, &TheCU).computeCUSignature(DWOName, TheCU.getUnitDie()); 1326 if (getDwarfVersion() >= 5) { 1327 TheCU.setDWOId(ID); 1328 SkCU->setDWOId(ID); 1329 } else { 1330 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1331 dwarf::DW_FORM_data8, ID); 1332 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1333 dwarf::DW_FORM_data8, ID); 1334 } 1335 1336 if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) { 1337 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol(); 1338 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, 1339 Sym, Sym); 1340 } 1341 } else if (SkCU) { 1342 finishUnitAttributes(SkCU->getCUNode(), *SkCU); 1343 } 1344 1345 // If we have code split among multiple sections or non-contiguous 1346 // ranges of code then emit a DW_AT_ranges attribute on the unit that will 1347 // remain in the .o file, otherwise add a DW_AT_low_pc. 1348 // FIXME: We should use ranges allow reordering of code ala 1349 // .subsections_via_symbols in mach-o. This would mean turning on 1350 // ranges for all subprogram DIEs for mach-o. 1351 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 1352 1353 if (unsigned NumRanges = TheCU.getRanges().size()) { 1354 if (NumRanges > 1 && useRangesSection()) 1355 // A DW_AT_low_pc attribute may also be specified in combination with 1356 // DW_AT_ranges to specify the default base address for use in 1357 // location lists (see Section 2.6.2) and range lists (see Section 1358 // 2.17.3). 1359 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); 1360 else 1361 U.setBaseAddress(TheCU.getRanges().front().Begin); 1362 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); 1363 } 1364 1365 // We don't keep track of which addresses are used in which CU so this 1366 // is a bit pessimistic under LTO. 1367 if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty()) 1368 U.addAddrTableBase(); 1369 1370 if (getDwarfVersion() >= 5) { 1371 if (U.hasRangeLists()) 1372 U.addRnglistsBase(); 1373 1374 if (!DebugLocs.getLists().empty()) { 1375 if (!useSplitDwarf()) 1376 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base, 1377 DebugLocs.getSym(), 1378 TLOF.getDwarfLoclistsSection()->getBeginSymbol()); 1379 } 1380 } 1381 1382 auto *CUNode = cast<DICompileUnit>(P.first); 1383 // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros" 1384 // attribute. 1385 if (CUNode->getMacros()) { 1386 if (UseDebugMacroSection) { 1387 if (useSplitDwarf()) 1388 TheCU.addSectionDelta( 1389 TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(), 1390 TLOF.getDwarfMacroDWOSection()->getBeginSymbol()); 1391 else { 1392 dwarf::Attribute MacrosAttr = getDwarfVersion() >= 5 1393 ? dwarf::DW_AT_macros 1394 : dwarf::DW_AT_GNU_macros; 1395 U.addSectionLabel(U.getUnitDie(), MacrosAttr, U.getMacroLabelBegin(), 1396 TLOF.getDwarfMacroSection()->getBeginSymbol()); 1397 } 1398 } else { 1399 if (useSplitDwarf()) 1400 TheCU.addSectionDelta( 1401 TheCU.getUnitDie(), dwarf::DW_AT_macro_info, 1402 U.getMacroLabelBegin(), 1403 TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol()); 1404 else 1405 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info, 1406 U.getMacroLabelBegin(), 1407 TLOF.getDwarfMacinfoSection()->getBeginSymbol()); 1408 } 1409 } 1410 } 1411 1412 // Emit all frontend-produced Skeleton CUs, i.e., Clang modules. 1413 for (auto *CUNode : MMI->getModule()->debug_compile_units()) 1414 if (CUNode->getDWOId()) 1415 getOrCreateDwarfCompileUnit(CUNode); 1416 1417 // Compute DIE offsets and sizes. 1418 InfoHolder.computeSizeAndOffsets(); 1419 if (useSplitDwarf()) 1420 SkeletonHolder.computeSizeAndOffsets(); 1421 } 1422 1423 // Emit all Dwarf sections that should come after the content. 1424 void DwarfDebug::endModule() { 1425 assert(CurFn == nullptr); 1426 assert(CurMI == nullptr); 1427 1428 for (const auto &P : CUMap) { 1429 auto &CU = *P.second; 1430 CU.createBaseTypeDIEs(); 1431 } 1432 1433 // If we aren't actually generating debug info (check beginModule - 1434 // conditionalized on the presence of the llvm.dbg.cu metadata node) 1435 if (!Asm || !MMI->hasDebugInfo()) 1436 return; 1437 1438 // Finalize the debug info for the module. 1439 finalizeModuleInfo(); 1440 1441 if (useSplitDwarf()) 1442 // Emit debug_loc.dwo/debug_loclists.dwo section. 1443 emitDebugLocDWO(); 1444 else 1445 // Emit debug_loc/debug_loclists section. 1446 emitDebugLoc(); 1447 1448 // Corresponding abbreviations into a abbrev section. 1449 emitAbbreviations(); 1450 1451 // Emit all the DIEs into a debug info section. 1452 emitDebugInfo(); 1453 1454 // Emit info into a debug aranges section. 1455 if (GenerateARangeSection) 1456 emitDebugARanges(); 1457 1458 // Emit info into a debug ranges section. 1459 emitDebugRanges(); 1460 1461 if (useSplitDwarf()) 1462 // Emit info into a debug macinfo.dwo section. 1463 emitDebugMacinfoDWO(); 1464 else 1465 // Emit info into a debug macinfo/macro section. 1466 emitDebugMacinfo(); 1467 1468 emitDebugStr(); 1469 1470 if (useSplitDwarf()) { 1471 emitDebugStrDWO(); 1472 emitDebugInfoDWO(); 1473 emitDebugAbbrevDWO(); 1474 emitDebugLineDWO(); 1475 emitDebugRangesDWO(); 1476 } 1477 1478 emitDebugAddr(); 1479 1480 // Emit info into the dwarf accelerator table sections. 1481 switch (getAccelTableKind()) { 1482 case AccelTableKind::Apple: 1483 emitAccelNames(); 1484 emitAccelObjC(); 1485 emitAccelNamespaces(); 1486 emitAccelTypes(); 1487 break; 1488 case AccelTableKind::Dwarf: 1489 emitAccelDebugNames(); 1490 break; 1491 case AccelTableKind::None: 1492 break; 1493 case AccelTableKind::Default: 1494 llvm_unreachable("Default should have already been resolved."); 1495 } 1496 1497 // Emit the pubnames and pubtypes sections if requested. 1498 emitDebugPubSections(); 1499 1500 // clean up. 1501 // FIXME: AbstractVariables.clear(); 1502 } 1503 1504 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU, 1505 const DINode *Node, 1506 const MDNode *ScopeNode) { 1507 if (CU.getExistingAbstractEntity(Node)) 1508 return; 1509 1510 CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope( 1511 cast<DILocalScope>(ScopeNode))); 1512 } 1513 1514 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU, 1515 const DINode *Node, const MDNode *ScopeNode) { 1516 if (CU.getExistingAbstractEntity(Node)) 1517 return; 1518 1519 if (LexicalScope *Scope = 1520 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode))) 1521 CU.createAbstractEntity(Node, Scope); 1522 } 1523 1524 // Collect variable information from side table maintained by MF. 1525 void DwarfDebug::collectVariableInfoFromMFTable( 1526 DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) { 1527 SmallDenseMap<InlinedEntity, DbgVariable *> MFVars; 1528 LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n"); 1529 for (const auto &VI : Asm->MF->getVariableDbgInfo()) { 1530 if (!VI.Var) 1531 continue; 1532 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1533 "Expected inlined-at fields to agree"); 1534 1535 InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt()); 1536 Processed.insert(Var); 1537 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1538 1539 // If variable scope is not found then skip this variable. 1540 if (!Scope) { 1541 LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName() 1542 << ", no variable scope found\n"); 1543 continue; 1544 } 1545 1546 ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode()); 1547 auto RegVar = std::make_unique<DbgVariable>( 1548 cast<DILocalVariable>(Var.first), Var.second); 1549 RegVar->initializeMMI(VI.Expr, VI.Slot); 1550 LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName() 1551 << "\n"); 1552 if (DbgVariable *DbgVar = MFVars.lookup(Var)) 1553 DbgVar->addMMIEntry(*RegVar); 1554 else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) { 1555 MFVars.insert({Var, RegVar.get()}); 1556 ConcreteEntities.push_back(std::move(RegVar)); 1557 } 1558 } 1559 } 1560 1561 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its 1562 /// enclosing lexical scope. The check ensures there are no other instructions 1563 /// in the same lexical scope preceding the DBG_VALUE and that its range is 1564 /// either open or otherwise rolls off the end of the scope. 1565 static bool validThroughout(LexicalScopes &LScopes, 1566 const MachineInstr *DbgValue, 1567 const MachineInstr *RangeEnd, 1568 const InstructionOrdering &Ordering) { 1569 assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location"); 1570 auto MBB = DbgValue->getParent(); 1571 auto DL = DbgValue->getDebugLoc(); 1572 auto *LScope = LScopes.findLexicalScope(DL); 1573 // Scope doesn't exist; this is a dead DBG_VALUE. 1574 if (!LScope) 1575 return false; 1576 auto &LSRange = LScope->getRanges(); 1577 if (LSRange.size() == 0) 1578 return false; 1579 1580 const MachineInstr *LScopeBegin = LSRange.front().first; 1581 // If the scope starts before the DBG_VALUE then we may have a negative 1582 // result. Otherwise the location is live coming into the scope and we 1583 // can skip the following checks. 1584 if (!Ordering.isBefore(DbgValue, LScopeBegin)) { 1585 // Exit if the lexical scope begins outside of the current block. 1586 if (LScopeBegin->getParent() != MBB) 1587 return false; 1588 1589 MachineBasicBlock::const_reverse_iterator Pred(DbgValue); 1590 for (++Pred; Pred != MBB->rend(); ++Pred) { 1591 if (Pred->getFlag(MachineInstr::FrameSetup)) 1592 break; 1593 auto PredDL = Pred->getDebugLoc(); 1594 if (!PredDL || Pred->isMetaInstruction()) 1595 continue; 1596 // Check whether the instruction preceding the DBG_VALUE is in the same 1597 // (sub)scope as the DBG_VALUE. 1598 if (DL->getScope() == PredDL->getScope()) 1599 return false; 1600 auto *PredScope = LScopes.findLexicalScope(PredDL); 1601 if (!PredScope || LScope->dominates(PredScope)) 1602 return false; 1603 } 1604 } 1605 1606 // If the range of the DBG_VALUE is open-ended, report success. 1607 if (!RangeEnd) 1608 return true; 1609 1610 // Single, constant DBG_VALUEs in the prologue are promoted to be live 1611 // throughout the function. This is a hack, presumably for DWARF v2 and not 1612 // necessarily correct. It would be much better to use a dbg.declare instead 1613 // if we know the constant is live throughout the scope. 1614 if (MBB->pred_empty() && 1615 all_of(DbgValue->debug_operands(), 1616 [](const MachineOperand &Op) { return Op.isImm(); })) 1617 return true; 1618 1619 // Test if the location terminates before the end of the scope. 1620 const MachineInstr *LScopeEnd = LSRange.back().second; 1621 if (Ordering.isBefore(RangeEnd, LScopeEnd)) 1622 return false; 1623 1624 // There's a single location which starts at the scope start, and ends at or 1625 // after the scope end. 1626 return true; 1627 } 1628 1629 /// Build the location list for all DBG_VALUEs in the function that 1630 /// describe the same variable. The resulting DebugLocEntries will have 1631 /// strict monotonically increasing begin addresses and will never 1632 /// overlap. If the resulting list has only one entry that is valid 1633 /// throughout variable's scope return true. 1634 // 1635 // See the definition of DbgValueHistoryMap::Entry for an explanation of the 1636 // different kinds of history map entries. One thing to be aware of is that if 1637 // a debug value is ended by another entry (rather than being valid until the 1638 // end of the function), that entry's instruction may or may not be included in 1639 // the range, depending on if the entry is a clobbering entry (it has an 1640 // instruction that clobbers one or more preceding locations), or if it is an 1641 // (overlapping) debug value entry. This distinction can be seen in the example 1642 // below. The first debug value is ended by the clobbering entry 2, and the 1643 // second and third debug values are ended by the overlapping debug value entry 1644 // 4. 1645 // 1646 // Input: 1647 // 1648 // History map entries [type, end index, mi] 1649 // 1650 // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)] 1651 // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)] 1652 // 2 | | [Clobber, $reg0 = [...], -, -] 1653 // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)] 1654 // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)] 1655 // 1656 // Output [start, end) [Value...]: 1657 // 1658 // [0-1) [(reg0, fragment 0, 32)] 1659 // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)] 1660 // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)] 1661 // [4-) [(@g, fragment 0, 96)] 1662 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc, 1663 const DbgValueHistoryMap::Entries &Entries) { 1664 using OpenRange = 1665 std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>; 1666 SmallVector<OpenRange, 4> OpenRanges; 1667 bool isSafeForSingleLocation = true; 1668 const MachineInstr *StartDebugMI = nullptr; 1669 const MachineInstr *EndMI = nullptr; 1670 1671 for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) { 1672 const MachineInstr *Instr = EI->getInstr(); 1673 1674 // Remove all values that are no longer live. 1675 size_t Index = std::distance(EB, EI); 1676 erase_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; }); 1677 1678 // If we are dealing with a clobbering entry, this iteration will result in 1679 // a location list entry starting after the clobbering instruction. 1680 const MCSymbol *StartLabel = 1681 EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr); 1682 assert(StartLabel && 1683 "Forgot label before/after instruction starting a range!"); 1684 1685 const MCSymbol *EndLabel; 1686 if (std::next(EI) == Entries.end()) { 1687 const MachineBasicBlock &EndMBB = Asm->MF->back(); 1688 EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionIDNum()].EndLabel; 1689 if (EI->isClobber()) 1690 EndMI = EI->getInstr(); 1691 } 1692 else if (std::next(EI)->isClobber()) 1693 EndLabel = getLabelAfterInsn(std::next(EI)->getInstr()); 1694 else 1695 EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr()); 1696 assert(EndLabel && "Forgot label after instruction ending a range!"); 1697 1698 if (EI->isDbgValue()) 1699 LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n"); 1700 1701 // If this history map entry has a debug value, add that to the list of 1702 // open ranges and check if its location is valid for a single value 1703 // location. 1704 if (EI->isDbgValue()) { 1705 // Do not add undef debug values, as they are redundant information in 1706 // the location list entries. An undef debug results in an empty location 1707 // description. If there are any non-undef fragments then padding pieces 1708 // with empty location descriptions will automatically be inserted, and if 1709 // all fragments are undef then the whole location list entry is 1710 // redundant. 1711 if (!Instr->isUndefDebugValue()) { 1712 auto Value = getDebugLocValue(Instr); 1713 OpenRanges.emplace_back(EI->getEndIndex(), Value); 1714 1715 // TODO: Add support for single value fragment locations. 1716 if (Instr->getDebugExpression()->isFragment()) 1717 isSafeForSingleLocation = false; 1718 1719 if (!StartDebugMI) 1720 StartDebugMI = Instr; 1721 } else { 1722 isSafeForSingleLocation = false; 1723 } 1724 } 1725 1726 // Location list entries with empty location descriptions are redundant 1727 // information in DWARF, so do not emit those. 1728 if (OpenRanges.empty()) 1729 continue; 1730 1731 // Omit entries with empty ranges as they do not have any effect in DWARF. 1732 if (StartLabel == EndLabel) { 1733 LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n"); 1734 continue; 1735 } 1736 1737 SmallVector<DbgValueLoc, 4> Values; 1738 for (auto &R : OpenRanges) 1739 Values.push_back(R.second); 1740 DebugLoc.emplace_back(StartLabel, EndLabel, Values); 1741 1742 // Attempt to coalesce the ranges of two otherwise identical 1743 // DebugLocEntries. 1744 auto CurEntry = DebugLoc.rbegin(); 1745 LLVM_DEBUG({ 1746 dbgs() << CurEntry->getValues().size() << " Values:\n"; 1747 for (auto &Value : CurEntry->getValues()) 1748 Value.dump(); 1749 dbgs() << "-----\n"; 1750 }); 1751 1752 auto PrevEntry = std::next(CurEntry); 1753 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) 1754 DebugLoc.pop_back(); 1755 } 1756 1757 return DebugLoc.size() == 1 && isSafeForSingleLocation && 1758 validThroughout(LScopes, StartDebugMI, EndMI, getInstOrdering()); 1759 } 1760 1761 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU, 1762 LexicalScope &Scope, 1763 const DINode *Node, 1764 const DILocation *Location, 1765 const MCSymbol *Sym) { 1766 ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode()); 1767 if (isa<const DILocalVariable>(Node)) { 1768 ConcreteEntities.push_back( 1769 std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node), 1770 Location)); 1771 InfoHolder.addScopeVariable(&Scope, 1772 cast<DbgVariable>(ConcreteEntities.back().get())); 1773 } else if (isa<const DILabel>(Node)) { 1774 ConcreteEntities.push_back( 1775 std::make_unique<DbgLabel>(cast<const DILabel>(Node), 1776 Location, Sym)); 1777 InfoHolder.addScopeLabel(&Scope, 1778 cast<DbgLabel>(ConcreteEntities.back().get())); 1779 } 1780 return ConcreteEntities.back().get(); 1781 } 1782 1783 // Find variables for each lexical scope. 1784 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU, 1785 const DISubprogram *SP, 1786 DenseSet<InlinedEntity> &Processed) { 1787 // Grab the variable info that was squirreled away in the MMI side-table. 1788 collectVariableInfoFromMFTable(TheCU, Processed); 1789 1790 for (const auto &I : DbgValues) { 1791 InlinedEntity IV = I.first; 1792 if (Processed.count(IV)) 1793 continue; 1794 1795 // Instruction ranges, specifying where IV is accessible. 1796 const auto &HistoryMapEntries = I.second; 1797 1798 // Try to find any non-empty variable location. Do not create a concrete 1799 // entity if there are no locations. 1800 if (!DbgValues.hasNonEmptyLocation(HistoryMapEntries)) 1801 continue; 1802 1803 LexicalScope *Scope = nullptr; 1804 const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first); 1805 if (const DILocation *IA = IV.second) 1806 Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA); 1807 else 1808 Scope = LScopes.findLexicalScope(LocalVar->getScope()); 1809 // If variable scope is not found then skip this variable. 1810 if (!Scope) 1811 continue; 1812 1813 Processed.insert(IV); 1814 DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU, 1815 *Scope, LocalVar, IV.second)); 1816 1817 const MachineInstr *MInsn = HistoryMapEntries.front().getInstr(); 1818 assert(MInsn->isDebugValue() && "History must begin with debug value"); 1819 1820 // Check if there is a single DBG_VALUE, valid throughout the var's scope. 1821 // If the history map contains a single debug value, there may be an 1822 // additional entry which clobbers the debug value. 1823 size_t HistSize = HistoryMapEntries.size(); 1824 bool SingleValueWithClobber = 1825 HistSize == 2 && HistoryMapEntries[1].isClobber(); 1826 if (HistSize == 1 || SingleValueWithClobber) { 1827 const auto *End = 1828 SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr; 1829 if (validThroughout(LScopes, MInsn, End, getInstOrdering())) { 1830 RegVar->initializeDbgValue(MInsn); 1831 continue; 1832 } 1833 } 1834 1835 // Do not emit location lists if .debug_loc secton is disabled. 1836 if (!useLocSection()) 1837 continue; 1838 1839 // Handle multiple DBG_VALUE instructions describing one variable. 1840 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn); 1841 1842 // Build the location list for this variable. 1843 SmallVector<DebugLocEntry, 8> Entries; 1844 bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries); 1845 1846 // Check whether buildLocationList managed to merge all locations to one 1847 // that is valid throughout the variable's scope. If so, produce single 1848 // value location. 1849 if (isValidSingleLocation) { 1850 RegVar->initializeDbgValue(Entries[0].getValues()[0]); 1851 continue; 1852 } 1853 1854 // If the variable has a DIBasicType, extract it. Basic types cannot have 1855 // unique identifiers, so don't bother resolving the type with the 1856 // identifier map. 1857 const DIBasicType *BT = dyn_cast<DIBasicType>( 1858 static_cast<const Metadata *>(LocalVar->getType())); 1859 1860 // Finalize the entry by lowering it into a DWARF bytestream. 1861 for (auto &Entry : Entries) 1862 Entry.finalize(*Asm, List, BT, TheCU); 1863 } 1864 1865 // For each InlinedEntity collected from DBG_LABEL instructions, convert to 1866 // DWARF-related DbgLabel. 1867 for (const auto &I : DbgLabels) { 1868 InlinedEntity IL = I.first; 1869 const MachineInstr *MI = I.second; 1870 if (MI == nullptr) 1871 continue; 1872 1873 LexicalScope *Scope = nullptr; 1874 const DILabel *Label = cast<DILabel>(IL.first); 1875 // The scope could have an extra lexical block file. 1876 const DILocalScope *LocalScope = 1877 Label->getScope()->getNonLexicalBlockFileScope(); 1878 // Get inlined DILocation if it is inlined label. 1879 if (const DILocation *IA = IL.second) 1880 Scope = LScopes.findInlinedScope(LocalScope, IA); 1881 else 1882 Scope = LScopes.findLexicalScope(LocalScope); 1883 // If label scope is not found then skip this label. 1884 if (!Scope) 1885 continue; 1886 1887 Processed.insert(IL); 1888 /// At this point, the temporary label is created. 1889 /// Save the temporary label to DbgLabel entity to get the 1890 /// actually address when generating Dwarf DIE. 1891 MCSymbol *Sym = getLabelBeforeInsn(MI); 1892 createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym); 1893 } 1894 1895 // Collect info for variables/labels that were optimized out. 1896 for (const DINode *DN : SP->getRetainedNodes()) { 1897 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 1898 continue; 1899 LexicalScope *Scope = nullptr; 1900 if (auto *DV = dyn_cast<DILocalVariable>(DN)) { 1901 Scope = LScopes.findLexicalScope(DV->getScope()); 1902 } else if (auto *DL = dyn_cast<DILabel>(DN)) { 1903 Scope = LScopes.findLexicalScope(DL->getScope()); 1904 } 1905 1906 if (Scope) 1907 createConcreteEntity(TheCU, *Scope, DN, nullptr); 1908 } 1909 } 1910 1911 // Process beginning of an instruction. 1912 void DwarfDebug::beginInstruction(const MachineInstr *MI) { 1913 const MachineFunction &MF = *MI->getMF(); 1914 const auto *SP = MF.getFunction().getSubprogram(); 1915 bool NoDebug = 1916 !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug; 1917 1918 // Delay slot support check. 1919 auto delaySlotSupported = [](const MachineInstr &MI) { 1920 if (!MI.isBundledWithSucc()) 1921 return false; 1922 auto Suc = std::next(MI.getIterator()); 1923 (void)Suc; 1924 // Ensure that delay slot instruction is successor of the call instruction. 1925 // Ex. CALL_INSTRUCTION { 1926 // DELAY_SLOT_INSTRUCTION } 1927 assert(Suc->isBundledWithPred() && 1928 "Call bundle instructions are out of order"); 1929 return true; 1930 }; 1931 1932 // When describing calls, we need a label for the call instruction. 1933 if (!NoDebug && SP->areAllCallsDescribed() && 1934 MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) && 1935 (!MI->hasDelaySlot() || delaySlotSupported(*MI))) { 1936 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1937 bool IsTail = TII->isTailCall(*MI); 1938 // For tail calls, we need the address of the branch instruction for 1939 // DW_AT_call_pc. 1940 if (IsTail) 1941 requestLabelBeforeInsn(MI); 1942 // For non-tail calls, we need the return address for the call for 1943 // DW_AT_call_return_pc. Under GDB tuning, this information is needed for 1944 // tail calls as well. 1945 requestLabelAfterInsn(MI); 1946 } 1947 1948 DebugHandlerBase::beginInstruction(MI); 1949 if (!CurMI) 1950 return; 1951 1952 if (NoDebug) 1953 return; 1954 1955 // Check if source location changes, but ignore DBG_VALUE and CFI locations. 1956 // If the instruction is part of the function frame setup code, do not emit 1957 // any line record, as there is no correspondence with any user code. 1958 if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup)) 1959 return; 1960 const DebugLoc &DL = MI->getDebugLoc(); 1961 // When we emit a line-0 record, we don't update PrevInstLoc; so look at 1962 // the last line number actually emitted, to see if it was line 0. 1963 unsigned LastAsmLine = 1964 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine(); 1965 1966 if (DL == PrevInstLoc) { 1967 // If we have an ongoing unspecified location, nothing to do here. 1968 if (!DL) 1969 return; 1970 // We have an explicit location, same as the previous location. 1971 // But we might be coming back to it after a line 0 record. 1972 if (LastAsmLine == 0 && DL.getLine() != 0) { 1973 // Reinstate the source location but not marked as a statement. 1974 const MDNode *Scope = DL.getScope(); 1975 recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0); 1976 } 1977 return; 1978 } 1979 1980 if (!DL) { 1981 // We have an unspecified location, which might want to be line 0. 1982 // If we have already emitted a line-0 record, don't repeat it. 1983 if (LastAsmLine == 0) 1984 return; 1985 // If user said Don't Do That, don't do that. 1986 if (UnknownLocations == Disable) 1987 return; 1988 // See if we have a reason to emit a line-0 record now. 1989 // Reasons to emit a line-0 record include: 1990 // - User asked for it (UnknownLocations). 1991 // - Instruction has a label, so it's referenced from somewhere else, 1992 // possibly debug information; we want it to have a source location. 1993 // - Instruction is at the top of a block; we don't want to inherit the 1994 // location from the physically previous (maybe unrelated) block. 1995 if (UnknownLocations == Enable || PrevLabel || 1996 (PrevInstBB && PrevInstBB != MI->getParent())) { 1997 // Preserve the file and column numbers, if we can, to save space in 1998 // the encoded line table. 1999 // Do not update PrevInstLoc, it remembers the last non-0 line. 2000 const MDNode *Scope = nullptr; 2001 unsigned Column = 0; 2002 if (PrevInstLoc) { 2003 Scope = PrevInstLoc.getScope(); 2004 Column = PrevInstLoc.getCol(); 2005 } 2006 recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0); 2007 } 2008 return; 2009 } 2010 2011 // We have an explicit location, different from the previous location. 2012 // Don't repeat a line-0 record, but otherwise emit the new location. 2013 // (The new location might be an explicit line 0, which we do emit.) 2014 if (DL.getLine() == 0 && LastAsmLine == 0) 2015 return; 2016 unsigned Flags = 0; 2017 if (DL == PrologEndLoc) { 2018 Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT; 2019 PrologEndLoc = DebugLoc(); 2020 } 2021 // If the line changed, we call that a new statement; unless we went to 2022 // line 0 and came back, in which case it is not a new statement. 2023 unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine; 2024 if (DL.getLine() && DL.getLine() != OldLine) 2025 Flags |= DWARF2_FLAG_IS_STMT; 2026 2027 const MDNode *Scope = DL.getScope(); 2028 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); 2029 2030 // If we're not at line 0, remember this location. 2031 if (DL.getLine()) 2032 PrevInstLoc = DL; 2033 } 2034 2035 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) { 2036 // First known non-DBG_VALUE and non-frame setup location marks 2037 // the beginning of the function body. 2038 for (const auto &MBB : *MF) 2039 for (const auto &MI : MBB) 2040 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 2041 MI.getDebugLoc()) 2042 return MI.getDebugLoc(); 2043 return DebugLoc(); 2044 } 2045 2046 /// Register a source line with debug info. Returns the unique label that was 2047 /// emitted and which provides correspondence to the source line list. 2048 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col, 2049 const MDNode *S, unsigned Flags, unsigned CUID, 2050 uint16_t DwarfVersion, 2051 ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) { 2052 StringRef Fn; 2053 unsigned FileNo = 1; 2054 unsigned Discriminator = 0; 2055 if (auto *Scope = cast_or_null<DIScope>(S)) { 2056 Fn = Scope->getFilename(); 2057 if (Line != 0 && DwarfVersion >= 4) 2058 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope)) 2059 Discriminator = LBF->getDiscriminator(); 2060 2061 FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID]) 2062 .getOrCreateSourceID(Scope->getFile()); 2063 } 2064 Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0, 2065 Discriminator, Fn); 2066 } 2067 2068 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF, 2069 unsigned CUID) { 2070 // Get beginning of function. 2071 if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) { 2072 // Ensure the compile unit is created if the function is called before 2073 // beginFunction(). 2074 (void)getOrCreateDwarfCompileUnit( 2075 MF.getFunction().getSubprogram()->getUnit()); 2076 // We'd like to list the prologue as "not statements" but GDB behaves 2077 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. 2078 const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram(); 2079 ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT, 2080 CUID, getDwarfVersion(), getUnits()); 2081 return PrologEndLoc; 2082 } 2083 return DebugLoc(); 2084 } 2085 2086 // Gather pre-function debug information. Assumes being called immediately 2087 // after the function entry point has been emitted. 2088 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) { 2089 CurFn = MF; 2090 2091 auto *SP = MF->getFunction().getSubprogram(); 2092 assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode()); 2093 if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 2094 return; 2095 2096 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 2097 2098 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function 2099 // belongs to so that we add to the correct per-cu line table in the 2100 // non-asm case. 2101 if (Asm->OutStreamer->hasRawTextSupport()) 2102 // Use a single line table if we are generating assembly. 2103 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 2104 else 2105 Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID()); 2106 2107 // Record beginning of function. 2108 PrologEndLoc = emitInitialLocDirective( 2109 *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID()); 2110 } 2111 2112 void DwarfDebug::skippedNonDebugFunction() { 2113 // If we don't have a subprogram for this function then there will be a hole 2114 // in the range information. Keep note of this by setting the previously used 2115 // section to nullptr. 2116 PrevCU = nullptr; 2117 CurFn = nullptr; 2118 } 2119 2120 // Gather and emit post-function debug information. 2121 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) { 2122 const DISubprogram *SP = MF->getFunction().getSubprogram(); 2123 2124 assert(CurFn == MF && 2125 "endFunction should be called with the same function as beginFunction"); 2126 2127 // Set DwarfDwarfCompileUnitID in MCContext to default value. 2128 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 2129 2130 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 2131 assert(!FnScope || SP == FnScope->getScopeNode()); 2132 DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit()); 2133 if (TheCU.getCUNode()->isDebugDirectivesOnly()) { 2134 PrevLabel = nullptr; 2135 CurFn = nullptr; 2136 return; 2137 } 2138 2139 DenseSet<InlinedEntity> Processed; 2140 collectEntityInfo(TheCU, SP, Processed); 2141 2142 // Add the range of this function to the list of ranges for the CU. 2143 // With basic block sections, add ranges for all basic block sections. 2144 for (const auto &R : Asm->MBBSectionRanges) 2145 TheCU.addRange({R.second.BeginLabel, R.second.EndLabel}); 2146 2147 // Under -gmlt, skip building the subprogram if there are no inlined 2148 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram 2149 // is still needed as we need its source location. 2150 if (!TheCU.getCUNode()->getDebugInfoForProfiling() && 2151 TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly && 2152 LScopes.getAbstractScopesList().empty() && !IsDarwin) { 2153 assert(InfoHolder.getScopeVariables().empty()); 2154 PrevLabel = nullptr; 2155 CurFn = nullptr; 2156 return; 2157 } 2158 2159 #ifndef NDEBUG 2160 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size(); 2161 #endif 2162 // Construct abstract scopes. 2163 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { 2164 auto *SP = cast<DISubprogram>(AScope->getScopeNode()); 2165 for (const DINode *DN : SP->getRetainedNodes()) { 2166 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 2167 continue; 2168 2169 const MDNode *Scope = nullptr; 2170 if (auto *DV = dyn_cast<DILocalVariable>(DN)) 2171 Scope = DV->getScope(); 2172 else if (auto *DL = dyn_cast<DILabel>(DN)) 2173 Scope = DL->getScope(); 2174 else 2175 llvm_unreachable("Unexpected DI type!"); 2176 2177 // Collect info for variables/labels that were optimized out. 2178 ensureAbstractEntityIsCreated(TheCU, DN, Scope); 2179 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes 2180 && "ensureAbstractEntityIsCreated inserted abstract scopes"); 2181 } 2182 constructAbstractSubprogramScopeDIE(TheCU, AScope); 2183 } 2184 2185 ProcessedSPNodes.insert(SP); 2186 DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope); 2187 if (auto *SkelCU = TheCU.getSkeleton()) 2188 if (!LScopes.getAbstractScopesList().empty() && 2189 TheCU.getCUNode()->getSplitDebugInlining()) 2190 SkelCU->constructSubprogramScopeDIE(SP, FnScope); 2191 2192 // Construct call site entries. 2193 constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF); 2194 2195 // Clear debug info 2196 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the 2197 // DbgVariables except those that are also in AbstractVariables (since they 2198 // can be used cross-function) 2199 InfoHolder.getScopeVariables().clear(); 2200 InfoHolder.getScopeLabels().clear(); 2201 PrevLabel = nullptr; 2202 CurFn = nullptr; 2203 } 2204 2205 // Register a source line with debug info. Returns the unique label that was 2206 // emitted and which provides correspondence to the source line list. 2207 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, 2208 unsigned Flags) { 2209 ::recordSourceLine(*Asm, Line, Col, S, Flags, 2210 Asm->OutStreamer->getContext().getDwarfCompileUnitID(), 2211 getDwarfVersion(), getUnits()); 2212 } 2213 2214 //===----------------------------------------------------------------------===// 2215 // Emit Methods 2216 //===----------------------------------------------------------------------===// 2217 2218 // Emit the debug info section. 2219 void DwarfDebug::emitDebugInfo() { 2220 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2221 Holder.emitUnits(/* UseOffsets */ false); 2222 } 2223 2224 // Emit the abbreviation section. 2225 void DwarfDebug::emitAbbreviations() { 2226 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2227 2228 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); 2229 } 2230 2231 void DwarfDebug::emitStringOffsetsTableHeader() { 2232 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2233 Holder.getStringPool().emitStringOffsetsTableHeader( 2234 *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(), 2235 Holder.getStringOffsetsStartSym()); 2236 } 2237 2238 template <typename AccelTableT> 2239 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section, 2240 StringRef TableName) { 2241 Asm->OutStreamer->SwitchSection(Section); 2242 2243 // Emit the full data. 2244 emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol()); 2245 } 2246 2247 void DwarfDebug::emitAccelDebugNames() { 2248 // Don't emit anything if we have no compilation units to index. 2249 if (getUnits().empty()) 2250 return; 2251 2252 emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits()); 2253 } 2254 2255 // Emit visible names into a hashed accelerator table section. 2256 void DwarfDebug::emitAccelNames() { 2257 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), 2258 "Names"); 2259 } 2260 2261 // Emit objective C classes and categories into a hashed accelerator table 2262 // section. 2263 void DwarfDebug::emitAccelObjC() { 2264 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), 2265 "ObjC"); 2266 } 2267 2268 // Emit namespace dies into a hashed accelerator table. 2269 void DwarfDebug::emitAccelNamespaces() { 2270 emitAccel(AccelNamespace, 2271 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), 2272 "namespac"); 2273 } 2274 2275 // Emit type dies into a hashed accelerator table. 2276 void DwarfDebug::emitAccelTypes() { 2277 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), 2278 "types"); 2279 } 2280 2281 // Public name handling. 2282 // The format for the various pubnames: 2283 // 2284 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU 2285 // for the DIE that is named. 2286 // 2287 // gnu pubnames - offset/index value/name tuples where the offset is the offset 2288 // into the CU and the index value is computed according to the type of value 2289 // for the DIE that is named. 2290 // 2291 // For type units the offset is the offset of the skeleton DIE. For split dwarf 2292 // it's the offset within the debug_info/debug_types dwo section, however, the 2293 // reference in the pubname header doesn't change. 2294 2295 /// computeIndexValue - Compute the gdb index value for the DIE and CU. 2296 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, 2297 const DIE *Die) { 2298 // Entities that ended up only in a Type Unit reference the CU instead (since 2299 // the pub entry has offsets within the CU there's no real offset that can be 2300 // provided anyway). As it happens all such entities (namespaces and types, 2301 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out 2302 // not to be true it would be necessary to persist this information from the 2303 // point at which the entry is added to the index data structure - since by 2304 // the time the index is built from that, the original type/namespace DIE in a 2305 // type unit has already been destroyed so it can't be queried for properties 2306 // like tag, etc. 2307 if (Die->getTag() == dwarf::DW_TAG_compile_unit) 2308 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, 2309 dwarf::GIEL_EXTERNAL); 2310 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; 2311 2312 // We could have a specification DIE that has our most of our knowledge, 2313 // look for that now. 2314 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) { 2315 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry(); 2316 if (SpecDIE.findAttribute(dwarf::DW_AT_external)) 2317 Linkage = dwarf::GIEL_EXTERNAL; 2318 } else if (Die->findAttribute(dwarf::DW_AT_external)) 2319 Linkage = dwarf::GIEL_EXTERNAL; 2320 2321 switch (Die->getTag()) { 2322 case dwarf::DW_TAG_class_type: 2323 case dwarf::DW_TAG_structure_type: 2324 case dwarf::DW_TAG_union_type: 2325 case dwarf::DW_TAG_enumeration_type: 2326 return dwarf::PubIndexEntryDescriptor( 2327 dwarf::GIEK_TYPE, 2328 dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage()) 2329 ? dwarf::GIEL_EXTERNAL 2330 : dwarf::GIEL_STATIC); 2331 case dwarf::DW_TAG_typedef: 2332 case dwarf::DW_TAG_base_type: 2333 case dwarf::DW_TAG_subrange_type: 2334 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); 2335 case dwarf::DW_TAG_namespace: 2336 return dwarf::GIEK_TYPE; 2337 case dwarf::DW_TAG_subprogram: 2338 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); 2339 case dwarf::DW_TAG_variable: 2340 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); 2341 case dwarf::DW_TAG_enumerator: 2342 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, 2343 dwarf::GIEL_STATIC); 2344 default: 2345 return dwarf::GIEK_NONE; 2346 } 2347 } 2348 2349 /// emitDebugPubSections - Emit visible names and types into debug pubnames and 2350 /// pubtypes sections. 2351 void DwarfDebug::emitDebugPubSections() { 2352 for (const auto &NU : CUMap) { 2353 DwarfCompileUnit *TheU = NU.second; 2354 if (!TheU->hasDwarfPubSections()) 2355 continue; 2356 2357 bool GnuStyle = TheU->getCUNode()->getNameTableKind() == 2358 DICompileUnit::DebugNameTableKind::GNU; 2359 2360 Asm->OutStreamer->SwitchSection( 2361 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() 2362 : Asm->getObjFileLowering().getDwarfPubNamesSection()); 2363 emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames()); 2364 2365 Asm->OutStreamer->SwitchSection( 2366 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() 2367 : Asm->getObjFileLowering().getDwarfPubTypesSection()); 2368 emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes()); 2369 } 2370 } 2371 2372 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) { 2373 if (useSectionsAsReferences()) 2374 Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(), 2375 CU.getDebugSectionOffset()); 2376 else 2377 Asm->emitDwarfSymbolReference(CU.getLabelBegin()); 2378 } 2379 2380 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name, 2381 DwarfCompileUnit *TheU, 2382 const StringMap<const DIE *> &Globals) { 2383 if (auto *Skeleton = TheU->getSkeleton()) 2384 TheU = Skeleton; 2385 2386 // Emit the header. 2387 MCSymbol *EndLabel = Asm->emitDwarfUnitLength( 2388 "pub" + Name, "Length of Public " + Name + " Info"); 2389 2390 Asm->OutStreamer->AddComment("DWARF Version"); 2391 Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION); 2392 2393 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info"); 2394 emitSectionReference(*TheU); 2395 2396 Asm->OutStreamer->AddComment("Compilation Unit Length"); 2397 Asm->emitDwarfLengthOrOffset(TheU->getLength()); 2398 2399 // Emit the pubnames for this compilation unit. 2400 for (const auto &GI : Globals) { 2401 const char *Name = GI.getKeyData(); 2402 const DIE *Entity = GI.second; 2403 2404 Asm->OutStreamer->AddComment("DIE offset"); 2405 Asm->emitDwarfLengthOrOffset(Entity->getOffset()); 2406 2407 if (GnuStyle) { 2408 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); 2409 Asm->OutStreamer->AddComment( 2410 Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + 2411 ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); 2412 Asm->emitInt8(Desc.toBits()); 2413 } 2414 2415 Asm->OutStreamer->AddComment("External Name"); 2416 Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1)); 2417 } 2418 2419 Asm->OutStreamer->AddComment("End Mark"); 2420 Asm->emitDwarfLengthOrOffset(0); 2421 Asm->OutStreamer->emitLabel(EndLabel); 2422 } 2423 2424 /// Emit null-terminated strings into a debug str section. 2425 void DwarfDebug::emitDebugStr() { 2426 MCSection *StringOffsetsSection = nullptr; 2427 if (useSegmentedStringOffsetsTable()) { 2428 emitStringOffsetsTableHeader(); 2429 StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection(); 2430 } 2431 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2432 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(), 2433 StringOffsetsSection, /* UseRelativeOffsets = */ true); 2434 } 2435 2436 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, 2437 const DebugLocStream::Entry &Entry, 2438 const DwarfCompileUnit *CU) { 2439 auto &&Comments = DebugLocs.getComments(Entry); 2440 auto Comment = Comments.begin(); 2441 auto End = Comments.end(); 2442 2443 // The expressions are inserted into a byte stream rather early (see 2444 // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that 2445 // need to reference a base_type DIE the offset of that DIE is not yet known. 2446 // To deal with this we instead insert a placeholder early and then extract 2447 // it here and replace it with the real reference. 2448 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2449 DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(), 2450 DebugLocs.getBytes(Entry).size()), 2451 Asm->getDataLayout().isLittleEndian(), PtrSize); 2452 DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat()); 2453 2454 using Encoding = DWARFExpression::Operation::Encoding; 2455 uint64_t Offset = 0; 2456 for (auto &Op : Expr) { 2457 assert(Op.getCode() != dwarf::DW_OP_const_type && 2458 "3 operand ops not yet supported"); 2459 Streamer.emitInt8(Op.getCode(), Comment != End ? *(Comment++) : ""); 2460 Offset++; 2461 for (unsigned I = 0; I < 2; ++I) { 2462 if (Op.getDescription().Op[I] == Encoding::SizeNA) 2463 continue; 2464 if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) { 2465 uint64_t Offset = 2466 CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset(); 2467 assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit"); 2468 Streamer.emitULEB128(Offset, "", ULEB128PadSize); 2469 // Make sure comments stay aligned. 2470 for (unsigned J = 0; J < ULEB128PadSize; ++J) 2471 if (Comment != End) 2472 Comment++; 2473 } else { 2474 for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J) 2475 Streamer.emitInt8(Data.getData()[J], Comment != End ? *(Comment++) : ""); 2476 } 2477 Offset = Op.getOperandEndOffset(I); 2478 } 2479 assert(Offset == Op.getEndOffset()); 2480 } 2481 } 2482 2483 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT, 2484 const DbgValueLoc &Value, 2485 DwarfExpression &DwarfExpr) { 2486 auto *DIExpr = Value.getExpression(); 2487 DIExpressionCursor ExprCursor(DIExpr); 2488 DwarfExpr.addFragmentOffset(DIExpr); 2489 2490 // If the DIExpr is is an Entry Value, we want to follow the same code path 2491 // regardless of whether the DBG_VALUE is variadic or not. 2492 if (DIExpr && DIExpr->isEntryValue()) { 2493 // Entry values can only be a single register with no additional DIExpr, 2494 // so just add it directly. 2495 assert(Value.getLocEntries().size() == 1); 2496 assert(Value.getLocEntries()[0].isLocation()); 2497 MachineLocation Location = Value.getLocEntries()[0].getLoc(); 2498 DwarfExpr.setLocation(Location, DIExpr); 2499 2500 DwarfExpr.beginEntryValueExpression(ExprCursor); 2501 2502 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2503 if (!DwarfExpr.addMachineRegExpression(TRI, ExprCursor, Location.getReg())) 2504 return; 2505 return DwarfExpr.addExpression(std::move(ExprCursor)); 2506 } 2507 2508 // Regular entry. 2509 auto EmitValueLocEntry = [&DwarfExpr, &BT, 2510 &AP](const DbgValueLocEntry &Entry, 2511 DIExpressionCursor &Cursor) -> bool { 2512 if (Entry.isInt()) { 2513 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed || 2514 BT->getEncoding() == dwarf::DW_ATE_signed_char)) 2515 DwarfExpr.addSignedConstant(Entry.getInt()); 2516 else 2517 DwarfExpr.addUnsignedConstant(Entry.getInt()); 2518 } else if (Entry.isLocation()) { 2519 MachineLocation Location = Entry.getLoc(); 2520 if (Location.isIndirect()) 2521 DwarfExpr.setMemoryLocationKind(); 2522 2523 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2524 if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) 2525 return false; 2526 } else if (Entry.isTargetIndexLocation()) { 2527 TargetIndexLocation Loc = Entry.getTargetIndexLocation(); 2528 // TODO TargetIndexLocation is a target-independent. Currently only the 2529 // WebAssembly-specific encoding is supported. 2530 assert(AP.TM.getTargetTriple().isWasm()); 2531 DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset)); 2532 } else if (Entry.isConstantFP()) { 2533 if (AP.getDwarfVersion() >= 4 && !AP.getDwarfDebug()->tuneForSCE() && 2534 !Cursor) { 2535 DwarfExpr.addConstantFP(Entry.getConstantFP()->getValueAPF(), AP); 2536 } else if (Entry.getConstantFP() 2537 ->getValueAPF() 2538 .bitcastToAPInt() 2539 .getBitWidth() <= 64 /*bits*/) { 2540 DwarfExpr.addUnsignedConstant( 2541 Entry.getConstantFP()->getValueAPF().bitcastToAPInt()); 2542 } else { 2543 LLVM_DEBUG( 2544 dbgs() << "Skipped DwarfExpression creation for ConstantFP of size" 2545 << Entry.getConstantFP() 2546 ->getValueAPF() 2547 .bitcastToAPInt() 2548 .getBitWidth() 2549 << " bits\n"); 2550 return false; 2551 } 2552 } 2553 return true; 2554 }; 2555 2556 if (!Value.isVariadic()) { 2557 if (!EmitValueLocEntry(Value.getLocEntries()[0], ExprCursor)) 2558 return; 2559 DwarfExpr.addExpression(std::move(ExprCursor)); 2560 return; 2561 } 2562 2563 // If any of the location entries are registers with the value 0, then the 2564 // location is undefined. 2565 if (any_of(Value.getLocEntries(), [](const DbgValueLocEntry &Entry) { 2566 return Entry.isLocation() && !Entry.getLoc().getReg(); 2567 })) 2568 return; 2569 2570 DwarfExpr.addExpression( 2571 std::move(ExprCursor), 2572 [EmitValueLocEntry, &Value](unsigned Idx, 2573 DIExpressionCursor &Cursor) -> bool { 2574 return EmitValueLocEntry(Value.getLocEntries()[Idx], Cursor); 2575 }); 2576 } 2577 2578 void DebugLocEntry::finalize(const AsmPrinter &AP, 2579 DebugLocStream::ListBuilder &List, 2580 const DIBasicType *BT, 2581 DwarfCompileUnit &TheCU) { 2582 assert(!Values.empty() && 2583 "location list entries without values are redundant"); 2584 assert(Begin != End && "unexpected location list entry with empty range"); 2585 DebugLocStream::EntryBuilder Entry(List, Begin, End); 2586 BufferByteStreamer Streamer = Entry.getStreamer(); 2587 DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU); 2588 const DbgValueLoc &Value = Values[0]; 2589 if (Value.isFragment()) { 2590 // Emit all fragments that belong to the same variable and range. 2591 assert(llvm::all_of(Values, [](DbgValueLoc P) { 2592 return P.isFragment(); 2593 }) && "all values are expected to be fragments"); 2594 assert(llvm::is_sorted(Values) && "fragments are expected to be sorted"); 2595 2596 for (const auto &Fragment : Values) 2597 DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr); 2598 2599 } else { 2600 assert(Values.size() == 1 && "only fragments may have >1 value"); 2601 DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr); 2602 } 2603 DwarfExpr.finalize(); 2604 if (DwarfExpr.TagOffset) 2605 List.setTagOffset(*DwarfExpr.TagOffset); 2606 } 2607 2608 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry, 2609 const DwarfCompileUnit *CU) { 2610 // Emit the size. 2611 Asm->OutStreamer->AddComment("Loc expr size"); 2612 if (getDwarfVersion() >= 5) 2613 Asm->emitULEB128(DebugLocs.getBytes(Entry).size()); 2614 else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max()) 2615 Asm->emitInt16(DebugLocs.getBytes(Entry).size()); 2616 else { 2617 // The entry is too big to fit into 16 bit, drop it as there is nothing we 2618 // can do. 2619 Asm->emitInt16(0); 2620 return; 2621 } 2622 // Emit the entry. 2623 APByteStreamer Streamer(*Asm); 2624 emitDebugLocEntry(Streamer, Entry, CU); 2625 } 2626 2627 // Emit the header of a DWARF 5 range list table list table. Returns the symbol 2628 // that designates the end of the table for the caller to emit when the table is 2629 // complete. 2630 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm, 2631 const DwarfFile &Holder) { 2632 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2633 2634 Asm->OutStreamer->AddComment("Offset entry count"); 2635 Asm->emitInt32(Holder.getRangeLists().size()); 2636 Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym()); 2637 2638 for (const RangeSpanList &List : Holder.getRangeLists()) 2639 Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(), 2640 Asm->getDwarfOffsetByteSize()); 2641 2642 return TableEnd; 2643 } 2644 2645 // Emit the header of a DWARF 5 locations list table. Returns the symbol that 2646 // designates the end of the table for the caller to emit when the table is 2647 // complete. 2648 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm, 2649 const DwarfDebug &DD) { 2650 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2651 2652 const auto &DebugLocs = DD.getDebugLocs(); 2653 2654 Asm->OutStreamer->AddComment("Offset entry count"); 2655 Asm->emitInt32(DebugLocs.getLists().size()); 2656 Asm->OutStreamer->emitLabel(DebugLocs.getSym()); 2657 2658 for (const auto &List : DebugLocs.getLists()) 2659 Asm->emitLabelDifference(List.Label, DebugLocs.getSym(), 2660 Asm->getDwarfOffsetByteSize()); 2661 2662 return TableEnd; 2663 } 2664 2665 template <typename Ranges, typename PayloadEmitter> 2666 static void emitRangeList( 2667 DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R, 2668 const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair, 2669 unsigned StartxLength, unsigned EndOfList, 2670 StringRef (*StringifyEnum)(unsigned), 2671 bool ShouldUseBaseAddress, 2672 PayloadEmitter EmitPayload) { 2673 2674 auto Size = Asm->MAI->getCodePointerSize(); 2675 bool UseDwarf5 = DD.getDwarfVersion() >= 5; 2676 2677 // Emit our symbol so we can find the beginning of the range. 2678 Asm->OutStreamer->emitLabel(Sym); 2679 2680 // Gather all the ranges that apply to the same section so they can share 2681 // a base address entry. 2682 MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges; 2683 2684 for (const auto &Range : R) 2685 SectionRanges[&Range.Begin->getSection()].push_back(&Range); 2686 2687 const MCSymbol *CUBase = CU.getBaseAddress(); 2688 bool BaseIsSet = false; 2689 for (const auto &P : SectionRanges) { 2690 auto *Base = CUBase; 2691 if (!Base && ShouldUseBaseAddress) { 2692 const MCSymbol *Begin = P.second.front()->Begin; 2693 const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection()); 2694 if (!UseDwarf5) { 2695 Base = NewBase; 2696 BaseIsSet = true; 2697 Asm->OutStreamer->emitIntValue(-1, Size); 2698 Asm->OutStreamer->AddComment(" base address"); 2699 Asm->OutStreamer->emitSymbolValue(Base, Size); 2700 } else if (NewBase != Begin || P.second.size() > 1) { 2701 // Only use a base address if 2702 // * the existing pool address doesn't match (NewBase != Begin) 2703 // * or, there's more than one entry to share the base address 2704 Base = NewBase; 2705 BaseIsSet = true; 2706 Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx)); 2707 Asm->emitInt8(BaseAddressx); 2708 Asm->OutStreamer->AddComment(" base address index"); 2709 Asm->emitULEB128(DD.getAddressPool().getIndex(Base)); 2710 } 2711 } else if (BaseIsSet && !UseDwarf5) { 2712 BaseIsSet = false; 2713 assert(!Base); 2714 Asm->OutStreamer->emitIntValue(-1, Size); 2715 Asm->OutStreamer->emitIntValue(0, Size); 2716 } 2717 2718 for (const auto *RS : P.second) { 2719 const MCSymbol *Begin = RS->Begin; 2720 const MCSymbol *End = RS->End; 2721 assert(Begin && "Range without a begin symbol?"); 2722 assert(End && "Range without an end symbol?"); 2723 if (Base) { 2724 if (UseDwarf5) { 2725 // Emit offset_pair when we have a base. 2726 Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair)); 2727 Asm->emitInt8(OffsetPair); 2728 Asm->OutStreamer->AddComment(" starting offset"); 2729 Asm->emitLabelDifferenceAsULEB128(Begin, Base); 2730 Asm->OutStreamer->AddComment(" ending offset"); 2731 Asm->emitLabelDifferenceAsULEB128(End, Base); 2732 } else { 2733 Asm->emitLabelDifference(Begin, Base, Size); 2734 Asm->emitLabelDifference(End, Base, Size); 2735 } 2736 } else if (UseDwarf5) { 2737 Asm->OutStreamer->AddComment(StringifyEnum(StartxLength)); 2738 Asm->emitInt8(StartxLength); 2739 Asm->OutStreamer->AddComment(" start index"); 2740 Asm->emitULEB128(DD.getAddressPool().getIndex(Begin)); 2741 Asm->OutStreamer->AddComment(" length"); 2742 Asm->emitLabelDifferenceAsULEB128(End, Begin); 2743 } else { 2744 Asm->OutStreamer->emitSymbolValue(Begin, Size); 2745 Asm->OutStreamer->emitSymbolValue(End, Size); 2746 } 2747 EmitPayload(*RS); 2748 } 2749 } 2750 2751 if (UseDwarf5) { 2752 Asm->OutStreamer->AddComment(StringifyEnum(EndOfList)); 2753 Asm->emitInt8(EndOfList); 2754 } else { 2755 // Terminate the list with two 0 values. 2756 Asm->OutStreamer->emitIntValue(0, Size); 2757 Asm->OutStreamer->emitIntValue(0, Size); 2758 } 2759 } 2760 2761 // Handles emission of both debug_loclist / debug_loclist.dwo 2762 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) { 2763 emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List), 2764 *List.CU, dwarf::DW_LLE_base_addressx, 2765 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length, 2766 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString, 2767 /* ShouldUseBaseAddress */ true, 2768 [&](const DebugLocStream::Entry &E) { 2769 DD.emitDebugLocEntryLocation(E, List.CU); 2770 }); 2771 } 2772 2773 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) { 2774 if (DebugLocs.getLists().empty()) 2775 return; 2776 2777 Asm->OutStreamer->SwitchSection(Sec); 2778 2779 MCSymbol *TableEnd = nullptr; 2780 if (getDwarfVersion() >= 5) 2781 TableEnd = emitLoclistsTableHeader(Asm, *this); 2782 2783 for (const auto &List : DebugLocs.getLists()) 2784 emitLocList(*this, Asm, List); 2785 2786 if (TableEnd) 2787 Asm->OutStreamer->emitLabel(TableEnd); 2788 } 2789 2790 // Emit locations into the .debug_loc/.debug_loclists section. 2791 void DwarfDebug::emitDebugLoc() { 2792 emitDebugLocImpl( 2793 getDwarfVersion() >= 5 2794 ? Asm->getObjFileLowering().getDwarfLoclistsSection() 2795 : Asm->getObjFileLowering().getDwarfLocSection()); 2796 } 2797 2798 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section. 2799 void DwarfDebug::emitDebugLocDWO() { 2800 if (getDwarfVersion() >= 5) { 2801 emitDebugLocImpl( 2802 Asm->getObjFileLowering().getDwarfLoclistsDWOSection()); 2803 2804 return; 2805 } 2806 2807 for (const auto &List : DebugLocs.getLists()) { 2808 Asm->OutStreamer->SwitchSection( 2809 Asm->getObjFileLowering().getDwarfLocDWOSection()); 2810 Asm->OutStreamer->emitLabel(List.Label); 2811 2812 for (const auto &Entry : DebugLocs.getEntries(List)) { 2813 // GDB only supports startx_length in pre-standard split-DWARF. 2814 // (in v5 standard loclists, it currently* /only/ supports base_address + 2815 // offset_pair, so the implementations can't really share much since they 2816 // need to use different representations) 2817 // * as of October 2018, at least 2818 // 2819 // In v5 (see emitLocList), this uses SectionLabels to reuse existing 2820 // addresses in the address pool to minimize object size/relocations. 2821 Asm->emitInt8(dwarf::DW_LLE_startx_length); 2822 unsigned idx = AddrPool.getIndex(Entry.Begin); 2823 Asm->emitULEB128(idx); 2824 // Also the pre-standard encoding is slightly different, emitting this as 2825 // an address-length entry here, but its a ULEB128 in DWARFv5 loclists. 2826 Asm->emitLabelDifference(Entry.End, Entry.Begin, 4); 2827 emitDebugLocEntryLocation(Entry, List.CU); 2828 } 2829 Asm->emitInt8(dwarf::DW_LLE_end_of_list); 2830 } 2831 } 2832 2833 struct ArangeSpan { 2834 const MCSymbol *Start, *End; 2835 }; 2836 2837 // Emit a debug aranges section, containing a CU lookup for any 2838 // address we can tie back to a CU. 2839 void DwarfDebug::emitDebugARanges() { 2840 // Provides a unique id per text section. 2841 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap; 2842 2843 // Filter labels by section. 2844 for (const SymbolCU &SCU : ArangeLabels) { 2845 if (SCU.Sym->isInSection()) { 2846 // Make a note of this symbol and it's section. 2847 MCSection *Section = &SCU.Sym->getSection(); 2848 if (!Section->getKind().isMetadata()) 2849 SectionMap[Section].push_back(SCU); 2850 } else { 2851 // Some symbols (e.g. common/bss on mach-o) can have no section but still 2852 // appear in the output. This sucks as we rely on sections to build 2853 // arange spans. We can do it without, but it's icky. 2854 SectionMap[nullptr].push_back(SCU); 2855 } 2856 } 2857 2858 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans; 2859 2860 for (auto &I : SectionMap) { 2861 MCSection *Section = I.first; 2862 SmallVector<SymbolCU, 8> &List = I.second; 2863 if (List.size() < 1) 2864 continue; 2865 2866 // If we have no section (e.g. common), just write out 2867 // individual spans for each symbol. 2868 if (!Section) { 2869 for (const SymbolCU &Cur : List) { 2870 ArangeSpan Span; 2871 Span.Start = Cur.Sym; 2872 Span.End = nullptr; 2873 assert(Cur.CU); 2874 Spans[Cur.CU].push_back(Span); 2875 } 2876 continue; 2877 } 2878 2879 // Sort the symbols by offset within the section. 2880 llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) { 2881 unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0; 2882 unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0; 2883 2884 // Symbols with no order assigned should be placed at the end. 2885 // (e.g. section end labels) 2886 if (IA == 0) 2887 return false; 2888 if (IB == 0) 2889 return true; 2890 return IA < IB; 2891 }); 2892 2893 // Insert a final terminator. 2894 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section))); 2895 2896 // Build spans between each label. 2897 const MCSymbol *StartSym = List[0].Sym; 2898 for (size_t n = 1, e = List.size(); n < e; n++) { 2899 const SymbolCU &Prev = List[n - 1]; 2900 const SymbolCU &Cur = List[n]; 2901 2902 // Try and build the longest span we can within the same CU. 2903 if (Cur.CU != Prev.CU) { 2904 ArangeSpan Span; 2905 Span.Start = StartSym; 2906 Span.End = Cur.Sym; 2907 assert(Prev.CU); 2908 Spans[Prev.CU].push_back(Span); 2909 StartSym = Cur.Sym; 2910 } 2911 } 2912 } 2913 2914 // Start the dwarf aranges section. 2915 Asm->OutStreamer->SwitchSection( 2916 Asm->getObjFileLowering().getDwarfARangesSection()); 2917 2918 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2919 2920 // Build a list of CUs used. 2921 std::vector<DwarfCompileUnit *> CUs; 2922 for (const auto &it : Spans) { 2923 DwarfCompileUnit *CU = it.first; 2924 CUs.push_back(CU); 2925 } 2926 2927 // Sort the CU list (again, to ensure consistent output order). 2928 llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) { 2929 return A->getUniqueID() < B->getUniqueID(); 2930 }); 2931 2932 // Emit an arange table for each CU we used. 2933 for (DwarfCompileUnit *CU : CUs) { 2934 std::vector<ArangeSpan> &List = Spans[CU]; 2935 2936 // Describe the skeleton CU's offset and length, not the dwo file's. 2937 if (auto *Skel = CU->getSkeleton()) 2938 CU = Skel; 2939 2940 // Emit size of content not including length itself. 2941 unsigned ContentSize = 2942 sizeof(int16_t) + // DWARF ARange version number 2943 Asm->getDwarfOffsetByteSize() + // Offset of CU in the .debug_info 2944 // section 2945 sizeof(int8_t) + // Pointer Size (in bytes) 2946 sizeof(int8_t); // Segment Size (in bytes) 2947 2948 unsigned TupleSize = PtrSize * 2; 2949 2950 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. 2951 unsigned Padding = offsetToAlignment( 2952 Asm->getUnitLengthFieldByteSize() + ContentSize, Align(TupleSize)); 2953 2954 ContentSize += Padding; 2955 ContentSize += (List.size() + 1) * TupleSize; 2956 2957 // For each compile unit, write the list of spans it covers. 2958 Asm->emitDwarfUnitLength(ContentSize, "Length of ARange Set"); 2959 Asm->OutStreamer->AddComment("DWARF Arange version number"); 2960 Asm->emitInt16(dwarf::DW_ARANGES_VERSION); 2961 Asm->OutStreamer->AddComment("Offset Into Debug Info Section"); 2962 emitSectionReference(*CU); 2963 Asm->OutStreamer->AddComment("Address Size (in bytes)"); 2964 Asm->emitInt8(PtrSize); 2965 Asm->OutStreamer->AddComment("Segment Size (in bytes)"); 2966 Asm->emitInt8(0); 2967 2968 Asm->OutStreamer->emitFill(Padding, 0xff); 2969 2970 for (const ArangeSpan &Span : List) { 2971 Asm->emitLabelReference(Span.Start, PtrSize); 2972 2973 // Calculate the size as being from the span start to it's end. 2974 if (Span.End) { 2975 Asm->emitLabelDifference(Span.End, Span.Start, PtrSize); 2976 } else { 2977 // For symbols without an end marker (e.g. common), we 2978 // write a single arange entry containing just that one symbol. 2979 uint64_t Size = SymSize[Span.Start]; 2980 if (Size == 0) 2981 Size = 1; 2982 2983 Asm->OutStreamer->emitIntValue(Size, PtrSize); 2984 } 2985 } 2986 2987 Asm->OutStreamer->AddComment("ARange terminator"); 2988 Asm->OutStreamer->emitIntValue(0, PtrSize); 2989 Asm->OutStreamer->emitIntValue(0, PtrSize); 2990 } 2991 } 2992 2993 /// Emit a single range list. We handle both DWARF v5 and earlier. 2994 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm, 2995 const RangeSpanList &List) { 2996 emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU, 2997 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair, 2998 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list, 2999 llvm::dwarf::RangeListEncodingString, 3000 List.CU->getCUNode()->getRangesBaseAddress() || 3001 DD.getDwarfVersion() >= 5, 3002 [](auto) {}); 3003 } 3004 3005 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) { 3006 if (Holder.getRangeLists().empty()) 3007 return; 3008 3009 assert(useRangesSection()); 3010 assert(!CUMap.empty()); 3011 assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { 3012 return !Pair.second->getCUNode()->isDebugDirectivesOnly(); 3013 })); 3014 3015 Asm->OutStreamer->SwitchSection(Section); 3016 3017 MCSymbol *TableEnd = nullptr; 3018 if (getDwarfVersion() >= 5) 3019 TableEnd = emitRnglistsTableHeader(Asm, Holder); 3020 3021 for (const RangeSpanList &List : Holder.getRangeLists()) 3022 emitRangeList(*this, Asm, List); 3023 3024 if (TableEnd) 3025 Asm->OutStreamer->emitLabel(TableEnd); 3026 } 3027 3028 /// Emit address ranges into the .debug_ranges section or into the DWARF v5 3029 /// .debug_rnglists section. 3030 void DwarfDebug::emitDebugRanges() { 3031 const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 3032 3033 emitDebugRangesImpl(Holder, 3034 getDwarfVersion() >= 5 3035 ? Asm->getObjFileLowering().getDwarfRnglistsSection() 3036 : Asm->getObjFileLowering().getDwarfRangesSection()); 3037 } 3038 3039 void DwarfDebug::emitDebugRangesDWO() { 3040 emitDebugRangesImpl(InfoHolder, 3041 Asm->getObjFileLowering().getDwarfRnglistsDWOSection()); 3042 } 3043 3044 /// Emit the header of a DWARF 5 macro section, or the GNU extension for 3045 /// DWARF 4. 3046 static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD, 3047 const DwarfCompileUnit &CU, uint16_t DwarfVersion) { 3048 enum HeaderFlagMask { 3049 #define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID, 3050 #include "llvm/BinaryFormat/Dwarf.def" 3051 }; 3052 Asm->OutStreamer->AddComment("Macro information version"); 3053 Asm->emitInt16(DwarfVersion >= 5 ? DwarfVersion : 4); 3054 // We emit the line offset flag unconditionally here, since line offset should 3055 // be mostly present. 3056 if (Asm->isDwarf64()) { 3057 Asm->OutStreamer->AddComment("Flags: 64 bit, debug_line_offset present"); 3058 Asm->emitInt8(MACRO_FLAG_OFFSET_SIZE | MACRO_FLAG_DEBUG_LINE_OFFSET); 3059 } else { 3060 Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present"); 3061 Asm->emitInt8(MACRO_FLAG_DEBUG_LINE_OFFSET); 3062 } 3063 Asm->OutStreamer->AddComment("debug_line_offset"); 3064 if (DD.useSplitDwarf()) 3065 Asm->emitDwarfLengthOrOffset(0); 3066 else 3067 Asm->emitDwarfSymbolReference(CU.getLineTableStartSym()); 3068 } 3069 3070 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) { 3071 for (auto *MN : Nodes) { 3072 if (auto *M = dyn_cast<DIMacro>(MN)) 3073 emitMacro(*M); 3074 else if (auto *F = dyn_cast<DIMacroFile>(MN)) 3075 emitMacroFile(*F, U); 3076 else 3077 llvm_unreachable("Unexpected DI type!"); 3078 } 3079 } 3080 3081 void DwarfDebug::emitMacro(DIMacro &M) { 3082 StringRef Name = M.getName(); 3083 StringRef Value = M.getValue(); 3084 3085 // There should be one space between the macro name and the macro value in 3086 // define entries. In undef entries, only the macro name is emitted. 3087 std::string Str = Value.empty() ? Name.str() : (Name + " " + Value).str(); 3088 3089 if (UseDebugMacroSection) { 3090 if (getDwarfVersion() >= 5) { 3091 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define 3092 ? dwarf::DW_MACRO_define_strx 3093 : dwarf::DW_MACRO_undef_strx; 3094 Asm->OutStreamer->AddComment(dwarf::MacroString(Type)); 3095 Asm->emitULEB128(Type); 3096 Asm->OutStreamer->AddComment("Line Number"); 3097 Asm->emitULEB128(M.getLine()); 3098 Asm->OutStreamer->AddComment("Macro String"); 3099 Asm->emitULEB128( 3100 InfoHolder.getStringPool().getIndexedEntry(*Asm, Str).getIndex()); 3101 } else { 3102 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define 3103 ? dwarf::DW_MACRO_GNU_define_indirect 3104 : dwarf::DW_MACRO_GNU_undef_indirect; 3105 Asm->OutStreamer->AddComment(dwarf::GnuMacroString(Type)); 3106 Asm->emitULEB128(Type); 3107 Asm->OutStreamer->AddComment("Line Number"); 3108 Asm->emitULEB128(M.getLine()); 3109 Asm->OutStreamer->AddComment("Macro String"); 3110 Asm->emitDwarfSymbolReference( 3111 InfoHolder.getStringPool().getEntry(*Asm, Str).getSymbol()); 3112 } 3113 } else { 3114 Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType())); 3115 Asm->emitULEB128(M.getMacinfoType()); 3116 Asm->OutStreamer->AddComment("Line Number"); 3117 Asm->emitULEB128(M.getLine()); 3118 Asm->OutStreamer->AddComment("Macro String"); 3119 Asm->OutStreamer->emitBytes(Str); 3120 Asm->emitInt8('\0'); 3121 } 3122 } 3123 3124 void DwarfDebug::emitMacroFileImpl( 3125 DIMacroFile &MF, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile, 3126 StringRef (*MacroFormToString)(unsigned Form)) { 3127 3128 Asm->OutStreamer->AddComment(MacroFormToString(StartFile)); 3129 Asm->emitULEB128(StartFile); 3130 Asm->OutStreamer->AddComment("Line Number"); 3131 Asm->emitULEB128(MF.getLine()); 3132 Asm->OutStreamer->AddComment("File Number"); 3133 DIFile &F = *MF.getFile(); 3134 if (useSplitDwarf()) 3135 Asm->emitULEB128(getDwoLineTable(U)->getFile( 3136 F.getDirectory(), F.getFilename(), getMD5AsBytes(&F), 3137 Asm->OutContext.getDwarfVersion(), F.getSource())); 3138 else 3139 Asm->emitULEB128(U.getOrCreateSourceID(&F)); 3140 handleMacroNodes(MF.getElements(), U); 3141 Asm->OutStreamer->AddComment(MacroFormToString(EndFile)); 3142 Asm->emitULEB128(EndFile); 3143 } 3144 3145 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) { 3146 // DWARFv5 macro and DWARFv4 macinfo share some common encodings, 3147 // so for readibility/uniformity, We are explicitly emitting those. 3148 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file); 3149 if (UseDebugMacroSection) 3150 emitMacroFileImpl( 3151 F, U, dwarf::DW_MACRO_start_file, dwarf::DW_MACRO_end_file, 3152 (getDwarfVersion() >= 5) ? dwarf::MacroString : dwarf::GnuMacroString); 3153 else 3154 emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file, 3155 dwarf::DW_MACINFO_end_file, dwarf::MacinfoString); 3156 } 3157 3158 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) { 3159 for (const auto &P : CUMap) { 3160 auto &TheCU = *P.second; 3161 auto *SkCU = TheCU.getSkeleton(); 3162 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 3163 auto *CUNode = cast<DICompileUnit>(P.first); 3164 DIMacroNodeArray Macros = CUNode->getMacros(); 3165 if (Macros.empty()) 3166 continue; 3167 Asm->OutStreamer->SwitchSection(Section); 3168 Asm->OutStreamer->emitLabel(U.getMacroLabelBegin()); 3169 if (UseDebugMacroSection) 3170 emitMacroHeader(Asm, *this, U, getDwarfVersion()); 3171 handleMacroNodes(Macros, U); 3172 Asm->OutStreamer->AddComment("End Of Macro List Mark"); 3173 Asm->emitInt8(0); 3174 } 3175 } 3176 3177 /// Emit macros into a debug macinfo/macro section. 3178 void DwarfDebug::emitDebugMacinfo() { 3179 auto &ObjLower = Asm->getObjFileLowering(); 3180 emitDebugMacinfoImpl(UseDebugMacroSection 3181 ? ObjLower.getDwarfMacroSection() 3182 : ObjLower.getDwarfMacinfoSection()); 3183 } 3184 3185 void DwarfDebug::emitDebugMacinfoDWO() { 3186 auto &ObjLower = Asm->getObjFileLowering(); 3187 emitDebugMacinfoImpl(UseDebugMacroSection 3188 ? ObjLower.getDwarfMacroDWOSection() 3189 : ObjLower.getDwarfMacinfoDWOSection()); 3190 } 3191 3192 // DWARF5 Experimental Separate Dwarf emitters. 3193 3194 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die, 3195 std::unique_ptr<DwarfCompileUnit> NewU) { 3196 3197 if (!CompilationDir.empty()) 3198 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 3199 addGnuPubAttributes(*NewU, Die); 3200 3201 SkeletonHolder.addUnit(std::move(NewU)); 3202 } 3203 3204 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) { 3205 3206 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 3207 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder, 3208 UnitKind::Skeleton); 3209 DwarfCompileUnit &NewCU = *OwnedUnit; 3210 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 3211 3212 NewCU.initStmtList(); 3213 3214 if (useSegmentedStringOffsetsTable()) 3215 NewCU.addStringOffsetsStart(); 3216 3217 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit)); 3218 3219 return NewCU; 3220 } 3221 3222 // Emit the .debug_info.dwo section for separated dwarf. This contains the 3223 // compile units that would normally be in debug_info. 3224 void DwarfDebug::emitDebugInfoDWO() { 3225 assert(useSplitDwarf() && "No split dwarf debug info?"); 3226 // Don't emit relocations into the dwo file. 3227 InfoHolder.emitUnits(/* UseOffsets */ true); 3228 } 3229 3230 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the 3231 // abbreviations for the .debug_info.dwo section. 3232 void DwarfDebug::emitDebugAbbrevDWO() { 3233 assert(useSplitDwarf() && "No split dwarf?"); 3234 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection()); 3235 } 3236 3237 void DwarfDebug::emitDebugLineDWO() { 3238 assert(useSplitDwarf() && "No split dwarf?"); 3239 SplitTypeUnitFileTable.Emit( 3240 *Asm->OutStreamer, MCDwarfLineTableParams(), 3241 Asm->getObjFileLowering().getDwarfLineDWOSection()); 3242 } 3243 3244 void DwarfDebug::emitStringOffsetsTableHeaderDWO() { 3245 assert(useSplitDwarf() && "No split dwarf?"); 3246 InfoHolder.getStringPool().emitStringOffsetsTableHeader( 3247 *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(), 3248 InfoHolder.getStringOffsetsStartSym()); 3249 } 3250 3251 // Emit the .debug_str.dwo section for separated dwarf. This contains the 3252 // string section and is identical in format to traditional .debug_str 3253 // sections. 3254 void DwarfDebug::emitDebugStrDWO() { 3255 if (useSegmentedStringOffsetsTable()) 3256 emitStringOffsetsTableHeaderDWO(); 3257 assert(useSplitDwarf() && "No split dwarf?"); 3258 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection(); 3259 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), 3260 OffSec, /* UseRelativeOffsets = */ false); 3261 } 3262 3263 // Emit address pool. 3264 void DwarfDebug::emitDebugAddr() { 3265 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection()); 3266 } 3267 3268 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) { 3269 if (!useSplitDwarf()) 3270 return nullptr; 3271 const DICompileUnit *DIUnit = CU.getCUNode(); 3272 SplitTypeUnitFileTable.maybeSetRootFile( 3273 DIUnit->getDirectory(), DIUnit->getFilename(), 3274 getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource()); 3275 return &SplitTypeUnitFileTable; 3276 } 3277 3278 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) { 3279 MD5 Hash; 3280 Hash.update(Identifier); 3281 // ... take the least significant 8 bytes and return those. Our MD5 3282 // implementation always returns its results in little endian, so we actually 3283 // need the "high" word. 3284 MD5::MD5Result Result; 3285 Hash.final(Result); 3286 return Result.high(); 3287 } 3288 3289 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU, 3290 StringRef Identifier, DIE &RefDie, 3291 const DICompositeType *CTy) { 3292 // Fast path if we're building some type units and one has already used the 3293 // address pool we know we're going to throw away all this work anyway, so 3294 // don't bother building dependent types. 3295 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed()) 3296 return; 3297 3298 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0)); 3299 if (!Ins.second) { 3300 CU.addDIETypeSignature(RefDie, Ins.first->second); 3301 return; 3302 } 3303 3304 bool TopLevelType = TypeUnitsUnderConstruction.empty(); 3305 AddrPool.resetUsedFlag(); 3306 3307 auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder, 3308 getDwoLineTable(CU)); 3309 DwarfTypeUnit &NewTU = *OwnedUnit; 3310 DIE &UnitDie = NewTU.getUnitDie(); 3311 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy); 3312 3313 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 3314 CU.getLanguage()); 3315 3316 uint64_t Signature = makeTypeSignature(Identifier); 3317 NewTU.setTypeSignature(Signature); 3318 Ins.first->second = Signature; 3319 3320 if (useSplitDwarf()) { 3321 MCSection *Section = 3322 getDwarfVersion() <= 4 3323 ? Asm->getObjFileLowering().getDwarfTypesDWOSection() 3324 : Asm->getObjFileLowering().getDwarfInfoDWOSection(); 3325 NewTU.setSection(Section); 3326 } else { 3327 MCSection *Section = 3328 getDwarfVersion() <= 4 3329 ? Asm->getObjFileLowering().getDwarfTypesSection(Signature) 3330 : Asm->getObjFileLowering().getDwarfInfoSection(Signature); 3331 NewTU.setSection(Section); 3332 // Non-split type units reuse the compile unit's line table. 3333 CU.applyStmtList(UnitDie); 3334 } 3335 3336 // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type 3337 // units. 3338 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 3339 NewTU.addStringOffsetsStart(); 3340 3341 NewTU.setType(NewTU.createTypeDIE(CTy)); 3342 3343 if (TopLevelType) { 3344 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction); 3345 TypeUnitsUnderConstruction.clear(); 3346 3347 // Types referencing entries in the address table cannot be placed in type 3348 // units. 3349 if (AddrPool.hasBeenUsed()) { 3350 3351 // Remove all the types built while building this type. 3352 // This is pessimistic as some of these types might not be dependent on 3353 // the type that used an address. 3354 for (const auto &TU : TypeUnitsToAdd) 3355 TypeSignatures.erase(TU.second); 3356 3357 // Construct this type in the CU directly. 3358 // This is inefficient because all the dependent types will be rebuilt 3359 // from scratch, including building them in type units, discovering that 3360 // they depend on addresses, throwing them out and rebuilding them. 3361 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy)); 3362 return; 3363 } 3364 3365 // If the type wasn't dependent on fission addresses, finish adding the type 3366 // and all its dependent types. 3367 for (auto &TU : TypeUnitsToAdd) { 3368 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get()); 3369 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf()); 3370 } 3371 } 3372 CU.addDIETypeSignature(RefDie, Signature); 3373 } 3374 3375 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD) 3376 : DD(DD), 3377 TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)), AddrPoolUsed(DD->AddrPool.hasBeenUsed()) { 3378 DD->TypeUnitsUnderConstruction.clear(); 3379 DD->AddrPool.resetUsedFlag(); 3380 } 3381 3382 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() { 3383 DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction); 3384 DD->AddrPool.resetUsedFlag(AddrPoolUsed); 3385 } 3386 3387 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() { 3388 return NonTypeUnitContext(this); 3389 } 3390 3391 // Add the Name along with its companion DIE to the appropriate accelerator 3392 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for 3393 // AccelTableKind::Apple, we use the table we got as an argument). If 3394 // accelerator tables are disabled, this function does nothing. 3395 template <typename DataT> 3396 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU, 3397 AccelTable<DataT> &AppleAccel, StringRef Name, 3398 const DIE &Die) { 3399 if (getAccelTableKind() == AccelTableKind::None) 3400 return; 3401 3402 if (getAccelTableKind() != AccelTableKind::Apple && 3403 CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default) 3404 return; 3405 3406 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 3407 DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name); 3408 3409 switch (getAccelTableKind()) { 3410 case AccelTableKind::Apple: 3411 AppleAccel.addName(Ref, Die); 3412 break; 3413 case AccelTableKind::Dwarf: 3414 AccelDebugNames.addName(Ref, Die); 3415 break; 3416 case AccelTableKind::Default: 3417 llvm_unreachable("Default should have already been resolved."); 3418 case AccelTableKind::None: 3419 llvm_unreachable("None handled above"); 3420 } 3421 } 3422 3423 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name, 3424 const DIE &Die) { 3425 addAccelNameImpl(CU, AccelNames, Name, Die); 3426 } 3427 3428 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name, 3429 const DIE &Die) { 3430 // ObjC names go only into the Apple accelerator tables. 3431 if (getAccelTableKind() == AccelTableKind::Apple) 3432 addAccelNameImpl(CU, AccelObjC, Name, Die); 3433 } 3434 3435 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name, 3436 const DIE &Die) { 3437 addAccelNameImpl(CU, AccelNamespace, Name, Die); 3438 } 3439 3440 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name, 3441 const DIE &Die, char Flags) { 3442 addAccelNameImpl(CU, AccelTypes, Name, Die); 3443 } 3444 3445 uint16_t DwarfDebug::getDwarfVersion() const { 3446 return Asm->OutStreamer->getContext().getDwarfVersion(); 3447 } 3448 3449 dwarf::Form DwarfDebug::getDwarfSectionOffsetForm() const { 3450 if (Asm->getDwarfVersion() >= 4) 3451 return dwarf::Form::DW_FORM_sec_offset; 3452 assert((!Asm->isDwarf64() || (Asm->getDwarfVersion() == 3)) && 3453 "DWARF64 is not defined prior DWARFv3"); 3454 return Asm->isDwarf64() ? dwarf::Form::DW_FORM_data8 3455 : dwarf::Form::DW_FORM_data4; 3456 } 3457 3458 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) { 3459 auto I = SectionLabels.find(S); 3460 if (I == SectionLabels.end()) 3461 return nullptr; 3462 return I->second; 3463 } 3464 void DwarfDebug::insertSectionLabel(const MCSymbol *S) { 3465 if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second) 3466 if (useSplitDwarf() || getDwarfVersion() >= 5) 3467 AddrPool.getIndex(S); 3468 } 3469 3470 Optional<MD5::MD5Result> DwarfDebug::getMD5AsBytes(const DIFile *File) const { 3471 assert(File); 3472 if (getDwarfVersion() < 5) 3473 return None; 3474 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = File->getChecksum(); 3475 if (!Checksum || Checksum->Kind != DIFile::CSK_MD5) 3476 return None; 3477 3478 // Convert the string checksum to an MD5Result for the streamer. 3479 // The verifier validates the checksum so we assume it's okay. 3480 // An MD5 checksum is 16 bytes. 3481 std::string ChecksumString = fromHex(Checksum->Value); 3482 MD5::MD5Result CKMem; 3483 std::copy(ChecksumString.begin(), ChecksumString.end(), CKMem.Bytes.data()); 3484 return CKMem; 3485 } 3486