1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing dwarf debug info into asm files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DwarfDebug.h" 14 #include "ByteStreamer.h" 15 #include "DIEHash.h" 16 #include "DwarfCompileUnit.h" 17 #include "DwarfExpression.h" 18 #include "DwarfUnit.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/CodeGen/AsmPrinter.h" 24 #include "llvm/CodeGen/DIE.h" 25 #include "llvm/CodeGen/LexicalScopes.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineModuleInfo.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/TargetInstrInfo.h" 31 #include "llvm/CodeGen/TargetLowering.h" 32 #include "llvm/CodeGen/TargetRegisterInfo.h" 33 #include "llvm/CodeGen/TargetSubtargetInfo.h" 34 #include "llvm/DebugInfo/DWARF/DWARFExpression.h" 35 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/MC/MCAsmInfo.h" 41 #include "llvm/MC/MCContext.h" 42 #include "llvm/MC/MCSection.h" 43 #include "llvm/MC/MCStreamer.h" 44 #include "llvm/MC/MCSymbol.h" 45 #include "llvm/MC/MCTargetOptions.h" 46 #include "llvm/MC/MachineLocation.h" 47 #include "llvm/MC/SectionKind.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MD5.h" 54 #include "llvm/Support/MathExtras.h" 55 #include "llvm/Support/Timer.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include "llvm/Target/TargetLoweringObjectFile.h" 58 #include "llvm/Target/TargetMachine.h" 59 #include <algorithm> 60 #include <cstddef> 61 #include <iterator> 62 #include <string> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "dwarfdebug" 67 68 STATISTIC(NumCSParams, "Number of dbg call site params created"); 69 70 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier( 71 "use-dwarf-ranges-base-address-specifier", cl::Hidden, 72 cl::desc("Use base address specifiers in debug_ranges"), cl::init(false)); 73 74 static cl::opt<bool> GenerateARangeSection("generate-arange-section", 75 cl::Hidden, 76 cl::desc("Generate dwarf aranges"), 77 cl::init(false)); 78 79 static cl::opt<bool> 80 GenerateDwarfTypeUnits("generate-type-units", cl::Hidden, 81 cl::desc("Generate DWARF4 type units."), 82 cl::init(false)); 83 84 static cl::opt<bool> SplitDwarfCrossCuReferences( 85 "split-dwarf-cross-cu-references", cl::Hidden, 86 cl::desc("Enable cross-cu references in DWO files"), cl::init(false)); 87 88 enum DefaultOnOff { Default, Enable, Disable }; 89 90 static cl::opt<DefaultOnOff> UnknownLocations( 91 "use-unknown-locations", cl::Hidden, 92 cl::desc("Make an absence of debug location information explicit."), 93 cl::values(clEnumVal(Default, "At top of block or after label"), 94 clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")), 95 cl::init(Default)); 96 97 static cl::opt<AccelTableKind> AccelTables( 98 "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."), 99 cl::values(clEnumValN(AccelTableKind::Default, "Default", 100 "Default for platform"), 101 clEnumValN(AccelTableKind::None, "Disable", "Disabled."), 102 clEnumValN(AccelTableKind::Apple, "Apple", "Apple"), 103 clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")), 104 cl::init(AccelTableKind::Default)); 105 106 static cl::opt<DefaultOnOff> 107 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden, 108 cl::desc("Use inlined strings rather than string section."), 109 cl::values(clEnumVal(Default, "Default for platform"), 110 clEnumVal(Enable, "Enabled"), 111 clEnumVal(Disable, "Disabled")), 112 cl::init(Default)); 113 114 static cl::opt<bool> 115 NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden, 116 cl::desc("Disable emission .debug_ranges section."), 117 cl::init(false)); 118 119 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences( 120 "dwarf-sections-as-references", cl::Hidden, 121 cl::desc("Use sections+offset as references rather than labels."), 122 cl::values(clEnumVal(Default, "Default for platform"), 123 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 124 cl::init(Default)); 125 126 static cl::opt<bool> 127 UseGNUDebugMacro("use-gnu-debug-macro", cl::Hidden, 128 cl::desc("Emit the GNU .debug_macro format with DWARF <5"), 129 cl::init(false)); 130 131 static cl::opt<DefaultOnOff> DwarfOpConvert( 132 "dwarf-op-convert", cl::Hidden, 133 cl::desc("Enable use of the DWARFv5 DW_OP_convert operator"), 134 cl::values(clEnumVal(Default, "Default for platform"), 135 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 136 cl::init(Default)); 137 138 enum LinkageNameOption { 139 DefaultLinkageNames, 140 AllLinkageNames, 141 AbstractLinkageNames 142 }; 143 144 static cl::opt<LinkageNameOption> 145 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden, 146 cl::desc("Which DWARF linkage-name attributes to emit."), 147 cl::values(clEnumValN(DefaultLinkageNames, "Default", 148 "Default for platform"), 149 clEnumValN(AllLinkageNames, "All", "All"), 150 clEnumValN(AbstractLinkageNames, "Abstract", 151 "Abstract subprograms")), 152 cl::init(DefaultLinkageNames)); 153 154 static cl::opt<DwarfDebug::MinimizeAddrInV5> MinimizeAddrInV5Option( 155 "minimize-addr-in-v5", cl::Hidden, 156 cl::desc("Always use DW_AT_ranges in DWARFv5 whenever it could allow more " 157 "address pool entry sharing to reduce relocations/object size"), 158 cl::values(clEnumValN(DwarfDebug::MinimizeAddrInV5::Default, "Default", 159 "Default address minimization strategy"), 160 clEnumValN(DwarfDebug::MinimizeAddrInV5::Ranges, "Ranges", 161 "Use rnglists for contiguous ranges if that allows " 162 "using a pre-existing base address"), 163 clEnumValN(DwarfDebug::MinimizeAddrInV5::Expressions, 164 "Expressions", 165 "Use exprloc addrx+offset expressions for any " 166 "address with a prior base address"), 167 clEnumValN(DwarfDebug::MinimizeAddrInV5::Form, "Form", 168 "Use addrx+offset extension form for any address " 169 "with a prior base address"), 170 clEnumValN(DwarfDebug::MinimizeAddrInV5::Disabled, "Disabled", 171 "Stuff")), 172 cl::init(DwarfDebug::MinimizeAddrInV5::Default)); 173 174 static constexpr unsigned ULEB128PadSize = 4; 175 176 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) { 177 getActiveStreamer().emitInt8( 178 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op) 179 : dwarf::OperationEncodingString(Op)); 180 } 181 182 void DebugLocDwarfExpression::emitSigned(int64_t Value) { 183 getActiveStreamer().emitSLEB128(Value, Twine(Value)); 184 } 185 186 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) { 187 getActiveStreamer().emitULEB128(Value, Twine(Value)); 188 } 189 190 void DebugLocDwarfExpression::emitData1(uint8_t Value) { 191 getActiveStreamer().emitInt8(Value, Twine(Value)); 192 } 193 194 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) { 195 assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit"); 196 getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize); 197 } 198 199 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI, 200 llvm::Register MachineReg) { 201 // This information is not available while emitting .debug_loc entries. 202 return false; 203 } 204 205 void DebugLocDwarfExpression::enableTemporaryBuffer() { 206 assert(!IsBuffering && "Already buffering?"); 207 if (!TmpBuf) 208 TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments); 209 IsBuffering = true; 210 } 211 212 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; } 213 214 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() { 215 return TmpBuf ? TmpBuf->Bytes.size() : 0; 216 } 217 218 void DebugLocDwarfExpression::commitTemporaryBuffer() { 219 if (!TmpBuf) 220 return; 221 for (auto Byte : enumerate(TmpBuf->Bytes)) { 222 const char *Comment = (Byte.index() < TmpBuf->Comments.size()) 223 ? TmpBuf->Comments[Byte.index()].c_str() 224 : ""; 225 OutBS.emitInt8(Byte.value(), Comment); 226 } 227 TmpBuf->Bytes.clear(); 228 TmpBuf->Comments.clear(); 229 } 230 231 const DIType *DbgVariable::getType() const { 232 return getVariable()->getType(); 233 } 234 235 /// Get .debug_loc entry for the instruction range starting at MI. 236 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) { 237 const DIExpression *Expr = MI->getDebugExpression(); 238 const bool IsVariadic = MI->isDebugValueList(); 239 assert(MI->getNumOperands() >= 3); 240 SmallVector<DbgValueLocEntry, 4> DbgValueLocEntries; 241 for (const MachineOperand &Op : MI->debug_operands()) { 242 if (Op.isReg()) { 243 MachineLocation MLoc(Op.getReg(), 244 MI->isNonListDebugValue() && MI->isDebugOffsetImm()); 245 DbgValueLocEntries.push_back(DbgValueLocEntry(MLoc)); 246 } else if (Op.isTargetIndex()) { 247 DbgValueLocEntries.push_back( 248 DbgValueLocEntry(TargetIndexLocation(Op.getIndex(), Op.getOffset()))); 249 } else if (Op.isImm()) 250 DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getImm())); 251 else if (Op.isFPImm()) 252 DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getFPImm())); 253 else if (Op.isCImm()) 254 DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getCImm())); 255 else 256 llvm_unreachable("Unexpected debug operand in DBG_VALUE* instruction!"); 257 } 258 return DbgValueLoc(Expr, DbgValueLocEntries, IsVariadic); 259 } 260 261 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) { 262 assert(FrameIndexExprs.empty() && "Already initialized?"); 263 assert(!ValueLoc.get() && "Already initialized?"); 264 265 assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable"); 266 assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() && 267 "Wrong inlined-at"); 268 269 ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue)); 270 if (auto *E = DbgValue->getDebugExpression()) 271 if (E->getNumElements()) 272 FrameIndexExprs.push_back({0, E}); 273 } 274 275 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const { 276 if (FrameIndexExprs.size() == 1) 277 return FrameIndexExprs; 278 279 assert(llvm::all_of(FrameIndexExprs, 280 [](const FrameIndexExpr &A) { 281 return A.Expr->isFragment(); 282 }) && 283 "multiple FI expressions without DW_OP_LLVM_fragment"); 284 llvm::sort(FrameIndexExprs, 285 [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool { 286 return A.Expr->getFragmentInfo()->OffsetInBits < 287 B.Expr->getFragmentInfo()->OffsetInBits; 288 }); 289 290 return FrameIndexExprs; 291 } 292 293 void DbgVariable::addMMIEntry(const DbgVariable &V) { 294 assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry"); 295 assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry"); 296 assert(V.getVariable() == getVariable() && "conflicting variable"); 297 assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location"); 298 299 assert(!FrameIndexExprs.empty() && "Expected an MMI entry"); 300 assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry"); 301 302 // FIXME: This logic should not be necessary anymore, as we now have proper 303 // deduplication. However, without it, we currently run into the assertion 304 // below, which means that we are likely dealing with broken input, i.e. two 305 // non-fragment entries for the same variable at different frame indices. 306 if (FrameIndexExprs.size()) { 307 auto *Expr = FrameIndexExprs.back().Expr; 308 if (!Expr || !Expr->isFragment()) 309 return; 310 } 311 312 for (const auto &FIE : V.FrameIndexExprs) 313 // Ignore duplicate entries. 314 if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) { 315 return FIE.FI == Other.FI && FIE.Expr == Other.Expr; 316 })) 317 FrameIndexExprs.push_back(FIE); 318 319 assert((FrameIndexExprs.size() == 1 || 320 llvm::all_of(FrameIndexExprs, 321 [](FrameIndexExpr &FIE) { 322 return FIE.Expr && FIE.Expr->isFragment(); 323 })) && 324 "conflicting locations for variable"); 325 } 326 327 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion, 328 bool GenerateTypeUnits, 329 DebuggerKind Tuning, 330 const Triple &TT) { 331 // Honor an explicit request. 332 if (AccelTables != AccelTableKind::Default) 333 return AccelTables; 334 335 // Accelerator tables with type units are currently not supported. 336 if (GenerateTypeUnits) 337 return AccelTableKind::None; 338 339 // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5 340 // always implies debug_names. For lower standard versions we use apple 341 // accelerator tables on apple platforms and debug_names elsewhere. 342 if (DwarfVersion >= 5) 343 return AccelTableKind::Dwarf; 344 if (Tuning == DebuggerKind::LLDB) 345 return TT.isOSBinFormatMachO() ? AccelTableKind::Apple 346 : AccelTableKind::Dwarf; 347 return AccelTableKind::None; 348 } 349 350 DwarfDebug::DwarfDebug(AsmPrinter *A) 351 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()), 352 InfoHolder(A, "info_string", DIEValueAllocator), 353 SkeletonHolder(A, "skel_string", DIEValueAllocator), 354 IsDarwin(A->TM.getTargetTriple().isOSDarwin()) { 355 const Triple &TT = Asm->TM.getTargetTriple(); 356 357 // Make sure we know our "debugger tuning". The target option takes 358 // precedence; fall back to triple-based defaults. 359 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default) 360 DebuggerTuning = Asm->TM.Options.DebuggerTuning; 361 else if (IsDarwin) 362 DebuggerTuning = DebuggerKind::LLDB; 363 else if (TT.isPS4CPU()) 364 DebuggerTuning = DebuggerKind::SCE; 365 else if (TT.isOSAIX()) 366 DebuggerTuning = DebuggerKind::DBX; 367 else 368 DebuggerTuning = DebuggerKind::GDB; 369 370 if (DwarfInlinedStrings == Default) 371 UseInlineStrings = TT.isNVPTX() || tuneForDBX(); 372 else 373 UseInlineStrings = DwarfInlinedStrings == Enable; 374 375 UseLocSection = !TT.isNVPTX(); 376 377 HasAppleExtensionAttributes = tuneForLLDB(); 378 379 // Handle split DWARF. 380 HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty(); 381 382 // SCE defaults to linkage names only for abstract subprograms. 383 if (DwarfLinkageNames == DefaultLinkageNames) 384 UseAllLinkageNames = !tuneForSCE(); 385 else 386 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames; 387 388 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; 389 unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber 390 : MMI->getModule()->getDwarfVersion(); 391 // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2. 392 DwarfVersion = 393 TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION); 394 395 bool Dwarf64 = DwarfVersion >= 3 && // DWARF64 was introduced in DWARFv3. 396 TT.isArch64Bit(); // DWARF64 requires 64-bit relocations. 397 398 // Support DWARF64 399 // 1: For ELF when requested. 400 // 2: For XCOFF64: the AIX assembler will fill in debug section lengths 401 // according to the DWARF64 format for 64-bit assembly, so we must use 402 // DWARF64 in the compiler too for 64-bit mode. 403 Dwarf64 &= 404 ((Asm->TM.Options.MCOptions.Dwarf64 || MMI->getModule()->isDwarf64()) && 405 TT.isOSBinFormatELF()) || 406 TT.isOSBinFormatXCOFF(); 407 408 if (!Dwarf64 && TT.isArch64Bit() && TT.isOSBinFormatXCOFF()) 409 report_fatal_error("XCOFF requires DWARF64 for 64-bit mode!"); 410 411 UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX(); 412 413 // Use sections as references. Force for NVPTX. 414 if (DwarfSectionsAsReferences == Default) 415 UseSectionsAsReferences = TT.isNVPTX(); 416 else 417 UseSectionsAsReferences = DwarfSectionsAsReferences == Enable; 418 419 // Don't generate type units for unsupported object file formats. 420 GenerateTypeUnits = (A->TM.getTargetTriple().isOSBinFormatELF() || 421 A->TM.getTargetTriple().isOSBinFormatWasm()) && 422 GenerateDwarfTypeUnits; 423 424 TheAccelTableKind = computeAccelTableKind( 425 DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple()); 426 427 // Work around a GDB bug. GDB doesn't support the standard opcode; 428 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which 429 // is defined as of DWARF 3. 430 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented 431 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616 432 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3; 433 434 // GDB does not fully support the DWARF 4 representation for bitfields. 435 UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB(); 436 437 // The DWARF v5 string offsets table has - possibly shared - contributions 438 // from each compile and type unit each preceded by a header. The string 439 // offsets table used by the pre-DWARF v5 split-DWARF implementation uses 440 // a monolithic string offsets table without any header. 441 UseSegmentedStringOffsetsTable = DwarfVersion >= 5; 442 443 // Emit call-site-param debug info for GDB and LLDB, if the target supports 444 // the debug entry values feature. It can also be enabled explicitly. 445 EmitDebugEntryValues = Asm->TM.Options.ShouldEmitDebugEntryValues(); 446 447 // It is unclear if the GCC .debug_macro extension is well-specified 448 // for split DWARF. For now, do not allow LLVM to emit it. 449 UseDebugMacroSection = 450 DwarfVersion >= 5 || (UseGNUDebugMacro && !useSplitDwarf()); 451 if (DwarfOpConvert == Default) 452 EnableOpConvert = !((tuneForGDB() && useSplitDwarf()) || (tuneForLLDB() && !TT.isOSBinFormatMachO())); 453 else 454 EnableOpConvert = (DwarfOpConvert == Enable); 455 456 // Split DWARF would benefit object size significantly by trading reductions 457 // in address pool usage for slightly increased range list encodings. 458 if (DwarfVersion >= 5) { 459 MinimizeAddr = MinimizeAddrInV5Option; 460 // FIXME: In the future, enable this by default for Split DWARF where the 461 // tradeoff is more pronounced due to being able to offload the range 462 // lists to the dwo file and shrink object files/reduce relocations there. 463 if (MinimizeAddr == MinimizeAddrInV5::Default) 464 MinimizeAddr = MinimizeAddrInV5::Disabled; 465 } 466 467 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion); 468 Asm->OutStreamer->getContext().setDwarfFormat(Dwarf64 ? dwarf::DWARF64 469 : dwarf::DWARF32); 470 } 471 472 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. 473 DwarfDebug::~DwarfDebug() = default; 474 475 static bool isObjCClass(StringRef Name) { 476 return Name.startswith("+") || Name.startswith("-"); 477 } 478 479 static bool hasObjCCategory(StringRef Name) { 480 if (!isObjCClass(Name)) 481 return false; 482 483 return Name.find(") ") != StringRef::npos; 484 } 485 486 static void getObjCClassCategory(StringRef In, StringRef &Class, 487 StringRef &Category) { 488 if (!hasObjCCategory(In)) { 489 Class = In.slice(In.find('[') + 1, In.find(' ')); 490 Category = ""; 491 return; 492 } 493 494 Class = In.slice(In.find('[') + 1, In.find('(')); 495 Category = In.slice(In.find('[') + 1, In.find(' ')); 496 } 497 498 static StringRef getObjCMethodName(StringRef In) { 499 return In.slice(In.find(' ') + 1, In.find(']')); 500 } 501 502 // Add the various names to the Dwarf accelerator table names. 503 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU, 504 const DISubprogram *SP, DIE &Die) { 505 if (getAccelTableKind() != AccelTableKind::Apple && 506 CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None) 507 return; 508 509 if (!SP->isDefinition()) 510 return; 511 512 if (SP->getName() != "") 513 addAccelName(CU, SP->getName(), Die); 514 515 // If the linkage name is different than the name, go ahead and output that as 516 // well into the name table. Only do that if we are going to actually emit 517 // that name. 518 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() && 519 (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP))) 520 addAccelName(CU, SP->getLinkageName(), Die); 521 522 // If this is an Objective-C selector name add it to the ObjC accelerator 523 // too. 524 if (isObjCClass(SP->getName())) { 525 StringRef Class, Category; 526 getObjCClassCategory(SP->getName(), Class, Category); 527 addAccelObjC(CU, Class, Die); 528 if (Category != "") 529 addAccelObjC(CU, Category, Die); 530 // Also add the base method name to the name table. 531 addAccelName(CU, getObjCMethodName(SP->getName()), Die); 532 } 533 } 534 535 /// Check whether we should create a DIE for the given Scope, return true 536 /// if we don't create a DIE (the corresponding DIE is null). 537 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { 538 if (Scope->isAbstractScope()) 539 return false; 540 541 // We don't create a DIE if there is no Range. 542 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); 543 if (Ranges.empty()) 544 return true; 545 546 if (Ranges.size() > 1) 547 return false; 548 549 // We don't create a DIE if we have a single Range and the end label 550 // is null. 551 return !getLabelAfterInsn(Ranges.front().second); 552 } 553 554 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) { 555 F(CU); 556 if (auto *SkelCU = CU.getSkeleton()) 557 if (CU.getCUNode()->getSplitDebugInlining()) 558 F(*SkelCU); 559 } 560 561 bool DwarfDebug::shareAcrossDWOCUs() const { 562 return SplitDwarfCrossCuReferences; 563 } 564 565 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU, 566 LexicalScope *Scope) { 567 assert(Scope && Scope->getScopeNode()); 568 assert(Scope->isAbstractScope()); 569 assert(!Scope->getInlinedAt()); 570 571 auto *SP = cast<DISubprogram>(Scope->getScopeNode()); 572 573 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram 574 // was inlined from another compile unit. 575 if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining()) 576 // Avoid building the original CU if it won't be used 577 SrcCU.constructAbstractSubprogramScopeDIE(Scope); 578 else { 579 auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 580 if (auto *SkelCU = CU.getSkeleton()) { 581 (shareAcrossDWOCUs() ? CU : SrcCU) 582 .constructAbstractSubprogramScopeDIE(Scope); 583 if (CU.getCUNode()->getSplitDebugInlining()) 584 SkelCU->constructAbstractSubprogramScopeDIE(Scope); 585 } else 586 CU.constructAbstractSubprogramScopeDIE(Scope); 587 } 588 } 589 590 DIE &DwarfDebug::constructSubprogramDefinitionDIE(const DISubprogram *SP) { 591 DICompileUnit *Unit = SP->getUnit(); 592 assert(SP->isDefinition() && "Subprogram not a definition"); 593 assert(Unit && "Subprogram definition without parent unit"); 594 auto &CU = getOrCreateDwarfCompileUnit(Unit); 595 return *CU.getOrCreateSubprogramDIE(SP); 596 } 597 598 /// Represents a parameter whose call site value can be described by applying a 599 /// debug expression to a register in the forwarded register worklist. 600 struct FwdRegParamInfo { 601 /// The described parameter register. 602 unsigned ParamReg; 603 604 /// Debug expression that has been built up when walking through the 605 /// instruction chain that produces the parameter's value. 606 const DIExpression *Expr; 607 }; 608 609 /// Register worklist for finding call site values. 610 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>; 611 612 /// Append the expression \p Addition to \p Original and return the result. 613 static const DIExpression *combineDIExpressions(const DIExpression *Original, 614 const DIExpression *Addition) { 615 std::vector<uint64_t> Elts = Addition->getElements().vec(); 616 // Avoid multiple DW_OP_stack_values. 617 if (Original->isImplicit() && Addition->isImplicit()) 618 erase_value(Elts, dwarf::DW_OP_stack_value); 619 const DIExpression *CombinedExpr = 620 (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original; 621 return CombinedExpr; 622 } 623 624 /// Emit call site parameter entries that are described by the given value and 625 /// debug expression. 626 template <typename ValT> 627 static void finishCallSiteParams(ValT Val, const DIExpression *Expr, 628 ArrayRef<FwdRegParamInfo> DescribedParams, 629 ParamSet &Params) { 630 for (auto Param : DescribedParams) { 631 bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0; 632 633 // TODO: Entry value operations can currently not be combined with any 634 // other expressions, so we can't emit call site entries in those cases. 635 if (ShouldCombineExpressions && Expr->isEntryValue()) 636 continue; 637 638 // If a parameter's call site value is produced by a chain of 639 // instructions we may have already created an expression for the 640 // parameter when walking through the instructions. Append that to the 641 // base expression. 642 const DIExpression *CombinedExpr = 643 ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr) 644 : Expr; 645 assert((!CombinedExpr || CombinedExpr->isValid()) && 646 "Combined debug expression is invalid"); 647 648 DbgValueLoc DbgLocVal(CombinedExpr, DbgValueLocEntry(Val)); 649 DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal); 650 Params.push_back(CSParm); 651 ++NumCSParams; 652 } 653 } 654 655 /// Add \p Reg to the worklist, if it's not already present, and mark that the 656 /// given parameter registers' values can (potentially) be described using 657 /// that register and an debug expression. 658 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg, 659 const DIExpression *Expr, 660 ArrayRef<FwdRegParamInfo> ParamsToAdd) { 661 auto I = Worklist.insert({Reg, {}}); 662 auto &ParamsForFwdReg = I.first->second; 663 for (auto Param : ParamsToAdd) { 664 assert(none_of(ParamsForFwdReg, 665 [Param](const FwdRegParamInfo &D) { 666 return D.ParamReg == Param.ParamReg; 667 }) && 668 "Same parameter described twice by forwarding reg"); 669 670 // If a parameter's call site value is produced by a chain of 671 // instructions we may have already created an expression for the 672 // parameter when walking through the instructions. Append that to the 673 // new expression. 674 const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr); 675 ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr}); 676 } 677 } 678 679 /// Interpret values loaded into registers by \p CurMI. 680 static void interpretValues(const MachineInstr *CurMI, 681 FwdRegWorklist &ForwardedRegWorklist, 682 ParamSet &Params) { 683 684 const MachineFunction *MF = CurMI->getMF(); 685 const DIExpression *EmptyExpr = 686 DIExpression::get(MF->getFunction().getContext(), {}); 687 const auto &TRI = *MF->getSubtarget().getRegisterInfo(); 688 const auto &TII = *MF->getSubtarget().getInstrInfo(); 689 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 690 691 // If an instruction defines more than one item in the worklist, we may run 692 // into situations where a worklist register's value is (potentially) 693 // described by the previous value of another register that is also defined 694 // by that instruction. 695 // 696 // This can for example occur in cases like this: 697 // 698 // $r1 = mov 123 699 // $r0, $r1 = mvrr $r1, 456 700 // call @foo, $r0, $r1 701 // 702 // When describing $r1's value for the mvrr instruction, we need to make sure 703 // that we don't finalize an entry value for $r0, as that is dependent on the 704 // previous value of $r1 (123 rather than 456). 705 // 706 // In order to not have to distinguish between those cases when finalizing 707 // entry values, we simply postpone adding new parameter registers to the 708 // worklist, by first keeping them in this temporary container until the 709 // instruction has been handled. 710 FwdRegWorklist TmpWorklistItems; 711 712 // If the MI is an instruction defining one or more parameters' forwarding 713 // registers, add those defines. 714 auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI, 715 SmallSetVector<unsigned, 4> &Defs) { 716 if (MI.isDebugInstr()) 717 return; 718 719 for (const MachineOperand &MO : MI.operands()) { 720 if (MO.isReg() && MO.isDef() && 721 Register::isPhysicalRegister(MO.getReg())) { 722 for (auto &FwdReg : ForwardedRegWorklist) 723 if (TRI.regsOverlap(FwdReg.first, MO.getReg())) 724 Defs.insert(FwdReg.first); 725 } 726 } 727 }; 728 729 // Set of worklist registers that are defined by this instruction. 730 SmallSetVector<unsigned, 4> FwdRegDefs; 731 732 getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs); 733 if (FwdRegDefs.empty()) 734 return; 735 736 for (auto ParamFwdReg : FwdRegDefs) { 737 if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) { 738 if (ParamValue->first.isImm()) { 739 int64_t Val = ParamValue->first.getImm(); 740 finishCallSiteParams(Val, ParamValue->second, 741 ForwardedRegWorklist[ParamFwdReg], Params); 742 } else if (ParamValue->first.isReg()) { 743 Register RegLoc = ParamValue->first.getReg(); 744 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 745 Register FP = TRI.getFrameRegister(*MF); 746 bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP); 747 if (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) { 748 MachineLocation MLoc(RegLoc, /*Indirect=*/IsSPorFP); 749 finishCallSiteParams(MLoc, ParamValue->second, 750 ForwardedRegWorklist[ParamFwdReg], Params); 751 } else { 752 // ParamFwdReg was described by the non-callee saved register 753 // RegLoc. Mark that the call site values for the parameters are 754 // dependent on that register instead of ParamFwdReg. Since RegLoc 755 // may be a register that will be handled in this iteration, we 756 // postpone adding the items to the worklist, and instead keep them 757 // in a temporary container. 758 addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second, 759 ForwardedRegWorklist[ParamFwdReg]); 760 } 761 } 762 } 763 } 764 765 // Remove all registers that this instruction defines from the worklist. 766 for (auto ParamFwdReg : FwdRegDefs) 767 ForwardedRegWorklist.erase(ParamFwdReg); 768 769 // Now that we are done handling this instruction, add items from the 770 // temporary worklist to the real one. 771 for (auto &New : TmpWorklistItems) 772 addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second); 773 TmpWorklistItems.clear(); 774 } 775 776 static bool interpretNextInstr(const MachineInstr *CurMI, 777 FwdRegWorklist &ForwardedRegWorklist, 778 ParamSet &Params) { 779 // Skip bundle headers. 780 if (CurMI->isBundle()) 781 return true; 782 783 // If the next instruction is a call we can not interpret parameter's 784 // forwarding registers or we finished the interpretation of all 785 // parameters. 786 if (CurMI->isCall()) 787 return false; 788 789 if (ForwardedRegWorklist.empty()) 790 return false; 791 792 // Avoid NOP description. 793 if (CurMI->getNumOperands() == 0) 794 return true; 795 796 interpretValues(CurMI, ForwardedRegWorklist, Params); 797 798 return true; 799 } 800 801 /// Try to interpret values loaded into registers that forward parameters 802 /// for \p CallMI. Store parameters with interpreted value into \p Params. 803 static void collectCallSiteParameters(const MachineInstr *CallMI, 804 ParamSet &Params) { 805 const MachineFunction *MF = CallMI->getMF(); 806 const auto &CalleesMap = MF->getCallSitesInfo(); 807 auto CallFwdRegsInfo = CalleesMap.find(CallMI); 808 809 // There is no information for the call instruction. 810 if (CallFwdRegsInfo == CalleesMap.end()) 811 return; 812 813 const MachineBasicBlock *MBB = CallMI->getParent(); 814 815 // Skip the call instruction. 816 auto I = std::next(CallMI->getReverseIterator()); 817 818 FwdRegWorklist ForwardedRegWorklist; 819 820 const DIExpression *EmptyExpr = 821 DIExpression::get(MF->getFunction().getContext(), {}); 822 823 // Add all the forwarding registers into the ForwardedRegWorklist. 824 for (const auto &ArgReg : CallFwdRegsInfo->second) { 825 bool InsertedReg = 826 ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}}) 827 .second; 828 assert(InsertedReg && "Single register used to forward two arguments?"); 829 (void)InsertedReg; 830 } 831 832 // Do not emit CSInfo for undef forwarding registers. 833 for (auto &MO : CallMI->uses()) 834 if (MO.isReg() && MO.isUndef()) 835 ForwardedRegWorklist.erase(MO.getReg()); 836 837 // We erase, from the ForwardedRegWorklist, those forwarding registers for 838 // which we successfully describe a loaded value (by using 839 // the describeLoadedValue()). For those remaining arguments in the working 840 // list, for which we do not describe a loaded value by 841 // the describeLoadedValue(), we try to generate an entry value expression 842 // for their call site value description, if the call is within the entry MBB. 843 // TODO: Handle situations when call site parameter value can be described 844 // as the entry value within basic blocks other than the first one. 845 bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin(); 846 847 // Search for a loading value in forwarding registers inside call delay slot. 848 if (CallMI->hasDelaySlot()) { 849 auto Suc = std::next(CallMI->getIterator()); 850 // Only one-instruction delay slot is supported. 851 auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator()); 852 (void)BundleEnd; 853 assert(std::next(Suc) == BundleEnd && 854 "More than one instruction in call delay slot"); 855 // Try to interpret value loaded by instruction. 856 if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params)) 857 return; 858 } 859 860 // Search for a loading value in forwarding registers. 861 for (; I != MBB->rend(); ++I) { 862 // Try to interpret values loaded by instruction. 863 if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params)) 864 return; 865 } 866 867 // Emit the call site parameter's value as an entry value. 868 if (ShouldTryEmitEntryVals) { 869 // Create an expression where the register's entry value is used. 870 DIExpression *EntryExpr = DIExpression::get( 871 MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1}); 872 for (auto &RegEntry : ForwardedRegWorklist) { 873 MachineLocation MLoc(RegEntry.first); 874 finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params); 875 } 876 } 877 } 878 879 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP, 880 DwarfCompileUnit &CU, DIE &ScopeDIE, 881 const MachineFunction &MF) { 882 // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if 883 // the subprogram is required to have one. 884 if (!SP.areAllCallsDescribed() || !SP.isDefinition()) 885 return; 886 887 // Use DW_AT_call_all_calls to express that call site entries are present 888 // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls 889 // because one of its requirements is not met: call site entries for 890 // optimized-out calls are elided. 891 CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls)); 892 893 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 894 assert(TII && "TargetInstrInfo not found: cannot label tail calls"); 895 896 // Delay slot support check. 897 auto delaySlotSupported = [&](const MachineInstr &MI) { 898 if (!MI.isBundledWithSucc()) 899 return false; 900 auto Suc = std::next(MI.getIterator()); 901 auto CallInstrBundle = getBundleStart(MI.getIterator()); 902 (void)CallInstrBundle; 903 auto DelaySlotBundle = getBundleStart(Suc); 904 (void)DelaySlotBundle; 905 // Ensure that label after call is following delay slot instruction. 906 // Ex. CALL_INSTRUCTION { 907 // DELAY_SLOT_INSTRUCTION } 908 // LABEL_AFTER_CALL 909 assert(getLabelAfterInsn(&*CallInstrBundle) == 910 getLabelAfterInsn(&*DelaySlotBundle) && 911 "Call and its successor instruction don't have same label after."); 912 return true; 913 }; 914 915 // Emit call site entries for each call or tail call in the function. 916 for (const MachineBasicBlock &MBB : MF) { 917 for (const MachineInstr &MI : MBB.instrs()) { 918 // Bundles with call in them will pass the isCall() test below but do not 919 // have callee operand information so skip them here. Iterator will 920 // eventually reach the call MI. 921 if (MI.isBundle()) 922 continue; 923 924 // Skip instructions which aren't calls. Both calls and tail-calling jump 925 // instructions (e.g TAILJMPd64) are classified correctly here. 926 if (!MI.isCandidateForCallSiteEntry()) 927 continue; 928 929 // Skip instructions marked as frame setup, as they are not interesting to 930 // the user. 931 if (MI.getFlag(MachineInstr::FrameSetup)) 932 continue; 933 934 // Check if delay slot support is enabled. 935 if (MI.hasDelaySlot() && !delaySlotSupported(*&MI)) 936 return; 937 938 // If this is a direct call, find the callee's subprogram. 939 // In the case of an indirect call find the register that holds 940 // the callee. 941 const MachineOperand &CalleeOp = TII->getCalleeOperand(MI); 942 if (!CalleeOp.isGlobal() && 943 (!CalleeOp.isReg() || 944 !Register::isPhysicalRegister(CalleeOp.getReg()))) 945 continue; 946 947 unsigned CallReg = 0; 948 DIE *CalleeDIE = nullptr; 949 const Function *CalleeDecl = nullptr; 950 if (CalleeOp.isReg()) { 951 CallReg = CalleeOp.getReg(); 952 if (!CallReg) 953 continue; 954 } else { 955 CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal()); 956 if (!CalleeDecl || !CalleeDecl->getSubprogram()) 957 continue; 958 const DISubprogram *CalleeSP = CalleeDecl->getSubprogram(); 959 960 if (CalleeSP->isDefinition()) { 961 // Ensure that a subprogram DIE for the callee is available in the 962 // appropriate CU. 963 CalleeDIE = &constructSubprogramDefinitionDIE(CalleeSP); 964 } else { 965 // Create the declaration DIE if it is missing. This is required to 966 // support compilation of old bitcode with an incomplete list of 967 // retained metadata. 968 CalleeDIE = CU.getOrCreateSubprogramDIE(CalleeSP); 969 } 970 assert(CalleeDIE && "Must have a DIE for the callee"); 971 } 972 973 // TODO: Omit call site entries for runtime calls (objc_msgSend, etc). 974 975 bool IsTail = TII->isTailCall(MI); 976 977 // If MI is in a bundle, the label was created after the bundle since 978 // EmitFunctionBody iterates over top-level MIs. Get that top-level MI 979 // to search for that label below. 980 const MachineInstr *TopLevelCallMI = 981 MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI; 982 983 // For non-tail calls, the return PC is needed to disambiguate paths in 984 // the call graph which could lead to some target function. For tail 985 // calls, no return PC information is needed, unless tuning for GDB in 986 // DWARF4 mode in which case we fake a return PC for compatibility. 987 const MCSymbol *PCAddr = 988 (!IsTail || CU.useGNUAnalogForDwarf5Feature()) 989 ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI)) 990 : nullptr; 991 992 // For tail calls, it's necessary to record the address of the branch 993 // instruction so that the debugger can show where the tail call occurred. 994 const MCSymbol *CallAddr = 995 IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr; 996 997 assert((IsTail || PCAddr) && "Non-tail call without return PC"); 998 999 LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> " 1000 << (CalleeDecl ? CalleeDecl->getName() 1001 : StringRef(MF.getSubtarget() 1002 .getRegisterInfo() 1003 ->getName(CallReg))) 1004 << (IsTail ? " [IsTail]" : "") << "\n"); 1005 1006 DIE &CallSiteDIE = CU.constructCallSiteEntryDIE( 1007 ScopeDIE, CalleeDIE, IsTail, PCAddr, CallAddr, CallReg); 1008 1009 // Optionally emit call-site-param debug info. 1010 if (emitDebugEntryValues()) { 1011 ParamSet Params; 1012 // Try to interpret values of call site parameters. 1013 collectCallSiteParameters(&MI, Params); 1014 CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params); 1015 } 1016 } 1017 } 1018 } 1019 1020 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const { 1021 if (!U.hasDwarfPubSections()) 1022 return; 1023 1024 U.addFlag(D, dwarf::DW_AT_GNU_pubnames); 1025 } 1026 1027 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit, 1028 DwarfCompileUnit &NewCU) { 1029 DIE &Die = NewCU.getUnitDie(); 1030 StringRef FN = DIUnit->getFilename(); 1031 1032 StringRef Producer = DIUnit->getProducer(); 1033 StringRef Flags = DIUnit->getFlags(); 1034 if (!Flags.empty() && !useAppleExtensionAttributes()) { 1035 std::string ProducerWithFlags = Producer.str() + " " + Flags.str(); 1036 NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags); 1037 } else 1038 NewCU.addString(Die, dwarf::DW_AT_producer, Producer); 1039 1040 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 1041 DIUnit->getSourceLanguage()); 1042 NewCU.addString(Die, dwarf::DW_AT_name, FN); 1043 StringRef SysRoot = DIUnit->getSysRoot(); 1044 if (!SysRoot.empty()) 1045 NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot); 1046 StringRef SDK = DIUnit->getSDK(); 1047 if (!SDK.empty()) 1048 NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK); 1049 1050 // Add DW_str_offsets_base to the unit DIE, except for split units. 1051 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 1052 NewCU.addStringOffsetsStart(); 1053 1054 if (!useSplitDwarf()) { 1055 NewCU.initStmtList(); 1056 1057 // If we're using split dwarf the compilation dir is going to be in the 1058 // skeleton CU and so we don't need to duplicate it here. 1059 if (!CompilationDir.empty()) 1060 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 1061 addGnuPubAttributes(NewCU, Die); 1062 } 1063 1064 if (useAppleExtensionAttributes()) { 1065 if (DIUnit->isOptimized()) 1066 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); 1067 1068 StringRef Flags = DIUnit->getFlags(); 1069 if (!Flags.empty()) 1070 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); 1071 1072 if (unsigned RVer = DIUnit->getRuntimeVersion()) 1073 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, 1074 dwarf::DW_FORM_data1, RVer); 1075 } 1076 1077 if (DIUnit->getDWOId()) { 1078 // This CU is either a clang module DWO or a skeleton CU. 1079 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, 1080 DIUnit->getDWOId()); 1081 if (!DIUnit->getSplitDebugFilename().empty()) { 1082 // This is a prefabricated skeleton CU. 1083 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1084 ? dwarf::DW_AT_dwo_name 1085 : dwarf::DW_AT_GNU_dwo_name; 1086 NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename()); 1087 } 1088 } 1089 } 1090 // Create new DwarfCompileUnit for the given metadata node with tag 1091 // DW_TAG_compile_unit. 1092 DwarfCompileUnit & 1093 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) { 1094 if (auto *CU = CUMap.lookup(DIUnit)) 1095 return *CU; 1096 1097 CompilationDir = DIUnit->getDirectory(); 1098 1099 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 1100 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); 1101 DwarfCompileUnit &NewCU = *OwnedUnit; 1102 InfoHolder.addUnit(std::move(OwnedUnit)); 1103 1104 for (auto *IE : DIUnit->getImportedEntities()) 1105 NewCU.addImportedEntity(IE); 1106 1107 // LTO with assembly output shares a single line table amongst multiple CUs. 1108 // To avoid the compilation directory being ambiguous, let the line table 1109 // explicitly describe the directory of all files, never relying on the 1110 // compilation directory. 1111 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU) 1112 Asm->OutStreamer->emitDwarfFile0Directive( 1113 CompilationDir, DIUnit->getFilename(), getMD5AsBytes(DIUnit->getFile()), 1114 DIUnit->getSource(), NewCU.getUniqueID()); 1115 1116 if (useSplitDwarf()) { 1117 NewCU.setSkeleton(constructSkeletonCU(NewCU)); 1118 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection()); 1119 } else { 1120 finishUnitAttributes(DIUnit, NewCU); 1121 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 1122 } 1123 1124 CUMap.insert({DIUnit, &NewCU}); 1125 CUDieMap.insert({&NewCU.getUnitDie(), &NewCU}); 1126 return NewCU; 1127 } 1128 1129 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU, 1130 const DIImportedEntity *N) { 1131 if (isa<DILocalScope>(N->getScope())) 1132 return; 1133 if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope())) 1134 D->addChild(TheCU.constructImportedEntityDIE(N)); 1135 } 1136 1137 /// Sort and unique GVEs by comparing their fragment offset. 1138 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & 1139 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) { 1140 llvm::sort( 1141 GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) { 1142 // Sort order: first null exprs, then exprs without fragment 1143 // info, then sort by fragment offset in bits. 1144 // FIXME: Come up with a more comprehensive comparator so 1145 // the sorting isn't non-deterministic, and so the following 1146 // std::unique call works correctly. 1147 if (!A.Expr || !B.Expr) 1148 return !!B.Expr; 1149 auto FragmentA = A.Expr->getFragmentInfo(); 1150 auto FragmentB = B.Expr->getFragmentInfo(); 1151 if (!FragmentA || !FragmentB) 1152 return !!FragmentB; 1153 return FragmentA->OffsetInBits < FragmentB->OffsetInBits; 1154 }); 1155 GVEs.erase(std::unique(GVEs.begin(), GVEs.end(), 1156 [](DwarfCompileUnit::GlobalExpr A, 1157 DwarfCompileUnit::GlobalExpr B) { 1158 return A.Expr == B.Expr; 1159 }), 1160 GVEs.end()); 1161 return GVEs; 1162 } 1163 1164 // Emit all Dwarf sections that should come prior to the content. Create 1165 // global DIEs and emit initial debug info sections. This is invoked by 1166 // the target AsmPrinter. 1167 void DwarfDebug::beginModule(Module *M) { 1168 DebugHandlerBase::beginModule(M); 1169 1170 if (!Asm || !MMI->hasDebugInfo()) 1171 return; 1172 1173 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(), 1174 M->debug_compile_units_end()); 1175 assert(NumDebugCUs > 0 && "Asm unexpectedly initialized"); 1176 assert(MMI->hasDebugInfo() && 1177 "DebugInfoAvailabilty unexpectedly not initialized"); 1178 SingleCU = NumDebugCUs == 1; 1179 DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>> 1180 GVMap; 1181 for (const GlobalVariable &Global : M->globals()) { 1182 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1183 Global.getDebugInfo(GVs); 1184 for (auto *GVE : GVs) 1185 GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()}); 1186 } 1187 1188 // Create the symbol that designates the start of the unit's contribution 1189 // to the string offsets table. In a split DWARF scenario, only the skeleton 1190 // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol). 1191 if (useSegmentedStringOffsetsTable()) 1192 (useSplitDwarf() ? SkeletonHolder : InfoHolder) 1193 .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base")); 1194 1195 1196 // Create the symbols that designates the start of the DWARF v5 range list 1197 // and locations list tables. They are located past the table headers. 1198 if (getDwarfVersion() >= 5) { 1199 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1200 Holder.setRnglistsTableBaseSym( 1201 Asm->createTempSymbol("rnglists_table_base")); 1202 1203 if (useSplitDwarf()) 1204 InfoHolder.setRnglistsTableBaseSym( 1205 Asm->createTempSymbol("rnglists_dwo_table_base")); 1206 } 1207 1208 // Create the symbol that points to the first entry following the debug 1209 // address table (.debug_addr) header. 1210 AddrPool.setLabel(Asm->createTempSymbol("addr_table_base")); 1211 DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base")); 1212 1213 for (DICompileUnit *CUNode : M->debug_compile_units()) { 1214 // FIXME: Move local imported entities into a list attached to the 1215 // subprogram, then this search won't be needed and a 1216 // getImportedEntities().empty() test should go below with the rest. 1217 bool HasNonLocalImportedEntities = llvm::any_of( 1218 CUNode->getImportedEntities(), [](const DIImportedEntity *IE) { 1219 return !isa<DILocalScope>(IE->getScope()); 1220 }); 1221 1222 if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() && 1223 CUNode->getRetainedTypes().empty() && 1224 CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty()) 1225 continue; 1226 1227 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode); 1228 1229 // Global Variables. 1230 for (auto *GVE : CUNode->getGlobalVariables()) { 1231 // Don't bother adding DIGlobalVariableExpressions listed in the CU if we 1232 // already know about the variable and it isn't adding a constant 1233 // expression. 1234 auto &GVMapEntry = GVMap[GVE->getVariable()]; 1235 auto *Expr = GVE->getExpression(); 1236 if (!GVMapEntry.size() || (Expr && Expr->isConstant())) 1237 GVMapEntry.push_back({nullptr, Expr}); 1238 } 1239 DenseSet<DIGlobalVariable *> Processed; 1240 for (auto *GVE : CUNode->getGlobalVariables()) { 1241 DIGlobalVariable *GV = GVE->getVariable(); 1242 if (Processed.insert(GV).second) 1243 CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV])); 1244 } 1245 1246 for (auto *Ty : CUNode->getEnumTypes()) { 1247 // The enum types array by design contains pointers to 1248 // MDNodes rather than DIRefs. Unique them here. 1249 CU.getOrCreateTypeDIE(cast<DIType>(Ty)); 1250 } 1251 for (auto *Ty : CUNode->getRetainedTypes()) { 1252 // The retained types array by design contains pointers to 1253 // MDNodes rather than DIRefs. Unique them here. 1254 if (DIType *RT = dyn_cast<DIType>(Ty)) 1255 // There is no point in force-emitting a forward declaration. 1256 CU.getOrCreateTypeDIE(RT); 1257 } 1258 // Emit imported_modules last so that the relevant context is already 1259 // available. 1260 for (auto *IE : CUNode->getImportedEntities()) 1261 constructAndAddImportedEntityDIE(CU, IE); 1262 } 1263 } 1264 1265 void DwarfDebug::finishEntityDefinitions() { 1266 for (const auto &Entity : ConcreteEntities) { 1267 DIE *Die = Entity->getDIE(); 1268 assert(Die); 1269 // FIXME: Consider the time-space tradeoff of just storing the unit pointer 1270 // in the ConcreteEntities list, rather than looking it up again here. 1271 // DIE::getUnit isn't simple - it walks parent pointers, etc. 1272 DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie()); 1273 assert(Unit); 1274 Unit->finishEntityDefinition(Entity.get()); 1275 } 1276 } 1277 1278 void DwarfDebug::finishSubprogramDefinitions() { 1279 for (const DISubprogram *SP : ProcessedSPNodes) { 1280 assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug); 1281 forBothCUs( 1282 getOrCreateDwarfCompileUnit(SP->getUnit()), 1283 [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); }); 1284 } 1285 } 1286 1287 void DwarfDebug::finalizeModuleInfo() { 1288 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 1289 1290 finishSubprogramDefinitions(); 1291 1292 finishEntityDefinitions(); 1293 1294 // Include the DWO file name in the hash if there's more than one CU. 1295 // This handles ThinLTO's situation where imported CUs may very easily be 1296 // duplicate with the same CU partially imported into another ThinLTO unit. 1297 StringRef DWOName; 1298 if (CUMap.size() > 1) 1299 DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile; 1300 1301 // Handle anything that needs to be done on a per-unit basis after 1302 // all other generation. 1303 for (const auto &P : CUMap) { 1304 auto &TheCU = *P.second; 1305 if (TheCU.getCUNode()->isDebugDirectivesOnly()) 1306 continue; 1307 // Emit DW_AT_containing_type attribute to connect types with their 1308 // vtable holding type. 1309 TheCU.constructContainingTypeDIEs(); 1310 1311 // Add CU specific attributes if we need to add any. 1312 // If we're splitting the dwarf out now that we've got the entire 1313 // CU then add the dwo id to it. 1314 auto *SkCU = TheCU.getSkeleton(); 1315 1316 bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty(); 1317 1318 if (HasSplitUnit) { 1319 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1320 ? dwarf::DW_AT_dwo_name 1321 : dwarf::DW_AT_GNU_dwo_name; 1322 finishUnitAttributes(TheCU.getCUNode(), TheCU); 1323 TheCU.addString(TheCU.getUnitDie(), attrDWOName, 1324 Asm->TM.Options.MCOptions.SplitDwarfFile); 1325 SkCU->addString(SkCU->getUnitDie(), attrDWOName, 1326 Asm->TM.Options.MCOptions.SplitDwarfFile); 1327 // Emit a unique identifier for this CU. 1328 uint64_t ID = 1329 DIEHash(Asm, &TheCU).computeCUSignature(DWOName, TheCU.getUnitDie()); 1330 if (getDwarfVersion() >= 5) { 1331 TheCU.setDWOId(ID); 1332 SkCU->setDWOId(ID); 1333 } else { 1334 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1335 dwarf::DW_FORM_data8, ID); 1336 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1337 dwarf::DW_FORM_data8, ID); 1338 } 1339 1340 if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) { 1341 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol(); 1342 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, 1343 Sym, Sym); 1344 } 1345 } else if (SkCU) { 1346 finishUnitAttributes(SkCU->getCUNode(), *SkCU); 1347 } 1348 1349 // If we have code split among multiple sections or non-contiguous 1350 // ranges of code then emit a DW_AT_ranges attribute on the unit that will 1351 // remain in the .o file, otherwise add a DW_AT_low_pc. 1352 // FIXME: We should use ranges allow reordering of code ala 1353 // .subsections_via_symbols in mach-o. This would mean turning on 1354 // ranges for all subprogram DIEs for mach-o. 1355 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 1356 1357 if (unsigned NumRanges = TheCU.getRanges().size()) { 1358 if (NumRanges > 1 && useRangesSection()) 1359 // A DW_AT_low_pc attribute may also be specified in combination with 1360 // DW_AT_ranges to specify the default base address for use in 1361 // location lists (see Section 2.6.2) and range lists (see Section 1362 // 2.17.3). 1363 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); 1364 else 1365 U.setBaseAddress(TheCU.getRanges().front().Begin); 1366 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); 1367 } 1368 1369 // We don't keep track of which addresses are used in which CU so this 1370 // is a bit pessimistic under LTO. 1371 if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty()) 1372 U.addAddrTableBase(); 1373 1374 if (getDwarfVersion() >= 5) { 1375 if (U.hasRangeLists()) 1376 U.addRnglistsBase(); 1377 1378 if (!DebugLocs.getLists().empty()) { 1379 if (!useSplitDwarf()) 1380 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base, 1381 DebugLocs.getSym(), 1382 TLOF.getDwarfLoclistsSection()->getBeginSymbol()); 1383 } 1384 } 1385 1386 auto *CUNode = cast<DICompileUnit>(P.first); 1387 // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros" 1388 // attribute. 1389 if (CUNode->getMacros()) { 1390 if (UseDebugMacroSection) { 1391 if (useSplitDwarf()) 1392 TheCU.addSectionDelta( 1393 TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(), 1394 TLOF.getDwarfMacroDWOSection()->getBeginSymbol()); 1395 else { 1396 dwarf::Attribute MacrosAttr = getDwarfVersion() >= 5 1397 ? dwarf::DW_AT_macros 1398 : dwarf::DW_AT_GNU_macros; 1399 U.addSectionLabel(U.getUnitDie(), MacrosAttr, U.getMacroLabelBegin(), 1400 TLOF.getDwarfMacroSection()->getBeginSymbol()); 1401 } 1402 } else { 1403 if (useSplitDwarf()) 1404 TheCU.addSectionDelta( 1405 TheCU.getUnitDie(), dwarf::DW_AT_macro_info, 1406 U.getMacroLabelBegin(), 1407 TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol()); 1408 else 1409 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info, 1410 U.getMacroLabelBegin(), 1411 TLOF.getDwarfMacinfoSection()->getBeginSymbol()); 1412 } 1413 } 1414 } 1415 1416 // Emit all frontend-produced Skeleton CUs, i.e., Clang modules. 1417 for (auto *CUNode : MMI->getModule()->debug_compile_units()) 1418 if (CUNode->getDWOId()) 1419 getOrCreateDwarfCompileUnit(CUNode); 1420 1421 // Compute DIE offsets and sizes. 1422 InfoHolder.computeSizeAndOffsets(); 1423 if (useSplitDwarf()) 1424 SkeletonHolder.computeSizeAndOffsets(); 1425 } 1426 1427 // Emit all Dwarf sections that should come after the content. 1428 void DwarfDebug::endModule() { 1429 assert(CurFn == nullptr); 1430 assert(CurMI == nullptr); 1431 1432 for (const auto &P : CUMap) { 1433 auto &CU = *P.second; 1434 CU.createBaseTypeDIEs(); 1435 } 1436 1437 // If we aren't actually generating debug info (check beginModule - 1438 // conditionalized on the presence of the llvm.dbg.cu metadata node) 1439 if (!Asm || !MMI->hasDebugInfo()) 1440 return; 1441 1442 // Finalize the debug info for the module. 1443 finalizeModuleInfo(); 1444 1445 if (useSplitDwarf()) 1446 // Emit debug_loc.dwo/debug_loclists.dwo section. 1447 emitDebugLocDWO(); 1448 else 1449 // Emit debug_loc/debug_loclists section. 1450 emitDebugLoc(); 1451 1452 // Corresponding abbreviations into a abbrev section. 1453 emitAbbreviations(); 1454 1455 // Emit all the DIEs into a debug info section. 1456 emitDebugInfo(); 1457 1458 // Emit info into a debug aranges section. 1459 if (GenerateARangeSection) 1460 emitDebugARanges(); 1461 1462 // Emit info into a debug ranges section. 1463 emitDebugRanges(); 1464 1465 if (useSplitDwarf()) 1466 // Emit info into a debug macinfo.dwo section. 1467 emitDebugMacinfoDWO(); 1468 else 1469 // Emit info into a debug macinfo/macro section. 1470 emitDebugMacinfo(); 1471 1472 emitDebugStr(); 1473 1474 if (useSplitDwarf()) { 1475 emitDebugStrDWO(); 1476 emitDebugInfoDWO(); 1477 emitDebugAbbrevDWO(); 1478 emitDebugLineDWO(); 1479 emitDebugRangesDWO(); 1480 } 1481 1482 emitDebugAddr(); 1483 1484 // Emit info into the dwarf accelerator table sections. 1485 switch (getAccelTableKind()) { 1486 case AccelTableKind::Apple: 1487 emitAccelNames(); 1488 emitAccelObjC(); 1489 emitAccelNamespaces(); 1490 emitAccelTypes(); 1491 break; 1492 case AccelTableKind::Dwarf: 1493 emitAccelDebugNames(); 1494 break; 1495 case AccelTableKind::None: 1496 break; 1497 case AccelTableKind::Default: 1498 llvm_unreachable("Default should have already been resolved."); 1499 } 1500 1501 // Emit the pubnames and pubtypes sections if requested. 1502 emitDebugPubSections(); 1503 1504 // clean up. 1505 // FIXME: AbstractVariables.clear(); 1506 } 1507 1508 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU, 1509 const DINode *Node, 1510 const MDNode *ScopeNode) { 1511 if (CU.getExistingAbstractEntity(Node)) 1512 return; 1513 1514 CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope( 1515 cast<DILocalScope>(ScopeNode))); 1516 } 1517 1518 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU, 1519 const DINode *Node, const MDNode *ScopeNode) { 1520 if (CU.getExistingAbstractEntity(Node)) 1521 return; 1522 1523 if (LexicalScope *Scope = 1524 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode))) 1525 CU.createAbstractEntity(Node, Scope); 1526 } 1527 1528 // Collect variable information from side table maintained by MF. 1529 void DwarfDebug::collectVariableInfoFromMFTable( 1530 DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) { 1531 SmallDenseMap<InlinedEntity, DbgVariable *> MFVars; 1532 LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n"); 1533 for (const auto &VI : Asm->MF->getVariableDbgInfo()) { 1534 if (!VI.Var) 1535 continue; 1536 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1537 "Expected inlined-at fields to agree"); 1538 1539 InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt()); 1540 Processed.insert(Var); 1541 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1542 1543 // If variable scope is not found then skip this variable. 1544 if (!Scope) { 1545 LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName() 1546 << ", no variable scope found\n"); 1547 continue; 1548 } 1549 1550 ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode()); 1551 auto RegVar = std::make_unique<DbgVariable>( 1552 cast<DILocalVariable>(Var.first), Var.second); 1553 RegVar->initializeMMI(VI.Expr, VI.Slot); 1554 LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName() 1555 << "\n"); 1556 if (DbgVariable *DbgVar = MFVars.lookup(Var)) 1557 DbgVar->addMMIEntry(*RegVar); 1558 else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) { 1559 MFVars.insert({Var, RegVar.get()}); 1560 ConcreteEntities.push_back(std::move(RegVar)); 1561 } 1562 } 1563 } 1564 1565 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its 1566 /// enclosing lexical scope. The check ensures there are no other instructions 1567 /// in the same lexical scope preceding the DBG_VALUE and that its range is 1568 /// either open or otherwise rolls off the end of the scope. 1569 static bool validThroughout(LexicalScopes &LScopes, 1570 const MachineInstr *DbgValue, 1571 const MachineInstr *RangeEnd, 1572 const InstructionOrdering &Ordering) { 1573 assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location"); 1574 auto MBB = DbgValue->getParent(); 1575 auto DL = DbgValue->getDebugLoc(); 1576 auto *LScope = LScopes.findLexicalScope(DL); 1577 // Scope doesn't exist; this is a dead DBG_VALUE. 1578 if (!LScope) 1579 return false; 1580 auto &LSRange = LScope->getRanges(); 1581 if (LSRange.size() == 0) 1582 return false; 1583 1584 const MachineInstr *LScopeBegin = LSRange.front().first; 1585 // If the scope starts before the DBG_VALUE then we may have a negative 1586 // result. Otherwise the location is live coming into the scope and we 1587 // can skip the following checks. 1588 if (!Ordering.isBefore(DbgValue, LScopeBegin)) { 1589 // Exit if the lexical scope begins outside of the current block. 1590 if (LScopeBegin->getParent() != MBB) 1591 return false; 1592 1593 MachineBasicBlock::const_reverse_iterator Pred(DbgValue); 1594 for (++Pred; Pred != MBB->rend(); ++Pred) { 1595 if (Pred->getFlag(MachineInstr::FrameSetup)) 1596 break; 1597 auto PredDL = Pred->getDebugLoc(); 1598 if (!PredDL || Pred->isMetaInstruction()) 1599 continue; 1600 // Check whether the instruction preceding the DBG_VALUE is in the same 1601 // (sub)scope as the DBG_VALUE. 1602 if (DL->getScope() == PredDL->getScope()) 1603 return false; 1604 auto *PredScope = LScopes.findLexicalScope(PredDL); 1605 if (!PredScope || LScope->dominates(PredScope)) 1606 return false; 1607 } 1608 } 1609 1610 // If the range of the DBG_VALUE is open-ended, report success. 1611 if (!RangeEnd) 1612 return true; 1613 1614 // Single, constant DBG_VALUEs in the prologue are promoted to be live 1615 // throughout the function. This is a hack, presumably for DWARF v2 and not 1616 // necessarily correct. It would be much better to use a dbg.declare instead 1617 // if we know the constant is live throughout the scope. 1618 if (MBB->pred_empty() && 1619 all_of(DbgValue->debug_operands(), 1620 [](const MachineOperand &Op) { return Op.isImm(); })) 1621 return true; 1622 1623 // Test if the location terminates before the end of the scope. 1624 const MachineInstr *LScopeEnd = LSRange.back().second; 1625 if (Ordering.isBefore(RangeEnd, LScopeEnd)) 1626 return false; 1627 1628 // There's a single location which starts at the scope start, and ends at or 1629 // after the scope end. 1630 return true; 1631 } 1632 1633 /// Build the location list for all DBG_VALUEs in the function that 1634 /// describe the same variable. The resulting DebugLocEntries will have 1635 /// strict monotonically increasing begin addresses and will never 1636 /// overlap. If the resulting list has only one entry that is valid 1637 /// throughout variable's scope return true. 1638 // 1639 // See the definition of DbgValueHistoryMap::Entry for an explanation of the 1640 // different kinds of history map entries. One thing to be aware of is that if 1641 // a debug value is ended by another entry (rather than being valid until the 1642 // end of the function), that entry's instruction may or may not be included in 1643 // the range, depending on if the entry is a clobbering entry (it has an 1644 // instruction that clobbers one or more preceding locations), or if it is an 1645 // (overlapping) debug value entry. This distinction can be seen in the example 1646 // below. The first debug value is ended by the clobbering entry 2, and the 1647 // second and third debug values are ended by the overlapping debug value entry 1648 // 4. 1649 // 1650 // Input: 1651 // 1652 // History map entries [type, end index, mi] 1653 // 1654 // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)] 1655 // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)] 1656 // 2 | | [Clobber, $reg0 = [...], -, -] 1657 // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)] 1658 // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)] 1659 // 1660 // Output [start, end) [Value...]: 1661 // 1662 // [0-1) [(reg0, fragment 0, 32)] 1663 // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)] 1664 // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)] 1665 // [4-) [(@g, fragment 0, 96)] 1666 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc, 1667 const DbgValueHistoryMap::Entries &Entries) { 1668 using OpenRange = 1669 std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>; 1670 SmallVector<OpenRange, 4> OpenRanges; 1671 bool isSafeForSingleLocation = true; 1672 const MachineInstr *StartDebugMI = nullptr; 1673 const MachineInstr *EndMI = nullptr; 1674 1675 for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) { 1676 const MachineInstr *Instr = EI->getInstr(); 1677 1678 // Remove all values that are no longer live. 1679 size_t Index = std::distance(EB, EI); 1680 erase_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; }); 1681 1682 // If we are dealing with a clobbering entry, this iteration will result in 1683 // a location list entry starting after the clobbering instruction. 1684 const MCSymbol *StartLabel = 1685 EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr); 1686 assert(StartLabel && 1687 "Forgot label before/after instruction starting a range!"); 1688 1689 const MCSymbol *EndLabel; 1690 if (std::next(EI) == Entries.end()) { 1691 const MachineBasicBlock &EndMBB = Asm->MF->back(); 1692 EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionIDNum()].EndLabel; 1693 if (EI->isClobber()) 1694 EndMI = EI->getInstr(); 1695 } 1696 else if (std::next(EI)->isClobber()) 1697 EndLabel = getLabelAfterInsn(std::next(EI)->getInstr()); 1698 else 1699 EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr()); 1700 assert(EndLabel && "Forgot label after instruction ending a range!"); 1701 1702 if (EI->isDbgValue()) 1703 LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n"); 1704 1705 // If this history map entry has a debug value, add that to the list of 1706 // open ranges and check if its location is valid for a single value 1707 // location. 1708 if (EI->isDbgValue()) { 1709 // Do not add undef debug values, as they are redundant information in 1710 // the location list entries. An undef debug results in an empty location 1711 // description. If there are any non-undef fragments then padding pieces 1712 // with empty location descriptions will automatically be inserted, and if 1713 // all fragments are undef then the whole location list entry is 1714 // redundant. 1715 if (!Instr->isUndefDebugValue()) { 1716 auto Value = getDebugLocValue(Instr); 1717 OpenRanges.emplace_back(EI->getEndIndex(), Value); 1718 1719 // TODO: Add support for single value fragment locations. 1720 if (Instr->getDebugExpression()->isFragment()) 1721 isSafeForSingleLocation = false; 1722 1723 if (!StartDebugMI) 1724 StartDebugMI = Instr; 1725 } else { 1726 isSafeForSingleLocation = false; 1727 } 1728 } 1729 1730 // Location list entries with empty location descriptions are redundant 1731 // information in DWARF, so do not emit those. 1732 if (OpenRanges.empty()) 1733 continue; 1734 1735 // Omit entries with empty ranges as they do not have any effect in DWARF. 1736 if (StartLabel == EndLabel) { 1737 LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n"); 1738 continue; 1739 } 1740 1741 SmallVector<DbgValueLoc, 4> Values; 1742 for (auto &R : OpenRanges) 1743 Values.push_back(R.second); 1744 1745 // With Basic block sections, it is posssible that the StartLabel and the 1746 // Instr are not in the same section. This happens when the StartLabel is 1747 // the function begin label and the dbg value appears in a basic block 1748 // that is not the entry. In this case, the range needs to be split to 1749 // span each individual section in the range from StartLabel to EndLabel. 1750 if (Asm->MF->hasBBSections() && StartLabel == Asm->getFunctionBegin() && 1751 !Instr->getParent()->sameSection(&Asm->MF->front())) { 1752 const MCSymbol *BeginSectionLabel = StartLabel; 1753 1754 for (const MachineBasicBlock &MBB : *Asm->MF) { 1755 if (MBB.isBeginSection() && &MBB != &Asm->MF->front()) 1756 BeginSectionLabel = MBB.getSymbol(); 1757 1758 if (MBB.sameSection(Instr->getParent())) { 1759 DebugLoc.emplace_back(BeginSectionLabel, EndLabel, Values); 1760 break; 1761 } 1762 if (MBB.isEndSection()) 1763 DebugLoc.emplace_back(BeginSectionLabel, MBB.getEndSymbol(), Values); 1764 } 1765 } else { 1766 DebugLoc.emplace_back(StartLabel, EndLabel, Values); 1767 } 1768 1769 // Attempt to coalesce the ranges of two otherwise identical 1770 // DebugLocEntries. 1771 auto CurEntry = DebugLoc.rbegin(); 1772 LLVM_DEBUG({ 1773 dbgs() << CurEntry->getValues().size() << " Values:\n"; 1774 for (auto &Value : CurEntry->getValues()) 1775 Value.dump(); 1776 dbgs() << "-----\n"; 1777 }); 1778 1779 auto PrevEntry = std::next(CurEntry); 1780 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) 1781 DebugLoc.pop_back(); 1782 } 1783 1784 if (!isSafeForSingleLocation || 1785 !validThroughout(LScopes, StartDebugMI, EndMI, getInstOrdering())) 1786 return false; 1787 1788 if (DebugLoc.size() == 1) 1789 return true; 1790 1791 if (!Asm->MF->hasBBSections()) 1792 return false; 1793 1794 // Check here to see if loclist can be merged into a single range. If not, 1795 // we must keep the split loclists per section. This does exactly what 1796 // MergeRanges does without sections. We don't actually merge the ranges 1797 // as the split ranges must be kept intact if this cannot be collapsed 1798 // into a single range. 1799 const MachineBasicBlock *RangeMBB = nullptr; 1800 if (DebugLoc[0].getBeginSym() == Asm->getFunctionBegin()) 1801 RangeMBB = &Asm->MF->front(); 1802 else 1803 RangeMBB = Entries.begin()->getInstr()->getParent(); 1804 auto *CurEntry = DebugLoc.begin(); 1805 auto *NextEntry = std::next(CurEntry); 1806 while (NextEntry != DebugLoc.end()) { 1807 // Get the last machine basic block of this section. 1808 while (!RangeMBB->isEndSection()) 1809 RangeMBB = RangeMBB->getNextNode(); 1810 if (!RangeMBB->getNextNode()) 1811 return false; 1812 // CurEntry should end the current section and NextEntry should start 1813 // the next section and the Values must match for these two ranges to be 1814 // merged. 1815 if (CurEntry->getEndSym() != RangeMBB->getEndSymbol() || 1816 NextEntry->getBeginSym() != RangeMBB->getNextNode()->getSymbol() || 1817 CurEntry->getValues() != NextEntry->getValues()) 1818 return false; 1819 RangeMBB = RangeMBB->getNextNode(); 1820 CurEntry = NextEntry; 1821 NextEntry = std::next(CurEntry); 1822 } 1823 return true; 1824 } 1825 1826 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU, 1827 LexicalScope &Scope, 1828 const DINode *Node, 1829 const DILocation *Location, 1830 const MCSymbol *Sym) { 1831 ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode()); 1832 if (isa<const DILocalVariable>(Node)) { 1833 ConcreteEntities.push_back( 1834 std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node), 1835 Location)); 1836 InfoHolder.addScopeVariable(&Scope, 1837 cast<DbgVariable>(ConcreteEntities.back().get())); 1838 } else if (isa<const DILabel>(Node)) { 1839 ConcreteEntities.push_back( 1840 std::make_unique<DbgLabel>(cast<const DILabel>(Node), 1841 Location, Sym)); 1842 InfoHolder.addScopeLabel(&Scope, 1843 cast<DbgLabel>(ConcreteEntities.back().get())); 1844 } 1845 return ConcreteEntities.back().get(); 1846 } 1847 1848 // Find variables for each lexical scope. 1849 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU, 1850 const DISubprogram *SP, 1851 DenseSet<InlinedEntity> &Processed) { 1852 // Grab the variable info that was squirreled away in the MMI side-table. 1853 collectVariableInfoFromMFTable(TheCU, Processed); 1854 1855 for (const auto &I : DbgValues) { 1856 InlinedEntity IV = I.first; 1857 if (Processed.count(IV)) 1858 continue; 1859 1860 // Instruction ranges, specifying where IV is accessible. 1861 const auto &HistoryMapEntries = I.second; 1862 1863 // Try to find any non-empty variable location. Do not create a concrete 1864 // entity if there are no locations. 1865 if (!DbgValues.hasNonEmptyLocation(HistoryMapEntries)) 1866 continue; 1867 1868 LexicalScope *Scope = nullptr; 1869 const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first); 1870 if (const DILocation *IA = IV.second) 1871 Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA); 1872 else 1873 Scope = LScopes.findLexicalScope(LocalVar->getScope()); 1874 // If variable scope is not found then skip this variable. 1875 if (!Scope) 1876 continue; 1877 1878 Processed.insert(IV); 1879 DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU, 1880 *Scope, LocalVar, IV.second)); 1881 1882 const MachineInstr *MInsn = HistoryMapEntries.front().getInstr(); 1883 assert(MInsn->isDebugValue() && "History must begin with debug value"); 1884 1885 // Check if there is a single DBG_VALUE, valid throughout the var's scope. 1886 // If the history map contains a single debug value, there may be an 1887 // additional entry which clobbers the debug value. 1888 size_t HistSize = HistoryMapEntries.size(); 1889 bool SingleValueWithClobber = 1890 HistSize == 2 && HistoryMapEntries[1].isClobber(); 1891 if (HistSize == 1 || SingleValueWithClobber) { 1892 const auto *End = 1893 SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr; 1894 if (validThroughout(LScopes, MInsn, End, getInstOrdering())) { 1895 RegVar->initializeDbgValue(MInsn); 1896 continue; 1897 } 1898 } 1899 1900 // Do not emit location lists if .debug_loc secton is disabled. 1901 if (!useLocSection()) 1902 continue; 1903 1904 // Handle multiple DBG_VALUE instructions describing one variable. 1905 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn); 1906 1907 // Build the location list for this variable. 1908 SmallVector<DebugLocEntry, 8> Entries; 1909 bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries); 1910 1911 // Check whether buildLocationList managed to merge all locations to one 1912 // that is valid throughout the variable's scope. If so, produce single 1913 // value location. 1914 if (isValidSingleLocation) { 1915 RegVar->initializeDbgValue(Entries[0].getValues()[0]); 1916 continue; 1917 } 1918 1919 // If the variable has a DIBasicType, extract it. Basic types cannot have 1920 // unique identifiers, so don't bother resolving the type with the 1921 // identifier map. 1922 const DIBasicType *BT = dyn_cast<DIBasicType>( 1923 static_cast<const Metadata *>(LocalVar->getType())); 1924 1925 // Finalize the entry by lowering it into a DWARF bytestream. 1926 for (auto &Entry : Entries) 1927 Entry.finalize(*Asm, List, BT, TheCU); 1928 } 1929 1930 // For each InlinedEntity collected from DBG_LABEL instructions, convert to 1931 // DWARF-related DbgLabel. 1932 for (const auto &I : DbgLabels) { 1933 InlinedEntity IL = I.first; 1934 const MachineInstr *MI = I.second; 1935 if (MI == nullptr) 1936 continue; 1937 1938 LexicalScope *Scope = nullptr; 1939 const DILabel *Label = cast<DILabel>(IL.first); 1940 // The scope could have an extra lexical block file. 1941 const DILocalScope *LocalScope = 1942 Label->getScope()->getNonLexicalBlockFileScope(); 1943 // Get inlined DILocation if it is inlined label. 1944 if (const DILocation *IA = IL.second) 1945 Scope = LScopes.findInlinedScope(LocalScope, IA); 1946 else 1947 Scope = LScopes.findLexicalScope(LocalScope); 1948 // If label scope is not found then skip this label. 1949 if (!Scope) 1950 continue; 1951 1952 Processed.insert(IL); 1953 /// At this point, the temporary label is created. 1954 /// Save the temporary label to DbgLabel entity to get the 1955 /// actually address when generating Dwarf DIE. 1956 MCSymbol *Sym = getLabelBeforeInsn(MI); 1957 createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym); 1958 } 1959 1960 // Collect info for variables/labels that were optimized out. 1961 for (const DINode *DN : SP->getRetainedNodes()) { 1962 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 1963 continue; 1964 LexicalScope *Scope = nullptr; 1965 if (auto *DV = dyn_cast<DILocalVariable>(DN)) { 1966 Scope = LScopes.findLexicalScope(DV->getScope()); 1967 } else if (auto *DL = dyn_cast<DILabel>(DN)) { 1968 Scope = LScopes.findLexicalScope(DL->getScope()); 1969 } 1970 1971 if (Scope) 1972 createConcreteEntity(TheCU, *Scope, DN, nullptr); 1973 } 1974 } 1975 1976 // Process beginning of an instruction. 1977 void DwarfDebug::beginInstruction(const MachineInstr *MI) { 1978 const MachineFunction &MF = *MI->getMF(); 1979 const auto *SP = MF.getFunction().getSubprogram(); 1980 bool NoDebug = 1981 !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug; 1982 1983 // Delay slot support check. 1984 auto delaySlotSupported = [](const MachineInstr &MI) { 1985 if (!MI.isBundledWithSucc()) 1986 return false; 1987 auto Suc = std::next(MI.getIterator()); 1988 (void)Suc; 1989 // Ensure that delay slot instruction is successor of the call instruction. 1990 // Ex. CALL_INSTRUCTION { 1991 // DELAY_SLOT_INSTRUCTION } 1992 assert(Suc->isBundledWithPred() && 1993 "Call bundle instructions are out of order"); 1994 return true; 1995 }; 1996 1997 // When describing calls, we need a label for the call instruction. 1998 if (!NoDebug && SP->areAllCallsDescribed() && 1999 MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) && 2000 (!MI->hasDelaySlot() || delaySlotSupported(*MI))) { 2001 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 2002 bool IsTail = TII->isTailCall(*MI); 2003 // For tail calls, we need the address of the branch instruction for 2004 // DW_AT_call_pc. 2005 if (IsTail) 2006 requestLabelBeforeInsn(MI); 2007 // For non-tail calls, we need the return address for the call for 2008 // DW_AT_call_return_pc. Under GDB tuning, this information is needed for 2009 // tail calls as well. 2010 requestLabelAfterInsn(MI); 2011 } 2012 2013 DebugHandlerBase::beginInstruction(MI); 2014 if (!CurMI) 2015 return; 2016 2017 if (NoDebug) 2018 return; 2019 2020 // Check if source location changes, but ignore DBG_VALUE and CFI locations. 2021 // If the instruction is part of the function frame setup code, do not emit 2022 // any line record, as there is no correspondence with any user code. 2023 if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup)) 2024 return; 2025 const DebugLoc &DL = MI->getDebugLoc(); 2026 // When we emit a line-0 record, we don't update PrevInstLoc; so look at 2027 // the last line number actually emitted, to see if it was line 0. 2028 unsigned LastAsmLine = 2029 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine(); 2030 2031 if (DL == PrevInstLoc) { 2032 // If we have an ongoing unspecified location, nothing to do here. 2033 if (!DL) 2034 return; 2035 // We have an explicit location, same as the previous location. 2036 // But we might be coming back to it after a line 0 record. 2037 if (LastAsmLine == 0 && DL.getLine() != 0) { 2038 // Reinstate the source location but not marked as a statement. 2039 const MDNode *Scope = DL.getScope(); 2040 recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0); 2041 } 2042 return; 2043 } 2044 2045 if (!DL) { 2046 // We have an unspecified location, which might want to be line 0. 2047 // If we have already emitted a line-0 record, don't repeat it. 2048 if (LastAsmLine == 0) 2049 return; 2050 // If user said Don't Do That, don't do that. 2051 if (UnknownLocations == Disable) 2052 return; 2053 // See if we have a reason to emit a line-0 record now. 2054 // Reasons to emit a line-0 record include: 2055 // - User asked for it (UnknownLocations). 2056 // - Instruction has a label, so it's referenced from somewhere else, 2057 // possibly debug information; we want it to have a source location. 2058 // - Instruction is at the top of a block; we don't want to inherit the 2059 // location from the physically previous (maybe unrelated) block. 2060 if (UnknownLocations == Enable || PrevLabel || 2061 (PrevInstBB && PrevInstBB != MI->getParent())) { 2062 // Preserve the file and column numbers, if we can, to save space in 2063 // the encoded line table. 2064 // Do not update PrevInstLoc, it remembers the last non-0 line. 2065 const MDNode *Scope = nullptr; 2066 unsigned Column = 0; 2067 if (PrevInstLoc) { 2068 Scope = PrevInstLoc.getScope(); 2069 Column = PrevInstLoc.getCol(); 2070 } 2071 recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0); 2072 } 2073 return; 2074 } 2075 2076 // We have an explicit location, different from the previous location. 2077 // Don't repeat a line-0 record, but otherwise emit the new location. 2078 // (The new location might be an explicit line 0, which we do emit.) 2079 if (DL.getLine() == 0 && LastAsmLine == 0) 2080 return; 2081 unsigned Flags = 0; 2082 if (DL == PrologEndLoc) { 2083 Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT; 2084 PrologEndLoc = DebugLoc(); 2085 } 2086 // If the line changed, we call that a new statement; unless we went to 2087 // line 0 and came back, in which case it is not a new statement. 2088 unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine; 2089 if (DL.getLine() && DL.getLine() != OldLine) 2090 Flags |= DWARF2_FLAG_IS_STMT; 2091 2092 const MDNode *Scope = DL.getScope(); 2093 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); 2094 2095 // If we're not at line 0, remember this location. 2096 if (DL.getLine()) 2097 PrevInstLoc = DL; 2098 } 2099 2100 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) { 2101 // First known non-DBG_VALUE and non-frame setup location marks 2102 // the beginning of the function body. 2103 for (const auto &MBB : *MF) 2104 for (const auto &MI : MBB) 2105 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 2106 MI.getDebugLoc()) 2107 return MI.getDebugLoc(); 2108 return DebugLoc(); 2109 } 2110 2111 /// Register a source line with debug info. Returns the unique label that was 2112 /// emitted and which provides correspondence to the source line list. 2113 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col, 2114 const MDNode *S, unsigned Flags, unsigned CUID, 2115 uint16_t DwarfVersion, 2116 ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) { 2117 StringRef Fn; 2118 unsigned FileNo = 1; 2119 unsigned Discriminator = 0; 2120 if (auto *Scope = cast_or_null<DIScope>(S)) { 2121 Fn = Scope->getFilename(); 2122 if (Line != 0 && DwarfVersion >= 4) 2123 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope)) 2124 Discriminator = LBF->getDiscriminator(); 2125 2126 FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID]) 2127 .getOrCreateSourceID(Scope->getFile()); 2128 } 2129 Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0, 2130 Discriminator, Fn); 2131 } 2132 2133 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF, 2134 unsigned CUID) { 2135 // Get beginning of function. 2136 if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) { 2137 // Ensure the compile unit is created if the function is called before 2138 // beginFunction(). 2139 (void)getOrCreateDwarfCompileUnit( 2140 MF.getFunction().getSubprogram()->getUnit()); 2141 // We'd like to list the prologue as "not statements" but GDB behaves 2142 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. 2143 const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram(); 2144 ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT, 2145 CUID, getDwarfVersion(), getUnits()); 2146 return PrologEndLoc; 2147 } 2148 return DebugLoc(); 2149 } 2150 2151 // Gather pre-function debug information. Assumes being called immediately 2152 // after the function entry point has been emitted. 2153 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) { 2154 CurFn = MF; 2155 2156 auto *SP = MF->getFunction().getSubprogram(); 2157 assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode()); 2158 if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 2159 return; 2160 2161 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 2162 2163 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function 2164 // belongs to so that we add to the correct per-cu line table in the 2165 // non-asm case. 2166 if (Asm->OutStreamer->hasRawTextSupport()) 2167 // Use a single line table if we are generating assembly. 2168 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 2169 else 2170 Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID()); 2171 2172 // Record beginning of function. 2173 PrologEndLoc = emitInitialLocDirective( 2174 *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID()); 2175 } 2176 2177 void DwarfDebug::skippedNonDebugFunction() { 2178 // If we don't have a subprogram for this function then there will be a hole 2179 // in the range information. Keep note of this by setting the previously used 2180 // section to nullptr. 2181 PrevCU = nullptr; 2182 CurFn = nullptr; 2183 } 2184 2185 // Gather and emit post-function debug information. 2186 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) { 2187 const DISubprogram *SP = MF->getFunction().getSubprogram(); 2188 2189 assert(CurFn == MF && 2190 "endFunction should be called with the same function as beginFunction"); 2191 2192 // Set DwarfDwarfCompileUnitID in MCContext to default value. 2193 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 2194 2195 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 2196 assert(!FnScope || SP == FnScope->getScopeNode()); 2197 DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit()); 2198 if (TheCU.getCUNode()->isDebugDirectivesOnly()) { 2199 PrevLabel = nullptr; 2200 CurFn = nullptr; 2201 return; 2202 } 2203 2204 DenseSet<InlinedEntity> Processed; 2205 collectEntityInfo(TheCU, SP, Processed); 2206 2207 // Add the range of this function to the list of ranges for the CU. 2208 // With basic block sections, add ranges for all basic block sections. 2209 for (const auto &R : Asm->MBBSectionRanges) 2210 TheCU.addRange({R.second.BeginLabel, R.second.EndLabel}); 2211 2212 // Under -gmlt, skip building the subprogram if there are no inlined 2213 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram 2214 // is still needed as we need its source location. 2215 if (!TheCU.getCUNode()->getDebugInfoForProfiling() && 2216 TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly && 2217 LScopes.getAbstractScopesList().empty() && !IsDarwin) { 2218 assert(InfoHolder.getScopeVariables().empty()); 2219 PrevLabel = nullptr; 2220 CurFn = nullptr; 2221 return; 2222 } 2223 2224 #ifndef NDEBUG 2225 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size(); 2226 #endif 2227 // Construct abstract scopes. 2228 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { 2229 auto *SP = cast<DISubprogram>(AScope->getScopeNode()); 2230 for (const DINode *DN : SP->getRetainedNodes()) { 2231 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 2232 continue; 2233 2234 const MDNode *Scope = nullptr; 2235 if (auto *DV = dyn_cast<DILocalVariable>(DN)) 2236 Scope = DV->getScope(); 2237 else if (auto *DL = dyn_cast<DILabel>(DN)) 2238 Scope = DL->getScope(); 2239 else 2240 llvm_unreachable("Unexpected DI type!"); 2241 2242 // Collect info for variables/labels that were optimized out. 2243 ensureAbstractEntityIsCreated(TheCU, DN, Scope); 2244 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes 2245 && "ensureAbstractEntityIsCreated inserted abstract scopes"); 2246 } 2247 constructAbstractSubprogramScopeDIE(TheCU, AScope); 2248 } 2249 2250 ProcessedSPNodes.insert(SP); 2251 DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope); 2252 if (auto *SkelCU = TheCU.getSkeleton()) 2253 if (!LScopes.getAbstractScopesList().empty() && 2254 TheCU.getCUNode()->getSplitDebugInlining()) 2255 SkelCU->constructSubprogramScopeDIE(SP, FnScope); 2256 2257 // Construct call site entries. 2258 constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF); 2259 2260 // Clear debug info 2261 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the 2262 // DbgVariables except those that are also in AbstractVariables (since they 2263 // can be used cross-function) 2264 InfoHolder.getScopeVariables().clear(); 2265 InfoHolder.getScopeLabels().clear(); 2266 PrevLabel = nullptr; 2267 CurFn = nullptr; 2268 } 2269 2270 // Register a source line with debug info. Returns the unique label that was 2271 // emitted and which provides correspondence to the source line list. 2272 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, 2273 unsigned Flags) { 2274 ::recordSourceLine(*Asm, Line, Col, S, Flags, 2275 Asm->OutStreamer->getContext().getDwarfCompileUnitID(), 2276 getDwarfVersion(), getUnits()); 2277 } 2278 2279 //===----------------------------------------------------------------------===// 2280 // Emit Methods 2281 //===----------------------------------------------------------------------===// 2282 2283 // Emit the debug info section. 2284 void DwarfDebug::emitDebugInfo() { 2285 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2286 Holder.emitUnits(/* UseOffsets */ false); 2287 } 2288 2289 // Emit the abbreviation section. 2290 void DwarfDebug::emitAbbreviations() { 2291 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2292 2293 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); 2294 } 2295 2296 void DwarfDebug::emitStringOffsetsTableHeader() { 2297 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2298 Holder.getStringPool().emitStringOffsetsTableHeader( 2299 *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(), 2300 Holder.getStringOffsetsStartSym()); 2301 } 2302 2303 template <typename AccelTableT> 2304 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section, 2305 StringRef TableName) { 2306 Asm->OutStreamer->SwitchSection(Section); 2307 2308 // Emit the full data. 2309 emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol()); 2310 } 2311 2312 void DwarfDebug::emitAccelDebugNames() { 2313 // Don't emit anything if we have no compilation units to index. 2314 if (getUnits().empty()) 2315 return; 2316 2317 emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits()); 2318 } 2319 2320 // Emit visible names into a hashed accelerator table section. 2321 void DwarfDebug::emitAccelNames() { 2322 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), 2323 "Names"); 2324 } 2325 2326 // Emit objective C classes and categories into a hashed accelerator table 2327 // section. 2328 void DwarfDebug::emitAccelObjC() { 2329 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), 2330 "ObjC"); 2331 } 2332 2333 // Emit namespace dies into a hashed accelerator table. 2334 void DwarfDebug::emitAccelNamespaces() { 2335 emitAccel(AccelNamespace, 2336 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), 2337 "namespac"); 2338 } 2339 2340 // Emit type dies into a hashed accelerator table. 2341 void DwarfDebug::emitAccelTypes() { 2342 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), 2343 "types"); 2344 } 2345 2346 // Public name handling. 2347 // The format for the various pubnames: 2348 // 2349 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU 2350 // for the DIE that is named. 2351 // 2352 // gnu pubnames - offset/index value/name tuples where the offset is the offset 2353 // into the CU and the index value is computed according to the type of value 2354 // for the DIE that is named. 2355 // 2356 // For type units the offset is the offset of the skeleton DIE. For split dwarf 2357 // it's the offset within the debug_info/debug_types dwo section, however, the 2358 // reference in the pubname header doesn't change. 2359 2360 /// computeIndexValue - Compute the gdb index value for the DIE and CU. 2361 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, 2362 const DIE *Die) { 2363 // Entities that ended up only in a Type Unit reference the CU instead (since 2364 // the pub entry has offsets within the CU there's no real offset that can be 2365 // provided anyway). As it happens all such entities (namespaces and types, 2366 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out 2367 // not to be true it would be necessary to persist this information from the 2368 // point at which the entry is added to the index data structure - since by 2369 // the time the index is built from that, the original type/namespace DIE in a 2370 // type unit has already been destroyed so it can't be queried for properties 2371 // like tag, etc. 2372 if (Die->getTag() == dwarf::DW_TAG_compile_unit) 2373 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, 2374 dwarf::GIEL_EXTERNAL); 2375 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; 2376 2377 // We could have a specification DIE that has our most of our knowledge, 2378 // look for that now. 2379 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) { 2380 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry(); 2381 if (SpecDIE.findAttribute(dwarf::DW_AT_external)) 2382 Linkage = dwarf::GIEL_EXTERNAL; 2383 } else if (Die->findAttribute(dwarf::DW_AT_external)) 2384 Linkage = dwarf::GIEL_EXTERNAL; 2385 2386 switch (Die->getTag()) { 2387 case dwarf::DW_TAG_class_type: 2388 case dwarf::DW_TAG_structure_type: 2389 case dwarf::DW_TAG_union_type: 2390 case dwarf::DW_TAG_enumeration_type: 2391 return dwarf::PubIndexEntryDescriptor( 2392 dwarf::GIEK_TYPE, 2393 dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage()) 2394 ? dwarf::GIEL_EXTERNAL 2395 : dwarf::GIEL_STATIC); 2396 case dwarf::DW_TAG_typedef: 2397 case dwarf::DW_TAG_base_type: 2398 case dwarf::DW_TAG_subrange_type: 2399 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); 2400 case dwarf::DW_TAG_namespace: 2401 return dwarf::GIEK_TYPE; 2402 case dwarf::DW_TAG_subprogram: 2403 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); 2404 case dwarf::DW_TAG_variable: 2405 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); 2406 case dwarf::DW_TAG_enumerator: 2407 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, 2408 dwarf::GIEL_STATIC); 2409 default: 2410 return dwarf::GIEK_NONE; 2411 } 2412 } 2413 2414 /// emitDebugPubSections - Emit visible names and types into debug pubnames and 2415 /// pubtypes sections. 2416 void DwarfDebug::emitDebugPubSections() { 2417 for (const auto &NU : CUMap) { 2418 DwarfCompileUnit *TheU = NU.second; 2419 if (!TheU->hasDwarfPubSections()) 2420 continue; 2421 2422 bool GnuStyle = TheU->getCUNode()->getNameTableKind() == 2423 DICompileUnit::DebugNameTableKind::GNU; 2424 2425 Asm->OutStreamer->SwitchSection( 2426 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() 2427 : Asm->getObjFileLowering().getDwarfPubNamesSection()); 2428 emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames()); 2429 2430 Asm->OutStreamer->SwitchSection( 2431 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() 2432 : Asm->getObjFileLowering().getDwarfPubTypesSection()); 2433 emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes()); 2434 } 2435 } 2436 2437 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) { 2438 if (useSectionsAsReferences()) 2439 Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(), 2440 CU.getDebugSectionOffset()); 2441 else 2442 Asm->emitDwarfSymbolReference(CU.getLabelBegin()); 2443 } 2444 2445 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name, 2446 DwarfCompileUnit *TheU, 2447 const StringMap<const DIE *> &Globals) { 2448 if (auto *Skeleton = TheU->getSkeleton()) 2449 TheU = Skeleton; 2450 2451 // Emit the header. 2452 MCSymbol *EndLabel = Asm->emitDwarfUnitLength( 2453 "pub" + Name, "Length of Public " + Name + " Info"); 2454 2455 Asm->OutStreamer->AddComment("DWARF Version"); 2456 Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION); 2457 2458 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info"); 2459 emitSectionReference(*TheU); 2460 2461 Asm->OutStreamer->AddComment("Compilation Unit Length"); 2462 Asm->emitDwarfLengthOrOffset(TheU->getLength()); 2463 2464 // Emit the pubnames for this compilation unit. 2465 for (const auto &GI : Globals) { 2466 const char *Name = GI.getKeyData(); 2467 const DIE *Entity = GI.second; 2468 2469 Asm->OutStreamer->AddComment("DIE offset"); 2470 Asm->emitDwarfLengthOrOffset(Entity->getOffset()); 2471 2472 if (GnuStyle) { 2473 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); 2474 Asm->OutStreamer->AddComment( 2475 Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + 2476 ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); 2477 Asm->emitInt8(Desc.toBits()); 2478 } 2479 2480 Asm->OutStreamer->AddComment("External Name"); 2481 Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1)); 2482 } 2483 2484 Asm->OutStreamer->AddComment("End Mark"); 2485 Asm->emitDwarfLengthOrOffset(0); 2486 Asm->OutStreamer->emitLabel(EndLabel); 2487 } 2488 2489 /// Emit null-terminated strings into a debug str section. 2490 void DwarfDebug::emitDebugStr() { 2491 MCSection *StringOffsetsSection = nullptr; 2492 if (useSegmentedStringOffsetsTable()) { 2493 emitStringOffsetsTableHeader(); 2494 StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection(); 2495 } 2496 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2497 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(), 2498 StringOffsetsSection, /* UseRelativeOffsets = */ true); 2499 } 2500 2501 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, 2502 const DebugLocStream::Entry &Entry, 2503 const DwarfCompileUnit *CU) { 2504 auto &&Comments = DebugLocs.getComments(Entry); 2505 auto Comment = Comments.begin(); 2506 auto End = Comments.end(); 2507 2508 // The expressions are inserted into a byte stream rather early (see 2509 // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that 2510 // need to reference a base_type DIE the offset of that DIE is not yet known. 2511 // To deal with this we instead insert a placeholder early and then extract 2512 // it here and replace it with the real reference. 2513 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2514 DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(), 2515 DebugLocs.getBytes(Entry).size()), 2516 Asm->getDataLayout().isLittleEndian(), PtrSize); 2517 DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat()); 2518 2519 using Encoding = DWARFExpression::Operation::Encoding; 2520 uint64_t Offset = 0; 2521 for (auto &Op : Expr) { 2522 assert(Op.getCode() != dwarf::DW_OP_const_type && 2523 "3 operand ops not yet supported"); 2524 Streamer.emitInt8(Op.getCode(), Comment != End ? *(Comment++) : ""); 2525 Offset++; 2526 for (unsigned I = 0; I < 2; ++I) { 2527 if (Op.getDescription().Op[I] == Encoding::SizeNA) 2528 continue; 2529 if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) { 2530 uint64_t Offset = 2531 CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset(); 2532 assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit"); 2533 Streamer.emitULEB128(Offset, "", ULEB128PadSize); 2534 // Make sure comments stay aligned. 2535 for (unsigned J = 0; J < ULEB128PadSize; ++J) 2536 if (Comment != End) 2537 Comment++; 2538 } else { 2539 for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J) 2540 Streamer.emitInt8(Data.getData()[J], Comment != End ? *(Comment++) : ""); 2541 } 2542 Offset = Op.getOperandEndOffset(I); 2543 } 2544 assert(Offset == Op.getEndOffset()); 2545 } 2546 } 2547 2548 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT, 2549 const DbgValueLoc &Value, 2550 DwarfExpression &DwarfExpr) { 2551 auto *DIExpr = Value.getExpression(); 2552 DIExpressionCursor ExprCursor(DIExpr); 2553 DwarfExpr.addFragmentOffset(DIExpr); 2554 2555 // If the DIExpr is is an Entry Value, we want to follow the same code path 2556 // regardless of whether the DBG_VALUE is variadic or not. 2557 if (DIExpr && DIExpr->isEntryValue()) { 2558 // Entry values can only be a single register with no additional DIExpr, 2559 // so just add it directly. 2560 assert(Value.getLocEntries().size() == 1); 2561 assert(Value.getLocEntries()[0].isLocation()); 2562 MachineLocation Location = Value.getLocEntries()[0].getLoc(); 2563 DwarfExpr.setLocation(Location, DIExpr); 2564 2565 DwarfExpr.beginEntryValueExpression(ExprCursor); 2566 2567 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2568 if (!DwarfExpr.addMachineRegExpression(TRI, ExprCursor, Location.getReg())) 2569 return; 2570 return DwarfExpr.addExpression(std::move(ExprCursor)); 2571 } 2572 2573 // Regular entry. 2574 auto EmitValueLocEntry = [&DwarfExpr, &BT, 2575 &AP](const DbgValueLocEntry &Entry, 2576 DIExpressionCursor &Cursor) -> bool { 2577 if (Entry.isInt()) { 2578 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed || 2579 BT->getEncoding() == dwarf::DW_ATE_signed_char)) 2580 DwarfExpr.addSignedConstant(Entry.getInt()); 2581 else 2582 DwarfExpr.addUnsignedConstant(Entry.getInt()); 2583 } else if (Entry.isLocation()) { 2584 MachineLocation Location = Entry.getLoc(); 2585 if (Location.isIndirect()) 2586 DwarfExpr.setMemoryLocationKind(); 2587 2588 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2589 if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) 2590 return false; 2591 } else if (Entry.isTargetIndexLocation()) { 2592 TargetIndexLocation Loc = Entry.getTargetIndexLocation(); 2593 // TODO TargetIndexLocation is a target-independent. Currently only the 2594 // WebAssembly-specific encoding is supported. 2595 assert(AP.TM.getTargetTriple().isWasm()); 2596 DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset)); 2597 } else if (Entry.isConstantFP()) { 2598 if (AP.getDwarfVersion() >= 4 && !AP.getDwarfDebug()->tuneForSCE() && 2599 !Cursor) { 2600 DwarfExpr.addConstantFP(Entry.getConstantFP()->getValueAPF(), AP); 2601 } else if (Entry.getConstantFP() 2602 ->getValueAPF() 2603 .bitcastToAPInt() 2604 .getBitWidth() <= 64 /*bits*/) { 2605 DwarfExpr.addUnsignedConstant( 2606 Entry.getConstantFP()->getValueAPF().bitcastToAPInt()); 2607 } else { 2608 LLVM_DEBUG( 2609 dbgs() << "Skipped DwarfExpression creation for ConstantFP of size" 2610 << Entry.getConstantFP() 2611 ->getValueAPF() 2612 .bitcastToAPInt() 2613 .getBitWidth() 2614 << " bits\n"); 2615 return false; 2616 } 2617 } 2618 return true; 2619 }; 2620 2621 if (!Value.isVariadic()) { 2622 if (!EmitValueLocEntry(Value.getLocEntries()[0], ExprCursor)) 2623 return; 2624 DwarfExpr.addExpression(std::move(ExprCursor)); 2625 return; 2626 } 2627 2628 // If any of the location entries are registers with the value 0, then the 2629 // location is undefined. 2630 if (any_of(Value.getLocEntries(), [](const DbgValueLocEntry &Entry) { 2631 return Entry.isLocation() && !Entry.getLoc().getReg(); 2632 })) 2633 return; 2634 2635 DwarfExpr.addExpression( 2636 std::move(ExprCursor), 2637 [EmitValueLocEntry, &Value](unsigned Idx, 2638 DIExpressionCursor &Cursor) -> bool { 2639 return EmitValueLocEntry(Value.getLocEntries()[Idx], Cursor); 2640 }); 2641 } 2642 2643 void DebugLocEntry::finalize(const AsmPrinter &AP, 2644 DebugLocStream::ListBuilder &List, 2645 const DIBasicType *BT, 2646 DwarfCompileUnit &TheCU) { 2647 assert(!Values.empty() && 2648 "location list entries without values are redundant"); 2649 assert(Begin != End && "unexpected location list entry with empty range"); 2650 DebugLocStream::EntryBuilder Entry(List, Begin, End); 2651 BufferByteStreamer Streamer = Entry.getStreamer(); 2652 DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU); 2653 const DbgValueLoc &Value = Values[0]; 2654 if (Value.isFragment()) { 2655 // Emit all fragments that belong to the same variable and range. 2656 assert(llvm::all_of(Values, [](DbgValueLoc P) { 2657 return P.isFragment(); 2658 }) && "all values are expected to be fragments"); 2659 assert(llvm::is_sorted(Values) && "fragments are expected to be sorted"); 2660 2661 for (const auto &Fragment : Values) 2662 DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr); 2663 2664 } else { 2665 assert(Values.size() == 1 && "only fragments may have >1 value"); 2666 DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr); 2667 } 2668 DwarfExpr.finalize(); 2669 if (DwarfExpr.TagOffset) 2670 List.setTagOffset(*DwarfExpr.TagOffset); 2671 } 2672 2673 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry, 2674 const DwarfCompileUnit *CU) { 2675 // Emit the size. 2676 Asm->OutStreamer->AddComment("Loc expr size"); 2677 if (getDwarfVersion() >= 5) 2678 Asm->emitULEB128(DebugLocs.getBytes(Entry).size()); 2679 else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max()) 2680 Asm->emitInt16(DebugLocs.getBytes(Entry).size()); 2681 else { 2682 // The entry is too big to fit into 16 bit, drop it as there is nothing we 2683 // can do. 2684 Asm->emitInt16(0); 2685 return; 2686 } 2687 // Emit the entry. 2688 APByteStreamer Streamer(*Asm); 2689 emitDebugLocEntry(Streamer, Entry, CU); 2690 } 2691 2692 // Emit the header of a DWARF 5 range list table list table. Returns the symbol 2693 // that designates the end of the table for the caller to emit when the table is 2694 // complete. 2695 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm, 2696 const DwarfFile &Holder) { 2697 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2698 2699 Asm->OutStreamer->AddComment("Offset entry count"); 2700 Asm->emitInt32(Holder.getRangeLists().size()); 2701 Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym()); 2702 2703 for (const RangeSpanList &List : Holder.getRangeLists()) 2704 Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(), 2705 Asm->getDwarfOffsetByteSize()); 2706 2707 return TableEnd; 2708 } 2709 2710 // Emit the header of a DWARF 5 locations list table. Returns the symbol that 2711 // designates the end of the table for the caller to emit when the table is 2712 // complete. 2713 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm, 2714 const DwarfDebug &DD) { 2715 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2716 2717 const auto &DebugLocs = DD.getDebugLocs(); 2718 2719 Asm->OutStreamer->AddComment("Offset entry count"); 2720 Asm->emitInt32(DebugLocs.getLists().size()); 2721 Asm->OutStreamer->emitLabel(DebugLocs.getSym()); 2722 2723 for (const auto &List : DebugLocs.getLists()) 2724 Asm->emitLabelDifference(List.Label, DebugLocs.getSym(), 2725 Asm->getDwarfOffsetByteSize()); 2726 2727 return TableEnd; 2728 } 2729 2730 template <typename Ranges, typename PayloadEmitter> 2731 static void emitRangeList( 2732 DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R, 2733 const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair, 2734 unsigned StartxLength, unsigned EndOfList, 2735 StringRef (*StringifyEnum)(unsigned), 2736 bool ShouldUseBaseAddress, 2737 PayloadEmitter EmitPayload) { 2738 2739 auto Size = Asm->MAI->getCodePointerSize(); 2740 bool UseDwarf5 = DD.getDwarfVersion() >= 5; 2741 2742 // Emit our symbol so we can find the beginning of the range. 2743 Asm->OutStreamer->emitLabel(Sym); 2744 2745 // Gather all the ranges that apply to the same section so they can share 2746 // a base address entry. 2747 MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges; 2748 2749 for (const auto &Range : R) 2750 SectionRanges[&Range.Begin->getSection()].push_back(&Range); 2751 2752 const MCSymbol *CUBase = CU.getBaseAddress(); 2753 bool BaseIsSet = false; 2754 for (const auto &P : SectionRanges) { 2755 auto *Base = CUBase; 2756 if (!Base && ShouldUseBaseAddress) { 2757 const MCSymbol *Begin = P.second.front()->Begin; 2758 const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection()); 2759 if (!UseDwarf5) { 2760 Base = NewBase; 2761 BaseIsSet = true; 2762 Asm->OutStreamer->emitIntValue(-1, Size); 2763 Asm->OutStreamer->AddComment(" base address"); 2764 Asm->OutStreamer->emitSymbolValue(Base, Size); 2765 } else if (NewBase != Begin || P.second.size() > 1) { 2766 // Only use a base address if 2767 // * the existing pool address doesn't match (NewBase != Begin) 2768 // * or, there's more than one entry to share the base address 2769 Base = NewBase; 2770 BaseIsSet = true; 2771 Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx)); 2772 Asm->emitInt8(BaseAddressx); 2773 Asm->OutStreamer->AddComment(" base address index"); 2774 Asm->emitULEB128(DD.getAddressPool().getIndex(Base)); 2775 } 2776 } else if (BaseIsSet && !UseDwarf5) { 2777 BaseIsSet = false; 2778 assert(!Base); 2779 Asm->OutStreamer->emitIntValue(-1, Size); 2780 Asm->OutStreamer->emitIntValue(0, Size); 2781 } 2782 2783 for (const auto *RS : P.second) { 2784 const MCSymbol *Begin = RS->Begin; 2785 const MCSymbol *End = RS->End; 2786 assert(Begin && "Range without a begin symbol?"); 2787 assert(End && "Range without an end symbol?"); 2788 if (Base) { 2789 if (UseDwarf5) { 2790 // Emit offset_pair when we have a base. 2791 Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair)); 2792 Asm->emitInt8(OffsetPair); 2793 Asm->OutStreamer->AddComment(" starting offset"); 2794 Asm->emitLabelDifferenceAsULEB128(Begin, Base); 2795 Asm->OutStreamer->AddComment(" ending offset"); 2796 Asm->emitLabelDifferenceAsULEB128(End, Base); 2797 } else { 2798 Asm->emitLabelDifference(Begin, Base, Size); 2799 Asm->emitLabelDifference(End, Base, Size); 2800 } 2801 } else if (UseDwarf5) { 2802 Asm->OutStreamer->AddComment(StringifyEnum(StartxLength)); 2803 Asm->emitInt8(StartxLength); 2804 Asm->OutStreamer->AddComment(" start index"); 2805 Asm->emitULEB128(DD.getAddressPool().getIndex(Begin)); 2806 Asm->OutStreamer->AddComment(" length"); 2807 Asm->emitLabelDifferenceAsULEB128(End, Begin); 2808 } else { 2809 Asm->OutStreamer->emitSymbolValue(Begin, Size); 2810 Asm->OutStreamer->emitSymbolValue(End, Size); 2811 } 2812 EmitPayload(*RS); 2813 } 2814 } 2815 2816 if (UseDwarf5) { 2817 Asm->OutStreamer->AddComment(StringifyEnum(EndOfList)); 2818 Asm->emitInt8(EndOfList); 2819 } else { 2820 // Terminate the list with two 0 values. 2821 Asm->OutStreamer->emitIntValue(0, Size); 2822 Asm->OutStreamer->emitIntValue(0, Size); 2823 } 2824 } 2825 2826 // Handles emission of both debug_loclist / debug_loclist.dwo 2827 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) { 2828 emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List), 2829 *List.CU, dwarf::DW_LLE_base_addressx, 2830 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length, 2831 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString, 2832 /* ShouldUseBaseAddress */ true, 2833 [&](const DebugLocStream::Entry &E) { 2834 DD.emitDebugLocEntryLocation(E, List.CU); 2835 }); 2836 } 2837 2838 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) { 2839 if (DebugLocs.getLists().empty()) 2840 return; 2841 2842 Asm->OutStreamer->SwitchSection(Sec); 2843 2844 MCSymbol *TableEnd = nullptr; 2845 if (getDwarfVersion() >= 5) 2846 TableEnd = emitLoclistsTableHeader(Asm, *this); 2847 2848 for (const auto &List : DebugLocs.getLists()) 2849 emitLocList(*this, Asm, List); 2850 2851 if (TableEnd) 2852 Asm->OutStreamer->emitLabel(TableEnd); 2853 } 2854 2855 // Emit locations into the .debug_loc/.debug_loclists section. 2856 void DwarfDebug::emitDebugLoc() { 2857 emitDebugLocImpl( 2858 getDwarfVersion() >= 5 2859 ? Asm->getObjFileLowering().getDwarfLoclistsSection() 2860 : Asm->getObjFileLowering().getDwarfLocSection()); 2861 } 2862 2863 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section. 2864 void DwarfDebug::emitDebugLocDWO() { 2865 if (getDwarfVersion() >= 5) { 2866 emitDebugLocImpl( 2867 Asm->getObjFileLowering().getDwarfLoclistsDWOSection()); 2868 2869 return; 2870 } 2871 2872 for (const auto &List : DebugLocs.getLists()) { 2873 Asm->OutStreamer->SwitchSection( 2874 Asm->getObjFileLowering().getDwarfLocDWOSection()); 2875 Asm->OutStreamer->emitLabel(List.Label); 2876 2877 for (const auto &Entry : DebugLocs.getEntries(List)) { 2878 // GDB only supports startx_length in pre-standard split-DWARF. 2879 // (in v5 standard loclists, it currently* /only/ supports base_address + 2880 // offset_pair, so the implementations can't really share much since they 2881 // need to use different representations) 2882 // * as of October 2018, at least 2883 // 2884 // In v5 (see emitLocList), this uses SectionLabels to reuse existing 2885 // addresses in the address pool to minimize object size/relocations. 2886 Asm->emitInt8(dwarf::DW_LLE_startx_length); 2887 unsigned idx = AddrPool.getIndex(Entry.Begin); 2888 Asm->emitULEB128(idx); 2889 // Also the pre-standard encoding is slightly different, emitting this as 2890 // an address-length entry here, but its a ULEB128 in DWARFv5 loclists. 2891 Asm->emitLabelDifference(Entry.End, Entry.Begin, 4); 2892 emitDebugLocEntryLocation(Entry, List.CU); 2893 } 2894 Asm->emitInt8(dwarf::DW_LLE_end_of_list); 2895 } 2896 } 2897 2898 struct ArangeSpan { 2899 const MCSymbol *Start, *End; 2900 }; 2901 2902 // Emit a debug aranges section, containing a CU lookup for any 2903 // address we can tie back to a CU. 2904 void DwarfDebug::emitDebugARanges() { 2905 // Provides a unique id per text section. 2906 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap; 2907 2908 // Filter labels by section. 2909 for (const SymbolCU &SCU : ArangeLabels) { 2910 if (SCU.Sym->isInSection()) { 2911 // Make a note of this symbol and it's section. 2912 MCSection *Section = &SCU.Sym->getSection(); 2913 if (!Section->getKind().isMetadata()) 2914 SectionMap[Section].push_back(SCU); 2915 } else { 2916 // Some symbols (e.g. common/bss on mach-o) can have no section but still 2917 // appear in the output. This sucks as we rely on sections to build 2918 // arange spans. We can do it without, but it's icky. 2919 SectionMap[nullptr].push_back(SCU); 2920 } 2921 } 2922 2923 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans; 2924 2925 for (auto &I : SectionMap) { 2926 MCSection *Section = I.first; 2927 SmallVector<SymbolCU, 8> &List = I.second; 2928 if (List.size() < 1) 2929 continue; 2930 2931 // If we have no section (e.g. common), just write out 2932 // individual spans for each symbol. 2933 if (!Section) { 2934 for (const SymbolCU &Cur : List) { 2935 ArangeSpan Span; 2936 Span.Start = Cur.Sym; 2937 Span.End = nullptr; 2938 assert(Cur.CU); 2939 Spans[Cur.CU].push_back(Span); 2940 } 2941 continue; 2942 } 2943 2944 // Sort the symbols by offset within the section. 2945 llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) { 2946 unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0; 2947 unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0; 2948 2949 // Symbols with no order assigned should be placed at the end. 2950 // (e.g. section end labels) 2951 if (IA == 0) 2952 return false; 2953 if (IB == 0) 2954 return true; 2955 return IA < IB; 2956 }); 2957 2958 // Insert a final terminator. 2959 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section))); 2960 2961 // Build spans between each label. 2962 const MCSymbol *StartSym = List[0].Sym; 2963 for (size_t n = 1, e = List.size(); n < e; n++) { 2964 const SymbolCU &Prev = List[n - 1]; 2965 const SymbolCU &Cur = List[n]; 2966 2967 // Try and build the longest span we can within the same CU. 2968 if (Cur.CU != Prev.CU) { 2969 ArangeSpan Span; 2970 Span.Start = StartSym; 2971 Span.End = Cur.Sym; 2972 assert(Prev.CU); 2973 Spans[Prev.CU].push_back(Span); 2974 StartSym = Cur.Sym; 2975 } 2976 } 2977 } 2978 2979 // Start the dwarf aranges section. 2980 Asm->OutStreamer->SwitchSection( 2981 Asm->getObjFileLowering().getDwarfARangesSection()); 2982 2983 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2984 2985 // Build a list of CUs used. 2986 std::vector<DwarfCompileUnit *> CUs; 2987 for (const auto &it : Spans) { 2988 DwarfCompileUnit *CU = it.first; 2989 CUs.push_back(CU); 2990 } 2991 2992 // Sort the CU list (again, to ensure consistent output order). 2993 llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) { 2994 return A->getUniqueID() < B->getUniqueID(); 2995 }); 2996 2997 // Emit an arange table for each CU we used. 2998 for (DwarfCompileUnit *CU : CUs) { 2999 std::vector<ArangeSpan> &List = Spans[CU]; 3000 3001 // Describe the skeleton CU's offset and length, not the dwo file's. 3002 if (auto *Skel = CU->getSkeleton()) 3003 CU = Skel; 3004 3005 // Emit size of content not including length itself. 3006 unsigned ContentSize = 3007 sizeof(int16_t) + // DWARF ARange version number 3008 Asm->getDwarfOffsetByteSize() + // Offset of CU in the .debug_info 3009 // section 3010 sizeof(int8_t) + // Pointer Size (in bytes) 3011 sizeof(int8_t); // Segment Size (in bytes) 3012 3013 unsigned TupleSize = PtrSize * 2; 3014 3015 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. 3016 unsigned Padding = offsetToAlignment( 3017 Asm->getUnitLengthFieldByteSize() + ContentSize, Align(TupleSize)); 3018 3019 ContentSize += Padding; 3020 ContentSize += (List.size() + 1) * TupleSize; 3021 3022 // For each compile unit, write the list of spans it covers. 3023 Asm->emitDwarfUnitLength(ContentSize, "Length of ARange Set"); 3024 Asm->OutStreamer->AddComment("DWARF Arange version number"); 3025 Asm->emitInt16(dwarf::DW_ARANGES_VERSION); 3026 Asm->OutStreamer->AddComment("Offset Into Debug Info Section"); 3027 emitSectionReference(*CU); 3028 Asm->OutStreamer->AddComment("Address Size (in bytes)"); 3029 Asm->emitInt8(PtrSize); 3030 Asm->OutStreamer->AddComment("Segment Size (in bytes)"); 3031 Asm->emitInt8(0); 3032 3033 Asm->OutStreamer->emitFill(Padding, 0xff); 3034 3035 for (const ArangeSpan &Span : List) { 3036 Asm->emitLabelReference(Span.Start, PtrSize); 3037 3038 // Calculate the size as being from the span start to it's end. 3039 if (Span.End) { 3040 Asm->emitLabelDifference(Span.End, Span.Start, PtrSize); 3041 } else { 3042 // For symbols without an end marker (e.g. common), we 3043 // write a single arange entry containing just that one symbol. 3044 uint64_t Size = SymSize[Span.Start]; 3045 if (Size == 0) 3046 Size = 1; 3047 3048 Asm->OutStreamer->emitIntValue(Size, PtrSize); 3049 } 3050 } 3051 3052 Asm->OutStreamer->AddComment("ARange terminator"); 3053 Asm->OutStreamer->emitIntValue(0, PtrSize); 3054 Asm->OutStreamer->emitIntValue(0, PtrSize); 3055 } 3056 } 3057 3058 /// Emit a single range list. We handle both DWARF v5 and earlier. 3059 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm, 3060 const RangeSpanList &List) { 3061 emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU, 3062 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair, 3063 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list, 3064 llvm::dwarf::RangeListEncodingString, 3065 List.CU->getCUNode()->getRangesBaseAddress() || 3066 DD.getDwarfVersion() >= 5, 3067 [](auto) {}); 3068 } 3069 3070 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) { 3071 if (Holder.getRangeLists().empty()) 3072 return; 3073 3074 assert(useRangesSection()); 3075 assert(!CUMap.empty()); 3076 assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { 3077 return !Pair.second->getCUNode()->isDebugDirectivesOnly(); 3078 })); 3079 3080 Asm->OutStreamer->SwitchSection(Section); 3081 3082 MCSymbol *TableEnd = nullptr; 3083 if (getDwarfVersion() >= 5) 3084 TableEnd = emitRnglistsTableHeader(Asm, Holder); 3085 3086 for (const RangeSpanList &List : Holder.getRangeLists()) 3087 emitRangeList(*this, Asm, List); 3088 3089 if (TableEnd) 3090 Asm->OutStreamer->emitLabel(TableEnd); 3091 } 3092 3093 /// Emit address ranges into the .debug_ranges section or into the DWARF v5 3094 /// .debug_rnglists section. 3095 void DwarfDebug::emitDebugRanges() { 3096 const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 3097 3098 emitDebugRangesImpl(Holder, 3099 getDwarfVersion() >= 5 3100 ? Asm->getObjFileLowering().getDwarfRnglistsSection() 3101 : Asm->getObjFileLowering().getDwarfRangesSection()); 3102 } 3103 3104 void DwarfDebug::emitDebugRangesDWO() { 3105 emitDebugRangesImpl(InfoHolder, 3106 Asm->getObjFileLowering().getDwarfRnglistsDWOSection()); 3107 } 3108 3109 /// Emit the header of a DWARF 5 macro section, or the GNU extension for 3110 /// DWARF 4. 3111 static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD, 3112 const DwarfCompileUnit &CU, uint16_t DwarfVersion) { 3113 enum HeaderFlagMask { 3114 #define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID, 3115 #include "llvm/BinaryFormat/Dwarf.def" 3116 }; 3117 Asm->OutStreamer->AddComment("Macro information version"); 3118 Asm->emitInt16(DwarfVersion >= 5 ? DwarfVersion : 4); 3119 // We emit the line offset flag unconditionally here, since line offset should 3120 // be mostly present. 3121 if (Asm->isDwarf64()) { 3122 Asm->OutStreamer->AddComment("Flags: 64 bit, debug_line_offset present"); 3123 Asm->emitInt8(MACRO_FLAG_OFFSET_SIZE | MACRO_FLAG_DEBUG_LINE_OFFSET); 3124 } else { 3125 Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present"); 3126 Asm->emitInt8(MACRO_FLAG_DEBUG_LINE_OFFSET); 3127 } 3128 Asm->OutStreamer->AddComment("debug_line_offset"); 3129 if (DD.useSplitDwarf()) 3130 Asm->emitDwarfLengthOrOffset(0); 3131 else 3132 Asm->emitDwarfSymbolReference(CU.getLineTableStartSym()); 3133 } 3134 3135 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) { 3136 for (auto *MN : Nodes) { 3137 if (auto *M = dyn_cast<DIMacro>(MN)) 3138 emitMacro(*M); 3139 else if (auto *F = dyn_cast<DIMacroFile>(MN)) 3140 emitMacroFile(*F, U); 3141 else 3142 llvm_unreachable("Unexpected DI type!"); 3143 } 3144 } 3145 3146 void DwarfDebug::emitMacro(DIMacro &M) { 3147 StringRef Name = M.getName(); 3148 StringRef Value = M.getValue(); 3149 3150 // There should be one space between the macro name and the macro value in 3151 // define entries. In undef entries, only the macro name is emitted. 3152 std::string Str = Value.empty() ? Name.str() : (Name + " " + Value).str(); 3153 3154 if (UseDebugMacroSection) { 3155 if (getDwarfVersion() >= 5) { 3156 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define 3157 ? dwarf::DW_MACRO_define_strx 3158 : dwarf::DW_MACRO_undef_strx; 3159 Asm->OutStreamer->AddComment(dwarf::MacroString(Type)); 3160 Asm->emitULEB128(Type); 3161 Asm->OutStreamer->AddComment("Line Number"); 3162 Asm->emitULEB128(M.getLine()); 3163 Asm->OutStreamer->AddComment("Macro String"); 3164 Asm->emitULEB128( 3165 InfoHolder.getStringPool().getIndexedEntry(*Asm, Str).getIndex()); 3166 } else { 3167 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define 3168 ? dwarf::DW_MACRO_GNU_define_indirect 3169 : dwarf::DW_MACRO_GNU_undef_indirect; 3170 Asm->OutStreamer->AddComment(dwarf::GnuMacroString(Type)); 3171 Asm->emitULEB128(Type); 3172 Asm->OutStreamer->AddComment("Line Number"); 3173 Asm->emitULEB128(M.getLine()); 3174 Asm->OutStreamer->AddComment("Macro String"); 3175 Asm->emitDwarfSymbolReference( 3176 InfoHolder.getStringPool().getEntry(*Asm, Str).getSymbol()); 3177 } 3178 } else { 3179 Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType())); 3180 Asm->emitULEB128(M.getMacinfoType()); 3181 Asm->OutStreamer->AddComment("Line Number"); 3182 Asm->emitULEB128(M.getLine()); 3183 Asm->OutStreamer->AddComment("Macro String"); 3184 Asm->OutStreamer->emitBytes(Str); 3185 Asm->emitInt8('\0'); 3186 } 3187 } 3188 3189 void DwarfDebug::emitMacroFileImpl( 3190 DIMacroFile &MF, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile, 3191 StringRef (*MacroFormToString)(unsigned Form)) { 3192 3193 Asm->OutStreamer->AddComment(MacroFormToString(StartFile)); 3194 Asm->emitULEB128(StartFile); 3195 Asm->OutStreamer->AddComment("Line Number"); 3196 Asm->emitULEB128(MF.getLine()); 3197 Asm->OutStreamer->AddComment("File Number"); 3198 DIFile &F = *MF.getFile(); 3199 if (useSplitDwarf()) 3200 Asm->emitULEB128(getDwoLineTable(U)->getFile( 3201 F.getDirectory(), F.getFilename(), getMD5AsBytes(&F), 3202 Asm->OutContext.getDwarfVersion(), F.getSource())); 3203 else 3204 Asm->emitULEB128(U.getOrCreateSourceID(&F)); 3205 handleMacroNodes(MF.getElements(), U); 3206 Asm->OutStreamer->AddComment(MacroFormToString(EndFile)); 3207 Asm->emitULEB128(EndFile); 3208 } 3209 3210 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) { 3211 // DWARFv5 macro and DWARFv4 macinfo share some common encodings, 3212 // so for readibility/uniformity, We are explicitly emitting those. 3213 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file); 3214 if (UseDebugMacroSection) 3215 emitMacroFileImpl( 3216 F, U, dwarf::DW_MACRO_start_file, dwarf::DW_MACRO_end_file, 3217 (getDwarfVersion() >= 5) ? dwarf::MacroString : dwarf::GnuMacroString); 3218 else 3219 emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file, 3220 dwarf::DW_MACINFO_end_file, dwarf::MacinfoString); 3221 } 3222 3223 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) { 3224 for (const auto &P : CUMap) { 3225 auto &TheCU = *P.second; 3226 auto *SkCU = TheCU.getSkeleton(); 3227 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 3228 auto *CUNode = cast<DICompileUnit>(P.first); 3229 DIMacroNodeArray Macros = CUNode->getMacros(); 3230 if (Macros.empty()) 3231 continue; 3232 Asm->OutStreamer->SwitchSection(Section); 3233 Asm->OutStreamer->emitLabel(U.getMacroLabelBegin()); 3234 if (UseDebugMacroSection) 3235 emitMacroHeader(Asm, *this, U, getDwarfVersion()); 3236 handleMacroNodes(Macros, U); 3237 Asm->OutStreamer->AddComment("End Of Macro List Mark"); 3238 Asm->emitInt8(0); 3239 } 3240 } 3241 3242 /// Emit macros into a debug macinfo/macro section. 3243 void DwarfDebug::emitDebugMacinfo() { 3244 auto &ObjLower = Asm->getObjFileLowering(); 3245 emitDebugMacinfoImpl(UseDebugMacroSection 3246 ? ObjLower.getDwarfMacroSection() 3247 : ObjLower.getDwarfMacinfoSection()); 3248 } 3249 3250 void DwarfDebug::emitDebugMacinfoDWO() { 3251 auto &ObjLower = Asm->getObjFileLowering(); 3252 emitDebugMacinfoImpl(UseDebugMacroSection 3253 ? ObjLower.getDwarfMacroDWOSection() 3254 : ObjLower.getDwarfMacinfoDWOSection()); 3255 } 3256 3257 // DWARF5 Experimental Separate Dwarf emitters. 3258 3259 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die, 3260 std::unique_ptr<DwarfCompileUnit> NewU) { 3261 3262 if (!CompilationDir.empty()) 3263 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 3264 addGnuPubAttributes(*NewU, Die); 3265 3266 SkeletonHolder.addUnit(std::move(NewU)); 3267 } 3268 3269 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) { 3270 3271 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 3272 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder, 3273 UnitKind::Skeleton); 3274 DwarfCompileUnit &NewCU = *OwnedUnit; 3275 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 3276 3277 NewCU.initStmtList(); 3278 3279 if (useSegmentedStringOffsetsTable()) 3280 NewCU.addStringOffsetsStart(); 3281 3282 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit)); 3283 3284 return NewCU; 3285 } 3286 3287 // Emit the .debug_info.dwo section for separated dwarf. This contains the 3288 // compile units that would normally be in debug_info. 3289 void DwarfDebug::emitDebugInfoDWO() { 3290 assert(useSplitDwarf() && "No split dwarf debug info?"); 3291 // Don't emit relocations into the dwo file. 3292 InfoHolder.emitUnits(/* UseOffsets */ true); 3293 } 3294 3295 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the 3296 // abbreviations for the .debug_info.dwo section. 3297 void DwarfDebug::emitDebugAbbrevDWO() { 3298 assert(useSplitDwarf() && "No split dwarf?"); 3299 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection()); 3300 } 3301 3302 void DwarfDebug::emitDebugLineDWO() { 3303 assert(useSplitDwarf() && "No split dwarf?"); 3304 SplitTypeUnitFileTable.Emit( 3305 *Asm->OutStreamer, MCDwarfLineTableParams(), 3306 Asm->getObjFileLowering().getDwarfLineDWOSection()); 3307 } 3308 3309 void DwarfDebug::emitStringOffsetsTableHeaderDWO() { 3310 assert(useSplitDwarf() && "No split dwarf?"); 3311 InfoHolder.getStringPool().emitStringOffsetsTableHeader( 3312 *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(), 3313 InfoHolder.getStringOffsetsStartSym()); 3314 } 3315 3316 // Emit the .debug_str.dwo section for separated dwarf. This contains the 3317 // string section and is identical in format to traditional .debug_str 3318 // sections. 3319 void DwarfDebug::emitDebugStrDWO() { 3320 if (useSegmentedStringOffsetsTable()) 3321 emitStringOffsetsTableHeaderDWO(); 3322 assert(useSplitDwarf() && "No split dwarf?"); 3323 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection(); 3324 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), 3325 OffSec, /* UseRelativeOffsets = */ false); 3326 } 3327 3328 // Emit address pool. 3329 void DwarfDebug::emitDebugAddr() { 3330 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection()); 3331 } 3332 3333 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) { 3334 if (!useSplitDwarf()) 3335 return nullptr; 3336 const DICompileUnit *DIUnit = CU.getCUNode(); 3337 SplitTypeUnitFileTable.maybeSetRootFile( 3338 DIUnit->getDirectory(), DIUnit->getFilename(), 3339 getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource()); 3340 return &SplitTypeUnitFileTable; 3341 } 3342 3343 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) { 3344 MD5 Hash; 3345 Hash.update(Identifier); 3346 // ... take the least significant 8 bytes and return those. Our MD5 3347 // implementation always returns its results in little endian, so we actually 3348 // need the "high" word. 3349 MD5::MD5Result Result; 3350 Hash.final(Result); 3351 return Result.high(); 3352 } 3353 3354 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU, 3355 StringRef Identifier, DIE &RefDie, 3356 const DICompositeType *CTy) { 3357 // Fast path if we're building some type units and one has already used the 3358 // address pool we know we're going to throw away all this work anyway, so 3359 // don't bother building dependent types. 3360 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed()) 3361 return; 3362 3363 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0)); 3364 if (!Ins.second) { 3365 CU.addDIETypeSignature(RefDie, Ins.first->second); 3366 return; 3367 } 3368 3369 bool TopLevelType = TypeUnitsUnderConstruction.empty(); 3370 AddrPool.resetUsedFlag(); 3371 3372 auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder, 3373 getDwoLineTable(CU)); 3374 DwarfTypeUnit &NewTU = *OwnedUnit; 3375 DIE &UnitDie = NewTU.getUnitDie(); 3376 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy); 3377 3378 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 3379 CU.getLanguage()); 3380 3381 uint64_t Signature = makeTypeSignature(Identifier); 3382 NewTU.setTypeSignature(Signature); 3383 Ins.first->second = Signature; 3384 3385 if (useSplitDwarf()) { 3386 MCSection *Section = 3387 getDwarfVersion() <= 4 3388 ? Asm->getObjFileLowering().getDwarfTypesDWOSection() 3389 : Asm->getObjFileLowering().getDwarfInfoDWOSection(); 3390 NewTU.setSection(Section); 3391 } else { 3392 MCSection *Section = 3393 getDwarfVersion() <= 4 3394 ? Asm->getObjFileLowering().getDwarfTypesSection(Signature) 3395 : Asm->getObjFileLowering().getDwarfInfoSection(Signature); 3396 NewTU.setSection(Section); 3397 // Non-split type units reuse the compile unit's line table. 3398 CU.applyStmtList(UnitDie); 3399 } 3400 3401 // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type 3402 // units. 3403 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 3404 NewTU.addStringOffsetsStart(); 3405 3406 NewTU.setType(NewTU.createTypeDIE(CTy)); 3407 3408 if (TopLevelType) { 3409 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction); 3410 TypeUnitsUnderConstruction.clear(); 3411 3412 // Types referencing entries in the address table cannot be placed in type 3413 // units. 3414 if (AddrPool.hasBeenUsed()) { 3415 3416 // Remove all the types built while building this type. 3417 // This is pessimistic as some of these types might not be dependent on 3418 // the type that used an address. 3419 for (const auto &TU : TypeUnitsToAdd) 3420 TypeSignatures.erase(TU.second); 3421 3422 // Construct this type in the CU directly. 3423 // This is inefficient because all the dependent types will be rebuilt 3424 // from scratch, including building them in type units, discovering that 3425 // they depend on addresses, throwing them out and rebuilding them. 3426 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy)); 3427 return; 3428 } 3429 3430 // If the type wasn't dependent on fission addresses, finish adding the type 3431 // and all its dependent types. 3432 for (auto &TU : TypeUnitsToAdd) { 3433 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get()); 3434 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf()); 3435 } 3436 } 3437 CU.addDIETypeSignature(RefDie, Signature); 3438 } 3439 3440 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD) 3441 : DD(DD), 3442 TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)), AddrPoolUsed(DD->AddrPool.hasBeenUsed()) { 3443 DD->TypeUnitsUnderConstruction.clear(); 3444 DD->AddrPool.resetUsedFlag(); 3445 } 3446 3447 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() { 3448 DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction); 3449 DD->AddrPool.resetUsedFlag(AddrPoolUsed); 3450 } 3451 3452 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() { 3453 return NonTypeUnitContext(this); 3454 } 3455 3456 // Add the Name along with its companion DIE to the appropriate accelerator 3457 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for 3458 // AccelTableKind::Apple, we use the table we got as an argument). If 3459 // accelerator tables are disabled, this function does nothing. 3460 template <typename DataT> 3461 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU, 3462 AccelTable<DataT> &AppleAccel, StringRef Name, 3463 const DIE &Die) { 3464 if (getAccelTableKind() == AccelTableKind::None) 3465 return; 3466 3467 if (getAccelTableKind() != AccelTableKind::Apple && 3468 CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default) 3469 return; 3470 3471 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 3472 DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name); 3473 3474 switch (getAccelTableKind()) { 3475 case AccelTableKind::Apple: 3476 AppleAccel.addName(Ref, Die); 3477 break; 3478 case AccelTableKind::Dwarf: 3479 AccelDebugNames.addName(Ref, Die); 3480 break; 3481 case AccelTableKind::Default: 3482 llvm_unreachable("Default should have already been resolved."); 3483 case AccelTableKind::None: 3484 llvm_unreachable("None handled above"); 3485 } 3486 } 3487 3488 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name, 3489 const DIE &Die) { 3490 addAccelNameImpl(CU, AccelNames, Name, Die); 3491 } 3492 3493 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name, 3494 const DIE &Die) { 3495 // ObjC names go only into the Apple accelerator tables. 3496 if (getAccelTableKind() == AccelTableKind::Apple) 3497 addAccelNameImpl(CU, AccelObjC, Name, Die); 3498 } 3499 3500 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name, 3501 const DIE &Die) { 3502 addAccelNameImpl(CU, AccelNamespace, Name, Die); 3503 } 3504 3505 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name, 3506 const DIE &Die, char Flags) { 3507 addAccelNameImpl(CU, AccelTypes, Name, Die); 3508 } 3509 3510 uint16_t DwarfDebug::getDwarfVersion() const { 3511 return Asm->OutStreamer->getContext().getDwarfVersion(); 3512 } 3513 3514 dwarf::Form DwarfDebug::getDwarfSectionOffsetForm() const { 3515 if (Asm->getDwarfVersion() >= 4) 3516 return dwarf::Form::DW_FORM_sec_offset; 3517 assert((!Asm->isDwarf64() || (Asm->getDwarfVersion() == 3)) && 3518 "DWARF64 is not defined prior DWARFv3"); 3519 return Asm->isDwarf64() ? dwarf::Form::DW_FORM_data8 3520 : dwarf::Form::DW_FORM_data4; 3521 } 3522 3523 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) { 3524 auto I = SectionLabels.find(S); 3525 if (I == SectionLabels.end()) 3526 return nullptr; 3527 return I->second; 3528 } 3529 void DwarfDebug::insertSectionLabel(const MCSymbol *S) { 3530 if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second) 3531 if (useSplitDwarf() || getDwarfVersion() >= 5) 3532 AddrPool.getIndex(S); 3533 } 3534 3535 Optional<MD5::MD5Result> DwarfDebug::getMD5AsBytes(const DIFile *File) const { 3536 assert(File); 3537 if (getDwarfVersion() < 5) 3538 return None; 3539 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = File->getChecksum(); 3540 if (!Checksum || Checksum->Kind != DIFile::CSK_MD5) 3541 return None; 3542 3543 // Convert the string checksum to an MD5Result for the streamer. 3544 // The verifier validates the checksum so we assume it's okay. 3545 // An MD5 checksum is 16 bytes. 3546 std::string ChecksumString = fromHex(Checksum->Value); 3547 MD5::MD5Result CKMem; 3548 std::copy(ChecksumString.begin(), ChecksumString.end(), CKMem.Bytes.data()); 3549 return CKMem; 3550 } 3551