1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing dwarf debug info into asm files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DwarfDebug.h" 14 #include "ByteStreamer.h" 15 #include "DIEHash.h" 16 #include "DebugLocEntry.h" 17 #include "DebugLocStream.h" 18 #include "DwarfCompileUnit.h" 19 #include "DwarfExpression.h" 20 #include "DwarfFile.h" 21 #include "DwarfUnit.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/DenseSet.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/BinaryFormat/Dwarf.h" 33 #include "llvm/CodeGen/AccelTable.h" 34 #include "llvm/CodeGen/AsmPrinter.h" 35 #include "llvm/CodeGen/DIE.h" 36 #include "llvm/CodeGen/LexicalScopes.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineInstr.h" 40 #include "llvm/CodeGen/MachineModuleInfo.h" 41 #include "llvm/CodeGen/MachineOperand.h" 42 #include "llvm/CodeGen/TargetInstrInfo.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/DebugInfo/DWARF/DWARFExpression.h" 47 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GlobalVariable.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/MC/MCAsmInfo.h" 55 #include "llvm/MC/MCContext.h" 56 #include "llvm/MC/MCDwarf.h" 57 #include "llvm/MC/MCSection.h" 58 #include "llvm/MC/MCStreamer.h" 59 #include "llvm/MC/MCSymbol.h" 60 #include "llvm/MC/MCTargetOptions.h" 61 #include "llvm/MC/MachineLocation.h" 62 #include "llvm/MC/SectionKind.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MD5.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/Timer.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Target/TargetLoweringObjectFile.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include "llvm/Target/TargetOptions.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <iterator> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 #define DEBUG_TYPE "dwarfdebug" 87 88 STATISTIC(NumCSParams, "Number of dbg call site params created"); 89 90 static cl::opt<bool> 91 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 92 cl::desc("Disable debug info printing")); 93 94 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier( 95 "use-dwarf-ranges-base-address-specifier", cl::Hidden, 96 cl::desc("Use base address specifiers in debug_ranges"), cl::init(false)); 97 98 static cl::opt<bool> EmitDwarfDebugEntryValues( 99 "emit-debug-entry-values", cl::Hidden, 100 cl::desc("Emit the debug entry values"), cl::init(false)); 101 102 static cl::opt<bool> GenerateARangeSection("generate-arange-section", 103 cl::Hidden, 104 cl::desc("Generate dwarf aranges"), 105 cl::init(false)); 106 107 static cl::opt<bool> 108 GenerateDwarfTypeUnits("generate-type-units", cl::Hidden, 109 cl::desc("Generate DWARF4 type units."), 110 cl::init(false)); 111 112 static cl::opt<bool> SplitDwarfCrossCuReferences( 113 "split-dwarf-cross-cu-references", cl::Hidden, 114 cl::desc("Enable cross-cu references in DWO files"), cl::init(false)); 115 116 enum DefaultOnOff { Default, Enable, Disable }; 117 118 static cl::opt<DefaultOnOff> UnknownLocations( 119 "use-unknown-locations", cl::Hidden, 120 cl::desc("Make an absence of debug location information explicit."), 121 cl::values(clEnumVal(Default, "At top of block or after label"), 122 clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")), 123 cl::init(Default)); 124 125 static cl::opt<AccelTableKind> AccelTables( 126 "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."), 127 cl::values(clEnumValN(AccelTableKind::Default, "Default", 128 "Default for platform"), 129 clEnumValN(AccelTableKind::None, "Disable", "Disabled."), 130 clEnumValN(AccelTableKind::Apple, "Apple", "Apple"), 131 clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")), 132 cl::init(AccelTableKind::Default)); 133 134 static cl::opt<DefaultOnOff> 135 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden, 136 cl::desc("Use inlined strings rather than string section."), 137 cl::values(clEnumVal(Default, "Default for platform"), 138 clEnumVal(Enable, "Enabled"), 139 clEnumVal(Disable, "Disabled")), 140 cl::init(Default)); 141 142 static cl::opt<bool> 143 NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden, 144 cl::desc("Disable emission .debug_ranges section."), 145 cl::init(false)); 146 147 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences( 148 "dwarf-sections-as-references", cl::Hidden, 149 cl::desc("Use sections+offset as references rather than labels."), 150 cl::values(clEnumVal(Default, "Default for platform"), 151 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 152 cl::init(Default)); 153 154 enum LinkageNameOption { 155 DefaultLinkageNames, 156 AllLinkageNames, 157 AbstractLinkageNames 158 }; 159 160 static cl::opt<LinkageNameOption> 161 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden, 162 cl::desc("Which DWARF linkage-name attributes to emit."), 163 cl::values(clEnumValN(DefaultLinkageNames, "Default", 164 "Default for platform"), 165 clEnumValN(AllLinkageNames, "All", "All"), 166 clEnumValN(AbstractLinkageNames, "Abstract", 167 "Abstract subprograms")), 168 cl::init(DefaultLinkageNames)); 169 170 static const char *const DWARFGroupName = "dwarf"; 171 static const char *const DWARFGroupDescription = "DWARF Emission"; 172 static const char *const DbgTimerName = "writer"; 173 static const char *const DbgTimerDescription = "DWARF Debug Writer"; 174 static constexpr unsigned ULEB128PadSize = 4; 175 176 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) { 177 getActiveStreamer().EmitInt8( 178 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op) 179 : dwarf::OperationEncodingString(Op)); 180 } 181 182 void DebugLocDwarfExpression::emitSigned(int64_t Value) { 183 getActiveStreamer().emitSLEB128(Value, Twine(Value)); 184 } 185 186 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) { 187 getActiveStreamer().emitULEB128(Value, Twine(Value)); 188 } 189 190 void DebugLocDwarfExpression::emitData1(uint8_t Value) { 191 getActiveStreamer().EmitInt8(Value, Twine(Value)); 192 } 193 194 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) { 195 assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit"); 196 getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize); 197 } 198 199 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI, 200 unsigned MachineReg) { 201 // This information is not available while emitting .debug_loc entries. 202 return false; 203 } 204 205 void DebugLocDwarfExpression::enableTemporaryBuffer() { 206 assert(!IsBuffering && "Already buffering?"); 207 if (!TmpBuf) 208 TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments); 209 IsBuffering = true; 210 } 211 212 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; } 213 214 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() { 215 return TmpBuf ? TmpBuf->Bytes.size() : 0; 216 } 217 218 void DebugLocDwarfExpression::commitTemporaryBuffer() { 219 if (!TmpBuf) 220 return; 221 for (auto Byte : enumerate(TmpBuf->Bytes)) { 222 const char *Comment = (Byte.index() < TmpBuf->Comments.size()) 223 ? TmpBuf->Comments[Byte.index()].c_str() 224 : ""; 225 OutBS.EmitInt8(Byte.value(), Comment); 226 } 227 TmpBuf->Bytes.clear(); 228 TmpBuf->Comments.clear(); 229 } 230 231 const DIType *DbgVariable::getType() const { 232 return getVariable()->getType(); 233 } 234 235 /// Get .debug_loc entry for the instruction range starting at MI. 236 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) { 237 const DIExpression *Expr = MI->getDebugExpression(); 238 assert(MI->getNumOperands() == 4); 239 if (MI->getOperand(0).isReg()) { 240 auto RegOp = MI->getOperand(0); 241 auto Op1 = MI->getOperand(1); 242 // If the second operand is an immediate, this is a 243 // register-indirect address. 244 assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset"); 245 MachineLocation MLoc(RegOp.getReg(), Op1.isImm()); 246 return DbgValueLoc(Expr, MLoc); 247 } 248 if (MI->getOperand(0).isTargetIndex()) { 249 auto Op = MI->getOperand(0); 250 return DbgValueLoc(Expr, 251 TargetIndexLocation(Op.getIndex(), Op.getOffset())); 252 } 253 if (MI->getOperand(0).isImm()) 254 return DbgValueLoc(Expr, MI->getOperand(0).getImm()); 255 if (MI->getOperand(0).isFPImm()) 256 return DbgValueLoc(Expr, MI->getOperand(0).getFPImm()); 257 if (MI->getOperand(0).isCImm()) 258 return DbgValueLoc(Expr, MI->getOperand(0).getCImm()); 259 260 llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!"); 261 } 262 263 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) { 264 assert(FrameIndexExprs.empty() && "Already initialized?"); 265 assert(!ValueLoc.get() && "Already initialized?"); 266 267 assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable"); 268 assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() && 269 "Wrong inlined-at"); 270 271 ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue)); 272 if (auto *E = DbgValue->getDebugExpression()) 273 if (E->getNumElements()) 274 FrameIndexExprs.push_back({0, E}); 275 } 276 277 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const { 278 if (FrameIndexExprs.size() == 1) 279 return FrameIndexExprs; 280 281 assert(llvm::all_of(FrameIndexExprs, 282 [](const FrameIndexExpr &A) { 283 return A.Expr->isFragment(); 284 }) && 285 "multiple FI expressions without DW_OP_LLVM_fragment"); 286 llvm::sort(FrameIndexExprs, 287 [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool { 288 return A.Expr->getFragmentInfo()->OffsetInBits < 289 B.Expr->getFragmentInfo()->OffsetInBits; 290 }); 291 292 return FrameIndexExprs; 293 } 294 295 void DbgVariable::addMMIEntry(const DbgVariable &V) { 296 assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry"); 297 assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry"); 298 assert(V.getVariable() == getVariable() && "conflicting variable"); 299 assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location"); 300 301 assert(!FrameIndexExprs.empty() && "Expected an MMI entry"); 302 assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry"); 303 304 // FIXME: This logic should not be necessary anymore, as we now have proper 305 // deduplication. However, without it, we currently run into the assertion 306 // below, which means that we are likely dealing with broken input, i.e. two 307 // non-fragment entries for the same variable at different frame indices. 308 if (FrameIndexExprs.size()) { 309 auto *Expr = FrameIndexExprs.back().Expr; 310 if (!Expr || !Expr->isFragment()) 311 return; 312 } 313 314 for (const auto &FIE : V.FrameIndexExprs) 315 // Ignore duplicate entries. 316 if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) { 317 return FIE.FI == Other.FI && FIE.Expr == Other.Expr; 318 })) 319 FrameIndexExprs.push_back(FIE); 320 321 assert((FrameIndexExprs.size() == 1 || 322 llvm::all_of(FrameIndexExprs, 323 [](FrameIndexExpr &FIE) { 324 return FIE.Expr && FIE.Expr->isFragment(); 325 })) && 326 "conflicting locations for variable"); 327 } 328 329 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion, 330 bool GenerateTypeUnits, 331 DebuggerKind Tuning, 332 const Triple &TT) { 333 // Honor an explicit request. 334 if (AccelTables != AccelTableKind::Default) 335 return AccelTables; 336 337 // Accelerator tables with type units are currently not supported. 338 if (GenerateTypeUnits) 339 return AccelTableKind::None; 340 341 // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5 342 // always implies debug_names. For lower standard versions we use apple 343 // accelerator tables on apple platforms and debug_names elsewhere. 344 if (DwarfVersion >= 5) 345 return AccelTableKind::Dwarf; 346 if (Tuning == DebuggerKind::LLDB) 347 return TT.isOSBinFormatMachO() ? AccelTableKind::Apple 348 : AccelTableKind::Dwarf; 349 return AccelTableKind::None; 350 } 351 352 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M) 353 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()), 354 InfoHolder(A, "info_string", DIEValueAllocator), 355 SkeletonHolder(A, "skel_string", DIEValueAllocator), 356 IsDarwin(A->TM.getTargetTriple().isOSDarwin()) { 357 const Triple &TT = Asm->TM.getTargetTriple(); 358 359 // Make sure we know our "debugger tuning". The target option takes 360 // precedence; fall back to triple-based defaults. 361 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default) 362 DebuggerTuning = Asm->TM.Options.DebuggerTuning; 363 else if (IsDarwin) 364 DebuggerTuning = DebuggerKind::LLDB; 365 else if (TT.isPS4CPU()) 366 DebuggerTuning = DebuggerKind::SCE; 367 else 368 DebuggerTuning = DebuggerKind::GDB; 369 370 if (DwarfInlinedStrings == Default) 371 UseInlineStrings = TT.isNVPTX(); 372 else 373 UseInlineStrings = DwarfInlinedStrings == Enable; 374 375 UseLocSection = !TT.isNVPTX(); 376 377 HasAppleExtensionAttributes = tuneForLLDB(); 378 379 // Handle split DWARF. 380 HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty(); 381 382 // SCE defaults to linkage names only for abstract subprograms. 383 if (DwarfLinkageNames == DefaultLinkageNames) 384 UseAllLinkageNames = !tuneForSCE(); 385 else 386 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames; 387 388 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; 389 unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber 390 : MMI->getModule()->getDwarfVersion(); 391 // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2. 392 DwarfVersion = 393 TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION); 394 395 UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX(); 396 397 // Use sections as references. Force for NVPTX. 398 if (DwarfSectionsAsReferences == Default) 399 UseSectionsAsReferences = TT.isNVPTX(); 400 else 401 UseSectionsAsReferences = DwarfSectionsAsReferences == Enable; 402 403 // Don't generate type units for unsupported object file formats. 404 GenerateTypeUnits = 405 A->TM.getTargetTriple().isOSBinFormatELF() && GenerateDwarfTypeUnits; 406 407 TheAccelTableKind = computeAccelTableKind( 408 DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple()); 409 410 // Work around a GDB bug. GDB doesn't support the standard opcode; 411 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which 412 // is defined as of DWARF 3. 413 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented 414 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616 415 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3; 416 417 // GDB does not fully support the DWARF 4 representation for bitfields. 418 UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB(); 419 420 // The DWARF v5 string offsets table has - possibly shared - contributions 421 // from each compile and type unit each preceded by a header. The string 422 // offsets table used by the pre-DWARF v5 split-DWARF implementation uses 423 // a monolithic string offsets table without any header. 424 UseSegmentedStringOffsetsTable = DwarfVersion >= 5; 425 426 // Emit call-site-param debug info for GDB and LLDB, if the target supports 427 // the debug entry values feature. It can also be enabled explicitly. 428 EmitDebugEntryValues = (Asm->TM.Options.ShouldEmitDebugEntryValues() && 429 (tuneForGDB() || tuneForLLDB())) || 430 EmitDwarfDebugEntryValues; 431 432 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion); 433 } 434 435 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. 436 DwarfDebug::~DwarfDebug() = default; 437 438 static bool isObjCClass(StringRef Name) { 439 return Name.startswith("+") || Name.startswith("-"); 440 } 441 442 static bool hasObjCCategory(StringRef Name) { 443 if (!isObjCClass(Name)) 444 return false; 445 446 return Name.find(") ") != StringRef::npos; 447 } 448 449 static void getObjCClassCategory(StringRef In, StringRef &Class, 450 StringRef &Category) { 451 if (!hasObjCCategory(In)) { 452 Class = In.slice(In.find('[') + 1, In.find(' ')); 453 Category = ""; 454 return; 455 } 456 457 Class = In.slice(In.find('[') + 1, In.find('(')); 458 Category = In.slice(In.find('[') + 1, In.find(' ')); 459 } 460 461 static StringRef getObjCMethodName(StringRef In) { 462 return In.slice(In.find(' ') + 1, In.find(']')); 463 } 464 465 // Add the various names to the Dwarf accelerator table names. 466 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU, 467 const DISubprogram *SP, DIE &Die) { 468 if (getAccelTableKind() != AccelTableKind::Apple && 469 CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None) 470 return; 471 472 if (!SP->isDefinition()) 473 return; 474 475 if (SP->getName() != "") 476 addAccelName(CU, SP->getName(), Die); 477 478 // If the linkage name is different than the name, go ahead and output that as 479 // well into the name table. Only do that if we are going to actually emit 480 // that name. 481 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() && 482 (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP))) 483 addAccelName(CU, SP->getLinkageName(), Die); 484 485 // If this is an Objective-C selector name add it to the ObjC accelerator 486 // too. 487 if (isObjCClass(SP->getName())) { 488 StringRef Class, Category; 489 getObjCClassCategory(SP->getName(), Class, Category); 490 addAccelObjC(CU, Class, Die); 491 if (Category != "") 492 addAccelObjC(CU, Category, Die); 493 // Also add the base method name to the name table. 494 addAccelName(CU, getObjCMethodName(SP->getName()), Die); 495 } 496 } 497 498 /// Check whether we should create a DIE for the given Scope, return true 499 /// if we don't create a DIE (the corresponding DIE is null). 500 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { 501 if (Scope->isAbstractScope()) 502 return false; 503 504 // We don't create a DIE if there is no Range. 505 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); 506 if (Ranges.empty()) 507 return true; 508 509 if (Ranges.size() > 1) 510 return false; 511 512 // We don't create a DIE if we have a single Range and the end label 513 // is null. 514 return !getLabelAfterInsn(Ranges.front().second); 515 } 516 517 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) { 518 F(CU); 519 if (auto *SkelCU = CU.getSkeleton()) 520 if (CU.getCUNode()->getSplitDebugInlining()) 521 F(*SkelCU); 522 } 523 524 bool DwarfDebug::shareAcrossDWOCUs() const { 525 return SplitDwarfCrossCuReferences; 526 } 527 528 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU, 529 LexicalScope *Scope) { 530 assert(Scope && Scope->getScopeNode()); 531 assert(Scope->isAbstractScope()); 532 assert(!Scope->getInlinedAt()); 533 534 auto *SP = cast<DISubprogram>(Scope->getScopeNode()); 535 536 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram 537 // was inlined from another compile unit. 538 if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining()) 539 // Avoid building the original CU if it won't be used 540 SrcCU.constructAbstractSubprogramScopeDIE(Scope); 541 else { 542 auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 543 if (auto *SkelCU = CU.getSkeleton()) { 544 (shareAcrossDWOCUs() ? CU : SrcCU) 545 .constructAbstractSubprogramScopeDIE(Scope); 546 if (CU.getCUNode()->getSplitDebugInlining()) 547 SkelCU->constructAbstractSubprogramScopeDIE(Scope); 548 } else 549 CU.constructAbstractSubprogramScopeDIE(Scope); 550 } 551 } 552 553 DIE &DwarfDebug::constructSubprogramDefinitionDIE(const DISubprogram *SP) { 554 DICompileUnit *Unit = SP->getUnit(); 555 assert(SP->isDefinition() && "Subprogram not a definition"); 556 assert(Unit && "Subprogram definition without parent unit"); 557 auto &CU = getOrCreateDwarfCompileUnit(Unit); 558 return *CU.getOrCreateSubprogramDIE(SP); 559 } 560 561 /// Represents a parameter whose call site value can be described by applying a 562 /// debug expression to a register in the forwarded register worklist. 563 struct FwdRegParamInfo { 564 /// The described parameter register. 565 unsigned ParamReg; 566 567 /// Debug expression that has been built up when walking through the 568 /// instruction chain that produces the parameter's value. 569 const DIExpression *Expr; 570 }; 571 572 /// Register worklist for finding call site values. 573 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>; 574 575 /// Append the expression \p Addition to \p Original and return the result. 576 static const DIExpression *combineDIExpressions(const DIExpression *Original, 577 const DIExpression *Addition) { 578 std::vector<uint64_t> Elts = Addition->getElements().vec(); 579 // Avoid multiple DW_OP_stack_values. 580 if (Original->isImplicit() && Addition->isImplicit()) 581 erase_if(Elts, [](uint64_t Op) { return Op == dwarf::DW_OP_stack_value; }); 582 const DIExpression *CombinedExpr = 583 (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original; 584 return CombinedExpr; 585 } 586 587 /// Emit call site parameter entries that are described by the given value and 588 /// debug expression. 589 template <typename ValT> 590 static void finishCallSiteParams(ValT Val, const DIExpression *Expr, 591 ArrayRef<FwdRegParamInfo> DescribedParams, 592 ParamSet &Params) { 593 for (auto Param : DescribedParams) { 594 bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0; 595 596 // TODO: Entry value operations can currently not be combined with any 597 // other expressions, so we can't emit call site entries in those cases. 598 if (ShouldCombineExpressions && Expr->isEntryValue()) 599 continue; 600 601 // If a parameter's call site value is produced by a chain of 602 // instructions we may have already created an expression for the 603 // parameter when walking through the instructions. Append that to the 604 // base expression. 605 const DIExpression *CombinedExpr = 606 ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr) 607 : Expr; 608 assert((!CombinedExpr || CombinedExpr->isValid()) && 609 "Combined debug expression is invalid"); 610 611 DbgValueLoc DbgLocVal(CombinedExpr, Val); 612 DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal); 613 Params.push_back(CSParm); 614 ++NumCSParams; 615 } 616 } 617 618 /// Add \p Reg to the worklist, if it's not already present, and mark that the 619 /// given parameter registers' values can (potentially) be described using 620 /// that register and an debug expression. 621 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg, 622 const DIExpression *Expr, 623 ArrayRef<FwdRegParamInfo> ParamsToAdd) { 624 auto I = Worklist.insert({Reg, {}}); 625 auto &ParamsForFwdReg = I.first->second; 626 for (auto Param : ParamsToAdd) { 627 assert(none_of(ParamsForFwdReg, 628 [Param](const FwdRegParamInfo &D) { 629 return D.ParamReg == Param.ParamReg; 630 }) && 631 "Same parameter described twice by forwarding reg"); 632 633 // If a parameter's call site value is produced by a chain of 634 // instructions we may have already created an expression for the 635 // parameter when walking through the instructions. Append that to the 636 // new expression. 637 const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr); 638 ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr}); 639 } 640 } 641 642 /// Try to interpret values loaded into registers that forward parameters 643 /// for \p CallMI. Store parameters with interpreted value into \p Params. 644 static void collectCallSiteParameters(const MachineInstr *CallMI, 645 ParamSet &Params) { 646 auto *MF = CallMI->getMF(); 647 auto CalleesMap = MF->getCallSitesInfo(); 648 auto CallFwdRegsInfo = CalleesMap.find(CallMI); 649 650 // There is no information for the call instruction. 651 if (CallFwdRegsInfo == CalleesMap.end()) 652 return; 653 654 auto *MBB = CallMI->getParent(); 655 const auto &TRI = MF->getSubtarget().getRegisterInfo(); 656 const auto &TII = MF->getSubtarget().getInstrInfo(); 657 const auto &TLI = MF->getSubtarget().getTargetLowering(); 658 659 // Skip the call instruction. 660 auto I = std::next(CallMI->getReverseIterator()); 661 662 FwdRegWorklist ForwardedRegWorklist; 663 664 // If an instruction defines more than one item in the worklist, we may run 665 // into situations where a worklist register's value is (potentially) 666 // described by the previous value of another register that is also defined 667 // by that instruction. 668 // 669 // This can for example occur in cases like this: 670 // 671 // $r1 = mov 123 672 // $r0, $r1 = mvrr $r1, 456 673 // call @foo, $r0, $r1 674 // 675 // When describing $r1's value for the mvrr instruction, we need to make sure 676 // that we don't finalize an entry value for $r0, as that is dependent on the 677 // previous value of $r1 (123 rather than 456). 678 // 679 // In order to not have to distinguish between those cases when finalizing 680 // entry values, we simply postpone adding new parameter registers to the 681 // worklist, by first keeping them in this temporary container until the 682 // instruction has been handled. 683 FwdRegWorklist NewWorklistItems; 684 685 const DIExpression *EmptyExpr = 686 DIExpression::get(MF->getFunction().getContext(), {}); 687 688 // Add all the forwarding registers into the ForwardedRegWorklist. 689 for (auto ArgReg : CallFwdRegsInfo->second) { 690 bool InsertedReg = 691 ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}}) 692 .second; 693 assert(InsertedReg && "Single register used to forward two arguments?"); 694 (void)InsertedReg; 695 } 696 697 // We erase, from the ForwardedRegWorklist, those forwarding registers for 698 // which we successfully describe a loaded value (by using 699 // the describeLoadedValue()). For those remaining arguments in the working 700 // list, for which we do not describe a loaded value by 701 // the describeLoadedValue(), we try to generate an entry value expression 702 // for their call site value description, if the call is within the entry MBB. 703 // TODO: Handle situations when call site parameter value can be described 704 // as the entry value within basic blocks other than the first one. 705 bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin(); 706 707 // If the MI is an instruction defining one or more parameters' forwarding 708 // registers, add those defines. 709 auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI, 710 SmallSetVector<unsigned, 4> &Defs) { 711 if (MI.isDebugInstr()) 712 return; 713 714 for (const MachineOperand &MO : MI.operands()) { 715 if (MO.isReg() && MO.isDef() && 716 Register::isPhysicalRegister(MO.getReg())) { 717 for (auto FwdReg : ForwardedRegWorklist) 718 if (TRI->regsOverlap(FwdReg.first, MO.getReg())) 719 Defs.insert(FwdReg.first); 720 } 721 } 722 }; 723 724 // Search for a loading value in forwarding registers. 725 for (; I != MBB->rend(); ++I) { 726 // Skip bundle headers. 727 if (I->isBundle()) 728 continue; 729 730 // If the next instruction is a call we can not interpret parameter's 731 // forwarding registers or we finished the interpretation of all parameters. 732 if (I->isCall()) 733 return; 734 735 if (ForwardedRegWorklist.empty()) 736 return; 737 738 // Set of worklist registers that are defined by this instruction. 739 SmallSetVector<unsigned, 4> FwdRegDefs; 740 741 getForwardingRegsDefinedByMI(*I, FwdRegDefs); 742 if (FwdRegDefs.empty()) 743 continue; 744 745 for (auto ParamFwdReg : FwdRegDefs) { 746 if (auto ParamValue = TII->describeLoadedValue(*I, ParamFwdReg)) { 747 if (ParamValue->first.isImm()) { 748 int64_t Val = ParamValue->first.getImm(); 749 finishCallSiteParams(Val, ParamValue->second, 750 ForwardedRegWorklist[ParamFwdReg], Params); 751 } else if (ParamValue->first.isReg()) { 752 Register RegLoc = ParamValue->first.getReg(); 753 unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); 754 Register FP = TRI->getFrameRegister(*MF); 755 bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP); 756 if (TRI->isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) { 757 MachineLocation MLoc(RegLoc, /*IsIndirect=*/IsSPorFP); 758 finishCallSiteParams(MLoc, ParamValue->second, 759 ForwardedRegWorklist[ParamFwdReg], Params); 760 } else { 761 // ParamFwdReg was described by the non-callee saved register 762 // RegLoc. Mark that the call site values for the parameters are 763 // dependent on that register instead of ParamFwdReg. Since RegLoc 764 // may be a register that will be handled in this iteration, we 765 // postpone adding the items to the worklist, and instead keep them 766 // in a temporary container. 767 addToFwdRegWorklist(NewWorklistItems, RegLoc, ParamValue->second, 768 ForwardedRegWorklist[ParamFwdReg]); 769 } 770 } 771 } 772 } 773 774 // Remove all registers that this instruction defines from the worklist. 775 for (auto ParamFwdReg : FwdRegDefs) 776 ForwardedRegWorklist.erase(ParamFwdReg); 777 778 // Now that we are done handling this instruction, add items from the 779 // temporary worklist to the real one. 780 for (auto New : NewWorklistItems) 781 addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, 782 New.second); 783 NewWorklistItems.clear(); 784 } 785 786 // Emit the call site parameter's value as an entry value. 787 if (ShouldTryEmitEntryVals) { 788 // Create an expression where the register's entry value is used. 789 DIExpression *EntryExpr = DIExpression::get( 790 MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1}); 791 for (auto RegEntry : ForwardedRegWorklist) { 792 MachineLocation MLoc(RegEntry.first); 793 finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params); 794 } 795 } 796 } 797 798 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP, 799 DwarfCompileUnit &CU, DIE &ScopeDIE, 800 const MachineFunction &MF) { 801 // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if 802 // the subprogram is required to have one. 803 if (!SP.areAllCallsDescribed() || !SP.isDefinition()) 804 return; 805 806 // Use DW_AT_call_all_calls to express that call site entries are present 807 // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls 808 // because one of its requirements is not met: call site entries for 809 // optimized-out calls are elided. 810 CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls)); 811 812 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 813 assert(TII && "TargetInstrInfo not found: cannot label tail calls"); 814 815 // Emit call site entries for each call or tail call in the function. 816 for (const MachineBasicBlock &MBB : MF) { 817 for (const MachineInstr &MI : MBB.instrs()) { 818 // Bundles with call in them will pass the isCall() test below but do not 819 // have callee operand information so skip them here. Iterator will 820 // eventually reach the call MI. 821 if (MI.isBundle()) 822 continue; 823 824 // Skip instructions which aren't calls. Both calls and tail-calling jump 825 // instructions (e.g TAILJMPd64) are classified correctly here. 826 if (!MI.isCandidateForCallSiteEntry()) 827 continue; 828 829 // Skip instructions marked as frame setup, as they are not interesting to 830 // the user. 831 if (MI.getFlag(MachineInstr::FrameSetup)) 832 continue; 833 834 // TODO: Add support for targets with delay slots (see: beginInstruction). 835 if (MI.hasDelaySlot()) 836 return; 837 838 // If this is a direct call, find the callee's subprogram. 839 // In the case of an indirect call find the register that holds 840 // the callee. 841 const MachineOperand &CalleeOp = MI.getOperand(0); 842 if (!CalleeOp.isGlobal() && !CalleeOp.isReg()) 843 continue; 844 845 unsigned CallReg = 0; 846 DIE *CalleeDIE = nullptr; 847 const Function *CalleeDecl = nullptr; 848 if (CalleeOp.isReg()) { 849 CallReg = CalleeOp.getReg(); 850 if (!CallReg) 851 continue; 852 } else { 853 CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal()); 854 if (!CalleeDecl || !CalleeDecl->getSubprogram()) 855 continue; 856 const DISubprogram *CalleeSP = CalleeDecl->getSubprogram(); 857 858 if (CalleeSP->isDefinition()) { 859 // Ensure that a subprogram DIE for the callee is available in the 860 // appropriate CU. 861 CalleeDIE = &constructSubprogramDefinitionDIE(CalleeSP); 862 } else { 863 // Create the declaration DIE if it is missing. This is required to 864 // support compilation of old bitcode with an incomplete list of 865 // retained metadata. 866 CalleeDIE = CU.getOrCreateSubprogramDIE(CalleeSP); 867 } 868 assert(CalleeDIE && "Must have a DIE for the callee"); 869 } 870 871 // TODO: Omit call site entries for runtime calls (objc_msgSend, etc). 872 873 bool IsTail = TII->isTailCall(MI); 874 875 // If MI is in a bundle, the label was created after the bundle since 876 // EmitFunctionBody iterates over top-level MIs. Get that top-level MI 877 // to search for that label below. 878 const MachineInstr *TopLevelCallMI = 879 MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI; 880 881 // For tail calls, no return PC information is needed. 882 // For regular calls (and tail calls in GDB tuning), the return PC 883 // is needed to disambiguate paths in the call graph which could lead to 884 // some target function. 885 const MCSymbol *PCAddr = 886 (IsTail && !tuneForGDB()) 887 ? nullptr 888 : const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI)); 889 890 assert((IsTail || PCAddr) && "Call without return PC information"); 891 892 LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> " 893 << (CalleeDecl ? CalleeDecl->getName() 894 : StringRef(MF.getSubtarget() 895 .getRegisterInfo() 896 ->getName(CallReg))) 897 << (IsTail ? " [IsTail]" : "") << "\n"); 898 899 DIE &CallSiteDIE = CU.constructCallSiteEntryDIE(ScopeDIE, CalleeDIE, 900 IsTail, PCAddr, CallReg); 901 902 // Optionally emit call-site-param debug info. 903 if (emitDebugEntryValues()) { 904 ParamSet Params; 905 // Try to interpret values of call site parameters. 906 collectCallSiteParameters(&MI, Params); 907 CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params); 908 } 909 } 910 } 911 } 912 913 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const { 914 if (!U.hasDwarfPubSections()) 915 return; 916 917 U.addFlag(D, dwarf::DW_AT_GNU_pubnames); 918 } 919 920 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit, 921 DwarfCompileUnit &NewCU) { 922 DIE &Die = NewCU.getUnitDie(); 923 StringRef FN = DIUnit->getFilename(); 924 925 StringRef Producer = DIUnit->getProducer(); 926 StringRef Flags = DIUnit->getFlags(); 927 if (!Flags.empty() && !useAppleExtensionAttributes()) { 928 std::string ProducerWithFlags = Producer.str() + " " + Flags.str(); 929 NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags); 930 } else 931 NewCU.addString(Die, dwarf::DW_AT_producer, Producer); 932 933 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 934 DIUnit->getSourceLanguage()); 935 NewCU.addString(Die, dwarf::DW_AT_name, FN); 936 StringRef SysRoot = DIUnit->getSysRoot(); 937 if (!SysRoot.empty()) 938 NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot); 939 StringRef SDK = DIUnit->getSDK(); 940 if (!SDK.empty()) 941 NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK); 942 943 // Add DW_str_offsets_base to the unit DIE, except for split units. 944 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 945 NewCU.addStringOffsetsStart(); 946 947 if (!useSplitDwarf()) { 948 NewCU.initStmtList(); 949 950 // If we're using split dwarf the compilation dir is going to be in the 951 // skeleton CU and so we don't need to duplicate it here. 952 if (!CompilationDir.empty()) 953 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 954 addGnuPubAttributes(NewCU, Die); 955 } 956 957 if (useAppleExtensionAttributes()) { 958 if (DIUnit->isOptimized()) 959 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); 960 961 StringRef Flags = DIUnit->getFlags(); 962 if (!Flags.empty()) 963 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); 964 965 if (unsigned RVer = DIUnit->getRuntimeVersion()) 966 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, 967 dwarf::DW_FORM_data1, RVer); 968 } 969 970 if (DIUnit->getDWOId()) { 971 // This CU is either a clang module DWO or a skeleton CU. 972 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, 973 DIUnit->getDWOId()); 974 if (!DIUnit->getSplitDebugFilename().empty()) { 975 // This is a prefabricated skeleton CU. 976 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 977 ? dwarf::DW_AT_dwo_name 978 : dwarf::DW_AT_GNU_dwo_name; 979 NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename()); 980 } 981 } 982 } 983 // Create new DwarfCompileUnit for the given metadata node with tag 984 // DW_TAG_compile_unit. 985 DwarfCompileUnit & 986 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) { 987 if (auto *CU = CUMap.lookup(DIUnit)) 988 return *CU; 989 990 CompilationDir = DIUnit->getDirectory(); 991 992 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 993 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); 994 DwarfCompileUnit &NewCU = *OwnedUnit; 995 InfoHolder.addUnit(std::move(OwnedUnit)); 996 997 for (auto *IE : DIUnit->getImportedEntities()) 998 NewCU.addImportedEntity(IE); 999 1000 // LTO with assembly output shares a single line table amongst multiple CUs. 1001 // To avoid the compilation directory being ambiguous, let the line table 1002 // explicitly describe the directory of all files, never relying on the 1003 // compilation directory. 1004 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU) 1005 Asm->OutStreamer->emitDwarfFile0Directive( 1006 CompilationDir, DIUnit->getFilename(), 1007 NewCU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource(), 1008 NewCU.getUniqueID()); 1009 1010 if (useSplitDwarf()) { 1011 NewCU.setSkeleton(constructSkeletonCU(NewCU)); 1012 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection()); 1013 } else { 1014 finishUnitAttributes(DIUnit, NewCU); 1015 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 1016 } 1017 1018 CUMap.insert({DIUnit, &NewCU}); 1019 CUDieMap.insert({&NewCU.getUnitDie(), &NewCU}); 1020 return NewCU; 1021 } 1022 1023 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU, 1024 const DIImportedEntity *N) { 1025 if (isa<DILocalScope>(N->getScope())) 1026 return; 1027 if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope())) 1028 D->addChild(TheCU.constructImportedEntityDIE(N)); 1029 } 1030 1031 /// Sort and unique GVEs by comparing their fragment offset. 1032 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & 1033 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) { 1034 llvm::sort( 1035 GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) { 1036 // Sort order: first null exprs, then exprs without fragment 1037 // info, then sort by fragment offset in bits. 1038 // FIXME: Come up with a more comprehensive comparator so 1039 // the sorting isn't non-deterministic, and so the following 1040 // std::unique call works correctly. 1041 if (!A.Expr || !B.Expr) 1042 return !!B.Expr; 1043 auto FragmentA = A.Expr->getFragmentInfo(); 1044 auto FragmentB = B.Expr->getFragmentInfo(); 1045 if (!FragmentA || !FragmentB) 1046 return !!FragmentB; 1047 return FragmentA->OffsetInBits < FragmentB->OffsetInBits; 1048 }); 1049 GVEs.erase(std::unique(GVEs.begin(), GVEs.end(), 1050 [](DwarfCompileUnit::GlobalExpr A, 1051 DwarfCompileUnit::GlobalExpr B) { 1052 return A.Expr == B.Expr; 1053 }), 1054 GVEs.end()); 1055 return GVEs; 1056 } 1057 1058 // Emit all Dwarf sections that should come prior to the content. Create 1059 // global DIEs and emit initial debug info sections. This is invoked by 1060 // the target AsmPrinter. 1061 void DwarfDebug::beginModule() { 1062 NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName, 1063 DWARFGroupDescription, TimePassesIsEnabled); 1064 if (DisableDebugInfoPrinting) { 1065 MMI->setDebugInfoAvailability(false); 1066 return; 1067 } 1068 1069 const Module *M = MMI->getModule(); 1070 1071 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(), 1072 M->debug_compile_units_end()); 1073 // Tell MMI whether we have debug info. 1074 assert(MMI->hasDebugInfo() == (NumDebugCUs > 0) && 1075 "DebugInfoAvailabilty initialized unexpectedly"); 1076 SingleCU = NumDebugCUs == 1; 1077 DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>> 1078 GVMap; 1079 for (const GlobalVariable &Global : M->globals()) { 1080 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1081 Global.getDebugInfo(GVs); 1082 for (auto *GVE : GVs) 1083 GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()}); 1084 } 1085 1086 // Create the symbol that designates the start of the unit's contribution 1087 // to the string offsets table. In a split DWARF scenario, only the skeleton 1088 // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol). 1089 if (useSegmentedStringOffsetsTable()) 1090 (useSplitDwarf() ? SkeletonHolder : InfoHolder) 1091 .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base")); 1092 1093 1094 // Create the symbols that designates the start of the DWARF v5 range list 1095 // and locations list tables. They are located past the table headers. 1096 if (getDwarfVersion() >= 5) { 1097 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1098 Holder.setRnglistsTableBaseSym( 1099 Asm->createTempSymbol("rnglists_table_base")); 1100 1101 if (useSplitDwarf()) 1102 InfoHolder.setRnglistsTableBaseSym( 1103 Asm->createTempSymbol("rnglists_dwo_table_base")); 1104 } 1105 1106 // Create the symbol that points to the first entry following the debug 1107 // address table (.debug_addr) header. 1108 AddrPool.setLabel(Asm->createTempSymbol("addr_table_base")); 1109 DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base")); 1110 1111 for (DICompileUnit *CUNode : M->debug_compile_units()) { 1112 // FIXME: Move local imported entities into a list attached to the 1113 // subprogram, then this search won't be needed and a 1114 // getImportedEntities().empty() test should go below with the rest. 1115 bool HasNonLocalImportedEntities = llvm::any_of( 1116 CUNode->getImportedEntities(), [](const DIImportedEntity *IE) { 1117 return !isa<DILocalScope>(IE->getScope()); 1118 }); 1119 1120 if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() && 1121 CUNode->getRetainedTypes().empty() && 1122 CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty()) 1123 continue; 1124 1125 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode); 1126 1127 // Global Variables. 1128 for (auto *GVE : CUNode->getGlobalVariables()) { 1129 // Don't bother adding DIGlobalVariableExpressions listed in the CU if we 1130 // already know about the variable and it isn't adding a constant 1131 // expression. 1132 auto &GVMapEntry = GVMap[GVE->getVariable()]; 1133 auto *Expr = GVE->getExpression(); 1134 if (!GVMapEntry.size() || (Expr && Expr->isConstant())) 1135 GVMapEntry.push_back({nullptr, Expr}); 1136 } 1137 DenseSet<DIGlobalVariable *> Processed; 1138 for (auto *GVE : CUNode->getGlobalVariables()) { 1139 DIGlobalVariable *GV = GVE->getVariable(); 1140 if (Processed.insert(GV).second) 1141 CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV])); 1142 } 1143 1144 for (auto *Ty : CUNode->getEnumTypes()) { 1145 // The enum types array by design contains pointers to 1146 // MDNodes rather than DIRefs. Unique them here. 1147 CU.getOrCreateTypeDIE(cast<DIType>(Ty)); 1148 } 1149 for (auto *Ty : CUNode->getRetainedTypes()) { 1150 // The retained types array by design contains pointers to 1151 // MDNodes rather than DIRefs. Unique them here. 1152 if (DIType *RT = dyn_cast<DIType>(Ty)) 1153 // There is no point in force-emitting a forward declaration. 1154 CU.getOrCreateTypeDIE(RT); 1155 } 1156 // Emit imported_modules last so that the relevant context is already 1157 // available. 1158 for (auto *IE : CUNode->getImportedEntities()) 1159 constructAndAddImportedEntityDIE(CU, IE); 1160 } 1161 } 1162 1163 void DwarfDebug::finishEntityDefinitions() { 1164 for (const auto &Entity : ConcreteEntities) { 1165 DIE *Die = Entity->getDIE(); 1166 assert(Die); 1167 // FIXME: Consider the time-space tradeoff of just storing the unit pointer 1168 // in the ConcreteEntities list, rather than looking it up again here. 1169 // DIE::getUnit isn't simple - it walks parent pointers, etc. 1170 DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie()); 1171 assert(Unit); 1172 Unit->finishEntityDefinition(Entity.get()); 1173 } 1174 } 1175 1176 void DwarfDebug::finishSubprogramDefinitions() { 1177 for (const DISubprogram *SP : ProcessedSPNodes) { 1178 assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug); 1179 forBothCUs( 1180 getOrCreateDwarfCompileUnit(SP->getUnit()), 1181 [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); }); 1182 } 1183 } 1184 1185 void DwarfDebug::finalizeModuleInfo() { 1186 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 1187 1188 finishSubprogramDefinitions(); 1189 1190 finishEntityDefinitions(); 1191 1192 // Include the DWO file name in the hash if there's more than one CU. 1193 // This handles ThinLTO's situation where imported CUs may very easily be 1194 // duplicate with the same CU partially imported into another ThinLTO unit. 1195 StringRef DWOName; 1196 if (CUMap.size() > 1) 1197 DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile; 1198 1199 // Handle anything that needs to be done on a per-unit basis after 1200 // all other generation. 1201 for (const auto &P : CUMap) { 1202 auto &TheCU = *P.second; 1203 if (TheCU.getCUNode()->isDebugDirectivesOnly()) 1204 continue; 1205 // Emit DW_AT_containing_type attribute to connect types with their 1206 // vtable holding type. 1207 TheCU.constructContainingTypeDIEs(); 1208 1209 // Add CU specific attributes if we need to add any. 1210 // If we're splitting the dwarf out now that we've got the entire 1211 // CU then add the dwo id to it. 1212 auto *SkCU = TheCU.getSkeleton(); 1213 1214 bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty(); 1215 1216 if (HasSplitUnit) { 1217 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1218 ? dwarf::DW_AT_dwo_name 1219 : dwarf::DW_AT_GNU_dwo_name; 1220 finishUnitAttributes(TheCU.getCUNode(), TheCU); 1221 TheCU.addString(TheCU.getUnitDie(), attrDWOName, 1222 Asm->TM.Options.MCOptions.SplitDwarfFile); 1223 SkCU->addString(SkCU->getUnitDie(), attrDWOName, 1224 Asm->TM.Options.MCOptions.SplitDwarfFile); 1225 // Emit a unique identifier for this CU. 1226 uint64_t ID = 1227 DIEHash(Asm).computeCUSignature(DWOName, TheCU.getUnitDie()); 1228 if (getDwarfVersion() >= 5) { 1229 TheCU.setDWOId(ID); 1230 SkCU->setDWOId(ID); 1231 } else { 1232 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1233 dwarf::DW_FORM_data8, ID); 1234 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1235 dwarf::DW_FORM_data8, ID); 1236 } 1237 1238 if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) { 1239 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol(); 1240 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, 1241 Sym, Sym); 1242 } 1243 } else if (SkCU) { 1244 finishUnitAttributes(SkCU->getCUNode(), *SkCU); 1245 } 1246 1247 // If we have code split among multiple sections or non-contiguous 1248 // ranges of code then emit a DW_AT_ranges attribute on the unit that will 1249 // remain in the .o file, otherwise add a DW_AT_low_pc. 1250 // FIXME: We should use ranges allow reordering of code ala 1251 // .subsections_via_symbols in mach-o. This would mean turning on 1252 // ranges for all subprogram DIEs for mach-o. 1253 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 1254 1255 if (unsigned NumRanges = TheCU.getRanges().size()) { 1256 if (NumRanges > 1 && useRangesSection()) 1257 // A DW_AT_low_pc attribute may also be specified in combination with 1258 // DW_AT_ranges to specify the default base address for use in 1259 // location lists (see Section 2.6.2) and range lists (see Section 1260 // 2.17.3). 1261 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); 1262 else 1263 U.setBaseAddress(TheCU.getRanges().front().Begin); 1264 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); 1265 } 1266 1267 // We don't keep track of which addresses are used in which CU so this 1268 // is a bit pessimistic under LTO. 1269 if ((!AddrPool.isEmpty() || TheCU.hasRangeLists()) && 1270 (getDwarfVersion() >= 5 || HasSplitUnit)) 1271 U.addAddrTableBase(); 1272 1273 if (getDwarfVersion() >= 5) { 1274 if (U.hasRangeLists()) 1275 U.addRnglistsBase(); 1276 1277 if (!DebugLocs.getLists().empty()) { 1278 if (!useSplitDwarf()) 1279 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base, 1280 DebugLocs.getSym(), 1281 TLOF.getDwarfLoclistsSection()->getBeginSymbol()); 1282 } 1283 } 1284 1285 auto *CUNode = cast<DICompileUnit>(P.first); 1286 // If compile Unit has macros, emit "DW_AT_macro_info" attribute. 1287 if (CUNode->getMacros()) { 1288 if (useSplitDwarf()) 1289 TheCU.addSectionDelta(TheCU.getUnitDie(), dwarf::DW_AT_macro_info, 1290 U.getMacroLabelBegin(), 1291 TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol()); 1292 else 1293 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info, 1294 U.getMacroLabelBegin(), 1295 TLOF.getDwarfMacinfoSection()->getBeginSymbol()); 1296 } 1297 } 1298 1299 // Emit all frontend-produced Skeleton CUs, i.e., Clang modules. 1300 for (auto *CUNode : MMI->getModule()->debug_compile_units()) 1301 if (CUNode->getDWOId()) 1302 getOrCreateDwarfCompileUnit(CUNode); 1303 1304 // Compute DIE offsets and sizes. 1305 InfoHolder.computeSizeAndOffsets(); 1306 if (useSplitDwarf()) 1307 SkeletonHolder.computeSizeAndOffsets(); 1308 } 1309 1310 // Emit all Dwarf sections that should come after the content. 1311 void DwarfDebug::endModule() { 1312 assert(CurFn == nullptr); 1313 assert(CurMI == nullptr); 1314 1315 for (const auto &P : CUMap) { 1316 auto &CU = *P.second; 1317 CU.createBaseTypeDIEs(); 1318 } 1319 1320 // If we aren't actually generating debug info (check beginModule - 1321 // conditionalized on !DisableDebugInfoPrinting and the presence of the 1322 // llvm.dbg.cu metadata node) 1323 if (!MMI->hasDebugInfo()) 1324 return; 1325 1326 // Finalize the debug info for the module. 1327 finalizeModuleInfo(); 1328 1329 if (useSplitDwarf()) 1330 // Emit debug_loc.dwo/debug_loclists.dwo section. 1331 emitDebugLocDWO(); 1332 else 1333 // Emit debug_loc/debug_loclists section. 1334 emitDebugLoc(); 1335 1336 // Corresponding abbreviations into a abbrev section. 1337 emitAbbreviations(); 1338 1339 // Emit all the DIEs into a debug info section. 1340 emitDebugInfo(); 1341 1342 // Emit info into a debug aranges section. 1343 if (GenerateARangeSection) 1344 emitDebugARanges(); 1345 1346 // Emit info into a debug ranges section. 1347 emitDebugRanges(); 1348 1349 if (useSplitDwarf()) 1350 // Emit info into a debug macinfo.dwo section. 1351 emitDebugMacinfoDWO(); 1352 else 1353 // Emit info into a debug macinfo section. 1354 emitDebugMacinfo(); 1355 1356 emitDebugStr(); 1357 1358 if (useSplitDwarf()) { 1359 emitDebugStrDWO(); 1360 emitDebugInfoDWO(); 1361 emitDebugAbbrevDWO(); 1362 emitDebugLineDWO(); 1363 emitDebugRangesDWO(); 1364 } 1365 1366 emitDebugAddr(); 1367 1368 // Emit info into the dwarf accelerator table sections. 1369 switch (getAccelTableKind()) { 1370 case AccelTableKind::Apple: 1371 emitAccelNames(); 1372 emitAccelObjC(); 1373 emitAccelNamespaces(); 1374 emitAccelTypes(); 1375 break; 1376 case AccelTableKind::Dwarf: 1377 emitAccelDebugNames(); 1378 break; 1379 case AccelTableKind::None: 1380 break; 1381 case AccelTableKind::Default: 1382 llvm_unreachable("Default should have already been resolved."); 1383 } 1384 1385 // Emit the pubnames and pubtypes sections if requested. 1386 emitDebugPubSections(); 1387 1388 // clean up. 1389 // FIXME: AbstractVariables.clear(); 1390 } 1391 1392 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU, 1393 const DINode *Node, 1394 const MDNode *ScopeNode) { 1395 if (CU.getExistingAbstractEntity(Node)) 1396 return; 1397 1398 CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope( 1399 cast<DILocalScope>(ScopeNode))); 1400 } 1401 1402 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU, 1403 const DINode *Node, const MDNode *ScopeNode) { 1404 if (CU.getExistingAbstractEntity(Node)) 1405 return; 1406 1407 if (LexicalScope *Scope = 1408 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode))) 1409 CU.createAbstractEntity(Node, Scope); 1410 } 1411 1412 // Collect variable information from side table maintained by MF. 1413 void DwarfDebug::collectVariableInfoFromMFTable( 1414 DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) { 1415 SmallDenseMap<InlinedEntity, DbgVariable *> MFVars; 1416 LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n"); 1417 for (const auto &VI : Asm->MF->getVariableDbgInfo()) { 1418 if (!VI.Var) 1419 continue; 1420 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1421 "Expected inlined-at fields to agree"); 1422 1423 InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt()); 1424 Processed.insert(Var); 1425 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1426 1427 // If variable scope is not found then skip this variable. 1428 if (!Scope) { 1429 LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName() 1430 << ", no variable scope found\n"); 1431 continue; 1432 } 1433 1434 ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode()); 1435 auto RegVar = std::make_unique<DbgVariable>( 1436 cast<DILocalVariable>(Var.first), Var.second); 1437 RegVar->initializeMMI(VI.Expr, VI.Slot); 1438 LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName() 1439 << "\n"); 1440 if (DbgVariable *DbgVar = MFVars.lookup(Var)) 1441 DbgVar->addMMIEntry(*RegVar); 1442 else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) { 1443 MFVars.insert({Var, RegVar.get()}); 1444 ConcreteEntities.push_back(std::move(RegVar)); 1445 } 1446 } 1447 } 1448 1449 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its 1450 /// enclosing lexical scope. The check ensures there are no other instructions 1451 /// in the same lexical scope preceding the DBG_VALUE and that its range is 1452 /// either open or otherwise rolls off the end of the scope. 1453 static bool validThroughout(LexicalScopes &LScopes, 1454 const MachineInstr *DbgValue, 1455 const MachineInstr *RangeEnd) { 1456 assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location"); 1457 auto MBB = DbgValue->getParent(); 1458 auto DL = DbgValue->getDebugLoc(); 1459 auto *LScope = LScopes.findLexicalScope(DL); 1460 // Scope doesn't exist; this is a dead DBG_VALUE. 1461 if (!LScope) 1462 return false; 1463 auto &LSRange = LScope->getRanges(); 1464 if (LSRange.size() == 0) 1465 return false; 1466 1467 // Determine if the DBG_VALUE is valid at the beginning of its lexical block. 1468 const MachineInstr *LScopeBegin = LSRange.front().first; 1469 // Early exit if the lexical scope begins outside of the current block. 1470 if (LScopeBegin->getParent() != MBB) 1471 return false; 1472 MachineBasicBlock::const_reverse_iterator Pred(DbgValue); 1473 for (++Pred; Pred != MBB->rend(); ++Pred) { 1474 if (Pred->getFlag(MachineInstr::FrameSetup)) 1475 break; 1476 auto PredDL = Pred->getDebugLoc(); 1477 if (!PredDL || Pred->isMetaInstruction()) 1478 continue; 1479 // Check whether the instruction preceding the DBG_VALUE is in the same 1480 // (sub)scope as the DBG_VALUE. 1481 if (DL->getScope() == PredDL->getScope()) 1482 return false; 1483 auto *PredScope = LScopes.findLexicalScope(PredDL); 1484 if (!PredScope || LScope->dominates(PredScope)) 1485 return false; 1486 } 1487 1488 // If the range of the DBG_VALUE is open-ended, report success. 1489 if (!RangeEnd) 1490 return true; 1491 1492 // Fail if there are instructions belonging to our scope in another block. 1493 const MachineInstr *LScopeEnd = LSRange.back().second; 1494 if (LScopeEnd->getParent() != MBB) 1495 return false; 1496 1497 // Single, constant DBG_VALUEs in the prologue are promoted to be live 1498 // throughout the function. This is a hack, presumably for DWARF v2 and not 1499 // necessarily correct. It would be much better to use a dbg.declare instead 1500 // if we know the constant is live throughout the scope. 1501 if (DbgValue->getOperand(0).isImm() && MBB->pred_empty()) 1502 return true; 1503 1504 return false; 1505 } 1506 1507 /// Build the location list for all DBG_VALUEs in the function that 1508 /// describe the same variable. The resulting DebugLocEntries will have 1509 /// strict monotonically increasing begin addresses and will never 1510 /// overlap. If the resulting list has only one entry that is valid 1511 /// throughout variable's scope return true. 1512 // 1513 // See the definition of DbgValueHistoryMap::Entry for an explanation of the 1514 // different kinds of history map entries. One thing to be aware of is that if 1515 // a debug value is ended by another entry (rather than being valid until the 1516 // end of the function), that entry's instruction may or may not be included in 1517 // the range, depending on if the entry is a clobbering entry (it has an 1518 // instruction that clobbers one or more preceding locations), or if it is an 1519 // (overlapping) debug value entry. This distinction can be seen in the example 1520 // below. The first debug value is ended by the clobbering entry 2, and the 1521 // second and third debug values are ended by the overlapping debug value entry 1522 // 4. 1523 // 1524 // Input: 1525 // 1526 // History map entries [type, end index, mi] 1527 // 1528 // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)] 1529 // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)] 1530 // 2 | | [Clobber, $reg0 = [...], -, -] 1531 // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)] 1532 // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)] 1533 // 1534 // Output [start, end) [Value...]: 1535 // 1536 // [0-1) [(reg0, fragment 0, 32)] 1537 // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)] 1538 // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)] 1539 // [4-) [(@g, fragment 0, 96)] 1540 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc, 1541 const DbgValueHistoryMap::Entries &Entries) { 1542 using OpenRange = 1543 std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>; 1544 SmallVector<OpenRange, 4> OpenRanges; 1545 bool isSafeForSingleLocation = true; 1546 const MachineInstr *StartDebugMI = nullptr; 1547 const MachineInstr *EndMI = nullptr; 1548 1549 for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) { 1550 const MachineInstr *Instr = EI->getInstr(); 1551 1552 // Remove all values that are no longer live. 1553 size_t Index = std::distance(EB, EI); 1554 auto Last = 1555 remove_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; }); 1556 OpenRanges.erase(Last, OpenRanges.end()); 1557 1558 // If we are dealing with a clobbering entry, this iteration will result in 1559 // a location list entry starting after the clobbering instruction. 1560 const MCSymbol *StartLabel = 1561 EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr); 1562 assert(StartLabel && 1563 "Forgot label before/after instruction starting a range!"); 1564 1565 const MCSymbol *EndLabel; 1566 if (std::next(EI) == Entries.end()) { 1567 EndLabel = Asm->getFunctionEnd(); 1568 if (EI->isClobber()) 1569 EndMI = EI->getInstr(); 1570 } 1571 else if (std::next(EI)->isClobber()) 1572 EndLabel = getLabelAfterInsn(std::next(EI)->getInstr()); 1573 else 1574 EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr()); 1575 assert(EndLabel && "Forgot label after instruction ending a range!"); 1576 1577 if (EI->isDbgValue()) 1578 LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n"); 1579 1580 // If this history map entry has a debug value, add that to the list of 1581 // open ranges and check if its location is valid for a single value 1582 // location. 1583 if (EI->isDbgValue()) { 1584 // Do not add undef debug values, as they are redundant information in 1585 // the location list entries. An undef debug results in an empty location 1586 // description. If there are any non-undef fragments then padding pieces 1587 // with empty location descriptions will automatically be inserted, and if 1588 // all fragments are undef then the whole location list entry is 1589 // redundant. 1590 if (!Instr->isUndefDebugValue()) { 1591 auto Value = getDebugLocValue(Instr); 1592 OpenRanges.emplace_back(EI->getEndIndex(), Value); 1593 1594 // TODO: Add support for single value fragment locations. 1595 if (Instr->getDebugExpression()->isFragment()) 1596 isSafeForSingleLocation = false; 1597 1598 if (!StartDebugMI) 1599 StartDebugMI = Instr; 1600 } else { 1601 isSafeForSingleLocation = false; 1602 } 1603 } 1604 1605 // Location list entries with empty location descriptions are redundant 1606 // information in DWARF, so do not emit those. 1607 if (OpenRanges.empty()) 1608 continue; 1609 1610 // Omit entries with empty ranges as they do not have any effect in DWARF. 1611 if (StartLabel == EndLabel) { 1612 LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n"); 1613 continue; 1614 } 1615 1616 SmallVector<DbgValueLoc, 4> Values; 1617 for (auto &R : OpenRanges) 1618 Values.push_back(R.second); 1619 DebugLoc.emplace_back(StartLabel, EndLabel, Values); 1620 1621 // Attempt to coalesce the ranges of two otherwise identical 1622 // DebugLocEntries. 1623 auto CurEntry = DebugLoc.rbegin(); 1624 LLVM_DEBUG({ 1625 dbgs() << CurEntry->getValues().size() << " Values:\n"; 1626 for (auto &Value : CurEntry->getValues()) 1627 Value.dump(); 1628 dbgs() << "-----\n"; 1629 }); 1630 1631 auto PrevEntry = std::next(CurEntry); 1632 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) 1633 DebugLoc.pop_back(); 1634 } 1635 1636 return DebugLoc.size() == 1 && isSafeForSingleLocation && 1637 validThroughout(LScopes, StartDebugMI, EndMI); 1638 } 1639 1640 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU, 1641 LexicalScope &Scope, 1642 const DINode *Node, 1643 const DILocation *Location, 1644 const MCSymbol *Sym) { 1645 ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode()); 1646 if (isa<const DILocalVariable>(Node)) { 1647 ConcreteEntities.push_back( 1648 std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node), 1649 Location)); 1650 InfoHolder.addScopeVariable(&Scope, 1651 cast<DbgVariable>(ConcreteEntities.back().get())); 1652 } else if (isa<const DILabel>(Node)) { 1653 ConcreteEntities.push_back( 1654 std::make_unique<DbgLabel>(cast<const DILabel>(Node), 1655 Location, Sym)); 1656 InfoHolder.addScopeLabel(&Scope, 1657 cast<DbgLabel>(ConcreteEntities.back().get())); 1658 } 1659 return ConcreteEntities.back().get(); 1660 } 1661 1662 // Find variables for each lexical scope. 1663 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU, 1664 const DISubprogram *SP, 1665 DenseSet<InlinedEntity> &Processed) { 1666 // Grab the variable info that was squirreled away in the MMI side-table. 1667 collectVariableInfoFromMFTable(TheCU, Processed); 1668 1669 for (const auto &I : DbgValues) { 1670 InlinedEntity IV = I.first; 1671 if (Processed.count(IV)) 1672 continue; 1673 1674 // Instruction ranges, specifying where IV is accessible. 1675 const auto &HistoryMapEntries = I.second; 1676 if (HistoryMapEntries.empty()) 1677 continue; 1678 1679 LexicalScope *Scope = nullptr; 1680 const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first); 1681 if (const DILocation *IA = IV.second) 1682 Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA); 1683 else 1684 Scope = LScopes.findLexicalScope(LocalVar->getScope()); 1685 // If variable scope is not found then skip this variable. 1686 if (!Scope) 1687 continue; 1688 1689 Processed.insert(IV); 1690 DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU, 1691 *Scope, LocalVar, IV.second)); 1692 1693 const MachineInstr *MInsn = HistoryMapEntries.front().getInstr(); 1694 assert(MInsn->isDebugValue() && "History must begin with debug value"); 1695 1696 // Check if there is a single DBG_VALUE, valid throughout the var's scope. 1697 // If the history map contains a single debug value, there may be an 1698 // additional entry which clobbers the debug value. 1699 size_t HistSize = HistoryMapEntries.size(); 1700 bool SingleValueWithClobber = 1701 HistSize == 2 && HistoryMapEntries[1].isClobber(); 1702 if (HistSize == 1 || SingleValueWithClobber) { 1703 const auto *End = 1704 SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr; 1705 if (validThroughout(LScopes, MInsn, End)) { 1706 RegVar->initializeDbgValue(MInsn); 1707 continue; 1708 } 1709 } 1710 1711 // Do not emit location lists if .debug_loc secton is disabled. 1712 if (!useLocSection()) 1713 continue; 1714 1715 // Handle multiple DBG_VALUE instructions describing one variable. 1716 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn); 1717 1718 // Build the location list for this variable. 1719 SmallVector<DebugLocEntry, 8> Entries; 1720 bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries); 1721 1722 // Check whether buildLocationList managed to merge all locations to one 1723 // that is valid throughout the variable's scope. If so, produce single 1724 // value location. 1725 if (isValidSingleLocation) { 1726 RegVar->initializeDbgValue(Entries[0].getValues()[0]); 1727 continue; 1728 } 1729 1730 // If the variable has a DIBasicType, extract it. Basic types cannot have 1731 // unique identifiers, so don't bother resolving the type with the 1732 // identifier map. 1733 const DIBasicType *BT = dyn_cast<DIBasicType>( 1734 static_cast<const Metadata *>(LocalVar->getType())); 1735 1736 // Finalize the entry by lowering it into a DWARF bytestream. 1737 for (auto &Entry : Entries) 1738 Entry.finalize(*Asm, List, BT, TheCU); 1739 } 1740 1741 // For each InlinedEntity collected from DBG_LABEL instructions, convert to 1742 // DWARF-related DbgLabel. 1743 for (const auto &I : DbgLabels) { 1744 InlinedEntity IL = I.first; 1745 const MachineInstr *MI = I.second; 1746 if (MI == nullptr) 1747 continue; 1748 1749 LexicalScope *Scope = nullptr; 1750 const DILabel *Label = cast<DILabel>(IL.first); 1751 // The scope could have an extra lexical block file. 1752 const DILocalScope *LocalScope = 1753 Label->getScope()->getNonLexicalBlockFileScope(); 1754 // Get inlined DILocation if it is inlined label. 1755 if (const DILocation *IA = IL.second) 1756 Scope = LScopes.findInlinedScope(LocalScope, IA); 1757 else 1758 Scope = LScopes.findLexicalScope(LocalScope); 1759 // If label scope is not found then skip this label. 1760 if (!Scope) 1761 continue; 1762 1763 Processed.insert(IL); 1764 /// At this point, the temporary label is created. 1765 /// Save the temporary label to DbgLabel entity to get the 1766 /// actually address when generating Dwarf DIE. 1767 MCSymbol *Sym = getLabelBeforeInsn(MI); 1768 createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym); 1769 } 1770 1771 // Collect info for variables/labels that were optimized out. 1772 for (const DINode *DN : SP->getRetainedNodes()) { 1773 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 1774 continue; 1775 LexicalScope *Scope = nullptr; 1776 if (auto *DV = dyn_cast<DILocalVariable>(DN)) { 1777 Scope = LScopes.findLexicalScope(DV->getScope()); 1778 } else if (auto *DL = dyn_cast<DILabel>(DN)) { 1779 Scope = LScopes.findLexicalScope(DL->getScope()); 1780 } 1781 1782 if (Scope) 1783 createConcreteEntity(TheCU, *Scope, DN, nullptr); 1784 } 1785 } 1786 1787 // Process beginning of an instruction. 1788 void DwarfDebug::beginInstruction(const MachineInstr *MI) { 1789 DebugHandlerBase::beginInstruction(MI); 1790 assert(CurMI); 1791 1792 const auto *SP = MI->getMF()->getFunction().getSubprogram(); 1793 if (!SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 1794 return; 1795 1796 // Check if source location changes, but ignore DBG_VALUE and CFI locations. 1797 // If the instruction is part of the function frame setup code, do not emit 1798 // any line record, as there is no correspondence with any user code. 1799 if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup)) 1800 return; 1801 const DebugLoc &DL = MI->getDebugLoc(); 1802 // When we emit a line-0 record, we don't update PrevInstLoc; so look at 1803 // the last line number actually emitted, to see if it was line 0. 1804 unsigned LastAsmLine = 1805 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine(); 1806 1807 // Request a label after the call in order to emit AT_return_pc information 1808 // in call site entries. TODO: Add support for targets with delay slots. 1809 if (SP->areAllCallsDescribed() && MI->isCall() && !MI->hasDelaySlot()) 1810 requestLabelAfterInsn(MI); 1811 1812 if (DL == PrevInstLoc) { 1813 // If we have an ongoing unspecified location, nothing to do here. 1814 if (!DL) 1815 return; 1816 // We have an explicit location, same as the previous location. 1817 // But we might be coming back to it after a line 0 record. 1818 if (LastAsmLine == 0 && DL.getLine() != 0) { 1819 // Reinstate the source location but not marked as a statement. 1820 const MDNode *Scope = DL.getScope(); 1821 recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0); 1822 } 1823 return; 1824 } 1825 1826 if (!DL) { 1827 // We have an unspecified location, which might want to be line 0. 1828 // If we have already emitted a line-0 record, don't repeat it. 1829 if (LastAsmLine == 0) 1830 return; 1831 // If user said Don't Do That, don't do that. 1832 if (UnknownLocations == Disable) 1833 return; 1834 // See if we have a reason to emit a line-0 record now. 1835 // Reasons to emit a line-0 record include: 1836 // - User asked for it (UnknownLocations). 1837 // - Instruction has a label, so it's referenced from somewhere else, 1838 // possibly debug information; we want it to have a source location. 1839 // - Instruction is at the top of a block; we don't want to inherit the 1840 // location from the physically previous (maybe unrelated) block. 1841 if (UnknownLocations == Enable || PrevLabel || 1842 (PrevInstBB && PrevInstBB != MI->getParent())) { 1843 // Preserve the file and column numbers, if we can, to save space in 1844 // the encoded line table. 1845 // Do not update PrevInstLoc, it remembers the last non-0 line. 1846 const MDNode *Scope = nullptr; 1847 unsigned Column = 0; 1848 if (PrevInstLoc) { 1849 Scope = PrevInstLoc.getScope(); 1850 Column = PrevInstLoc.getCol(); 1851 } 1852 recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0); 1853 } 1854 return; 1855 } 1856 1857 // We have an explicit location, different from the previous location. 1858 // Don't repeat a line-0 record, but otherwise emit the new location. 1859 // (The new location might be an explicit line 0, which we do emit.) 1860 if (DL.getLine() == 0 && LastAsmLine == 0) 1861 return; 1862 unsigned Flags = 0; 1863 if (DL == PrologEndLoc) { 1864 Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT; 1865 PrologEndLoc = DebugLoc(); 1866 } 1867 // If the line changed, we call that a new statement; unless we went to 1868 // line 0 and came back, in which case it is not a new statement. 1869 unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine; 1870 if (DL.getLine() && DL.getLine() != OldLine) 1871 Flags |= DWARF2_FLAG_IS_STMT; 1872 1873 const MDNode *Scope = DL.getScope(); 1874 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); 1875 1876 // If we're not at line 0, remember this location. 1877 if (DL.getLine()) 1878 PrevInstLoc = DL; 1879 } 1880 1881 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) { 1882 // First known non-DBG_VALUE and non-frame setup location marks 1883 // the beginning of the function body. 1884 for (const auto &MBB : *MF) 1885 for (const auto &MI : MBB) 1886 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1887 MI.getDebugLoc()) 1888 return MI.getDebugLoc(); 1889 return DebugLoc(); 1890 } 1891 1892 /// Register a source line with debug info. Returns the unique label that was 1893 /// emitted and which provides correspondence to the source line list. 1894 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col, 1895 const MDNode *S, unsigned Flags, unsigned CUID, 1896 uint16_t DwarfVersion, 1897 ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) { 1898 StringRef Fn; 1899 unsigned FileNo = 1; 1900 unsigned Discriminator = 0; 1901 if (auto *Scope = cast_or_null<DIScope>(S)) { 1902 Fn = Scope->getFilename(); 1903 if (Line != 0 && DwarfVersion >= 4) 1904 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope)) 1905 Discriminator = LBF->getDiscriminator(); 1906 1907 FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID]) 1908 .getOrCreateSourceID(Scope->getFile()); 1909 } 1910 Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0, 1911 Discriminator, Fn); 1912 } 1913 1914 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF, 1915 unsigned CUID) { 1916 // Get beginning of function. 1917 if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) { 1918 // Ensure the compile unit is created if the function is called before 1919 // beginFunction(). 1920 (void)getOrCreateDwarfCompileUnit( 1921 MF.getFunction().getSubprogram()->getUnit()); 1922 // We'd like to list the prologue as "not statements" but GDB behaves 1923 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. 1924 const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram(); 1925 ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT, 1926 CUID, getDwarfVersion(), getUnits()); 1927 return PrologEndLoc; 1928 } 1929 return DebugLoc(); 1930 } 1931 1932 // Gather pre-function debug information. Assumes being called immediately 1933 // after the function entry point has been emitted. 1934 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) { 1935 CurFn = MF; 1936 1937 auto *SP = MF->getFunction().getSubprogram(); 1938 assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode()); 1939 if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 1940 return; 1941 1942 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 1943 1944 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function 1945 // belongs to so that we add to the correct per-cu line table in the 1946 // non-asm case. 1947 if (Asm->OutStreamer->hasRawTextSupport()) 1948 // Use a single line table if we are generating assembly. 1949 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 1950 else 1951 Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID()); 1952 1953 // Record beginning of function. 1954 PrologEndLoc = emitInitialLocDirective( 1955 *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID()); 1956 } 1957 1958 void DwarfDebug::skippedNonDebugFunction() { 1959 // If we don't have a subprogram for this function then there will be a hole 1960 // in the range information. Keep note of this by setting the previously used 1961 // section to nullptr. 1962 PrevCU = nullptr; 1963 CurFn = nullptr; 1964 } 1965 1966 // Gather and emit post-function debug information. 1967 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) { 1968 const DISubprogram *SP = MF->getFunction().getSubprogram(); 1969 1970 assert(CurFn == MF && 1971 "endFunction should be called with the same function as beginFunction"); 1972 1973 // Set DwarfDwarfCompileUnitID in MCContext to default value. 1974 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 1975 1976 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 1977 assert(!FnScope || SP == FnScope->getScopeNode()); 1978 DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit()); 1979 if (TheCU.getCUNode()->isDebugDirectivesOnly()) { 1980 PrevLabel = nullptr; 1981 CurFn = nullptr; 1982 return; 1983 } 1984 1985 DenseSet<InlinedEntity> Processed; 1986 collectEntityInfo(TheCU, SP, Processed); 1987 1988 // Add the range of this function to the list of ranges for the CU. 1989 TheCU.addRange({Asm->getFunctionBegin(), Asm->getFunctionEnd()}); 1990 1991 // Under -gmlt, skip building the subprogram if there are no inlined 1992 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram 1993 // is still needed as we need its source location. 1994 if (!TheCU.getCUNode()->getDebugInfoForProfiling() && 1995 TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly && 1996 LScopes.getAbstractScopesList().empty() && !IsDarwin) { 1997 assert(InfoHolder.getScopeVariables().empty()); 1998 PrevLabel = nullptr; 1999 CurFn = nullptr; 2000 return; 2001 } 2002 2003 #ifndef NDEBUG 2004 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size(); 2005 #endif 2006 // Construct abstract scopes. 2007 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { 2008 auto *SP = cast<DISubprogram>(AScope->getScopeNode()); 2009 for (const DINode *DN : SP->getRetainedNodes()) { 2010 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 2011 continue; 2012 2013 const MDNode *Scope = nullptr; 2014 if (auto *DV = dyn_cast<DILocalVariable>(DN)) 2015 Scope = DV->getScope(); 2016 else if (auto *DL = dyn_cast<DILabel>(DN)) 2017 Scope = DL->getScope(); 2018 else 2019 llvm_unreachable("Unexpected DI type!"); 2020 2021 // Collect info for variables/labels that were optimized out. 2022 ensureAbstractEntityIsCreated(TheCU, DN, Scope); 2023 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes 2024 && "ensureAbstractEntityIsCreated inserted abstract scopes"); 2025 } 2026 constructAbstractSubprogramScopeDIE(TheCU, AScope); 2027 } 2028 2029 ProcessedSPNodes.insert(SP); 2030 DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope); 2031 if (auto *SkelCU = TheCU.getSkeleton()) 2032 if (!LScopes.getAbstractScopesList().empty() && 2033 TheCU.getCUNode()->getSplitDebugInlining()) 2034 SkelCU->constructSubprogramScopeDIE(SP, FnScope); 2035 2036 // Construct call site entries. 2037 constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF); 2038 2039 // Clear debug info 2040 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the 2041 // DbgVariables except those that are also in AbstractVariables (since they 2042 // can be used cross-function) 2043 InfoHolder.getScopeVariables().clear(); 2044 InfoHolder.getScopeLabels().clear(); 2045 PrevLabel = nullptr; 2046 CurFn = nullptr; 2047 } 2048 2049 // Register a source line with debug info. Returns the unique label that was 2050 // emitted and which provides correspondence to the source line list. 2051 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, 2052 unsigned Flags) { 2053 ::recordSourceLine(*Asm, Line, Col, S, Flags, 2054 Asm->OutStreamer->getContext().getDwarfCompileUnitID(), 2055 getDwarfVersion(), getUnits()); 2056 } 2057 2058 //===----------------------------------------------------------------------===// 2059 // Emit Methods 2060 //===----------------------------------------------------------------------===// 2061 2062 // Emit the debug info section. 2063 void DwarfDebug::emitDebugInfo() { 2064 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2065 Holder.emitUnits(/* UseOffsets */ false); 2066 } 2067 2068 // Emit the abbreviation section. 2069 void DwarfDebug::emitAbbreviations() { 2070 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2071 2072 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); 2073 } 2074 2075 void DwarfDebug::emitStringOffsetsTableHeader() { 2076 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2077 Holder.getStringPool().emitStringOffsetsTableHeader( 2078 *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(), 2079 Holder.getStringOffsetsStartSym()); 2080 } 2081 2082 template <typename AccelTableT> 2083 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section, 2084 StringRef TableName) { 2085 Asm->OutStreamer->SwitchSection(Section); 2086 2087 // Emit the full data. 2088 emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol()); 2089 } 2090 2091 void DwarfDebug::emitAccelDebugNames() { 2092 // Don't emit anything if we have no compilation units to index. 2093 if (getUnits().empty()) 2094 return; 2095 2096 emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits()); 2097 } 2098 2099 // Emit visible names into a hashed accelerator table section. 2100 void DwarfDebug::emitAccelNames() { 2101 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), 2102 "Names"); 2103 } 2104 2105 // Emit objective C classes and categories into a hashed accelerator table 2106 // section. 2107 void DwarfDebug::emitAccelObjC() { 2108 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), 2109 "ObjC"); 2110 } 2111 2112 // Emit namespace dies into a hashed accelerator table. 2113 void DwarfDebug::emitAccelNamespaces() { 2114 emitAccel(AccelNamespace, 2115 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), 2116 "namespac"); 2117 } 2118 2119 // Emit type dies into a hashed accelerator table. 2120 void DwarfDebug::emitAccelTypes() { 2121 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), 2122 "types"); 2123 } 2124 2125 // Public name handling. 2126 // The format for the various pubnames: 2127 // 2128 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU 2129 // for the DIE that is named. 2130 // 2131 // gnu pubnames - offset/index value/name tuples where the offset is the offset 2132 // into the CU and the index value is computed according to the type of value 2133 // for the DIE that is named. 2134 // 2135 // For type units the offset is the offset of the skeleton DIE. For split dwarf 2136 // it's the offset within the debug_info/debug_types dwo section, however, the 2137 // reference in the pubname header doesn't change. 2138 2139 /// computeIndexValue - Compute the gdb index value for the DIE and CU. 2140 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, 2141 const DIE *Die) { 2142 // Entities that ended up only in a Type Unit reference the CU instead (since 2143 // the pub entry has offsets within the CU there's no real offset that can be 2144 // provided anyway). As it happens all such entities (namespaces and types, 2145 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out 2146 // not to be true it would be necessary to persist this information from the 2147 // point at which the entry is added to the index data structure - since by 2148 // the time the index is built from that, the original type/namespace DIE in a 2149 // type unit has already been destroyed so it can't be queried for properties 2150 // like tag, etc. 2151 if (Die->getTag() == dwarf::DW_TAG_compile_unit) 2152 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, 2153 dwarf::GIEL_EXTERNAL); 2154 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; 2155 2156 // We could have a specification DIE that has our most of our knowledge, 2157 // look for that now. 2158 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) { 2159 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry(); 2160 if (SpecDIE.findAttribute(dwarf::DW_AT_external)) 2161 Linkage = dwarf::GIEL_EXTERNAL; 2162 } else if (Die->findAttribute(dwarf::DW_AT_external)) 2163 Linkage = dwarf::GIEL_EXTERNAL; 2164 2165 switch (Die->getTag()) { 2166 case dwarf::DW_TAG_class_type: 2167 case dwarf::DW_TAG_structure_type: 2168 case dwarf::DW_TAG_union_type: 2169 case dwarf::DW_TAG_enumeration_type: 2170 return dwarf::PubIndexEntryDescriptor( 2171 dwarf::GIEK_TYPE, 2172 dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage()) 2173 ? dwarf::GIEL_EXTERNAL 2174 : dwarf::GIEL_STATIC); 2175 case dwarf::DW_TAG_typedef: 2176 case dwarf::DW_TAG_base_type: 2177 case dwarf::DW_TAG_subrange_type: 2178 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); 2179 case dwarf::DW_TAG_namespace: 2180 return dwarf::GIEK_TYPE; 2181 case dwarf::DW_TAG_subprogram: 2182 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); 2183 case dwarf::DW_TAG_variable: 2184 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); 2185 case dwarf::DW_TAG_enumerator: 2186 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, 2187 dwarf::GIEL_STATIC); 2188 default: 2189 return dwarf::GIEK_NONE; 2190 } 2191 } 2192 2193 /// emitDebugPubSections - Emit visible names and types into debug pubnames and 2194 /// pubtypes sections. 2195 void DwarfDebug::emitDebugPubSections() { 2196 for (const auto &NU : CUMap) { 2197 DwarfCompileUnit *TheU = NU.second; 2198 if (!TheU->hasDwarfPubSections()) 2199 continue; 2200 2201 bool GnuStyle = TheU->getCUNode()->getNameTableKind() == 2202 DICompileUnit::DebugNameTableKind::GNU; 2203 2204 Asm->OutStreamer->SwitchSection( 2205 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() 2206 : Asm->getObjFileLowering().getDwarfPubNamesSection()); 2207 emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames()); 2208 2209 Asm->OutStreamer->SwitchSection( 2210 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() 2211 : Asm->getObjFileLowering().getDwarfPubTypesSection()); 2212 emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes()); 2213 } 2214 } 2215 2216 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) { 2217 if (useSectionsAsReferences()) 2218 Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(), 2219 CU.getDebugSectionOffset()); 2220 else 2221 Asm->emitDwarfSymbolReference(CU.getLabelBegin()); 2222 } 2223 2224 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name, 2225 DwarfCompileUnit *TheU, 2226 const StringMap<const DIE *> &Globals) { 2227 if (auto *Skeleton = TheU->getSkeleton()) 2228 TheU = Skeleton; 2229 2230 // Emit the header. 2231 Asm->OutStreamer->AddComment("Length of Public " + Name + " Info"); 2232 MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin"); 2233 MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end"); 2234 Asm->emitLabelDifference(EndLabel, BeginLabel, 4); 2235 2236 Asm->OutStreamer->emitLabel(BeginLabel); 2237 2238 Asm->OutStreamer->AddComment("DWARF Version"); 2239 Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION); 2240 2241 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info"); 2242 emitSectionReference(*TheU); 2243 2244 Asm->OutStreamer->AddComment("Compilation Unit Length"); 2245 Asm->emitInt32(TheU->getLength()); 2246 2247 // Emit the pubnames for this compilation unit. 2248 for (const auto &GI : Globals) { 2249 const char *Name = GI.getKeyData(); 2250 const DIE *Entity = GI.second; 2251 2252 Asm->OutStreamer->AddComment("DIE offset"); 2253 Asm->emitInt32(Entity->getOffset()); 2254 2255 if (GnuStyle) { 2256 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); 2257 Asm->OutStreamer->AddComment( 2258 Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + 2259 ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); 2260 Asm->emitInt8(Desc.toBits()); 2261 } 2262 2263 Asm->OutStreamer->AddComment("External Name"); 2264 Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1)); 2265 } 2266 2267 Asm->OutStreamer->AddComment("End Mark"); 2268 Asm->emitInt32(0); 2269 Asm->OutStreamer->emitLabel(EndLabel); 2270 } 2271 2272 /// Emit null-terminated strings into a debug str section. 2273 void DwarfDebug::emitDebugStr() { 2274 MCSection *StringOffsetsSection = nullptr; 2275 if (useSegmentedStringOffsetsTable()) { 2276 emitStringOffsetsTableHeader(); 2277 StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection(); 2278 } 2279 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2280 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(), 2281 StringOffsetsSection, /* UseRelativeOffsets = */ true); 2282 } 2283 2284 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, 2285 const DebugLocStream::Entry &Entry, 2286 const DwarfCompileUnit *CU) { 2287 auto &&Comments = DebugLocs.getComments(Entry); 2288 auto Comment = Comments.begin(); 2289 auto End = Comments.end(); 2290 2291 // The expressions are inserted into a byte stream rather early (see 2292 // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that 2293 // need to reference a base_type DIE the offset of that DIE is not yet known. 2294 // To deal with this we instead insert a placeholder early and then extract 2295 // it here and replace it with the real reference. 2296 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2297 DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(), 2298 DebugLocs.getBytes(Entry).size()), 2299 Asm->getDataLayout().isLittleEndian(), PtrSize); 2300 DWARFExpression Expr(Data, PtrSize); 2301 2302 using Encoding = DWARFExpression::Operation::Encoding; 2303 uint64_t Offset = 0; 2304 for (auto &Op : Expr) { 2305 assert(Op.getCode() != dwarf::DW_OP_const_type && 2306 "3 operand ops not yet supported"); 2307 Streamer.EmitInt8(Op.getCode(), Comment != End ? *(Comment++) : ""); 2308 Offset++; 2309 for (unsigned I = 0; I < 2; ++I) { 2310 if (Op.getDescription().Op[I] == Encoding::SizeNA) 2311 continue; 2312 if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) { 2313 uint64_t Offset = 2314 CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset(); 2315 assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit"); 2316 Streamer.emitULEB128(Offset, "", ULEB128PadSize); 2317 // Make sure comments stay aligned. 2318 for (unsigned J = 0; J < ULEB128PadSize; ++J) 2319 if (Comment != End) 2320 Comment++; 2321 } else { 2322 for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J) 2323 Streamer.EmitInt8(Data.getData()[J], Comment != End ? *(Comment++) : ""); 2324 } 2325 Offset = Op.getOperandEndOffset(I); 2326 } 2327 assert(Offset == Op.getEndOffset()); 2328 } 2329 } 2330 2331 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT, 2332 const DbgValueLoc &Value, 2333 DwarfExpression &DwarfExpr) { 2334 auto *DIExpr = Value.getExpression(); 2335 DIExpressionCursor ExprCursor(DIExpr); 2336 DwarfExpr.addFragmentOffset(DIExpr); 2337 // Regular entry. 2338 if (Value.isInt()) { 2339 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed || 2340 BT->getEncoding() == dwarf::DW_ATE_signed_char)) 2341 DwarfExpr.addSignedConstant(Value.getInt()); 2342 else 2343 DwarfExpr.addUnsignedConstant(Value.getInt()); 2344 } else if (Value.isLocation()) { 2345 MachineLocation Location = Value.getLoc(); 2346 if (Location.isIndirect()) 2347 DwarfExpr.setMemoryLocationKind(); 2348 DIExpressionCursor Cursor(DIExpr); 2349 2350 if (DIExpr->isEntryValue()) { 2351 DwarfExpr.setEntryValueFlag(); 2352 DwarfExpr.beginEntryValueExpression(Cursor); 2353 } 2354 2355 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2356 if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) 2357 return; 2358 return DwarfExpr.addExpression(std::move(Cursor)); 2359 } else if (Value.isTargetIndexLocation()) { 2360 TargetIndexLocation Loc = Value.getTargetIndexLocation(); 2361 // TODO TargetIndexLocation is a target-independent. Currently only the WebAssembly-specific 2362 // encoding is supported. 2363 DwarfExpr.addWasmLocation(Loc.Index, Loc.Offset); 2364 } else if (Value.isConstantFP()) { 2365 APInt RawBytes = Value.getConstantFP()->getValueAPF().bitcastToAPInt(); 2366 DwarfExpr.addUnsignedConstant(RawBytes); 2367 } 2368 DwarfExpr.addExpression(std::move(ExprCursor)); 2369 } 2370 2371 void DebugLocEntry::finalize(const AsmPrinter &AP, 2372 DebugLocStream::ListBuilder &List, 2373 const DIBasicType *BT, 2374 DwarfCompileUnit &TheCU) { 2375 assert(!Values.empty() && 2376 "location list entries without values are redundant"); 2377 assert(Begin != End && "unexpected location list entry with empty range"); 2378 DebugLocStream::EntryBuilder Entry(List, Begin, End); 2379 BufferByteStreamer Streamer = Entry.getStreamer(); 2380 DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU); 2381 const DbgValueLoc &Value = Values[0]; 2382 if (Value.isFragment()) { 2383 // Emit all fragments that belong to the same variable and range. 2384 assert(llvm::all_of(Values, [](DbgValueLoc P) { 2385 return P.isFragment(); 2386 }) && "all values are expected to be fragments"); 2387 assert(std::is_sorted(Values.begin(), Values.end()) && 2388 "fragments are expected to be sorted"); 2389 2390 for (auto Fragment : Values) 2391 DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr); 2392 2393 } else { 2394 assert(Values.size() == 1 && "only fragments may have >1 value"); 2395 DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr); 2396 } 2397 DwarfExpr.finalize(); 2398 if (DwarfExpr.TagOffset) 2399 List.setTagOffset(*DwarfExpr.TagOffset); 2400 } 2401 2402 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry, 2403 const DwarfCompileUnit *CU) { 2404 // Emit the size. 2405 Asm->OutStreamer->AddComment("Loc expr size"); 2406 if (getDwarfVersion() >= 5) 2407 Asm->emitULEB128(DebugLocs.getBytes(Entry).size()); 2408 else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max()) 2409 Asm->emitInt16(DebugLocs.getBytes(Entry).size()); 2410 else { 2411 // The entry is too big to fit into 16 bit, drop it as there is nothing we 2412 // can do. 2413 Asm->emitInt16(0); 2414 return; 2415 } 2416 // Emit the entry. 2417 APByteStreamer Streamer(*Asm); 2418 emitDebugLocEntry(Streamer, Entry, CU); 2419 } 2420 2421 // Emit the header of a DWARF 5 range list table list table. Returns the symbol 2422 // that designates the end of the table for the caller to emit when the table is 2423 // complete. 2424 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm, 2425 const DwarfFile &Holder) { 2426 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2427 2428 Asm->OutStreamer->AddComment("Offset entry count"); 2429 Asm->emitInt32(Holder.getRangeLists().size()); 2430 Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym()); 2431 2432 for (const RangeSpanList &List : Holder.getRangeLists()) 2433 Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(), 4); 2434 2435 return TableEnd; 2436 } 2437 2438 // Emit the header of a DWARF 5 locations list table. Returns the symbol that 2439 // designates the end of the table for the caller to emit when the table is 2440 // complete. 2441 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm, 2442 const DwarfDebug &DD) { 2443 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2444 2445 const auto &DebugLocs = DD.getDebugLocs(); 2446 2447 Asm->OutStreamer->AddComment("Offset entry count"); 2448 Asm->emitInt32(DebugLocs.getLists().size()); 2449 Asm->OutStreamer->emitLabel(DebugLocs.getSym()); 2450 2451 for (const auto &List : DebugLocs.getLists()) 2452 Asm->emitLabelDifference(List.Label, DebugLocs.getSym(), 4); 2453 2454 return TableEnd; 2455 } 2456 2457 template <typename Ranges, typename PayloadEmitter> 2458 static void emitRangeList( 2459 DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R, 2460 const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair, 2461 unsigned StartxLength, unsigned EndOfList, 2462 StringRef (*StringifyEnum)(unsigned), 2463 bool ShouldUseBaseAddress, 2464 PayloadEmitter EmitPayload) { 2465 2466 auto Size = Asm->MAI->getCodePointerSize(); 2467 bool UseDwarf5 = DD.getDwarfVersion() >= 5; 2468 2469 // Emit our symbol so we can find the beginning of the range. 2470 Asm->OutStreamer->emitLabel(Sym); 2471 2472 // Gather all the ranges that apply to the same section so they can share 2473 // a base address entry. 2474 MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges; 2475 2476 for (const auto &Range : R) 2477 SectionRanges[&Range.Begin->getSection()].push_back(&Range); 2478 2479 const MCSymbol *CUBase = CU.getBaseAddress(); 2480 bool BaseIsSet = false; 2481 for (const auto &P : SectionRanges) { 2482 auto *Base = CUBase; 2483 if (!Base && ShouldUseBaseAddress) { 2484 const MCSymbol *Begin = P.second.front()->Begin; 2485 const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection()); 2486 if (!UseDwarf5) { 2487 Base = NewBase; 2488 BaseIsSet = true; 2489 Asm->OutStreamer->emitIntValue(-1, Size); 2490 Asm->OutStreamer->AddComment(" base address"); 2491 Asm->OutStreamer->emitSymbolValue(Base, Size); 2492 } else if (NewBase != Begin || P.second.size() > 1) { 2493 // Only use a base address if 2494 // * the existing pool address doesn't match (NewBase != Begin) 2495 // * or, there's more than one entry to share the base address 2496 Base = NewBase; 2497 BaseIsSet = true; 2498 Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx)); 2499 Asm->emitInt8(BaseAddressx); 2500 Asm->OutStreamer->AddComment(" base address index"); 2501 Asm->emitULEB128(DD.getAddressPool().getIndex(Base)); 2502 } 2503 } else if (BaseIsSet && !UseDwarf5) { 2504 BaseIsSet = false; 2505 assert(!Base); 2506 Asm->OutStreamer->emitIntValue(-1, Size); 2507 Asm->OutStreamer->emitIntValue(0, Size); 2508 } 2509 2510 for (const auto *RS : P.second) { 2511 const MCSymbol *Begin = RS->Begin; 2512 const MCSymbol *End = RS->End; 2513 assert(Begin && "Range without a begin symbol?"); 2514 assert(End && "Range without an end symbol?"); 2515 if (Base) { 2516 if (UseDwarf5) { 2517 // Emit offset_pair when we have a base. 2518 Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair)); 2519 Asm->emitInt8(OffsetPair); 2520 Asm->OutStreamer->AddComment(" starting offset"); 2521 Asm->emitLabelDifferenceAsULEB128(Begin, Base); 2522 Asm->OutStreamer->AddComment(" ending offset"); 2523 Asm->emitLabelDifferenceAsULEB128(End, Base); 2524 } else { 2525 Asm->emitLabelDifference(Begin, Base, Size); 2526 Asm->emitLabelDifference(End, Base, Size); 2527 } 2528 } else if (UseDwarf5) { 2529 Asm->OutStreamer->AddComment(StringifyEnum(StartxLength)); 2530 Asm->emitInt8(StartxLength); 2531 Asm->OutStreamer->AddComment(" start index"); 2532 Asm->emitULEB128(DD.getAddressPool().getIndex(Begin)); 2533 Asm->OutStreamer->AddComment(" length"); 2534 Asm->emitLabelDifferenceAsULEB128(End, Begin); 2535 } else { 2536 Asm->OutStreamer->emitSymbolValue(Begin, Size); 2537 Asm->OutStreamer->emitSymbolValue(End, Size); 2538 } 2539 EmitPayload(*RS); 2540 } 2541 } 2542 2543 if (UseDwarf5) { 2544 Asm->OutStreamer->AddComment(StringifyEnum(EndOfList)); 2545 Asm->emitInt8(EndOfList); 2546 } else { 2547 // Terminate the list with two 0 values. 2548 Asm->OutStreamer->emitIntValue(0, Size); 2549 Asm->OutStreamer->emitIntValue(0, Size); 2550 } 2551 } 2552 2553 // Handles emission of both debug_loclist / debug_loclist.dwo 2554 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) { 2555 emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List), 2556 *List.CU, dwarf::DW_LLE_base_addressx, 2557 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length, 2558 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString, 2559 /* ShouldUseBaseAddress */ true, 2560 [&](const DebugLocStream::Entry &E) { 2561 DD.emitDebugLocEntryLocation(E, List.CU); 2562 }); 2563 } 2564 2565 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) { 2566 if (DebugLocs.getLists().empty()) 2567 return; 2568 2569 Asm->OutStreamer->SwitchSection(Sec); 2570 2571 MCSymbol *TableEnd = nullptr; 2572 if (getDwarfVersion() >= 5) 2573 TableEnd = emitLoclistsTableHeader(Asm, *this); 2574 2575 for (const auto &List : DebugLocs.getLists()) 2576 emitLocList(*this, Asm, List); 2577 2578 if (TableEnd) 2579 Asm->OutStreamer->emitLabel(TableEnd); 2580 } 2581 2582 // Emit locations into the .debug_loc/.debug_loclists section. 2583 void DwarfDebug::emitDebugLoc() { 2584 emitDebugLocImpl( 2585 getDwarfVersion() >= 5 2586 ? Asm->getObjFileLowering().getDwarfLoclistsSection() 2587 : Asm->getObjFileLowering().getDwarfLocSection()); 2588 } 2589 2590 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section. 2591 void DwarfDebug::emitDebugLocDWO() { 2592 if (getDwarfVersion() >= 5) { 2593 emitDebugLocImpl( 2594 Asm->getObjFileLowering().getDwarfLoclistsDWOSection()); 2595 2596 return; 2597 } 2598 2599 for (const auto &List : DebugLocs.getLists()) { 2600 Asm->OutStreamer->SwitchSection( 2601 Asm->getObjFileLowering().getDwarfLocDWOSection()); 2602 Asm->OutStreamer->emitLabel(List.Label); 2603 2604 for (const auto &Entry : DebugLocs.getEntries(List)) { 2605 // GDB only supports startx_length in pre-standard split-DWARF. 2606 // (in v5 standard loclists, it currently* /only/ supports base_address + 2607 // offset_pair, so the implementations can't really share much since they 2608 // need to use different representations) 2609 // * as of October 2018, at least 2610 // 2611 // In v5 (see emitLocList), this uses SectionLabels to reuse existing 2612 // addresses in the address pool to minimize object size/relocations. 2613 Asm->emitInt8(dwarf::DW_LLE_startx_length); 2614 unsigned idx = AddrPool.getIndex(Entry.Begin); 2615 Asm->emitULEB128(idx); 2616 // Also the pre-standard encoding is slightly different, emitting this as 2617 // an address-length entry here, but its a ULEB128 in DWARFv5 loclists. 2618 Asm->emitLabelDifference(Entry.End, Entry.Begin, 4); 2619 emitDebugLocEntryLocation(Entry, List.CU); 2620 } 2621 Asm->emitInt8(dwarf::DW_LLE_end_of_list); 2622 } 2623 } 2624 2625 struct ArangeSpan { 2626 const MCSymbol *Start, *End; 2627 }; 2628 2629 // Emit a debug aranges section, containing a CU lookup for any 2630 // address we can tie back to a CU. 2631 void DwarfDebug::emitDebugARanges() { 2632 // Provides a unique id per text section. 2633 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap; 2634 2635 // Filter labels by section. 2636 for (const SymbolCU &SCU : ArangeLabels) { 2637 if (SCU.Sym->isInSection()) { 2638 // Make a note of this symbol and it's section. 2639 MCSection *Section = &SCU.Sym->getSection(); 2640 if (!Section->getKind().isMetadata()) 2641 SectionMap[Section].push_back(SCU); 2642 } else { 2643 // Some symbols (e.g. common/bss on mach-o) can have no section but still 2644 // appear in the output. This sucks as we rely on sections to build 2645 // arange spans. We can do it without, but it's icky. 2646 SectionMap[nullptr].push_back(SCU); 2647 } 2648 } 2649 2650 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans; 2651 2652 for (auto &I : SectionMap) { 2653 MCSection *Section = I.first; 2654 SmallVector<SymbolCU, 8> &List = I.second; 2655 if (List.size() < 1) 2656 continue; 2657 2658 // If we have no section (e.g. common), just write out 2659 // individual spans for each symbol. 2660 if (!Section) { 2661 for (const SymbolCU &Cur : List) { 2662 ArangeSpan Span; 2663 Span.Start = Cur.Sym; 2664 Span.End = nullptr; 2665 assert(Cur.CU); 2666 Spans[Cur.CU].push_back(Span); 2667 } 2668 continue; 2669 } 2670 2671 // Sort the symbols by offset within the section. 2672 llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) { 2673 unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0; 2674 unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0; 2675 2676 // Symbols with no order assigned should be placed at the end. 2677 // (e.g. section end labels) 2678 if (IA == 0) 2679 return false; 2680 if (IB == 0) 2681 return true; 2682 return IA < IB; 2683 }); 2684 2685 // Insert a final terminator. 2686 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section))); 2687 2688 // Build spans between each label. 2689 const MCSymbol *StartSym = List[0].Sym; 2690 for (size_t n = 1, e = List.size(); n < e; n++) { 2691 const SymbolCU &Prev = List[n - 1]; 2692 const SymbolCU &Cur = List[n]; 2693 2694 // Try and build the longest span we can within the same CU. 2695 if (Cur.CU != Prev.CU) { 2696 ArangeSpan Span; 2697 Span.Start = StartSym; 2698 Span.End = Cur.Sym; 2699 assert(Prev.CU); 2700 Spans[Prev.CU].push_back(Span); 2701 StartSym = Cur.Sym; 2702 } 2703 } 2704 } 2705 2706 // Start the dwarf aranges section. 2707 Asm->OutStreamer->SwitchSection( 2708 Asm->getObjFileLowering().getDwarfARangesSection()); 2709 2710 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2711 2712 // Build a list of CUs used. 2713 std::vector<DwarfCompileUnit *> CUs; 2714 for (const auto &it : Spans) { 2715 DwarfCompileUnit *CU = it.first; 2716 CUs.push_back(CU); 2717 } 2718 2719 // Sort the CU list (again, to ensure consistent output order). 2720 llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) { 2721 return A->getUniqueID() < B->getUniqueID(); 2722 }); 2723 2724 // Emit an arange table for each CU we used. 2725 for (DwarfCompileUnit *CU : CUs) { 2726 std::vector<ArangeSpan> &List = Spans[CU]; 2727 2728 // Describe the skeleton CU's offset and length, not the dwo file's. 2729 if (auto *Skel = CU->getSkeleton()) 2730 CU = Skel; 2731 2732 // Emit size of content not including length itself. 2733 unsigned ContentSize = 2734 sizeof(int16_t) + // DWARF ARange version number 2735 sizeof(int32_t) + // Offset of CU in the .debug_info section 2736 sizeof(int8_t) + // Pointer Size (in bytes) 2737 sizeof(int8_t); // Segment Size (in bytes) 2738 2739 unsigned TupleSize = PtrSize * 2; 2740 2741 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. 2742 unsigned Padding = 2743 offsetToAlignment(sizeof(int32_t) + ContentSize, Align(TupleSize)); 2744 2745 ContentSize += Padding; 2746 ContentSize += (List.size() + 1) * TupleSize; 2747 2748 // For each compile unit, write the list of spans it covers. 2749 Asm->OutStreamer->AddComment("Length of ARange Set"); 2750 Asm->emitInt32(ContentSize); 2751 Asm->OutStreamer->AddComment("DWARF Arange version number"); 2752 Asm->emitInt16(dwarf::DW_ARANGES_VERSION); 2753 Asm->OutStreamer->AddComment("Offset Into Debug Info Section"); 2754 emitSectionReference(*CU); 2755 Asm->OutStreamer->AddComment("Address Size (in bytes)"); 2756 Asm->emitInt8(PtrSize); 2757 Asm->OutStreamer->AddComment("Segment Size (in bytes)"); 2758 Asm->emitInt8(0); 2759 2760 Asm->OutStreamer->emitFill(Padding, 0xff); 2761 2762 for (const ArangeSpan &Span : List) { 2763 Asm->emitLabelReference(Span.Start, PtrSize); 2764 2765 // Calculate the size as being from the span start to it's end. 2766 if (Span.End) { 2767 Asm->emitLabelDifference(Span.End, Span.Start, PtrSize); 2768 } else { 2769 // For symbols without an end marker (e.g. common), we 2770 // write a single arange entry containing just that one symbol. 2771 uint64_t Size = SymSize[Span.Start]; 2772 if (Size == 0) 2773 Size = 1; 2774 2775 Asm->OutStreamer->emitIntValue(Size, PtrSize); 2776 } 2777 } 2778 2779 Asm->OutStreamer->AddComment("ARange terminator"); 2780 Asm->OutStreamer->emitIntValue(0, PtrSize); 2781 Asm->OutStreamer->emitIntValue(0, PtrSize); 2782 } 2783 } 2784 2785 /// Emit a single range list. We handle both DWARF v5 and earlier. 2786 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm, 2787 const RangeSpanList &List) { 2788 emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU, 2789 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair, 2790 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list, 2791 llvm::dwarf::RangeListEncodingString, 2792 List.CU->getCUNode()->getRangesBaseAddress() || 2793 DD.getDwarfVersion() >= 5, 2794 [](auto) {}); 2795 } 2796 2797 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) { 2798 if (Holder.getRangeLists().empty()) 2799 return; 2800 2801 assert(useRangesSection()); 2802 assert(!CUMap.empty()); 2803 assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { 2804 return !Pair.second->getCUNode()->isDebugDirectivesOnly(); 2805 })); 2806 2807 Asm->OutStreamer->SwitchSection(Section); 2808 2809 MCSymbol *TableEnd = nullptr; 2810 if (getDwarfVersion() >= 5) 2811 TableEnd = emitRnglistsTableHeader(Asm, Holder); 2812 2813 for (const RangeSpanList &List : Holder.getRangeLists()) 2814 emitRangeList(*this, Asm, List); 2815 2816 if (TableEnd) 2817 Asm->OutStreamer->emitLabel(TableEnd); 2818 } 2819 2820 /// Emit address ranges into the .debug_ranges section or into the DWARF v5 2821 /// .debug_rnglists section. 2822 void DwarfDebug::emitDebugRanges() { 2823 const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2824 2825 emitDebugRangesImpl(Holder, 2826 getDwarfVersion() >= 5 2827 ? Asm->getObjFileLowering().getDwarfRnglistsSection() 2828 : Asm->getObjFileLowering().getDwarfRangesSection()); 2829 } 2830 2831 void DwarfDebug::emitDebugRangesDWO() { 2832 emitDebugRangesImpl(InfoHolder, 2833 Asm->getObjFileLowering().getDwarfRnglistsDWOSection()); 2834 } 2835 2836 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) { 2837 for (auto *MN : Nodes) { 2838 if (auto *M = dyn_cast<DIMacro>(MN)) 2839 emitMacro(*M); 2840 else if (auto *F = dyn_cast<DIMacroFile>(MN)) 2841 emitMacroFile(*F, U); 2842 else 2843 llvm_unreachable("Unexpected DI type!"); 2844 } 2845 } 2846 2847 void DwarfDebug::emitMacro(DIMacro &M) { 2848 Asm->emitULEB128(M.getMacinfoType()); 2849 Asm->emitULEB128(M.getLine()); 2850 StringRef Name = M.getName(); 2851 StringRef Value = M.getValue(); 2852 Asm->OutStreamer->emitBytes(Name); 2853 if (!Value.empty()) { 2854 // There should be one space between macro name and macro value. 2855 Asm->emitInt8(' '); 2856 Asm->OutStreamer->emitBytes(Value); 2857 } 2858 Asm->emitInt8('\0'); 2859 } 2860 2861 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) { 2862 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file); 2863 Asm->emitULEB128(dwarf::DW_MACINFO_start_file); 2864 Asm->emitULEB128(F.getLine()); 2865 Asm->emitULEB128(U.getOrCreateSourceID(F.getFile())); 2866 handleMacroNodes(F.getElements(), U); 2867 Asm->emitULEB128(dwarf::DW_MACINFO_end_file); 2868 } 2869 2870 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) { 2871 for (const auto &P : CUMap) { 2872 auto &TheCU = *P.second; 2873 auto *SkCU = TheCU.getSkeleton(); 2874 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 2875 auto *CUNode = cast<DICompileUnit>(P.first); 2876 DIMacroNodeArray Macros = CUNode->getMacros(); 2877 if (Macros.empty()) 2878 continue; 2879 Asm->OutStreamer->SwitchSection(Section); 2880 Asm->OutStreamer->emitLabel(U.getMacroLabelBegin()); 2881 handleMacroNodes(Macros, U); 2882 Asm->OutStreamer->AddComment("End Of Macro List Mark"); 2883 Asm->emitInt8(0); 2884 } 2885 } 2886 2887 /// Emit macros into a debug macinfo section. 2888 void DwarfDebug::emitDebugMacinfo() { 2889 emitDebugMacinfoImpl(Asm->getObjFileLowering().getDwarfMacinfoSection()); 2890 } 2891 2892 void DwarfDebug::emitDebugMacinfoDWO() { 2893 emitDebugMacinfoImpl(Asm->getObjFileLowering().getDwarfMacinfoDWOSection()); 2894 } 2895 2896 // DWARF5 Experimental Separate Dwarf emitters. 2897 2898 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die, 2899 std::unique_ptr<DwarfCompileUnit> NewU) { 2900 2901 if (!CompilationDir.empty()) 2902 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 2903 addGnuPubAttributes(*NewU, Die); 2904 2905 SkeletonHolder.addUnit(std::move(NewU)); 2906 } 2907 2908 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) { 2909 2910 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 2911 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder, 2912 UnitKind::Skeleton); 2913 DwarfCompileUnit &NewCU = *OwnedUnit; 2914 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 2915 2916 NewCU.initStmtList(); 2917 2918 if (useSegmentedStringOffsetsTable()) 2919 NewCU.addStringOffsetsStart(); 2920 2921 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit)); 2922 2923 return NewCU; 2924 } 2925 2926 // Emit the .debug_info.dwo section for separated dwarf. This contains the 2927 // compile units that would normally be in debug_info. 2928 void DwarfDebug::emitDebugInfoDWO() { 2929 assert(useSplitDwarf() && "No split dwarf debug info?"); 2930 // Don't emit relocations into the dwo file. 2931 InfoHolder.emitUnits(/* UseOffsets */ true); 2932 } 2933 2934 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the 2935 // abbreviations for the .debug_info.dwo section. 2936 void DwarfDebug::emitDebugAbbrevDWO() { 2937 assert(useSplitDwarf() && "No split dwarf?"); 2938 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection()); 2939 } 2940 2941 void DwarfDebug::emitDebugLineDWO() { 2942 assert(useSplitDwarf() && "No split dwarf?"); 2943 SplitTypeUnitFileTable.Emit( 2944 *Asm->OutStreamer, MCDwarfLineTableParams(), 2945 Asm->getObjFileLowering().getDwarfLineDWOSection()); 2946 } 2947 2948 void DwarfDebug::emitStringOffsetsTableHeaderDWO() { 2949 assert(useSplitDwarf() && "No split dwarf?"); 2950 InfoHolder.getStringPool().emitStringOffsetsTableHeader( 2951 *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(), 2952 InfoHolder.getStringOffsetsStartSym()); 2953 } 2954 2955 // Emit the .debug_str.dwo section for separated dwarf. This contains the 2956 // string section and is identical in format to traditional .debug_str 2957 // sections. 2958 void DwarfDebug::emitDebugStrDWO() { 2959 if (useSegmentedStringOffsetsTable()) 2960 emitStringOffsetsTableHeaderDWO(); 2961 assert(useSplitDwarf() && "No split dwarf?"); 2962 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection(); 2963 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), 2964 OffSec, /* UseRelativeOffsets = */ false); 2965 } 2966 2967 // Emit address pool. 2968 void DwarfDebug::emitDebugAddr() { 2969 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection()); 2970 } 2971 2972 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) { 2973 if (!useSplitDwarf()) 2974 return nullptr; 2975 const DICompileUnit *DIUnit = CU.getCUNode(); 2976 SplitTypeUnitFileTable.maybeSetRootFile( 2977 DIUnit->getDirectory(), DIUnit->getFilename(), 2978 CU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource()); 2979 return &SplitTypeUnitFileTable; 2980 } 2981 2982 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) { 2983 MD5 Hash; 2984 Hash.update(Identifier); 2985 // ... take the least significant 8 bytes and return those. Our MD5 2986 // implementation always returns its results in little endian, so we actually 2987 // need the "high" word. 2988 MD5::MD5Result Result; 2989 Hash.final(Result); 2990 return Result.high(); 2991 } 2992 2993 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU, 2994 StringRef Identifier, DIE &RefDie, 2995 const DICompositeType *CTy) { 2996 // Fast path if we're building some type units and one has already used the 2997 // address pool we know we're going to throw away all this work anyway, so 2998 // don't bother building dependent types. 2999 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed()) 3000 return; 3001 3002 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0)); 3003 if (!Ins.second) { 3004 CU.addDIETypeSignature(RefDie, Ins.first->second); 3005 return; 3006 } 3007 3008 bool TopLevelType = TypeUnitsUnderConstruction.empty(); 3009 AddrPool.resetUsedFlag(); 3010 3011 auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder, 3012 getDwoLineTable(CU)); 3013 DwarfTypeUnit &NewTU = *OwnedUnit; 3014 DIE &UnitDie = NewTU.getUnitDie(); 3015 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy); 3016 3017 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 3018 CU.getLanguage()); 3019 3020 uint64_t Signature = makeTypeSignature(Identifier); 3021 NewTU.setTypeSignature(Signature); 3022 Ins.first->second = Signature; 3023 3024 if (useSplitDwarf()) { 3025 MCSection *Section = 3026 getDwarfVersion() <= 4 3027 ? Asm->getObjFileLowering().getDwarfTypesDWOSection() 3028 : Asm->getObjFileLowering().getDwarfInfoDWOSection(); 3029 NewTU.setSection(Section); 3030 } else { 3031 MCSection *Section = 3032 getDwarfVersion() <= 4 3033 ? Asm->getObjFileLowering().getDwarfTypesSection(Signature) 3034 : Asm->getObjFileLowering().getDwarfInfoSection(Signature); 3035 NewTU.setSection(Section); 3036 // Non-split type units reuse the compile unit's line table. 3037 CU.applyStmtList(UnitDie); 3038 } 3039 3040 // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type 3041 // units. 3042 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 3043 NewTU.addStringOffsetsStart(); 3044 3045 NewTU.setType(NewTU.createTypeDIE(CTy)); 3046 3047 if (TopLevelType) { 3048 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction); 3049 TypeUnitsUnderConstruction.clear(); 3050 3051 // Types referencing entries in the address table cannot be placed in type 3052 // units. 3053 if (AddrPool.hasBeenUsed()) { 3054 3055 // Remove all the types built while building this type. 3056 // This is pessimistic as some of these types might not be dependent on 3057 // the type that used an address. 3058 for (const auto &TU : TypeUnitsToAdd) 3059 TypeSignatures.erase(TU.second); 3060 3061 // Construct this type in the CU directly. 3062 // This is inefficient because all the dependent types will be rebuilt 3063 // from scratch, including building them in type units, discovering that 3064 // they depend on addresses, throwing them out and rebuilding them. 3065 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy)); 3066 return; 3067 } 3068 3069 // If the type wasn't dependent on fission addresses, finish adding the type 3070 // and all its dependent types. 3071 for (auto &TU : TypeUnitsToAdd) { 3072 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get()); 3073 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf()); 3074 } 3075 } 3076 CU.addDIETypeSignature(RefDie, Signature); 3077 } 3078 3079 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD) 3080 : DD(DD), 3081 TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)) { 3082 DD->TypeUnitsUnderConstruction.clear(); 3083 assert(TypeUnitsUnderConstruction.empty() || !DD->AddrPool.hasBeenUsed()); 3084 } 3085 3086 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() { 3087 DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction); 3088 DD->AddrPool.resetUsedFlag(); 3089 } 3090 3091 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() { 3092 return NonTypeUnitContext(this); 3093 } 3094 3095 // Add the Name along with its companion DIE to the appropriate accelerator 3096 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for 3097 // AccelTableKind::Apple, we use the table we got as an argument). If 3098 // accelerator tables are disabled, this function does nothing. 3099 template <typename DataT> 3100 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU, 3101 AccelTable<DataT> &AppleAccel, StringRef Name, 3102 const DIE &Die) { 3103 if (getAccelTableKind() == AccelTableKind::None) 3104 return; 3105 3106 if (getAccelTableKind() != AccelTableKind::Apple && 3107 CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default) 3108 return; 3109 3110 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 3111 DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name); 3112 3113 switch (getAccelTableKind()) { 3114 case AccelTableKind::Apple: 3115 AppleAccel.addName(Ref, Die); 3116 break; 3117 case AccelTableKind::Dwarf: 3118 AccelDebugNames.addName(Ref, Die); 3119 break; 3120 case AccelTableKind::Default: 3121 llvm_unreachable("Default should have already been resolved."); 3122 case AccelTableKind::None: 3123 llvm_unreachable("None handled above"); 3124 } 3125 } 3126 3127 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name, 3128 const DIE &Die) { 3129 addAccelNameImpl(CU, AccelNames, Name, Die); 3130 } 3131 3132 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name, 3133 const DIE &Die) { 3134 // ObjC names go only into the Apple accelerator tables. 3135 if (getAccelTableKind() == AccelTableKind::Apple) 3136 addAccelNameImpl(CU, AccelObjC, Name, Die); 3137 } 3138 3139 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name, 3140 const DIE &Die) { 3141 addAccelNameImpl(CU, AccelNamespace, Name, Die); 3142 } 3143 3144 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name, 3145 const DIE &Die, char Flags) { 3146 addAccelNameImpl(CU, AccelTypes, Name, Die); 3147 } 3148 3149 uint16_t DwarfDebug::getDwarfVersion() const { 3150 return Asm->OutStreamer->getContext().getDwarfVersion(); 3151 } 3152 3153 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) { 3154 return SectionLabels.find(S)->second; 3155 } 3156 void DwarfDebug::insertSectionLabel(const MCSymbol *S) { 3157 SectionLabels.insert(std::make_pair(&S->getSection(), S)); 3158 } 3159