1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing dwarf debug info into asm files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DwarfDebug.h" 14 #include "ByteStreamer.h" 15 #include "DIEHash.h" 16 #include "DebugLocEntry.h" 17 #include "DebugLocStream.h" 18 #include "DwarfCompileUnit.h" 19 #include "DwarfExpression.h" 20 #include "DwarfFile.h" 21 #include "DwarfUnit.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/DenseSet.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/BinaryFormat/Dwarf.h" 33 #include "llvm/CodeGen/AccelTable.h" 34 #include "llvm/CodeGen/AsmPrinter.h" 35 #include "llvm/CodeGen/DIE.h" 36 #include "llvm/CodeGen/LexicalScopes.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineInstr.h" 40 #include "llvm/CodeGen/MachineModuleInfo.h" 41 #include "llvm/CodeGen/MachineOperand.h" 42 #include "llvm/CodeGen/TargetInstrInfo.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/DebugInfo/DWARF/DWARFExpression.h" 47 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GlobalVariable.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/MC/MCAsmInfo.h" 55 #include "llvm/MC/MCContext.h" 56 #include "llvm/MC/MCDwarf.h" 57 #include "llvm/MC/MCSection.h" 58 #include "llvm/MC/MCStreamer.h" 59 #include "llvm/MC/MCSymbol.h" 60 #include "llvm/MC/MCTargetOptions.h" 61 #include "llvm/MC/MachineLocation.h" 62 #include "llvm/MC/SectionKind.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MD5.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/Timer.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Target/TargetLoweringObjectFile.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include "llvm/Target/TargetOptions.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <iterator> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 #define DEBUG_TYPE "dwarfdebug" 87 88 STATISTIC(NumCSParams, "Number of dbg call site params created"); 89 90 static cl::opt<bool> 91 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 92 cl::desc("Disable debug info printing")); 93 94 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier( 95 "use-dwarf-ranges-base-address-specifier", cl::Hidden, 96 cl::desc("Use base address specifiers in debug_ranges"), cl::init(false)); 97 98 static cl::opt<bool> EmitDwarfDebugEntryValues( 99 "emit-debug-entry-values", cl::Hidden, 100 cl::desc("Emit the debug entry values"), cl::init(false)); 101 102 static cl::opt<bool> GenerateARangeSection("generate-arange-section", 103 cl::Hidden, 104 cl::desc("Generate dwarf aranges"), 105 cl::init(false)); 106 107 static cl::opt<bool> 108 GenerateDwarfTypeUnits("generate-type-units", cl::Hidden, 109 cl::desc("Generate DWARF4 type units."), 110 cl::init(false)); 111 112 static cl::opt<bool> SplitDwarfCrossCuReferences( 113 "split-dwarf-cross-cu-references", cl::Hidden, 114 cl::desc("Enable cross-cu references in DWO files"), cl::init(false)); 115 116 enum DefaultOnOff { Default, Enable, Disable }; 117 118 static cl::opt<DefaultOnOff> UnknownLocations( 119 "use-unknown-locations", cl::Hidden, 120 cl::desc("Make an absence of debug location information explicit."), 121 cl::values(clEnumVal(Default, "At top of block or after label"), 122 clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")), 123 cl::init(Default)); 124 125 static cl::opt<AccelTableKind> AccelTables( 126 "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."), 127 cl::values(clEnumValN(AccelTableKind::Default, "Default", 128 "Default for platform"), 129 clEnumValN(AccelTableKind::None, "Disable", "Disabled."), 130 clEnumValN(AccelTableKind::Apple, "Apple", "Apple"), 131 clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")), 132 cl::init(AccelTableKind::Default)); 133 134 static cl::opt<DefaultOnOff> 135 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden, 136 cl::desc("Use inlined strings rather than string section."), 137 cl::values(clEnumVal(Default, "Default for platform"), 138 clEnumVal(Enable, "Enabled"), 139 clEnumVal(Disable, "Disabled")), 140 cl::init(Default)); 141 142 static cl::opt<bool> 143 NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden, 144 cl::desc("Disable emission .debug_ranges section."), 145 cl::init(false)); 146 147 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences( 148 "dwarf-sections-as-references", cl::Hidden, 149 cl::desc("Use sections+offset as references rather than labels."), 150 cl::values(clEnumVal(Default, "Default for platform"), 151 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 152 cl::init(Default)); 153 154 enum LinkageNameOption { 155 DefaultLinkageNames, 156 AllLinkageNames, 157 AbstractLinkageNames 158 }; 159 160 static cl::opt<LinkageNameOption> 161 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden, 162 cl::desc("Which DWARF linkage-name attributes to emit."), 163 cl::values(clEnumValN(DefaultLinkageNames, "Default", 164 "Default for platform"), 165 clEnumValN(AllLinkageNames, "All", "All"), 166 clEnumValN(AbstractLinkageNames, "Abstract", 167 "Abstract subprograms")), 168 cl::init(DefaultLinkageNames)); 169 170 static const char *const DWARFGroupName = "dwarf"; 171 static const char *const DWARFGroupDescription = "DWARF Emission"; 172 static const char *const DbgTimerName = "writer"; 173 static const char *const DbgTimerDescription = "DWARF Debug Writer"; 174 static constexpr unsigned ULEB128PadSize = 4; 175 176 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) { 177 getActiveStreamer().EmitInt8( 178 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op) 179 : dwarf::OperationEncodingString(Op)); 180 } 181 182 void DebugLocDwarfExpression::emitSigned(int64_t Value) { 183 getActiveStreamer().emitSLEB128(Value, Twine(Value)); 184 } 185 186 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) { 187 getActiveStreamer().emitULEB128(Value, Twine(Value)); 188 } 189 190 void DebugLocDwarfExpression::emitData1(uint8_t Value) { 191 getActiveStreamer().EmitInt8(Value, Twine(Value)); 192 } 193 194 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) { 195 assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit"); 196 getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize); 197 } 198 199 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI, 200 unsigned MachineReg) { 201 // This information is not available while emitting .debug_loc entries. 202 return false; 203 } 204 205 void DebugLocDwarfExpression::enableTemporaryBuffer() { 206 assert(!IsBuffering && "Already buffering?"); 207 if (!TmpBuf) 208 TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments); 209 IsBuffering = true; 210 } 211 212 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; } 213 214 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() { 215 return TmpBuf ? TmpBuf->Bytes.size() : 0; 216 } 217 218 void DebugLocDwarfExpression::commitTemporaryBuffer() { 219 if (!TmpBuf) 220 return; 221 for (auto Byte : enumerate(TmpBuf->Bytes)) { 222 const char *Comment = (Byte.index() < TmpBuf->Comments.size()) 223 ? TmpBuf->Comments[Byte.index()].c_str() 224 : ""; 225 OutBS.EmitInt8(Byte.value(), Comment); 226 } 227 TmpBuf->Bytes.clear(); 228 TmpBuf->Comments.clear(); 229 } 230 231 const DIType *DbgVariable::getType() const { 232 return getVariable()->getType(); 233 } 234 235 /// Get .debug_loc entry for the instruction range starting at MI. 236 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) { 237 const DIExpression *Expr = MI->getDebugExpression(); 238 assert(MI->getNumOperands() == 4); 239 if (MI->getOperand(0).isReg()) { 240 auto RegOp = MI->getOperand(0); 241 auto Op1 = MI->getOperand(1); 242 // If the second operand is an immediate, this is a 243 // register-indirect address. 244 assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset"); 245 MachineLocation MLoc(RegOp.getReg(), Op1.isImm()); 246 return DbgValueLoc(Expr, MLoc); 247 } 248 if (MI->getOperand(0).isTargetIndex()) { 249 auto Op = MI->getOperand(0); 250 return DbgValueLoc(Expr, 251 TargetIndexLocation(Op.getIndex(), Op.getOffset())); 252 } 253 if (MI->getOperand(0).isImm()) 254 return DbgValueLoc(Expr, MI->getOperand(0).getImm()); 255 if (MI->getOperand(0).isFPImm()) 256 return DbgValueLoc(Expr, MI->getOperand(0).getFPImm()); 257 if (MI->getOperand(0).isCImm()) 258 return DbgValueLoc(Expr, MI->getOperand(0).getCImm()); 259 260 llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!"); 261 } 262 263 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) { 264 assert(FrameIndexExprs.empty() && "Already initialized?"); 265 assert(!ValueLoc.get() && "Already initialized?"); 266 267 assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable"); 268 assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() && 269 "Wrong inlined-at"); 270 271 ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue)); 272 if (auto *E = DbgValue->getDebugExpression()) 273 if (E->getNumElements()) 274 FrameIndexExprs.push_back({0, E}); 275 } 276 277 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const { 278 if (FrameIndexExprs.size() == 1) 279 return FrameIndexExprs; 280 281 assert(llvm::all_of(FrameIndexExprs, 282 [](const FrameIndexExpr &A) { 283 return A.Expr->isFragment(); 284 }) && 285 "multiple FI expressions without DW_OP_LLVM_fragment"); 286 llvm::sort(FrameIndexExprs, 287 [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool { 288 return A.Expr->getFragmentInfo()->OffsetInBits < 289 B.Expr->getFragmentInfo()->OffsetInBits; 290 }); 291 292 return FrameIndexExprs; 293 } 294 295 void DbgVariable::addMMIEntry(const DbgVariable &V) { 296 assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry"); 297 assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry"); 298 assert(V.getVariable() == getVariable() && "conflicting variable"); 299 assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location"); 300 301 assert(!FrameIndexExprs.empty() && "Expected an MMI entry"); 302 assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry"); 303 304 // FIXME: This logic should not be necessary anymore, as we now have proper 305 // deduplication. However, without it, we currently run into the assertion 306 // below, which means that we are likely dealing with broken input, i.e. two 307 // non-fragment entries for the same variable at different frame indices. 308 if (FrameIndexExprs.size()) { 309 auto *Expr = FrameIndexExprs.back().Expr; 310 if (!Expr || !Expr->isFragment()) 311 return; 312 } 313 314 for (const auto &FIE : V.FrameIndexExprs) 315 // Ignore duplicate entries. 316 if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) { 317 return FIE.FI == Other.FI && FIE.Expr == Other.Expr; 318 })) 319 FrameIndexExprs.push_back(FIE); 320 321 assert((FrameIndexExprs.size() == 1 || 322 llvm::all_of(FrameIndexExprs, 323 [](FrameIndexExpr &FIE) { 324 return FIE.Expr && FIE.Expr->isFragment(); 325 })) && 326 "conflicting locations for variable"); 327 } 328 329 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion, 330 bool GenerateTypeUnits, 331 DebuggerKind Tuning, 332 const Triple &TT) { 333 // Honor an explicit request. 334 if (AccelTables != AccelTableKind::Default) 335 return AccelTables; 336 337 // Accelerator tables with type units are currently not supported. 338 if (GenerateTypeUnits) 339 return AccelTableKind::None; 340 341 // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5 342 // always implies debug_names. For lower standard versions we use apple 343 // accelerator tables on apple platforms and debug_names elsewhere. 344 if (DwarfVersion >= 5) 345 return AccelTableKind::Dwarf; 346 if (Tuning == DebuggerKind::LLDB) 347 return TT.isOSBinFormatMachO() ? AccelTableKind::Apple 348 : AccelTableKind::Dwarf; 349 return AccelTableKind::None; 350 } 351 352 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M) 353 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()), 354 InfoHolder(A, "info_string", DIEValueAllocator), 355 SkeletonHolder(A, "skel_string", DIEValueAllocator), 356 IsDarwin(A->TM.getTargetTriple().isOSDarwin()) { 357 const Triple &TT = Asm->TM.getTargetTriple(); 358 359 // Make sure we know our "debugger tuning". The target option takes 360 // precedence; fall back to triple-based defaults. 361 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default) 362 DebuggerTuning = Asm->TM.Options.DebuggerTuning; 363 else if (IsDarwin) 364 DebuggerTuning = DebuggerKind::LLDB; 365 else if (TT.isPS4CPU()) 366 DebuggerTuning = DebuggerKind::SCE; 367 else 368 DebuggerTuning = DebuggerKind::GDB; 369 370 if (DwarfInlinedStrings == Default) 371 UseInlineStrings = TT.isNVPTX(); 372 else 373 UseInlineStrings = DwarfInlinedStrings == Enable; 374 375 UseLocSection = !TT.isNVPTX(); 376 377 HasAppleExtensionAttributes = tuneForLLDB(); 378 379 // Handle split DWARF. 380 HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty(); 381 382 // SCE defaults to linkage names only for abstract subprograms. 383 if (DwarfLinkageNames == DefaultLinkageNames) 384 UseAllLinkageNames = !tuneForSCE(); 385 else 386 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames; 387 388 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; 389 unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber 390 : MMI->getModule()->getDwarfVersion(); 391 // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2. 392 DwarfVersion = 393 TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION); 394 395 UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX(); 396 397 // Use sections as references. Force for NVPTX. 398 if (DwarfSectionsAsReferences == Default) 399 UseSectionsAsReferences = TT.isNVPTX(); 400 else 401 UseSectionsAsReferences = DwarfSectionsAsReferences == Enable; 402 403 // Don't generate type units for unsupported object file formats. 404 GenerateTypeUnits = 405 A->TM.getTargetTriple().isOSBinFormatELF() && GenerateDwarfTypeUnits; 406 407 TheAccelTableKind = computeAccelTableKind( 408 DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple()); 409 410 // Work around a GDB bug. GDB doesn't support the standard opcode; 411 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which 412 // is defined as of DWARF 3. 413 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented 414 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616 415 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3; 416 417 // GDB does not fully support the DWARF 4 representation for bitfields. 418 UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB(); 419 420 // The DWARF v5 string offsets table has - possibly shared - contributions 421 // from each compile and type unit each preceded by a header. The string 422 // offsets table used by the pre-DWARF v5 split-DWARF implementation uses 423 // a monolithic string offsets table without any header. 424 UseSegmentedStringOffsetsTable = DwarfVersion >= 5; 425 426 // Emit call-site-param debug info for GDB and LLDB, if the target supports 427 // the debug entry values feature. It can also be enabled explicitly. 428 EmitDebugEntryValues = (Asm->TM.Options.ShouldEmitDebugEntryValues() && 429 (tuneForGDB() || tuneForLLDB())) || 430 EmitDwarfDebugEntryValues; 431 432 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion); 433 } 434 435 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. 436 DwarfDebug::~DwarfDebug() = default; 437 438 static bool isObjCClass(StringRef Name) { 439 return Name.startswith("+") || Name.startswith("-"); 440 } 441 442 static bool hasObjCCategory(StringRef Name) { 443 if (!isObjCClass(Name)) 444 return false; 445 446 return Name.find(") ") != StringRef::npos; 447 } 448 449 static void getObjCClassCategory(StringRef In, StringRef &Class, 450 StringRef &Category) { 451 if (!hasObjCCategory(In)) { 452 Class = In.slice(In.find('[') + 1, In.find(' ')); 453 Category = ""; 454 return; 455 } 456 457 Class = In.slice(In.find('[') + 1, In.find('(')); 458 Category = In.slice(In.find('[') + 1, In.find(' ')); 459 } 460 461 static StringRef getObjCMethodName(StringRef In) { 462 return In.slice(In.find(' ') + 1, In.find(']')); 463 } 464 465 // Add the various names to the Dwarf accelerator table names. 466 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU, 467 const DISubprogram *SP, DIE &Die) { 468 if (getAccelTableKind() != AccelTableKind::Apple && 469 CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None) 470 return; 471 472 if (!SP->isDefinition()) 473 return; 474 475 if (SP->getName() != "") 476 addAccelName(CU, SP->getName(), Die); 477 478 // If the linkage name is different than the name, go ahead and output that as 479 // well into the name table. Only do that if we are going to actually emit 480 // that name. 481 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() && 482 (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP))) 483 addAccelName(CU, SP->getLinkageName(), Die); 484 485 // If this is an Objective-C selector name add it to the ObjC accelerator 486 // too. 487 if (isObjCClass(SP->getName())) { 488 StringRef Class, Category; 489 getObjCClassCategory(SP->getName(), Class, Category); 490 addAccelObjC(CU, Class, Die); 491 if (Category != "") 492 addAccelObjC(CU, Category, Die); 493 // Also add the base method name to the name table. 494 addAccelName(CU, getObjCMethodName(SP->getName()), Die); 495 } 496 } 497 498 /// Check whether we should create a DIE for the given Scope, return true 499 /// if we don't create a DIE (the corresponding DIE is null). 500 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { 501 if (Scope->isAbstractScope()) 502 return false; 503 504 // We don't create a DIE if there is no Range. 505 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); 506 if (Ranges.empty()) 507 return true; 508 509 if (Ranges.size() > 1) 510 return false; 511 512 // We don't create a DIE if we have a single Range and the end label 513 // is null. 514 return !getLabelAfterInsn(Ranges.front().second); 515 } 516 517 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) { 518 F(CU); 519 if (auto *SkelCU = CU.getSkeleton()) 520 if (CU.getCUNode()->getSplitDebugInlining()) 521 F(*SkelCU); 522 } 523 524 bool DwarfDebug::shareAcrossDWOCUs() const { 525 return SplitDwarfCrossCuReferences; 526 } 527 528 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU, 529 LexicalScope *Scope) { 530 assert(Scope && Scope->getScopeNode()); 531 assert(Scope->isAbstractScope()); 532 assert(!Scope->getInlinedAt()); 533 534 auto *SP = cast<DISubprogram>(Scope->getScopeNode()); 535 536 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram 537 // was inlined from another compile unit. 538 if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining()) 539 // Avoid building the original CU if it won't be used 540 SrcCU.constructAbstractSubprogramScopeDIE(Scope); 541 else { 542 auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 543 if (auto *SkelCU = CU.getSkeleton()) { 544 (shareAcrossDWOCUs() ? CU : SrcCU) 545 .constructAbstractSubprogramScopeDIE(Scope); 546 if (CU.getCUNode()->getSplitDebugInlining()) 547 SkelCU->constructAbstractSubprogramScopeDIE(Scope); 548 } else 549 CU.constructAbstractSubprogramScopeDIE(Scope); 550 } 551 } 552 553 DIE &DwarfDebug::constructSubprogramDefinitionDIE(const DISubprogram *SP) { 554 DICompileUnit *Unit = SP->getUnit(); 555 assert(SP->isDefinition() && "Subprogram not a definition"); 556 assert(Unit && "Subprogram definition without parent unit"); 557 auto &CU = getOrCreateDwarfCompileUnit(Unit); 558 return *CU.getOrCreateSubprogramDIE(SP); 559 } 560 561 /// Represents a parameter whose call site value can be described by applying a 562 /// debug expression to a register in the forwarded register worklist. 563 struct FwdRegParamInfo { 564 /// The described parameter register. 565 unsigned ParamReg; 566 567 /// Debug expression that has been built up when walking through the 568 /// instruction chain that produces the parameter's value. 569 const DIExpression *Expr; 570 }; 571 572 /// Register worklist for finding call site values. 573 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>; 574 575 /// Emit call site parameter entries that are described by the given value and 576 /// debug expression. 577 template <typename ValT> 578 static void finishCallSiteParams(ValT Val, const DIExpression *Expr, 579 ArrayRef<FwdRegParamInfo> DescribedParams, 580 ParamSet &Params) { 581 for (auto Param : DescribedParams) { 582 bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0; 583 584 // TODO: Entry value operations can currently not be combined with any 585 // other expressions, so we can't emit call site entries in those cases. 586 if (ShouldCombineExpressions && Expr->isEntryValue()) 587 continue; 588 589 // If a parameter's call site value is produced by a chain of 590 // instructions we may have already created an expression for the 591 // parameter when walking through the instructions. Append that to the 592 // base expression. 593 const DIExpression *CombinedExpr = 594 ShouldCombineExpressions 595 ? DIExpression::append(Expr, Param.Expr->getElements()) 596 : Expr; 597 assert((!CombinedExpr || CombinedExpr->isValid()) && 598 "Combined debug expression is invalid"); 599 600 DbgValueLoc DbgLocVal(CombinedExpr, Val); 601 DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal); 602 Params.push_back(CSParm); 603 ++NumCSParams; 604 } 605 } 606 607 /// Add \p Reg to the worklist, if it's not already present, and mark that the 608 /// given parameter registers' values can (potentially) be described using 609 /// that register and an debug expression. 610 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg, 611 const DIExpression *Expr, 612 ArrayRef<FwdRegParamInfo> ParamsToAdd) { 613 auto I = Worklist.insert({Reg, {}}); 614 auto &ParamsForFwdReg = I.first->second; 615 for (auto Param : ParamsToAdd) { 616 assert(none_of(ParamsForFwdReg, 617 [Param](const FwdRegParamInfo &D) { 618 return D.ParamReg == Param.ParamReg; 619 }) && 620 "Same parameter described twice by forwarding reg"); 621 622 // If a parameter's call site value is produced by a chain of 623 // instructions we may have already created an expression for the 624 // parameter when walking through the instructions. Append that to the 625 // new expression. 626 const DIExpression *CombinedExpr = 627 (Param.Expr->getNumElements() > 0) 628 ? DIExpression::append(Expr, Param.Expr->getElements()) 629 : Expr; 630 assert(CombinedExpr->isValid() && "Combined debug expression is invalid"); 631 632 ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr}); 633 } 634 } 635 636 /// Try to interpret values loaded into registers that forward parameters 637 /// for \p CallMI. Store parameters with interpreted value into \p Params. 638 static void collectCallSiteParameters(const MachineInstr *CallMI, 639 ParamSet &Params) { 640 auto *MF = CallMI->getMF(); 641 auto CalleesMap = MF->getCallSitesInfo(); 642 auto CallFwdRegsInfo = CalleesMap.find(CallMI); 643 644 // There is no information for the call instruction. 645 if (CallFwdRegsInfo == CalleesMap.end()) 646 return; 647 648 auto *MBB = CallMI->getParent(); 649 const auto &TRI = MF->getSubtarget().getRegisterInfo(); 650 const auto &TII = MF->getSubtarget().getInstrInfo(); 651 const auto &TLI = MF->getSubtarget().getTargetLowering(); 652 653 // Skip the call instruction. 654 auto I = std::next(CallMI->getReverseIterator()); 655 656 FwdRegWorklist ForwardedRegWorklist; 657 658 // If an instruction defines more than one item in the worklist, we may run 659 // into situations where a worklist register's value is (potentially) 660 // described by the previous value of another register that is also defined 661 // by that instruction. 662 // 663 // This can for example occur in cases like this: 664 // 665 // $r1 = mov 123 666 // $r0, $r1 = mvrr $r1, 456 667 // call @foo, $r0, $r1 668 // 669 // When describing $r1's value for the mvrr instruction, we need to make sure 670 // that we don't finalize an entry value for $r0, as that is dependent on the 671 // previous value of $r1 (123 rather than 456). 672 // 673 // In order to not have to distinguish between those cases when finalizing 674 // entry values, we simply postpone adding new parameter registers to the 675 // worklist, by first keeping them in this temporary container until the 676 // instruction has been handled. 677 FwdRegWorklist NewWorklistItems; 678 679 const DIExpression *EmptyExpr = 680 DIExpression::get(MF->getFunction().getContext(), {}); 681 682 // Add all the forwarding registers into the ForwardedRegWorklist. 683 for (auto ArgReg : CallFwdRegsInfo->second) { 684 bool InsertedReg = 685 ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}}) 686 .second; 687 assert(InsertedReg && "Single register used to forward two arguments?"); 688 (void)InsertedReg; 689 } 690 691 // We erase, from the ForwardedRegWorklist, those forwarding registers for 692 // which we successfully describe a loaded value (by using 693 // the describeLoadedValue()). For those remaining arguments in the working 694 // list, for which we do not describe a loaded value by 695 // the describeLoadedValue(), we try to generate an entry value expression 696 // for their call site value description, if the call is within the entry MBB. 697 // TODO: Handle situations when call site parameter value can be described 698 // as the entry value within basic blocks other than the first one. 699 bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin(); 700 701 // If the MI is an instruction defining one or more parameters' forwarding 702 // registers, add those defines. 703 auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI, 704 SmallSetVector<unsigned, 4> &Defs) { 705 if (MI.isDebugInstr()) 706 return; 707 708 for (const MachineOperand &MO : MI.operands()) { 709 if (MO.isReg() && MO.isDef() && 710 Register::isPhysicalRegister(MO.getReg())) { 711 for (auto FwdReg : ForwardedRegWorklist) 712 if (TRI->regsOverlap(FwdReg.first, MO.getReg())) 713 Defs.insert(FwdReg.first); 714 } 715 } 716 }; 717 718 // Search for a loading value in forwarding registers. 719 for (; I != MBB->rend(); ++I) { 720 // Skip bundle headers. 721 if (I->isBundle()) 722 continue; 723 724 // If the next instruction is a call we can not interpret parameter's 725 // forwarding registers or we finished the interpretation of all parameters. 726 if (I->isCall()) 727 return; 728 729 if (ForwardedRegWorklist.empty()) 730 return; 731 732 // Set of worklist registers that are defined by this instruction. 733 SmallSetVector<unsigned, 4> FwdRegDefs; 734 735 getForwardingRegsDefinedByMI(*I, FwdRegDefs); 736 if (FwdRegDefs.empty()) 737 continue; 738 739 for (auto ParamFwdReg : FwdRegDefs) { 740 if (auto ParamValue = TII->describeLoadedValue(*I, ParamFwdReg)) { 741 if (ParamValue->first.isImm()) { 742 int64_t Val = ParamValue->first.getImm(); 743 finishCallSiteParams(Val, ParamValue->second, 744 ForwardedRegWorklist[ParamFwdReg], Params); 745 } else if (ParamValue->first.isReg()) { 746 Register RegLoc = ParamValue->first.getReg(); 747 unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); 748 Register FP = TRI->getFrameRegister(*MF); 749 bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP); 750 if (TRI->isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) { 751 MachineLocation MLoc(RegLoc, /*IsIndirect=*/IsSPorFP); 752 finishCallSiteParams(MLoc, ParamValue->second, 753 ForwardedRegWorklist[ParamFwdReg], Params); 754 } else { 755 // ParamFwdReg was described by the non-callee saved register 756 // RegLoc. Mark that the call site values for the parameters are 757 // dependent on that register instead of ParamFwdReg. Since RegLoc 758 // may be a register that will be handled in this iteration, we 759 // postpone adding the items to the worklist, and instead keep them 760 // in a temporary container. 761 addToFwdRegWorklist(NewWorklistItems, RegLoc, ParamValue->second, 762 ForwardedRegWorklist[ParamFwdReg]); 763 } 764 } 765 } 766 } 767 768 // Remove all registers that this instruction defines from the worklist. 769 for (auto ParamFwdReg : FwdRegDefs) 770 ForwardedRegWorklist.erase(ParamFwdReg); 771 772 // Now that we are done handling this instruction, add items from the 773 // temporary worklist to the real one. 774 for (auto New : NewWorklistItems) 775 addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, 776 New.second); 777 NewWorklistItems.clear(); 778 } 779 780 // Emit the call site parameter's value as an entry value. 781 if (ShouldTryEmitEntryVals) { 782 // Create an expression where the register's entry value is used. 783 DIExpression *EntryExpr = DIExpression::get( 784 MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1}); 785 for (auto RegEntry : ForwardedRegWorklist) { 786 MachineLocation MLoc(RegEntry.first); 787 finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params); 788 } 789 } 790 } 791 792 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP, 793 DwarfCompileUnit &CU, DIE &ScopeDIE, 794 const MachineFunction &MF) { 795 // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if 796 // the subprogram is required to have one. 797 if (!SP.areAllCallsDescribed() || !SP.isDefinition()) 798 return; 799 800 // Use DW_AT_call_all_calls to express that call site entries are present 801 // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls 802 // because one of its requirements is not met: call site entries for 803 // optimized-out calls are elided. 804 CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls)); 805 806 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 807 assert(TII && "TargetInstrInfo not found: cannot label tail calls"); 808 809 // Emit call site entries for each call or tail call in the function. 810 for (const MachineBasicBlock &MBB : MF) { 811 for (const MachineInstr &MI : MBB.instrs()) { 812 // Bundles with call in them will pass the isCall() test below but do not 813 // have callee operand information so skip them here. Iterator will 814 // eventually reach the call MI. 815 if (MI.isBundle()) 816 continue; 817 818 // Skip instructions which aren't calls. Both calls and tail-calling jump 819 // instructions (e.g TAILJMPd64) are classified correctly here. 820 if (!MI.isCandidateForCallSiteEntry()) 821 continue; 822 823 // Skip instructions marked as frame setup, as they are not interesting to 824 // the user. 825 if (MI.getFlag(MachineInstr::FrameSetup)) 826 continue; 827 828 // TODO: Add support for targets with delay slots (see: beginInstruction). 829 if (MI.hasDelaySlot()) 830 return; 831 832 // If this is a direct call, find the callee's subprogram. 833 // In the case of an indirect call find the register that holds 834 // the callee. 835 const MachineOperand &CalleeOp = MI.getOperand(0); 836 if (!CalleeOp.isGlobal() && !CalleeOp.isReg()) 837 continue; 838 839 unsigned CallReg = 0; 840 DIE *CalleeDIE = nullptr; 841 const Function *CalleeDecl = nullptr; 842 if (CalleeOp.isReg()) { 843 CallReg = CalleeOp.getReg(); 844 if (!CallReg) 845 continue; 846 } else { 847 CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal()); 848 if (!CalleeDecl || !CalleeDecl->getSubprogram()) 849 continue; 850 const DISubprogram *CalleeSP = CalleeDecl->getSubprogram(); 851 852 if (CalleeSP->isDefinition()) { 853 // Ensure that a subprogram DIE for the callee is available in the 854 // appropriate CU. 855 CalleeDIE = &constructSubprogramDefinitionDIE(CalleeSP); 856 } else { 857 // Create the declaration DIE if it is missing. This is required to 858 // support compilation of old bitcode with an incomplete list of 859 // retained metadata. 860 CalleeDIE = CU.getOrCreateSubprogramDIE(CalleeSP); 861 } 862 assert(CalleeDIE && "Must have a DIE for the callee"); 863 } 864 865 // TODO: Omit call site entries for runtime calls (objc_msgSend, etc). 866 867 bool IsTail = TII->isTailCall(MI); 868 869 // If MI is in a bundle, the label was created after the bundle since 870 // EmitFunctionBody iterates over top-level MIs. Get that top-level MI 871 // to search for that label below. 872 const MachineInstr *TopLevelCallMI = 873 MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI; 874 875 // For tail calls, no return PC information is needed. 876 // For regular calls (and tail calls in GDB tuning), the return PC 877 // is needed to disambiguate paths in the call graph which could lead to 878 // some target function. 879 const MCSymbol *PCAddr = 880 (IsTail && !tuneForGDB()) 881 ? nullptr 882 : const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI)); 883 884 assert((IsTail || PCAddr) && "Call without return PC information"); 885 886 LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> " 887 << (CalleeDecl ? CalleeDecl->getName() 888 : StringRef(MF.getSubtarget() 889 .getRegisterInfo() 890 ->getName(CallReg))) 891 << (IsTail ? " [IsTail]" : "") << "\n"); 892 893 DIE &CallSiteDIE = CU.constructCallSiteEntryDIE(ScopeDIE, CalleeDIE, 894 IsTail, PCAddr, CallReg); 895 896 // Optionally emit call-site-param debug info. 897 if (emitDebugEntryValues()) { 898 ParamSet Params; 899 // Try to interpret values of call site parameters. 900 collectCallSiteParameters(&MI, Params); 901 CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params); 902 } 903 } 904 } 905 } 906 907 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const { 908 if (!U.hasDwarfPubSections()) 909 return; 910 911 U.addFlag(D, dwarf::DW_AT_GNU_pubnames); 912 } 913 914 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit, 915 DwarfCompileUnit &NewCU) { 916 DIE &Die = NewCU.getUnitDie(); 917 StringRef FN = DIUnit->getFilename(); 918 919 StringRef Producer = DIUnit->getProducer(); 920 StringRef Flags = DIUnit->getFlags(); 921 if (!Flags.empty() && !useAppleExtensionAttributes()) { 922 std::string ProducerWithFlags = Producer.str() + " " + Flags.str(); 923 NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags); 924 } else 925 NewCU.addString(Die, dwarf::DW_AT_producer, Producer); 926 927 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 928 DIUnit->getSourceLanguage()); 929 NewCU.addString(Die, dwarf::DW_AT_name, FN); 930 StringRef SysRoot = DIUnit->getSysRoot(); 931 if (!SysRoot.empty()) 932 NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot); 933 StringRef SDK = DIUnit->getSDK(); 934 if (!SDK.empty()) 935 NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK); 936 937 // Add DW_str_offsets_base to the unit DIE, except for split units. 938 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 939 NewCU.addStringOffsetsStart(); 940 941 if (!useSplitDwarf()) { 942 NewCU.initStmtList(); 943 944 // If we're using split dwarf the compilation dir is going to be in the 945 // skeleton CU and so we don't need to duplicate it here. 946 if (!CompilationDir.empty()) 947 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 948 addGnuPubAttributes(NewCU, Die); 949 } 950 951 if (useAppleExtensionAttributes()) { 952 if (DIUnit->isOptimized()) 953 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); 954 955 StringRef Flags = DIUnit->getFlags(); 956 if (!Flags.empty()) 957 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); 958 959 if (unsigned RVer = DIUnit->getRuntimeVersion()) 960 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, 961 dwarf::DW_FORM_data1, RVer); 962 } 963 964 if (DIUnit->getDWOId()) { 965 // This CU is either a clang module DWO or a skeleton CU. 966 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, 967 DIUnit->getDWOId()); 968 if (!DIUnit->getSplitDebugFilename().empty()) { 969 // This is a prefabricated skeleton CU. 970 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 971 ? dwarf::DW_AT_dwo_name 972 : dwarf::DW_AT_GNU_dwo_name; 973 NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename()); 974 } 975 } 976 } 977 // Create new DwarfCompileUnit for the given metadata node with tag 978 // DW_TAG_compile_unit. 979 DwarfCompileUnit & 980 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) { 981 if (auto *CU = CUMap.lookup(DIUnit)) 982 return *CU; 983 984 CompilationDir = DIUnit->getDirectory(); 985 986 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 987 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); 988 DwarfCompileUnit &NewCU = *OwnedUnit; 989 InfoHolder.addUnit(std::move(OwnedUnit)); 990 991 for (auto *IE : DIUnit->getImportedEntities()) 992 NewCU.addImportedEntity(IE); 993 994 // LTO with assembly output shares a single line table amongst multiple CUs. 995 // To avoid the compilation directory being ambiguous, let the line table 996 // explicitly describe the directory of all files, never relying on the 997 // compilation directory. 998 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU) 999 Asm->OutStreamer->emitDwarfFile0Directive( 1000 CompilationDir, DIUnit->getFilename(), 1001 NewCU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource(), 1002 NewCU.getUniqueID()); 1003 1004 if (useSplitDwarf()) { 1005 NewCU.setSkeleton(constructSkeletonCU(NewCU)); 1006 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection()); 1007 } else { 1008 finishUnitAttributes(DIUnit, NewCU); 1009 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 1010 } 1011 1012 CUMap.insert({DIUnit, &NewCU}); 1013 CUDieMap.insert({&NewCU.getUnitDie(), &NewCU}); 1014 return NewCU; 1015 } 1016 1017 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU, 1018 const DIImportedEntity *N) { 1019 if (isa<DILocalScope>(N->getScope())) 1020 return; 1021 if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope())) 1022 D->addChild(TheCU.constructImportedEntityDIE(N)); 1023 } 1024 1025 /// Sort and unique GVEs by comparing their fragment offset. 1026 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & 1027 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) { 1028 llvm::sort( 1029 GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) { 1030 // Sort order: first null exprs, then exprs without fragment 1031 // info, then sort by fragment offset in bits. 1032 // FIXME: Come up with a more comprehensive comparator so 1033 // the sorting isn't non-deterministic, and so the following 1034 // std::unique call works correctly. 1035 if (!A.Expr || !B.Expr) 1036 return !!B.Expr; 1037 auto FragmentA = A.Expr->getFragmentInfo(); 1038 auto FragmentB = B.Expr->getFragmentInfo(); 1039 if (!FragmentA || !FragmentB) 1040 return !!FragmentB; 1041 return FragmentA->OffsetInBits < FragmentB->OffsetInBits; 1042 }); 1043 GVEs.erase(std::unique(GVEs.begin(), GVEs.end(), 1044 [](DwarfCompileUnit::GlobalExpr A, 1045 DwarfCompileUnit::GlobalExpr B) { 1046 return A.Expr == B.Expr; 1047 }), 1048 GVEs.end()); 1049 return GVEs; 1050 } 1051 1052 // Emit all Dwarf sections that should come prior to the content. Create 1053 // global DIEs and emit initial debug info sections. This is invoked by 1054 // the target AsmPrinter. 1055 void DwarfDebug::beginModule() { 1056 NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName, 1057 DWARFGroupDescription, TimePassesIsEnabled); 1058 if (DisableDebugInfoPrinting) { 1059 MMI->setDebugInfoAvailability(false); 1060 return; 1061 } 1062 1063 const Module *M = MMI->getModule(); 1064 1065 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(), 1066 M->debug_compile_units_end()); 1067 // Tell MMI whether we have debug info. 1068 assert(MMI->hasDebugInfo() == (NumDebugCUs > 0) && 1069 "DebugInfoAvailabilty initialized unexpectedly"); 1070 SingleCU = NumDebugCUs == 1; 1071 DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>> 1072 GVMap; 1073 for (const GlobalVariable &Global : M->globals()) { 1074 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1075 Global.getDebugInfo(GVs); 1076 for (auto *GVE : GVs) 1077 GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()}); 1078 } 1079 1080 // Create the symbol that designates the start of the unit's contribution 1081 // to the string offsets table. In a split DWARF scenario, only the skeleton 1082 // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol). 1083 if (useSegmentedStringOffsetsTable()) 1084 (useSplitDwarf() ? SkeletonHolder : InfoHolder) 1085 .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base")); 1086 1087 1088 // Create the symbols that designates the start of the DWARF v5 range list 1089 // and locations list tables. They are located past the table headers. 1090 if (getDwarfVersion() >= 5) { 1091 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1092 Holder.setRnglistsTableBaseSym( 1093 Asm->createTempSymbol("rnglists_table_base")); 1094 1095 if (useSplitDwarf()) 1096 InfoHolder.setRnglistsTableBaseSym( 1097 Asm->createTempSymbol("rnglists_dwo_table_base")); 1098 } 1099 1100 // Create the symbol that points to the first entry following the debug 1101 // address table (.debug_addr) header. 1102 AddrPool.setLabel(Asm->createTempSymbol("addr_table_base")); 1103 DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base")); 1104 1105 for (DICompileUnit *CUNode : M->debug_compile_units()) { 1106 // FIXME: Move local imported entities into a list attached to the 1107 // subprogram, then this search won't be needed and a 1108 // getImportedEntities().empty() test should go below with the rest. 1109 bool HasNonLocalImportedEntities = llvm::any_of( 1110 CUNode->getImportedEntities(), [](const DIImportedEntity *IE) { 1111 return !isa<DILocalScope>(IE->getScope()); 1112 }); 1113 1114 if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() && 1115 CUNode->getRetainedTypes().empty() && 1116 CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty()) 1117 continue; 1118 1119 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode); 1120 1121 // Global Variables. 1122 for (auto *GVE : CUNode->getGlobalVariables()) { 1123 // Don't bother adding DIGlobalVariableExpressions listed in the CU if we 1124 // already know about the variable and it isn't adding a constant 1125 // expression. 1126 auto &GVMapEntry = GVMap[GVE->getVariable()]; 1127 auto *Expr = GVE->getExpression(); 1128 if (!GVMapEntry.size() || (Expr && Expr->isConstant())) 1129 GVMapEntry.push_back({nullptr, Expr}); 1130 } 1131 DenseSet<DIGlobalVariable *> Processed; 1132 for (auto *GVE : CUNode->getGlobalVariables()) { 1133 DIGlobalVariable *GV = GVE->getVariable(); 1134 if (Processed.insert(GV).second) 1135 CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV])); 1136 } 1137 1138 for (auto *Ty : CUNode->getEnumTypes()) { 1139 // The enum types array by design contains pointers to 1140 // MDNodes rather than DIRefs. Unique them here. 1141 CU.getOrCreateTypeDIE(cast<DIType>(Ty)); 1142 } 1143 for (auto *Ty : CUNode->getRetainedTypes()) { 1144 // The retained types array by design contains pointers to 1145 // MDNodes rather than DIRefs. Unique them here. 1146 if (DIType *RT = dyn_cast<DIType>(Ty)) 1147 // There is no point in force-emitting a forward declaration. 1148 CU.getOrCreateTypeDIE(RT); 1149 } 1150 // Emit imported_modules last so that the relevant context is already 1151 // available. 1152 for (auto *IE : CUNode->getImportedEntities()) 1153 constructAndAddImportedEntityDIE(CU, IE); 1154 } 1155 } 1156 1157 void DwarfDebug::finishEntityDefinitions() { 1158 for (const auto &Entity : ConcreteEntities) { 1159 DIE *Die = Entity->getDIE(); 1160 assert(Die); 1161 // FIXME: Consider the time-space tradeoff of just storing the unit pointer 1162 // in the ConcreteEntities list, rather than looking it up again here. 1163 // DIE::getUnit isn't simple - it walks parent pointers, etc. 1164 DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie()); 1165 assert(Unit); 1166 Unit->finishEntityDefinition(Entity.get()); 1167 } 1168 } 1169 1170 void DwarfDebug::finishSubprogramDefinitions() { 1171 for (const DISubprogram *SP : ProcessedSPNodes) { 1172 assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug); 1173 forBothCUs( 1174 getOrCreateDwarfCompileUnit(SP->getUnit()), 1175 [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); }); 1176 } 1177 } 1178 1179 void DwarfDebug::finalizeModuleInfo() { 1180 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 1181 1182 finishSubprogramDefinitions(); 1183 1184 finishEntityDefinitions(); 1185 1186 // Include the DWO file name in the hash if there's more than one CU. 1187 // This handles ThinLTO's situation where imported CUs may very easily be 1188 // duplicate with the same CU partially imported into another ThinLTO unit. 1189 StringRef DWOName; 1190 if (CUMap.size() > 1) 1191 DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile; 1192 1193 // Handle anything that needs to be done on a per-unit basis after 1194 // all other generation. 1195 for (const auto &P : CUMap) { 1196 auto &TheCU = *P.second; 1197 if (TheCU.getCUNode()->isDebugDirectivesOnly()) 1198 continue; 1199 // Emit DW_AT_containing_type attribute to connect types with their 1200 // vtable holding type. 1201 TheCU.constructContainingTypeDIEs(); 1202 1203 // Add CU specific attributes if we need to add any. 1204 // If we're splitting the dwarf out now that we've got the entire 1205 // CU then add the dwo id to it. 1206 auto *SkCU = TheCU.getSkeleton(); 1207 1208 bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty(); 1209 1210 if (HasSplitUnit) { 1211 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1212 ? dwarf::DW_AT_dwo_name 1213 : dwarf::DW_AT_GNU_dwo_name; 1214 finishUnitAttributes(TheCU.getCUNode(), TheCU); 1215 TheCU.addString(TheCU.getUnitDie(), attrDWOName, 1216 Asm->TM.Options.MCOptions.SplitDwarfFile); 1217 SkCU->addString(SkCU->getUnitDie(), attrDWOName, 1218 Asm->TM.Options.MCOptions.SplitDwarfFile); 1219 // Emit a unique identifier for this CU. 1220 uint64_t ID = 1221 DIEHash(Asm).computeCUSignature(DWOName, TheCU.getUnitDie()); 1222 if (getDwarfVersion() >= 5) { 1223 TheCU.setDWOId(ID); 1224 SkCU->setDWOId(ID); 1225 } else { 1226 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1227 dwarf::DW_FORM_data8, ID); 1228 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1229 dwarf::DW_FORM_data8, ID); 1230 } 1231 1232 if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) { 1233 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol(); 1234 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, 1235 Sym, Sym); 1236 } 1237 } else if (SkCU) { 1238 finishUnitAttributes(SkCU->getCUNode(), *SkCU); 1239 } 1240 1241 // If we have code split among multiple sections or non-contiguous 1242 // ranges of code then emit a DW_AT_ranges attribute on the unit that will 1243 // remain in the .o file, otherwise add a DW_AT_low_pc. 1244 // FIXME: We should use ranges allow reordering of code ala 1245 // .subsections_via_symbols in mach-o. This would mean turning on 1246 // ranges for all subprogram DIEs for mach-o. 1247 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 1248 1249 if (unsigned NumRanges = TheCU.getRanges().size()) { 1250 if (NumRanges > 1 && useRangesSection()) 1251 // A DW_AT_low_pc attribute may also be specified in combination with 1252 // DW_AT_ranges to specify the default base address for use in 1253 // location lists (see Section 2.6.2) and range lists (see Section 1254 // 2.17.3). 1255 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); 1256 else 1257 U.setBaseAddress(TheCU.getRanges().front().Begin); 1258 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); 1259 } 1260 1261 // We don't keep track of which addresses are used in which CU so this 1262 // is a bit pessimistic under LTO. 1263 if ((!AddrPool.isEmpty() || TheCU.hasRangeLists()) && 1264 (getDwarfVersion() >= 5 || HasSplitUnit)) 1265 U.addAddrTableBase(); 1266 1267 if (getDwarfVersion() >= 5) { 1268 if (U.hasRangeLists()) 1269 U.addRnglistsBase(); 1270 1271 if (!DebugLocs.getLists().empty()) { 1272 if (!useSplitDwarf()) 1273 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base, 1274 DebugLocs.getSym(), 1275 TLOF.getDwarfLoclistsSection()->getBeginSymbol()); 1276 } 1277 } 1278 1279 auto *CUNode = cast<DICompileUnit>(P.first); 1280 // If compile Unit has macros, emit "DW_AT_macro_info" attribute. 1281 if (CUNode->getMacros()) { 1282 if (useSplitDwarf()) 1283 TheCU.addSectionDelta(TheCU.getUnitDie(), dwarf::DW_AT_macro_info, 1284 U.getMacroLabelBegin(), 1285 TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol()); 1286 else 1287 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info, 1288 U.getMacroLabelBegin(), 1289 TLOF.getDwarfMacinfoSection()->getBeginSymbol()); 1290 } 1291 } 1292 1293 // Emit all frontend-produced Skeleton CUs, i.e., Clang modules. 1294 for (auto *CUNode : MMI->getModule()->debug_compile_units()) 1295 if (CUNode->getDWOId()) 1296 getOrCreateDwarfCompileUnit(CUNode); 1297 1298 // Compute DIE offsets and sizes. 1299 InfoHolder.computeSizeAndOffsets(); 1300 if (useSplitDwarf()) 1301 SkeletonHolder.computeSizeAndOffsets(); 1302 } 1303 1304 // Emit all Dwarf sections that should come after the content. 1305 void DwarfDebug::endModule() { 1306 assert(CurFn == nullptr); 1307 assert(CurMI == nullptr); 1308 1309 for (const auto &P : CUMap) { 1310 auto &CU = *P.second; 1311 CU.createBaseTypeDIEs(); 1312 } 1313 1314 // If we aren't actually generating debug info (check beginModule - 1315 // conditionalized on !DisableDebugInfoPrinting and the presence of the 1316 // llvm.dbg.cu metadata node) 1317 if (!MMI->hasDebugInfo()) 1318 return; 1319 1320 // Finalize the debug info for the module. 1321 finalizeModuleInfo(); 1322 1323 if (useSplitDwarf()) 1324 // Emit debug_loc.dwo/debug_loclists.dwo section. 1325 emitDebugLocDWO(); 1326 else 1327 // Emit debug_loc/debug_loclists section. 1328 emitDebugLoc(); 1329 1330 // Corresponding abbreviations into a abbrev section. 1331 emitAbbreviations(); 1332 1333 // Emit all the DIEs into a debug info section. 1334 emitDebugInfo(); 1335 1336 // Emit info into a debug aranges section. 1337 if (GenerateARangeSection) 1338 emitDebugARanges(); 1339 1340 // Emit info into a debug ranges section. 1341 emitDebugRanges(); 1342 1343 if (useSplitDwarf()) 1344 // Emit info into a debug macinfo.dwo section. 1345 emitDebugMacinfoDWO(); 1346 else 1347 // Emit info into a debug macinfo section. 1348 emitDebugMacinfo(); 1349 1350 emitDebugStr(); 1351 1352 if (useSplitDwarf()) { 1353 emitDebugStrDWO(); 1354 emitDebugInfoDWO(); 1355 emitDebugAbbrevDWO(); 1356 emitDebugLineDWO(); 1357 emitDebugRangesDWO(); 1358 } 1359 1360 emitDebugAddr(); 1361 1362 // Emit info into the dwarf accelerator table sections. 1363 switch (getAccelTableKind()) { 1364 case AccelTableKind::Apple: 1365 emitAccelNames(); 1366 emitAccelObjC(); 1367 emitAccelNamespaces(); 1368 emitAccelTypes(); 1369 break; 1370 case AccelTableKind::Dwarf: 1371 emitAccelDebugNames(); 1372 break; 1373 case AccelTableKind::None: 1374 break; 1375 case AccelTableKind::Default: 1376 llvm_unreachable("Default should have already been resolved."); 1377 } 1378 1379 // Emit the pubnames and pubtypes sections if requested. 1380 emitDebugPubSections(); 1381 1382 // clean up. 1383 // FIXME: AbstractVariables.clear(); 1384 } 1385 1386 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU, 1387 const DINode *Node, 1388 const MDNode *ScopeNode) { 1389 if (CU.getExistingAbstractEntity(Node)) 1390 return; 1391 1392 CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope( 1393 cast<DILocalScope>(ScopeNode))); 1394 } 1395 1396 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU, 1397 const DINode *Node, const MDNode *ScopeNode) { 1398 if (CU.getExistingAbstractEntity(Node)) 1399 return; 1400 1401 if (LexicalScope *Scope = 1402 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode))) 1403 CU.createAbstractEntity(Node, Scope); 1404 } 1405 1406 // Collect variable information from side table maintained by MF. 1407 void DwarfDebug::collectVariableInfoFromMFTable( 1408 DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) { 1409 SmallDenseMap<InlinedEntity, DbgVariable *> MFVars; 1410 LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n"); 1411 for (const auto &VI : Asm->MF->getVariableDbgInfo()) { 1412 if (!VI.Var) 1413 continue; 1414 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1415 "Expected inlined-at fields to agree"); 1416 1417 InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt()); 1418 Processed.insert(Var); 1419 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1420 1421 // If variable scope is not found then skip this variable. 1422 if (!Scope) { 1423 LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName() 1424 << ", no variable scope found\n"); 1425 continue; 1426 } 1427 1428 ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode()); 1429 auto RegVar = std::make_unique<DbgVariable>( 1430 cast<DILocalVariable>(Var.first), Var.second); 1431 RegVar->initializeMMI(VI.Expr, VI.Slot); 1432 LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName() 1433 << "\n"); 1434 if (DbgVariable *DbgVar = MFVars.lookup(Var)) 1435 DbgVar->addMMIEntry(*RegVar); 1436 else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) { 1437 MFVars.insert({Var, RegVar.get()}); 1438 ConcreteEntities.push_back(std::move(RegVar)); 1439 } 1440 } 1441 } 1442 1443 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its 1444 /// enclosing lexical scope. The check ensures there are no other instructions 1445 /// in the same lexical scope preceding the DBG_VALUE and that its range is 1446 /// either open or otherwise rolls off the end of the scope. 1447 static bool validThroughout(LexicalScopes &LScopes, 1448 const MachineInstr *DbgValue, 1449 const MachineInstr *RangeEnd) { 1450 assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location"); 1451 auto MBB = DbgValue->getParent(); 1452 auto DL = DbgValue->getDebugLoc(); 1453 auto *LScope = LScopes.findLexicalScope(DL); 1454 // Scope doesn't exist; this is a dead DBG_VALUE. 1455 if (!LScope) 1456 return false; 1457 auto &LSRange = LScope->getRanges(); 1458 if (LSRange.size() == 0) 1459 return false; 1460 1461 // Determine if the DBG_VALUE is valid at the beginning of its lexical block. 1462 const MachineInstr *LScopeBegin = LSRange.front().first; 1463 // Early exit if the lexical scope begins outside of the current block. 1464 if (LScopeBegin->getParent() != MBB) 1465 return false; 1466 MachineBasicBlock::const_reverse_iterator Pred(DbgValue); 1467 for (++Pred; Pred != MBB->rend(); ++Pred) { 1468 if (Pred->getFlag(MachineInstr::FrameSetup)) 1469 break; 1470 auto PredDL = Pred->getDebugLoc(); 1471 if (!PredDL || Pred->isMetaInstruction()) 1472 continue; 1473 // Check whether the instruction preceding the DBG_VALUE is in the same 1474 // (sub)scope as the DBG_VALUE. 1475 if (DL->getScope() == PredDL->getScope()) 1476 return false; 1477 auto *PredScope = LScopes.findLexicalScope(PredDL); 1478 if (!PredScope || LScope->dominates(PredScope)) 1479 return false; 1480 } 1481 1482 // If the range of the DBG_VALUE is open-ended, report success. 1483 if (!RangeEnd) 1484 return true; 1485 1486 // Fail if there are instructions belonging to our scope in another block. 1487 const MachineInstr *LScopeEnd = LSRange.back().second; 1488 if (LScopeEnd->getParent() != MBB) 1489 return false; 1490 1491 // Single, constant DBG_VALUEs in the prologue are promoted to be live 1492 // throughout the function. This is a hack, presumably for DWARF v2 and not 1493 // necessarily correct. It would be much better to use a dbg.declare instead 1494 // if we know the constant is live throughout the scope. 1495 if (DbgValue->getOperand(0).isImm() && MBB->pred_empty()) 1496 return true; 1497 1498 return false; 1499 } 1500 1501 /// Build the location list for all DBG_VALUEs in the function that 1502 /// describe the same variable. The resulting DebugLocEntries will have 1503 /// strict monotonically increasing begin addresses and will never 1504 /// overlap. If the resulting list has only one entry that is valid 1505 /// throughout variable's scope return true. 1506 // 1507 // See the definition of DbgValueHistoryMap::Entry for an explanation of the 1508 // different kinds of history map entries. One thing to be aware of is that if 1509 // a debug value is ended by another entry (rather than being valid until the 1510 // end of the function), that entry's instruction may or may not be included in 1511 // the range, depending on if the entry is a clobbering entry (it has an 1512 // instruction that clobbers one or more preceding locations), or if it is an 1513 // (overlapping) debug value entry. This distinction can be seen in the example 1514 // below. The first debug value is ended by the clobbering entry 2, and the 1515 // second and third debug values are ended by the overlapping debug value entry 1516 // 4. 1517 // 1518 // Input: 1519 // 1520 // History map entries [type, end index, mi] 1521 // 1522 // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)] 1523 // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)] 1524 // 2 | | [Clobber, $reg0 = [...], -, -] 1525 // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)] 1526 // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)] 1527 // 1528 // Output [start, end) [Value...]: 1529 // 1530 // [0-1) [(reg0, fragment 0, 32)] 1531 // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)] 1532 // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)] 1533 // [4-) [(@g, fragment 0, 96)] 1534 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc, 1535 const DbgValueHistoryMap::Entries &Entries) { 1536 using OpenRange = 1537 std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>; 1538 SmallVector<OpenRange, 4> OpenRanges; 1539 bool isSafeForSingleLocation = true; 1540 const MachineInstr *StartDebugMI = nullptr; 1541 const MachineInstr *EndMI = nullptr; 1542 1543 for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) { 1544 const MachineInstr *Instr = EI->getInstr(); 1545 1546 // Remove all values that are no longer live. 1547 size_t Index = std::distance(EB, EI); 1548 auto Last = 1549 remove_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; }); 1550 OpenRanges.erase(Last, OpenRanges.end()); 1551 1552 // If we are dealing with a clobbering entry, this iteration will result in 1553 // a location list entry starting after the clobbering instruction. 1554 const MCSymbol *StartLabel = 1555 EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr); 1556 assert(StartLabel && 1557 "Forgot label before/after instruction starting a range!"); 1558 1559 const MCSymbol *EndLabel; 1560 if (std::next(EI) == Entries.end()) { 1561 EndLabel = Asm->getFunctionEnd(); 1562 if (EI->isClobber()) 1563 EndMI = EI->getInstr(); 1564 } 1565 else if (std::next(EI)->isClobber()) 1566 EndLabel = getLabelAfterInsn(std::next(EI)->getInstr()); 1567 else 1568 EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr()); 1569 assert(EndLabel && "Forgot label after instruction ending a range!"); 1570 1571 if (EI->isDbgValue()) 1572 LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n"); 1573 1574 // If this history map entry has a debug value, add that to the list of 1575 // open ranges and check if its location is valid for a single value 1576 // location. 1577 if (EI->isDbgValue()) { 1578 // Do not add undef debug values, as they are redundant information in 1579 // the location list entries. An undef debug results in an empty location 1580 // description. If there are any non-undef fragments then padding pieces 1581 // with empty location descriptions will automatically be inserted, and if 1582 // all fragments are undef then the whole location list entry is 1583 // redundant. 1584 if (!Instr->isUndefDebugValue()) { 1585 auto Value = getDebugLocValue(Instr); 1586 OpenRanges.emplace_back(EI->getEndIndex(), Value); 1587 1588 // TODO: Add support for single value fragment locations. 1589 if (Instr->getDebugExpression()->isFragment()) 1590 isSafeForSingleLocation = false; 1591 1592 if (!StartDebugMI) 1593 StartDebugMI = Instr; 1594 } else { 1595 isSafeForSingleLocation = false; 1596 } 1597 } 1598 1599 // Location list entries with empty location descriptions are redundant 1600 // information in DWARF, so do not emit those. 1601 if (OpenRanges.empty()) 1602 continue; 1603 1604 // Omit entries with empty ranges as they do not have any effect in DWARF. 1605 if (StartLabel == EndLabel) { 1606 LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n"); 1607 continue; 1608 } 1609 1610 SmallVector<DbgValueLoc, 4> Values; 1611 for (auto &R : OpenRanges) 1612 Values.push_back(R.second); 1613 DebugLoc.emplace_back(StartLabel, EndLabel, Values); 1614 1615 // Attempt to coalesce the ranges of two otherwise identical 1616 // DebugLocEntries. 1617 auto CurEntry = DebugLoc.rbegin(); 1618 LLVM_DEBUG({ 1619 dbgs() << CurEntry->getValues().size() << " Values:\n"; 1620 for (auto &Value : CurEntry->getValues()) 1621 Value.dump(); 1622 dbgs() << "-----\n"; 1623 }); 1624 1625 auto PrevEntry = std::next(CurEntry); 1626 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) 1627 DebugLoc.pop_back(); 1628 } 1629 1630 return DebugLoc.size() == 1 && isSafeForSingleLocation && 1631 validThroughout(LScopes, StartDebugMI, EndMI); 1632 } 1633 1634 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU, 1635 LexicalScope &Scope, 1636 const DINode *Node, 1637 const DILocation *Location, 1638 const MCSymbol *Sym) { 1639 ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode()); 1640 if (isa<const DILocalVariable>(Node)) { 1641 ConcreteEntities.push_back( 1642 std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node), 1643 Location)); 1644 InfoHolder.addScopeVariable(&Scope, 1645 cast<DbgVariable>(ConcreteEntities.back().get())); 1646 } else if (isa<const DILabel>(Node)) { 1647 ConcreteEntities.push_back( 1648 std::make_unique<DbgLabel>(cast<const DILabel>(Node), 1649 Location, Sym)); 1650 InfoHolder.addScopeLabel(&Scope, 1651 cast<DbgLabel>(ConcreteEntities.back().get())); 1652 } 1653 return ConcreteEntities.back().get(); 1654 } 1655 1656 // Find variables for each lexical scope. 1657 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU, 1658 const DISubprogram *SP, 1659 DenseSet<InlinedEntity> &Processed) { 1660 // Grab the variable info that was squirreled away in the MMI side-table. 1661 collectVariableInfoFromMFTable(TheCU, Processed); 1662 1663 for (const auto &I : DbgValues) { 1664 InlinedEntity IV = I.first; 1665 if (Processed.count(IV)) 1666 continue; 1667 1668 // Instruction ranges, specifying where IV is accessible. 1669 const auto &HistoryMapEntries = I.second; 1670 if (HistoryMapEntries.empty()) 1671 continue; 1672 1673 LexicalScope *Scope = nullptr; 1674 const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first); 1675 if (const DILocation *IA = IV.second) 1676 Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA); 1677 else 1678 Scope = LScopes.findLexicalScope(LocalVar->getScope()); 1679 // If variable scope is not found then skip this variable. 1680 if (!Scope) 1681 continue; 1682 1683 Processed.insert(IV); 1684 DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU, 1685 *Scope, LocalVar, IV.second)); 1686 1687 const MachineInstr *MInsn = HistoryMapEntries.front().getInstr(); 1688 assert(MInsn->isDebugValue() && "History must begin with debug value"); 1689 1690 // Check if there is a single DBG_VALUE, valid throughout the var's scope. 1691 // If the history map contains a single debug value, there may be an 1692 // additional entry which clobbers the debug value. 1693 size_t HistSize = HistoryMapEntries.size(); 1694 bool SingleValueWithClobber = 1695 HistSize == 2 && HistoryMapEntries[1].isClobber(); 1696 if (HistSize == 1 || SingleValueWithClobber) { 1697 const auto *End = 1698 SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr; 1699 if (validThroughout(LScopes, MInsn, End)) { 1700 RegVar->initializeDbgValue(MInsn); 1701 continue; 1702 } 1703 } 1704 1705 // Do not emit location lists if .debug_loc secton is disabled. 1706 if (!useLocSection()) 1707 continue; 1708 1709 // Handle multiple DBG_VALUE instructions describing one variable. 1710 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn); 1711 1712 // Build the location list for this variable. 1713 SmallVector<DebugLocEntry, 8> Entries; 1714 bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries); 1715 1716 // Check whether buildLocationList managed to merge all locations to one 1717 // that is valid throughout the variable's scope. If so, produce single 1718 // value location. 1719 if (isValidSingleLocation) { 1720 RegVar->initializeDbgValue(Entries[0].getValues()[0]); 1721 continue; 1722 } 1723 1724 // If the variable has a DIBasicType, extract it. Basic types cannot have 1725 // unique identifiers, so don't bother resolving the type with the 1726 // identifier map. 1727 const DIBasicType *BT = dyn_cast<DIBasicType>( 1728 static_cast<const Metadata *>(LocalVar->getType())); 1729 1730 // Finalize the entry by lowering it into a DWARF bytestream. 1731 for (auto &Entry : Entries) 1732 Entry.finalize(*Asm, List, BT, TheCU); 1733 } 1734 1735 // For each InlinedEntity collected from DBG_LABEL instructions, convert to 1736 // DWARF-related DbgLabel. 1737 for (const auto &I : DbgLabels) { 1738 InlinedEntity IL = I.first; 1739 const MachineInstr *MI = I.second; 1740 if (MI == nullptr) 1741 continue; 1742 1743 LexicalScope *Scope = nullptr; 1744 const DILabel *Label = cast<DILabel>(IL.first); 1745 // The scope could have an extra lexical block file. 1746 const DILocalScope *LocalScope = 1747 Label->getScope()->getNonLexicalBlockFileScope(); 1748 // Get inlined DILocation if it is inlined label. 1749 if (const DILocation *IA = IL.second) 1750 Scope = LScopes.findInlinedScope(LocalScope, IA); 1751 else 1752 Scope = LScopes.findLexicalScope(LocalScope); 1753 // If label scope is not found then skip this label. 1754 if (!Scope) 1755 continue; 1756 1757 Processed.insert(IL); 1758 /// At this point, the temporary label is created. 1759 /// Save the temporary label to DbgLabel entity to get the 1760 /// actually address when generating Dwarf DIE. 1761 MCSymbol *Sym = getLabelBeforeInsn(MI); 1762 createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym); 1763 } 1764 1765 // Collect info for variables/labels that were optimized out. 1766 for (const DINode *DN : SP->getRetainedNodes()) { 1767 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 1768 continue; 1769 LexicalScope *Scope = nullptr; 1770 if (auto *DV = dyn_cast<DILocalVariable>(DN)) { 1771 Scope = LScopes.findLexicalScope(DV->getScope()); 1772 } else if (auto *DL = dyn_cast<DILabel>(DN)) { 1773 Scope = LScopes.findLexicalScope(DL->getScope()); 1774 } 1775 1776 if (Scope) 1777 createConcreteEntity(TheCU, *Scope, DN, nullptr); 1778 } 1779 } 1780 1781 // Process beginning of an instruction. 1782 void DwarfDebug::beginInstruction(const MachineInstr *MI) { 1783 DebugHandlerBase::beginInstruction(MI); 1784 assert(CurMI); 1785 1786 const auto *SP = MI->getMF()->getFunction().getSubprogram(); 1787 if (!SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 1788 return; 1789 1790 // Check if source location changes, but ignore DBG_VALUE and CFI locations. 1791 // If the instruction is part of the function frame setup code, do not emit 1792 // any line record, as there is no correspondence with any user code. 1793 if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup)) 1794 return; 1795 const DebugLoc &DL = MI->getDebugLoc(); 1796 // When we emit a line-0 record, we don't update PrevInstLoc; so look at 1797 // the last line number actually emitted, to see if it was line 0. 1798 unsigned LastAsmLine = 1799 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine(); 1800 1801 // Request a label after the call in order to emit AT_return_pc information 1802 // in call site entries. TODO: Add support for targets with delay slots. 1803 if (SP->areAllCallsDescribed() && MI->isCall() && !MI->hasDelaySlot()) 1804 requestLabelAfterInsn(MI); 1805 1806 if (DL == PrevInstLoc) { 1807 // If we have an ongoing unspecified location, nothing to do here. 1808 if (!DL) 1809 return; 1810 // We have an explicit location, same as the previous location. 1811 // But we might be coming back to it after a line 0 record. 1812 if (LastAsmLine == 0 && DL.getLine() != 0) { 1813 // Reinstate the source location but not marked as a statement. 1814 const MDNode *Scope = DL.getScope(); 1815 recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0); 1816 } 1817 return; 1818 } 1819 1820 if (!DL) { 1821 // We have an unspecified location, which might want to be line 0. 1822 // If we have already emitted a line-0 record, don't repeat it. 1823 if (LastAsmLine == 0) 1824 return; 1825 // If user said Don't Do That, don't do that. 1826 if (UnknownLocations == Disable) 1827 return; 1828 // See if we have a reason to emit a line-0 record now. 1829 // Reasons to emit a line-0 record include: 1830 // - User asked for it (UnknownLocations). 1831 // - Instruction has a label, so it's referenced from somewhere else, 1832 // possibly debug information; we want it to have a source location. 1833 // - Instruction is at the top of a block; we don't want to inherit the 1834 // location from the physically previous (maybe unrelated) block. 1835 if (UnknownLocations == Enable || PrevLabel || 1836 (PrevInstBB && PrevInstBB != MI->getParent())) { 1837 // Preserve the file and column numbers, if we can, to save space in 1838 // the encoded line table. 1839 // Do not update PrevInstLoc, it remembers the last non-0 line. 1840 const MDNode *Scope = nullptr; 1841 unsigned Column = 0; 1842 if (PrevInstLoc) { 1843 Scope = PrevInstLoc.getScope(); 1844 Column = PrevInstLoc.getCol(); 1845 } 1846 recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0); 1847 } 1848 return; 1849 } 1850 1851 // We have an explicit location, different from the previous location. 1852 // Don't repeat a line-0 record, but otherwise emit the new location. 1853 // (The new location might be an explicit line 0, which we do emit.) 1854 if (DL.getLine() == 0 && LastAsmLine == 0) 1855 return; 1856 unsigned Flags = 0; 1857 if (DL == PrologEndLoc) { 1858 Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT; 1859 PrologEndLoc = DebugLoc(); 1860 } 1861 // If the line changed, we call that a new statement; unless we went to 1862 // line 0 and came back, in which case it is not a new statement. 1863 unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine; 1864 if (DL.getLine() && DL.getLine() != OldLine) 1865 Flags |= DWARF2_FLAG_IS_STMT; 1866 1867 const MDNode *Scope = DL.getScope(); 1868 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); 1869 1870 // If we're not at line 0, remember this location. 1871 if (DL.getLine()) 1872 PrevInstLoc = DL; 1873 } 1874 1875 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) { 1876 // First known non-DBG_VALUE and non-frame setup location marks 1877 // the beginning of the function body. 1878 for (const auto &MBB : *MF) 1879 for (const auto &MI : MBB) 1880 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1881 MI.getDebugLoc()) 1882 return MI.getDebugLoc(); 1883 return DebugLoc(); 1884 } 1885 1886 /// Register a source line with debug info. Returns the unique label that was 1887 /// emitted and which provides correspondence to the source line list. 1888 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col, 1889 const MDNode *S, unsigned Flags, unsigned CUID, 1890 uint16_t DwarfVersion, 1891 ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) { 1892 StringRef Fn; 1893 unsigned FileNo = 1; 1894 unsigned Discriminator = 0; 1895 if (auto *Scope = cast_or_null<DIScope>(S)) { 1896 Fn = Scope->getFilename(); 1897 if (Line != 0 && DwarfVersion >= 4) 1898 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope)) 1899 Discriminator = LBF->getDiscriminator(); 1900 1901 FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID]) 1902 .getOrCreateSourceID(Scope->getFile()); 1903 } 1904 Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0, 1905 Discriminator, Fn); 1906 } 1907 1908 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF, 1909 unsigned CUID) { 1910 // Get beginning of function. 1911 if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) { 1912 // Ensure the compile unit is created if the function is called before 1913 // beginFunction(). 1914 (void)getOrCreateDwarfCompileUnit( 1915 MF.getFunction().getSubprogram()->getUnit()); 1916 // We'd like to list the prologue as "not statements" but GDB behaves 1917 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. 1918 const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram(); 1919 ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT, 1920 CUID, getDwarfVersion(), getUnits()); 1921 return PrologEndLoc; 1922 } 1923 return DebugLoc(); 1924 } 1925 1926 // Gather pre-function debug information. Assumes being called immediately 1927 // after the function entry point has been emitted. 1928 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) { 1929 CurFn = MF; 1930 1931 auto *SP = MF->getFunction().getSubprogram(); 1932 assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode()); 1933 if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 1934 return; 1935 1936 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 1937 1938 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function 1939 // belongs to so that we add to the correct per-cu line table in the 1940 // non-asm case. 1941 if (Asm->OutStreamer->hasRawTextSupport()) 1942 // Use a single line table if we are generating assembly. 1943 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 1944 else 1945 Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID()); 1946 1947 // Record beginning of function. 1948 PrologEndLoc = emitInitialLocDirective( 1949 *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID()); 1950 } 1951 1952 void DwarfDebug::skippedNonDebugFunction() { 1953 // If we don't have a subprogram for this function then there will be a hole 1954 // in the range information. Keep note of this by setting the previously used 1955 // section to nullptr. 1956 PrevCU = nullptr; 1957 CurFn = nullptr; 1958 } 1959 1960 // Gather and emit post-function debug information. 1961 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) { 1962 const DISubprogram *SP = MF->getFunction().getSubprogram(); 1963 1964 assert(CurFn == MF && 1965 "endFunction should be called with the same function as beginFunction"); 1966 1967 // Set DwarfDwarfCompileUnitID in MCContext to default value. 1968 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 1969 1970 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 1971 assert(!FnScope || SP == FnScope->getScopeNode()); 1972 DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit()); 1973 if (TheCU.getCUNode()->isDebugDirectivesOnly()) { 1974 PrevLabel = nullptr; 1975 CurFn = nullptr; 1976 return; 1977 } 1978 1979 DenseSet<InlinedEntity> Processed; 1980 collectEntityInfo(TheCU, SP, Processed); 1981 1982 // Add the range of this function to the list of ranges for the CU. 1983 TheCU.addRange({Asm->getFunctionBegin(), Asm->getFunctionEnd()}); 1984 1985 // Under -gmlt, skip building the subprogram if there are no inlined 1986 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram 1987 // is still needed as we need its source location. 1988 if (!TheCU.getCUNode()->getDebugInfoForProfiling() && 1989 TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly && 1990 LScopes.getAbstractScopesList().empty() && !IsDarwin) { 1991 assert(InfoHolder.getScopeVariables().empty()); 1992 PrevLabel = nullptr; 1993 CurFn = nullptr; 1994 return; 1995 } 1996 1997 #ifndef NDEBUG 1998 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size(); 1999 #endif 2000 // Construct abstract scopes. 2001 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { 2002 auto *SP = cast<DISubprogram>(AScope->getScopeNode()); 2003 for (const DINode *DN : SP->getRetainedNodes()) { 2004 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 2005 continue; 2006 2007 const MDNode *Scope = nullptr; 2008 if (auto *DV = dyn_cast<DILocalVariable>(DN)) 2009 Scope = DV->getScope(); 2010 else if (auto *DL = dyn_cast<DILabel>(DN)) 2011 Scope = DL->getScope(); 2012 else 2013 llvm_unreachable("Unexpected DI type!"); 2014 2015 // Collect info for variables/labels that were optimized out. 2016 ensureAbstractEntityIsCreated(TheCU, DN, Scope); 2017 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes 2018 && "ensureAbstractEntityIsCreated inserted abstract scopes"); 2019 } 2020 constructAbstractSubprogramScopeDIE(TheCU, AScope); 2021 } 2022 2023 ProcessedSPNodes.insert(SP); 2024 DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope); 2025 if (auto *SkelCU = TheCU.getSkeleton()) 2026 if (!LScopes.getAbstractScopesList().empty() && 2027 TheCU.getCUNode()->getSplitDebugInlining()) 2028 SkelCU->constructSubprogramScopeDIE(SP, FnScope); 2029 2030 // Construct call site entries. 2031 constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF); 2032 2033 // Clear debug info 2034 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the 2035 // DbgVariables except those that are also in AbstractVariables (since they 2036 // can be used cross-function) 2037 InfoHolder.getScopeVariables().clear(); 2038 InfoHolder.getScopeLabels().clear(); 2039 PrevLabel = nullptr; 2040 CurFn = nullptr; 2041 } 2042 2043 // Register a source line with debug info. Returns the unique label that was 2044 // emitted and which provides correspondence to the source line list. 2045 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, 2046 unsigned Flags) { 2047 ::recordSourceLine(*Asm, Line, Col, S, Flags, 2048 Asm->OutStreamer->getContext().getDwarfCompileUnitID(), 2049 getDwarfVersion(), getUnits()); 2050 } 2051 2052 //===----------------------------------------------------------------------===// 2053 // Emit Methods 2054 //===----------------------------------------------------------------------===// 2055 2056 // Emit the debug info section. 2057 void DwarfDebug::emitDebugInfo() { 2058 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2059 Holder.emitUnits(/* UseOffsets */ false); 2060 } 2061 2062 // Emit the abbreviation section. 2063 void DwarfDebug::emitAbbreviations() { 2064 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2065 2066 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); 2067 } 2068 2069 void DwarfDebug::emitStringOffsetsTableHeader() { 2070 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2071 Holder.getStringPool().emitStringOffsetsTableHeader( 2072 *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(), 2073 Holder.getStringOffsetsStartSym()); 2074 } 2075 2076 template <typename AccelTableT> 2077 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section, 2078 StringRef TableName) { 2079 Asm->OutStreamer->SwitchSection(Section); 2080 2081 // Emit the full data. 2082 emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol()); 2083 } 2084 2085 void DwarfDebug::emitAccelDebugNames() { 2086 // Don't emit anything if we have no compilation units to index. 2087 if (getUnits().empty()) 2088 return; 2089 2090 emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits()); 2091 } 2092 2093 // Emit visible names into a hashed accelerator table section. 2094 void DwarfDebug::emitAccelNames() { 2095 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), 2096 "Names"); 2097 } 2098 2099 // Emit objective C classes and categories into a hashed accelerator table 2100 // section. 2101 void DwarfDebug::emitAccelObjC() { 2102 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), 2103 "ObjC"); 2104 } 2105 2106 // Emit namespace dies into a hashed accelerator table. 2107 void DwarfDebug::emitAccelNamespaces() { 2108 emitAccel(AccelNamespace, 2109 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), 2110 "namespac"); 2111 } 2112 2113 // Emit type dies into a hashed accelerator table. 2114 void DwarfDebug::emitAccelTypes() { 2115 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), 2116 "types"); 2117 } 2118 2119 // Public name handling. 2120 // The format for the various pubnames: 2121 // 2122 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU 2123 // for the DIE that is named. 2124 // 2125 // gnu pubnames - offset/index value/name tuples where the offset is the offset 2126 // into the CU and the index value is computed according to the type of value 2127 // for the DIE that is named. 2128 // 2129 // For type units the offset is the offset of the skeleton DIE. For split dwarf 2130 // it's the offset within the debug_info/debug_types dwo section, however, the 2131 // reference in the pubname header doesn't change. 2132 2133 /// computeIndexValue - Compute the gdb index value for the DIE and CU. 2134 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, 2135 const DIE *Die) { 2136 // Entities that ended up only in a Type Unit reference the CU instead (since 2137 // the pub entry has offsets within the CU there's no real offset that can be 2138 // provided anyway). As it happens all such entities (namespaces and types, 2139 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out 2140 // not to be true it would be necessary to persist this information from the 2141 // point at which the entry is added to the index data structure - since by 2142 // the time the index is built from that, the original type/namespace DIE in a 2143 // type unit has already been destroyed so it can't be queried for properties 2144 // like tag, etc. 2145 if (Die->getTag() == dwarf::DW_TAG_compile_unit) 2146 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, 2147 dwarf::GIEL_EXTERNAL); 2148 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; 2149 2150 // We could have a specification DIE that has our most of our knowledge, 2151 // look for that now. 2152 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) { 2153 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry(); 2154 if (SpecDIE.findAttribute(dwarf::DW_AT_external)) 2155 Linkage = dwarf::GIEL_EXTERNAL; 2156 } else if (Die->findAttribute(dwarf::DW_AT_external)) 2157 Linkage = dwarf::GIEL_EXTERNAL; 2158 2159 switch (Die->getTag()) { 2160 case dwarf::DW_TAG_class_type: 2161 case dwarf::DW_TAG_structure_type: 2162 case dwarf::DW_TAG_union_type: 2163 case dwarf::DW_TAG_enumeration_type: 2164 return dwarf::PubIndexEntryDescriptor( 2165 dwarf::GIEK_TYPE, 2166 dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage()) 2167 ? dwarf::GIEL_EXTERNAL 2168 : dwarf::GIEL_STATIC); 2169 case dwarf::DW_TAG_typedef: 2170 case dwarf::DW_TAG_base_type: 2171 case dwarf::DW_TAG_subrange_type: 2172 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); 2173 case dwarf::DW_TAG_namespace: 2174 return dwarf::GIEK_TYPE; 2175 case dwarf::DW_TAG_subprogram: 2176 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); 2177 case dwarf::DW_TAG_variable: 2178 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); 2179 case dwarf::DW_TAG_enumerator: 2180 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, 2181 dwarf::GIEL_STATIC); 2182 default: 2183 return dwarf::GIEK_NONE; 2184 } 2185 } 2186 2187 /// emitDebugPubSections - Emit visible names and types into debug pubnames and 2188 /// pubtypes sections. 2189 void DwarfDebug::emitDebugPubSections() { 2190 for (const auto &NU : CUMap) { 2191 DwarfCompileUnit *TheU = NU.second; 2192 if (!TheU->hasDwarfPubSections()) 2193 continue; 2194 2195 bool GnuStyle = TheU->getCUNode()->getNameTableKind() == 2196 DICompileUnit::DebugNameTableKind::GNU; 2197 2198 Asm->OutStreamer->SwitchSection( 2199 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() 2200 : Asm->getObjFileLowering().getDwarfPubNamesSection()); 2201 emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames()); 2202 2203 Asm->OutStreamer->SwitchSection( 2204 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() 2205 : Asm->getObjFileLowering().getDwarfPubTypesSection()); 2206 emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes()); 2207 } 2208 } 2209 2210 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) { 2211 if (useSectionsAsReferences()) 2212 Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(), 2213 CU.getDebugSectionOffset()); 2214 else 2215 Asm->emitDwarfSymbolReference(CU.getLabelBegin()); 2216 } 2217 2218 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name, 2219 DwarfCompileUnit *TheU, 2220 const StringMap<const DIE *> &Globals) { 2221 if (auto *Skeleton = TheU->getSkeleton()) 2222 TheU = Skeleton; 2223 2224 // Emit the header. 2225 Asm->OutStreamer->AddComment("Length of Public " + Name + " Info"); 2226 MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin"); 2227 MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end"); 2228 Asm->emitLabelDifference(EndLabel, BeginLabel, 4); 2229 2230 Asm->OutStreamer->emitLabel(BeginLabel); 2231 2232 Asm->OutStreamer->AddComment("DWARF Version"); 2233 Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION); 2234 2235 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info"); 2236 emitSectionReference(*TheU); 2237 2238 Asm->OutStreamer->AddComment("Compilation Unit Length"); 2239 Asm->emitInt32(TheU->getLength()); 2240 2241 // Emit the pubnames for this compilation unit. 2242 for (const auto &GI : Globals) { 2243 const char *Name = GI.getKeyData(); 2244 const DIE *Entity = GI.second; 2245 2246 Asm->OutStreamer->AddComment("DIE offset"); 2247 Asm->emitInt32(Entity->getOffset()); 2248 2249 if (GnuStyle) { 2250 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); 2251 Asm->OutStreamer->AddComment( 2252 Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + 2253 ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); 2254 Asm->emitInt8(Desc.toBits()); 2255 } 2256 2257 Asm->OutStreamer->AddComment("External Name"); 2258 Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1)); 2259 } 2260 2261 Asm->OutStreamer->AddComment("End Mark"); 2262 Asm->emitInt32(0); 2263 Asm->OutStreamer->emitLabel(EndLabel); 2264 } 2265 2266 /// Emit null-terminated strings into a debug str section. 2267 void DwarfDebug::emitDebugStr() { 2268 MCSection *StringOffsetsSection = nullptr; 2269 if (useSegmentedStringOffsetsTable()) { 2270 emitStringOffsetsTableHeader(); 2271 StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection(); 2272 } 2273 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2274 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(), 2275 StringOffsetsSection, /* UseRelativeOffsets = */ true); 2276 } 2277 2278 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, 2279 const DebugLocStream::Entry &Entry, 2280 const DwarfCompileUnit *CU) { 2281 auto &&Comments = DebugLocs.getComments(Entry); 2282 auto Comment = Comments.begin(); 2283 auto End = Comments.end(); 2284 2285 // The expressions are inserted into a byte stream rather early (see 2286 // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that 2287 // need to reference a base_type DIE the offset of that DIE is not yet known. 2288 // To deal with this we instead insert a placeholder early and then extract 2289 // it here and replace it with the real reference. 2290 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2291 DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(), 2292 DebugLocs.getBytes(Entry).size()), 2293 Asm->getDataLayout().isLittleEndian(), PtrSize); 2294 DWARFExpression Expr(Data, PtrSize); 2295 2296 using Encoding = DWARFExpression::Operation::Encoding; 2297 uint64_t Offset = 0; 2298 for (auto &Op : Expr) { 2299 assert(Op.getCode() != dwarf::DW_OP_const_type && 2300 "3 operand ops not yet supported"); 2301 Streamer.EmitInt8(Op.getCode(), Comment != End ? *(Comment++) : ""); 2302 Offset++; 2303 for (unsigned I = 0; I < 2; ++I) { 2304 if (Op.getDescription().Op[I] == Encoding::SizeNA) 2305 continue; 2306 if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) { 2307 uint64_t Offset = 2308 CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset(); 2309 assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit"); 2310 Streamer.emitULEB128(Offset, "", ULEB128PadSize); 2311 // Make sure comments stay aligned. 2312 for (unsigned J = 0; J < ULEB128PadSize; ++J) 2313 if (Comment != End) 2314 Comment++; 2315 } else { 2316 for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J) 2317 Streamer.EmitInt8(Data.getData()[J], Comment != End ? *(Comment++) : ""); 2318 } 2319 Offset = Op.getOperandEndOffset(I); 2320 } 2321 assert(Offset == Op.getEndOffset()); 2322 } 2323 } 2324 2325 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT, 2326 const DbgValueLoc &Value, 2327 DwarfExpression &DwarfExpr) { 2328 auto *DIExpr = Value.getExpression(); 2329 DIExpressionCursor ExprCursor(DIExpr); 2330 DwarfExpr.addFragmentOffset(DIExpr); 2331 // Regular entry. 2332 if (Value.isInt()) { 2333 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed || 2334 BT->getEncoding() == dwarf::DW_ATE_signed_char)) 2335 DwarfExpr.addSignedConstant(Value.getInt()); 2336 else 2337 DwarfExpr.addUnsignedConstant(Value.getInt()); 2338 } else if (Value.isLocation()) { 2339 MachineLocation Location = Value.getLoc(); 2340 if (Location.isIndirect()) 2341 DwarfExpr.setMemoryLocationKind(); 2342 DIExpressionCursor Cursor(DIExpr); 2343 2344 if (DIExpr->isEntryValue()) { 2345 DwarfExpr.setEntryValueFlag(); 2346 DwarfExpr.beginEntryValueExpression(Cursor); 2347 } 2348 2349 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2350 if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) 2351 return; 2352 return DwarfExpr.addExpression(std::move(Cursor)); 2353 } else if (Value.isTargetIndexLocation()) { 2354 TargetIndexLocation Loc = Value.getTargetIndexLocation(); 2355 // TODO TargetIndexLocation is a target-independent. Currently only the WebAssembly-specific 2356 // encoding is supported. 2357 DwarfExpr.addWasmLocation(Loc.Index, Loc.Offset); 2358 } else if (Value.isConstantFP()) { 2359 APInt RawBytes = Value.getConstantFP()->getValueAPF().bitcastToAPInt(); 2360 DwarfExpr.addUnsignedConstant(RawBytes); 2361 } 2362 DwarfExpr.addExpression(std::move(ExprCursor)); 2363 } 2364 2365 void DebugLocEntry::finalize(const AsmPrinter &AP, 2366 DebugLocStream::ListBuilder &List, 2367 const DIBasicType *BT, 2368 DwarfCompileUnit &TheCU) { 2369 assert(!Values.empty() && 2370 "location list entries without values are redundant"); 2371 assert(Begin != End && "unexpected location list entry with empty range"); 2372 DebugLocStream::EntryBuilder Entry(List, Begin, End); 2373 BufferByteStreamer Streamer = Entry.getStreamer(); 2374 DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU); 2375 const DbgValueLoc &Value = Values[0]; 2376 if (Value.isFragment()) { 2377 // Emit all fragments that belong to the same variable and range. 2378 assert(llvm::all_of(Values, [](DbgValueLoc P) { 2379 return P.isFragment(); 2380 }) && "all values are expected to be fragments"); 2381 assert(std::is_sorted(Values.begin(), Values.end()) && 2382 "fragments are expected to be sorted"); 2383 2384 for (auto Fragment : Values) 2385 DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr); 2386 2387 } else { 2388 assert(Values.size() == 1 && "only fragments may have >1 value"); 2389 DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr); 2390 } 2391 DwarfExpr.finalize(); 2392 if (DwarfExpr.TagOffset) 2393 List.setTagOffset(*DwarfExpr.TagOffset); 2394 } 2395 2396 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry, 2397 const DwarfCompileUnit *CU) { 2398 // Emit the size. 2399 Asm->OutStreamer->AddComment("Loc expr size"); 2400 if (getDwarfVersion() >= 5) 2401 Asm->emitULEB128(DebugLocs.getBytes(Entry).size()); 2402 else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max()) 2403 Asm->emitInt16(DebugLocs.getBytes(Entry).size()); 2404 else { 2405 // The entry is too big to fit into 16 bit, drop it as there is nothing we 2406 // can do. 2407 Asm->emitInt16(0); 2408 return; 2409 } 2410 // Emit the entry. 2411 APByteStreamer Streamer(*Asm); 2412 emitDebugLocEntry(Streamer, Entry, CU); 2413 } 2414 2415 // Emit the header of a DWARF 5 range list table list table. Returns the symbol 2416 // that designates the end of the table for the caller to emit when the table is 2417 // complete. 2418 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm, 2419 const DwarfFile &Holder) { 2420 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2421 2422 Asm->OutStreamer->AddComment("Offset entry count"); 2423 Asm->emitInt32(Holder.getRangeLists().size()); 2424 Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym()); 2425 2426 for (const RangeSpanList &List : Holder.getRangeLists()) 2427 Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(), 4); 2428 2429 return TableEnd; 2430 } 2431 2432 // Emit the header of a DWARF 5 locations list table. Returns the symbol that 2433 // designates the end of the table for the caller to emit when the table is 2434 // complete. 2435 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm, 2436 const DwarfDebug &DD) { 2437 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2438 2439 const auto &DebugLocs = DD.getDebugLocs(); 2440 2441 Asm->OutStreamer->AddComment("Offset entry count"); 2442 Asm->emitInt32(DebugLocs.getLists().size()); 2443 Asm->OutStreamer->emitLabel(DebugLocs.getSym()); 2444 2445 for (const auto &List : DebugLocs.getLists()) 2446 Asm->emitLabelDifference(List.Label, DebugLocs.getSym(), 4); 2447 2448 return TableEnd; 2449 } 2450 2451 template <typename Ranges, typename PayloadEmitter> 2452 static void emitRangeList( 2453 DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R, 2454 const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair, 2455 unsigned StartxLength, unsigned EndOfList, 2456 StringRef (*StringifyEnum)(unsigned), 2457 bool ShouldUseBaseAddress, 2458 PayloadEmitter EmitPayload) { 2459 2460 auto Size = Asm->MAI->getCodePointerSize(); 2461 bool UseDwarf5 = DD.getDwarfVersion() >= 5; 2462 2463 // Emit our symbol so we can find the beginning of the range. 2464 Asm->OutStreamer->emitLabel(Sym); 2465 2466 // Gather all the ranges that apply to the same section so they can share 2467 // a base address entry. 2468 MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges; 2469 2470 for (const auto &Range : R) 2471 SectionRanges[&Range.Begin->getSection()].push_back(&Range); 2472 2473 const MCSymbol *CUBase = CU.getBaseAddress(); 2474 bool BaseIsSet = false; 2475 for (const auto &P : SectionRanges) { 2476 auto *Base = CUBase; 2477 if (!Base && ShouldUseBaseAddress) { 2478 const MCSymbol *Begin = P.second.front()->Begin; 2479 const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection()); 2480 if (!UseDwarf5) { 2481 Base = NewBase; 2482 BaseIsSet = true; 2483 Asm->OutStreamer->emitIntValue(-1, Size); 2484 Asm->OutStreamer->AddComment(" base address"); 2485 Asm->OutStreamer->emitSymbolValue(Base, Size); 2486 } else if (NewBase != Begin || P.second.size() > 1) { 2487 // Only use a base address if 2488 // * the existing pool address doesn't match (NewBase != Begin) 2489 // * or, there's more than one entry to share the base address 2490 Base = NewBase; 2491 BaseIsSet = true; 2492 Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx)); 2493 Asm->emitInt8(BaseAddressx); 2494 Asm->OutStreamer->AddComment(" base address index"); 2495 Asm->emitULEB128(DD.getAddressPool().getIndex(Base)); 2496 } 2497 } else if (BaseIsSet && !UseDwarf5) { 2498 BaseIsSet = false; 2499 assert(!Base); 2500 Asm->OutStreamer->emitIntValue(-1, Size); 2501 Asm->OutStreamer->emitIntValue(0, Size); 2502 } 2503 2504 for (const auto *RS : P.second) { 2505 const MCSymbol *Begin = RS->Begin; 2506 const MCSymbol *End = RS->End; 2507 assert(Begin && "Range without a begin symbol?"); 2508 assert(End && "Range without an end symbol?"); 2509 if (Base) { 2510 if (UseDwarf5) { 2511 // Emit offset_pair when we have a base. 2512 Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair)); 2513 Asm->emitInt8(OffsetPair); 2514 Asm->OutStreamer->AddComment(" starting offset"); 2515 Asm->emitLabelDifferenceAsULEB128(Begin, Base); 2516 Asm->OutStreamer->AddComment(" ending offset"); 2517 Asm->emitLabelDifferenceAsULEB128(End, Base); 2518 } else { 2519 Asm->emitLabelDifference(Begin, Base, Size); 2520 Asm->emitLabelDifference(End, Base, Size); 2521 } 2522 } else if (UseDwarf5) { 2523 Asm->OutStreamer->AddComment(StringifyEnum(StartxLength)); 2524 Asm->emitInt8(StartxLength); 2525 Asm->OutStreamer->AddComment(" start index"); 2526 Asm->emitULEB128(DD.getAddressPool().getIndex(Begin)); 2527 Asm->OutStreamer->AddComment(" length"); 2528 Asm->emitLabelDifferenceAsULEB128(End, Begin); 2529 } else { 2530 Asm->OutStreamer->emitSymbolValue(Begin, Size); 2531 Asm->OutStreamer->emitSymbolValue(End, Size); 2532 } 2533 EmitPayload(*RS); 2534 } 2535 } 2536 2537 if (UseDwarf5) { 2538 Asm->OutStreamer->AddComment(StringifyEnum(EndOfList)); 2539 Asm->emitInt8(EndOfList); 2540 } else { 2541 // Terminate the list with two 0 values. 2542 Asm->OutStreamer->emitIntValue(0, Size); 2543 Asm->OutStreamer->emitIntValue(0, Size); 2544 } 2545 } 2546 2547 // Handles emission of both debug_loclist / debug_loclist.dwo 2548 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) { 2549 emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List), 2550 *List.CU, dwarf::DW_LLE_base_addressx, 2551 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length, 2552 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString, 2553 /* ShouldUseBaseAddress */ true, 2554 [&](const DebugLocStream::Entry &E) { 2555 DD.emitDebugLocEntryLocation(E, List.CU); 2556 }); 2557 } 2558 2559 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) { 2560 if (DebugLocs.getLists().empty()) 2561 return; 2562 2563 Asm->OutStreamer->SwitchSection(Sec); 2564 2565 MCSymbol *TableEnd = nullptr; 2566 if (getDwarfVersion() >= 5) 2567 TableEnd = emitLoclistsTableHeader(Asm, *this); 2568 2569 for (const auto &List : DebugLocs.getLists()) 2570 emitLocList(*this, Asm, List); 2571 2572 if (TableEnd) 2573 Asm->OutStreamer->emitLabel(TableEnd); 2574 } 2575 2576 // Emit locations into the .debug_loc/.debug_loclists section. 2577 void DwarfDebug::emitDebugLoc() { 2578 emitDebugLocImpl( 2579 getDwarfVersion() >= 5 2580 ? Asm->getObjFileLowering().getDwarfLoclistsSection() 2581 : Asm->getObjFileLowering().getDwarfLocSection()); 2582 } 2583 2584 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section. 2585 void DwarfDebug::emitDebugLocDWO() { 2586 if (getDwarfVersion() >= 5) { 2587 emitDebugLocImpl( 2588 Asm->getObjFileLowering().getDwarfLoclistsDWOSection()); 2589 2590 return; 2591 } 2592 2593 for (const auto &List : DebugLocs.getLists()) { 2594 Asm->OutStreamer->SwitchSection( 2595 Asm->getObjFileLowering().getDwarfLocDWOSection()); 2596 Asm->OutStreamer->emitLabel(List.Label); 2597 2598 for (const auto &Entry : DebugLocs.getEntries(List)) { 2599 // GDB only supports startx_length in pre-standard split-DWARF. 2600 // (in v5 standard loclists, it currently* /only/ supports base_address + 2601 // offset_pair, so the implementations can't really share much since they 2602 // need to use different representations) 2603 // * as of October 2018, at least 2604 // 2605 // In v5 (see emitLocList), this uses SectionLabels to reuse existing 2606 // addresses in the address pool to minimize object size/relocations. 2607 Asm->emitInt8(dwarf::DW_LLE_startx_length); 2608 unsigned idx = AddrPool.getIndex(Entry.Begin); 2609 Asm->emitULEB128(idx); 2610 // Also the pre-standard encoding is slightly different, emitting this as 2611 // an address-length entry here, but its a ULEB128 in DWARFv5 loclists. 2612 Asm->emitLabelDifference(Entry.End, Entry.Begin, 4); 2613 emitDebugLocEntryLocation(Entry, List.CU); 2614 } 2615 Asm->emitInt8(dwarf::DW_LLE_end_of_list); 2616 } 2617 } 2618 2619 struct ArangeSpan { 2620 const MCSymbol *Start, *End; 2621 }; 2622 2623 // Emit a debug aranges section, containing a CU lookup for any 2624 // address we can tie back to a CU. 2625 void DwarfDebug::emitDebugARanges() { 2626 // Provides a unique id per text section. 2627 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap; 2628 2629 // Filter labels by section. 2630 for (const SymbolCU &SCU : ArangeLabels) { 2631 if (SCU.Sym->isInSection()) { 2632 // Make a note of this symbol and it's section. 2633 MCSection *Section = &SCU.Sym->getSection(); 2634 if (!Section->getKind().isMetadata()) 2635 SectionMap[Section].push_back(SCU); 2636 } else { 2637 // Some symbols (e.g. common/bss on mach-o) can have no section but still 2638 // appear in the output. This sucks as we rely on sections to build 2639 // arange spans. We can do it without, but it's icky. 2640 SectionMap[nullptr].push_back(SCU); 2641 } 2642 } 2643 2644 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans; 2645 2646 for (auto &I : SectionMap) { 2647 MCSection *Section = I.first; 2648 SmallVector<SymbolCU, 8> &List = I.second; 2649 if (List.size() < 1) 2650 continue; 2651 2652 // If we have no section (e.g. common), just write out 2653 // individual spans for each symbol. 2654 if (!Section) { 2655 for (const SymbolCU &Cur : List) { 2656 ArangeSpan Span; 2657 Span.Start = Cur.Sym; 2658 Span.End = nullptr; 2659 assert(Cur.CU); 2660 Spans[Cur.CU].push_back(Span); 2661 } 2662 continue; 2663 } 2664 2665 // Sort the symbols by offset within the section. 2666 llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) { 2667 unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0; 2668 unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0; 2669 2670 // Symbols with no order assigned should be placed at the end. 2671 // (e.g. section end labels) 2672 if (IA == 0) 2673 return false; 2674 if (IB == 0) 2675 return true; 2676 return IA < IB; 2677 }); 2678 2679 // Insert a final terminator. 2680 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section))); 2681 2682 // Build spans between each label. 2683 const MCSymbol *StartSym = List[0].Sym; 2684 for (size_t n = 1, e = List.size(); n < e; n++) { 2685 const SymbolCU &Prev = List[n - 1]; 2686 const SymbolCU &Cur = List[n]; 2687 2688 // Try and build the longest span we can within the same CU. 2689 if (Cur.CU != Prev.CU) { 2690 ArangeSpan Span; 2691 Span.Start = StartSym; 2692 Span.End = Cur.Sym; 2693 assert(Prev.CU); 2694 Spans[Prev.CU].push_back(Span); 2695 StartSym = Cur.Sym; 2696 } 2697 } 2698 } 2699 2700 // Start the dwarf aranges section. 2701 Asm->OutStreamer->SwitchSection( 2702 Asm->getObjFileLowering().getDwarfARangesSection()); 2703 2704 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2705 2706 // Build a list of CUs used. 2707 std::vector<DwarfCompileUnit *> CUs; 2708 for (const auto &it : Spans) { 2709 DwarfCompileUnit *CU = it.first; 2710 CUs.push_back(CU); 2711 } 2712 2713 // Sort the CU list (again, to ensure consistent output order). 2714 llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) { 2715 return A->getUniqueID() < B->getUniqueID(); 2716 }); 2717 2718 // Emit an arange table for each CU we used. 2719 for (DwarfCompileUnit *CU : CUs) { 2720 std::vector<ArangeSpan> &List = Spans[CU]; 2721 2722 // Describe the skeleton CU's offset and length, not the dwo file's. 2723 if (auto *Skel = CU->getSkeleton()) 2724 CU = Skel; 2725 2726 // Emit size of content not including length itself. 2727 unsigned ContentSize = 2728 sizeof(int16_t) + // DWARF ARange version number 2729 sizeof(int32_t) + // Offset of CU in the .debug_info section 2730 sizeof(int8_t) + // Pointer Size (in bytes) 2731 sizeof(int8_t); // Segment Size (in bytes) 2732 2733 unsigned TupleSize = PtrSize * 2; 2734 2735 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. 2736 unsigned Padding = 2737 offsetToAlignment(sizeof(int32_t) + ContentSize, Align(TupleSize)); 2738 2739 ContentSize += Padding; 2740 ContentSize += (List.size() + 1) * TupleSize; 2741 2742 // For each compile unit, write the list of spans it covers. 2743 Asm->OutStreamer->AddComment("Length of ARange Set"); 2744 Asm->emitInt32(ContentSize); 2745 Asm->OutStreamer->AddComment("DWARF Arange version number"); 2746 Asm->emitInt16(dwarf::DW_ARANGES_VERSION); 2747 Asm->OutStreamer->AddComment("Offset Into Debug Info Section"); 2748 emitSectionReference(*CU); 2749 Asm->OutStreamer->AddComment("Address Size (in bytes)"); 2750 Asm->emitInt8(PtrSize); 2751 Asm->OutStreamer->AddComment("Segment Size (in bytes)"); 2752 Asm->emitInt8(0); 2753 2754 Asm->OutStreamer->emitFill(Padding, 0xff); 2755 2756 for (const ArangeSpan &Span : List) { 2757 Asm->emitLabelReference(Span.Start, PtrSize); 2758 2759 // Calculate the size as being from the span start to it's end. 2760 if (Span.End) { 2761 Asm->emitLabelDifference(Span.End, Span.Start, PtrSize); 2762 } else { 2763 // For symbols without an end marker (e.g. common), we 2764 // write a single arange entry containing just that one symbol. 2765 uint64_t Size = SymSize[Span.Start]; 2766 if (Size == 0) 2767 Size = 1; 2768 2769 Asm->OutStreamer->emitIntValue(Size, PtrSize); 2770 } 2771 } 2772 2773 Asm->OutStreamer->AddComment("ARange terminator"); 2774 Asm->OutStreamer->emitIntValue(0, PtrSize); 2775 Asm->OutStreamer->emitIntValue(0, PtrSize); 2776 } 2777 } 2778 2779 /// Emit a single range list. We handle both DWARF v5 and earlier. 2780 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm, 2781 const RangeSpanList &List) { 2782 emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU, 2783 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair, 2784 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list, 2785 llvm::dwarf::RangeListEncodingString, 2786 List.CU->getCUNode()->getRangesBaseAddress() || 2787 DD.getDwarfVersion() >= 5, 2788 [](auto) {}); 2789 } 2790 2791 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) { 2792 if (Holder.getRangeLists().empty()) 2793 return; 2794 2795 assert(useRangesSection()); 2796 assert(!CUMap.empty()); 2797 assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { 2798 return !Pair.second->getCUNode()->isDebugDirectivesOnly(); 2799 })); 2800 2801 Asm->OutStreamer->SwitchSection(Section); 2802 2803 MCSymbol *TableEnd = nullptr; 2804 if (getDwarfVersion() >= 5) 2805 TableEnd = emitRnglistsTableHeader(Asm, Holder); 2806 2807 for (const RangeSpanList &List : Holder.getRangeLists()) 2808 emitRangeList(*this, Asm, List); 2809 2810 if (TableEnd) 2811 Asm->OutStreamer->emitLabel(TableEnd); 2812 } 2813 2814 /// Emit address ranges into the .debug_ranges section or into the DWARF v5 2815 /// .debug_rnglists section. 2816 void DwarfDebug::emitDebugRanges() { 2817 const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2818 2819 emitDebugRangesImpl(Holder, 2820 getDwarfVersion() >= 5 2821 ? Asm->getObjFileLowering().getDwarfRnglistsSection() 2822 : Asm->getObjFileLowering().getDwarfRangesSection()); 2823 } 2824 2825 void DwarfDebug::emitDebugRangesDWO() { 2826 emitDebugRangesImpl(InfoHolder, 2827 Asm->getObjFileLowering().getDwarfRnglistsDWOSection()); 2828 } 2829 2830 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) { 2831 for (auto *MN : Nodes) { 2832 if (auto *M = dyn_cast<DIMacro>(MN)) 2833 emitMacro(*M); 2834 else if (auto *F = dyn_cast<DIMacroFile>(MN)) 2835 emitMacroFile(*F, U); 2836 else 2837 llvm_unreachable("Unexpected DI type!"); 2838 } 2839 } 2840 2841 void DwarfDebug::emitMacro(DIMacro &M) { 2842 Asm->emitULEB128(M.getMacinfoType()); 2843 Asm->emitULEB128(M.getLine()); 2844 StringRef Name = M.getName(); 2845 StringRef Value = M.getValue(); 2846 Asm->OutStreamer->emitBytes(Name); 2847 if (!Value.empty()) { 2848 // There should be one space between macro name and macro value. 2849 Asm->emitInt8(' '); 2850 Asm->OutStreamer->emitBytes(Value); 2851 } 2852 Asm->emitInt8('\0'); 2853 } 2854 2855 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) { 2856 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file); 2857 Asm->emitULEB128(dwarf::DW_MACINFO_start_file); 2858 Asm->emitULEB128(F.getLine()); 2859 Asm->emitULEB128(U.getOrCreateSourceID(F.getFile())); 2860 handleMacroNodes(F.getElements(), U); 2861 Asm->emitULEB128(dwarf::DW_MACINFO_end_file); 2862 } 2863 2864 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) { 2865 for (const auto &P : CUMap) { 2866 auto &TheCU = *P.second; 2867 auto *SkCU = TheCU.getSkeleton(); 2868 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 2869 auto *CUNode = cast<DICompileUnit>(P.first); 2870 DIMacroNodeArray Macros = CUNode->getMacros(); 2871 if (Macros.empty()) 2872 continue; 2873 Asm->OutStreamer->SwitchSection(Section); 2874 Asm->OutStreamer->emitLabel(U.getMacroLabelBegin()); 2875 handleMacroNodes(Macros, U); 2876 Asm->OutStreamer->AddComment("End Of Macro List Mark"); 2877 Asm->emitInt8(0); 2878 } 2879 } 2880 2881 /// Emit macros into a debug macinfo section. 2882 void DwarfDebug::emitDebugMacinfo() { 2883 emitDebugMacinfoImpl(Asm->getObjFileLowering().getDwarfMacinfoSection()); 2884 } 2885 2886 void DwarfDebug::emitDebugMacinfoDWO() { 2887 emitDebugMacinfoImpl(Asm->getObjFileLowering().getDwarfMacinfoDWOSection()); 2888 } 2889 2890 // DWARF5 Experimental Separate Dwarf emitters. 2891 2892 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die, 2893 std::unique_ptr<DwarfCompileUnit> NewU) { 2894 2895 if (!CompilationDir.empty()) 2896 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 2897 addGnuPubAttributes(*NewU, Die); 2898 2899 SkeletonHolder.addUnit(std::move(NewU)); 2900 } 2901 2902 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) { 2903 2904 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 2905 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder, 2906 UnitKind::Skeleton); 2907 DwarfCompileUnit &NewCU = *OwnedUnit; 2908 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 2909 2910 NewCU.initStmtList(); 2911 2912 if (useSegmentedStringOffsetsTable()) 2913 NewCU.addStringOffsetsStart(); 2914 2915 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit)); 2916 2917 return NewCU; 2918 } 2919 2920 // Emit the .debug_info.dwo section for separated dwarf. This contains the 2921 // compile units that would normally be in debug_info. 2922 void DwarfDebug::emitDebugInfoDWO() { 2923 assert(useSplitDwarf() && "No split dwarf debug info?"); 2924 // Don't emit relocations into the dwo file. 2925 InfoHolder.emitUnits(/* UseOffsets */ true); 2926 } 2927 2928 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the 2929 // abbreviations for the .debug_info.dwo section. 2930 void DwarfDebug::emitDebugAbbrevDWO() { 2931 assert(useSplitDwarf() && "No split dwarf?"); 2932 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection()); 2933 } 2934 2935 void DwarfDebug::emitDebugLineDWO() { 2936 assert(useSplitDwarf() && "No split dwarf?"); 2937 SplitTypeUnitFileTable.Emit( 2938 *Asm->OutStreamer, MCDwarfLineTableParams(), 2939 Asm->getObjFileLowering().getDwarfLineDWOSection()); 2940 } 2941 2942 void DwarfDebug::emitStringOffsetsTableHeaderDWO() { 2943 assert(useSplitDwarf() && "No split dwarf?"); 2944 InfoHolder.getStringPool().emitStringOffsetsTableHeader( 2945 *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(), 2946 InfoHolder.getStringOffsetsStartSym()); 2947 } 2948 2949 // Emit the .debug_str.dwo section for separated dwarf. This contains the 2950 // string section and is identical in format to traditional .debug_str 2951 // sections. 2952 void DwarfDebug::emitDebugStrDWO() { 2953 if (useSegmentedStringOffsetsTable()) 2954 emitStringOffsetsTableHeaderDWO(); 2955 assert(useSplitDwarf() && "No split dwarf?"); 2956 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection(); 2957 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), 2958 OffSec, /* UseRelativeOffsets = */ false); 2959 } 2960 2961 // Emit address pool. 2962 void DwarfDebug::emitDebugAddr() { 2963 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection()); 2964 } 2965 2966 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) { 2967 if (!useSplitDwarf()) 2968 return nullptr; 2969 const DICompileUnit *DIUnit = CU.getCUNode(); 2970 SplitTypeUnitFileTable.maybeSetRootFile( 2971 DIUnit->getDirectory(), DIUnit->getFilename(), 2972 CU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource()); 2973 return &SplitTypeUnitFileTable; 2974 } 2975 2976 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) { 2977 MD5 Hash; 2978 Hash.update(Identifier); 2979 // ... take the least significant 8 bytes and return those. Our MD5 2980 // implementation always returns its results in little endian, so we actually 2981 // need the "high" word. 2982 MD5::MD5Result Result; 2983 Hash.final(Result); 2984 return Result.high(); 2985 } 2986 2987 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU, 2988 StringRef Identifier, DIE &RefDie, 2989 const DICompositeType *CTy) { 2990 // Fast path if we're building some type units and one has already used the 2991 // address pool we know we're going to throw away all this work anyway, so 2992 // don't bother building dependent types. 2993 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed()) 2994 return; 2995 2996 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0)); 2997 if (!Ins.second) { 2998 CU.addDIETypeSignature(RefDie, Ins.first->second); 2999 return; 3000 } 3001 3002 bool TopLevelType = TypeUnitsUnderConstruction.empty(); 3003 AddrPool.resetUsedFlag(); 3004 3005 auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder, 3006 getDwoLineTable(CU)); 3007 DwarfTypeUnit &NewTU = *OwnedUnit; 3008 DIE &UnitDie = NewTU.getUnitDie(); 3009 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy); 3010 3011 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 3012 CU.getLanguage()); 3013 3014 uint64_t Signature = makeTypeSignature(Identifier); 3015 NewTU.setTypeSignature(Signature); 3016 Ins.first->second = Signature; 3017 3018 if (useSplitDwarf()) { 3019 MCSection *Section = 3020 getDwarfVersion() <= 4 3021 ? Asm->getObjFileLowering().getDwarfTypesDWOSection() 3022 : Asm->getObjFileLowering().getDwarfInfoDWOSection(); 3023 NewTU.setSection(Section); 3024 } else { 3025 MCSection *Section = 3026 getDwarfVersion() <= 4 3027 ? Asm->getObjFileLowering().getDwarfTypesSection(Signature) 3028 : Asm->getObjFileLowering().getDwarfInfoSection(Signature); 3029 NewTU.setSection(Section); 3030 // Non-split type units reuse the compile unit's line table. 3031 CU.applyStmtList(UnitDie); 3032 } 3033 3034 // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type 3035 // units. 3036 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 3037 NewTU.addStringOffsetsStart(); 3038 3039 NewTU.setType(NewTU.createTypeDIE(CTy)); 3040 3041 if (TopLevelType) { 3042 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction); 3043 TypeUnitsUnderConstruction.clear(); 3044 3045 // Types referencing entries in the address table cannot be placed in type 3046 // units. 3047 if (AddrPool.hasBeenUsed()) { 3048 3049 // Remove all the types built while building this type. 3050 // This is pessimistic as some of these types might not be dependent on 3051 // the type that used an address. 3052 for (const auto &TU : TypeUnitsToAdd) 3053 TypeSignatures.erase(TU.second); 3054 3055 // Construct this type in the CU directly. 3056 // This is inefficient because all the dependent types will be rebuilt 3057 // from scratch, including building them in type units, discovering that 3058 // they depend on addresses, throwing them out and rebuilding them. 3059 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy)); 3060 return; 3061 } 3062 3063 // If the type wasn't dependent on fission addresses, finish adding the type 3064 // and all its dependent types. 3065 for (auto &TU : TypeUnitsToAdd) { 3066 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get()); 3067 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf()); 3068 } 3069 } 3070 CU.addDIETypeSignature(RefDie, Signature); 3071 } 3072 3073 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD) 3074 : DD(DD), 3075 TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)) { 3076 DD->TypeUnitsUnderConstruction.clear(); 3077 assert(TypeUnitsUnderConstruction.empty() || !DD->AddrPool.hasBeenUsed()); 3078 } 3079 3080 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() { 3081 DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction); 3082 DD->AddrPool.resetUsedFlag(); 3083 } 3084 3085 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() { 3086 return NonTypeUnitContext(this); 3087 } 3088 3089 // Add the Name along with its companion DIE to the appropriate accelerator 3090 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for 3091 // AccelTableKind::Apple, we use the table we got as an argument). If 3092 // accelerator tables are disabled, this function does nothing. 3093 template <typename DataT> 3094 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU, 3095 AccelTable<DataT> &AppleAccel, StringRef Name, 3096 const DIE &Die) { 3097 if (getAccelTableKind() == AccelTableKind::None) 3098 return; 3099 3100 if (getAccelTableKind() != AccelTableKind::Apple && 3101 CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default) 3102 return; 3103 3104 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 3105 DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name); 3106 3107 switch (getAccelTableKind()) { 3108 case AccelTableKind::Apple: 3109 AppleAccel.addName(Ref, Die); 3110 break; 3111 case AccelTableKind::Dwarf: 3112 AccelDebugNames.addName(Ref, Die); 3113 break; 3114 case AccelTableKind::Default: 3115 llvm_unreachable("Default should have already been resolved."); 3116 case AccelTableKind::None: 3117 llvm_unreachable("None handled above"); 3118 } 3119 } 3120 3121 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name, 3122 const DIE &Die) { 3123 addAccelNameImpl(CU, AccelNames, Name, Die); 3124 } 3125 3126 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name, 3127 const DIE &Die) { 3128 // ObjC names go only into the Apple accelerator tables. 3129 if (getAccelTableKind() == AccelTableKind::Apple) 3130 addAccelNameImpl(CU, AccelObjC, Name, Die); 3131 } 3132 3133 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name, 3134 const DIE &Die) { 3135 addAccelNameImpl(CU, AccelNamespace, Name, Die); 3136 } 3137 3138 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name, 3139 const DIE &Die, char Flags) { 3140 addAccelNameImpl(CU, AccelTypes, Name, Die); 3141 } 3142 3143 uint16_t DwarfDebug::getDwarfVersion() const { 3144 return Asm->OutStreamer->getContext().getDwarfVersion(); 3145 } 3146 3147 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) { 3148 return SectionLabels.find(S)->second; 3149 } 3150 void DwarfDebug::insertSectionLabel(const MCSymbol *S) { 3151 SectionLabels.insert(std::make_pair(&S->getSection(), S)); 3152 } 3153