1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing dwarf debug info into asm files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "DwarfDebug.h"
14 #include "ByteStreamer.h"
15 #include "DIEHash.h"
16 #include "DwarfCompileUnit.h"
17 #include "DwarfExpression.h"
18 #include "DwarfUnit.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/CodeGen/AsmPrinter.h"
24 #include "llvm/CodeGen/DIE.h"
25 #include "llvm/CodeGen/LexicalScopes.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/CodeGen/TargetRegisterInfo.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/DebugInfo/DWARF/DWARFExpression.h"
35 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/MC/MCAsmInfo.h"
41 #include "llvm/MC/MCContext.h"
42 #include "llvm/MC/MCSection.h"
43 #include "llvm/MC/MCStreamer.h"
44 #include "llvm/MC/MCSymbol.h"
45 #include "llvm/MC/MCTargetOptions.h"
46 #include "llvm/MC/MachineLocation.h"
47 #include "llvm/MC/SectionKind.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MD5.h"
54 #include "llvm/Support/MathExtras.h"
55 #include "llvm/Support/Timer.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Target/TargetLoweringObjectFile.h"
58 #include "llvm/Target/TargetMachine.h"
59 #include <algorithm>
60 #include <cstddef>
61 #include <iterator>
62 #include <string>
63 
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "dwarfdebug"
67 
68 STATISTIC(NumCSParams, "Number of dbg call site params created");
69 
70 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier(
71     "use-dwarf-ranges-base-address-specifier", cl::Hidden,
72     cl::desc("Use base address specifiers in debug_ranges"), cl::init(false));
73 
74 static cl::opt<bool> GenerateARangeSection("generate-arange-section",
75                                            cl::Hidden,
76                                            cl::desc("Generate dwarf aranges"),
77                                            cl::init(false));
78 
79 static cl::opt<bool>
80     GenerateDwarfTypeUnits("generate-type-units", cl::Hidden,
81                            cl::desc("Generate DWARF4 type units."),
82                            cl::init(false));
83 
84 static cl::opt<bool> SplitDwarfCrossCuReferences(
85     "split-dwarf-cross-cu-references", cl::Hidden,
86     cl::desc("Enable cross-cu references in DWO files"), cl::init(false));
87 
88 enum DefaultOnOff { Default, Enable, Disable };
89 
90 static cl::opt<DefaultOnOff> UnknownLocations(
91     "use-unknown-locations", cl::Hidden,
92     cl::desc("Make an absence of debug location information explicit."),
93     cl::values(clEnumVal(Default, "At top of block or after label"),
94                clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")),
95     cl::init(Default));
96 
97 static cl::opt<AccelTableKind> AccelTables(
98     "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."),
99     cl::values(clEnumValN(AccelTableKind::Default, "Default",
100                           "Default for platform"),
101                clEnumValN(AccelTableKind::None, "Disable", "Disabled."),
102                clEnumValN(AccelTableKind::Apple, "Apple", "Apple"),
103                clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")),
104     cl::init(AccelTableKind::Default));
105 
106 static cl::opt<DefaultOnOff>
107 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden,
108                  cl::desc("Use inlined strings rather than string section."),
109                  cl::values(clEnumVal(Default, "Default for platform"),
110                             clEnumVal(Enable, "Enabled"),
111                             clEnumVal(Disable, "Disabled")),
112                  cl::init(Default));
113 
114 static cl::opt<bool>
115     NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden,
116                          cl::desc("Disable emission .debug_ranges section."),
117                          cl::init(false));
118 
119 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences(
120     "dwarf-sections-as-references", cl::Hidden,
121     cl::desc("Use sections+offset as references rather than labels."),
122     cl::values(clEnumVal(Default, "Default for platform"),
123                clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
124     cl::init(Default));
125 
126 static cl::opt<bool>
127     UseGNUDebugMacro("use-gnu-debug-macro", cl::Hidden,
128                      cl::desc("Emit the GNU .debug_macro format with DWARF <5"),
129                      cl::init(false));
130 
131 static cl::opt<DefaultOnOff> DwarfOpConvert(
132     "dwarf-op-convert", cl::Hidden,
133     cl::desc("Enable use of the DWARFv5 DW_OP_convert operator"),
134     cl::values(clEnumVal(Default, "Default for platform"),
135                clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
136     cl::init(Default));
137 
138 enum LinkageNameOption {
139   DefaultLinkageNames,
140   AllLinkageNames,
141   AbstractLinkageNames
142 };
143 
144 static cl::opt<LinkageNameOption>
145     DwarfLinkageNames("dwarf-linkage-names", cl::Hidden,
146                       cl::desc("Which DWARF linkage-name attributes to emit."),
147                       cl::values(clEnumValN(DefaultLinkageNames, "Default",
148                                             "Default for platform"),
149                                  clEnumValN(AllLinkageNames, "All", "All"),
150                                  clEnumValN(AbstractLinkageNames, "Abstract",
151                                             "Abstract subprograms")),
152                       cl::init(DefaultLinkageNames));
153 
154 static cl::opt<DwarfDebug::MinimizeAddrInV5> MinimizeAddrInV5Option(
155     "minimize-addr-in-v5", cl::Hidden,
156     cl::desc("Always use DW_AT_ranges in DWARFv5 whenever it could allow more "
157              "address pool entry sharing to reduce relocations/object size"),
158     cl::values(clEnumValN(DwarfDebug::MinimizeAddrInV5::Default, "Default",
159                           "Default address minimization strategy"),
160                clEnumValN(DwarfDebug::MinimizeAddrInV5::Ranges, "Ranges",
161                           "Use rnglists for contiguous ranges if that allows "
162                           "using a pre-existing base address"),
163                clEnumValN(DwarfDebug::MinimizeAddrInV5::Expressions,
164                           "Expressions",
165                           "Use exprloc addrx+offset expressions for any "
166                           "address with a prior base address"),
167                clEnumValN(DwarfDebug::MinimizeAddrInV5::Disabled, "Disabled",
168                           "Stuff")),
169     cl::init(DwarfDebug::MinimizeAddrInV5::Default));
170 
171 static constexpr unsigned ULEB128PadSize = 4;
172 
173 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) {
174   getActiveStreamer().emitInt8(
175       Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op)
176                   : dwarf::OperationEncodingString(Op));
177 }
178 
179 void DebugLocDwarfExpression::emitSigned(int64_t Value) {
180   getActiveStreamer().emitSLEB128(Value, Twine(Value));
181 }
182 
183 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) {
184   getActiveStreamer().emitULEB128(Value, Twine(Value));
185 }
186 
187 void DebugLocDwarfExpression::emitData1(uint8_t Value) {
188   getActiveStreamer().emitInt8(Value, Twine(Value));
189 }
190 
191 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) {
192   assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit");
193   getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize);
194 }
195 
196 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI,
197                                               llvm::Register MachineReg) {
198   // This information is not available while emitting .debug_loc entries.
199   return false;
200 }
201 
202 void DebugLocDwarfExpression::enableTemporaryBuffer() {
203   assert(!IsBuffering && "Already buffering?");
204   if (!TmpBuf)
205     TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments);
206   IsBuffering = true;
207 }
208 
209 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; }
210 
211 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() {
212   return TmpBuf ? TmpBuf->Bytes.size() : 0;
213 }
214 
215 void DebugLocDwarfExpression::commitTemporaryBuffer() {
216   if (!TmpBuf)
217     return;
218   for (auto Byte : enumerate(TmpBuf->Bytes)) {
219     const char *Comment = (Byte.index() < TmpBuf->Comments.size())
220                               ? TmpBuf->Comments[Byte.index()].c_str()
221                               : "";
222     OutBS.emitInt8(Byte.value(), Comment);
223   }
224   TmpBuf->Bytes.clear();
225   TmpBuf->Comments.clear();
226 }
227 
228 const DIType *DbgVariable::getType() const {
229   return getVariable()->getType();
230 }
231 
232 /// Get .debug_loc entry for the instruction range starting at MI.
233 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) {
234   const DIExpression *Expr = MI->getDebugExpression();
235   assert(MI->getNumOperands() == 4);
236   if (MI->getDebugOperand(0).isReg()) {
237     const auto &RegOp = MI->getDebugOperand(0);
238     const auto &Op1 = MI->getDebugOffset();
239     // If the second operand is an immediate, this is a
240     // register-indirect address.
241     assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset");
242     MachineLocation MLoc(RegOp.getReg(), Op1.isImm());
243     return DbgValueLoc(Expr, MLoc);
244   }
245   if (MI->getDebugOperand(0).isTargetIndex()) {
246     const auto &Op = MI->getDebugOperand(0);
247     return DbgValueLoc(Expr,
248                        TargetIndexLocation(Op.getIndex(), Op.getOffset()));
249   }
250   if (MI->getDebugOperand(0).isImm())
251     return DbgValueLoc(Expr, MI->getDebugOperand(0).getImm());
252   if (MI->getDebugOperand(0).isFPImm())
253     return DbgValueLoc(Expr, MI->getDebugOperand(0).getFPImm());
254   if (MI->getDebugOperand(0).isCImm())
255     return DbgValueLoc(Expr, MI->getDebugOperand(0).getCImm());
256 
257   llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!");
258 }
259 
260 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) {
261   assert(FrameIndexExprs.empty() && "Already initialized?");
262   assert(!ValueLoc.get() && "Already initialized?");
263 
264   assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable");
265   assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() &&
266          "Wrong inlined-at");
267 
268   ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue));
269   if (auto *E = DbgValue->getDebugExpression())
270     if (E->getNumElements())
271       FrameIndexExprs.push_back({0, E});
272 }
273 
274 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const {
275   if (FrameIndexExprs.size() == 1)
276     return FrameIndexExprs;
277 
278   assert(llvm::all_of(FrameIndexExprs,
279                       [](const FrameIndexExpr &A) {
280                         return A.Expr->isFragment();
281                       }) &&
282          "multiple FI expressions without DW_OP_LLVM_fragment");
283   llvm::sort(FrameIndexExprs,
284              [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool {
285                return A.Expr->getFragmentInfo()->OffsetInBits <
286                       B.Expr->getFragmentInfo()->OffsetInBits;
287              });
288 
289   return FrameIndexExprs;
290 }
291 
292 void DbgVariable::addMMIEntry(const DbgVariable &V) {
293   assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry");
294   assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry");
295   assert(V.getVariable() == getVariable() && "conflicting variable");
296   assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location");
297 
298   assert(!FrameIndexExprs.empty() && "Expected an MMI entry");
299   assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry");
300 
301   // FIXME: This logic should not be necessary anymore, as we now have proper
302   // deduplication. However, without it, we currently run into the assertion
303   // below, which means that we are likely dealing with broken input, i.e. two
304   // non-fragment entries for the same variable at different frame indices.
305   if (FrameIndexExprs.size()) {
306     auto *Expr = FrameIndexExprs.back().Expr;
307     if (!Expr || !Expr->isFragment())
308       return;
309   }
310 
311   for (const auto &FIE : V.FrameIndexExprs)
312     // Ignore duplicate entries.
313     if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) {
314           return FIE.FI == Other.FI && FIE.Expr == Other.Expr;
315         }))
316       FrameIndexExprs.push_back(FIE);
317 
318   assert((FrameIndexExprs.size() == 1 ||
319           llvm::all_of(FrameIndexExprs,
320                        [](FrameIndexExpr &FIE) {
321                          return FIE.Expr && FIE.Expr->isFragment();
322                        })) &&
323          "conflicting locations for variable");
324 }
325 
326 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion,
327                                             bool GenerateTypeUnits,
328                                             DebuggerKind Tuning,
329                                             const Triple &TT) {
330   // Honor an explicit request.
331   if (AccelTables != AccelTableKind::Default)
332     return AccelTables;
333 
334   // Accelerator tables with type units are currently not supported.
335   if (GenerateTypeUnits)
336     return AccelTableKind::None;
337 
338   // Accelerator tables get emitted if targetting DWARF v5 or LLDB.  DWARF v5
339   // always implies debug_names. For lower standard versions we use apple
340   // accelerator tables on apple platforms and debug_names elsewhere.
341   if (DwarfVersion >= 5)
342     return AccelTableKind::Dwarf;
343   if (Tuning == DebuggerKind::LLDB)
344     return TT.isOSBinFormatMachO() ? AccelTableKind::Apple
345                                    : AccelTableKind::Dwarf;
346   return AccelTableKind::None;
347 }
348 
349 DwarfDebug::DwarfDebug(AsmPrinter *A)
350     : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()),
351       InfoHolder(A, "info_string", DIEValueAllocator),
352       SkeletonHolder(A, "skel_string", DIEValueAllocator),
353       IsDarwin(A->TM.getTargetTriple().isOSDarwin()) {
354   const Triple &TT = Asm->TM.getTargetTriple();
355 
356   // Make sure we know our "debugger tuning".  The target option takes
357   // precedence; fall back to triple-based defaults.
358   if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default)
359     DebuggerTuning = Asm->TM.Options.DebuggerTuning;
360   else if (IsDarwin)
361     DebuggerTuning = DebuggerKind::LLDB;
362   else if (TT.isPS4CPU())
363     DebuggerTuning = DebuggerKind::SCE;
364   else
365     DebuggerTuning = DebuggerKind::GDB;
366 
367   if (DwarfInlinedStrings == Default)
368     UseInlineStrings = TT.isNVPTX();
369   else
370     UseInlineStrings = DwarfInlinedStrings == Enable;
371 
372   UseLocSection = !TT.isNVPTX();
373 
374   HasAppleExtensionAttributes = tuneForLLDB();
375 
376   // Handle split DWARF.
377   HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty();
378 
379   // SCE defaults to linkage names only for abstract subprograms.
380   if (DwarfLinkageNames == DefaultLinkageNames)
381     UseAllLinkageNames = !tuneForSCE();
382   else
383     UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames;
384 
385   unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
386   unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
387                                     : MMI->getModule()->getDwarfVersion();
388   // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2.
389   DwarfVersion =
390       TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION);
391 
392   bool Dwarf64 = Asm->TM.Options.MCOptions.Dwarf64 &&
393                  DwarfVersion >= 3 &&   // DWARF64 was introduced in DWARFv3.
394                  TT.isArch64Bit() &&    // DWARF64 requires 64-bit relocations.
395                  TT.isOSBinFormatELF(); // Support only ELF for now.
396 
397   UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX();
398 
399   // Use sections as references. Force for NVPTX.
400   if (DwarfSectionsAsReferences == Default)
401     UseSectionsAsReferences = TT.isNVPTX();
402   else
403     UseSectionsAsReferences = DwarfSectionsAsReferences == Enable;
404 
405   // Don't generate type units for unsupported object file formats.
406   GenerateTypeUnits = (A->TM.getTargetTriple().isOSBinFormatELF() ||
407                        A->TM.getTargetTriple().isOSBinFormatWasm()) &&
408                       GenerateDwarfTypeUnits;
409 
410   TheAccelTableKind = computeAccelTableKind(
411       DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple());
412 
413   // Work around a GDB bug. GDB doesn't support the standard opcode;
414   // SCE doesn't support GNU's; LLDB prefers the standard opcode, which
415   // is defined as of DWARF 3.
416   // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented
417   // https://sourceware.org/bugzilla/show_bug.cgi?id=11616
418   UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3;
419 
420   // GDB does not fully support the DWARF 4 representation for bitfields.
421   UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB();
422 
423   // The DWARF v5 string offsets table has - possibly shared - contributions
424   // from each compile and type unit each preceded by a header. The string
425   // offsets table used by the pre-DWARF v5 split-DWARF implementation uses
426   // a monolithic string offsets table without any header.
427   UseSegmentedStringOffsetsTable = DwarfVersion >= 5;
428 
429   // Emit call-site-param debug info for GDB and LLDB, if the target supports
430   // the debug entry values feature. It can also be enabled explicitly.
431   EmitDebugEntryValues = Asm->TM.Options.ShouldEmitDebugEntryValues();
432 
433   // It is unclear if the GCC .debug_macro extension is well-specified
434   // for split DWARF. For now, do not allow LLVM to emit it.
435   UseDebugMacroSection =
436       DwarfVersion >= 5 || (UseGNUDebugMacro && !useSplitDwarf());
437   if (DwarfOpConvert == Default)
438     EnableOpConvert = !((tuneForGDB() && useSplitDwarf()) || (tuneForLLDB() && !TT.isOSBinFormatMachO()));
439   else
440     EnableOpConvert = (DwarfOpConvert == Enable);
441 
442   // Split DWARF would benefit object size significantly by trading reductions
443   // in address pool usage for slightly increased range list encodings.
444   if (DwarfVersion >= 5) {
445     MinimizeAddr = MinimizeAddrInV5Option;
446     // FIXME: In the future, enable this by default for Split DWARF where the
447     // tradeoff is more pronounced due to being able to offload the range
448     // lists to the dwo file and shrink object files/reduce relocations there.
449     if (MinimizeAddr == MinimizeAddrInV5::Default)
450       MinimizeAddr = MinimizeAddrInV5::Disabled;
451   }
452 
453   Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion);
454   Asm->OutStreamer->getContext().setDwarfFormat(Dwarf64 ? dwarf::DWARF64
455                                                         : dwarf::DWARF32);
456 }
457 
458 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
459 DwarfDebug::~DwarfDebug() = default;
460 
461 static bool isObjCClass(StringRef Name) {
462   return Name.startswith("+") || Name.startswith("-");
463 }
464 
465 static bool hasObjCCategory(StringRef Name) {
466   if (!isObjCClass(Name))
467     return false;
468 
469   return Name.find(") ") != StringRef::npos;
470 }
471 
472 static void getObjCClassCategory(StringRef In, StringRef &Class,
473                                  StringRef &Category) {
474   if (!hasObjCCategory(In)) {
475     Class = In.slice(In.find('[') + 1, In.find(' '));
476     Category = "";
477     return;
478   }
479 
480   Class = In.slice(In.find('[') + 1, In.find('('));
481   Category = In.slice(In.find('[') + 1, In.find(' '));
482 }
483 
484 static StringRef getObjCMethodName(StringRef In) {
485   return In.slice(In.find(' ') + 1, In.find(']'));
486 }
487 
488 // Add the various names to the Dwarf accelerator table names.
489 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU,
490                                     const DISubprogram *SP, DIE &Die) {
491   if (getAccelTableKind() != AccelTableKind::Apple &&
492       CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None)
493     return;
494 
495   if (!SP->isDefinition())
496     return;
497 
498   if (SP->getName() != "")
499     addAccelName(CU, SP->getName(), Die);
500 
501   // If the linkage name is different than the name, go ahead and output that as
502   // well into the name table. Only do that if we are going to actually emit
503   // that name.
504   if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() &&
505       (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP)))
506     addAccelName(CU, SP->getLinkageName(), Die);
507 
508   // If this is an Objective-C selector name add it to the ObjC accelerator
509   // too.
510   if (isObjCClass(SP->getName())) {
511     StringRef Class, Category;
512     getObjCClassCategory(SP->getName(), Class, Category);
513     addAccelObjC(CU, Class, Die);
514     if (Category != "")
515       addAccelObjC(CU, Category, Die);
516     // Also add the base method name to the name table.
517     addAccelName(CU, getObjCMethodName(SP->getName()), Die);
518   }
519 }
520 
521 /// Check whether we should create a DIE for the given Scope, return true
522 /// if we don't create a DIE (the corresponding DIE is null).
523 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
524   if (Scope->isAbstractScope())
525     return false;
526 
527   // We don't create a DIE if there is no Range.
528   const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
529   if (Ranges.empty())
530     return true;
531 
532   if (Ranges.size() > 1)
533     return false;
534 
535   // We don't create a DIE if we have a single Range and the end label
536   // is null.
537   return !getLabelAfterInsn(Ranges.front().second);
538 }
539 
540 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) {
541   F(CU);
542   if (auto *SkelCU = CU.getSkeleton())
543     if (CU.getCUNode()->getSplitDebugInlining())
544       F(*SkelCU);
545 }
546 
547 bool DwarfDebug::shareAcrossDWOCUs() const {
548   return SplitDwarfCrossCuReferences;
549 }
550 
551 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU,
552                                                      LexicalScope *Scope) {
553   assert(Scope && Scope->getScopeNode());
554   assert(Scope->isAbstractScope());
555   assert(!Scope->getInlinedAt());
556 
557   auto *SP = cast<DISubprogram>(Scope->getScopeNode());
558 
559   // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
560   // was inlined from another compile unit.
561   if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining())
562     // Avoid building the original CU if it won't be used
563     SrcCU.constructAbstractSubprogramScopeDIE(Scope);
564   else {
565     auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
566     if (auto *SkelCU = CU.getSkeleton()) {
567       (shareAcrossDWOCUs() ? CU : SrcCU)
568           .constructAbstractSubprogramScopeDIE(Scope);
569       if (CU.getCUNode()->getSplitDebugInlining())
570         SkelCU->constructAbstractSubprogramScopeDIE(Scope);
571     } else
572       CU.constructAbstractSubprogramScopeDIE(Scope);
573   }
574 }
575 
576 DIE &DwarfDebug::constructSubprogramDefinitionDIE(const DISubprogram *SP) {
577   DICompileUnit *Unit = SP->getUnit();
578   assert(SP->isDefinition() && "Subprogram not a definition");
579   assert(Unit && "Subprogram definition without parent unit");
580   auto &CU = getOrCreateDwarfCompileUnit(Unit);
581   return *CU.getOrCreateSubprogramDIE(SP);
582 }
583 
584 /// Represents a parameter whose call site value can be described by applying a
585 /// debug expression to a register in the forwarded register worklist.
586 struct FwdRegParamInfo {
587   /// The described parameter register.
588   unsigned ParamReg;
589 
590   /// Debug expression that has been built up when walking through the
591   /// instruction chain that produces the parameter's value.
592   const DIExpression *Expr;
593 };
594 
595 /// Register worklist for finding call site values.
596 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>;
597 
598 /// Append the expression \p Addition to \p Original and return the result.
599 static const DIExpression *combineDIExpressions(const DIExpression *Original,
600                                                 const DIExpression *Addition) {
601   std::vector<uint64_t> Elts = Addition->getElements().vec();
602   // Avoid multiple DW_OP_stack_values.
603   if (Original->isImplicit() && Addition->isImplicit())
604     erase_value(Elts, dwarf::DW_OP_stack_value);
605   const DIExpression *CombinedExpr =
606       (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original;
607   return CombinedExpr;
608 }
609 
610 /// Emit call site parameter entries that are described by the given value and
611 /// debug expression.
612 template <typename ValT>
613 static void finishCallSiteParams(ValT Val, const DIExpression *Expr,
614                                  ArrayRef<FwdRegParamInfo> DescribedParams,
615                                  ParamSet &Params) {
616   for (auto Param : DescribedParams) {
617     bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0;
618 
619     // TODO: Entry value operations can currently not be combined with any
620     // other expressions, so we can't emit call site entries in those cases.
621     if (ShouldCombineExpressions && Expr->isEntryValue())
622       continue;
623 
624     // If a parameter's call site value is produced by a chain of
625     // instructions we may have already created an expression for the
626     // parameter when walking through the instructions. Append that to the
627     // base expression.
628     const DIExpression *CombinedExpr =
629         ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr)
630                                  : Expr;
631     assert((!CombinedExpr || CombinedExpr->isValid()) &&
632            "Combined debug expression is invalid");
633 
634     DbgValueLoc DbgLocVal(CombinedExpr, Val);
635     DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal);
636     Params.push_back(CSParm);
637     ++NumCSParams;
638   }
639 }
640 
641 /// Add \p Reg to the worklist, if it's not already present, and mark that the
642 /// given parameter registers' values can (potentially) be described using
643 /// that register and an debug expression.
644 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg,
645                                 const DIExpression *Expr,
646                                 ArrayRef<FwdRegParamInfo> ParamsToAdd) {
647   auto I = Worklist.insert({Reg, {}});
648   auto &ParamsForFwdReg = I.first->second;
649   for (auto Param : ParamsToAdd) {
650     assert(none_of(ParamsForFwdReg,
651                    [Param](const FwdRegParamInfo &D) {
652                      return D.ParamReg == Param.ParamReg;
653                    }) &&
654            "Same parameter described twice by forwarding reg");
655 
656     // If a parameter's call site value is produced by a chain of
657     // instructions we may have already created an expression for the
658     // parameter when walking through the instructions. Append that to the
659     // new expression.
660     const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr);
661     ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr});
662   }
663 }
664 
665 /// Interpret values loaded into registers by \p CurMI.
666 static void interpretValues(const MachineInstr *CurMI,
667                             FwdRegWorklist &ForwardedRegWorklist,
668                             ParamSet &Params) {
669 
670   const MachineFunction *MF = CurMI->getMF();
671   const DIExpression *EmptyExpr =
672       DIExpression::get(MF->getFunction().getContext(), {});
673   const auto &TRI = *MF->getSubtarget().getRegisterInfo();
674   const auto &TII = *MF->getSubtarget().getInstrInfo();
675   const auto &TLI = *MF->getSubtarget().getTargetLowering();
676 
677   // If an instruction defines more than one item in the worklist, we may run
678   // into situations where a worklist register's value is (potentially)
679   // described by the previous value of another register that is also defined
680   // by that instruction.
681   //
682   // This can for example occur in cases like this:
683   //
684   //   $r1 = mov 123
685   //   $r0, $r1 = mvrr $r1, 456
686   //   call @foo, $r0, $r1
687   //
688   // When describing $r1's value for the mvrr instruction, we need to make sure
689   // that we don't finalize an entry value for $r0, as that is dependent on the
690   // previous value of $r1 (123 rather than 456).
691   //
692   // In order to not have to distinguish between those cases when finalizing
693   // entry values, we simply postpone adding new parameter registers to the
694   // worklist, by first keeping them in this temporary container until the
695   // instruction has been handled.
696   FwdRegWorklist TmpWorklistItems;
697 
698   // If the MI is an instruction defining one or more parameters' forwarding
699   // registers, add those defines.
700   auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI,
701                                           SmallSetVector<unsigned, 4> &Defs) {
702     if (MI.isDebugInstr())
703       return;
704 
705     for (const MachineOperand &MO : MI.operands()) {
706       if (MO.isReg() && MO.isDef() &&
707           Register::isPhysicalRegister(MO.getReg())) {
708         for (auto FwdReg : ForwardedRegWorklist)
709           if (TRI.regsOverlap(FwdReg.first, MO.getReg()))
710             Defs.insert(FwdReg.first);
711       }
712     }
713   };
714 
715   // Set of worklist registers that are defined by this instruction.
716   SmallSetVector<unsigned, 4> FwdRegDefs;
717 
718   getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs);
719   if (FwdRegDefs.empty())
720     return;
721 
722   for (auto ParamFwdReg : FwdRegDefs) {
723     if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) {
724       if (ParamValue->first.isImm()) {
725         int64_t Val = ParamValue->first.getImm();
726         finishCallSiteParams(Val, ParamValue->second,
727                              ForwardedRegWorklist[ParamFwdReg], Params);
728       } else if (ParamValue->first.isReg()) {
729         Register RegLoc = ParamValue->first.getReg();
730         Register SP = TLI.getStackPointerRegisterToSaveRestore();
731         Register FP = TRI.getFrameRegister(*MF);
732         bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP);
733         if (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) {
734           MachineLocation MLoc(RegLoc, /*Indirect=*/IsSPorFP);
735           finishCallSiteParams(MLoc, ParamValue->second,
736                                ForwardedRegWorklist[ParamFwdReg], Params);
737         } else {
738           // ParamFwdReg was described by the non-callee saved register
739           // RegLoc. Mark that the call site values for the parameters are
740           // dependent on that register instead of ParamFwdReg. Since RegLoc
741           // may be a register that will be handled in this iteration, we
742           // postpone adding the items to the worklist, and instead keep them
743           // in a temporary container.
744           addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second,
745                               ForwardedRegWorklist[ParamFwdReg]);
746         }
747       }
748     }
749   }
750 
751   // Remove all registers that this instruction defines from the worklist.
752   for (auto ParamFwdReg : FwdRegDefs)
753     ForwardedRegWorklist.erase(ParamFwdReg);
754 
755   // Now that we are done handling this instruction, add items from the
756   // temporary worklist to the real one.
757   for (auto New : TmpWorklistItems)
758     addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second);
759   TmpWorklistItems.clear();
760 }
761 
762 static bool interpretNextInstr(const MachineInstr *CurMI,
763                                FwdRegWorklist &ForwardedRegWorklist,
764                                ParamSet &Params) {
765   // Skip bundle headers.
766   if (CurMI->isBundle())
767     return true;
768 
769   // If the next instruction is a call we can not interpret parameter's
770   // forwarding registers or we finished the interpretation of all
771   // parameters.
772   if (CurMI->isCall())
773     return false;
774 
775   if (ForwardedRegWorklist.empty())
776     return false;
777 
778   // Avoid NOP description.
779   if (CurMI->getNumOperands() == 0)
780     return true;
781 
782   interpretValues(CurMI, ForwardedRegWorklist, Params);
783 
784   return true;
785 }
786 
787 /// Try to interpret values loaded into registers that forward parameters
788 /// for \p CallMI. Store parameters with interpreted value into \p Params.
789 static void collectCallSiteParameters(const MachineInstr *CallMI,
790                                       ParamSet &Params) {
791   const MachineFunction *MF = CallMI->getMF();
792   auto CalleesMap = MF->getCallSitesInfo();
793   auto CallFwdRegsInfo = CalleesMap.find(CallMI);
794 
795   // There is no information for the call instruction.
796   if (CallFwdRegsInfo == CalleesMap.end())
797     return;
798 
799   const MachineBasicBlock *MBB = CallMI->getParent();
800 
801   // Skip the call instruction.
802   auto I = std::next(CallMI->getReverseIterator());
803 
804   FwdRegWorklist ForwardedRegWorklist;
805 
806   const DIExpression *EmptyExpr =
807       DIExpression::get(MF->getFunction().getContext(), {});
808 
809   // Add all the forwarding registers into the ForwardedRegWorklist.
810   for (auto ArgReg : CallFwdRegsInfo->second) {
811     bool InsertedReg =
812         ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}})
813             .second;
814     assert(InsertedReg && "Single register used to forward two arguments?");
815     (void)InsertedReg;
816   }
817 
818   // Do not emit CSInfo for undef forwarding registers.
819   for (auto &MO : CallMI->uses())
820     if (MO.isReg() && MO.isUndef())
821       ForwardedRegWorklist.erase(MO.getReg());
822 
823   // We erase, from the ForwardedRegWorklist, those forwarding registers for
824   // which we successfully describe a loaded value (by using
825   // the describeLoadedValue()). For those remaining arguments in the working
826   // list, for which we do not describe a loaded value by
827   // the describeLoadedValue(), we try to generate an entry value expression
828   // for their call site value description, if the call is within the entry MBB.
829   // TODO: Handle situations when call site parameter value can be described
830   // as the entry value within basic blocks other than the first one.
831   bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin();
832 
833   // Search for a loading value in forwarding registers inside call delay slot.
834   if (CallMI->hasDelaySlot()) {
835     auto Suc = std::next(CallMI->getIterator());
836     // Only one-instruction delay slot is supported.
837     auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator());
838     (void)BundleEnd;
839     assert(std::next(Suc) == BundleEnd &&
840            "More than one instruction in call delay slot");
841     // Try to interpret value loaded by instruction.
842     if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params))
843       return;
844   }
845 
846   // Search for a loading value in forwarding registers.
847   for (; I != MBB->rend(); ++I) {
848     // Try to interpret values loaded by instruction.
849     if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params))
850       return;
851   }
852 
853   // Emit the call site parameter's value as an entry value.
854   if (ShouldTryEmitEntryVals) {
855     // Create an expression where the register's entry value is used.
856     DIExpression *EntryExpr = DIExpression::get(
857         MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1});
858     for (auto RegEntry : ForwardedRegWorklist) {
859       MachineLocation MLoc(RegEntry.first);
860       finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params);
861     }
862   }
863 }
864 
865 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP,
866                                             DwarfCompileUnit &CU, DIE &ScopeDIE,
867                                             const MachineFunction &MF) {
868   // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if
869   // the subprogram is required to have one.
870   if (!SP.areAllCallsDescribed() || !SP.isDefinition())
871     return;
872 
873   // Use DW_AT_call_all_calls to express that call site entries are present
874   // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls
875   // because one of its requirements is not met: call site entries for
876   // optimized-out calls are elided.
877   CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls));
878 
879   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
880   assert(TII && "TargetInstrInfo not found: cannot label tail calls");
881 
882   // Delay slot support check.
883   auto delaySlotSupported = [&](const MachineInstr &MI) {
884     if (!MI.isBundledWithSucc())
885       return false;
886     auto Suc = std::next(MI.getIterator());
887     auto CallInstrBundle = getBundleStart(MI.getIterator());
888     (void)CallInstrBundle;
889     auto DelaySlotBundle = getBundleStart(Suc);
890     (void)DelaySlotBundle;
891     // Ensure that label after call is following delay slot instruction.
892     // Ex. CALL_INSTRUCTION {
893     //       DELAY_SLOT_INSTRUCTION }
894     //      LABEL_AFTER_CALL
895     assert(getLabelAfterInsn(&*CallInstrBundle) ==
896                getLabelAfterInsn(&*DelaySlotBundle) &&
897            "Call and its successor instruction don't have same label after.");
898     return true;
899   };
900 
901   // Emit call site entries for each call or tail call in the function.
902   for (const MachineBasicBlock &MBB : MF) {
903     for (const MachineInstr &MI : MBB.instrs()) {
904       // Bundles with call in them will pass the isCall() test below but do not
905       // have callee operand information so skip them here. Iterator will
906       // eventually reach the call MI.
907       if (MI.isBundle())
908         continue;
909 
910       // Skip instructions which aren't calls. Both calls and tail-calling jump
911       // instructions (e.g TAILJMPd64) are classified correctly here.
912       if (!MI.isCandidateForCallSiteEntry())
913         continue;
914 
915       // Skip instructions marked as frame setup, as they are not interesting to
916       // the user.
917       if (MI.getFlag(MachineInstr::FrameSetup))
918         continue;
919 
920       // Check if delay slot support is enabled.
921       if (MI.hasDelaySlot() && !delaySlotSupported(*&MI))
922         return;
923 
924       // If this is a direct call, find the callee's subprogram.
925       // In the case of an indirect call find the register that holds
926       // the callee.
927       const MachineOperand &CalleeOp = MI.getOperand(0);
928       if (!CalleeOp.isGlobal() && !CalleeOp.isReg())
929         continue;
930 
931       unsigned CallReg = 0;
932       DIE *CalleeDIE = nullptr;
933       const Function *CalleeDecl = nullptr;
934       if (CalleeOp.isReg()) {
935         CallReg = CalleeOp.getReg();
936         if (!CallReg)
937           continue;
938       } else {
939         CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal());
940         if (!CalleeDecl || !CalleeDecl->getSubprogram())
941           continue;
942         const DISubprogram *CalleeSP = CalleeDecl->getSubprogram();
943 
944         if (CalleeSP->isDefinition()) {
945           // Ensure that a subprogram DIE for the callee is available in the
946           // appropriate CU.
947           CalleeDIE = &constructSubprogramDefinitionDIE(CalleeSP);
948         } else {
949           // Create the declaration DIE if it is missing. This is required to
950           // support compilation of old bitcode with an incomplete list of
951           // retained metadata.
952           CalleeDIE = CU.getOrCreateSubprogramDIE(CalleeSP);
953         }
954         assert(CalleeDIE && "Must have a DIE for the callee");
955       }
956 
957       // TODO: Omit call site entries for runtime calls (objc_msgSend, etc).
958 
959       bool IsTail = TII->isTailCall(MI);
960 
961       // If MI is in a bundle, the label was created after the bundle since
962       // EmitFunctionBody iterates over top-level MIs. Get that top-level MI
963       // to search for that label below.
964       const MachineInstr *TopLevelCallMI =
965           MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI;
966 
967       // For non-tail calls, the return PC is needed to disambiguate paths in
968       // the call graph which could lead to some target function. For tail
969       // calls, no return PC information is needed, unless tuning for GDB in
970       // DWARF4 mode in which case we fake a return PC for compatibility.
971       const MCSymbol *PCAddr =
972           (!IsTail || CU.useGNUAnalogForDwarf5Feature())
973               ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI))
974               : nullptr;
975 
976       // For tail calls, it's necessary to record the address of the branch
977       // instruction so that the debugger can show where the tail call occurred.
978       const MCSymbol *CallAddr =
979           IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr;
980 
981       assert((IsTail || PCAddr) && "Non-tail call without return PC");
982 
983       LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> "
984                         << (CalleeDecl ? CalleeDecl->getName()
985                                        : StringRef(MF.getSubtarget()
986                                                        .getRegisterInfo()
987                                                        ->getName(CallReg)))
988                         << (IsTail ? " [IsTail]" : "") << "\n");
989 
990       DIE &CallSiteDIE = CU.constructCallSiteEntryDIE(
991           ScopeDIE, CalleeDIE, IsTail, PCAddr, CallAddr, CallReg);
992 
993       // Optionally emit call-site-param debug info.
994       if (emitDebugEntryValues()) {
995         ParamSet Params;
996         // Try to interpret values of call site parameters.
997         collectCallSiteParameters(&MI, Params);
998         CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params);
999       }
1000     }
1001   }
1002 }
1003 
1004 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const {
1005   if (!U.hasDwarfPubSections())
1006     return;
1007 
1008   U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
1009 }
1010 
1011 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit,
1012                                       DwarfCompileUnit &NewCU) {
1013   DIE &Die = NewCU.getUnitDie();
1014   StringRef FN = DIUnit->getFilename();
1015 
1016   StringRef Producer = DIUnit->getProducer();
1017   StringRef Flags = DIUnit->getFlags();
1018   if (!Flags.empty() && !useAppleExtensionAttributes()) {
1019     std::string ProducerWithFlags = Producer.str() + " " + Flags.str();
1020     NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags);
1021   } else
1022     NewCU.addString(Die, dwarf::DW_AT_producer, Producer);
1023 
1024   NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
1025                 DIUnit->getSourceLanguage());
1026   NewCU.addString(Die, dwarf::DW_AT_name, FN);
1027   StringRef SysRoot = DIUnit->getSysRoot();
1028   if (!SysRoot.empty())
1029     NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot);
1030   StringRef SDK = DIUnit->getSDK();
1031   if (!SDK.empty())
1032     NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK);
1033 
1034   // Add DW_str_offsets_base to the unit DIE, except for split units.
1035   if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
1036     NewCU.addStringOffsetsStart();
1037 
1038   if (!useSplitDwarf()) {
1039     NewCU.initStmtList();
1040 
1041     // If we're using split dwarf the compilation dir is going to be in the
1042     // skeleton CU and so we don't need to duplicate it here.
1043     if (!CompilationDir.empty())
1044       NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
1045     addGnuPubAttributes(NewCU, Die);
1046   }
1047 
1048   if (useAppleExtensionAttributes()) {
1049     if (DIUnit->isOptimized())
1050       NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);
1051 
1052     StringRef Flags = DIUnit->getFlags();
1053     if (!Flags.empty())
1054       NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);
1055 
1056     if (unsigned RVer = DIUnit->getRuntimeVersion())
1057       NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
1058                     dwarf::DW_FORM_data1, RVer);
1059   }
1060 
1061   if (DIUnit->getDWOId()) {
1062     // This CU is either a clang module DWO or a skeleton CU.
1063     NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8,
1064                   DIUnit->getDWOId());
1065     if (!DIUnit->getSplitDebugFilename().empty()) {
1066       // This is a prefabricated skeleton CU.
1067       dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1068                                          ? dwarf::DW_AT_dwo_name
1069                                          : dwarf::DW_AT_GNU_dwo_name;
1070       NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename());
1071     }
1072   }
1073 }
1074 // Create new DwarfCompileUnit for the given metadata node with tag
1075 // DW_TAG_compile_unit.
1076 DwarfCompileUnit &
1077 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) {
1078   if (auto *CU = CUMap.lookup(DIUnit))
1079     return *CU;
1080 
1081   CompilationDir = DIUnit->getDirectory();
1082 
1083   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
1084       InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
1085   DwarfCompileUnit &NewCU = *OwnedUnit;
1086   InfoHolder.addUnit(std::move(OwnedUnit));
1087 
1088   for (auto *IE : DIUnit->getImportedEntities())
1089     NewCU.addImportedEntity(IE);
1090 
1091   // LTO with assembly output shares a single line table amongst multiple CUs.
1092   // To avoid the compilation directory being ambiguous, let the line table
1093   // explicitly describe the directory of all files, never relying on the
1094   // compilation directory.
1095   if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU)
1096     Asm->OutStreamer->emitDwarfFile0Directive(
1097         CompilationDir, DIUnit->getFilename(), getMD5AsBytes(DIUnit->getFile()),
1098         DIUnit->getSource(), NewCU.getUniqueID());
1099 
1100   if (useSplitDwarf()) {
1101     NewCU.setSkeleton(constructSkeletonCU(NewCU));
1102     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection());
1103   } else {
1104     finishUnitAttributes(DIUnit, NewCU);
1105     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
1106   }
1107 
1108   CUMap.insert({DIUnit, &NewCU});
1109   CUDieMap.insert({&NewCU.getUnitDie(), &NewCU});
1110   return NewCU;
1111 }
1112 
1113 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU,
1114                                                   const DIImportedEntity *N) {
1115   if (isa<DILocalScope>(N->getScope()))
1116     return;
1117   if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope()))
1118     D->addChild(TheCU.constructImportedEntityDIE(N));
1119 }
1120 
1121 /// Sort and unique GVEs by comparing their fragment offset.
1122 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &
1123 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) {
1124   llvm::sort(
1125       GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) {
1126         // Sort order: first null exprs, then exprs without fragment
1127         // info, then sort by fragment offset in bits.
1128         // FIXME: Come up with a more comprehensive comparator so
1129         // the sorting isn't non-deterministic, and so the following
1130         // std::unique call works correctly.
1131         if (!A.Expr || !B.Expr)
1132           return !!B.Expr;
1133         auto FragmentA = A.Expr->getFragmentInfo();
1134         auto FragmentB = B.Expr->getFragmentInfo();
1135         if (!FragmentA || !FragmentB)
1136           return !!FragmentB;
1137         return FragmentA->OffsetInBits < FragmentB->OffsetInBits;
1138       });
1139   GVEs.erase(std::unique(GVEs.begin(), GVEs.end(),
1140                          [](DwarfCompileUnit::GlobalExpr A,
1141                             DwarfCompileUnit::GlobalExpr B) {
1142                            return A.Expr == B.Expr;
1143                          }),
1144              GVEs.end());
1145   return GVEs;
1146 }
1147 
1148 // Emit all Dwarf sections that should come prior to the content. Create
1149 // global DIEs and emit initial debug info sections. This is invoked by
1150 // the target AsmPrinter.
1151 void DwarfDebug::beginModule(Module *M) {
1152   DebugHandlerBase::beginModule(M);
1153 
1154   if (!Asm || !MMI->hasDebugInfo())
1155     return;
1156 
1157   unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(),
1158                                        M->debug_compile_units_end());
1159   assert(NumDebugCUs > 0 && "Asm unexpectedly initialized");
1160   assert(MMI->hasDebugInfo() &&
1161          "DebugInfoAvailabilty unexpectedly not initialized");
1162   SingleCU = NumDebugCUs == 1;
1163   DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>>
1164       GVMap;
1165   for (const GlobalVariable &Global : M->globals()) {
1166     SmallVector<DIGlobalVariableExpression *, 1> GVs;
1167     Global.getDebugInfo(GVs);
1168     for (auto *GVE : GVs)
1169       GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()});
1170   }
1171 
1172   // Create the symbol that designates the start of the unit's contribution
1173   // to the string offsets table. In a split DWARF scenario, only the skeleton
1174   // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol).
1175   if (useSegmentedStringOffsetsTable())
1176     (useSplitDwarf() ? SkeletonHolder : InfoHolder)
1177         .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base"));
1178 
1179 
1180   // Create the symbols that designates the start of the DWARF v5 range list
1181   // and locations list tables. They are located past the table headers.
1182   if (getDwarfVersion() >= 5) {
1183     DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1184     Holder.setRnglistsTableBaseSym(
1185         Asm->createTempSymbol("rnglists_table_base"));
1186 
1187     if (useSplitDwarf())
1188       InfoHolder.setRnglistsTableBaseSym(
1189           Asm->createTempSymbol("rnglists_dwo_table_base"));
1190   }
1191 
1192   // Create the symbol that points to the first entry following the debug
1193   // address table (.debug_addr) header.
1194   AddrPool.setLabel(Asm->createTempSymbol("addr_table_base"));
1195   DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base"));
1196 
1197   for (DICompileUnit *CUNode : M->debug_compile_units()) {
1198     // FIXME: Move local imported entities into a list attached to the
1199     // subprogram, then this search won't be needed and a
1200     // getImportedEntities().empty() test should go below with the rest.
1201     bool HasNonLocalImportedEntities = llvm::any_of(
1202         CUNode->getImportedEntities(), [](const DIImportedEntity *IE) {
1203           return !isa<DILocalScope>(IE->getScope());
1204         });
1205 
1206     if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() &&
1207         CUNode->getRetainedTypes().empty() &&
1208         CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty())
1209       continue;
1210 
1211     DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode);
1212 
1213     // Global Variables.
1214     for (auto *GVE : CUNode->getGlobalVariables()) {
1215       // Don't bother adding DIGlobalVariableExpressions listed in the CU if we
1216       // already know about the variable and it isn't adding a constant
1217       // expression.
1218       auto &GVMapEntry = GVMap[GVE->getVariable()];
1219       auto *Expr = GVE->getExpression();
1220       if (!GVMapEntry.size() || (Expr && Expr->isConstant()))
1221         GVMapEntry.push_back({nullptr, Expr});
1222     }
1223     DenseSet<DIGlobalVariable *> Processed;
1224     for (auto *GVE : CUNode->getGlobalVariables()) {
1225       DIGlobalVariable *GV = GVE->getVariable();
1226       if (Processed.insert(GV).second)
1227         CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV]));
1228     }
1229 
1230     for (auto *Ty : CUNode->getEnumTypes()) {
1231       // The enum types array by design contains pointers to
1232       // MDNodes rather than DIRefs. Unique them here.
1233       CU.getOrCreateTypeDIE(cast<DIType>(Ty));
1234     }
1235     for (auto *Ty : CUNode->getRetainedTypes()) {
1236       // The retained types array by design contains pointers to
1237       // MDNodes rather than DIRefs. Unique them here.
1238       if (DIType *RT = dyn_cast<DIType>(Ty))
1239           // There is no point in force-emitting a forward declaration.
1240           CU.getOrCreateTypeDIE(RT);
1241     }
1242     // Emit imported_modules last so that the relevant context is already
1243     // available.
1244     for (auto *IE : CUNode->getImportedEntities())
1245       constructAndAddImportedEntityDIE(CU, IE);
1246   }
1247 }
1248 
1249 void DwarfDebug::finishEntityDefinitions() {
1250   for (const auto &Entity : ConcreteEntities) {
1251     DIE *Die = Entity->getDIE();
1252     assert(Die);
1253     // FIXME: Consider the time-space tradeoff of just storing the unit pointer
1254     // in the ConcreteEntities list, rather than looking it up again here.
1255     // DIE::getUnit isn't simple - it walks parent pointers, etc.
1256     DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie());
1257     assert(Unit);
1258     Unit->finishEntityDefinition(Entity.get());
1259   }
1260 }
1261 
1262 void DwarfDebug::finishSubprogramDefinitions() {
1263   for (const DISubprogram *SP : ProcessedSPNodes) {
1264     assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug);
1265     forBothCUs(
1266         getOrCreateDwarfCompileUnit(SP->getUnit()),
1267         [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); });
1268   }
1269 }
1270 
1271 void DwarfDebug::finalizeModuleInfo() {
1272   const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
1273 
1274   finishSubprogramDefinitions();
1275 
1276   finishEntityDefinitions();
1277 
1278   // Include the DWO file name in the hash if there's more than one CU.
1279   // This handles ThinLTO's situation where imported CUs may very easily be
1280   // duplicate with the same CU partially imported into another ThinLTO unit.
1281   StringRef DWOName;
1282   if (CUMap.size() > 1)
1283     DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile;
1284 
1285   // Handle anything that needs to be done on a per-unit basis after
1286   // all other generation.
1287   for (const auto &P : CUMap) {
1288     auto &TheCU = *P.second;
1289     if (TheCU.getCUNode()->isDebugDirectivesOnly())
1290       continue;
1291     // Emit DW_AT_containing_type attribute to connect types with their
1292     // vtable holding type.
1293     TheCU.constructContainingTypeDIEs();
1294 
1295     // Add CU specific attributes if we need to add any.
1296     // If we're splitting the dwarf out now that we've got the entire
1297     // CU then add the dwo id to it.
1298     auto *SkCU = TheCU.getSkeleton();
1299 
1300     bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty();
1301 
1302     if (HasSplitUnit) {
1303       dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1304                                          ? dwarf::DW_AT_dwo_name
1305                                          : dwarf::DW_AT_GNU_dwo_name;
1306       finishUnitAttributes(TheCU.getCUNode(), TheCU);
1307       TheCU.addString(TheCU.getUnitDie(), attrDWOName,
1308                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1309       SkCU->addString(SkCU->getUnitDie(), attrDWOName,
1310                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1311       // Emit a unique identifier for this CU.
1312       uint64_t ID =
1313           DIEHash(Asm, &TheCU).computeCUSignature(DWOName, TheCU.getUnitDie());
1314       if (getDwarfVersion() >= 5) {
1315         TheCU.setDWOId(ID);
1316         SkCU->setDWOId(ID);
1317       } else {
1318         TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1319                       dwarf::DW_FORM_data8, ID);
1320         SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1321                       dwarf::DW_FORM_data8, ID);
1322       }
1323 
1324       if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) {
1325         const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol();
1326         SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
1327                               Sym, Sym);
1328       }
1329     } else if (SkCU) {
1330       finishUnitAttributes(SkCU->getCUNode(), *SkCU);
1331     }
1332 
1333     // If we have code split among multiple sections or non-contiguous
1334     // ranges of code then emit a DW_AT_ranges attribute on the unit that will
1335     // remain in the .o file, otherwise add a DW_AT_low_pc.
1336     // FIXME: We should use ranges allow reordering of code ala
1337     // .subsections_via_symbols in mach-o. This would mean turning on
1338     // ranges for all subprogram DIEs for mach-o.
1339     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
1340 
1341     if (unsigned NumRanges = TheCU.getRanges().size()) {
1342       if (NumRanges > 1 && useRangesSection())
1343         // A DW_AT_low_pc attribute may also be specified in combination with
1344         // DW_AT_ranges to specify the default base address for use in
1345         // location lists (see Section 2.6.2) and range lists (see Section
1346         // 2.17.3).
1347         U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
1348       else
1349         U.setBaseAddress(TheCU.getRanges().front().Begin);
1350       U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
1351     }
1352 
1353     // We don't keep track of which addresses are used in which CU so this
1354     // is a bit pessimistic under LTO.
1355     if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty())
1356       U.addAddrTableBase();
1357 
1358     if (getDwarfVersion() >= 5) {
1359       if (U.hasRangeLists())
1360         U.addRnglistsBase();
1361 
1362       if (!DebugLocs.getLists().empty()) {
1363         if (!useSplitDwarf())
1364           U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base,
1365                             DebugLocs.getSym(),
1366                             TLOF.getDwarfLoclistsSection()->getBeginSymbol());
1367       }
1368     }
1369 
1370     auto *CUNode = cast<DICompileUnit>(P.first);
1371     // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros"
1372     // attribute.
1373     if (CUNode->getMacros()) {
1374       if (UseDebugMacroSection) {
1375         if (useSplitDwarf())
1376           TheCU.addSectionDelta(
1377               TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(),
1378               TLOF.getDwarfMacroDWOSection()->getBeginSymbol());
1379         else {
1380           dwarf::Attribute MacrosAttr = getDwarfVersion() >= 5
1381                                             ? dwarf::DW_AT_macros
1382                                             : dwarf::DW_AT_GNU_macros;
1383           U.addSectionLabel(U.getUnitDie(), MacrosAttr, U.getMacroLabelBegin(),
1384                             TLOF.getDwarfMacroSection()->getBeginSymbol());
1385         }
1386       } else {
1387         if (useSplitDwarf())
1388           TheCU.addSectionDelta(
1389               TheCU.getUnitDie(), dwarf::DW_AT_macro_info,
1390               U.getMacroLabelBegin(),
1391               TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol());
1392         else
1393           U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info,
1394                             U.getMacroLabelBegin(),
1395                             TLOF.getDwarfMacinfoSection()->getBeginSymbol());
1396       }
1397     }
1398     }
1399 
1400   // Emit all frontend-produced Skeleton CUs, i.e., Clang modules.
1401   for (auto *CUNode : MMI->getModule()->debug_compile_units())
1402     if (CUNode->getDWOId())
1403       getOrCreateDwarfCompileUnit(CUNode);
1404 
1405   // Compute DIE offsets and sizes.
1406   InfoHolder.computeSizeAndOffsets();
1407   if (useSplitDwarf())
1408     SkeletonHolder.computeSizeAndOffsets();
1409 }
1410 
1411 // Emit all Dwarf sections that should come after the content.
1412 void DwarfDebug::endModule() {
1413   assert(CurFn == nullptr);
1414   assert(CurMI == nullptr);
1415 
1416   for (const auto &P : CUMap) {
1417     auto &CU = *P.second;
1418     CU.createBaseTypeDIEs();
1419   }
1420 
1421   // If we aren't actually generating debug info (check beginModule -
1422   // conditionalized on the presence of the llvm.dbg.cu metadata node)
1423   if (!Asm || !MMI->hasDebugInfo())
1424     return;
1425 
1426   // Finalize the debug info for the module.
1427   finalizeModuleInfo();
1428 
1429   if (useSplitDwarf())
1430     // Emit debug_loc.dwo/debug_loclists.dwo section.
1431     emitDebugLocDWO();
1432   else
1433     // Emit debug_loc/debug_loclists section.
1434     emitDebugLoc();
1435 
1436   // Corresponding abbreviations into a abbrev section.
1437   emitAbbreviations();
1438 
1439   // Emit all the DIEs into a debug info section.
1440   emitDebugInfo();
1441 
1442   // Emit info into a debug aranges section.
1443   if (GenerateARangeSection)
1444     emitDebugARanges();
1445 
1446   // Emit info into a debug ranges section.
1447   emitDebugRanges();
1448 
1449   if (useSplitDwarf())
1450   // Emit info into a debug macinfo.dwo section.
1451     emitDebugMacinfoDWO();
1452   else
1453     // Emit info into a debug macinfo/macro section.
1454     emitDebugMacinfo();
1455 
1456   emitDebugStr();
1457 
1458   if (useSplitDwarf()) {
1459     emitDebugStrDWO();
1460     emitDebugInfoDWO();
1461     emitDebugAbbrevDWO();
1462     emitDebugLineDWO();
1463     emitDebugRangesDWO();
1464   }
1465 
1466   emitDebugAddr();
1467 
1468   // Emit info into the dwarf accelerator table sections.
1469   switch (getAccelTableKind()) {
1470   case AccelTableKind::Apple:
1471     emitAccelNames();
1472     emitAccelObjC();
1473     emitAccelNamespaces();
1474     emitAccelTypes();
1475     break;
1476   case AccelTableKind::Dwarf:
1477     emitAccelDebugNames();
1478     break;
1479   case AccelTableKind::None:
1480     break;
1481   case AccelTableKind::Default:
1482     llvm_unreachable("Default should have already been resolved.");
1483   }
1484 
1485   // Emit the pubnames and pubtypes sections if requested.
1486   emitDebugPubSections();
1487 
1488   // clean up.
1489   // FIXME: AbstractVariables.clear();
1490 }
1491 
1492 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU,
1493                                                const DINode *Node,
1494                                                const MDNode *ScopeNode) {
1495   if (CU.getExistingAbstractEntity(Node))
1496     return;
1497 
1498   CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope(
1499                                        cast<DILocalScope>(ScopeNode)));
1500 }
1501 
1502 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU,
1503     const DINode *Node, const MDNode *ScopeNode) {
1504   if (CU.getExistingAbstractEntity(Node))
1505     return;
1506 
1507   if (LexicalScope *Scope =
1508           LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode)))
1509     CU.createAbstractEntity(Node, Scope);
1510 }
1511 
1512 // Collect variable information from side table maintained by MF.
1513 void DwarfDebug::collectVariableInfoFromMFTable(
1514     DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) {
1515   SmallDenseMap<InlinedEntity, DbgVariable *> MFVars;
1516   LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n");
1517   for (const auto &VI : Asm->MF->getVariableDbgInfo()) {
1518     if (!VI.Var)
1519       continue;
1520     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1521            "Expected inlined-at fields to agree");
1522 
1523     InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt());
1524     Processed.insert(Var);
1525     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1526 
1527     // If variable scope is not found then skip this variable.
1528     if (!Scope) {
1529       LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName()
1530                         << ", no variable scope found\n");
1531       continue;
1532     }
1533 
1534     ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode());
1535     auto RegVar = std::make_unique<DbgVariable>(
1536                     cast<DILocalVariable>(Var.first), Var.second);
1537     RegVar->initializeMMI(VI.Expr, VI.Slot);
1538     LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName()
1539                       << "\n");
1540     if (DbgVariable *DbgVar = MFVars.lookup(Var))
1541       DbgVar->addMMIEntry(*RegVar);
1542     else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) {
1543       MFVars.insert({Var, RegVar.get()});
1544       ConcreteEntities.push_back(std::move(RegVar));
1545     }
1546   }
1547 }
1548 
1549 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its
1550 /// enclosing lexical scope. The check ensures there are no other instructions
1551 /// in the same lexical scope preceding the DBG_VALUE and that its range is
1552 /// either open or otherwise rolls off the end of the scope.
1553 static bool validThroughout(LexicalScopes &LScopes,
1554                             const MachineInstr *DbgValue,
1555                             const MachineInstr *RangeEnd,
1556                             const InstructionOrdering &Ordering) {
1557   assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location");
1558   auto MBB = DbgValue->getParent();
1559   auto DL = DbgValue->getDebugLoc();
1560   auto *LScope = LScopes.findLexicalScope(DL);
1561   // Scope doesn't exist; this is a dead DBG_VALUE.
1562   if (!LScope)
1563     return false;
1564   auto &LSRange = LScope->getRanges();
1565   if (LSRange.size() == 0)
1566     return false;
1567 
1568   const MachineInstr *LScopeBegin = LSRange.front().first;
1569   // If the scope starts before the DBG_VALUE then we may have a negative
1570   // result. Otherwise the location is live coming into the scope and we
1571   // can skip the following checks.
1572   if (!Ordering.isBefore(DbgValue, LScopeBegin)) {
1573     // Exit if the lexical scope begins outside of the current block.
1574     if (LScopeBegin->getParent() != MBB)
1575       return false;
1576 
1577     MachineBasicBlock::const_reverse_iterator Pred(DbgValue);
1578     for (++Pred; Pred != MBB->rend(); ++Pred) {
1579       if (Pred->getFlag(MachineInstr::FrameSetup))
1580         break;
1581       auto PredDL = Pred->getDebugLoc();
1582       if (!PredDL || Pred->isMetaInstruction())
1583         continue;
1584       // Check whether the instruction preceding the DBG_VALUE is in the same
1585       // (sub)scope as the DBG_VALUE.
1586       if (DL->getScope() == PredDL->getScope())
1587         return false;
1588       auto *PredScope = LScopes.findLexicalScope(PredDL);
1589       if (!PredScope || LScope->dominates(PredScope))
1590         return false;
1591     }
1592   }
1593 
1594   // If the range of the DBG_VALUE is open-ended, report success.
1595   if (!RangeEnd)
1596     return true;
1597 
1598   // Single, constant DBG_VALUEs in the prologue are promoted to be live
1599   // throughout the function. This is a hack, presumably for DWARF v2 and not
1600   // necessarily correct. It would be much better to use a dbg.declare instead
1601   // if we know the constant is live throughout the scope.
1602   if (DbgValue->getDebugOperand(0).isImm() && MBB->pred_empty())
1603     return true;
1604 
1605   // Test if the location terminates before the end of the scope.
1606   const MachineInstr *LScopeEnd = LSRange.back().second;
1607   if (Ordering.isBefore(RangeEnd, LScopeEnd))
1608     return false;
1609 
1610   // There's a single location which starts at the scope start, and ends at or
1611   // after the scope end.
1612   return true;
1613 }
1614 
1615 /// Build the location list for all DBG_VALUEs in the function that
1616 /// describe the same variable. The resulting DebugLocEntries will have
1617 /// strict monotonically increasing begin addresses and will never
1618 /// overlap. If the resulting list has only one entry that is valid
1619 /// throughout variable's scope return true.
1620 //
1621 // See the definition of DbgValueHistoryMap::Entry for an explanation of the
1622 // different kinds of history map entries. One thing to be aware of is that if
1623 // a debug value is ended by another entry (rather than being valid until the
1624 // end of the function), that entry's instruction may or may not be included in
1625 // the range, depending on if the entry is a clobbering entry (it has an
1626 // instruction that clobbers one or more preceding locations), or if it is an
1627 // (overlapping) debug value entry. This distinction can be seen in the example
1628 // below. The first debug value is ended by the clobbering entry 2, and the
1629 // second and third debug values are ended by the overlapping debug value entry
1630 // 4.
1631 //
1632 // Input:
1633 //
1634 //   History map entries [type, end index, mi]
1635 //
1636 // 0 |      [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)]
1637 // 1 | |    [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)]
1638 // 2 | |    [Clobber, $reg0 = [...], -, -]
1639 // 3   | |  [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)]
1640 // 4        [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)]
1641 //
1642 // Output [start, end) [Value...]:
1643 //
1644 // [0-1)    [(reg0, fragment 0, 32)]
1645 // [1-3)    [(reg0, fragment 0, 32), (reg1, fragment 32, 32)]
1646 // [3-4)    [(reg1, fragment 32, 32), (123, fragment 64, 32)]
1647 // [4-)     [(@g, fragment 0, 96)]
1648 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
1649                                    const DbgValueHistoryMap::Entries &Entries) {
1650   using OpenRange =
1651       std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>;
1652   SmallVector<OpenRange, 4> OpenRanges;
1653   bool isSafeForSingleLocation = true;
1654   const MachineInstr *StartDebugMI = nullptr;
1655   const MachineInstr *EndMI = nullptr;
1656 
1657   for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) {
1658     const MachineInstr *Instr = EI->getInstr();
1659 
1660     // Remove all values that are no longer live.
1661     size_t Index = std::distance(EB, EI);
1662     erase_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; });
1663 
1664     // If we are dealing with a clobbering entry, this iteration will result in
1665     // a location list entry starting after the clobbering instruction.
1666     const MCSymbol *StartLabel =
1667         EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr);
1668     assert(StartLabel &&
1669            "Forgot label before/after instruction starting a range!");
1670 
1671     const MCSymbol *EndLabel;
1672     if (std::next(EI) == Entries.end()) {
1673       const MachineBasicBlock &EndMBB = Asm->MF->back();
1674       EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionIDNum()].EndLabel;
1675       if (EI->isClobber())
1676         EndMI = EI->getInstr();
1677     }
1678     else if (std::next(EI)->isClobber())
1679       EndLabel = getLabelAfterInsn(std::next(EI)->getInstr());
1680     else
1681       EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr());
1682     assert(EndLabel && "Forgot label after instruction ending a range!");
1683 
1684     if (EI->isDbgValue())
1685       LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n");
1686 
1687     // If this history map entry has a debug value, add that to the list of
1688     // open ranges and check if its location is valid for a single value
1689     // location.
1690     if (EI->isDbgValue()) {
1691       // Do not add undef debug values, as they are redundant information in
1692       // the location list entries. An undef debug results in an empty location
1693       // description. If there are any non-undef fragments then padding pieces
1694       // with empty location descriptions will automatically be inserted, and if
1695       // all fragments are undef then the whole location list entry is
1696       // redundant.
1697       if (!Instr->isUndefDebugValue()) {
1698         auto Value = getDebugLocValue(Instr);
1699         OpenRanges.emplace_back(EI->getEndIndex(), Value);
1700 
1701         // TODO: Add support for single value fragment locations.
1702         if (Instr->getDebugExpression()->isFragment())
1703           isSafeForSingleLocation = false;
1704 
1705         if (!StartDebugMI)
1706           StartDebugMI = Instr;
1707       } else {
1708         isSafeForSingleLocation = false;
1709       }
1710     }
1711 
1712     // Location list entries with empty location descriptions are redundant
1713     // information in DWARF, so do not emit those.
1714     if (OpenRanges.empty())
1715       continue;
1716 
1717     // Omit entries with empty ranges as they do not have any effect in DWARF.
1718     if (StartLabel == EndLabel) {
1719       LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n");
1720       continue;
1721     }
1722 
1723     SmallVector<DbgValueLoc, 4> Values;
1724     for (auto &R : OpenRanges)
1725       Values.push_back(R.second);
1726     DebugLoc.emplace_back(StartLabel, EndLabel, Values);
1727 
1728     // Attempt to coalesce the ranges of two otherwise identical
1729     // DebugLocEntries.
1730     auto CurEntry = DebugLoc.rbegin();
1731     LLVM_DEBUG({
1732       dbgs() << CurEntry->getValues().size() << " Values:\n";
1733       for (auto &Value : CurEntry->getValues())
1734         Value.dump();
1735       dbgs() << "-----\n";
1736     });
1737 
1738     auto PrevEntry = std::next(CurEntry);
1739     if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
1740       DebugLoc.pop_back();
1741   }
1742 
1743   return DebugLoc.size() == 1 && isSafeForSingleLocation &&
1744          validThroughout(LScopes, StartDebugMI, EndMI, getInstOrdering());
1745 }
1746 
1747 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU,
1748                                             LexicalScope &Scope,
1749                                             const DINode *Node,
1750                                             const DILocation *Location,
1751                                             const MCSymbol *Sym) {
1752   ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode());
1753   if (isa<const DILocalVariable>(Node)) {
1754     ConcreteEntities.push_back(
1755         std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node),
1756                                        Location));
1757     InfoHolder.addScopeVariable(&Scope,
1758         cast<DbgVariable>(ConcreteEntities.back().get()));
1759   } else if (isa<const DILabel>(Node)) {
1760     ConcreteEntities.push_back(
1761         std::make_unique<DbgLabel>(cast<const DILabel>(Node),
1762                                     Location, Sym));
1763     InfoHolder.addScopeLabel(&Scope,
1764         cast<DbgLabel>(ConcreteEntities.back().get()));
1765   }
1766   return ConcreteEntities.back().get();
1767 }
1768 
1769 // Find variables for each lexical scope.
1770 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU,
1771                                    const DISubprogram *SP,
1772                                    DenseSet<InlinedEntity> &Processed) {
1773   // Grab the variable info that was squirreled away in the MMI side-table.
1774   collectVariableInfoFromMFTable(TheCU, Processed);
1775 
1776   for (const auto &I : DbgValues) {
1777     InlinedEntity IV = I.first;
1778     if (Processed.count(IV))
1779       continue;
1780 
1781     // Instruction ranges, specifying where IV is accessible.
1782     const auto &HistoryMapEntries = I.second;
1783     if (HistoryMapEntries.empty())
1784       continue;
1785 
1786     LexicalScope *Scope = nullptr;
1787     const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first);
1788     if (const DILocation *IA = IV.second)
1789       Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA);
1790     else
1791       Scope = LScopes.findLexicalScope(LocalVar->getScope());
1792     // If variable scope is not found then skip this variable.
1793     if (!Scope)
1794       continue;
1795 
1796     Processed.insert(IV);
1797     DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU,
1798                                             *Scope, LocalVar, IV.second));
1799 
1800     const MachineInstr *MInsn = HistoryMapEntries.front().getInstr();
1801     assert(MInsn->isDebugValue() && "History must begin with debug value");
1802 
1803     // Check if there is a single DBG_VALUE, valid throughout the var's scope.
1804     // If the history map contains a single debug value, there may be an
1805     // additional entry which clobbers the debug value.
1806     size_t HistSize = HistoryMapEntries.size();
1807     bool SingleValueWithClobber =
1808         HistSize == 2 && HistoryMapEntries[1].isClobber();
1809     if (HistSize == 1 || SingleValueWithClobber) {
1810       const auto *End =
1811           SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr;
1812       if (validThroughout(LScopes, MInsn, End, getInstOrdering())) {
1813         RegVar->initializeDbgValue(MInsn);
1814         continue;
1815       }
1816     }
1817 
1818     // Do not emit location lists if .debug_loc secton is disabled.
1819     if (!useLocSection())
1820       continue;
1821 
1822     // Handle multiple DBG_VALUE instructions describing one variable.
1823     DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn);
1824 
1825     // Build the location list for this variable.
1826     SmallVector<DebugLocEntry, 8> Entries;
1827     bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries);
1828 
1829     // Check whether buildLocationList managed to merge all locations to one
1830     // that is valid throughout the variable's scope. If so, produce single
1831     // value location.
1832     if (isValidSingleLocation) {
1833       RegVar->initializeDbgValue(Entries[0].getValues()[0]);
1834       continue;
1835     }
1836 
1837     // If the variable has a DIBasicType, extract it.  Basic types cannot have
1838     // unique identifiers, so don't bother resolving the type with the
1839     // identifier map.
1840     const DIBasicType *BT = dyn_cast<DIBasicType>(
1841         static_cast<const Metadata *>(LocalVar->getType()));
1842 
1843     // Finalize the entry by lowering it into a DWARF bytestream.
1844     for (auto &Entry : Entries)
1845       Entry.finalize(*Asm, List, BT, TheCU);
1846   }
1847 
1848   // For each InlinedEntity collected from DBG_LABEL instructions, convert to
1849   // DWARF-related DbgLabel.
1850   for (const auto &I : DbgLabels) {
1851     InlinedEntity IL = I.first;
1852     const MachineInstr *MI = I.second;
1853     if (MI == nullptr)
1854       continue;
1855 
1856     LexicalScope *Scope = nullptr;
1857     const DILabel *Label = cast<DILabel>(IL.first);
1858     // The scope could have an extra lexical block file.
1859     const DILocalScope *LocalScope =
1860         Label->getScope()->getNonLexicalBlockFileScope();
1861     // Get inlined DILocation if it is inlined label.
1862     if (const DILocation *IA = IL.second)
1863       Scope = LScopes.findInlinedScope(LocalScope, IA);
1864     else
1865       Scope = LScopes.findLexicalScope(LocalScope);
1866     // If label scope is not found then skip this label.
1867     if (!Scope)
1868       continue;
1869 
1870     Processed.insert(IL);
1871     /// At this point, the temporary label is created.
1872     /// Save the temporary label to DbgLabel entity to get the
1873     /// actually address when generating Dwarf DIE.
1874     MCSymbol *Sym = getLabelBeforeInsn(MI);
1875     createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym);
1876   }
1877 
1878   // Collect info for variables/labels that were optimized out.
1879   for (const DINode *DN : SP->getRetainedNodes()) {
1880     if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
1881       continue;
1882     LexicalScope *Scope = nullptr;
1883     if (auto *DV = dyn_cast<DILocalVariable>(DN)) {
1884       Scope = LScopes.findLexicalScope(DV->getScope());
1885     } else if (auto *DL = dyn_cast<DILabel>(DN)) {
1886       Scope = LScopes.findLexicalScope(DL->getScope());
1887     }
1888 
1889     if (Scope)
1890       createConcreteEntity(TheCU, *Scope, DN, nullptr);
1891   }
1892 }
1893 
1894 // Process beginning of an instruction.
1895 void DwarfDebug::beginInstruction(const MachineInstr *MI) {
1896   const MachineFunction &MF = *MI->getMF();
1897   const auto *SP = MF.getFunction().getSubprogram();
1898   bool NoDebug =
1899       !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug;
1900 
1901   // Delay slot support check.
1902   auto delaySlotSupported = [](const MachineInstr &MI) {
1903     if (!MI.isBundledWithSucc())
1904       return false;
1905     auto Suc = std::next(MI.getIterator());
1906     (void)Suc;
1907     // Ensure that delay slot instruction is successor of the call instruction.
1908     // Ex. CALL_INSTRUCTION {
1909     //        DELAY_SLOT_INSTRUCTION }
1910     assert(Suc->isBundledWithPred() &&
1911            "Call bundle instructions are out of order");
1912     return true;
1913   };
1914 
1915   // When describing calls, we need a label for the call instruction.
1916   if (!NoDebug && SP->areAllCallsDescribed() &&
1917       MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) &&
1918       (!MI->hasDelaySlot() || delaySlotSupported(*MI))) {
1919     const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1920     bool IsTail = TII->isTailCall(*MI);
1921     // For tail calls, we need the address of the branch instruction for
1922     // DW_AT_call_pc.
1923     if (IsTail)
1924       requestLabelBeforeInsn(MI);
1925     // For non-tail calls, we need the return address for the call for
1926     // DW_AT_call_return_pc. Under GDB tuning, this information is needed for
1927     // tail calls as well.
1928     requestLabelAfterInsn(MI);
1929   }
1930 
1931   DebugHandlerBase::beginInstruction(MI);
1932   if (!CurMI)
1933     return;
1934 
1935   if (NoDebug)
1936     return;
1937 
1938   // Check if source location changes, but ignore DBG_VALUE and CFI locations.
1939   // If the instruction is part of the function frame setup code, do not emit
1940   // any line record, as there is no correspondence with any user code.
1941   if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup))
1942     return;
1943   const DebugLoc &DL = MI->getDebugLoc();
1944   // When we emit a line-0 record, we don't update PrevInstLoc; so look at
1945   // the last line number actually emitted, to see if it was line 0.
1946   unsigned LastAsmLine =
1947       Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine();
1948 
1949   if (DL == PrevInstLoc) {
1950     // If we have an ongoing unspecified location, nothing to do here.
1951     if (!DL)
1952       return;
1953     // We have an explicit location, same as the previous location.
1954     // But we might be coming back to it after a line 0 record.
1955     if (LastAsmLine == 0 && DL.getLine() != 0) {
1956       // Reinstate the source location but not marked as a statement.
1957       const MDNode *Scope = DL.getScope();
1958       recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0);
1959     }
1960     return;
1961   }
1962 
1963   if (!DL) {
1964     // We have an unspecified location, which might want to be line 0.
1965     // If we have already emitted a line-0 record, don't repeat it.
1966     if (LastAsmLine == 0)
1967       return;
1968     // If user said Don't Do That, don't do that.
1969     if (UnknownLocations == Disable)
1970       return;
1971     // See if we have a reason to emit a line-0 record now.
1972     // Reasons to emit a line-0 record include:
1973     // - User asked for it (UnknownLocations).
1974     // - Instruction has a label, so it's referenced from somewhere else,
1975     //   possibly debug information; we want it to have a source location.
1976     // - Instruction is at the top of a block; we don't want to inherit the
1977     //   location from the physically previous (maybe unrelated) block.
1978     if (UnknownLocations == Enable || PrevLabel ||
1979         (PrevInstBB && PrevInstBB != MI->getParent())) {
1980       // Preserve the file and column numbers, if we can, to save space in
1981       // the encoded line table.
1982       // Do not update PrevInstLoc, it remembers the last non-0 line.
1983       const MDNode *Scope = nullptr;
1984       unsigned Column = 0;
1985       if (PrevInstLoc) {
1986         Scope = PrevInstLoc.getScope();
1987         Column = PrevInstLoc.getCol();
1988       }
1989       recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0);
1990     }
1991     return;
1992   }
1993 
1994   // We have an explicit location, different from the previous location.
1995   // Don't repeat a line-0 record, but otherwise emit the new location.
1996   // (The new location might be an explicit line 0, which we do emit.)
1997   if (DL.getLine() == 0 && LastAsmLine == 0)
1998     return;
1999   unsigned Flags = 0;
2000   if (DL == PrologEndLoc) {
2001     Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT;
2002     PrologEndLoc = DebugLoc();
2003   }
2004   // If the line changed, we call that a new statement; unless we went to
2005   // line 0 and came back, in which case it is not a new statement.
2006   unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine;
2007   if (DL.getLine() && DL.getLine() != OldLine)
2008     Flags |= DWARF2_FLAG_IS_STMT;
2009 
2010   const MDNode *Scope = DL.getScope();
2011   recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
2012 
2013   // If we're not at line 0, remember this location.
2014   if (DL.getLine())
2015     PrevInstLoc = DL;
2016 }
2017 
2018 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) {
2019   // First known non-DBG_VALUE and non-frame setup location marks
2020   // the beginning of the function body.
2021   for (const auto &MBB : *MF)
2022     for (const auto &MI : MBB)
2023       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
2024           MI.getDebugLoc())
2025         return MI.getDebugLoc();
2026   return DebugLoc();
2027 }
2028 
2029 /// Register a source line with debug info. Returns the  unique label that was
2030 /// emitted and which provides correspondence to the source line list.
2031 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col,
2032                              const MDNode *S, unsigned Flags, unsigned CUID,
2033                              uint16_t DwarfVersion,
2034                              ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) {
2035   StringRef Fn;
2036   unsigned FileNo = 1;
2037   unsigned Discriminator = 0;
2038   if (auto *Scope = cast_or_null<DIScope>(S)) {
2039     Fn = Scope->getFilename();
2040     if (Line != 0 && DwarfVersion >= 4)
2041       if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope))
2042         Discriminator = LBF->getDiscriminator();
2043 
2044     FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID])
2045                  .getOrCreateSourceID(Scope->getFile());
2046   }
2047   Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0,
2048                                          Discriminator, Fn);
2049 }
2050 
2051 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF,
2052                                              unsigned CUID) {
2053   // Get beginning of function.
2054   if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) {
2055     // Ensure the compile unit is created if the function is called before
2056     // beginFunction().
2057     (void)getOrCreateDwarfCompileUnit(
2058         MF.getFunction().getSubprogram()->getUnit());
2059     // We'd like to list the prologue as "not statements" but GDB behaves
2060     // poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
2061     const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram();
2062     ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT,
2063                        CUID, getDwarfVersion(), getUnits());
2064     return PrologEndLoc;
2065   }
2066   return DebugLoc();
2067 }
2068 
2069 // Gather pre-function debug information.  Assumes being called immediately
2070 // after the function entry point has been emitted.
2071 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) {
2072   CurFn = MF;
2073 
2074   auto *SP = MF->getFunction().getSubprogram();
2075   assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode());
2076   if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
2077     return;
2078 
2079   DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
2080 
2081   // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
2082   // belongs to so that we add to the correct per-cu line table in the
2083   // non-asm case.
2084   if (Asm->OutStreamer->hasRawTextSupport())
2085     // Use a single line table if we are generating assembly.
2086     Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
2087   else
2088     Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID());
2089 
2090   // Record beginning of function.
2091   PrologEndLoc = emitInitialLocDirective(
2092       *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID());
2093 }
2094 
2095 void DwarfDebug::skippedNonDebugFunction() {
2096   // If we don't have a subprogram for this function then there will be a hole
2097   // in the range information. Keep note of this by setting the previously used
2098   // section to nullptr.
2099   PrevCU = nullptr;
2100   CurFn = nullptr;
2101 }
2102 
2103 // Gather and emit post-function debug information.
2104 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) {
2105   const DISubprogram *SP = MF->getFunction().getSubprogram();
2106 
2107   assert(CurFn == MF &&
2108       "endFunction should be called with the same function as beginFunction");
2109 
2110   // Set DwarfDwarfCompileUnitID in MCContext to default value.
2111   Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
2112 
2113   LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
2114   assert(!FnScope || SP == FnScope->getScopeNode());
2115   DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit());
2116   if (TheCU.getCUNode()->isDebugDirectivesOnly()) {
2117     PrevLabel = nullptr;
2118     CurFn = nullptr;
2119     return;
2120   }
2121 
2122   DenseSet<InlinedEntity> Processed;
2123   collectEntityInfo(TheCU, SP, Processed);
2124 
2125   // Add the range of this function to the list of ranges for the CU.
2126   // With basic block sections, add ranges for all basic block sections.
2127   for (const auto &R : Asm->MBBSectionRanges)
2128     TheCU.addRange({R.second.BeginLabel, R.second.EndLabel});
2129 
2130   // Under -gmlt, skip building the subprogram if there are no inlined
2131   // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram
2132   // is still needed as we need its source location.
2133   if (!TheCU.getCUNode()->getDebugInfoForProfiling() &&
2134       TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly &&
2135       LScopes.getAbstractScopesList().empty() && !IsDarwin) {
2136     assert(InfoHolder.getScopeVariables().empty());
2137     PrevLabel = nullptr;
2138     CurFn = nullptr;
2139     return;
2140   }
2141 
2142 #ifndef NDEBUG
2143   size_t NumAbstractScopes = LScopes.getAbstractScopesList().size();
2144 #endif
2145   // Construct abstract scopes.
2146   for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
2147     auto *SP = cast<DISubprogram>(AScope->getScopeNode());
2148     for (const DINode *DN : SP->getRetainedNodes()) {
2149       if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
2150         continue;
2151 
2152       const MDNode *Scope = nullptr;
2153       if (auto *DV = dyn_cast<DILocalVariable>(DN))
2154         Scope = DV->getScope();
2155       else if (auto *DL = dyn_cast<DILabel>(DN))
2156         Scope = DL->getScope();
2157       else
2158         llvm_unreachable("Unexpected DI type!");
2159 
2160       // Collect info for variables/labels that were optimized out.
2161       ensureAbstractEntityIsCreated(TheCU, DN, Scope);
2162       assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes
2163              && "ensureAbstractEntityIsCreated inserted abstract scopes");
2164     }
2165     constructAbstractSubprogramScopeDIE(TheCU, AScope);
2166   }
2167 
2168   ProcessedSPNodes.insert(SP);
2169   DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope);
2170   if (auto *SkelCU = TheCU.getSkeleton())
2171     if (!LScopes.getAbstractScopesList().empty() &&
2172         TheCU.getCUNode()->getSplitDebugInlining())
2173       SkelCU->constructSubprogramScopeDIE(SP, FnScope);
2174 
2175   // Construct call site entries.
2176   constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF);
2177 
2178   // Clear debug info
2179   // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
2180   // DbgVariables except those that are also in AbstractVariables (since they
2181   // can be used cross-function)
2182   InfoHolder.getScopeVariables().clear();
2183   InfoHolder.getScopeLabels().clear();
2184   PrevLabel = nullptr;
2185   CurFn = nullptr;
2186 }
2187 
2188 // Register a source line with debug info. Returns the  unique label that was
2189 // emitted and which provides correspondence to the source line list.
2190 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
2191                                   unsigned Flags) {
2192   ::recordSourceLine(*Asm, Line, Col, S, Flags,
2193                      Asm->OutStreamer->getContext().getDwarfCompileUnitID(),
2194                      getDwarfVersion(), getUnits());
2195 }
2196 
2197 //===----------------------------------------------------------------------===//
2198 // Emit Methods
2199 //===----------------------------------------------------------------------===//
2200 
2201 // Emit the debug info section.
2202 void DwarfDebug::emitDebugInfo() {
2203   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2204   Holder.emitUnits(/* UseOffsets */ false);
2205 }
2206 
2207 // Emit the abbreviation section.
2208 void DwarfDebug::emitAbbreviations() {
2209   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2210 
2211   Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
2212 }
2213 
2214 void DwarfDebug::emitStringOffsetsTableHeader() {
2215   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2216   Holder.getStringPool().emitStringOffsetsTableHeader(
2217       *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(),
2218       Holder.getStringOffsetsStartSym());
2219 }
2220 
2221 template <typename AccelTableT>
2222 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section,
2223                            StringRef TableName) {
2224   Asm->OutStreamer->SwitchSection(Section);
2225 
2226   // Emit the full data.
2227   emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol());
2228 }
2229 
2230 void DwarfDebug::emitAccelDebugNames() {
2231   // Don't emit anything if we have no compilation units to index.
2232   if (getUnits().empty())
2233     return;
2234 
2235   emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits());
2236 }
2237 
2238 // Emit visible names into a hashed accelerator table section.
2239 void DwarfDebug::emitAccelNames() {
2240   emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
2241             "Names");
2242 }
2243 
2244 // Emit objective C classes and categories into a hashed accelerator table
2245 // section.
2246 void DwarfDebug::emitAccelObjC() {
2247   emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
2248             "ObjC");
2249 }
2250 
2251 // Emit namespace dies into a hashed accelerator table.
2252 void DwarfDebug::emitAccelNamespaces() {
2253   emitAccel(AccelNamespace,
2254             Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
2255             "namespac");
2256 }
2257 
2258 // Emit type dies into a hashed accelerator table.
2259 void DwarfDebug::emitAccelTypes() {
2260   emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
2261             "types");
2262 }
2263 
2264 // Public name handling.
2265 // The format for the various pubnames:
2266 //
2267 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU
2268 // for the DIE that is named.
2269 //
2270 // gnu pubnames - offset/index value/name tuples where the offset is the offset
2271 // into the CU and the index value is computed according to the type of value
2272 // for the DIE that is named.
2273 //
2274 // For type units the offset is the offset of the skeleton DIE. For split dwarf
2275 // it's the offset within the debug_info/debug_types dwo section, however, the
2276 // reference in the pubname header doesn't change.
2277 
2278 /// computeIndexValue - Compute the gdb index value for the DIE and CU.
2279 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
2280                                                         const DIE *Die) {
2281   // Entities that ended up only in a Type Unit reference the CU instead (since
2282   // the pub entry has offsets within the CU there's no real offset that can be
2283   // provided anyway). As it happens all such entities (namespaces and types,
2284   // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out
2285   // not to be true it would be necessary to persist this information from the
2286   // point at which the entry is added to the index data structure - since by
2287   // the time the index is built from that, the original type/namespace DIE in a
2288   // type unit has already been destroyed so it can't be queried for properties
2289   // like tag, etc.
2290   if (Die->getTag() == dwarf::DW_TAG_compile_unit)
2291     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE,
2292                                           dwarf::GIEL_EXTERNAL);
2293   dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
2294 
2295   // We could have a specification DIE that has our most of our knowledge,
2296   // look for that now.
2297   if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) {
2298     DIE &SpecDIE = SpecVal.getDIEEntry().getEntry();
2299     if (SpecDIE.findAttribute(dwarf::DW_AT_external))
2300       Linkage = dwarf::GIEL_EXTERNAL;
2301   } else if (Die->findAttribute(dwarf::DW_AT_external))
2302     Linkage = dwarf::GIEL_EXTERNAL;
2303 
2304   switch (Die->getTag()) {
2305   case dwarf::DW_TAG_class_type:
2306   case dwarf::DW_TAG_structure_type:
2307   case dwarf::DW_TAG_union_type:
2308   case dwarf::DW_TAG_enumeration_type:
2309     return dwarf::PubIndexEntryDescriptor(
2310         dwarf::GIEK_TYPE,
2311         dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage())
2312             ? dwarf::GIEL_EXTERNAL
2313             : dwarf::GIEL_STATIC);
2314   case dwarf::DW_TAG_typedef:
2315   case dwarf::DW_TAG_base_type:
2316   case dwarf::DW_TAG_subrange_type:
2317     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
2318   case dwarf::DW_TAG_namespace:
2319     return dwarf::GIEK_TYPE;
2320   case dwarf::DW_TAG_subprogram:
2321     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
2322   case dwarf::DW_TAG_variable:
2323     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
2324   case dwarf::DW_TAG_enumerator:
2325     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
2326                                           dwarf::GIEL_STATIC);
2327   default:
2328     return dwarf::GIEK_NONE;
2329   }
2330 }
2331 
2332 /// emitDebugPubSections - Emit visible names and types into debug pubnames and
2333 /// pubtypes sections.
2334 void DwarfDebug::emitDebugPubSections() {
2335   for (const auto &NU : CUMap) {
2336     DwarfCompileUnit *TheU = NU.second;
2337     if (!TheU->hasDwarfPubSections())
2338       continue;
2339 
2340     bool GnuStyle = TheU->getCUNode()->getNameTableKind() ==
2341                     DICompileUnit::DebugNameTableKind::GNU;
2342 
2343     Asm->OutStreamer->SwitchSection(
2344         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
2345                  : Asm->getObjFileLowering().getDwarfPubNamesSection());
2346     emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames());
2347 
2348     Asm->OutStreamer->SwitchSection(
2349         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
2350                  : Asm->getObjFileLowering().getDwarfPubTypesSection());
2351     emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes());
2352   }
2353 }
2354 
2355 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) {
2356   if (useSectionsAsReferences())
2357     Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(),
2358                          CU.getDebugSectionOffset());
2359   else
2360     Asm->emitDwarfSymbolReference(CU.getLabelBegin());
2361 }
2362 
2363 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name,
2364                                      DwarfCompileUnit *TheU,
2365                                      const StringMap<const DIE *> &Globals) {
2366   if (auto *Skeleton = TheU->getSkeleton())
2367     TheU = Skeleton;
2368 
2369   // Emit the header.
2370   MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin");
2371   MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end");
2372   Asm->emitDwarfUnitLength(EndLabel, BeginLabel,
2373                            "Length of Public " + Name + " Info");
2374 
2375   Asm->OutStreamer->emitLabel(BeginLabel);
2376 
2377   Asm->OutStreamer->AddComment("DWARF Version");
2378   Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION);
2379 
2380   Asm->OutStreamer->AddComment("Offset of Compilation Unit Info");
2381   emitSectionReference(*TheU);
2382 
2383   Asm->OutStreamer->AddComment("Compilation Unit Length");
2384   Asm->emitDwarfLengthOrOffset(TheU->getLength());
2385 
2386   // Emit the pubnames for this compilation unit.
2387   for (const auto &GI : Globals) {
2388     const char *Name = GI.getKeyData();
2389     const DIE *Entity = GI.second;
2390 
2391     Asm->OutStreamer->AddComment("DIE offset");
2392     Asm->emitDwarfLengthOrOffset(Entity->getOffset());
2393 
2394     if (GnuStyle) {
2395       dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
2396       Asm->OutStreamer->AddComment(
2397           Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) +
2398           ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
2399       Asm->emitInt8(Desc.toBits());
2400     }
2401 
2402     Asm->OutStreamer->AddComment("External Name");
2403     Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1));
2404   }
2405 
2406   Asm->OutStreamer->AddComment("End Mark");
2407   Asm->emitDwarfLengthOrOffset(0);
2408   Asm->OutStreamer->emitLabel(EndLabel);
2409 }
2410 
2411 /// Emit null-terminated strings into a debug str section.
2412 void DwarfDebug::emitDebugStr() {
2413   MCSection *StringOffsetsSection = nullptr;
2414   if (useSegmentedStringOffsetsTable()) {
2415     emitStringOffsetsTableHeader();
2416     StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection();
2417   }
2418   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2419   Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(),
2420                      StringOffsetsSection, /* UseRelativeOffsets = */ true);
2421 }
2422 
2423 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
2424                                    const DebugLocStream::Entry &Entry,
2425                                    const DwarfCompileUnit *CU) {
2426   auto &&Comments = DebugLocs.getComments(Entry);
2427   auto Comment = Comments.begin();
2428   auto End = Comments.end();
2429 
2430   // The expressions are inserted into a byte stream rather early (see
2431   // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that
2432   // need to reference a base_type DIE the offset of that DIE is not yet known.
2433   // To deal with this we instead insert a placeholder early and then extract
2434   // it here and replace it with the real reference.
2435   unsigned PtrSize = Asm->MAI->getCodePointerSize();
2436   DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(),
2437                                     DebugLocs.getBytes(Entry).size()),
2438                           Asm->getDataLayout().isLittleEndian(), PtrSize);
2439   DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat());
2440 
2441   using Encoding = DWARFExpression::Operation::Encoding;
2442   uint64_t Offset = 0;
2443   for (auto &Op : Expr) {
2444     assert(Op.getCode() != dwarf::DW_OP_const_type &&
2445            "3 operand ops not yet supported");
2446     Streamer.emitInt8(Op.getCode(), Comment != End ? *(Comment++) : "");
2447     Offset++;
2448     for (unsigned I = 0; I < 2; ++I) {
2449       if (Op.getDescription().Op[I] == Encoding::SizeNA)
2450         continue;
2451       if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) {
2452         uint64_t Offset =
2453             CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset();
2454         assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit");
2455         Streamer.emitULEB128(Offset, "", ULEB128PadSize);
2456         // Make sure comments stay aligned.
2457         for (unsigned J = 0; J < ULEB128PadSize; ++J)
2458           if (Comment != End)
2459             Comment++;
2460       } else {
2461         for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J)
2462           Streamer.emitInt8(Data.getData()[J], Comment != End ? *(Comment++) : "");
2463       }
2464       Offset = Op.getOperandEndOffset(I);
2465     }
2466     assert(Offset == Op.getEndOffset());
2467   }
2468 }
2469 
2470 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT,
2471                                    const DbgValueLoc &Value,
2472                                    DwarfExpression &DwarfExpr) {
2473   auto *DIExpr = Value.getExpression();
2474   DIExpressionCursor ExprCursor(DIExpr);
2475   DwarfExpr.addFragmentOffset(DIExpr);
2476   // Regular entry.
2477   if (Value.isInt()) {
2478     if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed ||
2479                BT->getEncoding() == dwarf::DW_ATE_signed_char))
2480       DwarfExpr.addSignedConstant(Value.getInt());
2481     else
2482       DwarfExpr.addUnsignedConstant(Value.getInt());
2483   } else if (Value.isLocation()) {
2484     MachineLocation Location = Value.getLoc();
2485     DwarfExpr.setLocation(Location, DIExpr);
2486     DIExpressionCursor Cursor(DIExpr);
2487 
2488     if (DIExpr->isEntryValue())
2489       DwarfExpr.beginEntryValueExpression(Cursor);
2490 
2491     const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
2492     if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg()))
2493       return;
2494     return DwarfExpr.addExpression(std::move(Cursor));
2495   } else if (Value.isTargetIndexLocation()) {
2496     TargetIndexLocation Loc = Value.getTargetIndexLocation();
2497     // TODO TargetIndexLocation is a target-independent. Currently only the WebAssembly-specific
2498     // encoding is supported.
2499     assert(AP.TM.getTargetTriple().isWasm());
2500     DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset));
2501       DwarfExpr.addExpression(std::move(ExprCursor));
2502       return;
2503   } else if (Value.isConstantFP()) {
2504     if (AP.getDwarfVersion() >= 4 && !AP.getDwarfDebug()->tuneForSCE() &&
2505         !ExprCursor) {
2506       DwarfExpr.addConstantFP(Value.getConstantFP()->getValueAPF(), AP);
2507       return;
2508     }
2509     if (Value.getConstantFP()->getValueAPF().bitcastToAPInt().getBitWidth() <=
2510         64 /*bits*/)
2511       DwarfExpr.addUnsignedConstant(
2512           Value.getConstantFP()->getValueAPF().bitcastToAPInt());
2513     else
2514       LLVM_DEBUG(
2515           dbgs()
2516           << "Skipped DwarfExpression creation for ConstantFP of size"
2517           << Value.getConstantFP()->getValueAPF().bitcastToAPInt().getBitWidth()
2518           << " bits\n");
2519   }
2520   DwarfExpr.addExpression(std::move(ExprCursor));
2521 }
2522 
2523 void DebugLocEntry::finalize(const AsmPrinter &AP,
2524                              DebugLocStream::ListBuilder &List,
2525                              const DIBasicType *BT,
2526                              DwarfCompileUnit &TheCU) {
2527   assert(!Values.empty() &&
2528          "location list entries without values are redundant");
2529   assert(Begin != End && "unexpected location list entry with empty range");
2530   DebugLocStream::EntryBuilder Entry(List, Begin, End);
2531   BufferByteStreamer Streamer = Entry.getStreamer();
2532   DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU);
2533   const DbgValueLoc &Value = Values[0];
2534   if (Value.isFragment()) {
2535     // Emit all fragments that belong to the same variable and range.
2536     assert(llvm::all_of(Values, [](DbgValueLoc P) {
2537           return P.isFragment();
2538         }) && "all values are expected to be fragments");
2539     assert(llvm::is_sorted(Values) && "fragments are expected to be sorted");
2540 
2541     for (const auto &Fragment : Values)
2542       DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr);
2543 
2544   } else {
2545     assert(Values.size() == 1 && "only fragments may have >1 value");
2546     DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr);
2547   }
2548   DwarfExpr.finalize();
2549   if (DwarfExpr.TagOffset)
2550     List.setTagOffset(*DwarfExpr.TagOffset);
2551 }
2552 
2553 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry,
2554                                            const DwarfCompileUnit *CU) {
2555   // Emit the size.
2556   Asm->OutStreamer->AddComment("Loc expr size");
2557   if (getDwarfVersion() >= 5)
2558     Asm->emitULEB128(DebugLocs.getBytes(Entry).size());
2559   else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max())
2560     Asm->emitInt16(DebugLocs.getBytes(Entry).size());
2561   else {
2562     // The entry is too big to fit into 16 bit, drop it as there is nothing we
2563     // can do.
2564     Asm->emitInt16(0);
2565     return;
2566   }
2567   // Emit the entry.
2568   APByteStreamer Streamer(*Asm);
2569   emitDebugLocEntry(Streamer, Entry, CU);
2570 }
2571 
2572 // Emit the header of a DWARF 5 range list table list table. Returns the symbol
2573 // that designates the end of the table for the caller to emit when the table is
2574 // complete.
2575 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm,
2576                                          const DwarfFile &Holder) {
2577   MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2578 
2579   Asm->OutStreamer->AddComment("Offset entry count");
2580   Asm->emitInt32(Holder.getRangeLists().size());
2581   Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym());
2582 
2583   for (const RangeSpanList &List : Holder.getRangeLists())
2584     Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(),
2585                              Asm->getDwarfOffsetByteSize());
2586 
2587   return TableEnd;
2588 }
2589 
2590 // Emit the header of a DWARF 5 locations list table. Returns the symbol that
2591 // designates the end of the table for the caller to emit when the table is
2592 // complete.
2593 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm,
2594                                          const DwarfDebug &DD) {
2595   MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2596 
2597   const auto &DebugLocs = DD.getDebugLocs();
2598 
2599   Asm->OutStreamer->AddComment("Offset entry count");
2600   Asm->emitInt32(DebugLocs.getLists().size());
2601   Asm->OutStreamer->emitLabel(DebugLocs.getSym());
2602 
2603   for (const auto &List : DebugLocs.getLists())
2604     Asm->emitLabelDifference(List.Label, DebugLocs.getSym(),
2605                              Asm->getDwarfOffsetByteSize());
2606 
2607   return TableEnd;
2608 }
2609 
2610 template <typename Ranges, typename PayloadEmitter>
2611 static void emitRangeList(
2612     DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R,
2613     const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair,
2614     unsigned StartxLength, unsigned EndOfList,
2615     StringRef (*StringifyEnum)(unsigned),
2616     bool ShouldUseBaseAddress,
2617     PayloadEmitter EmitPayload) {
2618 
2619   auto Size = Asm->MAI->getCodePointerSize();
2620   bool UseDwarf5 = DD.getDwarfVersion() >= 5;
2621 
2622   // Emit our symbol so we can find the beginning of the range.
2623   Asm->OutStreamer->emitLabel(Sym);
2624 
2625   // Gather all the ranges that apply to the same section so they can share
2626   // a base address entry.
2627   MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges;
2628 
2629   for (const auto &Range : R)
2630     SectionRanges[&Range.Begin->getSection()].push_back(&Range);
2631 
2632   const MCSymbol *CUBase = CU.getBaseAddress();
2633   bool BaseIsSet = false;
2634   for (const auto &P : SectionRanges) {
2635     auto *Base = CUBase;
2636     if (!Base && ShouldUseBaseAddress) {
2637       const MCSymbol *Begin = P.second.front()->Begin;
2638       const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection());
2639       if (!UseDwarf5) {
2640         Base = NewBase;
2641         BaseIsSet = true;
2642         Asm->OutStreamer->emitIntValue(-1, Size);
2643         Asm->OutStreamer->AddComment("  base address");
2644         Asm->OutStreamer->emitSymbolValue(Base, Size);
2645       } else if (NewBase != Begin || P.second.size() > 1) {
2646         // Only use a base address if
2647         //  * the existing pool address doesn't match (NewBase != Begin)
2648         //  * or, there's more than one entry to share the base address
2649         Base = NewBase;
2650         BaseIsSet = true;
2651         Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx));
2652         Asm->emitInt8(BaseAddressx);
2653         Asm->OutStreamer->AddComment("  base address index");
2654         Asm->emitULEB128(DD.getAddressPool().getIndex(Base));
2655       }
2656     } else if (BaseIsSet && !UseDwarf5) {
2657       BaseIsSet = false;
2658       assert(!Base);
2659       Asm->OutStreamer->emitIntValue(-1, Size);
2660       Asm->OutStreamer->emitIntValue(0, Size);
2661     }
2662 
2663     for (const auto *RS : P.second) {
2664       const MCSymbol *Begin = RS->Begin;
2665       const MCSymbol *End = RS->End;
2666       assert(Begin && "Range without a begin symbol?");
2667       assert(End && "Range without an end symbol?");
2668       if (Base) {
2669         if (UseDwarf5) {
2670           // Emit offset_pair when we have a base.
2671           Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair));
2672           Asm->emitInt8(OffsetPair);
2673           Asm->OutStreamer->AddComment("  starting offset");
2674           Asm->emitLabelDifferenceAsULEB128(Begin, Base);
2675           Asm->OutStreamer->AddComment("  ending offset");
2676           Asm->emitLabelDifferenceAsULEB128(End, Base);
2677         } else {
2678           Asm->emitLabelDifference(Begin, Base, Size);
2679           Asm->emitLabelDifference(End, Base, Size);
2680         }
2681       } else if (UseDwarf5) {
2682         Asm->OutStreamer->AddComment(StringifyEnum(StartxLength));
2683         Asm->emitInt8(StartxLength);
2684         Asm->OutStreamer->AddComment("  start index");
2685         Asm->emitULEB128(DD.getAddressPool().getIndex(Begin));
2686         Asm->OutStreamer->AddComment("  length");
2687         Asm->emitLabelDifferenceAsULEB128(End, Begin);
2688       } else {
2689         Asm->OutStreamer->emitSymbolValue(Begin, Size);
2690         Asm->OutStreamer->emitSymbolValue(End, Size);
2691       }
2692       EmitPayload(*RS);
2693     }
2694   }
2695 
2696   if (UseDwarf5) {
2697     Asm->OutStreamer->AddComment(StringifyEnum(EndOfList));
2698     Asm->emitInt8(EndOfList);
2699   } else {
2700     // Terminate the list with two 0 values.
2701     Asm->OutStreamer->emitIntValue(0, Size);
2702     Asm->OutStreamer->emitIntValue(0, Size);
2703   }
2704 }
2705 
2706 // Handles emission of both debug_loclist / debug_loclist.dwo
2707 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) {
2708   emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List),
2709                 *List.CU, dwarf::DW_LLE_base_addressx,
2710                 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length,
2711                 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString,
2712                 /* ShouldUseBaseAddress */ true,
2713                 [&](const DebugLocStream::Entry &E) {
2714                   DD.emitDebugLocEntryLocation(E, List.CU);
2715                 });
2716 }
2717 
2718 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) {
2719   if (DebugLocs.getLists().empty())
2720     return;
2721 
2722   Asm->OutStreamer->SwitchSection(Sec);
2723 
2724   MCSymbol *TableEnd = nullptr;
2725   if (getDwarfVersion() >= 5)
2726     TableEnd = emitLoclistsTableHeader(Asm, *this);
2727 
2728   for (const auto &List : DebugLocs.getLists())
2729     emitLocList(*this, Asm, List);
2730 
2731   if (TableEnd)
2732     Asm->OutStreamer->emitLabel(TableEnd);
2733 }
2734 
2735 // Emit locations into the .debug_loc/.debug_loclists section.
2736 void DwarfDebug::emitDebugLoc() {
2737   emitDebugLocImpl(
2738       getDwarfVersion() >= 5
2739           ? Asm->getObjFileLowering().getDwarfLoclistsSection()
2740           : Asm->getObjFileLowering().getDwarfLocSection());
2741 }
2742 
2743 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section.
2744 void DwarfDebug::emitDebugLocDWO() {
2745   if (getDwarfVersion() >= 5) {
2746     emitDebugLocImpl(
2747         Asm->getObjFileLowering().getDwarfLoclistsDWOSection());
2748 
2749     return;
2750   }
2751 
2752   for (const auto &List : DebugLocs.getLists()) {
2753     Asm->OutStreamer->SwitchSection(
2754         Asm->getObjFileLowering().getDwarfLocDWOSection());
2755     Asm->OutStreamer->emitLabel(List.Label);
2756 
2757     for (const auto &Entry : DebugLocs.getEntries(List)) {
2758       // GDB only supports startx_length in pre-standard split-DWARF.
2759       // (in v5 standard loclists, it currently* /only/ supports base_address +
2760       // offset_pair, so the implementations can't really share much since they
2761       // need to use different representations)
2762       // * as of October 2018, at least
2763       //
2764       // In v5 (see emitLocList), this uses SectionLabels to reuse existing
2765       // addresses in the address pool to minimize object size/relocations.
2766       Asm->emitInt8(dwarf::DW_LLE_startx_length);
2767       unsigned idx = AddrPool.getIndex(Entry.Begin);
2768       Asm->emitULEB128(idx);
2769       // Also the pre-standard encoding is slightly different, emitting this as
2770       // an address-length entry here, but its a ULEB128 in DWARFv5 loclists.
2771       Asm->emitLabelDifference(Entry.End, Entry.Begin, 4);
2772       emitDebugLocEntryLocation(Entry, List.CU);
2773     }
2774     Asm->emitInt8(dwarf::DW_LLE_end_of_list);
2775   }
2776 }
2777 
2778 struct ArangeSpan {
2779   const MCSymbol *Start, *End;
2780 };
2781 
2782 // Emit a debug aranges section, containing a CU lookup for any
2783 // address we can tie back to a CU.
2784 void DwarfDebug::emitDebugARanges() {
2785   // Provides a unique id per text section.
2786   MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap;
2787 
2788   // Filter labels by section.
2789   for (const SymbolCU &SCU : ArangeLabels) {
2790     if (SCU.Sym->isInSection()) {
2791       // Make a note of this symbol and it's section.
2792       MCSection *Section = &SCU.Sym->getSection();
2793       if (!Section->getKind().isMetadata())
2794         SectionMap[Section].push_back(SCU);
2795     } else {
2796       // Some symbols (e.g. common/bss on mach-o) can have no section but still
2797       // appear in the output. This sucks as we rely on sections to build
2798       // arange spans. We can do it without, but it's icky.
2799       SectionMap[nullptr].push_back(SCU);
2800     }
2801   }
2802 
2803   DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans;
2804 
2805   for (auto &I : SectionMap) {
2806     MCSection *Section = I.first;
2807     SmallVector<SymbolCU, 8> &List = I.second;
2808     if (List.size() < 1)
2809       continue;
2810 
2811     // If we have no section (e.g. common), just write out
2812     // individual spans for each symbol.
2813     if (!Section) {
2814       for (const SymbolCU &Cur : List) {
2815         ArangeSpan Span;
2816         Span.Start = Cur.Sym;
2817         Span.End = nullptr;
2818         assert(Cur.CU);
2819         Spans[Cur.CU].push_back(Span);
2820       }
2821       continue;
2822     }
2823 
2824     // Sort the symbols by offset within the section.
2825     llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) {
2826       unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0;
2827       unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0;
2828 
2829       // Symbols with no order assigned should be placed at the end.
2830       // (e.g. section end labels)
2831       if (IA == 0)
2832         return false;
2833       if (IB == 0)
2834         return true;
2835       return IA < IB;
2836     });
2837 
2838     // Insert a final terminator.
2839     List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section)));
2840 
2841     // Build spans between each label.
2842     const MCSymbol *StartSym = List[0].Sym;
2843     for (size_t n = 1, e = List.size(); n < e; n++) {
2844       const SymbolCU &Prev = List[n - 1];
2845       const SymbolCU &Cur = List[n];
2846 
2847       // Try and build the longest span we can within the same CU.
2848       if (Cur.CU != Prev.CU) {
2849         ArangeSpan Span;
2850         Span.Start = StartSym;
2851         Span.End = Cur.Sym;
2852         assert(Prev.CU);
2853         Spans[Prev.CU].push_back(Span);
2854         StartSym = Cur.Sym;
2855       }
2856     }
2857   }
2858 
2859   // Start the dwarf aranges section.
2860   Asm->OutStreamer->SwitchSection(
2861       Asm->getObjFileLowering().getDwarfARangesSection());
2862 
2863   unsigned PtrSize = Asm->MAI->getCodePointerSize();
2864 
2865   // Build a list of CUs used.
2866   std::vector<DwarfCompileUnit *> CUs;
2867   for (const auto &it : Spans) {
2868     DwarfCompileUnit *CU = it.first;
2869     CUs.push_back(CU);
2870   }
2871 
2872   // Sort the CU list (again, to ensure consistent output order).
2873   llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) {
2874     return A->getUniqueID() < B->getUniqueID();
2875   });
2876 
2877   // Emit an arange table for each CU we used.
2878   for (DwarfCompileUnit *CU : CUs) {
2879     std::vector<ArangeSpan> &List = Spans[CU];
2880 
2881     // Describe the skeleton CU's offset and length, not the dwo file's.
2882     if (auto *Skel = CU->getSkeleton())
2883       CU = Skel;
2884 
2885     // Emit size of content not including length itself.
2886     unsigned ContentSize =
2887         sizeof(int16_t) +               // DWARF ARange version number
2888         Asm->getDwarfOffsetByteSize() + // Offset of CU in the .debug_info
2889                                         // section
2890         sizeof(int8_t) +                // Pointer Size (in bytes)
2891         sizeof(int8_t);                 // Segment Size (in bytes)
2892 
2893     unsigned TupleSize = PtrSize * 2;
2894 
2895     // 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
2896     unsigned Padding = offsetToAlignment(
2897         Asm->getUnitLengthFieldByteSize() + ContentSize, Align(TupleSize));
2898 
2899     ContentSize += Padding;
2900     ContentSize += (List.size() + 1) * TupleSize;
2901 
2902     // For each compile unit, write the list of spans it covers.
2903     Asm->emitDwarfUnitLength(ContentSize, "Length of ARange Set");
2904     Asm->OutStreamer->AddComment("DWARF Arange version number");
2905     Asm->emitInt16(dwarf::DW_ARANGES_VERSION);
2906     Asm->OutStreamer->AddComment("Offset Into Debug Info Section");
2907     emitSectionReference(*CU);
2908     Asm->OutStreamer->AddComment("Address Size (in bytes)");
2909     Asm->emitInt8(PtrSize);
2910     Asm->OutStreamer->AddComment("Segment Size (in bytes)");
2911     Asm->emitInt8(0);
2912 
2913     Asm->OutStreamer->emitFill(Padding, 0xff);
2914 
2915     for (const ArangeSpan &Span : List) {
2916       Asm->emitLabelReference(Span.Start, PtrSize);
2917 
2918       // Calculate the size as being from the span start to it's end.
2919       if (Span.End) {
2920         Asm->emitLabelDifference(Span.End, Span.Start, PtrSize);
2921       } else {
2922         // For symbols without an end marker (e.g. common), we
2923         // write a single arange entry containing just that one symbol.
2924         uint64_t Size = SymSize[Span.Start];
2925         if (Size == 0)
2926           Size = 1;
2927 
2928         Asm->OutStreamer->emitIntValue(Size, PtrSize);
2929       }
2930     }
2931 
2932     Asm->OutStreamer->AddComment("ARange terminator");
2933     Asm->OutStreamer->emitIntValue(0, PtrSize);
2934     Asm->OutStreamer->emitIntValue(0, PtrSize);
2935   }
2936 }
2937 
2938 /// Emit a single range list. We handle both DWARF v5 and earlier.
2939 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm,
2940                           const RangeSpanList &List) {
2941   emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU,
2942                 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair,
2943                 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list,
2944                 llvm::dwarf::RangeListEncodingString,
2945                 List.CU->getCUNode()->getRangesBaseAddress() ||
2946                     DD.getDwarfVersion() >= 5,
2947                 [](auto) {});
2948 }
2949 
2950 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) {
2951   if (Holder.getRangeLists().empty())
2952     return;
2953 
2954   assert(useRangesSection());
2955   assert(!CUMap.empty());
2956   assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) {
2957     return !Pair.second->getCUNode()->isDebugDirectivesOnly();
2958   }));
2959 
2960   Asm->OutStreamer->SwitchSection(Section);
2961 
2962   MCSymbol *TableEnd = nullptr;
2963   if (getDwarfVersion() >= 5)
2964     TableEnd = emitRnglistsTableHeader(Asm, Holder);
2965 
2966   for (const RangeSpanList &List : Holder.getRangeLists())
2967     emitRangeList(*this, Asm, List);
2968 
2969   if (TableEnd)
2970     Asm->OutStreamer->emitLabel(TableEnd);
2971 }
2972 
2973 /// Emit address ranges into the .debug_ranges section or into the DWARF v5
2974 /// .debug_rnglists section.
2975 void DwarfDebug::emitDebugRanges() {
2976   const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2977 
2978   emitDebugRangesImpl(Holder,
2979                       getDwarfVersion() >= 5
2980                           ? Asm->getObjFileLowering().getDwarfRnglistsSection()
2981                           : Asm->getObjFileLowering().getDwarfRangesSection());
2982 }
2983 
2984 void DwarfDebug::emitDebugRangesDWO() {
2985   emitDebugRangesImpl(InfoHolder,
2986                       Asm->getObjFileLowering().getDwarfRnglistsDWOSection());
2987 }
2988 
2989 /// Emit the header of a DWARF 5 macro section, or the GNU extension for
2990 /// DWARF 4.
2991 static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD,
2992                             const DwarfCompileUnit &CU, uint16_t DwarfVersion) {
2993   enum HeaderFlagMask {
2994 #define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID,
2995 #include "llvm/BinaryFormat/Dwarf.def"
2996   };
2997   Asm->OutStreamer->AddComment("Macro information version");
2998   Asm->emitInt16(DwarfVersion >= 5 ? DwarfVersion : 4);
2999   // We emit the line offset flag unconditionally here, since line offset should
3000   // be mostly present.
3001   if (Asm->isDwarf64()) {
3002     Asm->OutStreamer->AddComment("Flags: 64 bit, debug_line_offset present");
3003     Asm->emitInt8(MACRO_FLAG_OFFSET_SIZE | MACRO_FLAG_DEBUG_LINE_OFFSET);
3004   } else {
3005     Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present");
3006     Asm->emitInt8(MACRO_FLAG_DEBUG_LINE_OFFSET);
3007   }
3008   Asm->OutStreamer->AddComment("debug_line_offset");
3009   if (DD.useSplitDwarf())
3010     Asm->emitDwarfLengthOrOffset(0);
3011   else
3012     Asm->emitDwarfSymbolReference(CU.getLineTableStartSym());
3013 }
3014 
3015 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) {
3016   for (auto *MN : Nodes) {
3017     if (auto *M = dyn_cast<DIMacro>(MN))
3018       emitMacro(*M);
3019     else if (auto *F = dyn_cast<DIMacroFile>(MN))
3020       emitMacroFile(*F, U);
3021     else
3022       llvm_unreachable("Unexpected DI type!");
3023   }
3024 }
3025 
3026 void DwarfDebug::emitMacro(DIMacro &M) {
3027   StringRef Name = M.getName();
3028   StringRef Value = M.getValue();
3029 
3030   // There should be one space between the macro name and the macro value in
3031   // define entries. In undef entries, only the macro name is emitted.
3032   std::string Str = Value.empty() ? Name.str() : (Name + " " + Value).str();
3033 
3034   if (UseDebugMacroSection) {
3035     if (getDwarfVersion() >= 5) {
3036       unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
3037                           ? dwarf::DW_MACRO_define_strx
3038                           : dwarf::DW_MACRO_undef_strx;
3039       Asm->OutStreamer->AddComment(dwarf::MacroString(Type));
3040       Asm->emitULEB128(Type);
3041       Asm->OutStreamer->AddComment("Line Number");
3042       Asm->emitULEB128(M.getLine());
3043       Asm->OutStreamer->AddComment("Macro String");
3044       Asm->emitULEB128(
3045           InfoHolder.getStringPool().getIndexedEntry(*Asm, Str).getIndex());
3046     } else {
3047       unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
3048                           ? dwarf::DW_MACRO_GNU_define_indirect
3049                           : dwarf::DW_MACRO_GNU_undef_indirect;
3050       Asm->OutStreamer->AddComment(dwarf::GnuMacroString(Type));
3051       Asm->emitULEB128(Type);
3052       Asm->OutStreamer->AddComment("Line Number");
3053       Asm->emitULEB128(M.getLine());
3054       Asm->OutStreamer->AddComment("Macro String");
3055       Asm->emitDwarfSymbolReference(
3056           InfoHolder.getStringPool().getEntry(*Asm, Str).getSymbol());
3057     }
3058   } else {
3059     Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType()));
3060     Asm->emitULEB128(M.getMacinfoType());
3061     Asm->OutStreamer->AddComment("Line Number");
3062     Asm->emitULEB128(M.getLine());
3063     Asm->OutStreamer->AddComment("Macro String");
3064     Asm->OutStreamer->emitBytes(Str);
3065     Asm->emitInt8('\0');
3066   }
3067 }
3068 
3069 void DwarfDebug::emitMacroFileImpl(
3070     DIMacroFile &MF, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile,
3071     StringRef (*MacroFormToString)(unsigned Form)) {
3072 
3073   Asm->OutStreamer->AddComment(MacroFormToString(StartFile));
3074   Asm->emitULEB128(StartFile);
3075   Asm->OutStreamer->AddComment("Line Number");
3076   Asm->emitULEB128(MF.getLine());
3077   Asm->OutStreamer->AddComment("File Number");
3078   DIFile &F = *MF.getFile();
3079   if (useSplitDwarf())
3080     Asm->emitULEB128(getDwoLineTable(U)->getFile(
3081         F.getDirectory(), F.getFilename(), getMD5AsBytes(&F),
3082         Asm->OutContext.getDwarfVersion(), F.getSource()));
3083   else
3084     Asm->emitULEB128(U.getOrCreateSourceID(&F));
3085   handleMacroNodes(MF.getElements(), U);
3086   Asm->OutStreamer->AddComment(MacroFormToString(EndFile));
3087   Asm->emitULEB128(EndFile);
3088 }
3089 
3090 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) {
3091   // DWARFv5 macro and DWARFv4 macinfo share some common encodings,
3092   // so for readibility/uniformity, We are explicitly emitting those.
3093   assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file);
3094   if (UseDebugMacroSection)
3095     emitMacroFileImpl(
3096         F, U, dwarf::DW_MACRO_start_file, dwarf::DW_MACRO_end_file,
3097         (getDwarfVersion() >= 5) ? dwarf::MacroString : dwarf::GnuMacroString);
3098   else
3099     emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file,
3100                       dwarf::DW_MACINFO_end_file, dwarf::MacinfoString);
3101 }
3102 
3103 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) {
3104   for (const auto &P : CUMap) {
3105     auto &TheCU = *P.second;
3106     auto *SkCU = TheCU.getSkeleton();
3107     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
3108     auto *CUNode = cast<DICompileUnit>(P.first);
3109     DIMacroNodeArray Macros = CUNode->getMacros();
3110     if (Macros.empty())
3111       continue;
3112     Asm->OutStreamer->SwitchSection(Section);
3113     Asm->OutStreamer->emitLabel(U.getMacroLabelBegin());
3114     if (UseDebugMacroSection)
3115       emitMacroHeader(Asm, *this, U, getDwarfVersion());
3116     handleMacroNodes(Macros, U);
3117     Asm->OutStreamer->AddComment("End Of Macro List Mark");
3118     Asm->emitInt8(0);
3119   }
3120 }
3121 
3122 /// Emit macros into a debug macinfo/macro section.
3123 void DwarfDebug::emitDebugMacinfo() {
3124   auto &ObjLower = Asm->getObjFileLowering();
3125   emitDebugMacinfoImpl(UseDebugMacroSection
3126                            ? ObjLower.getDwarfMacroSection()
3127                            : ObjLower.getDwarfMacinfoSection());
3128 }
3129 
3130 void DwarfDebug::emitDebugMacinfoDWO() {
3131   auto &ObjLower = Asm->getObjFileLowering();
3132   emitDebugMacinfoImpl(UseDebugMacroSection
3133                            ? ObjLower.getDwarfMacroDWOSection()
3134                            : ObjLower.getDwarfMacinfoDWOSection());
3135 }
3136 
3137 // DWARF5 Experimental Separate Dwarf emitters.
3138 
3139 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
3140                                   std::unique_ptr<DwarfCompileUnit> NewU) {
3141 
3142   if (!CompilationDir.empty())
3143     NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
3144   addGnuPubAttributes(*NewU, Die);
3145 
3146   SkeletonHolder.addUnit(std::move(NewU));
3147 }
3148 
3149 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
3150 
3151   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
3152       CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder,
3153       UnitKind::Skeleton);
3154   DwarfCompileUnit &NewCU = *OwnedUnit;
3155   NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
3156 
3157   NewCU.initStmtList();
3158 
3159   if (useSegmentedStringOffsetsTable())
3160     NewCU.addStringOffsetsStart();
3161 
3162   initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));
3163 
3164   return NewCU;
3165 }
3166 
3167 // Emit the .debug_info.dwo section for separated dwarf. This contains the
3168 // compile units that would normally be in debug_info.
3169 void DwarfDebug::emitDebugInfoDWO() {
3170   assert(useSplitDwarf() && "No split dwarf debug info?");
3171   // Don't emit relocations into the dwo file.
3172   InfoHolder.emitUnits(/* UseOffsets */ true);
3173 }
3174 
3175 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
3176 // abbreviations for the .debug_info.dwo section.
3177 void DwarfDebug::emitDebugAbbrevDWO() {
3178   assert(useSplitDwarf() && "No split dwarf?");
3179   InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
3180 }
3181 
3182 void DwarfDebug::emitDebugLineDWO() {
3183   assert(useSplitDwarf() && "No split dwarf?");
3184   SplitTypeUnitFileTable.Emit(
3185       *Asm->OutStreamer, MCDwarfLineTableParams(),
3186       Asm->getObjFileLowering().getDwarfLineDWOSection());
3187 }
3188 
3189 void DwarfDebug::emitStringOffsetsTableHeaderDWO() {
3190   assert(useSplitDwarf() && "No split dwarf?");
3191   InfoHolder.getStringPool().emitStringOffsetsTableHeader(
3192       *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(),
3193       InfoHolder.getStringOffsetsStartSym());
3194 }
3195 
3196 // Emit the .debug_str.dwo section for separated dwarf. This contains the
3197 // string section and is identical in format to traditional .debug_str
3198 // sections.
3199 void DwarfDebug::emitDebugStrDWO() {
3200   if (useSegmentedStringOffsetsTable())
3201     emitStringOffsetsTableHeaderDWO();
3202   assert(useSplitDwarf() && "No split dwarf?");
3203   MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection();
3204   InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
3205                          OffSec, /* UseRelativeOffsets = */ false);
3206 }
3207 
3208 // Emit address pool.
3209 void DwarfDebug::emitDebugAddr() {
3210   AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
3211 }
3212 
3213 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
3214   if (!useSplitDwarf())
3215     return nullptr;
3216   const DICompileUnit *DIUnit = CU.getCUNode();
3217   SplitTypeUnitFileTable.maybeSetRootFile(
3218       DIUnit->getDirectory(), DIUnit->getFilename(),
3219       getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource());
3220   return &SplitTypeUnitFileTable;
3221 }
3222 
3223 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) {
3224   MD5 Hash;
3225   Hash.update(Identifier);
3226   // ... take the least significant 8 bytes and return those. Our MD5
3227   // implementation always returns its results in little endian, so we actually
3228   // need the "high" word.
3229   MD5::MD5Result Result;
3230   Hash.final(Result);
3231   return Result.high();
3232 }
3233 
3234 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
3235                                       StringRef Identifier, DIE &RefDie,
3236                                       const DICompositeType *CTy) {
3237   // Fast path if we're building some type units and one has already used the
3238   // address pool we know we're going to throw away all this work anyway, so
3239   // don't bother building dependent types.
3240   if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
3241     return;
3242 
3243   auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0));
3244   if (!Ins.second) {
3245     CU.addDIETypeSignature(RefDie, Ins.first->second);
3246     return;
3247   }
3248 
3249   bool TopLevelType = TypeUnitsUnderConstruction.empty();
3250   AddrPool.resetUsedFlag();
3251 
3252   auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder,
3253                                                     getDwoLineTable(CU));
3254   DwarfTypeUnit &NewTU = *OwnedUnit;
3255   DIE &UnitDie = NewTU.getUnitDie();
3256   TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy);
3257 
3258   NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
3259                 CU.getLanguage());
3260 
3261   uint64_t Signature = makeTypeSignature(Identifier);
3262   NewTU.setTypeSignature(Signature);
3263   Ins.first->second = Signature;
3264 
3265   if (useSplitDwarf()) {
3266     MCSection *Section =
3267         getDwarfVersion() <= 4
3268             ? Asm->getObjFileLowering().getDwarfTypesDWOSection()
3269             : Asm->getObjFileLowering().getDwarfInfoDWOSection();
3270     NewTU.setSection(Section);
3271   } else {
3272     MCSection *Section =
3273         getDwarfVersion() <= 4
3274             ? Asm->getObjFileLowering().getDwarfTypesSection(Signature)
3275             : Asm->getObjFileLowering().getDwarfInfoSection(Signature);
3276     NewTU.setSection(Section);
3277     // Non-split type units reuse the compile unit's line table.
3278     CU.applyStmtList(UnitDie);
3279   }
3280 
3281   // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type
3282   // units.
3283   if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
3284     NewTU.addStringOffsetsStart();
3285 
3286   NewTU.setType(NewTU.createTypeDIE(CTy));
3287 
3288   if (TopLevelType) {
3289     auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
3290     TypeUnitsUnderConstruction.clear();
3291 
3292     // Types referencing entries in the address table cannot be placed in type
3293     // units.
3294     if (AddrPool.hasBeenUsed()) {
3295 
3296       // Remove all the types built while building this type.
3297       // This is pessimistic as some of these types might not be dependent on
3298       // the type that used an address.
3299       for (const auto &TU : TypeUnitsToAdd)
3300         TypeSignatures.erase(TU.second);
3301 
3302       // Construct this type in the CU directly.
3303       // This is inefficient because all the dependent types will be rebuilt
3304       // from scratch, including building them in type units, discovering that
3305       // they depend on addresses, throwing them out and rebuilding them.
3306       CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy));
3307       return;
3308     }
3309 
3310     // If the type wasn't dependent on fission addresses, finish adding the type
3311     // and all its dependent types.
3312     for (auto &TU : TypeUnitsToAdd) {
3313       InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get());
3314       InfoHolder.emitUnit(TU.first.get(), useSplitDwarf());
3315     }
3316   }
3317   CU.addDIETypeSignature(RefDie, Signature);
3318 }
3319 
3320 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD)
3321     : DD(DD),
3322       TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)), AddrPoolUsed(DD->AddrPool.hasBeenUsed()) {
3323   DD->TypeUnitsUnderConstruction.clear();
3324   DD->AddrPool.resetUsedFlag();
3325 }
3326 
3327 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() {
3328   DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction);
3329   DD->AddrPool.resetUsedFlag(AddrPoolUsed);
3330 }
3331 
3332 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() {
3333   return NonTypeUnitContext(this);
3334 }
3335 
3336 // Add the Name along with its companion DIE to the appropriate accelerator
3337 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for
3338 // AccelTableKind::Apple, we use the table we got as an argument). If
3339 // accelerator tables are disabled, this function does nothing.
3340 template <typename DataT>
3341 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU,
3342                                   AccelTable<DataT> &AppleAccel, StringRef Name,
3343                                   const DIE &Die) {
3344   if (getAccelTableKind() == AccelTableKind::None)
3345     return;
3346 
3347   if (getAccelTableKind() != AccelTableKind::Apple &&
3348       CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default)
3349     return;
3350 
3351   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
3352   DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name);
3353 
3354   switch (getAccelTableKind()) {
3355   case AccelTableKind::Apple:
3356     AppleAccel.addName(Ref, Die);
3357     break;
3358   case AccelTableKind::Dwarf:
3359     AccelDebugNames.addName(Ref, Die);
3360     break;
3361   case AccelTableKind::Default:
3362     llvm_unreachable("Default should have already been resolved.");
3363   case AccelTableKind::None:
3364     llvm_unreachable("None handled above");
3365   }
3366 }
3367 
3368 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name,
3369                               const DIE &Die) {
3370   addAccelNameImpl(CU, AccelNames, Name, Die);
3371 }
3372 
3373 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name,
3374                               const DIE &Die) {
3375   // ObjC names go only into the Apple accelerator tables.
3376   if (getAccelTableKind() == AccelTableKind::Apple)
3377     addAccelNameImpl(CU, AccelObjC, Name, Die);
3378 }
3379 
3380 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name,
3381                                    const DIE &Die) {
3382   addAccelNameImpl(CU, AccelNamespace, Name, Die);
3383 }
3384 
3385 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name,
3386                               const DIE &Die, char Flags) {
3387   addAccelNameImpl(CU, AccelTypes, Name, Die);
3388 }
3389 
3390 uint16_t DwarfDebug::getDwarfVersion() const {
3391   return Asm->OutStreamer->getContext().getDwarfVersion();
3392 }
3393 
3394 dwarf::Form DwarfDebug::getDwarfSectionOffsetForm() const {
3395   if (Asm->getDwarfVersion() >= 4)
3396     return dwarf::Form::DW_FORM_sec_offset;
3397   assert((!Asm->isDwarf64() || (Asm->getDwarfVersion() == 3)) &&
3398          "DWARF64 is not defined prior DWARFv3");
3399   return Asm->isDwarf64() ? dwarf::Form::DW_FORM_data8
3400                           : dwarf::Form::DW_FORM_data4;
3401 }
3402 
3403 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) {
3404   auto I = SectionLabels.find(S);
3405   if (I == SectionLabels.end())
3406     return nullptr;
3407   return I->second;
3408 }
3409 void DwarfDebug::insertSectionLabel(const MCSymbol *S) {
3410   if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second)
3411     if (useSplitDwarf() || getDwarfVersion() >= 5)
3412       AddrPool.getIndex(S);
3413 }
3414 
3415 Optional<MD5::MD5Result> DwarfDebug::getMD5AsBytes(const DIFile *File) const {
3416   assert(File);
3417   if (getDwarfVersion() < 5)
3418     return None;
3419   Optional<DIFile::ChecksumInfo<StringRef>> Checksum = File->getChecksum();
3420   if (!Checksum || Checksum->Kind != DIFile::CSK_MD5)
3421     return None;
3422 
3423   // Convert the string checksum to an MD5Result for the streamer.
3424   // The verifier validates the checksum so we assume it's okay.
3425   // An MD5 checksum is 16 bytes.
3426   std::string ChecksumString = fromHex(Checksum->Value);
3427   MD5::MD5Result CKMem;
3428   std::copy(ChecksumString.begin(), ChecksumString.end(), CKMem.Bytes.data());
3429   return CKMem;
3430 }
3431