1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing dwarf debug info into asm files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "DwarfDebug.h"
14 #include "ByteStreamer.h"
15 #include "DIEHash.h"
16 #include "DwarfCompileUnit.h"
17 #include "DwarfExpression.h"
18 #include "DwarfUnit.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/CodeGen/AsmPrinter.h"
24 #include "llvm/CodeGen/DIE.h"
25 #include "llvm/CodeGen/LexicalScopes.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/CodeGen/TargetRegisterInfo.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/DebugInfo/DWARF/DWARFExpression.h"
35 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/MC/MCAsmInfo.h"
41 #include "llvm/MC/MCContext.h"
42 #include "llvm/MC/MCSection.h"
43 #include "llvm/MC/MCStreamer.h"
44 #include "llvm/MC/MCSymbol.h"
45 #include "llvm/MC/MCTargetOptions.h"
46 #include "llvm/MC/MachineLocation.h"
47 #include "llvm/MC/SectionKind.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MD5.h"
54 #include "llvm/Support/MathExtras.h"
55 #include "llvm/Support/Timer.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Target/TargetLoweringObjectFile.h"
58 #include "llvm/Target/TargetMachine.h"
59 #include <algorithm>
60 #include <cstddef>
61 #include <iterator>
62 #include <string>
63 
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "dwarfdebug"
67 
68 STATISTIC(NumCSParams, "Number of dbg call site params created");
69 
70 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier(
71     "use-dwarf-ranges-base-address-specifier", cl::Hidden,
72     cl::desc("Use base address specifiers in debug_ranges"), cl::init(false));
73 
74 static cl::opt<bool> GenerateARangeSection("generate-arange-section",
75                                            cl::Hidden,
76                                            cl::desc("Generate dwarf aranges"),
77                                            cl::init(false));
78 
79 static cl::opt<bool>
80     GenerateDwarfTypeUnits("generate-type-units", cl::Hidden,
81                            cl::desc("Generate DWARF4 type units."),
82                            cl::init(false));
83 
84 static cl::opt<bool> SplitDwarfCrossCuReferences(
85     "split-dwarf-cross-cu-references", cl::Hidden,
86     cl::desc("Enable cross-cu references in DWO files"), cl::init(false));
87 
88 enum DefaultOnOff { Default, Enable, Disable };
89 
90 static cl::opt<DefaultOnOff> UnknownLocations(
91     "use-unknown-locations", cl::Hidden,
92     cl::desc("Make an absence of debug location information explicit."),
93     cl::values(clEnumVal(Default, "At top of block or after label"),
94                clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")),
95     cl::init(Default));
96 
97 static cl::opt<AccelTableKind> AccelTables(
98     "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."),
99     cl::values(clEnumValN(AccelTableKind::Default, "Default",
100                           "Default for platform"),
101                clEnumValN(AccelTableKind::None, "Disable", "Disabled."),
102                clEnumValN(AccelTableKind::Apple, "Apple", "Apple"),
103                clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")),
104     cl::init(AccelTableKind::Default));
105 
106 static cl::opt<DefaultOnOff>
107 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden,
108                  cl::desc("Use inlined strings rather than string section."),
109                  cl::values(clEnumVal(Default, "Default for platform"),
110                             clEnumVal(Enable, "Enabled"),
111                             clEnumVal(Disable, "Disabled")),
112                  cl::init(Default));
113 
114 static cl::opt<bool>
115     NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden,
116                          cl::desc("Disable emission .debug_ranges section."),
117                          cl::init(false));
118 
119 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences(
120     "dwarf-sections-as-references", cl::Hidden,
121     cl::desc("Use sections+offset as references rather than labels."),
122     cl::values(clEnumVal(Default, "Default for platform"),
123                clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
124     cl::init(Default));
125 
126 static cl::opt<bool>
127     UseGNUDebugMacro("use-gnu-debug-macro", cl::Hidden,
128                      cl::desc("Emit the GNU .debug_macro format with DWARF <5"),
129                      cl::init(false));
130 
131 static cl::opt<DefaultOnOff> DwarfOpConvert(
132     "dwarf-op-convert", cl::Hidden,
133     cl::desc("Enable use of the DWARFv5 DW_OP_convert operator"),
134     cl::values(clEnumVal(Default, "Default for platform"),
135                clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
136     cl::init(Default));
137 
138 enum LinkageNameOption {
139   DefaultLinkageNames,
140   AllLinkageNames,
141   AbstractLinkageNames
142 };
143 
144 static cl::opt<LinkageNameOption>
145     DwarfLinkageNames("dwarf-linkage-names", cl::Hidden,
146                       cl::desc("Which DWARF linkage-name attributes to emit."),
147                       cl::values(clEnumValN(DefaultLinkageNames, "Default",
148                                             "Default for platform"),
149                                  clEnumValN(AllLinkageNames, "All", "All"),
150                                  clEnumValN(AbstractLinkageNames, "Abstract",
151                                             "Abstract subprograms")),
152                       cl::init(DefaultLinkageNames));
153 
154 static cl::opt<DefaultOnOff> AlwaysUseRangesInV5(
155     "always-use-ranges-in-v5", cl::Hidden,
156     cl::desc("Always use DW_AT_ranges in DWARFv5 whenever it could allow more "
157              "address pool entry sharing to reduce relocations/object size"),
158     cl::values(clEnumVal(Default, "Default for platform"),
159                clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
160     cl::init(Default));
161 
162 static constexpr unsigned ULEB128PadSize = 4;
163 
164 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) {
165   getActiveStreamer().emitInt8(
166       Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op)
167                   : dwarf::OperationEncodingString(Op));
168 }
169 
170 void DebugLocDwarfExpression::emitSigned(int64_t Value) {
171   getActiveStreamer().emitSLEB128(Value, Twine(Value));
172 }
173 
174 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) {
175   getActiveStreamer().emitULEB128(Value, Twine(Value));
176 }
177 
178 void DebugLocDwarfExpression::emitData1(uint8_t Value) {
179   getActiveStreamer().emitInt8(Value, Twine(Value));
180 }
181 
182 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) {
183   assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit");
184   getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize);
185 }
186 
187 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI,
188                                               llvm::Register MachineReg) {
189   // This information is not available while emitting .debug_loc entries.
190   return false;
191 }
192 
193 void DebugLocDwarfExpression::enableTemporaryBuffer() {
194   assert(!IsBuffering && "Already buffering?");
195   if (!TmpBuf)
196     TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments);
197   IsBuffering = true;
198 }
199 
200 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; }
201 
202 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() {
203   return TmpBuf ? TmpBuf->Bytes.size() : 0;
204 }
205 
206 void DebugLocDwarfExpression::commitTemporaryBuffer() {
207   if (!TmpBuf)
208     return;
209   for (auto Byte : enumerate(TmpBuf->Bytes)) {
210     const char *Comment = (Byte.index() < TmpBuf->Comments.size())
211                               ? TmpBuf->Comments[Byte.index()].c_str()
212                               : "";
213     OutBS.emitInt8(Byte.value(), Comment);
214   }
215   TmpBuf->Bytes.clear();
216   TmpBuf->Comments.clear();
217 }
218 
219 const DIType *DbgVariable::getType() const {
220   return getVariable()->getType();
221 }
222 
223 /// Get .debug_loc entry for the instruction range starting at MI.
224 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) {
225   const DIExpression *Expr = MI->getDebugExpression();
226   assert(MI->getNumOperands() == 4);
227   if (MI->getDebugOperand(0).isReg()) {
228     const auto &RegOp = MI->getDebugOperand(0);
229     const auto &Op1 = MI->getDebugOffset();
230     // If the second operand is an immediate, this is a
231     // register-indirect address.
232     assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset");
233     MachineLocation MLoc(RegOp.getReg(), Op1.isImm());
234     return DbgValueLoc(Expr, MLoc);
235   }
236   if (MI->getDebugOperand(0).isTargetIndex()) {
237     const auto &Op = MI->getDebugOperand(0);
238     return DbgValueLoc(Expr,
239                        TargetIndexLocation(Op.getIndex(), Op.getOffset()));
240   }
241   if (MI->getDebugOperand(0).isImm())
242     return DbgValueLoc(Expr, MI->getDebugOperand(0).getImm());
243   if (MI->getDebugOperand(0).isFPImm())
244     return DbgValueLoc(Expr, MI->getDebugOperand(0).getFPImm());
245   if (MI->getDebugOperand(0).isCImm())
246     return DbgValueLoc(Expr, MI->getDebugOperand(0).getCImm());
247 
248   llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!");
249 }
250 
251 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) {
252   assert(FrameIndexExprs.empty() && "Already initialized?");
253   assert(!ValueLoc.get() && "Already initialized?");
254 
255   assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable");
256   assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() &&
257          "Wrong inlined-at");
258 
259   ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue));
260   if (auto *E = DbgValue->getDebugExpression())
261     if (E->getNumElements())
262       FrameIndexExprs.push_back({0, E});
263 }
264 
265 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const {
266   if (FrameIndexExprs.size() == 1)
267     return FrameIndexExprs;
268 
269   assert(llvm::all_of(FrameIndexExprs,
270                       [](const FrameIndexExpr &A) {
271                         return A.Expr->isFragment();
272                       }) &&
273          "multiple FI expressions without DW_OP_LLVM_fragment");
274   llvm::sort(FrameIndexExprs,
275              [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool {
276                return A.Expr->getFragmentInfo()->OffsetInBits <
277                       B.Expr->getFragmentInfo()->OffsetInBits;
278              });
279 
280   return FrameIndexExprs;
281 }
282 
283 void DbgVariable::addMMIEntry(const DbgVariable &V) {
284   assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry");
285   assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry");
286   assert(V.getVariable() == getVariable() && "conflicting variable");
287   assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location");
288 
289   assert(!FrameIndexExprs.empty() && "Expected an MMI entry");
290   assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry");
291 
292   // FIXME: This logic should not be necessary anymore, as we now have proper
293   // deduplication. However, without it, we currently run into the assertion
294   // below, which means that we are likely dealing with broken input, i.e. two
295   // non-fragment entries for the same variable at different frame indices.
296   if (FrameIndexExprs.size()) {
297     auto *Expr = FrameIndexExprs.back().Expr;
298     if (!Expr || !Expr->isFragment())
299       return;
300   }
301 
302   for (const auto &FIE : V.FrameIndexExprs)
303     // Ignore duplicate entries.
304     if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) {
305           return FIE.FI == Other.FI && FIE.Expr == Other.Expr;
306         }))
307       FrameIndexExprs.push_back(FIE);
308 
309   assert((FrameIndexExprs.size() == 1 ||
310           llvm::all_of(FrameIndexExprs,
311                        [](FrameIndexExpr &FIE) {
312                          return FIE.Expr && FIE.Expr->isFragment();
313                        })) &&
314          "conflicting locations for variable");
315 }
316 
317 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion,
318                                             bool GenerateTypeUnits,
319                                             DebuggerKind Tuning,
320                                             const Triple &TT) {
321   // Honor an explicit request.
322   if (AccelTables != AccelTableKind::Default)
323     return AccelTables;
324 
325   // Accelerator tables with type units are currently not supported.
326   if (GenerateTypeUnits)
327     return AccelTableKind::None;
328 
329   // Accelerator tables get emitted if targetting DWARF v5 or LLDB.  DWARF v5
330   // always implies debug_names. For lower standard versions we use apple
331   // accelerator tables on apple platforms and debug_names elsewhere.
332   if (DwarfVersion >= 5)
333     return AccelTableKind::Dwarf;
334   if (Tuning == DebuggerKind::LLDB)
335     return TT.isOSBinFormatMachO() ? AccelTableKind::Apple
336                                    : AccelTableKind::Dwarf;
337   return AccelTableKind::None;
338 }
339 
340 DwarfDebug::DwarfDebug(AsmPrinter *A)
341     : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()),
342       InfoHolder(A, "info_string", DIEValueAllocator),
343       SkeletonHolder(A, "skel_string", DIEValueAllocator),
344       IsDarwin(A->TM.getTargetTriple().isOSDarwin()) {
345   const Triple &TT = Asm->TM.getTargetTriple();
346 
347   // Make sure we know our "debugger tuning".  The target option takes
348   // precedence; fall back to triple-based defaults.
349   if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default)
350     DebuggerTuning = Asm->TM.Options.DebuggerTuning;
351   else if (IsDarwin)
352     DebuggerTuning = DebuggerKind::LLDB;
353   else if (TT.isPS4CPU())
354     DebuggerTuning = DebuggerKind::SCE;
355   else
356     DebuggerTuning = DebuggerKind::GDB;
357 
358   if (DwarfInlinedStrings == Default)
359     UseInlineStrings = TT.isNVPTX();
360   else
361     UseInlineStrings = DwarfInlinedStrings == Enable;
362 
363   UseLocSection = !TT.isNVPTX();
364 
365   HasAppleExtensionAttributes = tuneForLLDB();
366 
367   // Handle split DWARF.
368   HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty();
369 
370   // SCE defaults to linkage names only for abstract subprograms.
371   if (DwarfLinkageNames == DefaultLinkageNames)
372     UseAllLinkageNames = !tuneForSCE();
373   else
374     UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames;
375 
376   unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
377   unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
378                                     : MMI->getModule()->getDwarfVersion();
379   // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2.
380   DwarfVersion =
381       TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION);
382 
383   bool Dwarf64 = Asm->TM.Options.MCOptions.Dwarf64 &&
384                  DwarfVersion >= 3 &&   // DWARF64 was introduced in DWARFv3.
385                  TT.isArch64Bit() &&    // DWARF64 requires 64-bit relocations.
386                  TT.isOSBinFormatELF(); // Support only ELF for now.
387 
388   UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX();
389 
390   // Use sections as references. Force for NVPTX.
391   if (DwarfSectionsAsReferences == Default)
392     UseSectionsAsReferences = TT.isNVPTX();
393   else
394     UseSectionsAsReferences = DwarfSectionsAsReferences == Enable;
395 
396   // Don't generate type units for unsupported object file formats.
397   GenerateTypeUnits = (A->TM.getTargetTriple().isOSBinFormatELF() ||
398                        A->TM.getTargetTriple().isOSBinFormatWasm()) &&
399                       GenerateDwarfTypeUnits;
400 
401   TheAccelTableKind = computeAccelTableKind(
402       DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple());
403 
404   // Work around a GDB bug. GDB doesn't support the standard opcode;
405   // SCE doesn't support GNU's; LLDB prefers the standard opcode, which
406   // is defined as of DWARF 3.
407   // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented
408   // https://sourceware.org/bugzilla/show_bug.cgi?id=11616
409   UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3;
410 
411   // GDB does not fully support the DWARF 4 representation for bitfields.
412   UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB();
413 
414   // The DWARF v5 string offsets table has - possibly shared - contributions
415   // from each compile and type unit each preceded by a header. The string
416   // offsets table used by the pre-DWARF v5 split-DWARF implementation uses
417   // a monolithic string offsets table without any header.
418   UseSegmentedStringOffsetsTable = DwarfVersion >= 5;
419 
420   // Emit call-site-param debug info for GDB and LLDB, if the target supports
421   // the debug entry values feature. It can also be enabled explicitly.
422   EmitDebugEntryValues = Asm->TM.Options.ShouldEmitDebugEntryValues();
423 
424   // It is unclear if the GCC .debug_macro extension is well-specified
425   // for split DWARF. For now, do not allow LLVM to emit it.
426   UseDebugMacroSection =
427       DwarfVersion >= 5 || (UseGNUDebugMacro && !useSplitDwarf());
428   if (DwarfOpConvert == Default)
429     EnableOpConvert = !((tuneForGDB() && useSplitDwarf()) || (tuneForLLDB() && !TT.isOSBinFormatMachO()));
430   else
431     EnableOpConvert = (DwarfOpConvert == Enable);
432 
433   // Split DWARF would benefit object size significantly by trading reductions
434   // in address pool usage for slightly increased range list encodings.
435   if (DwarfVersion >= 5) {
436     if (AlwaysUseRangesInV5 == Default) {
437       // FIXME: In the future, enable this by default for Split DWARF where the
438       // tradeoff is more pronounced due to being able to offload the range
439       // lists to the dwo file and shrink object files/reduce relocations there.
440       AlwaysUseRanges = false;
441     } else {
442       AlwaysUseRanges = AlwaysUseRangesInV5 == Enable;
443     }
444   }
445 
446   Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion);
447   Asm->OutStreamer->getContext().setDwarfFormat(Dwarf64 ? dwarf::DWARF64
448                                                         : dwarf::DWARF32);
449 }
450 
451 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
452 DwarfDebug::~DwarfDebug() = default;
453 
454 static bool isObjCClass(StringRef Name) {
455   return Name.startswith("+") || Name.startswith("-");
456 }
457 
458 static bool hasObjCCategory(StringRef Name) {
459   if (!isObjCClass(Name))
460     return false;
461 
462   return Name.find(") ") != StringRef::npos;
463 }
464 
465 static void getObjCClassCategory(StringRef In, StringRef &Class,
466                                  StringRef &Category) {
467   if (!hasObjCCategory(In)) {
468     Class = In.slice(In.find('[') + 1, In.find(' '));
469     Category = "";
470     return;
471   }
472 
473   Class = In.slice(In.find('[') + 1, In.find('('));
474   Category = In.slice(In.find('[') + 1, In.find(' '));
475 }
476 
477 static StringRef getObjCMethodName(StringRef In) {
478   return In.slice(In.find(' ') + 1, In.find(']'));
479 }
480 
481 // Add the various names to the Dwarf accelerator table names.
482 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU,
483                                     const DISubprogram *SP, DIE &Die) {
484   if (getAccelTableKind() != AccelTableKind::Apple &&
485       CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None)
486     return;
487 
488   if (!SP->isDefinition())
489     return;
490 
491   if (SP->getName() != "")
492     addAccelName(CU, SP->getName(), Die);
493 
494   // If the linkage name is different than the name, go ahead and output that as
495   // well into the name table. Only do that if we are going to actually emit
496   // that name.
497   if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() &&
498       (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP)))
499     addAccelName(CU, SP->getLinkageName(), Die);
500 
501   // If this is an Objective-C selector name add it to the ObjC accelerator
502   // too.
503   if (isObjCClass(SP->getName())) {
504     StringRef Class, Category;
505     getObjCClassCategory(SP->getName(), Class, Category);
506     addAccelObjC(CU, Class, Die);
507     if (Category != "")
508       addAccelObjC(CU, Category, Die);
509     // Also add the base method name to the name table.
510     addAccelName(CU, getObjCMethodName(SP->getName()), Die);
511   }
512 }
513 
514 /// Check whether we should create a DIE for the given Scope, return true
515 /// if we don't create a DIE (the corresponding DIE is null).
516 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
517   if (Scope->isAbstractScope())
518     return false;
519 
520   // We don't create a DIE if there is no Range.
521   const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
522   if (Ranges.empty())
523     return true;
524 
525   if (Ranges.size() > 1)
526     return false;
527 
528   // We don't create a DIE if we have a single Range and the end label
529   // is null.
530   return !getLabelAfterInsn(Ranges.front().second);
531 }
532 
533 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) {
534   F(CU);
535   if (auto *SkelCU = CU.getSkeleton())
536     if (CU.getCUNode()->getSplitDebugInlining())
537       F(*SkelCU);
538 }
539 
540 bool DwarfDebug::shareAcrossDWOCUs() const {
541   return SplitDwarfCrossCuReferences;
542 }
543 
544 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU,
545                                                      LexicalScope *Scope) {
546   assert(Scope && Scope->getScopeNode());
547   assert(Scope->isAbstractScope());
548   assert(!Scope->getInlinedAt());
549 
550   auto *SP = cast<DISubprogram>(Scope->getScopeNode());
551 
552   // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
553   // was inlined from another compile unit.
554   if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining())
555     // Avoid building the original CU if it won't be used
556     SrcCU.constructAbstractSubprogramScopeDIE(Scope);
557   else {
558     auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
559     if (auto *SkelCU = CU.getSkeleton()) {
560       (shareAcrossDWOCUs() ? CU : SrcCU)
561           .constructAbstractSubprogramScopeDIE(Scope);
562       if (CU.getCUNode()->getSplitDebugInlining())
563         SkelCU->constructAbstractSubprogramScopeDIE(Scope);
564     } else
565       CU.constructAbstractSubprogramScopeDIE(Scope);
566   }
567 }
568 
569 DIE &DwarfDebug::constructSubprogramDefinitionDIE(const DISubprogram *SP) {
570   DICompileUnit *Unit = SP->getUnit();
571   assert(SP->isDefinition() && "Subprogram not a definition");
572   assert(Unit && "Subprogram definition without parent unit");
573   auto &CU = getOrCreateDwarfCompileUnit(Unit);
574   return *CU.getOrCreateSubprogramDIE(SP);
575 }
576 
577 /// Represents a parameter whose call site value can be described by applying a
578 /// debug expression to a register in the forwarded register worklist.
579 struct FwdRegParamInfo {
580   /// The described parameter register.
581   unsigned ParamReg;
582 
583   /// Debug expression that has been built up when walking through the
584   /// instruction chain that produces the parameter's value.
585   const DIExpression *Expr;
586 };
587 
588 /// Register worklist for finding call site values.
589 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>;
590 
591 /// Append the expression \p Addition to \p Original and return the result.
592 static const DIExpression *combineDIExpressions(const DIExpression *Original,
593                                                 const DIExpression *Addition) {
594   std::vector<uint64_t> Elts = Addition->getElements().vec();
595   // Avoid multiple DW_OP_stack_values.
596   if (Original->isImplicit() && Addition->isImplicit())
597     erase_value(Elts, dwarf::DW_OP_stack_value);
598   const DIExpression *CombinedExpr =
599       (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original;
600   return CombinedExpr;
601 }
602 
603 /// Emit call site parameter entries that are described by the given value and
604 /// debug expression.
605 template <typename ValT>
606 static void finishCallSiteParams(ValT Val, const DIExpression *Expr,
607                                  ArrayRef<FwdRegParamInfo> DescribedParams,
608                                  ParamSet &Params) {
609   for (auto Param : DescribedParams) {
610     bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0;
611 
612     // TODO: Entry value operations can currently not be combined with any
613     // other expressions, so we can't emit call site entries in those cases.
614     if (ShouldCombineExpressions && Expr->isEntryValue())
615       continue;
616 
617     // If a parameter's call site value is produced by a chain of
618     // instructions we may have already created an expression for the
619     // parameter when walking through the instructions. Append that to the
620     // base expression.
621     const DIExpression *CombinedExpr =
622         ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr)
623                                  : Expr;
624     assert((!CombinedExpr || CombinedExpr->isValid()) &&
625            "Combined debug expression is invalid");
626 
627     DbgValueLoc DbgLocVal(CombinedExpr, Val);
628     DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal);
629     Params.push_back(CSParm);
630     ++NumCSParams;
631   }
632 }
633 
634 /// Add \p Reg to the worklist, if it's not already present, and mark that the
635 /// given parameter registers' values can (potentially) be described using
636 /// that register and an debug expression.
637 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg,
638                                 const DIExpression *Expr,
639                                 ArrayRef<FwdRegParamInfo> ParamsToAdd) {
640   auto I = Worklist.insert({Reg, {}});
641   auto &ParamsForFwdReg = I.first->second;
642   for (auto Param : ParamsToAdd) {
643     assert(none_of(ParamsForFwdReg,
644                    [Param](const FwdRegParamInfo &D) {
645                      return D.ParamReg == Param.ParamReg;
646                    }) &&
647            "Same parameter described twice by forwarding reg");
648 
649     // If a parameter's call site value is produced by a chain of
650     // instructions we may have already created an expression for the
651     // parameter when walking through the instructions. Append that to the
652     // new expression.
653     const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr);
654     ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr});
655   }
656 }
657 
658 /// Interpret values loaded into registers by \p CurMI.
659 static void interpretValues(const MachineInstr *CurMI,
660                             FwdRegWorklist &ForwardedRegWorklist,
661                             ParamSet &Params) {
662 
663   const MachineFunction *MF = CurMI->getMF();
664   const DIExpression *EmptyExpr =
665       DIExpression::get(MF->getFunction().getContext(), {});
666   const auto &TRI = *MF->getSubtarget().getRegisterInfo();
667   const auto &TII = *MF->getSubtarget().getInstrInfo();
668   const auto &TLI = *MF->getSubtarget().getTargetLowering();
669 
670   // If an instruction defines more than one item in the worklist, we may run
671   // into situations where a worklist register's value is (potentially)
672   // described by the previous value of another register that is also defined
673   // by that instruction.
674   //
675   // This can for example occur in cases like this:
676   //
677   //   $r1 = mov 123
678   //   $r0, $r1 = mvrr $r1, 456
679   //   call @foo, $r0, $r1
680   //
681   // When describing $r1's value for the mvrr instruction, we need to make sure
682   // that we don't finalize an entry value for $r0, as that is dependent on the
683   // previous value of $r1 (123 rather than 456).
684   //
685   // In order to not have to distinguish between those cases when finalizing
686   // entry values, we simply postpone adding new parameter registers to the
687   // worklist, by first keeping them in this temporary container until the
688   // instruction has been handled.
689   FwdRegWorklist TmpWorklistItems;
690 
691   // If the MI is an instruction defining one or more parameters' forwarding
692   // registers, add those defines.
693   auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI,
694                                           SmallSetVector<unsigned, 4> &Defs) {
695     if (MI.isDebugInstr())
696       return;
697 
698     for (const MachineOperand &MO : MI.operands()) {
699       if (MO.isReg() && MO.isDef() &&
700           Register::isPhysicalRegister(MO.getReg())) {
701         for (auto FwdReg : ForwardedRegWorklist)
702           if (TRI.regsOverlap(FwdReg.first, MO.getReg()))
703             Defs.insert(FwdReg.first);
704       }
705     }
706   };
707 
708   // Set of worklist registers that are defined by this instruction.
709   SmallSetVector<unsigned, 4> FwdRegDefs;
710 
711   getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs);
712   if (FwdRegDefs.empty())
713     return;
714 
715   for (auto ParamFwdReg : FwdRegDefs) {
716     if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) {
717       if (ParamValue->first.isImm()) {
718         int64_t Val = ParamValue->first.getImm();
719         finishCallSiteParams(Val, ParamValue->second,
720                              ForwardedRegWorklist[ParamFwdReg], Params);
721       } else if (ParamValue->first.isReg()) {
722         Register RegLoc = ParamValue->first.getReg();
723         Register SP = TLI.getStackPointerRegisterToSaveRestore();
724         Register FP = TRI.getFrameRegister(*MF);
725         bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP);
726         if (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) {
727           MachineLocation MLoc(RegLoc, /*Indirect=*/IsSPorFP);
728           finishCallSiteParams(MLoc, ParamValue->second,
729                                ForwardedRegWorklist[ParamFwdReg], Params);
730         } else {
731           // ParamFwdReg was described by the non-callee saved register
732           // RegLoc. Mark that the call site values for the parameters are
733           // dependent on that register instead of ParamFwdReg. Since RegLoc
734           // may be a register that will be handled in this iteration, we
735           // postpone adding the items to the worklist, and instead keep them
736           // in a temporary container.
737           addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second,
738                               ForwardedRegWorklist[ParamFwdReg]);
739         }
740       }
741     }
742   }
743 
744   // Remove all registers that this instruction defines from the worklist.
745   for (auto ParamFwdReg : FwdRegDefs)
746     ForwardedRegWorklist.erase(ParamFwdReg);
747 
748   // Now that we are done handling this instruction, add items from the
749   // temporary worklist to the real one.
750   for (auto New : TmpWorklistItems)
751     addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second);
752   TmpWorklistItems.clear();
753 }
754 
755 static bool interpretNextInstr(const MachineInstr *CurMI,
756                                FwdRegWorklist &ForwardedRegWorklist,
757                                ParamSet &Params) {
758   // Skip bundle headers.
759   if (CurMI->isBundle())
760     return true;
761 
762   // If the next instruction is a call we can not interpret parameter's
763   // forwarding registers or we finished the interpretation of all
764   // parameters.
765   if (CurMI->isCall())
766     return false;
767 
768   if (ForwardedRegWorklist.empty())
769     return false;
770 
771   // Avoid NOP description.
772   if (CurMI->getNumOperands() == 0)
773     return true;
774 
775   interpretValues(CurMI, ForwardedRegWorklist, Params);
776 
777   return true;
778 }
779 
780 /// Try to interpret values loaded into registers that forward parameters
781 /// for \p CallMI. Store parameters with interpreted value into \p Params.
782 static void collectCallSiteParameters(const MachineInstr *CallMI,
783                                       ParamSet &Params) {
784   const MachineFunction *MF = CallMI->getMF();
785   auto CalleesMap = MF->getCallSitesInfo();
786   auto CallFwdRegsInfo = CalleesMap.find(CallMI);
787 
788   // There is no information for the call instruction.
789   if (CallFwdRegsInfo == CalleesMap.end())
790     return;
791 
792   const MachineBasicBlock *MBB = CallMI->getParent();
793 
794   // Skip the call instruction.
795   auto I = std::next(CallMI->getReverseIterator());
796 
797   FwdRegWorklist ForwardedRegWorklist;
798 
799   const DIExpression *EmptyExpr =
800       DIExpression::get(MF->getFunction().getContext(), {});
801 
802   // Add all the forwarding registers into the ForwardedRegWorklist.
803   for (auto ArgReg : CallFwdRegsInfo->second) {
804     bool InsertedReg =
805         ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}})
806             .second;
807     assert(InsertedReg && "Single register used to forward two arguments?");
808     (void)InsertedReg;
809   }
810 
811   // Do not emit CSInfo for undef forwarding registers.
812   for (auto &MO : CallMI->uses())
813     if (MO.isReg() && MO.isUndef())
814       ForwardedRegWorklist.erase(MO.getReg());
815 
816   // We erase, from the ForwardedRegWorklist, those forwarding registers for
817   // which we successfully describe a loaded value (by using
818   // the describeLoadedValue()). For those remaining arguments in the working
819   // list, for which we do not describe a loaded value by
820   // the describeLoadedValue(), we try to generate an entry value expression
821   // for their call site value description, if the call is within the entry MBB.
822   // TODO: Handle situations when call site parameter value can be described
823   // as the entry value within basic blocks other than the first one.
824   bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin();
825 
826   // Search for a loading value in forwarding registers inside call delay slot.
827   if (CallMI->hasDelaySlot()) {
828     auto Suc = std::next(CallMI->getIterator());
829     // Only one-instruction delay slot is supported.
830     auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator());
831     (void)BundleEnd;
832     assert(std::next(Suc) == BundleEnd &&
833            "More than one instruction in call delay slot");
834     // Try to interpret value loaded by instruction.
835     if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params))
836       return;
837   }
838 
839   // Search for a loading value in forwarding registers.
840   for (; I != MBB->rend(); ++I) {
841     // Try to interpret values loaded by instruction.
842     if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params))
843       return;
844   }
845 
846   // Emit the call site parameter's value as an entry value.
847   if (ShouldTryEmitEntryVals) {
848     // Create an expression where the register's entry value is used.
849     DIExpression *EntryExpr = DIExpression::get(
850         MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1});
851     for (auto RegEntry : ForwardedRegWorklist) {
852       MachineLocation MLoc(RegEntry.first);
853       finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params);
854     }
855   }
856 }
857 
858 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP,
859                                             DwarfCompileUnit &CU, DIE &ScopeDIE,
860                                             const MachineFunction &MF) {
861   // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if
862   // the subprogram is required to have one.
863   if (!SP.areAllCallsDescribed() || !SP.isDefinition())
864     return;
865 
866   // Use DW_AT_call_all_calls to express that call site entries are present
867   // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls
868   // because one of its requirements is not met: call site entries for
869   // optimized-out calls are elided.
870   CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls));
871 
872   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
873   assert(TII && "TargetInstrInfo not found: cannot label tail calls");
874 
875   // Delay slot support check.
876   auto delaySlotSupported = [&](const MachineInstr &MI) {
877     if (!MI.isBundledWithSucc())
878       return false;
879     auto Suc = std::next(MI.getIterator());
880     auto CallInstrBundle = getBundleStart(MI.getIterator());
881     (void)CallInstrBundle;
882     auto DelaySlotBundle = getBundleStart(Suc);
883     (void)DelaySlotBundle;
884     // Ensure that label after call is following delay slot instruction.
885     // Ex. CALL_INSTRUCTION {
886     //       DELAY_SLOT_INSTRUCTION }
887     //      LABEL_AFTER_CALL
888     assert(getLabelAfterInsn(&*CallInstrBundle) ==
889                getLabelAfterInsn(&*DelaySlotBundle) &&
890            "Call and its successor instruction don't have same label after.");
891     return true;
892   };
893 
894   // Emit call site entries for each call or tail call in the function.
895   for (const MachineBasicBlock &MBB : MF) {
896     for (const MachineInstr &MI : MBB.instrs()) {
897       // Bundles with call in them will pass the isCall() test below but do not
898       // have callee operand information so skip them here. Iterator will
899       // eventually reach the call MI.
900       if (MI.isBundle())
901         continue;
902 
903       // Skip instructions which aren't calls. Both calls and tail-calling jump
904       // instructions (e.g TAILJMPd64) are classified correctly here.
905       if (!MI.isCandidateForCallSiteEntry())
906         continue;
907 
908       // Skip instructions marked as frame setup, as they are not interesting to
909       // the user.
910       if (MI.getFlag(MachineInstr::FrameSetup))
911         continue;
912 
913       // Check if delay slot support is enabled.
914       if (MI.hasDelaySlot() && !delaySlotSupported(*&MI))
915         return;
916 
917       // If this is a direct call, find the callee's subprogram.
918       // In the case of an indirect call find the register that holds
919       // the callee.
920       const MachineOperand &CalleeOp = MI.getOperand(0);
921       if (!CalleeOp.isGlobal() && !CalleeOp.isReg())
922         continue;
923 
924       unsigned CallReg = 0;
925       DIE *CalleeDIE = nullptr;
926       const Function *CalleeDecl = nullptr;
927       if (CalleeOp.isReg()) {
928         CallReg = CalleeOp.getReg();
929         if (!CallReg)
930           continue;
931       } else {
932         CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal());
933         if (!CalleeDecl || !CalleeDecl->getSubprogram())
934           continue;
935         const DISubprogram *CalleeSP = CalleeDecl->getSubprogram();
936 
937         if (CalleeSP->isDefinition()) {
938           // Ensure that a subprogram DIE for the callee is available in the
939           // appropriate CU.
940           CalleeDIE = &constructSubprogramDefinitionDIE(CalleeSP);
941         } else {
942           // Create the declaration DIE if it is missing. This is required to
943           // support compilation of old bitcode with an incomplete list of
944           // retained metadata.
945           CalleeDIE = CU.getOrCreateSubprogramDIE(CalleeSP);
946         }
947         assert(CalleeDIE && "Must have a DIE for the callee");
948       }
949 
950       // TODO: Omit call site entries for runtime calls (objc_msgSend, etc).
951 
952       bool IsTail = TII->isTailCall(MI);
953 
954       // If MI is in a bundle, the label was created after the bundle since
955       // EmitFunctionBody iterates over top-level MIs. Get that top-level MI
956       // to search for that label below.
957       const MachineInstr *TopLevelCallMI =
958           MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI;
959 
960       // For non-tail calls, the return PC is needed to disambiguate paths in
961       // the call graph which could lead to some target function. For tail
962       // calls, no return PC information is needed, unless tuning for GDB in
963       // DWARF4 mode in which case we fake a return PC for compatibility.
964       const MCSymbol *PCAddr =
965           (!IsTail || CU.useGNUAnalogForDwarf5Feature())
966               ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI))
967               : nullptr;
968 
969       // For tail calls, it's necessary to record the address of the branch
970       // instruction so that the debugger can show where the tail call occurred.
971       const MCSymbol *CallAddr =
972           IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr;
973 
974       assert((IsTail || PCAddr) && "Non-tail call without return PC");
975 
976       LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> "
977                         << (CalleeDecl ? CalleeDecl->getName()
978                                        : StringRef(MF.getSubtarget()
979                                                        .getRegisterInfo()
980                                                        ->getName(CallReg)))
981                         << (IsTail ? " [IsTail]" : "") << "\n");
982 
983       DIE &CallSiteDIE = CU.constructCallSiteEntryDIE(
984           ScopeDIE, CalleeDIE, IsTail, PCAddr, CallAddr, CallReg);
985 
986       // Optionally emit call-site-param debug info.
987       if (emitDebugEntryValues()) {
988         ParamSet Params;
989         // Try to interpret values of call site parameters.
990         collectCallSiteParameters(&MI, Params);
991         CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params);
992       }
993     }
994   }
995 }
996 
997 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const {
998   if (!U.hasDwarfPubSections())
999     return;
1000 
1001   U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
1002 }
1003 
1004 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit,
1005                                       DwarfCompileUnit &NewCU) {
1006   DIE &Die = NewCU.getUnitDie();
1007   StringRef FN = DIUnit->getFilename();
1008 
1009   StringRef Producer = DIUnit->getProducer();
1010   StringRef Flags = DIUnit->getFlags();
1011   if (!Flags.empty() && !useAppleExtensionAttributes()) {
1012     std::string ProducerWithFlags = Producer.str() + " " + Flags.str();
1013     NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags);
1014   } else
1015     NewCU.addString(Die, dwarf::DW_AT_producer, Producer);
1016 
1017   NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
1018                 DIUnit->getSourceLanguage());
1019   NewCU.addString(Die, dwarf::DW_AT_name, FN);
1020   StringRef SysRoot = DIUnit->getSysRoot();
1021   if (!SysRoot.empty())
1022     NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot);
1023   StringRef SDK = DIUnit->getSDK();
1024   if (!SDK.empty())
1025     NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK);
1026 
1027   // Add DW_str_offsets_base to the unit DIE, except for split units.
1028   if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
1029     NewCU.addStringOffsetsStart();
1030 
1031   if (!useSplitDwarf()) {
1032     NewCU.initStmtList();
1033 
1034     // If we're using split dwarf the compilation dir is going to be in the
1035     // skeleton CU and so we don't need to duplicate it here.
1036     if (!CompilationDir.empty())
1037       NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
1038     addGnuPubAttributes(NewCU, Die);
1039   }
1040 
1041   if (useAppleExtensionAttributes()) {
1042     if (DIUnit->isOptimized())
1043       NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);
1044 
1045     StringRef Flags = DIUnit->getFlags();
1046     if (!Flags.empty())
1047       NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);
1048 
1049     if (unsigned RVer = DIUnit->getRuntimeVersion())
1050       NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
1051                     dwarf::DW_FORM_data1, RVer);
1052   }
1053 
1054   if (DIUnit->getDWOId()) {
1055     // This CU is either a clang module DWO or a skeleton CU.
1056     NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8,
1057                   DIUnit->getDWOId());
1058     if (!DIUnit->getSplitDebugFilename().empty()) {
1059       // This is a prefabricated skeleton CU.
1060       dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1061                                          ? dwarf::DW_AT_dwo_name
1062                                          : dwarf::DW_AT_GNU_dwo_name;
1063       NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename());
1064     }
1065   }
1066 }
1067 // Create new DwarfCompileUnit for the given metadata node with tag
1068 // DW_TAG_compile_unit.
1069 DwarfCompileUnit &
1070 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) {
1071   if (auto *CU = CUMap.lookup(DIUnit))
1072     return *CU;
1073 
1074   CompilationDir = DIUnit->getDirectory();
1075 
1076   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
1077       InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
1078   DwarfCompileUnit &NewCU = *OwnedUnit;
1079   InfoHolder.addUnit(std::move(OwnedUnit));
1080 
1081   for (auto *IE : DIUnit->getImportedEntities())
1082     NewCU.addImportedEntity(IE);
1083 
1084   // LTO with assembly output shares a single line table amongst multiple CUs.
1085   // To avoid the compilation directory being ambiguous, let the line table
1086   // explicitly describe the directory of all files, never relying on the
1087   // compilation directory.
1088   if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU)
1089     Asm->OutStreamer->emitDwarfFile0Directive(
1090         CompilationDir, DIUnit->getFilename(), getMD5AsBytes(DIUnit->getFile()),
1091         DIUnit->getSource(), NewCU.getUniqueID());
1092 
1093   if (useSplitDwarf()) {
1094     NewCU.setSkeleton(constructSkeletonCU(NewCU));
1095     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection());
1096   } else {
1097     finishUnitAttributes(DIUnit, NewCU);
1098     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
1099   }
1100 
1101   CUMap.insert({DIUnit, &NewCU});
1102   CUDieMap.insert({&NewCU.getUnitDie(), &NewCU});
1103   return NewCU;
1104 }
1105 
1106 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU,
1107                                                   const DIImportedEntity *N) {
1108   if (isa<DILocalScope>(N->getScope()))
1109     return;
1110   if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope()))
1111     D->addChild(TheCU.constructImportedEntityDIE(N));
1112 }
1113 
1114 /// Sort and unique GVEs by comparing their fragment offset.
1115 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &
1116 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) {
1117   llvm::sort(
1118       GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) {
1119         // Sort order: first null exprs, then exprs without fragment
1120         // info, then sort by fragment offset in bits.
1121         // FIXME: Come up with a more comprehensive comparator so
1122         // the sorting isn't non-deterministic, and so the following
1123         // std::unique call works correctly.
1124         if (!A.Expr || !B.Expr)
1125           return !!B.Expr;
1126         auto FragmentA = A.Expr->getFragmentInfo();
1127         auto FragmentB = B.Expr->getFragmentInfo();
1128         if (!FragmentA || !FragmentB)
1129           return !!FragmentB;
1130         return FragmentA->OffsetInBits < FragmentB->OffsetInBits;
1131       });
1132   GVEs.erase(std::unique(GVEs.begin(), GVEs.end(),
1133                          [](DwarfCompileUnit::GlobalExpr A,
1134                             DwarfCompileUnit::GlobalExpr B) {
1135                            return A.Expr == B.Expr;
1136                          }),
1137              GVEs.end());
1138   return GVEs;
1139 }
1140 
1141 // Emit all Dwarf sections that should come prior to the content. Create
1142 // global DIEs and emit initial debug info sections. This is invoked by
1143 // the target AsmPrinter.
1144 void DwarfDebug::beginModule(Module *M) {
1145   DebugHandlerBase::beginModule(M);
1146 
1147   if (!Asm || !MMI->hasDebugInfo())
1148     return;
1149 
1150   unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(),
1151                                        M->debug_compile_units_end());
1152   assert(NumDebugCUs > 0 && "Asm unexpectedly initialized");
1153   assert(MMI->hasDebugInfo() &&
1154          "DebugInfoAvailabilty unexpectedly not initialized");
1155   SingleCU = NumDebugCUs == 1;
1156   DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>>
1157       GVMap;
1158   for (const GlobalVariable &Global : M->globals()) {
1159     SmallVector<DIGlobalVariableExpression *, 1> GVs;
1160     Global.getDebugInfo(GVs);
1161     for (auto *GVE : GVs)
1162       GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()});
1163   }
1164 
1165   // Create the symbol that designates the start of the unit's contribution
1166   // to the string offsets table. In a split DWARF scenario, only the skeleton
1167   // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol).
1168   if (useSegmentedStringOffsetsTable())
1169     (useSplitDwarf() ? SkeletonHolder : InfoHolder)
1170         .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base"));
1171 
1172 
1173   // Create the symbols that designates the start of the DWARF v5 range list
1174   // and locations list tables. They are located past the table headers.
1175   if (getDwarfVersion() >= 5) {
1176     DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1177     Holder.setRnglistsTableBaseSym(
1178         Asm->createTempSymbol("rnglists_table_base"));
1179 
1180     if (useSplitDwarf())
1181       InfoHolder.setRnglistsTableBaseSym(
1182           Asm->createTempSymbol("rnglists_dwo_table_base"));
1183   }
1184 
1185   // Create the symbol that points to the first entry following the debug
1186   // address table (.debug_addr) header.
1187   AddrPool.setLabel(Asm->createTempSymbol("addr_table_base"));
1188   DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base"));
1189 
1190   for (DICompileUnit *CUNode : M->debug_compile_units()) {
1191     // FIXME: Move local imported entities into a list attached to the
1192     // subprogram, then this search won't be needed and a
1193     // getImportedEntities().empty() test should go below with the rest.
1194     bool HasNonLocalImportedEntities = llvm::any_of(
1195         CUNode->getImportedEntities(), [](const DIImportedEntity *IE) {
1196           return !isa<DILocalScope>(IE->getScope());
1197         });
1198 
1199     if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() &&
1200         CUNode->getRetainedTypes().empty() &&
1201         CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty())
1202       continue;
1203 
1204     DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode);
1205 
1206     // Global Variables.
1207     for (auto *GVE : CUNode->getGlobalVariables()) {
1208       // Don't bother adding DIGlobalVariableExpressions listed in the CU if we
1209       // already know about the variable and it isn't adding a constant
1210       // expression.
1211       auto &GVMapEntry = GVMap[GVE->getVariable()];
1212       auto *Expr = GVE->getExpression();
1213       if (!GVMapEntry.size() || (Expr && Expr->isConstant()))
1214         GVMapEntry.push_back({nullptr, Expr});
1215     }
1216     DenseSet<DIGlobalVariable *> Processed;
1217     for (auto *GVE : CUNode->getGlobalVariables()) {
1218       DIGlobalVariable *GV = GVE->getVariable();
1219       if (Processed.insert(GV).second)
1220         CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV]));
1221     }
1222 
1223     for (auto *Ty : CUNode->getEnumTypes()) {
1224       // The enum types array by design contains pointers to
1225       // MDNodes rather than DIRefs. Unique them here.
1226       CU.getOrCreateTypeDIE(cast<DIType>(Ty));
1227     }
1228     for (auto *Ty : CUNode->getRetainedTypes()) {
1229       // The retained types array by design contains pointers to
1230       // MDNodes rather than DIRefs. Unique them here.
1231       if (DIType *RT = dyn_cast<DIType>(Ty))
1232           // There is no point in force-emitting a forward declaration.
1233           CU.getOrCreateTypeDIE(RT);
1234     }
1235     // Emit imported_modules last so that the relevant context is already
1236     // available.
1237     for (auto *IE : CUNode->getImportedEntities())
1238       constructAndAddImportedEntityDIE(CU, IE);
1239   }
1240 }
1241 
1242 void DwarfDebug::finishEntityDefinitions() {
1243   for (const auto &Entity : ConcreteEntities) {
1244     DIE *Die = Entity->getDIE();
1245     assert(Die);
1246     // FIXME: Consider the time-space tradeoff of just storing the unit pointer
1247     // in the ConcreteEntities list, rather than looking it up again here.
1248     // DIE::getUnit isn't simple - it walks parent pointers, etc.
1249     DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie());
1250     assert(Unit);
1251     Unit->finishEntityDefinition(Entity.get());
1252   }
1253 }
1254 
1255 void DwarfDebug::finishSubprogramDefinitions() {
1256   for (const DISubprogram *SP : ProcessedSPNodes) {
1257     assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug);
1258     forBothCUs(
1259         getOrCreateDwarfCompileUnit(SP->getUnit()),
1260         [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); });
1261   }
1262 }
1263 
1264 void DwarfDebug::finalizeModuleInfo() {
1265   const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
1266 
1267   finishSubprogramDefinitions();
1268 
1269   finishEntityDefinitions();
1270 
1271   // Include the DWO file name in the hash if there's more than one CU.
1272   // This handles ThinLTO's situation where imported CUs may very easily be
1273   // duplicate with the same CU partially imported into another ThinLTO unit.
1274   StringRef DWOName;
1275   if (CUMap.size() > 1)
1276     DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile;
1277 
1278   // Handle anything that needs to be done on a per-unit basis after
1279   // all other generation.
1280   for (const auto &P : CUMap) {
1281     auto &TheCU = *P.second;
1282     if (TheCU.getCUNode()->isDebugDirectivesOnly())
1283       continue;
1284     // Emit DW_AT_containing_type attribute to connect types with their
1285     // vtable holding type.
1286     TheCU.constructContainingTypeDIEs();
1287 
1288     // Add CU specific attributes if we need to add any.
1289     // If we're splitting the dwarf out now that we've got the entire
1290     // CU then add the dwo id to it.
1291     auto *SkCU = TheCU.getSkeleton();
1292 
1293     bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty();
1294 
1295     if (HasSplitUnit) {
1296       dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1297                                          ? dwarf::DW_AT_dwo_name
1298                                          : dwarf::DW_AT_GNU_dwo_name;
1299       finishUnitAttributes(TheCU.getCUNode(), TheCU);
1300       TheCU.addString(TheCU.getUnitDie(), attrDWOName,
1301                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1302       SkCU->addString(SkCU->getUnitDie(), attrDWOName,
1303                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1304       // Emit a unique identifier for this CU.
1305       uint64_t ID =
1306           DIEHash(Asm, &TheCU).computeCUSignature(DWOName, TheCU.getUnitDie());
1307       if (getDwarfVersion() >= 5) {
1308         TheCU.setDWOId(ID);
1309         SkCU->setDWOId(ID);
1310       } else {
1311         TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1312                       dwarf::DW_FORM_data8, ID);
1313         SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1314                       dwarf::DW_FORM_data8, ID);
1315       }
1316 
1317       if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) {
1318         const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol();
1319         SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
1320                               Sym, Sym);
1321       }
1322     } else if (SkCU) {
1323       finishUnitAttributes(SkCU->getCUNode(), *SkCU);
1324     }
1325 
1326     // If we have code split among multiple sections or non-contiguous
1327     // ranges of code then emit a DW_AT_ranges attribute on the unit that will
1328     // remain in the .o file, otherwise add a DW_AT_low_pc.
1329     // FIXME: We should use ranges allow reordering of code ala
1330     // .subsections_via_symbols in mach-o. This would mean turning on
1331     // ranges for all subprogram DIEs for mach-o.
1332     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
1333 
1334     if (unsigned NumRanges = TheCU.getRanges().size()) {
1335       if (NumRanges > 1 && useRangesSection())
1336         // A DW_AT_low_pc attribute may also be specified in combination with
1337         // DW_AT_ranges to specify the default base address for use in
1338         // location lists (see Section 2.6.2) and range lists (see Section
1339         // 2.17.3).
1340         U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
1341       else
1342         U.setBaseAddress(TheCU.getRanges().front().Begin);
1343       U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
1344     }
1345 
1346     // We don't keep track of which addresses are used in which CU so this
1347     // is a bit pessimistic under LTO.
1348     if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty())
1349       U.addAddrTableBase();
1350 
1351     if (getDwarfVersion() >= 5) {
1352       if (U.hasRangeLists())
1353         U.addRnglistsBase();
1354 
1355       if (!DebugLocs.getLists().empty()) {
1356         if (!useSplitDwarf())
1357           U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base,
1358                             DebugLocs.getSym(),
1359                             TLOF.getDwarfLoclistsSection()->getBeginSymbol());
1360       }
1361     }
1362 
1363     auto *CUNode = cast<DICompileUnit>(P.first);
1364     // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros"
1365     // attribute.
1366     if (CUNode->getMacros()) {
1367       if (UseDebugMacroSection) {
1368         if (useSplitDwarf())
1369           TheCU.addSectionDelta(
1370               TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(),
1371               TLOF.getDwarfMacroDWOSection()->getBeginSymbol());
1372         else {
1373           dwarf::Attribute MacrosAttr = getDwarfVersion() >= 5
1374                                             ? dwarf::DW_AT_macros
1375                                             : dwarf::DW_AT_GNU_macros;
1376           U.addSectionLabel(U.getUnitDie(), MacrosAttr, U.getMacroLabelBegin(),
1377                             TLOF.getDwarfMacroSection()->getBeginSymbol());
1378         }
1379       } else {
1380         if (useSplitDwarf())
1381           TheCU.addSectionDelta(
1382               TheCU.getUnitDie(), dwarf::DW_AT_macro_info,
1383               U.getMacroLabelBegin(),
1384               TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol());
1385         else
1386           U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info,
1387                             U.getMacroLabelBegin(),
1388                             TLOF.getDwarfMacinfoSection()->getBeginSymbol());
1389       }
1390     }
1391     }
1392 
1393   // Emit all frontend-produced Skeleton CUs, i.e., Clang modules.
1394   for (auto *CUNode : MMI->getModule()->debug_compile_units())
1395     if (CUNode->getDWOId())
1396       getOrCreateDwarfCompileUnit(CUNode);
1397 
1398   // Compute DIE offsets and sizes.
1399   InfoHolder.computeSizeAndOffsets();
1400   if (useSplitDwarf())
1401     SkeletonHolder.computeSizeAndOffsets();
1402 }
1403 
1404 // Emit all Dwarf sections that should come after the content.
1405 void DwarfDebug::endModule() {
1406   assert(CurFn == nullptr);
1407   assert(CurMI == nullptr);
1408 
1409   for (const auto &P : CUMap) {
1410     auto &CU = *P.second;
1411     CU.createBaseTypeDIEs();
1412   }
1413 
1414   // If we aren't actually generating debug info (check beginModule -
1415   // conditionalized on the presence of the llvm.dbg.cu metadata node)
1416   if (!Asm || !MMI->hasDebugInfo())
1417     return;
1418 
1419   // Finalize the debug info for the module.
1420   finalizeModuleInfo();
1421 
1422   if (useSplitDwarf())
1423     // Emit debug_loc.dwo/debug_loclists.dwo section.
1424     emitDebugLocDWO();
1425   else
1426     // Emit debug_loc/debug_loclists section.
1427     emitDebugLoc();
1428 
1429   // Corresponding abbreviations into a abbrev section.
1430   emitAbbreviations();
1431 
1432   // Emit all the DIEs into a debug info section.
1433   emitDebugInfo();
1434 
1435   // Emit info into a debug aranges section.
1436   if (GenerateARangeSection)
1437     emitDebugARanges();
1438 
1439   // Emit info into a debug ranges section.
1440   emitDebugRanges();
1441 
1442   if (useSplitDwarf())
1443   // Emit info into a debug macinfo.dwo section.
1444     emitDebugMacinfoDWO();
1445   else
1446     // Emit info into a debug macinfo/macro section.
1447     emitDebugMacinfo();
1448 
1449   emitDebugStr();
1450 
1451   if (useSplitDwarf()) {
1452     emitDebugStrDWO();
1453     emitDebugInfoDWO();
1454     emitDebugAbbrevDWO();
1455     emitDebugLineDWO();
1456     emitDebugRangesDWO();
1457   }
1458 
1459   emitDebugAddr();
1460 
1461   // Emit info into the dwarf accelerator table sections.
1462   switch (getAccelTableKind()) {
1463   case AccelTableKind::Apple:
1464     emitAccelNames();
1465     emitAccelObjC();
1466     emitAccelNamespaces();
1467     emitAccelTypes();
1468     break;
1469   case AccelTableKind::Dwarf:
1470     emitAccelDebugNames();
1471     break;
1472   case AccelTableKind::None:
1473     break;
1474   case AccelTableKind::Default:
1475     llvm_unreachable("Default should have already been resolved.");
1476   }
1477 
1478   // Emit the pubnames and pubtypes sections if requested.
1479   emitDebugPubSections();
1480 
1481   // clean up.
1482   // FIXME: AbstractVariables.clear();
1483 }
1484 
1485 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU,
1486                                                const DINode *Node,
1487                                                const MDNode *ScopeNode) {
1488   if (CU.getExistingAbstractEntity(Node))
1489     return;
1490 
1491   CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope(
1492                                        cast<DILocalScope>(ScopeNode)));
1493 }
1494 
1495 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU,
1496     const DINode *Node, const MDNode *ScopeNode) {
1497   if (CU.getExistingAbstractEntity(Node))
1498     return;
1499 
1500   if (LexicalScope *Scope =
1501           LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode)))
1502     CU.createAbstractEntity(Node, Scope);
1503 }
1504 
1505 // Collect variable information from side table maintained by MF.
1506 void DwarfDebug::collectVariableInfoFromMFTable(
1507     DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) {
1508   SmallDenseMap<InlinedEntity, DbgVariable *> MFVars;
1509   LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n");
1510   for (const auto &VI : Asm->MF->getVariableDbgInfo()) {
1511     if (!VI.Var)
1512       continue;
1513     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1514            "Expected inlined-at fields to agree");
1515 
1516     InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt());
1517     Processed.insert(Var);
1518     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1519 
1520     // If variable scope is not found then skip this variable.
1521     if (!Scope) {
1522       LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName()
1523                         << ", no variable scope found\n");
1524       continue;
1525     }
1526 
1527     ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode());
1528     auto RegVar = std::make_unique<DbgVariable>(
1529                     cast<DILocalVariable>(Var.first), Var.second);
1530     RegVar->initializeMMI(VI.Expr, VI.Slot);
1531     LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName()
1532                       << "\n");
1533     if (DbgVariable *DbgVar = MFVars.lookup(Var))
1534       DbgVar->addMMIEntry(*RegVar);
1535     else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) {
1536       MFVars.insert({Var, RegVar.get()});
1537       ConcreteEntities.push_back(std::move(RegVar));
1538     }
1539   }
1540 }
1541 
1542 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its
1543 /// enclosing lexical scope. The check ensures there are no other instructions
1544 /// in the same lexical scope preceding the DBG_VALUE and that its range is
1545 /// either open or otherwise rolls off the end of the scope.
1546 static bool validThroughout(LexicalScopes &LScopes,
1547                             const MachineInstr *DbgValue,
1548                             const MachineInstr *RangeEnd,
1549                             const InstructionOrdering &Ordering) {
1550   assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location");
1551   auto MBB = DbgValue->getParent();
1552   auto DL = DbgValue->getDebugLoc();
1553   auto *LScope = LScopes.findLexicalScope(DL);
1554   // Scope doesn't exist; this is a dead DBG_VALUE.
1555   if (!LScope)
1556     return false;
1557   auto &LSRange = LScope->getRanges();
1558   if (LSRange.size() == 0)
1559     return false;
1560 
1561   const MachineInstr *LScopeBegin = LSRange.front().first;
1562   // If the scope starts before the DBG_VALUE then we may have a negative
1563   // result. Otherwise the location is live coming into the scope and we
1564   // can skip the following checks.
1565   if (!Ordering.isBefore(DbgValue, LScopeBegin)) {
1566     // Exit if the lexical scope begins outside of the current block.
1567     if (LScopeBegin->getParent() != MBB)
1568       return false;
1569 
1570     MachineBasicBlock::const_reverse_iterator Pred(DbgValue);
1571     for (++Pred; Pred != MBB->rend(); ++Pred) {
1572       if (Pred->getFlag(MachineInstr::FrameSetup))
1573         break;
1574       auto PredDL = Pred->getDebugLoc();
1575       if (!PredDL || Pred->isMetaInstruction())
1576         continue;
1577       // Check whether the instruction preceding the DBG_VALUE is in the same
1578       // (sub)scope as the DBG_VALUE.
1579       if (DL->getScope() == PredDL->getScope())
1580         return false;
1581       auto *PredScope = LScopes.findLexicalScope(PredDL);
1582       if (!PredScope || LScope->dominates(PredScope))
1583         return false;
1584     }
1585   }
1586 
1587   // If the range of the DBG_VALUE is open-ended, report success.
1588   if (!RangeEnd)
1589     return true;
1590 
1591   // Single, constant DBG_VALUEs in the prologue are promoted to be live
1592   // throughout the function. This is a hack, presumably for DWARF v2 and not
1593   // necessarily correct. It would be much better to use a dbg.declare instead
1594   // if we know the constant is live throughout the scope.
1595   if (DbgValue->getDebugOperand(0).isImm() && MBB->pred_empty())
1596     return true;
1597 
1598   // Test if the location terminates before the end of the scope.
1599   const MachineInstr *LScopeEnd = LSRange.back().second;
1600   if (Ordering.isBefore(RangeEnd, LScopeEnd))
1601     return false;
1602 
1603   // There's a single location which starts at the scope start, and ends at or
1604   // after the scope end.
1605   return true;
1606 }
1607 
1608 /// Build the location list for all DBG_VALUEs in the function that
1609 /// describe the same variable. The resulting DebugLocEntries will have
1610 /// strict monotonically increasing begin addresses and will never
1611 /// overlap. If the resulting list has only one entry that is valid
1612 /// throughout variable's scope return true.
1613 //
1614 // See the definition of DbgValueHistoryMap::Entry for an explanation of the
1615 // different kinds of history map entries. One thing to be aware of is that if
1616 // a debug value is ended by another entry (rather than being valid until the
1617 // end of the function), that entry's instruction may or may not be included in
1618 // the range, depending on if the entry is a clobbering entry (it has an
1619 // instruction that clobbers one or more preceding locations), or if it is an
1620 // (overlapping) debug value entry. This distinction can be seen in the example
1621 // below. The first debug value is ended by the clobbering entry 2, and the
1622 // second and third debug values are ended by the overlapping debug value entry
1623 // 4.
1624 //
1625 // Input:
1626 //
1627 //   History map entries [type, end index, mi]
1628 //
1629 // 0 |      [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)]
1630 // 1 | |    [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)]
1631 // 2 | |    [Clobber, $reg0 = [...], -, -]
1632 // 3   | |  [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)]
1633 // 4        [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)]
1634 //
1635 // Output [start, end) [Value...]:
1636 //
1637 // [0-1)    [(reg0, fragment 0, 32)]
1638 // [1-3)    [(reg0, fragment 0, 32), (reg1, fragment 32, 32)]
1639 // [3-4)    [(reg1, fragment 32, 32), (123, fragment 64, 32)]
1640 // [4-)     [(@g, fragment 0, 96)]
1641 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
1642                                    const DbgValueHistoryMap::Entries &Entries) {
1643   using OpenRange =
1644       std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>;
1645   SmallVector<OpenRange, 4> OpenRanges;
1646   bool isSafeForSingleLocation = true;
1647   const MachineInstr *StartDebugMI = nullptr;
1648   const MachineInstr *EndMI = nullptr;
1649 
1650   for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) {
1651     const MachineInstr *Instr = EI->getInstr();
1652 
1653     // Remove all values that are no longer live.
1654     size_t Index = std::distance(EB, EI);
1655     erase_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; });
1656 
1657     // If we are dealing with a clobbering entry, this iteration will result in
1658     // a location list entry starting after the clobbering instruction.
1659     const MCSymbol *StartLabel =
1660         EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr);
1661     assert(StartLabel &&
1662            "Forgot label before/after instruction starting a range!");
1663 
1664     const MCSymbol *EndLabel;
1665     if (std::next(EI) == Entries.end()) {
1666       const MachineBasicBlock &EndMBB = Asm->MF->back();
1667       EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionIDNum()].EndLabel;
1668       if (EI->isClobber())
1669         EndMI = EI->getInstr();
1670     }
1671     else if (std::next(EI)->isClobber())
1672       EndLabel = getLabelAfterInsn(std::next(EI)->getInstr());
1673     else
1674       EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr());
1675     assert(EndLabel && "Forgot label after instruction ending a range!");
1676 
1677     if (EI->isDbgValue())
1678       LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n");
1679 
1680     // If this history map entry has a debug value, add that to the list of
1681     // open ranges and check if its location is valid for a single value
1682     // location.
1683     if (EI->isDbgValue()) {
1684       // Do not add undef debug values, as they are redundant information in
1685       // the location list entries. An undef debug results in an empty location
1686       // description. If there are any non-undef fragments then padding pieces
1687       // with empty location descriptions will automatically be inserted, and if
1688       // all fragments are undef then the whole location list entry is
1689       // redundant.
1690       if (!Instr->isUndefDebugValue()) {
1691         auto Value = getDebugLocValue(Instr);
1692         OpenRanges.emplace_back(EI->getEndIndex(), Value);
1693 
1694         // TODO: Add support for single value fragment locations.
1695         if (Instr->getDebugExpression()->isFragment())
1696           isSafeForSingleLocation = false;
1697 
1698         if (!StartDebugMI)
1699           StartDebugMI = Instr;
1700       } else {
1701         isSafeForSingleLocation = false;
1702       }
1703     }
1704 
1705     // Location list entries with empty location descriptions are redundant
1706     // information in DWARF, so do not emit those.
1707     if (OpenRanges.empty())
1708       continue;
1709 
1710     // Omit entries with empty ranges as they do not have any effect in DWARF.
1711     if (StartLabel == EndLabel) {
1712       LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n");
1713       continue;
1714     }
1715 
1716     SmallVector<DbgValueLoc, 4> Values;
1717     for (auto &R : OpenRanges)
1718       Values.push_back(R.second);
1719     DebugLoc.emplace_back(StartLabel, EndLabel, Values);
1720 
1721     // Attempt to coalesce the ranges of two otherwise identical
1722     // DebugLocEntries.
1723     auto CurEntry = DebugLoc.rbegin();
1724     LLVM_DEBUG({
1725       dbgs() << CurEntry->getValues().size() << " Values:\n";
1726       for (auto &Value : CurEntry->getValues())
1727         Value.dump();
1728       dbgs() << "-----\n";
1729     });
1730 
1731     auto PrevEntry = std::next(CurEntry);
1732     if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
1733       DebugLoc.pop_back();
1734   }
1735 
1736   return DebugLoc.size() == 1 && isSafeForSingleLocation &&
1737          validThroughout(LScopes, StartDebugMI, EndMI, getInstOrdering());
1738 }
1739 
1740 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU,
1741                                             LexicalScope &Scope,
1742                                             const DINode *Node,
1743                                             const DILocation *Location,
1744                                             const MCSymbol *Sym) {
1745   ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode());
1746   if (isa<const DILocalVariable>(Node)) {
1747     ConcreteEntities.push_back(
1748         std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node),
1749                                        Location));
1750     InfoHolder.addScopeVariable(&Scope,
1751         cast<DbgVariable>(ConcreteEntities.back().get()));
1752   } else if (isa<const DILabel>(Node)) {
1753     ConcreteEntities.push_back(
1754         std::make_unique<DbgLabel>(cast<const DILabel>(Node),
1755                                     Location, Sym));
1756     InfoHolder.addScopeLabel(&Scope,
1757         cast<DbgLabel>(ConcreteEntities.back().get()));
1758   }
1759   return ConcreteEntities.back().get();
1760 }
1761 
1762 // Find variables for each lexical scope.
1763 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU,
1764                                    const DISubprogram *SP,
1765                                    DenseSet<InlinedEntity> &Processed) {
1766   // Grab the variable info that was squirreled away in the MMI side-table.
1767   collectVariableInfoFromMFTable(TheCU, Processed);
1768 
1769   for (const auto &I : DbgValues) {
1770     InlinedEntity IV = I.first;
1771     if (Processed.count(IV))
1772       continue;
1773 
1774     // Instruction ranges, specifying where IV is accessible.
1775     const auto &HistoryMapEntries = I.second;
1776     if (HistoryMapEntries.empty())
1777       continue;
1778 
1779     LexicalScope *Scope = nullptr;
1780     const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first);
1781     if (const DILocation *IA = IV.second)
1782       Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA);
1783     else
1784       Scope = LScopes.findLexicalScope(LocalVar->getScope());
1785     // If variable scope is not found then skip this variable.
1786     if (!Scope)
1787       continue;
1788 
1789     Processed.insert(IV);
1790     DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU,
1791                                             *Scope, LocalVar, IV.second));
1792 
1793     const MachineInstr *MInsn = HistoryMapEntries.front().getInstr();
1794     assert(MInsn->isDebugValue() && "History must begin with debug value");
1795 
1796     // Check if there is a single DBG_VALUE, valid throughout the var's scope.
1797     // If the history map contains a single debug value, there may be an
1798     // additional entry which clobbers the debug value.
1799     size_t HistSize = HistoryMapEntries.size();
1800     bool SingleValueWithClobber =
1801         HistSize == 2 && HistoryMapEntries[1].isClobber();
1802     if (HistSize == 1 || SingleValueWithClobber) {
1803       const auto *End =
1804           SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr;
1805       if (validThroughout(LScopes, MInsn, End, getInstOrdering())) {
1806         RegVar->initializeDbgValue(MInsn);
1807         continue;
1808       }
1809     }
1810 
1811     // Do not emit location lists if .debug_loc secton is disabled.
1812     if (!useLocSection())
1813       continue;
1814 
1815     // Handle multiple DBG_VALUE instructions describing one variable.
1816     DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn);
1817 
1818     // Build the location list for this variable.
1819     SmallVector<DebugLocEntry, 8> Entries;
1820     bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries);
1821 
1822     // Check whether buildLocationList managed to merge all locations to one
1823     // that is valid throughout the variable's scope. If so, produce single
1824     // value location.
1825     if (isValidSingleLocation) {
1826       RegVar->initializeDbgValue(Entries[0].getValues()[0]);
1827       continue;
1828     }
1829 
1830     // If the variable has a DIBasicType, extract it.  Basic types cannot have
1831     // unique identifiers, so don't bother resolving the type with the
1832     // identifier map.
1833     const DIBasicType *BT = dyn_cast<DIBasicType>(
1834         static_cast<const Metadata *>(LocalVar->getType()));
1835 
1836     // Finalize the entry by lowering it into a DWARF bytestream.
1837     for (auto &Entry : Entries)
1838       Entry.finalize(*Asm, List, BT, TheCU);
1839   }
1840 
1841   // For each InlinedEntity collected from DBG_LABEL instructions, convert to
1842   // DWARF-related DbgLabel.
1843   for (const auto &I : DbgLabels) {
1844     InlinedEntity IL = I.first;
1845     const MachineInstr *MI = I.second;
1846     if (MI == nullptr)
1847       continue;
1848 
1849     LexicalScope *Scope = nullptr;
1850     const DILabel *Label = cast<DILabel>(IL.first);
1851     // The scope could have an extra lexical block file.
1852     const DILocalScope *LocalScope =
1853         Label->getScope()->getNonLexicalBlockFileScope();
1854     // Get inlined DILocation if it is inlined label.
1855     if (const DILocation *IA = IL.second)
1856       Scope = LScopes.findInlinedScope(LocalScope, IA);
1857     else
1858       Scope = LScopes.findLexicalScope(LocalScope);
1859     // If label scope is not found then skip this label.
1860     if (!Scope)
1861       continue;
1862 
1863     Processed.insert(IL);
1864     /// At this point, the temporary label is created.
1865     /// Save the temporary label to DbgLabel entity to get the
1866     /// actually address when generating Dwarf DIE.
1867     MCSymbol *Sym = getLabelBeforeInsn(MI);
1868     createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym);
1869   }
1870 
1871   // Collect info for variables/labels that were optimized out.
1872   for (const DINode *DN : SP->getRetainedNodes()) {
1873     if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
1874       continue;
1875     LexicalScope *Scope = nullptr;
1876     if (auto *DV = dyn_cast<DILocalVariable>(DN)) {
1877       Scope = LScopes.findLexicalScope(DV->getScope());
1878     } else if (auto *DL = dyn_cast<DILabel>(DN)) {
1879       Scope = LScopes.findLexicalScope(DL->getScope());
1880     }
1881 
1882     if (Scope)
1883       createConcreteEntity(TheCU, *Scope, DN, nullptr);
1884   }
1885 }
1886 
1887 // Process beginning of an instruction.
1888 void DwarfDebug::beginInstruction(const MachineInstr *MI) {
1889   const MachineFunction &MF = *MI->getMF();
1890   const auto *SP = MF.getFunction().getSubprogram();
1891   bool NoDebug =
1892       !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug;
1893 
1894   // Delay slot support check.
1895   auto delaySlotSupported = [](const MachineInstr &MI) {
1896     if (!MI.isBundledWithSucc())
1897       return false;
1898     auto Suc = std::next(MI.getIterator());
1899     (void)Suc;
1900     // Ensure that delay slot instruction is successor of the call instruction.
1901     // Ex. CALL_INSTRUCTION {
1902     //        DELAY_SLOT_INSTRUCTION }
1903     assert(Suc->isBundledWithPred() &&
1904            "Call bundle instructions are out of order");
1905     return true;
1906   };
1907 
1908   // When describing calls, we need a label for the call instruction.
1909   if (!NoDebug && SP->areAllCallsDescribed() &&
1910       MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) &&
1911       (!MI->hasDelaySlot() || delaySlotSupported(*MI))) {
1912     const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1913     bool IsTail = TII->isTailCall(*MI);
1914     // For tail calls, we need the address of the branch instruction for
1915     // DW_AT_call_pc.
1916     if (IsTail)
1917       requestLabelBeforeInsn(MI);
1918     // For non-tail calls, we need the return address for the call for
1919     // DW_AT_call_return_pc. Under GDB tuning, this information is needed for
1920     // tail calls as well.
1921     requestLabelAfterInsn(MI);
1922   }
1923 
1924   DebugHandlerBase::beginInstruction(MI);
1925   if (!CurMI)
1926     return;
1927 
1928   if (NoDebug)
1929     return;
1930 
1931   // Check if source location changes, but ignore DBG_VALUE and CFI locations.
1932   // If the instruction is part of the function frame setup code, do not emit
1933   // any line record, as there is no correspondence with any user code.
1934   if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup))
1935     return;
1936   const DebugLoc &DL = MI->getDebugLoc();
1937   // When we emit a line-0 record, we don't update PrevInstLoc; so look at
1938   // the last line number actually emitted, to see if it was line 0.
1939   unsigned LastAsmLine =
1940       Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine();
1941 
1942   if (DL == PrevInstLoc) {
1943     // If we have an ongoing unspecified location, nothing to do here.
1944     if (!DL)
1945       return;
1946     // We have an explicit location, same as the previous location.
1947     // But we might be coming back to it after a line 0 record.
1948     if (LastAsmLine == 0 && DL.getLine() != 0) {
1949       // Reinstate the source location but not marked as a statement.
1950       const MDNode *Scope = DL.getScope();
1951       recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0);
1952     }
1953     return;
1954   }
1955 
1956   if (!DL) {
1957     // We have an unspecified location, which might want to be line 0.
1958     // If we have already emitted a line-0 record, don't repeat it.
1959     if (LastAsmLine == 0)
1960       return;
1961     // If user said Don't Do That, don't do that.
1962     if (UnknownLocations == Disable)
1963       return;
1964     // See if we have a reason to emit a line-0 record now.
1965     // Reasons to emit a line-0 record include:
1966     // - User asked for it (UnknownLocations).
1967     // - Instruction has a label, so it's referenced from somewhere else,
1968     //   possibly debug information; we want it to have a source location.
1969     // - Instruction is at the top of a block; we don't want to inherit the
1970     //   location from the physically previous (maybe unrelated) block.
1971     if (UnknownLocations == Enable || PrevLabel ||
1972         (PrevInstBB && PrevInstBB != MI->getParent())) {
1973       // Preserve the file and column numbers, if we can, to save space in
1974       // the encoded line table.
1975       // Do not update PrevInstLoc, it remembers the last non-0 line.
1976       const MDNode *Scope = nullptr;
1977       unsigned Column = 0;
1978       if (PrevInstLoc) {
1979         Scope = PrevInstLoc.getScope();
1980         Column = PrevInstLoc.getCol();
1981       }
1982       recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0);
1983     }
1984     return;
1985   }
1986 
1987   // We have an explicit location, different from the previous location.
1988   // Don't repeat a line-0 record, but otherwise emit the new location.
1989   // (The new location might be an explicit line 0, which we do emit.)
1990   if (DL.getLine() == 0 && LastAsmLine == 0)
1991     return;
1992   unsigned Flags = 0;
1993   if (DL == PrologEndLoc) {
1994     Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT;
1995     PrologEndLoc = DebugLoc();
1996   }
1997   // If the line changed, we call that a new statement; unless we went to
1998   // line 0 and came back, in which case it is not a new statement.
1999   unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine;
2000   if (DL.getLine() && DL.getLine() != OldLine)
2001     Flags |= DWARF2_FLAG_IS_STMT;
2002 
2003   const MDNode *Scope = DL.getScope();
2004   recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
2005 
2006   // If we're not at line 0, remember this location.
2007   if (DL.getLine())
2008     PrevInstLoc = DL;
2009 }
2010 
2011 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) {
2012   // First known non-DBG_VALUE and non-frame setup location marks
2013   // the beginning of the function body.
2014   for (const auto &MBB : *MF)
2015     for (const auto &MI : MBB)
2016       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
2017           MI.getDebugLoc())
2018         return MI.getDebugLoc();
2019   return DebugLoc();
2020 }
2021 
2022 /// Register a source line with debug info. Returns the  unique label that was
2023 /// emitted and which provides correspondence to the source line list.
2024 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col,
2025                              const MDNode *S, unsigned Flags, unsigned CUID,
2026                              uint16_t DwarfVersion,
2027                              ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) {
2028   StringRef Fn;
2029   unsigned FileNo = 1;
2030   unsigned Discriminator = 0;
2031   if (auto *Scope = cast_or_null<DIScope>(S)) {
2032     Fn = Scope->getFilename();
2033     if (Line != 0 && DwarfVersion >= 4)
2034       if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope))
2035         Discriminator = LBF->getDiscriminator();
2036 
2037     FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID])
2038                  .getOrCreateSourceID(Scope->getFile());
2039   }
2040   Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0,
2041                                          Discriminator, Fn);
2042 }
2043 
2044 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF,
2045                                              unsigned CUID) {
2046   // Get beginning of function.
2047   if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) {
2048     // Ensure the compile unit is created if the function is called before
2049     // beginFunction().
2050     (void)getOrCreateDwarfCompileUnit(
2051         MF.getFunction().getSubprogram()->getUnit());
2052     // We'd like to list the prologue as "not statements" but GDB behaves
2053     // poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
2054     const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram();
2055     ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT,
2056                        CUID, getDwarfVersion(), getUnits());
2057     return PrologEndLoc;
2058   }
2059   return DebugLoc();
2060 }
2061 
2062 // Gather pre-function debug information.  Assumes being called immediately
2063 // after the function entry point has been emitted.
2064 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) {
2065   CurFn = MF;
2066 
2067   auto *SP = MF->getFunction().getSubprogram();
2068   assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode());
2069   if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
2070     return;
2071 
2072   DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
2073 
2074   // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
2075   // belongs to so that we add to the correct per-cu line table in the
2076   // non-asm case.
2077   if (Asm->OutStreamer->hasRawTextSupport())
2078     // Use a single line table if we are generating assembly.
2079     Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
2080   else
2081     Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID());
2082 
2083   // Record beginning of function.
2084   PrologEndLoc = emitInitialLocDirective(
2085       *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID());
2086 }
2087 
2088 void DwarfDebug::skippedNonDebugFunction() {
2089   // If we don't have a subprogram for this function then there will be a hole
2090   // in the range information. Keep note of this by setting the previously used
2091   // section to nullptr.
2092   PrevCU = nullptr;
2093   CurFn = nullptr;
2094 }
2095 
2096 // Gather and emit post-function debug information.
2097 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) {
2098   const DISubprogram *SP = MF->getFunction().getSubprogram();
2099 
2100   assert(CurFn == MF &&
2101       "endFunction should be called with the same function as beginFunction");
2102 
2103   // Set DwarfDwarfCompileUnitID in MCContext to default value.
2104   Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
2105 
2106   LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
2107   assert(!FnScope || SP == FnScope->getScopeNode());
2108   DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit());
2109   if (TheCU.getCUNode()->isDebugDirectivesOnly()) {
2110     PrevLabel = nullptr;
2111     CurFn = nullptr;
2112     return;
2113   }
2114 
2115   DenseSet<InlinedEntity> Processed;
2116   collectEntityInfo(TheCU, SP, Processed);
2117 
2118   // Add the range of this function to the list of ranges for the CU.
2119   // With basic block sections, add ranges for all basic block sections.
2120   for (const auto &R : Asm->MBBSectionRanges)
2121     TheCU.addRange({R.second.BeginLabel, R.second.EndLabel});
2122 
2123   // Under -gmlt, skip building the subprogram if there are no inlined
2124   // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram
2125   // is still needed as we need its source location.
2126   if (!TheCU.getCUNode()->getDebugInfoForProfiling() &&
2127       TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly &&
2128       LScopes.getAbstractScopesList().empty() && !IsDarwin) {
2129     assert(InfoHolder.getScopeVariables().empty());
2130     PrevLabel = nullptr;
2131     CurFn = nullptr;
2132     return;
2133   }
2134 
2135 #ifndef NDEBUG
2136   size_t NumAbstractScopes = LScopes.getAbstractScopesList().size();
2137 #endif
2138   // Construct abstract scopes.
2139   for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
2140     auto *SP = cast<DISubprogram>(AScope->getScopeNode());
2141     for (const DINode *DN : SP->getRetainedNodes()) {
2142       if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
2143         continue;
2144 
2145       const MDNode *Scope = nullptr;
2146       if (auto *DV = dyn_cast<DILocalVariable>(DN))
2147         Scope = DV->getScope();
2148       else if (auto *DL = dyn_cast<DILabel>(DN))
2149         Scope = DL->getScope();
2150       else
2151         llvm_unreachable("Unexpected DI type!");
2152 
2153       // Collect info for variables/labels that were optimized out.
2154       ensureAbstractEntityIsCreated(TheCU, DN, Scope);
2155       assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes
2156              && "ensureAbstractEntityIsCreated inserted abstract scopes");
2157     }
2158     constructAbstractSubprogramScopeDIE(TheCU, AScope);
2159   }
2160 
2161   ProcessedSPNodes.insert(SP);
2162   DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope);
2163   if (auto *SkelCU = TheCU.getSkeleton())
2164     if (!LScopes.getAbstractScopesList().empty() &&
2165         TheCU.getCUNode()->getSplitDebugInlining())
2166       SkelCU->constructSubprogramScopeDIE(SP, FnScope);
2167 
2168   // Construct call site entries.
2169   constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF);
2170 
2171   // Clear debug info
2172   // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
2173   // DbgVariables except those that are also in AbstractVariables (since they
2174   // can be used cross-function)
2175   InfoHolder.getScopeVariables().clear();
2176   InfoHolder.getScopeLabels().clear();
2177   PrevLabel = nullptr;
2178   CurFn = nullptr;
2179 }
2180 
2181 // Register a source line with debug info. Returns the  unique label that was
2182 // emitted and which provides correspondence to the source line list.
2183 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
2184                                   unsigned Flags) {
2185   ::recordSourceLine(*Asm, Line, Col, S, Flags,
2186                      Asm->OutStreamer->getContext().getDwarfCompileUnitID(),
2187                      getDwarfVersion(), getUnits());
2188 }
2189 
2190 //===----------------------------------------------------------------------===//
2191 // Emit Methods
2192 //===----------------------------------------------------------------------===//
2193 
2194 // Emit the debug info section.
2195 void DwarfDebug::emitDebugInfo() {
2196   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2197   Holder.emitUnits(/* UseOffsets */ false);
2198 }
2199 
2200 // Emit the abbreviation section.
2201 void DwarfDebug::emitAbbreviations() {
2202   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2203 
2204   Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
2205 }
2206 
2207 void DwarfDebug::emitStringOffsetsTableHeader() {
2208   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2209   Holder.getStringPool().emitStringOffsetsTableHeader(
2210       *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(),
2211       Holder.getStringOffsetsStartSym());
2212 }
2213 
2214 template <typename AccelTableT>
2215 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section,
2216                            StringRef TableName) {
2217   Asm->OutStreamer->SwitchSection(Section);
2218 
2219   // Emit the full data.
2220   emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol());
2221 }
2222 
2223 void DwarfDebug::emitAccelDebugNames() {
2224   // Don't emit anything if we have no compilation units to index.
2225   if (getUnits().empty())
2226     return;
2227 
2228   emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits());
2229 }
2230 
2231 // Emit visible names into a hashed accelerator table section.
2232 void DwarfDebug::emitAccelNames() {
2233   emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
2234             "Names");
2235 }
2236 
2237 // Emit objective C classes and categories into a hashed accelerator table
2238 // section.
2239 void DwarfDebug::emitAccelObjC() {
2240   emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
2241             "ObjC");
2242 }
2243 
2244 // Emit namespace dies into a hashed accelerator table.
2245 void DwarfDebug::emitAccelNamespaces() {
2246   emitAccel(AccelNamespace,
2247             Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
2248             "namespac");
2249 }
2250 
2251 // Emit type dies into a hashed accelerator table.
2252 void DwarfDebug::emitAccelTypes() {
2253   emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
2254             "types");
2255 }
2256 
2257 // Public name handling.
2258 // The format for the various pubnames:
2259 //
2260 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU
2261 // for the DIE that is named.
2262 //
2263 // gnu pubnames - offset/index value/name tuples where the offset is the offset
2264 // into the CU and the index value is computed according to the type of value
2265 // for the DIE that is named.
2266 //
2267 // For type units the offset is the offset of the skeleton DIE. For split dwarf
2268 // it's the offset within the debug_info/debug_types dwo section, however, the
2269 // reference in the pubname header doesn't change.
2270 
2271 /// computeIndexValue - Compute the gdb index value for the DIE and CU.
2272 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
2273                                                         const DIE *Die) {
2274   // Entities that ended up only in a Type Unit reference the CU instead (since
2275   // the pub entry has offsets within the CU there's no real offset that can be
2276   // provided anyway). As it happens all such entities (namespaces and types,
2277   // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out
2278   // not to be true it would be necessary to persist this information from the
2279   // point at which the entry is added to the index data structure - since by
2280   // the time the index is built from that, the original type/namespace DIE in a
2281   // type unit has already been destroyed so it can't be queried for properties
2282   // like tag, etc.
2283   if (Die->getTag() == dwarf::DW_TAG_compile_unit)
2284     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE,
2285                                           dwarf::GIEL_EXTERNAL);
2286   dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
2287 
2288   // We could have a specification DIE that has our most of our knowledge,
2289   // look for that now.
2290   if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) {
2291     DIE &SpecDIE = SpecVal.getDIEEntry().getEntry();
2292     if (SpecDIE.findAttribute(dwarf::DW_AT_external))
2293       Linkage = dwarf::GIEL_EXTERNAL;
2294   } else if (Die->findAttribute(dwarf::DW_AT_external))
2295     Linkage = dwarf::GIEL_EXTERNAL;
2296 
2297   switch (Die->getTag()) {
2298   case dwarf::DW_TAG_class_type:
2299   case dwarf::DW_TAG_structure_type:
2300   case dwarf::DW_TAG_union_type:
2301   case dwarf::DW_TAG_enumeration_type:
2302     return dwarf::PubIndexEntryDescriptor(
2303         dwarf::GIEK_TYPE,
2304         dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage())
2305             ? dwarf::GIEL_EXTERNAL
2306             : dwarf::GIEL_STATIC);
2307   case dwarf::DW_TAG_typedef:
2308   case dwarf::DW_TAG_base_type:
2309   case dwarf::DW_TAG_subrange_type:
2310     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
2311   case dwarf::DW_TAG_namespace:
2312     return dwarf::GIEK_TYPE;
2313   case dwarf::DW_TAG_subprogram:
2314     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
2315   case dwarf::DW_TAG_variable:
2316     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
2317   case dwarf::DW_TAG_enumerator:
2318     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
2319                                           dwarf::GIEL_STATIC);
2320   default:
2321     return dwarf::GIEK_NONE;
2322   }
2323 }
2324 
2325 /// emitDebugPubSections - Emit visible names and types into debug pubnames and
2326 /// pubtypes sections.
2327 void DwarfDebug::emitDebugPubSections() {
2328   for (const auto &NU : CUMap) {
2329     DwarfCompileUnit *TheU = NU.second;
2330     if (!TheU->hasDwarfPubSections())
2331       continue;
2332 
2333     bool GnuStyle = TheU->getCUNode()->getNameTableKind() ==
2334                     DICompileUnit::DebugNameTableKind::GNU;
2335 
2336     Asm->OutStreamer->SwitchSection(
2337         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
2338                  : Asm->getObjFileLowering().getDwarfPubNamesSection());
2339     emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames());
2340 
2341     Asm->OutStreamer->SwitchSection(
2342         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
2343                  : Asm->getObjFileLowering().getDwarfPubTypesSection());
2344     emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes());
2345   }
2346 }
2347 
2348 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) {
2349   if (useSectionsAsReferences())
2350     Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(),
2351                          CU.getDebugSectionOffset());
2352   else
2353     Asm->emitDwarfSymbolReference(CU.getLabelBegin());
2354 }
2355 
2356 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name,
2357                                      DwarfCompileUnit *TheU,
2358                                      const StringMap<const DIE *> &Globals) {
2359   if (auto *Skeleton = TheU->getSkeleton())
2360     TheU = Skeleton;
2361 
2362   // Emit the header.
2363   MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin");
2364   MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end");
2365   Asm->emitDwarfUnitLength(EndLabel, BeginLabel,
2366                            "Length of Public " + Name + " Info");
2367 
2368   Asm->OutStreamer->emitLabel(BeginLabel);
2369 
2370   Asm->OutStreamer->AddComment("DWARF Version");
2371   Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION);
2372 
2373   Asm->OutStreamer->AddComment("Offset of Compilation Unit Info");
2374   emitSectionReference(*TheU);
2375 
2376   Asm->OutStreamer->AddComment("Compilation Unit Length");
2377   Asm->emitDwarfLengthOrOffset(TheU->getLength());
2378 
2379   // Emit the pubnames for this compilation unit.
2380   for (const auto &GI : Globals) {
2381     const char *Name = GI.getKeyData();
2382     const DIE *Entity = GI.second;
2383 
2384     Asm->OutStreamer->AddComment("DIE offset");
2385     Asm->emitDwarfLengthOrOffset(Entity->getOffset());
2386 
2387     if (GnuStyle) {
2388       dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
2389       Asm->OutStreamer->AddComment(
2390           Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) +
2391           ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
2392       Asm->emitInt8(Desc.toBits());
2393     }
2394 
2395     Asm->OutStreamer->AddComment("External Name");
2396     Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1));
2397   }
2398 
2399   Asm->OutStreamer->AddComment("End Mark");
2400   Asm->emitDwarfLengthOrOffset(0);
2401   Asm->OutStreamer->emitLabel(EndLabel);
2402 }
2403 
2404 /// Emit null-terminated strings into a debug str section.
2405 void DwarfDebug::emitDebugStr() {
2406   MCSection *StringOffsetsSection = nullptr;
2407   if (useSegmentedStringOffsetsTable()) {
2408     emitStringOffsetsTableHeader();
2409     StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection();
2410   }
2411   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2412   Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(),
2413                      StringOffsetsSection, /* UseRelativeOffsets = */ true);
2414 }
2415 
2416 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
2417                                    const DebugLocStream::Entry &Entry,
2418                                    const DwarfCompileUnit *CU) {
2419   auto &&Comments = DebugLocs.getComments(Entry);
2420   auto Comment = Comments.begin();
2421   auto End = Comments.end();
2422 
2423   // The expressions are inserted into a byte stream rather early (see
2424   // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that
2425   // need to reference a base_type DIE the offset of that DIE is not yet known.
2426   // To deal with this we instead insert a placeholder early and then extract
2427   // it here and replace it with the real reference.
2428   unsigned PtrSize = Asm->MAI->getCodePointerSize();
2429   DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(),
2430                                     DebugLocs.getBytes(Entry).size()),
2431                           Asm->getDataLayout().isLittleEndian(), PtrSize);
2432   DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat());
2433 
2434   using Encoding = DWARFExpression::Operation::Encoding;
2435   uint64_t Offset = 0;
2436   for (auto &Op : Expr) {
2437     assert(Op.getCode() != dwarf::DW_OP_const_type &&
2438            "3 operand ops not yet supported");
2439     Streamer.emitInt8(Op.getCode(), Comment != End ? *(Comment++) : "");
2440     Offset++;
2441     for (unsigned I = 0; I < 2; ++I) {
2442       if (Op.getDescription().Op[I] == Encoding::SizeNA)
2443         continue;
2444       if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) {
2445         uint64_t Offset =
2446             CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset();
2447         assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit");
2448         Streamer.emitULEB128(Offset, "", ULEB128PadSize);
2449         // Make sure comments stay aligned.
2450         for (unsigned J = 0; J < ULEB128PadSize; ++J)
2451           if (Comment != End)
2452             Comment++;
2453       } else {
2454         for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J)
2455           Streamer.emitInt8(Data.getData()[J], Comment != End ? *(Comment++) : "");
2456       }
2457       Offset = Op.getOperandEndOffset(I);
2458     }
2459     assert(Offset == Op.getEndOffset());
2460   }
2461 }
2462 
2463 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT,
2464                                    const DbgValueLoc &Value,
2465                                    DwarfExpression &DwarfExpr) {
2466   auto *DIExpr = Value.getExpression();
2467   DIExpressionCursor ExprCursor(DIExpr);
2468   DwarfExpr.addFragmentOffset(DIExpr);
2469   // Regular entry.
2470   if (Value.isInt()) {
2471     if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed ||
2472                BT->getEncoding() == dwarf::DW_ATE_signed_char))
2473       DwarfExpr.addSignedConstant(Value.getInt());
2474     else
2475       DwarfExpr.addUnsignedConstant(Value.getInt());
2476   } else if (Value.isLocation()) {
2477     MachineLocation Location = Value.getLoc();
2478     DwarfExpr.setLocation(Location, DIExpr);
2479     DIExpressionCursor Cursor(DIExpr);
2480 
2481     if (DIExpr->isEntryValue())
2482       DwarfExpr.beginEntryValueExpression(Cursor);
2483 
2484     const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
2485     if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg()))
2486       return;
2487     return DwarfExpr.addExpression(std::move(Cursor));
2488   } else if (Value.isTargetIndexLocation()) {
2489     TargetIndexLocation Loc = Value.getTargetIndexLocation();
2490     // TODO TargetIndexLocation is a target-independent. Currently only the WebAssembly-specific
2491     // encoding is supported.
2492     assert(AP.TM.getTargetTriple().isWasm());
2493     DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset));
2494       DwarfExpr.addExpression(std::move(ExprCursor));
2495       return;
2496   } else if (Value.isConstantFP()) {
2497     if (AP.getDwarfVersion() >= 4 && !AP.getDwarfDebug()->tuneForSCE() &&
2498         !ExprCursor) {
2499       DwarfExpr.addConstantFP(Value.getConstantFP()->getValueAPF(), AP);
2500       return;
2501     }
2502     if (Value.getConstantFP()->getValueAPF().bitcastToAPInt().getBitWidth() <=
2503         64 /*bits*/)
2504       DwarfExpr.addUnsignedConstant(
2505           Value.getConstantFP()->getValueAPF().bitcastToAPInt());
2506     else
2507       LLVM_DEBUG(
2508           dbgs()
2509           << "Skipped DwarfExpression creation for ConstantFP of size"
2510           << Value.getConstantFP()->getValueAPF().bitcastToAPInt().getBitWidth()
2511           << " bits\n");
2512   }
2513   DwarfExpr.addExpression(std::move(ExprCursor));
2514 }
2515 
2516 void DebugLocEntry::finalize(const AsmPrinter &AP,
2517                              DebugLocStream::ListBuilder &List,
2518                              const DIBasicType *BT,
2519                              DwarfCompileUnit &TheCU) {
2520   assert(!Values.empty() &&
2521          "location list entries without values are redundant");
2522   assert(Begin != End && "unexpected location list entry with empty range");
2523   DebugLocStream::EntryBuilder Entry(List, Begin, End);
2524   BufferByteStreamer Streamer = Entry.getStreamer();
2525   DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU);
2526   const DbgValueLoc &Value = Values[0];
2527   if (Value.isFragment()) {
2528     // Emit all fragments that belong to the same variable and range.
2529     assert(llvm::all_of(Values, [](DbgValueLoc P) {
2530           return P.isFragment();
2531         }) && "all values are expected to be fragments");
2532     assert(llvm::is_sorted(Values) && "fragments are expected to be sorted");
2533 
2534     for (const auto &Fragment : Values)
2535       DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr);
2536 
2537   } else {
2538     assert(Values.size() == 1 && "only fragments may have >1 value");
2539     DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr);
2540   }
2541   DwarfExpr.finalize();
2542   if (DwarfExpr.TagOffset)
2543     List.setTagOffset(*DwarfExpr.TagOffset);
2544 }
2545 
2546 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry,
2547                                            const DwarfCompileUnit *CU) {
2548   // Emit the size.
2549   Asm->OutStreamer->AddComment("Loc expr size");
2550   if (getDwarfVersion() >= 5)
2551     Asm->emitULEB128(DebugLocs.getBytes(Entry).size());
2552   else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max())
2553     Asm->emitInt16(DebugLocs.getBytes(Entry).size());
2554   else {
2555     // The entry is too big to fit into 16 bit, drop it as there is nothing we
2556     // can do.
2557     Asm->emitInt16(0);
2558     return;
2559   }
2560   // Emit the entry.
2561   APByteStreamer Streamer(*Asm);
2562   emitDebugLocEntry(Streamer, Entry, CU);
2563 }
2564 
2565 // Emit the header of a DWARF 5 range list table list table. Returns the symbol
2566 // that designates the end of the table for the caller to emit when the table is
2567 // complete.
2568 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm,
2569                                          const DwarfFile &Holder) {
2570   MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2571 
2572   Asm->OutStreamer->AddComment("Offset entry count");
2573   Asm->emitInt32(Holder.getRangeLists().size());
2574   Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym());
2575 
2576   for (const RangeSpanList &List : Holder.getRangeLists())
2577     Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(),
2578                              Asm->getDwarfOffsetByteSize());
2579 
2580   return TableEnd;
2581 }
2582 
2583 // Emit the header of a DWARF 5 locations list table. Returns the symbol that
2584 // designates the end of the table for the caller to emit when the table is
2585 // complete.
2586 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm,
2587                                          const DwarfDebug &DD) {
2588   MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2589 
2590   const auto &DebugLocs = DD.getDebugLocs();
2591 
2592   Asm->OutStreamer->AddComment("Offset entry count");
2593   Asm->emitInt32(DebugLocs.getLists().size());
2594   Asm->OutStreamer->emitLabel(DebugLocs.getSym());
2595 
2596   for (const auto &List : DebugLocs.getLists())
2597     Asm->emitLabelDifference(List.Label, DebugLocs.getSym(),
2598                              Asm->getDwarfOffsetByteSize());
2599 
2600   return TableEnd;
2601 }
2602 
2603 template <typename Ranges, typename PayloadEmitter>
2604 static void emitRangeList(
2605     DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R,
2606     const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair,
2607     unsigned StartxLength, unsigned EndOfList,
2608     StringRef (*StringifyEnum)(unsigned),
2609     bool ShouldUseBaseAddress,
2610     PayloadEmitter EmitPayload) {
2611 
2612   auto Size = Asm->MAI->getCodePointerSize();
2613   bool UseDwarf5 = DD.getDwarfVersion() >= 5;
2614 
2615   // Emit our symbol so we can find the beginning of the range.
2616   Asm->OutStreamer->emitLabel(Sym);
2617 
2618   // Gather all the ranges that apply to the same section so they can share
2619   // a base address entry.
2620   MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges;
2621 
2622   for (const auto &Range : R)
2623     SectionRanges[&Range.Begin->getSection()].push_back(&Range);
2624 
2625   const MCSymbol *CUBase = CU.getBaseAddress();
2626   bool BaseIsSet = false;
2627   for (const auto &P : SectionRanges) {
2628     auto *Base = CUBase;
2629     if (!Base && ShouldUseBaseAddress) {
2630       const MCSymbol *Begin = P.second.front()->Begin;
2631       const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection());
2632       if (!UseDwarf5) {
2633         Base = NewBase;
2634         BaseIsSet = true;
2635         Asm->OutStreamer->emitIntValue(-1, Size);
2636         Asm->OutStreamer->AddComment("  base address");
2637         Asm->OutStreamer->emitSymbolValue(Base, Size);
2638       } else if (NewBase != Begin || P.second.size() > 1) {
2639         // Only use a base address if
2640         //  * the existing pool address doesn't match (NewBase != Begin)
2641         //  * or, there's more than one entry to share the base address
2642         Base = NewBase;
2643         BaseIsSet = true;
2644         Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx));
2645         Asm->emitInt8(BaseAddressx);
2646         Asm->OutStreamer->AddComment("  base address index");
2647         Asm->emitULEB128(DD.getAddressPool().getIndex(Base));
2648       }
2649     } else if (BaseIsSet && !UseDwarf5) {
2650       BaseIsSet = false;
2651       assert(!Base);
2652       Asm->OutStreamer->emitIntValue(-1, Size);
2653       Asm->OutStreamer->emitIntValue(0, Size);
2654     }
2655 
2656     for (const auto *RS : P.second) {
2657       const MCSymbol *Begin = RS->Begin;
2658       const MCSymbol *End = RS->End;
2659       assert(Begin && "Range without a begin symbol?");
2660       assert(End && "Range without an end symbol?");
2661       if (Base) {
2662         if (UseDwarf5) {
2663           // Emit offset_pair when we have a base.
2664           Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair));
2665           Asm->emitInt8(OffsetPair);
2666           Asm->OutStreamer->AddComment("  starting offset");
2667           Asm->emitLabelDifferenceAsULEB128(Begin, Base);
2668           Asm->OutStreamer->AddComment("  ending offset");
2669           Asm->emitLabelDifferenceAsULEB128(End, Base);
2670         } else {
2671           Asm->emitLabelDifference(Begin, Base, Size);
2672           Asm->emitLabelDifference(End, Base, Size);
2673         }
2674       } else if (UseDwarf5) {
2675         Asm->OutStreamer->AddComment(StringifyEnum(StartxLength));
2676         Asm->emitInt8(StartxLength);
2677         Asm->OutStreamer->AddComment("  start index");
2678         Asm->emitULEB128(DD.getAddressPool().getIndex(Begin));
2679         Asm->OutStreamer->AddComment("  length");
2680         Asm->emitLabelDifferenceAsULEB128(End, Begin);
2681       } else {
2682         Asm->OutStreamer->emitSymbolValue(Begin, Size);
2683         Asm->OutStreamer->emitSymbolValue(End, Size);
2684       }
2685       EmitPayload(*RS);
2686     }
2687   }
2688 
2689   if (UseDwarf5) {
2690     Asm->OutStreamer->AddComment(StringifyEnum(EndOfList));
2691     Asm->emitInt8(EndOfList);
2692   } else {
2693     // Terminate the list with two 0 values.
2694     Asm->OutStreamer->emitIntValue(0, Size);
2695     Asm->OutStreamer->emitIntValue(0, Size);
2696   }
2697 }
2698 
2699 // Handles emission of both debug_loclist / debug_loclist.dwo
2700 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) {
2701   emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List),
2702                 *List.CU, dwarf::DW_LLE_base_addressx,
2703                 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length,
2704                 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString,
2705                 /* ShouldUseBaseAddress */ true,
2706                 [&](const DebugLocStream::Entry &E) {
2707                   DD.emitDebugLocEntryLocation(E, List.CU);
2708                 });
2709 }
2710 
2711 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) {
2712   if (DebugLocs.getLists().empty())
2713     return;
2714 
2715   Asm->OutStreamer->SwitchSection(Sec);
2716 
2717   MCSymbol *TableEnd = nullptr;
2718   if (getDwarfVersion() >= 5)
2719     TableEnd = emitLoclistsTableHeader(Asm, *this);
2720 
2721   for (const auto &List : DebugLocs.getLists())
2722     emitLocList(*this, Asm, List);
2723 
2724   if (TableEnd)
2725     Asm->OutStreamer->emitLabel(TableEnd);
2726 }
2727 
2728 // Emit locations into the .debug_loc/.debug_loclists section.
2729 void DwarfDebug::emitDebugLoc() {
2730   emitDebugLocImpl(
2731       getDwarfVersion() >= 5
2732           ? Asm->getObjFileLowering().getDwarfLoclistsSection()
2733           : Asm->getObjFileLowering().getDwarfLocSection());
2734 }
2735 
2736 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section.
2737 void DwarfDebug::emitDebugLocDWO() {
2738   if (getDwarfVersion() >= 5) {
2739     emitDebugLocImpl(
2740         Asm->getObjFileLowering().getDwarfLoclistsDWOSection());
2741 
2742     return;
2743   }
2744 
2745   for (const auto &List : DebugLocs.getLists()) {
2746     Asm->OutStreamer->SwitchSection(
2747         Asm->getObjFileLowering().getDwarfLocDWOSection());
2748     Asm->OutStreamer->emitLabel(List.Label);
2749 
2750     for (const auto &Entry : DebugLocs.getEntries(List)) {
2751       // GDB only supports startx_length in pre-standard split-DWARF.
2752       // (in v5 standard loclists, it currently* /only/ supports base_address +
2753       // offset_pair, so the implementations can't really share much since they
2754       // need to use different representations)
2755       // * as of October 2018, at least
2756       //
2757       // In v5 (see emitLocList), this uses SectionLabels to reuse existing
2758       // addresses in the address pool to minimize object size/relocations.
2759       Asm->emitInt8(dwarf::DW_LLE_startx_length);
2760       unsigned idx = AddrPool.getIndex(Entry.Begin);
2761       Asm->emitULEB128(idx);
2762       // Also the pre-standard encoding is slightly different, emitting this as
2763       // an address-length entry here, but its a ULEB128 in DWARFv5 loclists.
2764       Asm->emitLabelDifference(Entry.End, Entry.Begin, 4);
2765       emitDebugLocEntryLocation(Entry, List.CU);
2766     }
2767     Asm->emitInt8(dwarf::DW_LLE_end_of_list);
2768   }
2769 }
2770 
2771 struct ArangeSpan {
2772   const MCSymbol *Start, *End;
2773 };
2774 
2775 // Emit a debug aranges section, containing a CU lookup for any
2776 // address we can tie back to a CU.
2777 void DwarfDebug::emitDebugARanges() {
2778   // Provides a unique id per text section.
2779   MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap;
2780 
2781   // Filter labels by section.
2782   for (const SymbolCU &SCU : ArangeLabels) {
2783     if (SCU.Sym->isInSection()) {
2784       // Make a note of this symbol and it's section.
2785       MCSection *Section = &SCU.Sym->getSection();
2786       if (!Section->getKind().isMetadata())
2787         SectionMap[Section].push_back(SCU);
2788     } else {
2789       // Some symbols (e.g. common/bss on mach-o) can have no section but still
2790       // appear in the output. This sucks as we rely on sections to build
2791       // arange spans. We can do it without, but it's icky.
2792       SectionMap[nullptr].push_back(SCU);
2793     }
2794   }
2795 
2796   DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans;
2797 
2798   for (auto &I : SectionMap) {
2799     MCSection *Section = I.first;
2800     SmallVector<SymbolCU, 8> &List = I.second;
2801     if (List.size() < 1)
2802       continue;
2803 
2804     // If we have no section (e.g. common), just write out
2805     // individual spans for each symbol.
2806     if (!Section) {
2807       for (const SymbolCU &Cur : List) {
2808         ArangeSpan Span;
2809         Span.Start = Cur.Sym;
2810         Span.End = nullptr;
2811         assert(Cur.CU);
2812         Spans[Cur.CU].push_back(Span);
2813       }
2814       continue;
2815     }
2816 
2817     // Sort the symbols by offset within the section.
2818     llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) {
2819       unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0;
2820       unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0;
2821 
2822       // Symbols with no order assigned should be placed at the end.
2823       // (e.g. section end labels)
2824       if (IA == 0)
2825         return false;
2826       if (IB == 0)
2827         return true;
2828       return IA < IB;
2829     });
2830 
2831     // Insert a final terminator.
2832     List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section)));
2833 
2834     // Build spans between each label.
2835     const MCSymbol *StartSym = List[0].Sym;
2836     for (size_t n = 1, e = List.size(); n < e; n++) {
2837       const SymbolCU &Prev = List[n - 1];
2838       const SymbolCU &Cur = List[n];
2839 
2840       // Try and build the longest span we can within the same CU.
2841       if (Cur.CU != Prev.CU) {
2842         ArangeSpan Span;
2843         Span.Start = StartSym;
2844         Span.End = Cur.Sym;
2845         assert(Prev.CU);
2846         Spans[Prev.CU].push_back(Span);
2847         StartSym = Cur.Sym;
2848       }
2849     }
2850   }
2851 
2852   // Start the dwarf aranges section.
2853   Asm->OutStreamer->SwitchSection(
2854       Asm->getObjFileLowering().getDwarfARangesSection());
2855 
2856   unsigned PtrSize = Asm->MAI->getCodePointerSize();
2857 
2858   // Build a list of CUs used.
2859   std::vector<DwarfCompileUnit *> CUs;
2860   for (const auto &it : Spans) {
2861     DwarfCompileUnit *CU = it.first;
2862     CUs.push_back(CU);
2863   }
2864 
2865   // Sort the CU list (again, to ensure consistent output order).
2866   llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) {
2867     return A->getUniqueID() < B->getUniqueID();
2868   });
2869 
2870   // Emit an arange table for each CU we used.
2871   for (DwarfCompileUnit *CU : CUs) {
2872     std::vector<ArangeSpan> &List = Spans[CU];
2873 
2874     // Describe the skeleton CU's offset and length, not the dwo file's.
2875     if (auto *Skel = CU->getSkeleton())
2876       CU = Skel;
2877 
2878     // Emit size of content not including length itself.
2879     unsigned ContentSize =
2880         sizeof(int16_t) +               // DWARF ARange version number
2881         Asm->getDwarfOffsetByteSize() + // Offset of CU in the .debug_info
2882                                         // section
2883         sizeof(int8_t) +                // Pointer Size (in bytes)
2884         sizeof(int8_t);                 // Segment Size (in bytes)
2885 
2886     unsigned TupleSize = PtrSize * 2;
2887 
2888     // 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
2889     unsigned Padding = offsetToAlignment(
2890         Asm->getUnitLengthFieldByteSize() + ContentSize, Align(TupleSize));
2891 
2892     ContentSize += Padding;
2893     ContentSize += (List.size() + 1) * TupleSize;
2894 
2895     // For each compile unit, write the list of spans it covers.
2896     Asm->emitDwarfUnitLength(ContentSize, "Length of ARange Set");
2897     Asm->OutStreamer->AddComment("DWARF Arange version number");
2898     Asm->emitInt16(dwarf::DW_ARANGES_VERSION);
2899     Asm->OutStreamer->AddComment("Offset Into Debug Info Section");
2900     emitSectionReference(*CU);
2901     Asm->OutStreamer->AddComment("Address Size (in bytes)");
2902     Asm->emitInt8(PtrSize);
2903     Asm->OutStreamer->AddComment("Segment Size (in bytes)");
2904     Asm->emitInt8(0);
2905 
2906     Asm->OutStreamer->emitFill(Padding, 0xff);
2907 
2908     for (const ArangeSpan &Span : List) {
2909       Asm->emitLabelReference(Span.Start, PtrSize);
2910 
2911       // Calculate the size as being from the span start to it's end.
2912       if (Span.End) {
2913         Asm->emitLabelDifference(Span.End, Span.Start, PtrSize);
2914       } else {
2915         // For symbols without an end marker (e.g. common), we
2916         // write a single arange entry containing just that one symbol.
2917         uint64_t Size = SymSize[Span.Start];
2918         if (Size == 0)
2919           Size = 1;
2920 
2921         Asm->OutStreamer->emitIntValue(Size, PtrSize);
2922       }
2923     }
2924 
2925     Asm->OutStreamer->AddComment("ARange terminator");
2926     Asm->OutStreamer->emitIntValue(0, PtrSize);
2927     Asm->OutStreamer->emitIntValue(0, PtrSize);
2928   }
2929 }
2930 
2931 /// Emit a single range list. We handle both DWARF v5 and earlier.
2932 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm,
2933                           const RangeSpanList &List) {
2934   emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU,
2935                 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair,
2936                 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list,
2937                 llvm::dwarf::RangeListEncodingString,
2938                 List.CU->getCUNode()->getRangesBaseAddress() ||
2939                     DD.getDwarfVersion() >= 5,
2940                 [](auto) {});
2941 }
2942 
2943 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) {
2944   if (Holder.getRangeLists().empty())
2945     return;
2946 
2947   assert(useRangesSection());
2948   assert(!CUMap.empty());
2949   assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) {
2950     return !Pair.second->getCUNode()->isDebugDirectivesOnly();
2951   }));
2952 
2953   Asm->OutStreamer->SwitchSection(Section);
2954 
2955   MCSymbol *TableEnd = nullptr;
2956   if (getDwarfVersion() >= 5)
2957     TableEnd = emitRnglistsTableHeader(Asm, Holder);
2958 
2959   for (const RangeSpanList &List : Holder.getRangeLists())
2960     emitRangeList(*this, Asm, List);
2961 
2962   if (TableEnd)
2963     Asm->OutStreamer->emitLabel(TableEnd);
2964 }
2965 
2966 /// Emit address ranges into the .debug_ranges section or into the DWARF v5
2967 /// .debug_rnglists section.
2968 void DwarfDebug::emitDebugRanges() {
2969   const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2970 
2971   emitDebugRangesImpl(Holder,
2972                       getDwarfVersion() >= 5
2973                           ? Asm->getObjFileLowering().getDwarfRnglistsSection()
2974                           : Asm->getObjFileLowering().getDwarfRangesSection());
2975 }
2976 
2977 void DwarfDebug::emitDebugRangesDWO() {
2978   emitDebugRangesImpl(InfoHolder,
2979                       Asm->getObjFileLowering().getDwarfRnglistsDWOSection());
2980 }
2981 
2982 /// Emit the header of a DWARF 5 macro section, or the GNU extension for
2983 /// DWARF 4.
2984 static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD,
2985                             const DwarfCompileUnit &CU, uint16_t DwarfVersion) {
2986   enum HeaderFlagMask {
2987 #define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID,
2988 #include "llvm/BinaryFormat/Dwarf.def"
2989   };
2990   Asm->OutStreamer->AddComment("Macro information version");
2991   Asm->emitInt16(DwarfVersion >= 5 ? DwarfVersion : 4);
2992   // We emit the line offset flag unconditionally here, since line offset should
2993   // be mostly present.
2994   if (Asm->isDwarf64()) {
2995     Asm->OutStreamer->AddComment("Flags: 64 bit, debug_line_offset present");
2996     Asm->emitInt8(MACRO_FLAG_OFFSET_SIZE | MACRO_FLAG_DEBUG_LINE_OFFSET);
2997   } else {
2998     Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present");
2999     Asm->emitInt8(MACRO_FLAG_DEBUG_LINE_OFFSET);
3000   }
3001   Asm->OutStreamer->AddComment("debug_line_offset");
3002   if (DD.useSplitDwarf())
3003     Asm->emitDwarfLengthOrOffset(0);
3004   else
3005     Asm->emitDwarfSymbolReference(CU.getLineTableStartSym());
3006 }
3007 
3008 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) {
3009   for (auto *MN : Nodes) {
3010     if (auto *M = dyn_cast<DIMacro>(MN))
3011       emitMacro(*M);
3012     else if (auto *F = dyn_cast<DIMacroFile>(MN))
3013       emitMacroFile(*F, U);
3014     else
3015       llvm_unreachable("Unexpected DI type!");
3016   }
3017 }
3018 
3019 void DwarfDebug::emitMacro(DIMacro &M) {
3020   StringRef Name = M.getName();
3021   StringRef Value = M.getValue();
3022 
3023   // There should be one space between the macro name and the macro value in
3024   // define entries. In undef entries, only the macro name is emitted.
3025   std::string Str = Value.empty() ? Name.str() : (Name + " " + Value).str();
3026 
3027   if (UseDebugMacroSection) {
3028     if (getDwarfVersion() >= 5) {
3029       unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
3030                           ? dwarf::DW_MACRO_define_strx
3031                           : dwarf::DW_MACRO_undef_strx;
3032       Asm->OutStreamer->AddComment(dwarf::MacroString(Type));
3033       Asm->emitULEB128(Type);
3034       Asm->OutStreamer->AddComment("Line Number");
3035       Asm->emitULEB128(M.getLine());
3036       Asm->OutStreamer->AddComment("Macro String");
3037       Asm->emitULEB128(
3038           InfoHolder.getStringPool().getIndexedEntry(*Asm, Str).getIndex());
3039     } else {
3040       unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
3041                           ? dwarf::DW_MACRO_GNU_define_indirect
3042                           : dwarf::DW_MACRO_GNU_undef_indirect;
3043       Asm->OutStreamer->AddComment(dwarf::GnuMacroString(Type));
3044       Asm->emitULEB128(Type);
3045       Asm->OutStreamer->AddComment("Line Number");
3046       Asm->emitULEB128(M.getLine());
3047       Asm->OutStreamer->AddComment("Macro String");
3048       Asm->emitDwarfSymbolReference(
3049           InfoHolder.getStringPool().getEntry(*Asm, Str).getSymbol());
3050     }
3051   } else {
3052     Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType()));
3053     Asm->emitULEB128(M.getMacinfoType());
3054     Asm->OutStreamer->AddComment("Line Number");
3055     Asm->emitULEB128(M.getLine());
3056     Asm->OutStreamer->AddComment("Macro String");
3057     Asm->OutStreamer->emitBytes(Str);
3058     Asm->emitInt8('\0');
3059   }
3060 }
3061 
3062 void DwarfDebug::emitMacroFileImpl(
3063     DIMacroFile &MF, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile,
3064     StringRef (*MacroFormToString)(unsigned Form)) {
3065 
3066   Asm->OutStreamer->AddComment(MacroFormToString(StartFile));
3067   Asm->emitULEB128(StartFile);
3068   Asm->OutStreamer->AddComment("Line Number");
3069   Asm->emitULEB128(MF.getLine());
3070   Asm->OutStreamer->AddComment("File Number");
3071   DIFile &F = *MF.getFile();
3072   if (useSplitDwarf())
3073     Asm->emitULEB128(getDwoLineTable(U)->getFile(
3074         F.getDirectory(), F.getFilename(), getMD5AsBytes(&F),
3075         Asm->OutContext.getDwarfVersion(), F.getSource()));
3076   else
3077     Asm->emitULEB128(U.getOrCreateSourceID(&F));
3078   handleMacroNodes(MF.getElements(), U);
3079   Asm->OutStreamer->AddComment(MacroFormToString(EndFile));
3080   Asm->emitULEB128(EndFile);
3081 }
3082 
3083 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) {
3084   // DWARFv5 macro and DWARFv4 macinfo share some common encodings,
3085   // so for readibility/uniformity, We are explicitly emitting those.
3086   assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file);
3087   if (UseDebugMacroSection)
3088     emitMacroFileImpl(
3089         F, U, dwarf::DW_MACRO_start_file, dwarf::DW_MACRO_end_file,
3090         (getDwarfVersion() >= 5) ? dwarf::MacroString : dwarf::GnuMacroString);
3091   else
3092     emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file,
3093                       dwarf::DW_MACINFO_end_file, dwarf::MacinfoString);
3094 }
3095 
3096 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) {
3097   for (const auto &P : CUMap) {
3098     auto &TheCU = *P.second;
3099     auto *SkCU = TheCU.getSkeleton();
3100     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
3101     auto *CUNode = cast<DICompileUnit>(P.first);
3102     DIMacroNodeArray Macros = CUNode->getMacros();
3103     if (Macros.empty())
3104       continue;
3105     Asm->OutStreamer->SwitchSection(Section);
3106     Asm->OutStreamer->emitLabel(U.getMacroLabelBegin());
3107     if (UseDebugMacroSection)
3108       emitMacroHeader(Asm, *this, U, getDwarfVersion());
3109     handleMacroNodes(Macros, U);
3110     Asm->OutStreamer->AddComment("End Of Macro List Mark");
3111     Asm->emitInt8(0);
3112   }
3113 }
3114 
3115 /// Emit macros into a debug macinfo/macro section.
3116 void DwarfDebug::emitDebugMacinfo() {
3117   auto &ObjLower = Asm->getObjFileLowering();
3118   emitDebugMacinfoImpl(UseDebugMacroSection
3119                            ? ObjLower.getDwarfMacroSection()
3120                            : ObjLower.getDwarfMacinfoSection());
3121 }
3122 
3123 void DwarfDebug::emitDebugMacinfoDWO() {
3124   auto &ObjLower = Asm->getObjFileLowering();
3125   emitDebugMacinfoImpl(UseDebugMacroSection
3126                            ? ObjLower.getDwarfMacroDWOSection()
3127                            : ObjLower.getDwarfMacinfoDWOSection());
3128 }
3129 
3130 // DWARF5 Experimental Separate Dwarf emitters.
3131 
3132 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
3133                                   std::unique_ptr<DwarfCompileUnit> NewU) {
3134 
3135   if (!CompilationDir.empty())
3136     NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
3137   addGnuPubAttributes(*NewU, Die);
3138 
3139   SkeletonHolder.addUnit(std::move(NewU));
3140 }
3141 
3142 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
3143 
3144   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
3145       CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder,
3146       UnitKind::Skeleton);
3147   DwarfCompileUnit &NewCU = *OwnedUnit;
3148   NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
3149 
3150   NewCU.initStmtList();
3151 
3152   if (useSegmentedStringOffsetsTable())
3153     NewCU.addStringOffsetsStart();
3154 
3155   initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));
3156 
3157   return NewCU;
3158 }
3159 
3160 // Emit the .debug_info.dwo section for separated dwarf. This contains the
3161 // compile units that would normally be in debug_info.
3162 void DwarfDebug::emitDebugInfoDWO() {
3163   assert(useSplitDwarf() && "No split dwarf debug info?");
3164   // Don't emit relocations into the dwo file.
3165   InfoHolder.emitUnits(/* UseOffsets */ true);
3166 }
3167 
3168 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
3169 // abbreviations for the .debug_info.dwo section.
3170 void DwarfDebug::emitDebugAbbrevDWO() {
3171   assert(useSplitDwarf() && "No split dwarf?");
3172   InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
3173 }
3174 
3175 void DwarfDebug::emitDebugLineDWO() {
3176   assert(useSplitDwarf() && "No split dwarf?");
3177   SplitTypeUnitFileTable.Emit(
3178       *Asm->OutStreamer, MCDwarfLineTableParams(),
3179       Asm->getObjFileLowering().getDwarfLineDWOSection());
3180 }
3181 
3182 void DwarfDebug::emitStringOffsetsTableHeaderDWO() {
3183   assert(useSplitDwarf() && "No split dwarf?");
3184   InfoHolder.getStringPool().emitStringOffsetsTableHeader(
3185       *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(),
3186       InfoHolder.getStringOffsetsStartSym());
3187 }
3188 
3189 // Emit the .debug_str.dwo section for separated dwarf. This contains the
3190 // string section and is identical in format to traditional .debug_str
3191 // sections.
3192 void DwarfDebug::emitDebugStrDWO() {
3193   if (useSegmentedStringOffsetsTable())
3194     emitStringOffsetsTableHeaderDWO();
3195   assert(useSplitDwarf() && "No split dwarf?");
3196   MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection();
3197   InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
3198                          OffSec, /* UseRelativeOffsets = */ false);
3199 }
3200 
3201 // Emit address pool.
3202 void DwarfDebug::emitDebugAddr() {
3203   AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
3204 }
3205 
3206 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
3207   if (!useSplitDwarf())
3208     return nullptr;
3209   const DICompileUnit *DIUnit = CU.getCUNode();
3210   SplitTypeUnitFileTable.maybeSetRootFile(
3211       DIUnit->getDirectory(), DIUnit->getFilename(),
3212       getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource());
3213   return &SplitTypeUnitFileTable;
3214 }
3215 
3216 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) {
3217   MD5 Hash;
3218   Hash.update(Identifier);
3219   // ... take the least significant 8 bytes and return those. Our MD5
3220   // implementation always returns its results in little endian, so we actually
3221   // need the "high" word.
3222   MD5::MD5Result Result;
3223   Hash.final(Result);
3224   return Result.high();
3225 }
3226 
3227 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
3228                                       StringRef Identifier, DIE &RefDie,
3229                                       const DICompositeType *CTy) {
3230   // Fast path if we're building some type units and one has already used the
3231   // address pool we know we're going to throw away all this work anyway, so
3232   // don't bother building dependent types.
3233   if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
3234     return;
3235 
3236   auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0));
3237   if (!Ins.second) {
3238     CU.addDIETypeSignature(RefDie, Ins.first->second);
3239     return;
3240   }
3241 
3242   bool TopLevelType = TypeUnitsUnderConstruction.empty();
3243   AddrPool.resetUsedFlag();
3244 
3245   auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder,
3246                                                     getDwoLineTable(CU));
3247   DwarfTypeUnit &NewTU = *OwnedUnit;
3248   DIE &UnitDie = NewTU.getUnitDie();
3249   TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy);
3250 
3251   NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
3252                 CU.getLanguage());
3253 
3254   uint64_t Signature = makeTypeSignature(Identifier);
3255   NewTU.setTypeSignature(Signature);
3256   Ins.first->second = Signature;
3257 
3258   if (useSplitDwarf()) {
3259     MCSection *Section =
3260         getDwarfVersion() <= 4
3261             ? Asm->getObjFileLowering().getDwarfTypesDWOSection()
3262             : Asm->getObjFileLowering().getDwarfInfoDWOSection();
3263     NewTU.setSection(Section);
3264   } else {
3265     MCSection *Section =
3266         getDwarfVersion() <= 4
3267             ? Asm->getObjFileLowering().getDwarfTypesSection(Signature)
3268             : Asm->getObjFileLowering().getDwarfInfoSection(Signature);
3269     NewTU.setSection(Section);
3270     // Non-split type units reuse the compile unit's line table.
3271     CU.applyStmtList(UnitDie);
3272   }
3273 
3274   // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type
3275   // units.
3276   if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
3277     NewTU.addStringOffsetsStart();
3278 
3279   NewTU.setType(NewTU.createTypeDIE(CTy));
3280 
3281   if (TopLevelType) {
3282     auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
3283     TypeUnitsUnderConstruction.clear();
3284 
3285     // Types referencing entries in the address table cannot be placed in type
3286     // units.
3287     if (AddrPool.hasBeenUsed()) {
3288 
3289       // Remove all the types built while building this type.
3290       // This is pessimistic as some of these types might not be dependent on
3291       // the type that used an address.
3292       for (const auto &TU : TypeUnitsToAdd)
3293         TypeSignatures.erase(TU.second);
3294 
3295       // Construct this type in the CU directly.
3296       // This is inefficient because all the dependent types will be rebuilt
3297       // from scratch, including building them in type units, discovering that
3298       // they depend on addresses, throwing them out and rebuilding them.
3299       CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy));
3300       return;
3301     }
3302 
3303     // If the type wasn't dependent on fission addresses, finish adding the type
3304     // and all its dependent types.
3305     for (auto &TU : TypeUnitsToAdd) {
3306       InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get());
3307       InfoHolder.emitUnit(TU.first.get(), useSplitDwarf());
3308     }
3309   }
3310   CU.addDIETypeSignature(RefDie, Signature);
3311 }
3312 
3313 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD)
3314     : DD(DD),
3315       TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)), AddrPoolUsed(DD->AddrPool.hasBeenUsed()) {
3316   DD->TypeUnitsUnderConstruction.clear();
3317   DD->AddrPool.resetUsedFlag();
3318 }
3319 
3320 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() {
3321   DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction);
3322   DD->AddrPool.resetUsedFlag(AddrPoolUsed);
3323 }
3324 
3325 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() {
3326   return NonTypeUnitContext(this);
3327 }
3328 
3329 // Add the Name along with its companion DIE to the appropriate accelerator
3330 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for
3331 // AccelTableKind::Apple, we use the table we got as an argument). If
3332 // accelerator tables are disabled, this function does nothing.
3333 template <typename DataT>
3334 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU,
3335                                   AccelTable<DataT> &AppleAccel, StringRef Name,
3336                                   const DIE &Die) {
3337   if (getAccelTableKind() == AccelTableKind::None)
3338     return;
3339 
3340   if (getAccelTableKind() != AccelTableKind::Apple &&
3341       CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default)
3342     return;
3343 
3344   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
3345   DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name);
3346 
3347   switch (getAccelTableKind()) {
3348   case AccelTableKind::Apple:
3349     AppleAccel.addName(Ref, Die);
3350     break;
3351   case AccelTableKind::Dwarf:
3352     AccelDebugNames.addName(Ref, Die);
3353     break;
3354   case AccelTableKind::Default:
3355     llvm_unreachable("Default should have already been resolved.");
3356   case AccelTableKind::None:
3357     llvm_unreachable("None handled above");
3358   }
3359 }
3360 
3361 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name,
3362                               const DIE &Die) {
3363   addAccelNameImpl(CU, AccelNames, Name, Die);
3364 }
3365 
3366 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name,
3367                               const DIE &Die) {
3368   // ObjC names go only into the Apple accelerator tables.
3369   if (getAccelTableKind() == AccelTableKind::Apple)
3370     addAccelNameImpl(CU, AccelObjC, Name, Die);
3371 }
3372 
3373 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name,
3374                                    const DIE &Die) {
3375   addAccelNameImpl(CU, AccelNamespace, Name, Die);
3376 }
3377 
3378 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name,
3379                               const DIE &Die, char Flags) {
3380   addAccelNameImpl(CU, AccelTypes, Name, Die);
3381 }
3382 
3383 uint16_t DwarfDebug::getDwarfVersion() const {
3384   return Asm->OutStreamer->getContext().getDwarfVersion();
3385 }
3386 
3387 dwarf::Form DwarfDebug::getDwarfSectionOffsetForm() const {
3388   if (Asm->getDwarfVersion() >= 4)
3389     return dwarf::Form::DW_FORM_sec_offset;
3390   assert((!Asm->isDwarf64() || (Asm->getDwarfVersion() == 3)) &&
3391          "DWARF64 is not defined prior DWARFv3");
3392   return Asm->isDwarf64() ? dwarf::Form::DW_FORM_data8
3393                           : dwarf::Form::DW_FORM_data4;
3394 }
3395 
3396 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) {
3397   return SectionLabels.find(S)->second;
3398 }
3399 void DwarfDebug::insertSectionLabel(const MCSymbol *S) {
3400   if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second)
3401     if (useSplitDwarf() || getDwarfVersion() >= 5)
3402       AddrPool.getIndex(S);
3403 }
3404 
3405 Optional<MD5::MD5Result> DwarfDebug::getMD5AsBytes(const DIFile *File) const {
3406   assert(File);
3407   if (getDwarfVersion() < 5)
3408     return None;
3409   Optional<DIFile::ChecksumInfo<StringRef>> Checksum = File->getChecksum();
3410   if (!Checksum || Checksum->Kind != DIFile::CSK_MD5)
3411     return None;
3412 
3413   // Convert the string checksum to an MD5Result for the streamer.
3414   // The verifier validates the checksum so we assume it's okay.
3415   // An MD5 checksum is 16 bytes.
3416   std::string ChecksumString = fromHex(Checksum->Value);
3417   MD5::MD5Result CKMem;
3418   std::copy(ChecksumString.begin(), ChecksumString.end(), CKMem.Bytes.data());
3419   return CKMem;
3420 }
3421