1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing dwarf debug info into asm files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "DwarfDebug.h"
14 #include "ByteStreamer.h"
15 #include "DIEHash.h"
16 #include "DebugLocEntry.h"
17 #include "DebugLocStream.h"
18 #include "DwarfCompileUnit.h"
19 #include "DwarfExpression.h"
20 #include "DwarfFile.h"
21 #include "DwarfUnit.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/DenseSet.h"
25 #include "llvm/ADT/MapVector.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/BinaryFormat/Dwarf.h"
33 #include "llvm/CodeGen/AccelTable.h"
34 #include "llvm/CodeGen/AsmPrinter.h"
35 #include "llvm/CodeGen/DIE.h"
36 #include "llvm/CodeGen/LexicalScopes.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineInstr.h"
40 #include "llvm/CodeGen/MachineModuleInfo.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/TargetInstrInfo.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/DebugInfo/DWARF/DWARFExpression.h"
47 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GlobalVariable.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/MC/MCAsmInfo.h"
55 #include "llvm/MC/MCContext.h"
56 #include "llvm/MC/MCDwarf.h"
57 #include "llvm/MC/MCSection.h"
58 #include "llvm/MC/MCStreamer.h"
59 #include "llvm/MC/MCSymbol.h"
60 #include "llvm/MC/MCTargetOptions.h"
61 #include "llvm/MC/MachineLocation.h"
62 #include "llvm/MC/SectionKind.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/MD5.h"
69 #include "llvm/Support/MathExtras.h"
70 #include "llvm/Support/Timer.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/Target/TargetLoweringObjectFile.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include "llvm/Target/TargetOptions.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <iterator>
80 #include <string>
81 #include <utility>
82 #include <vector>
83 
84 using namespace llvm;
85 
86 #define DEBUG_TYPE "dwarfdebug"
87 
88 STATISTIC(NumCSParams, "Number of dbg call site params created");
89 
90 static cl::opt<bool>
91 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
92                          cl::desc("Disable debug info printing"));
93 
94 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier(
95     "use-dwarf-ranges-base-address-specifier", cl::Hidden,
96     cl::desc("Use base address specifiers in debug_ranges"), cl::init(false));
97 
98 static cl::opt<bool> GenerateARangeSection("generate-arange-section",
99                                            cl::Hidden,
100                                            cl::desc("Generate dwarf aranges"),
101                                            cl::init(false));
102 
103 static cl::opt<bool>
104     GenerateDwarfTypeUnits("generate-type-units", cl::Hidden,
105                            cl::desc("Generate DWARF4 type units."),
106                            cl::init(false));
107 
108 static cl::opt<bool> SplitDwarfCrossCuReferences(
109     "split-dwarf-cross-cu-references", cl::Hidden,
110     cl::desc("Enable cross-cu references in DWO files"), cl::init(false));
111 
112 enum DefaultOnOff { Default, Enable, Disable };
113 
114 static cl::opt<DefaultOnOff> UnknownLocations(
115     "use-unknown-locations", cl::Hidden,
116     cl::desc("Make an absence of debug location information explicit."),
117     cl::values(clEnumVal(Default, "At top of block or after label"),
118                clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")),
119     cl::init(Default));
120 
121 static cl::opt<AccelTableKind> AccelTables(
122     "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."),
123     cl::values(clEnumValN(AccelTableKind::Default, "Default",
124                           "Default for platform"),
125                clEnumValN(AccelTableKind::None, "Disable", "Disabled."),
126                clEnumValN(AccelTableKind::Apple, "Apple", "Apple"),
127                clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")),
128     cl::init(AccelTableKind::Default));
129 
130 static cl::opt<DefaultOnOff>
131 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden,
132                  cl::desc("Use inlined strings rather than string section."),
133                  cl::values(clEnumVal(Default, "Default for platform"),
134                             clEnumVal(Enable, "Enabled"),
135                             clEnumVal(Disable, "Disabled")),
136                  cl::init(Default));
137 
138 static cl::opt<bool>
139     NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden,
140                          cl::desc("Disable emission .debug_ranges section."),
141                          cl::init(false));
142 
143 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences(
144     "dwarf-sections-as-references", cl::Hidden,
145     cl::desc("Use sections+offset as references rather than labels."),
146     cl::values(clEnumVal(Default, "Default for platform"),
147                clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
148     cl::init(Default));
149 
150 enum LinkageNameOption {
151   DefaultLinkageNames,
152   AllLinkageNames,
153   AbstractLinkageNames
154 };
155 
156 static cl::opt<LinkageNameOption>
157     DwarfLinkageNames("dwarf-linkage-names", cl::Hidden,
158                       cl::desc("Which DWARF linkage-name attributes to emit."),
159                       cl::values(clEnumValN(DefaultLinkageNames, "Default",
160                                             "Default for platform"),
161                                  clEnumValN(AllLinkageNames, "All", "All"),
162                                  clEnumValN(AbstractLinkageNames, "Abstract",
163                                             "Abstract subprograms")),
164                       cl::init(DefaultLinkageNames));
165 
166 static const char *const DWARFGroupName = "dwarf";
167 static const char *const DWARFGroupDescription = "DWARF Emission";
168 static const char *const DbgTimerName = "writer";
169 static const char *const DbgTimerDescription = "DWARF Debug Writer";
170 static constexpr unsigned ULEB128PadSize = 4;
171 
172 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) {
173   getActiveStreamer().EmitInt8(
174       Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op)
175                   : dwarf::OperationEncodingString(Op));
176 }
177 
178 void DebugLocDwarfExpression::emitSigned(int64_t Value) {
179   getActiveStreamer().EmitSLEB128(Value, Twine(Value));
180 }
181 
182 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) {
183   getActiveStreamer().EmitULEB128(Value, Twine(Value));
184 }
185 
186 void DebugLocDwarfExpression::emitData1(uint8_t Value) {
187   getActiveStreamer().EmitInt8(Value, Twine(Value));
188 }
189 
190 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) {
191   assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit");
192   getActiveStreamer().EmitULEB128(Idx, Twine(Idx), ULEB128PadSize);
193 }
194 
195 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI,
196                                               unsigned MachineReg) {
197   // This information is not available while emitting .debug_loc entries.
198   return false;
199 }
200 
201 void DebugLocDwarfExpression::enableTemporaryBuffer() {
202   assert(!IsBuffering && "Already buffering?");
203   if (!TmpBuf)
204     TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments);
205   IsBuffering = true;
206 }
207 
208 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; }
209 
210 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() {
211   return TmpBuf ? TmpBuf->Bytes.size() : 0;
212 }
213 
214 void DebugLocDwarfExpression::commitTemporaryBuffer() {
215   if (!TmpBuf)
216     return;
217   for (auto Byte : enumerate(TmpBuf->Bytes)) {
218     const char *Comment = (Byte.index() < TmpBuf->Comments.size())
219                               ? TmpBuf->Comments[Byte.index()].c_str()
220                               : "";
221     OutBS.EmitInt8(Byte.value(), Comment);
222   }
223   TmpBuf->Bytes.clear();
224   TmpBuf->Comments.clear();
225 }
226 
227 const DIType *DbgVariable::getType() const {
228   return getVariable()->getType();
229 }
230 
231 /// Get .debug_loc entry for the instruction range starting at MI.
232 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) {
233   const DIExpression *Expr = MI->getDebugExpression();
234   assert(MI->getNumOperands() == 4);
235   if (MI->getOperand(0).isReg()) {
236     auto RegOp = MI->getOperand(0);
237     auto Op1 = MI->getOperand(1);
238     // If the second operand is an immediate, this is a
239     // register-indirect address.
240     assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset");
241     MachineLocation MLoc(RegOp.getReg(), Op1.isImm());
242     return DbgValueLoc(Expr, MLoc);
243   }
244   if (MI->getOperand(0).isImm())
245     return DbgValueLoc(Expr, MI->getOperand(0).getImm());
246   if (MI->getOperand(0).isFPImm())
247     return DbgValueLoc(Expr, MI->getOperand(0).getFPImm());
248   if (MI->getOperand(0).isCImm())
249     return DbgValueLoc(Expr, MI->getOperand(0).getCImm());
250 
251   llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!");
252 }
253 
254 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) {
255   assert(FrameIndexExprs.empty() && "Already initialized?");
256   assert(!ValueLoc.get() && "Already initialized?");
257 
258   assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable");
259   assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() &&
260          "Wrong inlined-at");
261 
262   ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue));
263   if (auto *E = DbgValue->getDebugExpression())
264     if (E->getNumElements())
265       FrameIndexExprs.push_back({0, E});
266 }
267 
268 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const {
269   if (FrameIndexExprs.size() == 1)
270     return FrameIndexExprs;
271 
272   assert(llvm::all_of(FrameIndexExprs,
273                       [](const FrameIndexExpr &A) {
274                         return A.Expr->isFragment();
275                       }) &&
276          "multiple FI expressions without DW_OP_LLVM_fragment");
277   llvm::sort(FrameIndexExprs,
278              [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool {
279                return A.Expr->getFragmentInfo()->OffsetInBits <
280                       B.Expr->getFragmentInfo()->OffsetInBits;
281              });
282 
283   return FrameIndexExprs;
284 }
285 
286 void DbgVariable::addMMIEntry(const DbgVariable &V) {
287   assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry");
288   assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry");
289   assert(V.getVariable() == getVariable() && "conflicting variable");
290   assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location");
291 
292   assert(!FrameIndexExprs.empty() && "Expected an MMI entry");
293   assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry");
294 
295   // FIXME: This logic should not be necessary anymore, as we now have proper
296   // deduplication. However, without it, we currently run into the assertion
297   // below, which means that we are likely dealing with broken input, i.e. two
298   // non-fragment entries for the same variable at different frame indices.
299   if (FrameIndexExprs.size()) {
300     auto *Expr = FrameIndexExprs.back().Expr;
301     if (!Expr || !Expr->isFragment())
302       return;
303   }
304 
305   for (const auto &FIE : V.FrameIndexExprs)
306     // Ignore duplicate entries.
307     if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) {
308           return FIE.FI == Other.FI && FIE.Expr == Other.Expr;
309         }))
310       FrameIndexExprs.push_back(FIE);
311 
312   assert((FrameIndexExprs.size() == 1 ||
313           llvm::all_of(FrameIndexExprs,
314                        [](FrameIndexExpr &FIE) {
315                          return FIE.Expr && FIE.Expr->isFragment();
316                        })) &&
317          "conflicting locations for variable");
318 }
319 
320 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion,
321                                             bool GenerateTypeUnits,
322                                             DebuggerKind Tuning,
323                                             const Triple &TT) {
324   // Honor an explicit request.
325   if (AccelTables != AccelTableKind::Default)
326     return AccelTables;
327 
328   // Accelerator tables with type units are currently not supported.
329   if (GenerateTypeUnits)
330     return AccelTableKind::None;
331 
332   // Accelerator tables get emitted if targetting DWARF v5 or LLDB.  DWARF v5
333   // always implies debug_names. For lower standard versions we use apple
334   // accelerator tables on apple platforms and debug_names elsewhere.
335   if (DwarfVersion >= 5)
336     return AccelTableKind::Dwarf;
337   if (Tuning == DebuggerKind::LLDB)
338     return TT.isOSBinFormatMachO() ? AccelTableKind::Apple
339                                    : AccelTableKind::Dwarf;
340   return AccelTableKind::None;
341 }
342 
343 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M)
344     : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()),
345       InfoHolder(A, "info_string", DIEValueAllocator),
346       SkeletonHolder(A, "skel_string", DIEValueAllocator),
347       IsDarwin(A->TM.getTargetTriple().isOSDarwin()) {
348   const Triple &TT = Asm->TM.getTargetTriple();
349 
350   // Make sure we know our "debugger tuning".  The target option takes
351   // precedence; fall back to triple-based defaults.
352   if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default)
353     DebuggerTuning = Asm->TM.Options.DebuggerTuning;
354   else if (IsDarwin)
355     DebuggerTuning = DebuggerKind::LLDB;
356   else if (TT.isPS4CPU())
357     DebuggerTuning = DebuggerKind::SCE;
358   else
359     DebuggerTuning = DebuggerKind::GDB;
360 
361   if (DwarfInlinedStrings == Default)
362     UseInlineStrings = TT.isNVPTX();
363   else
364     UseInlineStrings = DwarfInlinedStrings == Enable;
365 
366   UseLocSection = !TT.isNVPTX();
367 
368   HasAppleExtensionAttributes = tuneForLLDB();
369 
370   // Handle split DWARF.
371   HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty();
372 
373   // SCE defaults to linkage names only for abstract subprograms.
374   if (DwarfLinkageNames == DefaultLinkageNames)
375     UseAllLinkageNames = !tuneForSCE();
376   else
377     UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames;
378 
379   unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
380   unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
381                                     : MMI->getModule()->getDwarfVersion();
382   // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2.
383   DwarfVersion =
384       TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION);
385 
386   UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX();
387 
388   // Use sections as references. Force for NVPTX.
389   if (DwarfSectionsAsReferences == Default)
390     UseSectionsAsReferences = TT.isNVPTX();
391   else
392     UseSectionsAsReferences = DwarfSectionsAsReferences == Enable;
393 
394   // Don't generate type units for unsupported object file formats.
395   GenerateTypeUnits =
396       A->TM.getTargetTriple().isOSBinFormatELF() && GenerateDwarfTypeUnits;
397 
398   TheAccelTableKind = computeAccelTableKind(
399       DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple());
400 
401   // Work around a GDB bug. GDB doesn't support the standard opcode;
402   // SCE doesn't support GNU's; LLDB prefers the standard opcode, which
403   // is defined as of DWARF 3.
404   // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented
405   // https://sourceware.org/bugzilla/show_bug.cgi?id=11616
406   UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3;
407 
408   // GDB does not fully support the DWARF 4 representation for bitfields.
409   UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB();
410 
411   // The DWARF v5 string offsets table has - possibly shared - contributions
412   // from each compile and type unit each preceded by a header. The string
413   // offsets table used by the pre-DWARF v5 split-DWARF implementation uses
414   // a monolithic string offsets table without any header.
415   UseSegmentedStringOffsetsTable = DwarfVersion >= 5;
416 
417   Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion);
418 }
419 
420 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
421 DwarfDebug::~DwarfDebug() = default;
422 
423 static bool isObjCClass(StringRef Name) {
424   return Name.startswith("+") || Name.startswith("-");
425 }
426 
427 static bool hasObjCCategory(StringRef Name) {
428   if (!isObjCClass(Name))
429     return false;
430 
431   return Name.find(") ") != StringRef::npos;
432 }
433 
434 static void getObjCClassCategory(StringRef In, StringRef &Class,
435                                  StringRef &Category) {
436   if (!hasObjCCategory(In)) {
437     Class = In.slice(In.find('[') + 1, In.find(' '));
438     Category = "";
439     return;
440   }
441 
442   Class = In.slice(In.find('[') + 1, In.find('('));
443   Category = In.slice(In.find('[') + 1, In.find(' '));
444 }
445 
446 static StringRef getObjCMethodName(StringRef In) {
447   return In.slice(In.find(' ') + 1, In.find(']'));
448 }
449 
450 // Add the various names to the Dwarf accelerator table names.
451 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU,
452                                     const DISubprogram *SP, DIE &Die) {
453   if (getAccelTableKind() != AccelTableKind::Apple &&
454       CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None)
455     return;
456 
457   if (!SP->isDefinition())
458     return;
459 
460   if (SP->getName() != "")
461     addAccelName(CU, SP->getName(), Die);
462 
463   // If the linkage name is different than the name, go ahead and output that as
464   // well into the name table. Only do that if we are going to actually emit
465   // that name.
466   if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() &&
467       (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP)))
468     addAccelName(CU, SP->getLinkageName(), Die);
469 
470   // If this is an Objective-C selector name add it to the ObjC accelerator
471   // too.
472   if (isObjCClass(SP->getName())) {
473     StringRef Class, Category;
474     getObjCClassCategory(SP->getName(), Class, Category);
475     addAccelObjC(CU, Class, Die);
476     if (Category != "")
477       addAccelObjC(CU, Category, Die);
478     // Also add the base method name to the name table.
479     addAccelName(CU, getObjCMethodName(SP->getName()), Die);
480   }
481 }
482 
483 /// Check whether we should create a DIE for the given Scope, return true
484 /// if we don't create a DIE (the corresponding DIE is null).
485 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
486   if (Scope->isAbstractScope())
487     return false;
488 
489   // We don't create a DIE if there is no Range.
490   const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
491   if (Ranges.empty())
492     return true;
493 
494   if (Ranges.size() > 1)
495     return false;
496 
497   // We don't create a DIE if we have a single Range and the end label
498   // is null.
499   return !getLabelAfterInsn(Ranges.front().second);
500 }
501 
502 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) {
503   F(CU);
504   if (auto *SkelCU = CU.getSkeleton())
505     if (CU.getCUNode()->getSplitDebugInlining())
506       F(*SkelCU);
507 }
508 
509 bool DwarfDebug::shareAcrossDWOCUs() const {
510   return SplitDwarfCrossCuReferences;
511 }
512 
513 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU,
514                                                      LexicalScope *Scope) {
515   assert(Scope && Scope->getScopeNode());
516   assert(Scope->isAbstractScope());
517   assert(!Scope->getInlinedAt());
518 
519   auto *SP = cast<DISubprogram>(Scope->getScopeNode());
520 
521   // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
522   // was inlined from another compile unit.
523   if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining())
524     // Avoid building the original CU if it won't be used
525     SrcCU.constructAbstractSubprogramScopeDIE(Scope);
526   else {
527     auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
528     if (auto *SkelCU = CU.getSkeleton()) {
529       (shareAcrossDWOCUs() ? CU : SrcCU)
530           .constructAbstractSubprogramScopeDIE(Scope);
531       if (CU.getCUNode()->getSplitDebugInlining())
532         SkelCU->constructAbstractSubprogramScopeDIE(Scope);
533     } else
534       CU.constructAbstractSubprogramScopeDIE(Scope);
535   }
536 }
537 
538 DIE &DwarfDebug::constructSubprogramDefinitionDIE(const DISubprogram *SP) {
539   DICompileUnit *Unit = SP->getUnit();
540   assert(SP->isDefinition() && "Subprogram not a definition");
541   assert(Unit && "Subprogram definition without parent unit");
542   auto &CU = getOrCreateDwarfCompileUnit(Unit);
543   return *CU.getOrCreateSubprogramDIE(SP);
544 }
545 
546 /// Try to interpret values loaded into registers that forward parameters
547 /// for \p CallMI. Store parameters with interpreted value into \p Params.
548 static void collectCallSiteParameters(const MachineInstr *CallMI,
549                                       ParamSet &Params) {
550   auto *MF = CallMI->getMF();
551   auto CalleesMap = MF->getCallSitesInfo();
552   auto CallFwdRegsInfo = CalleesMap.find(CallMI);
553 
554   // There is no information for the call instruction.
555   if (CallFwdRegsInfo == CalleesMap.end())
556     return;
557 
558   auto *MBB = CallMI->getParent();
559   const auto &TRI = MF->getSubtarget().getRegisterInfo();
560   const auto &TII = MF->getSubtarget().getInstrInfo();
561   const auto &TLI = MF->getSubtarget().getTargetLowering();
562 
563   // Skip the call instruction.
564   auto I = std::next(CallMI->getReverseIterator());
565 
566   DenseSet<unsigned> ForwardedRegWorklist;
567   // Add all the forwarding registers into the ForwardedRegWorklist.
568   for (auto ArgReg : CallFwdRegsInfo->second) {
569     bool InsertedReg = ForwardedRegWorklist.insert(ArgReg.Reg).second;
570     assert(InsertedReg && "Single register used to forward two arguments?");
571     (void)InsertedReg;
572   }
573 
574   // We erase, from the ForwardedRegWorklist, those forwarding registers for
575   // which we successfully describe a loaded value (by using
576   // the describeLoadedValue()). For those remaining arguments in the working
577   // list, for which we do not describe a loaded value by
578   // the describeLoadedValue(), we try to generate an entry value expression
579   // for their call site value desctipion, if the call is within the entry MBB.
580   // The RegsForEntryValues maps a forwarding register into the register holding
581   // the entry value.
582   // TODO: Handle situations when call site parameter value can be described
583   // as the entry value within basic blocks other then the first one.
584   bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin();
585   DenseMap<unsigned, unsigned> RegsForEntryValues;
586 
587   // If the MI is an instruction defining one or more parameters' forwarding
588   // registers, add those defines. We can currently only describe forwarded
589   // registers that are explicitly defined, but keep track of implicit defines
590   // also to remove those registers from the work list.
591   auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI,
592                                           SmallVectorImpl<unsigned> &Explicit,
593                                           SmallVectorImpl<unsigned> &Implicit) {
594     if (MI.isDebugInstr())
595       return;
596 
597     for (const MachineOperand &MO : MI.operands()) {
598       if (MO.isReg() && MO.isDef() &&
599           Register::isPhysicalRegister(MO.getReg())) {
600         for (auto FwdReg : ForwardedRegWorklist) {
601           if (TRI->regsOverlap(FwdReg, MO.getReg())) {
602             if (MO.isImplicit())
603               Implicit.push_back(FwdReg);
604             else
605               Explicit.push_back(FwdReg);
606           }
607         }
608       }
609     }
610   };
611 
612   auto finishCallSiteParam = [&](DbgValueLoc DbgLocVal, unsigned Reg) {
613     unsigned FwdReg = Reg;
614     if (ShouldTryEmitEntryVals) {
615       auto EntryValReg = RegsForEntryValues.find(Reg);
616       if (EntryValReg != RegsForEntryValues.end())
617         FwdReg = EntryValReg->second;
618     }
619 
620     DbgCallSiteParam CSParm(FwdReg, DbgLocVal);
621     Params.push_back(CSParm);
622     ++NumCSParams;
623   };
624 
625   // Search for a loading value in forwarding registers.
626   for (; I != MBB->rend(); ++I) {
627     // Skip bundle headers.
628     if (I->isBundle())
629       continue;
630 
631     // If the next instruction is a call we can not interpret parameter's
632     // forwarding registers or we finished the interpretation of all parameters.
633     if (I->isCall())
634       return;
635 
636     if (ForwardedRegWorklist.empty())
637       return;
638 
639     SmallVector<unsigned, 4> ExplicitFwdRegDefs;
640     SmallVector<unsigned, 4> ImplicitFwdRegDefs;
641     getForwardingRegsDefinedByMI(*I, ExplicitFwdRegDefs, ImplicitFwdRegDefs);
642     if (ExplicitFwdRegDefs.empty() && ImplicitFwdRegDefs.empty())
643       continue;
644 
645     // If the MI clobbers more then one forwarding register we must remove
646     // all of them from the working list.
647     for (auto Reg : concat<unsigned>(ExplicitFwdRegDefs, ImplicitFwdRegDefs))
648       ForwardedRegWorklist.erase(Reg);
649 
650     for (auto ParamFwdReg : ExplicitFwdRegDefs) {
651       if (auto ParamValue = TII->describeLoadedValue(*I, ParamFwdReg)) {
652         if (ParamValue->first.isImm()) {
653           int64_t Val = ParamValue->first.getImm();
654           DbgValueLoc DbgLocVal(ParamValue->second, Val);
655           finishCallSiteParam(DbgLocVal, ParamFwdReg);
656         } else if (ParamValue->first.isReg()) {
657           Register RegLoc = ParamValue->first.getReg();
658           // TODO: For now, there is no use of describing the value loaded into the
659           //       register that is also the source registers (e.g. $r0 = add $r0, x).
660           if (ParamFwdReg == RegLoc)
661             continue;
662 
663           unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
664           Register FP = TRI->getFrameRegister(*MF);
665           bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP);
666           if (TRI->isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) {
667             DbgValueLoc DbgLocVal(ParamValue->second,
668                                   MachineLocation(RegLoc,
669                                                   /*IsIndirect=*/IsSPorFP));
670             finishCallSiteParam(DbgLocVal, ParamFwdReg);
671           // TODO: Add support for entry value plus an expression.
672           } else if (ShouldTryEmitEntryVals &&
673                      ParamValue->second->getNumElements() == 0) {
674             ForwardedRegWorklist.insert(RegLoc);
675             RegsForEntryValues[RegLoc] = ParamFwdReg;
676           }
677         }
678       }
679     }
680   }
681 
682   // Emit the call site parameter's value as an entry value.
683   if (ShouldTryEmitEntryVals) {
684     // Create an expression where the register's entry value is used.
685     DIExpression *EntryExpr = DIExpression::get(
686         MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1});
687     for (auto RegEntry : ForwardedRegWorklist) {
688       unsigned FwdReg = RegEntry;
689       auto EntryValReg = RegsForEntryValues.find(RegEntry);
690         if (EntryValReg != RegsForEntryValues.end())
691           FwdReg = EntryValReg->second;
692 
693       DbgValueLoc DbgLocVal(EntryExpr, MachineLocation(RegEntry));
694       DbgCallSiteParam CSParm(FwdReg, DbgLocVal);
695       Params.push_back(CSParm);
696       ++NumCSParams;
697     }
698   }
699 }
700 
701 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP,
702                                             DwarfCompileUnit &CU, DIE &ScopeDIE,
703                                             const MachineFunction &MF) {
704   // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if
705   // the subprogram is required to have one.
706   if (!SP.areAllCallsDescribed() || !SP.isDefinition())
707     return;
708 
709   // Use DW_AT_call_all_calls to express that call site entries are present
710   // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls
711   // because one of its requirements is not met: call site entries for
712   // optimized-out calls are elided.
713   CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls));
714 
715   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
716   assert(TII && "TargetInstrInfo not found: cannot label tail calls");
717   bool ApplyGNUExtensions = getDwarfVersion() == 4 && tuneForGDB();
718 
719   // Emit call site entries for each call or tail call in the function.
720   for (const MachineBasicBlock &MBB : MF) {
721     for (const MachineInstr &MI : MBB.instrs()) {
722       // Bundles with call in them will pass the isCall() test below but do not
723       // have callee operand information so skip them here. Iterator will
724       // eventually reach the call MI.
725       if (MI.isBundle())
726         continue;
727 
728       // Skip instructions which aren't calls. Both calls and tail-calling jump
729       // instructions (e.g TAILJMPd64) are classified correctly here.
730       if (!MI.isCall())
731         continue;
732 
733       // TODO: Add support for targets with delay slots (see: beginInstruction).
734       if (MI.hasDelaySlot())
735         return;
736 
737       // If this is a direct call, find the callee's subprogram.
738       // In the case of an indirect call find the register that holds
739       // the callee.
740       const MachineOperand &CalleeOp = MI.getOperand(0);
741       if (!CalleeOp.isGlobal() && !CalleeOp.isReg())
742         continue;
743 
744       unsigned CallReg = 0;
745       const DISubprogram *CalleeSP = nullptr;
746       const Function *CalleeDecl = nullptr;
747       if (CalleeOp.isReg()) {
748         CallReg = CalleeOp.getReg();
749         if (!CallReg)
750           continue;
751       } else {
752         CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal());
753         if (!CalleeDecl || !CalleeDecl->getSubprogram())
754           continue;
755         CalleeSP = CalleeDecl->getSubprogram();
756 
757         if (CalleeSP->isDefinition()) {
758           // Ensure that a subprogram DIE for the callee is available in the
759           // appropriate CU.
760           constructSubprogramDefinitionDIE(CalleeSP);
761         } else {
762           assert(CU.getDIE(CalleeSP) &&
763                  "Expected declaration subprogram DIE for callee");
764         }
765       }
766 
767       // TODO: Omit call site entries for runtime calls (objc_msgSend, etc).
768 
769       bool IsTail = TII->isTailCall(MI);
770 
771       // If MI is in a bundle, the label was created after the bundle since
772       // EmitFunctionBody iterates over top-level MIs. Get that top-level MI
773       // to search for that label below.
774       const MachineInstr *TopLevelCallMI =
775           MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI;
776 
777       // For tail calls, for non-gdb tuning, no return PC information is needed.
778       // For regular calls (and tail calls in GDB tuning), the return PC
779       // is needed to disambiguate paths in the call graph which could lead to
780       // some target function.
781       const MCExpr *PCOffset =
782           (IsTail && !tuneForGDB())
783               ? nullptr
784               : getFunctionLocalOffsetAfterInsn(TopLevelCallMI);
785 
786       // Return address of a call-like instruction for a normal call or a
787       // jump-like instruction for a tail call. This is needed for
788       // GDB + DWARF 4 tuning.
789       const MCSymbol *PCAddr =
790           ApplyGNUExtensions
791               ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI))
792               : nullptr;
793 
794       assert((IsTail || PCOffset || PCAddr) &&
795              "Call without return PC information");
796 
797       LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> "
798                         << (CalleeDecl ? CalleeDecl->getName()
799                                        : StringRef(MF.getSubtarget()
800                                                        .getRegisterInfo()
801                                                        ->getName(CallReg)))
802                         << (IsTail ? " [IsTail]" : "") << "\n");
803 
804       DIE &CallSiteDIE =
805             CU.constructCallSiteEntryDIE(ScopeDIE, CalleeSP, IsTail, PCAddr,
806                                          PCOffset, CallReg);
807 
808       // GDB and LLDB support call site parameter debug info.
809       if (Asm->TM.Options.EnableDebugEntryValues &&
810           (tuneForGDB() || tuneForLLDB())) {
811         ParamSet Params;
812         // Try to interpret values of call site parameters.
813         collectCallSiteParameters(&MI, Params);
814         CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params);
815       }
816     }
817   }
818 }
819 
820 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const {
821   if (!U.hasDwarfPubSections())
822     return;
823 
824   U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
825 }
826 
827 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit,
828                                       DwarfCompileUnit &NewCU) {
829   DIE &Die = NewCU.getUnitDie();
830   StringRef FN = DIUnit->getFilename();
831 
832   StringRef Producer = DIUnit->getProducer();
833   StringRef Flags = DIUnit->getFlags();
834   if (!Flags.empty() && !useAppleExtensionAttributes()) {
835     std::string ProducerWithFlags = Producer.str() + " " + Flags.str();
836     NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags);
837   } else
838     NewCU.addString(Die, dwarf::DW_AT_producer, Producer);
839 
840   NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
841                 DIUnit->getSourceLanguage());
842   NewCU.addString(Die, dwarf::DW_AT_name, FN);
843 
844   // Add DW_str_offsets_base to the unit DIE, except for split units.
845   if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
846     NewCU.addStringOffsetsStart();
847 
848   if (!useSplitDwarf()) {
849     NewCU.initStmtList();
850 
851     // If we're using split dwarf the compilation dir is going to be in the
852     // skeleton CU and so we don't need to duplicate it here.
853     if (!CompilationDir.empty())
854       NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
855 
856     addGnuPubAttributes(NewCU, Die);
857   }
858 
859   if (useAppleExtensionAttributes()) {
860     if (DIUnit->isOptimized())
861       NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);
862 
863     StringRef Flags = DIUnit->getFlags();
864     if (!Flags.empty())
865       NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);
866 
867     if (unsigned RVer = DIUnit->getRuntimeVersion())
868       NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
869                     dwarf::DW_FORM_data1, RVer);
870   }
871 
872   if (DIUnit->getDWOId()) {
873     // This CU is either a clang module DWO or a skeleton CU.
874     NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8,
875                   DIUnit->getDWOId());
876     if (!DIUnit->getSplitDebugFilename().empty()) {
877       // This is a prefabricated skeleton CU.
878       dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
879                                          ? dwarf::DW_AT_dwo_name
880                                          : dwarf::DW_AT_GNU_dwo_name;
881       NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename());
882     }
883   }
884 }
885 // Create new DwarfCompileUnit for the given metadata node with tag
886 // DW_TAG_compile_unit.
887 DwarfCompileUnit &
888 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) {
889   if (auto *CU = CUMap.lookup(DIUnit))
890     return *CU;
891 
892   CompilationDir = DIUnit->getDirectory();
893 
894   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
895       InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
896   DwarfCompileUnit &NewCU = *OwnedUnit;
897   InfoHolder.addUnit(std::move(OwnedUnit));
898 
899   for (auto *IE : DIUnit->getImportedEntities())
900     NewCU.addImportedEntity(IE);
901 
902   // LTO with assembly output shares a single line table amongst multiple CUs.
903   // To avoid the compilation directory being ambiguous, let the line table
904   // explicitly describe the directory of all files, never relying on the
905   // compilation directory.
906   if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU)
907     Asm->OutStreamer->emitDwarfFile0Directive(
908         CompilationDir, DIUnit->getFilename(),
909         NewCU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource(),
910         NewCU.getUniqueID());
911 
912   if (useSplitDwarf()) {
913     NewCU.setSkeleton(constructSkeletonCU(NewCU));
914     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection());
915   } else {
916     finishUnitAttributes(DIUnit, NewCU);
917     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
918   }
919 
920   // Create DIEs for function declarations used for call site debug info.
921   for (auto Scope : DIUnit->getRetainedTypes())
922     if (auto *SP = dyn_cast_or_null<DISubprogram>(Scope))
923       NewCU.getOrCreateSubprogramDIE(SP);
924 
925   CUMap.insert({DIUnit, &NewCU});
926   CUDieMap.insert({&NewCU.getUnitDie(), &NewCU});
927   return NewCU;
928 }
929 
930 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU,
931                                                   const DIImportedEntity *N) {
932   if (isa<DILocalScope>(N->getScope()))
933     return;
934   if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope()))
935     D->addChild(TheCU.constructImportedEntityDIE(N));
936 }
937 
938 /// Sort and unique GVEs by comparing their fragment offset.
939 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &
940 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) {
941   llvm::sort(
942       GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) {
943         // Sort order: first null exprs, then exprs without fragment
944         // info, then sort by fragment offset in bits.
945         // FIXME: Come up with a more comprehensive comparator so
946         // the sorting isn't non-deterministic, and so the following
947         // std::unique call works correctly.
948         if (!A.Expr || !B.Expr)
949           return !!B.Expr;
950         auto FragmentA = A.Expr->getFragmentInfo();
951         auto FragmentB = B.Expr->getFragmentInfo();
952         if (!FragmentA || !FragmentB)
953           return !!FragmentB;
954         return FragmentA->OffsetInBits < FragmentB->OffsetInBits;
955       });
956   GVEs.erase(std::unique(GVEs.begin(), GVEs.end(),
957                          [](DwarfCompileUnit::GlobalExpr A,
958                             DwarfCompileUnit::GlobalExpr B) {
959                            return A.Expr == B.Expr;
960                          }),
961              GVEs.end());
962   return GVEs;
963 }
964 
965 // Emit all Dwarf sections that should come prior to the content. Create
966 // global DIEs and emit initial debug info sections. This is invoked by
967 // the target AsmPrinter.
968 void DwarfDebug::beginModule() {
969   NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName,
970                      DWARFGroupDescription, TimePassesIsEnabled);
971   if (DisableDebugInfoPrinting) {
972     MMI->setDebugInfoAvailability(false);
973     return;
974   }
975 
976   const Module *M = MMI->getModule();
977 
978   unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(),
979                                        M->debug_compile_units_end());
980   // Tell MMI whether we have debug info.
981   assert(MMI->hasDebugInfo() == (NumDebugCUs > 0) &&
982          "DebugInfoAvailabilty initialized unexpectedly");
983   SingleCU = NumDebugCUs == 1;
984   DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>>
985       GVMap;
986   for (const GlobalVariable &Global : M->globals()) {
987     SmallVector<DIGlobalVariableExpression *, 1> GVs;
988     Global.getDebugInfo(GVs);
989     for (auto *GVE : GVs)
990       GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()});
991   }
992 
993   // Create the symbol that designates the start of the unit's contribution
994   // to the string offsets table. In a split DWARF scenario, only the skeleton
995   // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol).
996   if (useSegmentedStringOffsetsTable())
997     (useSplitDwarf() ? SkeletonHolder : InfoHolder)
998         .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base"));
999 
1000 
1001   // Create the symbols that designates the start of the DWARF v5 range list
1002   // and locations list tables. They are located past the table headers.
1003   if (getDwarfVersion() >= 5) {
1004     DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1005     Holder.setRnglistsTableBaseSym(
1006         Asm->createTempSymbol("rnglists_table_base"));
1007 
1008     if (useSplitDwarf())
1009       InfoHolder.setRnglistsTableBaseSym(
1010           Asm->createTempSymbol("rnglists_dwo_table_base"));
1011   }
1012 
1013   // Create the symbol that points to the first entry following the debug
1014   // address table (.debug_addr) header.
1015   AddrPool.setLabel(Asm->createTempSymbol("addr_table_base"));
1016   DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base"));
1017 
1018   for (DICompileUnit *CUNode : M->debug_compile_units()) {
1019     // FIXME: Move local imported entities into a list attached to the
1020     // subprogram, then this search won't be needed and a
1021     // getImportedEntities().empty() test should go below with the rest.
1022     bool HasNonLocalImportedEntities = llvm::any_of(
1023         CUNode->getImportedEntities(), [](const DIImportedEntity *IE) {
1024           return !isa<DILocalScope>(IE->getScope());
1025         });
1026 
1027     if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() &&
1028         CUNode->getRetainedTypes().empty() &&
1029         CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty())
1030       continue;
1031 
1032     DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode);
1033 
1034     // Global Variables.
1035     for (auto *GVE : CUNode->getGlobalVariables()) {
1036       // Don't bother adding DIGlobalVariableExpressions listed in the CU if we
1037       // already know about the variable and it isn't adding a constant
1038       // expression.
1039       auto &GVMapEntry = GVMap[GVE->getVariable()];
1040       auto *Expr = GVE->getExpression();
1041       if (!GVMapEntry.size() || (Expr && Expr->isConstant()))
1042         GVMapEntry.push_back({nullptr, Expr});
1043     }
1044     DenseSet<DIGlobalVariable *> Processed;
1045     for (auto *GVE : CUNode->getGlobalVariables()) {
1046       DIGlobalVariable *GV = GVE->getVariable();
1047       if (Processed.insert(GV).second)
1048         CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV]));
1049     }
1050 
1051     for (auto *Ty : CUNode->getEnumTypes()) {
1052       // The enum types array by design contains pointers to
1053       // MDNodes rather than DIRefs. Unique them here.
1054       CU.getOrCreateTypeDIE(cast<DIType>(Ty));
1055     }
1056     for (auto *Ty : CUNode->getRetainedTypes()) {
1057       // The retained types array by design contains pointers to
1058       // MDNodes rather than DIRefs. Unique them here.
1059       if (DIType *RT = dyn_cast<DIType>(Ty))
1060           // There is no point in force-emitting a forward declaration.
1061           CU.getOrCreateTypeDIE(RT);
1062     }
1063     // Emit imported_modules last so that the relevant context is already
1064     // available.
1065     for (auto *IE : CUNode->getImportedEntities())
1066       constructAndAddImportedEntityDIE(CU, IE);
1067   }
1068 }
1069 
1070 void DwarfDebug::finishEntityDefinitions() {
1071   for (const auto &Entity : ConcreteEntities) {
1072     DIE *Die = Entity->getDIE();
1073     assert(Die);
1074     // FIXME: Consider the time-space tradeoff of just storing the unit pointer
1075     // in the ConcreteEntities list, rather than looking it up again here.
1076     // DIE::getUnit isn't simple - it walks parent pointers, etc.
1077     DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie());
1078     assert(Unit);
1079     Unit->finishEntityDefinition(Entity.get());
1080   }
1081 }
1082 
1083 void DwarfDebug::finishSubprogramDefinitions() {
1084   for (const DISubprogram *SP : ProcessedSPNodes) {
1085     assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug);
1086     forBothCUs(
1087         getOrCreateDwarfCompileUnit(SP->getUnit()),
1088         [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); });
1089   }
1090 }
1091 
1092 void DwarfDebug::finalizeModuleInfo() {
1093   const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
1094 
1095   finishSubprogramDefinitions();
1096 
1097   finishEntityDefinitions();
1098 
1099   // Include the DWO file name in the hash if there's more than one CU.
1100   // This handles ThinLTO's situation where imported CUs may very easily be
1101   // duplicate with the same CU partially imported into another ThinLTO unit.
1102   StringRef DWOName;
1103   if (CUMap.size() > 1)
1104     DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile;
1105 
1106   // Handle anything that needs to be done on a per-unit basis after
1107   // all other generation.
1108   for (const auto &P : CUMap) {
1109     auto &TheCU = *P.second;
1110     if (TheCU.getCUNode()->isDebugDirectivesOnly())
1111       continue;
1112     // Emit DW_AT_containing_type attribute to connect types with their
1113     // vtable holding type.
1114     TheCU.constructContainingTypeDIEs();
1115 
1116     // Add CU specific attributes if we need to add any.
1117     // If we're splitting the dwarf out now that we've got the entire
1118     // CU then add the dwo id to it.
1119     auto *SkCU = TheCU.getSkeleton();
1120 
1121     bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty();
1122 
1123     if (HasSplitUnit) {
1124       dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1125                                          ? dwarf::DW_AT_dwo_name
1126                                          : dwarf::DW_AT_GNU_dwo_name;
1127       finishUnitAttributes(TheCU.getCUNode(), TheCU);
1128       TheCU.addString(TheCU.getUnitDie(), attrDWOName,
1129                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1130       SkCU->addString(SkCU->getUnitDie(), attrDWOName,
1131                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1132       // Emit a unique identifier for this CU.
1133       uint64_t ID =
1134           DIEHash(Asm).computeCUSignature(DWOName, TheCU.getUnitDie());
1135       if (getDwarfVersion() >= 5) {
1136         TheCU.setDWOId(ID);
1137         SkCU->setDWOId(ID);
1138       } else {
1139         TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1140                       dwarf::DW_FORM_data8, ID);
1141         SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1142                       dwarf::DW_FORM_data8, ID);
1143       }
1144 
1145       if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) {
1146         const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol();
1147         SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
1148                               Sym, Sym);
1149       }
1150     } else if (SkCU) {
1151       finishUnitAttributes(SkCU->getCUNode(), *SkCU);
1152     }
1153 
1154     // If we have code split among multiple sections or non-contiguous
1155     // ranges of code then emit a DW_AT_ranges attribute on the unit that will
1156     // remain in the .o file, otherwise add a DW_AT_low_pc.
1157     // FIXME: We should use ranges allow reordering of code ala
1158     // .subsections_via_symbols in mach-o. This would mean turning on
1159     // ranges for all subprogram DIEs for mach-o.
1160     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
1161 
1162     if (unsigned NumRanges = TheCU.getRanges().size()) {
1163       if (NumRanges > 1 && useRangesSection())
1164         // A DW_AT_low_pc attribute may also be specified in combination with
1165         // DW_AT_ranges to specify the default base address for use in
1166         // location lists (see Section 2.6.2) and range lists (see Section
1167         // 2.17.3).
1168         U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
1169       else
1170         U.setBaseAddress(TheCU.getRanges().front().Begin);
1171       U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
1172     }
1173 
1174     // We don't keep track of which addresses are used in which CU so this
1175     // is a bit pessimistic under LTO.
1176     if (!AddrPool.isEmpty() &&
1177         (getDwarfVersion() >= 5 || HasSplitUnit))
1178       U.addAddrTableBase();
1179 
1180     if (getDwarfVersion() >= 5) {
1181       if (U.hasRangeLists())
1182         U.addRnglistsBase();
1183 
1184       if (!DebugLocs.getLists().empty()) {
1185         if (!useSplitDwarf())
1186           U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base,
1187                             DebugLocs.getSym(),
1188                             TLOF.getDwarfLoclistsSection()->getBeginSymbol());
1189       }
1190     }
1191 
1192     auto *CUNode = cast<DICompileUnit>(P.first);
1193     // If compile Unit has macros, emit "DW_AT_macro_info" attribute.
1194     if (CUNode->getMacros() && !useSplitDwarf())
1195       U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info,
1196                         U.getMacroLabelBegin(),
1197                         TLOF.getDwarfMacinfoSection()->getBeginSymbol());
1198   }
1199 
1200   // Emit all frontend-produced Skeleton CUs, i.e., Clang modules.
1201   for (auto *CUNode : MMI->getModule()->debug_compile_units())
1202     if (CUNode->getDWOId())
1203       getOrCreateDwarfCompileUnit(CUNode);
1204 
1205   // Compute DIE offsets and sizes.
1206   InfoHolder.computeSizeAndOffsets();
1207   if (useSplitDwarf())
1208     SkeletonHolder.computeSizeAndOffsets();
1209 }
1210 
1211 // Emit all Dwarf sections that should come after the content.
1212 void DwarfDebug::endModule() {
1213   assert(CurFn == nullptr);
1214   assert(CurMI == nullptr);
1215 
1216   for (const auto &P : CUMap) {
1217     auto &CU = *P.second;
1218     CU.createBaseTypeDIEs();
1219   }
1220 
1221   // If we aren't actually generating debug info (check beginModule -
1222   // conditionalized on !DisableDebugInfoPrinting and the presence of the
1223   // llvm.dbg.cu metadata node)
1224   if (!MMI->hasDebugInfo())
1225     return;
1226 
1227   // Finalize the debug info for the module.
1228   finalizeModuleInfo();
1229 
1230   emitDebugStr();
1231 
1232   if (useSplitDwarf())
1233     // Emit debug_loc.dwo/debug_loclists.dwo section.
1234     emitDebugLocDWO();
1235   else
1236     // Emit debug_loc/debug_loclists section.
1237     emitDebugLoc();
1238 
1239   // Corresponding abbreviations into a abbrev section.
1240   emitAbbreviations();
1241 
1242   // Emit all the DIEs into a debug info section.
1243   emitDebugInfo();
1244 
1245   // Emit info into a debug aranges section.
1246   if (GenerateARangeSection)
1247     emitDebugARanges();
1248 
1249   // Emit info into a debug ranges section.
1250   emitDebugRanges();
1251 
1252   if (useSplitDwarf())
1253   // Emit info into a debug macinfo.dwo section.
1254     emitDebugMacinfoDWO();
1255   else
1256   // Emit info into a debug macinfo section.
1257     emitDebugMacinfo();
1258 
1259   if (useSplitDwarf()) {
1260     emitDebugStrDWO();
1261     emitDebugInfoDWO();
1262     emitDebugAbbrevDWO();
1263     emitDebugLineDWO();
1264     emitDebugRangesDWO();
1265   }
1266 
1267   emitDebugAddr();
1268 
1269   // Emit info into the dwarf accelerator table sections.
1270   switch (getAccelTableKind()) {
1271   case AccelTableKind::Apple:
1272     emitAccelNames();
1273     emitAccelObjC();
1274     emitAccelNamespaces();
1275     emitAccelTypes();
1276     break;
1277   case AccelTableKind::Dwarf:
1278     emitAccelDebugNames();
1279     break;
1280   case AccelTableKind::None:
1281     break;
1282   case AccelTableKind::Default:
1283     llvm_unreachable("Default should have already been resolved.");
1284   }
1285 
1286   // Emit the pubnames and pubtypes sections if requested.
1287   emitDebugPubSections();
1288 
1289   // clean up.
1290   // FIXME: AbstractVariables.clear();
1291 }
1292 
1293 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU,
1294                                                const DINode *Node,
1295                                                const MDNode *ScopeNode) {
1296   if (CU.getExistingAbstractEntity(Node))
1297     return;
1298 
1299   CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope(
1300                                        cast<DILocalScope>(ScopeNode)));
1301 }
1302 
1303 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU,
1304     const DINode *Node, const MDNode *ScopeNode) {
1305   if (CU.getExistingAbstractEntity(Node))
1306     return;
1307 
1308   if (LexicalScope *Scope =
1309           LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode)))
1310     CU.createAbstractEntity(Node, Scope);
1311 }
1312 
1313 // Collect variable information from side table maintained by MF.
1314 void DwarfDebug::collectVariableInfoFromMFTable(
1315     DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) {
1316   SmallDenseMap<InlinedEntity, DbgVariable *> MFVars;
1317   for (const auto &VI : Asm->MF->getVariableDbgInfo()) {
1318     if (!VI.Var)
1319       continue;
1320     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1321            "Expected inlined-at fields to agree");
1322 
1323     InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt());
1324     Processed.insert(Var);
1325     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1326 
1327     // If variable scope is not found then skip this variable.
1328     if (!Scope)
1329       continue;
1330 
1331     ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode());
1332     auto RegVar = std::make_unique<DbgVariable>(
1333                     cast<DILocalVariable>(Var.first), Var.second);
1334     RegVar->initializeMMI(VI.Expr, VI.Slot);
1335     if (DbgVariable *DbgVar = MFVars.lookup(Var))
1336       DbgVar->addMMIEntry(*RegVar);
1337     else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) {
1338       MFVars.insert({Var, RegVar.get()});
1339       ConcreteEntities.push_back(std::move(RegVar));
1340     }
1341   }
1342 }
1343 
1344 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its
1345 /// enclosing lexical scope. The check ensures there are no other instructions
1346 /// in the same lexical scope preceding the DBG_VALUE and that its range is
1347 /// either open or otherwise rolls off the end of the scope.
1348 static bool validThroughout(LexicalScopes &LScopes,
1349                             const MachineInstr *DbgValue,
1350                             const MachineInstr *RangeEnd) {
1351   assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location");
1352   auto MBB = DbgValue->getParent();
1353   auto DL = DbgValue->getDebugLoc();
1354   auto *LScope = LScopes.findLexicalScope(DL);
1355   // Scope doesn't exist; this is a dead DBG_VALUE.
1356   if (!LScope)
1357     return false;
1358   auto &LSRange = LScope->getRanges();
1359   if (LSRange.size() == 0)
1360     return false;
1361 
1362   // Determine if the DBG_VALUE is valid at the beginning of its lexical block.
1363   const MachineInstr *LScopeBegin = LSRange.front().first;
1364   // Early exit if the lexical scope begins outside of the current block.
1365   if (LScopeBegin->getParent() != MBB)
1366     return false;
1367   MachineBasicBlock::const_reverse_iterator Pred(DbgValue);
1368   for (++Pred; Pred != MBB->rend(); ++Pred) {
1369     if (Pred->getFlag(MachineInstr::FrameSetup))
1370       break;
1371     auto PredDL = Pred->getDebugLoc();
1372     if (!PredDL || Pred->isMetaInstruction())
1373       continue;
1374     // Check whether the instruction preceding the DBG_VALUE is in the same
1375     // (sub)scope as the DBG_VALUE.
1376     if (DL->getScope() == PredDL->getScope())
1377       return false;
1378     auto *PredScope = LScopes.findLexicalScope(PredDL);
1379     if (!PredScope || LScope->dominates(PredScope))
1380       return false;
1381   }
1382 
1383   // If the range of the DBG_VALUE is open-ended, report success.
1384   if (!RangeEnd)
1385     return true;
1386 
1387   // Fail if there are instructions belonging to our scope in another block.
1388   const MachineInstr *LScopeEnd = LSRange.back().second;
1389   if (LScopeEnd->getParent() != MBB)
1390     return false;
1391 
1392   // Single, constant DBG_VALUEs in the prologue are promoted to be live
1393   // throughout the function. This is a hack, presumably for DWARF v2 and not
1394   // necessarily correct. It would be much better to use a dbg.declare instead
1395   // if we know the constant is live throughout the scope.
1396   if (DbgValue->getOperand(0).isImm() && MBB->pred_empty())
1397     return true;
1398 
1399   return false;
1400 }
1401 
1402 /// Build the location list for all DBG_VALUEs in the function that
1403 /// describe the same variable. The resulting DebugLocEntries will have
1404 /// strict monotonically increasing begin addresses and will never
1405 /// overlap. If the resulting list has only one entry that is valid
1406 /// throughout variable's scope return true.
1407 //
1408 // See the definition of DbgValueHistoryMap::Entry for an explanation of the
1409 // different kinds of history map entries. One thing to be aware of is that if
1410 // a debug value is ended by another entry (rather than being valid until the
1411 // end of the function), that entry's instruction may or may not be included in
1412 // the range, depending on if the entry is a clobbering entry (it has an
1413 // instruction that clobbers one or more preceding locations), or if it is an
1414 // (overlapping) debug value entry. This distinction can be seen in the example
1415 // below. The first debug value is ended by the clobbering entry 2, and the
1416 // second and third debug values are ended by the overlapping debug value entry
1417 // 4.
1418 //
1419 // Input:
1420 //
1421 //   History map entries [type, end index, mi]
1422 //
1423 // 0 |      [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)]
1424 // 1 | |    [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)]
1425 // 2 | |    [Clobber, $reg0 = [...], -, -]
1426 // 3   | |  [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)]
1427 // 4        [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)]
1428 //
1429 // Output [start, end) [Value...]:
1430 //
1431 // [0-1)    [(reg0, fragment 0, 32)]
1432 // [1-3)    [(reg0, fragment 0, 32), (reg1, fragment 32, 32)]
1433 // [3-4)    [(reg1, fragment 32, 32), (123, fragment 64, 32)]
1434 // [4-)     [(@g, fragment 0, 96)]
1435 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
1436                                    const DbgValueHistoryMap::Entries &Entries) {
1437   using OpenRange =
1438       std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>;
1439   SmallVector<OpenRange, 4> OpenRanges;
1440   bool isSafeForSingleLocation = true;
1441   const MachineInstr *StartDebugMI = nullptr;
1442   const MachineInstr *EndMI = nullptr;
1443 
1444   for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) {
1445     const MachineInstr *Instr = EI->getInstr();
1446 
1447     // Remove all values that are no longer live.
1448     size_t Index = std::distance(EB, EI);
1449     auto Last =
1450         remove_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; });
1451     OpenRanges.erase(Last, OpenRanges.end());
1452 
1453     // If we are dealing with a clobbering entry, this iteration will result in
1454     // a location list entry starting after the clobbering instruction.
1455     const MCSymbol *StartLabel =
1456         EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr);
1457     assert(StartLabel &&
1458            "Forgot label before/after instruction starting a range!");
1459 
1460     const MCSymbol *EndLabel;
1461     if (std::next(EI) == Entries.end()) {
1462       EndLabel = Asm->getFunctionEnd();
1463       if (EI->isClobber())
1464         EndMI = EI->getInstr();
1465     }
1466     else if (std::next(EI)->isClobber())
1467       EndLabel = getLabelAfterInsn(std::next(EI)->getInstr());
1468     else
1469       EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr());
1470     assert(EndLabel && "Forgot label after instruction ending a range!");
1471 
1472     if (EI->isDbgValue())
1473       LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n");
1474 
1475     // If this history map entry has a debug value, add that to the list of
1476     // open ranges and check if its location is valid for a single value
1477     // location.
1478     if (EI->isDbgValue()) {
1479       // Do not add undef debug values, as they are redundant information in
1480       // the location list entries. An undef debug results in an empty location
1481       // description. If there are any non-undef fragments then padding pieces
1482       // with empty location descriptions will automatically be inserted, and if
1483       // all fragments are undef then the whole location list entry is
1484       // redundant.
1485       if (!Instr->isUndefDebugValue()) {
1486         auto Value = getDebugLocValue(Instr);
1487         OpenRanges.emplace_back(EI->getEndIndex(), Value);
1488 
1489         // TODO: Add support for single value fragment locations.
1490         if (Instr->getDebugExpression()->isFragment())
1491           isSafeForSingleLocation = false;
1492 
1493         if (!StartDebugMI)
1494           StartDebugMI = Instr;
1495       } else {
1496         isSafeForSingleLocation = false;
1497       }
1498     }
1499 
1500     // Location list entries with empty location descriptions are redundant
1501     // information in DWARF, so do not emit those.
1502     if (OpenRanges.empty())
1503       continue;
1504 
1505     // Omit entries with empty ranges as they do not have any effect in DWARF.
1506     if (StartLabel == EndLabel) {
1507       LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n");
1508       continue;
1509     }
1510 
1511     SmallVector<DbgValueLoc, 4> Values;
1512     for (auto &R : OpenRanges)
1513       Values.push_back(R.second);
1514     DebugLoc.emplace_back(StartLabel, EndLabel, Values);
1515 
1516     // Attempt to coalesce the ranges of two otherwise identical
1517     // DebugLocEntries.
1518     auto CurEntry = DebugLoc.rbegin();
1519     LLVM_DEBUG({
1520       dbgs() << CurEntry->getValues().size() << " Values:\n";
1521       for (auto &Value : CurEntry->getValues())
1522         Value.dump();
1523       dbgs() << "-----\n";
1524     });
1525 
1526     auto PrevEntry = std::next(CurEntry);
1527     if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
1528       DebugLoc.pop_back();
1529   }
1530 
1531   return DebugLoc.size() == 1 && isSafeForSingleLocation &&
1532          validThroughout(LScopes, StartDebugMI, EndMI);
1533 }
1534 
1535 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU,
1536                                             LexicalScope &Scope,
1537                                             const DINode *Node,
1538                                             const DILocation *Location,
1539                                             const MCSymbol *Sym) {
1540   ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode());
1541   if (isa<const DILocalVariable>(Node)) {
1542     ConcreteEntities.push_back(
1543         std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node),
1544                                        Location));
1545     InfoHolder.addScopeVariable(&Scope,
1546         cast<DbgVariable>(ConcreteEntities.back().get()));
1547   } else if (isa<const DILabel>(Node)) {
1548     ConcreteEntities.push_back(
1549         std::make_unique<DbgLabel>(cast<const DILabel>(Node),
1550                                     Location, Sym));
1551     InfoHolder.addScopeLabel(&Scope,
1552         cast<DbgLabel>(ConcreteEntities.back().get()));
1553   }
1554   return ConcreteEntities.back().get();
1555 }
1556 
1557 // Find variables for each lexical scope.
1558 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU,
1559                                    const DISubprogram *SP,
1560                                    DenseSet<InlinedEntity> &Processed) {
1561   // Grab the variable info that was squirreled away in the MMI side-table.
1562   collectVariableInfoFromMFTable(TheCU, Processed);
1563 
1564   for (const auto &I : DbgValues) {
1565     InlinedEntity IV = I.first;
1566     if (Processed.count(IV))
1567       continue;
1568 
1569     // Instruction ranges, specifying where IV is accessible.
1570     const auto &HistoryMapEntries = I.second;
1571     if (HistoryMapEntries.empty())
1572       continue;
1573 
1574     LexicalScope *Scope = nullptr;
1575     const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first);
1576     if (const DILocation *IA = IV.second)
1577       Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA);
1578     else
1579       Scope = LScopes.findLexicalScope(LocalVar->getScope());
1580     // If variable scope is not found then skip this variable.
1581     if (!Scope)
1582       continue;
1583 
1584     Processed.insert(IV);
1585     DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU,
1586                                             *Scope, LocalVar, IV.second));
1587 
1588     const MachineInstr *MInsn = HistoryMapEntries.front().getInstr();
1589     assert(MInsn->isDebugValue() && "History must begin with debug value");
1590 
1591     // Check if there is a single DBG_VALUE, valid throughout the var's scope.
1592     // If the history map contains a single debug value, there may be an
1593     // additional entry which clobbers the debug value.
1594     size_t HistSize = HistoryMapEntries.size();
1595     bool SingleValueWithClobber =
1596         HistSize == 2 && HistoryMapEntries[1].isClobber();
1597     if (HistSize == 1 || SingleValueWithClobber) {
1598       const auto *End =
1599           SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr;
1600       if (validThroughout(LScopes, MInsn, End)) {
1601         RegVar->initializeDbgValue(MInsn);
1602         continue;
1603       }
1604     }
1605 
1606     // Do not emit location lists if .debug_loc secton is disabled.
1607     if (!useLocSection())
1608       continue;
1609 
1610     // Handle multiple DBG_VALUE instructions describing one variable.
1611     DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn);
1612 
1613     // Build the location list for this variable.
1614     SmallVector<DebugLocEntry, 8> Entries;
1615     bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries);
1616 
1617     // Check whether buildLocationList managed to merge all locations to one
1618     // that is valid throughout the variable's scope. If so, produce single
1619     // value location.
1620     if (isValidSingleLocation) {
1621       RegVar->initializeDbgValue(Entries[0].getValues()[0]);
1622       continue;
1623     }
1624 
1625     // If the variable has a DIBasicType, extract it.  Basic types cannot have
1626     // unique identifiers, so don't bother resolving the type with the
1627     // identifier map.
1628     const DIBasicType *BT = dyn_cast<DIBasicType>(
1629         static_cast<const Metadata *>(LocalVar->getType()));
1630 
1631     // Finalize the entry by lowering it into a DWARF bytestream.
1632     for (auto &Entry : Entries)
1633       Entry.finalize(*Asm, List, BT, TheCU);
1634   }
1635 
1636   // For each InlinedEntity collected from DBG_LABEL instructions, convert to
1637   // DWARF-related DbgLabel.
1638   for (const auto &I : DbgLabels) {
1639     InlinedEntity IL = I.first;
1640     const MachineInstr *MI = I.second;
1641     if (MI == nullptr)
1642       continue;
1643 
1644     LexicalScope *Scope = nullptr;
1645     const DILabel *Label = cast<DILabel>(IL.first);
1646     // The scope could have an extra lexical block file.
1647     const DILocalScope *LocalScope =
1648         Label->getScope()->getNonLexicalBlockFileScope();
1649     // Get inlined DILocation if it is inlined label.
1650     if (const DILocation *IA = IL.second)
1651       Scope = LScopes.findInlinedScope(LocalScope, IA);
1652     else
1653       Scope = LScopes.findLexicalScope(LocalScope);
1654     // If label scope is not found then skip this label.
1655     if (!Scope)
1656       continue;
1657 
1658     Processed.insert(IL);
1659     /// At this point, the temporary label is created.
1660     /// Save the temporary label to DbgLabel entity to get the
1661     /// actually address when generating Dwarf DIE.
1662     MCSymbol *Sym = getLabelBeforeInsn(MI);
1663     createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym);
1664   }
1665 
1666   // Collect info for variables/labels that were optimized out.
1667   for (const DINode *DN : SP->getRetainedNodes()) {
1668     if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
1669       continue;
1670     LexicalScope *Scope = nullptr;
1671     if (auto *DV = dyn_cast<DILocalVariable>(DN)) {
1672       Scope = LScopes.findLexicalScope(DV->getScope());
1673     } else if (auto *DL = dyn_cast<DILabel>(DN)) {
1674       Scope = LScopes.findLexicalScope(DL->getScope());
1675     }
1676 
1677     if (Scope)
1678       createConcreteEntity(TheCU, *Scope, DN, nullptr);
1679   }
1680 }
1681 
1682 // Process beginning of an instruction.
1683 void DwarfDebug::beginInstruction(const MachineInstr *MI) {
1684   DebugHandlerBase::beginInstruction(MI);
1685   assert(CurMI);
1686 
1687   const auto *SP = MI->getMF()->getFunction().getSubprogram();
1688   if (!SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
1689     return;
1690 
1691   // Check if source location changes, but ignore DBG_VALUE and CFI locations.
1692   // If the instruction is part of the function frame setup code, do not emit
1693   // any line record, as there is no correspondence with any user code.
1694   if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup))
1695     return;
1696   const DebugLoc &DL = MI->getDebugLoc();
1697   // When we emit a line-0 record, we don't update PrevInstLoc; so look at
1698   // the last line number actually emitted, to see if it was line 0.
1699   unsigned LastAsmLine =
1700       Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine();
1701 
1702   // Request a label after the call in order to emit AT_return_pc information
1703   // in call site entries. TODO: Add support for targets with delay slots.
1704   if (SP->areAllCallsDescribed() && MI->isCall() && !MI->hasDelaySlot())
1705     requestLabelAfterInsn(MI);
1706 
1707   if (DL == PrevInstLoc) {
1708     // If we have an ongoing unspecified location, nothing to do here.
1709     if (!DL)
1710       return;
1711     // We have an explicit location, same as the previous location.
1712     // But we might be coming back to it after a line 0 record.
1713     if (LastAsmLine == 0 && DL.getLine() != 0) {
1714       // Reinstate the source location but not marked as a statement.
1715       const MDNode *Scope = DL.getScope();
1716       recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0);
1717     }
1718     return;
1719   }
1720 
1721   if (!DL) {
1722     // We have an unspecified location, which might want to be line 0.
1723     // If we have already emitted a line-0 record, don't repeat it.
1724     if (LastAsmLine == 0)
1725       return;
1726     // If user said Don't Do That, don't do that.
1727     if (UnknownLocations == Disable)
1728       return;
1729     // See if we have a reason to emit a line-0 record now.
1730     // Reasons to emit a line-0 record include:
1731     // - User asked for it (UnknownLocations).
1732     // - Instruction has a label, so it's referenced from somewhere else,
1733     //   possibly debug information; we want it to have a source location.
1734     // - Instruction is at the top of a block; we don't want to inherit the
1735     //   location from the physically previous (maybe unrelated) block.
1736     if (UnknownLocations == Enable || PrevLabel ||
1737         (PrevInstBB && PrevInstBB != MI->getParent())) {
1738       // Preserve the file and column numbers, if we can, to save space in
1739       // the encoded line table.
1740       // Do not update PrevInstLoc, it remembers the last non-0 line.
1741       const MDNode *Scope = nullptr;
1742       unsigned Column = 0;
1743       if (PrevInstLoc) {
1744         Scope = PrevInstLoc.getScope();
1745         Column = PrevInstLoc.getCol();
1746       }
1747       recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0);
1748     }
1749     return;
1750   }
1751 
1752   // We have an explicit location, different from the previous location.
1753   // Don't repeat a line-0 record, but otherwise emit the new location.
1754   // (The new location might be an explicit line 0, which we do emit.)
1755   if (DL.getLine() == 0 && LastAsmLine == 0)
1756     return;
1757   unsigned Flags = 0;
1758   if (DL == PrologEndLoc) {
1759     Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT;
1760     PrologEndLoc = DebugLoc();
1761   }
1762   // If the line changed, we call that a new statement; unless we went to
1763   // line 0 and came back, in which case it is not a new statement.
1764   unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine;
1765   if (DL.getLine() && DL.getLine() != OldLine)
1766     Flags |= DWARF2_FLAG_IS_STMT;
1767 
1768   const MDNode *Scope = DL.getScope();
1769   recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
1770 
1771   // If we're not at line 0, remember this location.
1772   if (DL.getLine())
1773     PrevInstLoc = DL;
1774 }
1775 
1776 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) {
1777   // First known non-DBG_VALUE and non-frame setup location marks
1778   // the beginning of the function body.
1779   for (const auto &MBB : *MF)
1780     for (const auto &MI : MBB)
1781       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1782           MI.getDebugLoc())
1783         return MI.getDebugLoc();
1784   return DebugLoc();
1785 }
1786 
1787 /// Register a source line with debug info. Returns the  unique label that was
1788 /// emitted and which provides correspondence to the source line list.
1789 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col,
1790                              const MDNode *S, unsigned Flags, unsigned CUID,
1791                              uint16_t DwarfVersion,
1792                              ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) {
1793   StringRef Fn;
1794   unsigned FileNo = 1;
1795   unsigned Discriminator = 0;
1796   if (auto *Scope = cast_or_null<DIScope>(S)) {
1797     Fn = Scope->getFilename();
1798     if (Line != 0 && DwarfVersion >= 4)
1799       if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope))
1800         Discriminator = LBF->getDiscriminator();
1801 
1802     FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID])
1803                  .getOrCreateSourceID(Scope->getFile());
1804   }
1805   Asm.OutStreamer->EmitDwarfLocDirective(FileNo, Line, Col, Flags, 0,
1806                                          Discriminator, Fn);
1807 }
1808 
1809 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF,
1810                                              unsigned CUID) {
1811   // Get beginning of function.
1812   if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) {
1813     // Ensure the compile unit is created if the function is called before
1814     // beginFunction().
1815     (void)getOrCreateDwarfCompileUnit(
1816         MF.getFunction().getSubprogram()->getUnit());
1817     // We'd like to list the prologue as "not statements" but GDB behaves
1818     // poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
1819     const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram();
1820     ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT,
1821                        CUID, getDwarfVersion(), getUnits());
1822     return PrologEndLoc;
1823   }
1824   return DebugLoc();
1825 }
1826 
1827 // Gather pre-function debug information.  Assumes being called immediately
1828 // after the function entry point has been emitted.
1829 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) {
1830   CurFn = MF;
1831 
1832   auto *SP = MF->getFunction().getSubprogram();
1833   assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode());
1834   if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
1835     return;
1836 
1837   SectionLabels.insert(std::make_pair(&Asm->getFunctionBegin()->getSection(),
1838                                       Asm->getFunctionBegin()));
1839 
1840   DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
1841 
1842   // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
1843   // belongs to so that we add to the correct per-cu line table in the
1844   // non-asm case.
1845   if (Asm->OutStreamer->hasRawTextSupport())
1846     // Use a single line table if we are generating assembly.
1847     Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
1848   else
1849     Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID());
1850 
1851   // Record beginning of function.
1852   PrologEndLoc = emitInitialLocDirective(
1853       *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID());
1854 }
1855 
1856 void DwarfDebug::skippedNonDebugFunction() {
1857   // If we don't have a subprogram for this function then there will be a hole
1858   // in the range information. Keep note of this by setting the previously used
1859   // section to nullptr.
1860   PrevCU = nullptr;
1861   CurFn = nullptr;
1862 }
1863 
1864 // Gather and emit post-function debug information.
1865 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) {
1866   const DISubprogram *SP = MF->getFunction().getSubprogram();
1867 
1868   assert(CurFn == MF &&
1869       "endFunction should be called with the same function as beginFunction");
1870 
1871   // Set DwarfDwarfCompileUnitID in MCContext to default value.
1872   Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
1873 
1874   LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
1875   assert(!FnScope || SP == FnScope->getScopeNode());
1876   DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit());
1877   if (TheCU.getCUNode()->isDebugDirectivesOnly()) {
1878     PrevLabel = nullptr;
1879     CurFn = nullptr;
1880     return;
1881   }
1882 
1883   DenseSet<InlinedEntity> Processed;
1884   collectEntityInfo(TheCU, SP, Processed);
1885 
1886   // Add the range of this function to the list of ranges for the CU.
1887   TheCU.addRange({Asm->getFunctionBegin(), Asm->getFunctionEnd()});
1888 
1889   // Under -gmlt, skip building the subprogram if there are no inlined
1890   // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram
1891   // is still needed as we need its source location.
1892   if (!TheCU.getCUNode()->getDebugInfoForProfiling() &&
1893       TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly &&
1894       LScopes.getAbstractScopesList().empty() && !IsDarwin) {
1895     assert(InfoHolder.getScopeVariables().empty());
1896     PrevLabel = nullptr;
1897     CurFn = nullptr;
1898     return;
1899   }
1900 
1901 #ifndef NDEBUG
1902   size_t NumAbstractScopes = LScopes.getAbstractScopesList().size();
1903 #endif
1904   // Construct abstract scopes.
1905   for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
1906     auto *SP = cast<DISubprogram>(AScope->getScopeNode());
1907     for (const DINode *DN : SP->getRetainedNodes()) {
1908       if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
1909         continue;
1910 
1911       const MDNode *Scope = nullptr;
1912       if (auto *DV = dyn_cast<DILocalVariable>(DN))
1913         Scope = DV->getScope();
1914       else if (auto *DL = dyn_cast<DILabel>(DN))
1915         Scope = DL->getScope();
1916       else
1917         llvm_unreachable("Unexpected DI type!");
1918 
1919       // Collect info for variables/labels that were optimized out.
1920       ensureAbstractEntityIsCreated(TheCU, DN, Scope);
1921       assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes
1922              && "ensureAbstractEntityIsCreated inserted abstract scopes");
1923     }
1924     constructAbstractSubprogramScopeDIE(TheCU, AScope);
1925   }
1926 
1927   ProcessedSPNodes.insert(SP);
1928   DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope);
1929   if (auto *SkelCU = TheCU.getSkeleton())
1930     if (!LScopes.getAbstractScopesList().empty() &&
1931         TheCU.getCUNode()->getSplitDebugInlining())
1932       SkelCU->constructSubprogramScopeDIE(SP, FnScope);
1933 
1934   // Construct call site entries.
1935   constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF);
1936 
1937   // Clear debug info
1938   // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
1939   // DbgVariables except those that are also in AbstractVariables (since they
1940   // can be used cross-function)
1941   InfoHolder.getScopeVariables().clear();
1942   InfoHolder.getScopeLabels().clear();
1943   PrevLabel = nullptr;
1944   CurFn = nullptr;
1945 }
1946 
1947 // Register a source line with debug info. Returns the  unique label that was
1948 // emitted and which provides correspondence to the source line list.
1949 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
1950                                   unsigned Flags) {
1951   ::recordSourceLine(*Asm, Line, Col, S, Flags,
1952                      Asm->OutStreamer->getContext().getDwarfCompileUnitID(),
1953                      getDwarfVersion(), getUnits());
1954 }
1955 
1956 //===----------------------------------------------------------------------===//
1957 // Emit Methods
1958 //===----------------------------------------------------------------------===//
1959 
1960 // Emit the debug info section.
1961 void DwarfDebug::emitDebugInfo() {
1962   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1963   Holder.emitUnits(/* UseOffsets */ false);
1964 }
1965 
1966 // Emit the abbreviation section.
1967 void DwarfDebug::emitAbbreviations() {
1968   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1969 
1970   Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
1971 }
1972 
1973 void DwarfDebug::emitStringOffsetsTableHeader() {
1974   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1975   Holder.getStringPool().emitStringOffsetsTableHeader(
1976       *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(),
1977       Holder.getStringOffsetsStartSym());
1978 }
1979 
1980 template <typename AccelTableT>
1981 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section,
1982                            StringRef TableName) {
1983   Asm->OutStreamer->SwitchSection(Section);
1984 
1985   // Emit the full data.
1986   emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol());
1987 }
1988 
1989 void DwarfDebug::emitAccelDebugNames() {
1990   // Don't emit anything if we have no compilation units to index.
1991   if (getUnits().empty())
1992     return;
1993 
1994   emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits());
1995 }
1996 
1997 // Emit visible names into a hashed accelerator table section.
1998 void DwarfDebug::emitAccelNames() {
1999   emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
2000             "Names");
2001 }
2002 
2003 // Emit objective C classes and categories into a hashed accelerator table
2004 // section.
2005 void DwarfDebug::emitAccelObjC() {
2006   emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
2007             "ObjC");
2008 }
2009 
2010 // Emit namespace dies into a hashed accelerator table.
2011 void DwarfDebug::emitAccelNamespaces() {
2012   emitAccel(AccelNamespace,
2013             Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
2014             "namespac");
2015 }
2016 
2017 // Emit type dies into a hashed accelerator table.
2018 void DwarfDebug::emitAccelTypes() {
2019   emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
2020             "types");
2021 }
2022 
2023 // Public name handling.
2024 // The format for the various pubnames:
2025 //
2026 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU
2027 // for the DIE that is named.
2028 //
2029 // gnu pubnames - offset/index value/name tuples where the offset is the offset
2030 // into the CU and the index value is computed according to the type of value
2031 // for the DIE that is named.
2032 //
2033 // For type units the offset is the offset of the skeleton DIE. For split dwarf
2034 // it's the offset within the debug_info/debug_types dwo section, however, the
2035 // reference in the pubname header doesn't change.
2036 
2037 /// computeIndexValue - Compute the gdb index value for the DIE and CU.
2038 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
2039                                                         const DIE *Die) {
2040   // Entities that ended up only in a Type Unit reference the CU instead (since
2041   // the pub entry has offsets within the CU there's no real offset that can be
2042   // provided anyway). As it happens all such entities (namespaces and types,
2043   // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out
2044   // not to be true it would be necessary to persist this information from the
2045   // point at which the entry is added to the index data structure - since by
2046   // the time the index is built from that, the original type/namespace DIE in a
2047   // type unit has already been destroyed so it can't be queried for properties
2048   // like tag, etc.
2049   if (Die->getTag() == dwarf::DW_TAG_compile_unit)
2050     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE,
2051                                           dwarf::GIEL_EXTERNAL);
2052   dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
2053 
2054   // We could have a specification DIE that has our most of our knowledge,
2055   // look for that now.
2056   if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) {
2057     DIE &SpecDIE = SpecVal.getDIEEntry().getEntry();
2058     if (SpecDIE.findAttribute(dwarf::DW_AT_external))
2059       Linkage = dwarf::GIEL_EXTERNAL;
2060   } else if (Die->findAttribute(dwarf::DW_AT_external))
2061     Linkage = dwarf::GIEL_EXTERNAL;
2062 
2063   switch (Die->getTag()) {
2064   case dwarf::DW_TAG_class_type:
2065   case dwarf::DW_TAG_structure_type:
2066   case dwarf::DW_TAG_union_type:
2067   case dwarf::DW_TAG_enumeration_type:
2068     return dwarf::PubIndexEntryDescriptor(
2069         dwarf::GIEK_TYPE,
2070         dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage())
2071             ? dwarf::GIEL_EXTERNAL
2072             : dwarf::GIEL_STATIC);
2073   case dwarf::DW_TAG_typedef:
2074   case dwarf::DW_TAG_base_type:
2075   case dwarf::DW_TAG_subrange_type:
2076     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
2077   case dwarf::DW_TAG_namespace:
2078     return dwarf::GIEK_TYPE;
2079   case dwarf::DW_TAG_subprogram:
2080     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
2081   case dwarf::DW_TAG_variable:
2082     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
2083   case dwarf::DW_TAG_enumerator:
2084     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
2085                                           dwarf::GIEL_STATIC);
2086   default:
2087     return dwarf::GIEK_NONE;
2088   }
2089 }
2090 
2091 /// emitDebugPubSections - Emit visible names and types into debug pubnames and
2092 /// pubtypes sections.
2093 void DwarfDebug::emitDebugPubSections() {
2094   for (const auto &NU : CUMap) {
2095     DwarfCompileUnit *TheU = NU.second;
2096     if (!TheU->hasDwarfPubSections())
2097       continue;
2098 
2099     bool GnuStyle = TheU->getCUNode()->getNameTableKind() ==
2100                     DICompileUnit::DebugNameTableKind::GNU;
2101 
2102     Asm->OutStreamer->SwitchSection(
2103         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
2104                  : Asm->getObjFileLowering().getDwarfPubNamesSection());
2105     emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames());
2106 
2107     Asm->OutStreamer->SwitchSection(
2108         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
2109                  : Asm->getObjFileLowering().getDwarfPubTypesSection());
2110     emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes());
2111   }
2112 }
2113 
2114 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) {
2115   if (useSectionsAsReferences())
2116     Asm->EmitDwarfOffset(CU.getSection()->getBeginSymbol(),
2117                          CU.getDebugSectionOffset());
2118   else
2119     Asm->emitDwarfSymbolReference(CU.getLabelBegin());
2120 }
2121 
2122 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name,
2123                                      DwarfCompileUnit *TheU,
2124                                      const StringMap<const DIE *> &Globals) {
2125   if (auto *Skeleton = TheU->getSkeleton())
2126     TheU = Skeleton;
2127 
2128   // Emit the header.
2129   Asm->OutStreamer->AddComment("Length of Public " + Name + " Info");
2130   MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin");
2131   MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end");
2132   Asm->EmitLabelDifference(EndLabel, BeginLabel, 4);
2133 
2134   Asm->OutStreamer->EmitLabel(BeginLabel);
2135 
2136   Asm->OutStreamer->AddComment("DWARF Version");
2137   Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION);
2138 
2139   Asm->OutStreamer->AddComment("Offset of Compilation Unit Info");
2140   emitSectionReference(*TheU);
2141 
2142   Asm->OutStreamer->AddComment("Compilation Unit Length");
2143   Asm->emitInt32(TheU->getLength());
2144 
2145   // Emit the pubnames for this compilation unit.
2146   for (const auto &GI : Globals) {
2147     const char *Name = GI.getKeyData();
2148     const DIE *Entity = GI.second;
2149 
2150     Asm->OutStreamer->AddComment("DIE offset");
2151     Asm->emitInt32(Entity->getOffset());
2152 
2153     if (GnuStyle) {
2154       dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
2155       Asm->OutStreamer->AddComment(
2156           Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) +
2157           ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
2158       Asm->emitInt8(Desc.toBits());
2159     }
2160 
2161     Asm->OutStreamer->AddComment("External Name");
2162     Asm->OutStreamer->EmitBytes(StringRef(Name, GI.getKeyLength() + 1));
2163   }
2164 
2165   Asm->OutStreamer->AddComment("End Mark");
2166   Asm->emitInt32(0);
2167   Asm->OutStreamer->EmitLabel(EndLabel);
2168 }
2169 
2170 /// Emit null-terminated strings into a debug str section.
2171 void DwarfDebug::emitDebugStr() {
2172   MCSection *StringOffsetsSection = nullptr;
2173   if (useSegmentedStringOffsetsTable()) {
2174     emitStringOffsetsTableHeader();
2175     StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection();
2176   }
2177   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2178   Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(),
2179                      StringOffsetsSection, /* UseRelativeOffsets = */ true);
2180 }
2181 
2182 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
2183                                    const DebugLocStream::Entry &Entry,
2184                                    const DwarfCompileUnit *CU) {
2185   auto &&Comments = DebugLocs.getComments(Entry);
2186   auto Comment = Comments.begin();
2187   auto End = Comments.end();
2188 
2189   // The expressions are inserted into a byte stream rather early (see
2190   // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that
2191   // need to reference a base_type DIE the offset of that DIE is not yet known.
2192   // To deal with this we instead insert a placeholder early and then extract
2193   // it here and replace it with the real reference.
2194   unsigned PtrSize = Asm->MAI->getCodePointerSize();
2195   DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(),
2196                                     DebugLocs.getBytes(Entry).size()),
2197                           Asm->getDataLayout().isLittleEndian(), PtrSize);
2198   DWARFExpression Expr(Data, getDwarfVersion(), PtrSize);
2199 
2200   using Encoding = DWARFExpression::Operation::Encoding;
2201   uint64_t Offset = 0;
2202   for (auto &Op : Expr) {
2203     assert(Op.getCode() != dwarf::DW_OP_const_type &&
2204            "3 operand ops not yet supported");
2205     Streamer.EmitInt8(Op.getCode(), Comment != End ? *(Comment++) : "");
2206     Offset++;
2207     for (unsigned I = 0; I < 2; ++I) {
2208       if (Op.getDescription().Op[I] == Encoding::SizeNA)
2209         continue;
2210       if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) {
2211           if (CU) {
2212             uint64_t Offset = CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset();
2213             assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit");
2214             Asm->EmitULEB128(Offset, nullptr, ULEB128PadSize);
2215           } else {
2216             // Emit a reference to the 'generic type'.
2217             Asm->EmitULEB128(0, nullptr, ULEB128PadSize);
2218           }
2219           // Make sure comments stay aligned.
2220           for (unsigned J = 0; J < ULEB128PadSize; ++J)
2221             if (Comment != End)
2222               Comment++;
2223       } else {
2224         for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J)
2225           Streamer.EmitInt8(Data.getData()[J], Comment != End ? *(Comment++) : "");
2226       }
2227       Offset = Op.getOperandEndOffset(I);
2228     }
2229     assert(Offset == Op.getEndOffset());
2230   }
2231 }
2232 
2233 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT,
2234                                    const DbgValueLoc &Value,
2235                                    DwarfExpression &DwarfExpr) {
2236   auto *DIExpr = Value.getExpression();
2237   DIExpressionCursor ExprCursor(DIExpr);
2238   DwarfExpr.addFragmentOffset(DIExpr);
2239   // Regular entry.
2240   if (Value.isInt()) {
2241     if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed ||
2242                BT->getEncoding() == dwarf::DW_ATE_signed_char))
2243       DwarfExpr.addSignedConstant(Value.getInt());
2244     else
2245       DwarfExpr.addUnsignedConstant(Value.getInt());
2246   } else if (Value.isLocation()) {
2247     MachineLocation Location = Value.getLoc();
2248     if (Location.isIndirect())
2249       DwarfExpr.setMemoryLocationKind();
2250     DIExpressionCursor Cursor(DIExpr);
2251 
2252     if (DIExpr->isEntryValue()) {
2253       DwarfExpr.setEntryValueFlag();
2254       DwarfExpr.beginEntryValueExpression(Cursor);
2255     }
2256 
2257     const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
2258     if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg()))
2259       return;
2260     return DwarfExpr.addExpression(std::move(Cursor));
2261   } else if (Value.isConstantFP()) {
2262     APInt RawBytes = Value.getConstantFP()->getValueAPF().bitcastToAPInt();
2263     DwarfExpr.addUnsignedConstant(RawBytes);
2264   }
2265   DwarfExpr.addExpression(std::move(ExprCursor));
2266 }
2267 
2268 void DebugLocEntry::finalize(const AsmPrinter &AP,
2269                              DebugLocStream::ListBuilder &List,
2270                              const DIBasicType *BT,
2271                              DwarfCompileUnit &TheCU) {
2272   assert(!Values.empty() &&
2273          "location list entries without values are redundant");
2274   assert(Begin != End && "unexpected location list entry with empty range");
2275   DebugLocStream::EntryBuilder Entry(List, Begin, End);
2276   BufferByteStreamer Streamer = Entry.getStreamer();
2277   DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU);
2278   const DbgValueLoc &Value = Values[0];
2279   if (Value.isFragment()) {
2280     // Emit all fragments that belong to the same variable and range.
2281     assert(llvm::all_of(Values, [](DbgValueLoc P) {
2282           return P.isFragment();
2283         }) && "all values are expected to be fragments");
2284     assert(std::is_sorted(Values.begin(), Values.end()) &&
2285            "fragments are expected to be sorted");
2286 
2287     for (auto Fragment : Values)
2288       DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr);
2289 
2290   } else {
2291     assert(Values.size() == 1 && "only fragments may have >1 value");
2292     DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr);
2293   }
2294   DwarfExpr.finalize();
2295 }
2296 
2297 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry,
2298                                            const DwarfCompileUnit *CU) {
2299   // Emit the size.
2300   Asm->OutStreamer->AddComment("Loc expr size");
2301   if (getDwarfVersion() >= 5)
2302     Asm->EmitULEB128(DebugLocs.getBytes(Entry).size());
2303   else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max())
2304     Asm->emitInt16(DebugLocs.getBytes(Entry).size());
2305   else {
2306     // The entry is too big to fit into 16 bit, drop it as there is nothing we
2307     // can do.
2308     Asm->emitInt16(0);
2309     return;
2310   }
2311   // Emit the entry.
2312   APByteStreamer Streamer(*Asm);
2313   emitDebugLocEntry(Streamer, Entry, CU);
2314 }
2315 
2316 // Emit the common part of the DWARF 5 range/locations list tables header.
2317 static void emitListsTableHeaderStart(AsmPrinter *Asm,
2318                                       MCSymbol *TableStart,
2319                                       MCSymbol *TableEnd) {
2320   // Build the table header, which starts with the length field.
2321   Asm->OutStreamer->AddComment("Length");
2322   Asm->EmitLabelDifference(TableEnd, TableStart, 4);
2323   Asm->OutStreamer->EmitLabel(TableStart);
2324   // Version number (DWARF v5 and later).
2325   Asm->OutStreamer->AddComment("Version");
2326   Asm->emitInt16(Asm->OutStreamer->getContext().getDwarfVersion());
2327   // Address size.
2328   Asm->OutStreamer->AddComment("Address size");
2329   Asm->emitInt8(Asm->MAI->getCodePointerSize());
2330   // Segment selector size.
2331   Asm->OutStreamer->AddComment("Segment selector size");
2332   Asm->emitInt8(0);
2333 }
2334 
2335 // Emit the header of a DWARF 5 range list table list table. Returns the symbol
2336 // that designates the end of the table for the caller to emit when the table is
2337 // complete.
2338 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm,
2339                                          const DwarfFile &Holder) {
2340   MCSymbol *TableStart = Asm->createTempSymbol("debug_rnglist_table_start");
2341   MCSymbol *TableEnd = Asm->createTempSymbol("debug_rnglist_table_end");
2342   emitListsTableHeaderStart(Asm, TableStart, TableEnd);
2343 
2344   Asm->OutStreamer->AddComment("Offset entry count");
2345   Asm->emitInt32(Holder.getRangeLists().size());
2346   Asm->OutStreamer->EmitLabel(Holder.getRnglistsTableBaseSym());
2347 
2348   for (const RangeSpanList &List : Holder.getRangeLists())
2349     Asm->EmitLabelDifference(List.getSym(), Holder.getRnglistsTableBaseSym(),
2350                              4);
2351 
2352   return TableEnd;
2353 }
2354 
2355 // Emit the header of a DWARF 5 locations list table. Returns the symbol that
2356 // designates the end of the table for the caller to emit when the table is
2357 // complete.
2358 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm,
2359                                          const DwarfDebug &DD) {
2360   MCSymbol *TableStart = Asm->createTempSymbol("debug_loclist_table_start");
2361   MCSymbol *TableEnd = Asm->createTempSymbol("debug_loclist_table_end");
2362   emitListsTableHeaderStart(Asm, TableStart, TableEnd);
2363 
2364   const auto &DebugLocs = DD.getDebugLocs();
2365 
2366   Asm->OutStreamer->AddComment("Offset entry count");
2367   Asm->emitInt32(DebugLocs.getLists().size());
2368   Asm->OutStreamer->EmitLabel(DebugLocs.getSym());
2369 
2370   for (const auto &List : DebugLocs.getLists())
2371     Asm->EmitLabelDifference(List.Label, DebugLocs.getSym(), 4);
2372 
2373   return TableEnd;
2374 }
2375 
2376 template <typename Ranges, typename PayloadEmitter>
2377 static void emitRangeList(
2378     DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R,
2379     const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair,
2380     unsigned StartxLength, unsigned EndOfList,
2381     StringRef (*StringifyEnum)(unsigned),
2382     bool ShouldUseBaseAddress,
2383     PayloadEmitter EmitPayload) {
2384 
2385   auto Size = Asm->MAI->getCodePointerSize();
2386   bool UseDwarf5 = DD.getDwarfVersion() >= 5;
2387 
2388   // Emit our symbol so we can find the beginning of the range.
2389   Asm->OutStreamer->EmitLabel(Sym);
2390 
2391   // Gather all the ranges that apply to the same section so they can share
2392   // a base address entry.
2393   MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges;
2394 
2395   for (const auto &Range : R)
2396     SectionRanges[&Range.Begin->getSection()].push_back(&Range);
2397 
2398   const MCSymbol *CUBase = CU.getBaseAddress();
2399   bool BaseIsSet = false;
2400   for (const auto &P : SectionRanges) {
2401     auto *Base = CUBase;
2402     if (!Base && ShouldUseBaseAddress) {
2403       const MCSymbol *Begin = P.second.front()->Begin;
2404       const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection());
2405       if (!UseDwarf5) {
2406         Base = NewBase;
2407         BaseIsSet = true;
2408         Asm->OutStreamer->EmitIntValue(-1, Size);
2409         Asm->OutStreamer->AddComment("  base address");
2410         Asm->OutStreamer->EmitSymbolValue(Base, Size);
2411       } else if (NewBase != Begin || P.second.size() > 1) {
2412         // Only use a base address if
2413         //  * the existing pool address doesn't match (NewBase != Begin)
2414         //  * or, there's more than one entry to share the base address
2415         Base = NewBase;
2416         BaseIsSet = true;
2417         Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx));
2418         Asm->emitInt8(BaseAddressx);
2419         Asm->OutStreamer->AddComment("  base address index");
2420         Asm->EmitULEB128(DD.getAddressPool().getIndex(Base));
2421       }
2422     } else if (BaseIsSet && !UseDwarf5) {
2423       BaseIsSet = false;
2424       assert(!Base);
2425       Asm->OutStreamer->EmitIntValue(-1, Size);
2426       Asm->OutStreamer->EmitIntValue(0, Size);
2427     }
2428 
2429     for (const auto *RS : P.second) {
2430       const MCSymbol *Begin = RS->Begin;
2431       const MCSymbol *End = RS->End;
2432       assert(Begin && "Range without a begin symbol?");
2433       assert(End && "Range without an end symbol?");
2434       if (Base) {
2435         if (UseDwarf5) {
2436           // Emit offset_pair when we have a base.
2437           Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair));
2438           Asm->emitInt8(OffsetPair);
2439           Asm->OutStreamer->AddComment("  starting offset");
2440           Asm->EmitLabelDifferenceAsULEB128(Begin, Base);
2441           Asm->OutStreamer->AddComment("  ending offset");
2442           Asm->EmitLabelDifferenceAsULEB128(End, Base);
2443         } else {
2444           Asm->EmitLabelDifference(Begin, Base, Size);
2445           Asm->EmitLabelDifference(End, Base, Size);
2446         }
2447       } else if (UseDwarf5) {
2448         Asm->OutStreamer->AddComment(StringifyEnum(StartxLength));
2449         Asm->emitInt8(StartxLength);
2450         Asm->OutStreamer->AddComment("  start index");
2451         Asm->EmitULEB128(DD.getAddressPool().getIndex(Begin));
2452         Asm->OutStreamer->AddComment("  length");
2453         Asm->EmitLabelDifferenceAsULEB128(End, Begin);
2454       } else {
2455         Asm->OutStreamer->EmitSymbolValue(Begin, Size);
2456         Asm->OutStreamer->EmitSymbolValue(End, Size);
2457       }
2458       EmitPayload(*RS);
2459     }
2460   }
2461 
2462   if (UseDwarf5) {
2463     Asm->OutStreamer->AddComment(StringifyEnum(EndOfList));
2464     Asm->emitInt8(EndOfList);
2465   } else {
2466     // Terminate the list with two 0 values.
2467     Asm->OutStreamer->EmitIntValue(0, Size);
2468     Asm->OutStreamer->EmitIntValue(0, Size);
2469   }
2470 }
2471 
2472 // Handles emission of both debug_loclist / debug_loclist.dwo
2473 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) {
2474   emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List),
2475                 *List.CU, dwarf::DW_LLE_base_addressx,
2476                 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length,
2477                 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString,
2478                 /* ShouldUseBaseAddress */ true,
2479                 [&](const DebugLocStream::Entry &E) {
2480                   DD.emitDebugLocEntryLocation(E, List.CU);
2481                 });
2482 }
2483 
2484 // Emit locations into the .debug_loc/.debug_loclists section.
2485 void DwarfDebug::emitDebugLoc() {
2486   if (DebugLocs.getLists().empty())
2487     return;
2488 
2489   MCSymbol *TableEnd = nullptr;
2490   if (getDwarfVersion() >= 5) {
2491 
2492     Asm->OutStreamer->SwitchSection(
2493         Asm->getObjFileLowering().getDwarfLoclistsSection());
2494 
2495     TableEnd = emitLoclistsTableHeader(Asm, *this);
2496   } else {
2497     Asm->OutStreamer->SwitchSection(
2498         Asm->getObjFileLowering().getDwarfLocSection());
2499   }
2500 
2501   for (const auto &List : DebugLocs.getLists())
2502     emitLocList(*this, Asm, List);
2503 
2504   if (TableEnd)
2505     Asm->OutStreamer->EmitLabel(TableEnd);
2506 }
2507 
2508 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section.
2509 void DwarfDebug::emitDebugLocDWO() {
2510   if (DebugLocs.getLists().empty())
2511     return;
2512 
2513   if (getDwarfVersion() >= 5) {
2514     MCSymbol *TableEnd = nullptr;
2515     Asm->OutStreamer->SwitchSection(
2516         Asm->getObjFileLowering().getDwarfLoclistsDWOSection());
2517     TableEnd = emitLoclistsTableHeader(Asm, *this);
2518     for (const auto &List : DebugLocs.getLists())
2519       emitLocList(*this, Asm, List);
2520 
2521     if (TableEnd)
2522       Asm->OutStreamer->EmitLabel(TableEnd);
2523     return;
2524   }
2525 
2526   for (const auto &List : DebugLocs.getLists()) {
2527     Asm->OutStreamer->SwitchSection(
2528         Asm->getObjFileLowering().getDwarfLocDWOSection());
2529     Asm->OutStreamer->EmitLabel(List.Label);
2530 
2531     for (const auto &Entry : DebugLocs.getEntries(List)) {
2532       // GDB only supports startx_length in pre-standard split-DWARF.
2533       // (in v5 standard loclists, it currently* /only/ supports base_address +
2534       // offset_pair, so the implementations can't really share much since they
2535       // need to use different representations)
2536       // * as of October 2018, at least
2537       // Ideally/in v5, this could use SectionLabels to reuse existing addresses
2538       // in the address pool to minimize object size/relocations.
2539       Asm->emitInt8(dwarf::DW_LLE_startx_length);
2540       unsigned idx = AddrPool.getIndex(Entry.Begin);
2541       Asm->EmitULEB128(idx);
2542       // Also the pre-standard encoding is slightly different, emitting this as
2543       // an address-length entry here, but its a ULEB128 in DWARFv5 loclists.
2544       Asm->EmitLabelDifference(Entry.End, Entry.Begin, 4);
2545       emitDebugLocEntryLocation(Entry, List.CU);
2546     }
2547     Asm->emitInt8(dwarf::DW_LLE_end_of_list);
2548   }
2549 }
2550 
2551 struct ArangeSpan {
2552   const MCSymbol *Start, *End;
2553 };
2554 
2555 // Emit a debug aranges section, containing a CU lookup for any
2556 // address we can tie back to a CU.
2557 void DwarfDebug::emitDebugARanges() {
2558   // Provides a unique id per text section.
2559   MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap;
2560 
2561   // Filter labels by section.
2562   for (const SymbolCU &SCU : ArangeLabels) {
2563     if (SCU.Sym->isInSection()) {
2564       // Make a note of this symbol and it's section.
2565       MCSection *Section = &SCU.Sym->getSection();
2566       if (!Section->getKind().isMetadata())
2567         SectionMap[Section].push_back(SCU);
2568     } else {
2569       // Some symbols (e.g. common/bss on mach-o) can have no section but still
2570       // appear in the output. This sucks as we rely on sections to build
2571       // arange spans. We can do it without, but it's icky.
2572       SectionMap[nullptr].push_back(SCU);
2573     }
2574   }
2575 
2576   DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans;
2577 
2578   for (auto &I : SectionMap) {
2579     MCSection *Section = I.first;
2580     SmallVector<SymbolCU, 8> &List = I.second;
2581     if (List.size() < 1)
2582       continue;
2583 
2584     // If we have no section (e.g. common), just write out
2585     // individual spans for each symbol.
2586     if (!Section) {
2587       for (const SymbolCU &Cur : List) {
2588         ArangeSpan Span;
2589         Span.Start = Cur.Sym;
2590         Span.End = nullptr;
2591         assert(Cur.CU);
2592         Spans[Cur.CU].push_back(Span);
2593       }
2594       continue;
2595     }
2596 
2597     // Sort the symbols by offset within the section.
2598     llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) {
2599       unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0;
2600       unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0;
2601 
2602       // Symbols with no order assigned should be placed at the end.
2603       // (e.g. section end labels)
2604       if (IA == 0)
2605         return false;
2606       if (IB == 0)
2607         return true;
2608       return IA < IB;
2609     });
2610 
2611     // Insert a final terminator.
2612     List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section)));
2613 
2614     // Build spans between each label.
2615     const MCSymbol *StartSym = List[0].Sym;
2616     for (size_t n = 1, e = List.size(); n < e; n++) {
2617       const SymbolCU &Prev = List[n - 1];
2618       const SymbolCU &Cur = List[n];
2619 
2620       // Try and build the longest span we can within the same CU.
2621       if (Cur.CU != Prev.CU) {
2622         ArangeSpan Span;
2623         Span.Start = StartSym;
2624         Span.End = Cur.Sym;
2625         assert(Prev.CU);
2626         Spans[Prev.CU].push_back(Span);
2627         StartSym = Cur.Sym;
2628       }
2629     }
2630   }
2631 
2632   // Start the dwarf aranges section.
2633   Asm->OutStreamer->SwitchSection(
2634       Asm->getObjFileLowering().getDwarfARangesSection());
2635 
2636   unsigned PtrSize = Asm->MAI->getCodePointerSize();
2637 
2638   // Build a list of CUs used.
2639   std::vector<DwarfCompileUnit *> CUs;
2640   for (const auto &it : Spans) {
2641     DwarfCompileUnit *CU = it.first;
2642     CUs.push_back(CU);
2643   }
2644 
2645   // Sort the CU list (again, to ensure consistent output order).
2646   llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) {
2647     return A->getUniqueID() < B->getUniqueID();
2648   });
2649 
2650   // Emit an arange table for each CU we used.
2651   for (DwarfCompileUnit *CU : CUs) {
2652     std::vector<ArangeSpan> &List = Spans[CU];
2653 
2654     // Describe the skeleton CU's offset and length, not the dwo file's.
2655     if (auto *Skel = CU->getSkeleton())
2656       CU = Skel;
2657 
2658     // Emit size of content not including length itself.
2659     unsigned ContentSize =
2660         sizeof(int16_t) + // DWARF ARange version number
2661         sizeof(int32_t) + // Offset of CU in the .debug_info section
2662         sizeof(int8_t) +  // Pointer Size (in bytes)
2663         sizeof(int8_t);   // Segment Size (in bytes)
2664 
2665     unsigned TupleSize = PtrSize * 2;
2666 
2667     // 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
2668     unsigned Padding =
2669         offsetToAlignment(sizeof(int32_t) + ContentSize, Align(TupleSize));
2670 
2671     ContentSize += Padding;
2672     ContentSize += (List.size() + 1) * TupleSize;
2673 
2674     // For each compile unit, write the list of spans it covers.
2675     Asm->OutStreamer->AddComment("Length of ARange Set");
2676     Asm->emitInt32(ContentSize);
2677     Asm->OutStreamer->AddComment("DWARF Arange version number");
2678     Asm->emitInt16(dwarf::DW_ARANGES_VERSION);
2679     Asm->OutStreamer->AddComment("Offset Into Debug Info Section");
2680     emitSectionReference(*CU);
2681     Asm->OutStreamer->AddComment("Address Size (in bytes)");
2682     Asm->emitInt8(PtrSize);
2683     Asm->OutStreamer->AddComment("Segment Size (in bytes)");
2684     Asm->emitInt8(0);
2685 
2686     Asm->OutStreamer->emitFill(Padding, 0xff);
2687 
2688     for (const ArangeSpan &Span : List) {
2689       Asm->EmitLabelReference(Span.Start, PtrSize);
2690 
2691       // Calculate the size as being from the span start to it's end.
2692       if (Span.End) {
2693         Asm->EmitLabelDifference(Span.End, Span.Start, PtrSize);
2694       } else {
2695         // For symbols without an end marker (e.g. common), we
2696         // write a single arange entry containing just that one symbol.
2697         uint64_t Size = SymSize[Span.Start];
2698         if (Size == 0)
2699           Size = 1;
2700 
2701         Asm->OutStreamer->EmitIntValue(Size, PtrSize);
2702       }
2703     }
2704 
2705     Asm->OutStreamer->AddComment("ARange terminator");
2706     Asm->OutStreamer->EmitIntValue(0, PtrSize);
2707     Asm->OutStreamer->EmitIntValue(0, PtrSize);
2708   }
2709 }
2710 
2711 /// Emit a single range list. We handle both DWARF v5 and earlier.
2712 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm,
2713                           const RangeSpanList &List) {
2714   emitRangeList(DD, Asm, List.getSym(), List.getRanges(), List.getCU(),
2715                 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair,
2716                 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list,
2717                 llvm::dwarf::RangeListEncodingString,
2718                 List.getCU().getCUNode()->getRangesBaseAddress() ||
2719                     DD.getDwarfVersion() >= 5,
2720                 [](auto) {});
2721 }
2722 
2723 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) {
2724   if (Holder.getRangeLists().empty())
2725     return;
2726 
2727   assert(useRangesSection());
2728   assert(!CUMap.empty());
2729   assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) {
2730     return !Pair.second->getCUNode()->isDebugDirectivesOnly();
2731   }));
2732 
2733   Asm->OutStreamer->SwitchSection(Section);
2734 
2735   MCSymbol *TableEnd =
2736       getDwarfVersion() < 5 ? nullptr : emitRnglistsTableHeader(Asm, Holder);
2737 
2738   for (const RangeSpanList &List : Holder.getRangeLists())
2739     emitRangeList(*this, Asm, List);
2740 
2741   if (TableEnd)
2742     Asm->OutStreamer->EmitLabel(TableEnd);
2743 }
2744 
2745 /// Emit address ranges into the .debug_ranges section or into the DWARF v5
2746 /// .debug_rnglists section.
2747 void DwarfDebug::emitDebugRanges() {
2748   const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2749 
2750   emitDebugRangesImpl(Holder,
2751                       getDwarfVersion() >= 5
2752                           ? Asm->getObjFileLowering().getDwarfRnglistsSection()
2753                           : Asm->getObjFileLowering().getDwarfRangesSection());
2754 }
2755 
2756 void DwarfDebug::emitDebugRangesDWO() {
2757   emitDebugRangesImpl(InfoHolder,
2758                       Asm->getObjFileLowering().getDwarfRnglistsDWOSection());
2759 }
2760 
2761 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) {
2762   for (auto *MN : Nodes) {
2763     if (auto *M = dyn_cast<DIMacro>(MN))
2764       emitMacro(*M);
2765     else if (auto *F = dyn_cast<DIMacroFile>(MN))
2766       emitMacroFile(*F, U);
2767     else
2768       llvm_unreachable("Unexpected DI type!");
2769   }
2770 }
2771 
2772 void DwarfDebug::emitMacro(DIMacro &M) {
2773   Asm->EmitULEB128(M.getMacinfoType());
2774   Asm->EmitULEB128(M.getLine());
2775   StringRef Name = M.getName();
2776   StringRef Value = M.getValue();
2777   Asm->OutStreamer->EmitBytes(Name);
2778   if (!Value.empty()) {
2779     // There should be one space between macro name and macro value.
2780     Asm->emitInt8(' ');
2781     Asm->OutStreamer->EmitBytes(Value);
2782   }
2783   Asm->emitInt8('\0');
2784 }
2785 
2786 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) {
2787   assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file);
2788   Asm->EmitULEB128(dwarf::DW_MACINFO_start_file);
2789   Asm->EmitULEB128(F.getLine());
2790   Asm->EmitULEB128(U.getOrCreateSourceID(F.getFile()));
2791   handleMacroNodes(F.getElements(), U);
2792   Asm->EmitULEB128(dwarf::DW_MACINFO_end_file);
2793 }
2794 
2795 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) {
2796   for (const auto &P : CUMap) {
2797     auto &TheCU = *P.second;
2798     auto *SkCU = TheCU.getSkeleton();
2799     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
2800     auto *CUNode = cast<DICompileUnit>(P.first);
2801     DIMacroNodeArray Macros = CUNode->getMacros();
2802     if (Macros.empty())
2803       continue;
2804     Asm->OutStreamer->SwitchSection(Section);
2805     Asm->OutStreamer->EmitLabel(U.getMacroLabelBegin());
2806     handleMacroNodes(Macros, U);
2807     Asm->OutStreamer->AddComment("End Of Macro List Mark");
2808     Asm->emitInt8(0);
2809   }
2810 }
2811 
2812 /// Emit macros into a debug macinfo section.
2813 void DwarfDebug::emitDebugMacinfo() {
2814   emitDebugMacinfoImpl(Asm->getObjFileLowering().getDwarfMacinfoSection());
2815 }
2816 
2817 void DwarfDebug::emitDebugMacinfoDWO() {
2818   emitDebugMacinfoImpl(Asm->getObjFileLowering().getDwarfMacinfoDWOSection());
2819 }
2820 
2821 // DWARF5 Experimental Separate Dwarf emitters.
2822 
2823 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
2824                                   std::unique_ptr<DwarfCompileUnit> NewU) {
2825 
2826   if (!CompilationDir.empty())
2827     NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
2828 
2829   addGnuPubAttributes(*NewU, Die);
2830 
2831   SkeletonHolder.addUnit(std::move(NewU));
2832 }
2833 
2834 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
2835 
2836   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
2837       CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder,
2838       UnitKind::Skeleton);
2839   DwarfCompileUnit &NewCU = *OwnedUnit;
2840   NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
2841 
2842   NewCU.initStmtList();
2843 
2844   if (useSegmentedStringOffsetsTable())
2845     NewCU.addStringOffsetsStart();
2846 
2847   initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));
2848 
2849   return NewCU;
2850 }
2851 
2852 // Emit the .debug_info.dwo section for separated dwarf. This contains the
2853 // compile units that would normally be in debug_info.
2854 void DwarfDebug::emitDebugInfoDWO() {
2855   assert(useSplitDwarf() && "No split dwarf debug info?");
2856   // Don't emit relocations into the dwo file.
2857   InfoHolder.emitUnits(/* UseOffsets */ true);
2858 }
2859 
2860 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
2861 // abbreviations for the .debug_info.dwo section.
2862 void DwarfDebug::emitDebugAbbrevDWO() {
2863   assert(useSplitDwarf() && "No split dwarf?");
2864   InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
2865 }
2866 
2867 void DwarfDebug::emitDebugLineDWO() {
2868   assert(useSplitDwarf() && "No split dwarf?");
2869   SplitTypeUnitFileTable.Emit(
2870       *Asm->OutStreamer, MCDwarfLineTableParams(),
2871       Asm->getObjFileLowering().getDwarfLineDWOSection());
2872 }
2873 
2874 void DwarfDebug::emitStringOffsetsTableHeaderDWO() {
2875   assert(useSplitDwarf() && "No split dwarf?");
2876   InfoHolder.getStringPool().emitStringOffsetsTableHeader(
2877       *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(),
2878       InfoHolder.getStringOffsetsStartSym());
2879 }
2880 
2881 // Emit the .debug_str.dwo section for separated dwarf. This contains the
2882 // string section and is identical in format to traditional .debug_str
2883 // sections.
2884 void DwarfDebug::emitDebugStrDWO() {
2885   if (useSegmentedStringOffsetsTable())
2886     emitStringOffsetsTableHeaderDWO();
2887   assert(useSplitDwarf() && "No split dwarf?");
2888   MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection();
2889   InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
2890                          OffSec, /* UseRelativeOffsets = */ false);
2891 }
2892 
2893 // Emit address pool.
2894 void DwarfDebug::emitDebugAddr() {
2895   AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
2896 }
2897 
2898 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
2899   if (!useSplitDwarf())
2900     return nullptr;
2901   const DICompileUnit *DIUnit = CU.getCUNode();
2902   SplitTypeUnitFileTable.maybeSetRootFile(
2903       DIUnit->getDirectory(), DIUnit->getFilename(),
2904       CU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource());
2905   return &SplitTypeUnitFileTable;
2906 }
2907 
2908 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) {
2909   MD5 Hash;
2910   Hash.update(Identifier);
2911   // ... take the least significant 8 bytes and return those. Our MD5
2912   // implementation always returns its results in little endian, so we actually
2913   // need the "high" word.
2914   MD5::MD5Result Result;
2915   Hash.final(Result);
2916   return Result.high();
2917 }
2918 
2919 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
2920                                       StringRef Identifier, DIE &RefDie,
2921                                       const DICompositeType *CTy) {
2922   // Fast path if we're building some type units and one has already used the
2923   // address pool we know we're going to throw away all this work anyway, so
2924   // don't bother building dependent types.
2925   if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
2926     return;
2927 
2928   auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0));
2929   if (!Ins.second) {
2930     CU.addDIETypeSignature(RefDie, Ins.first->second);
2931     return;
2932   }
2933 
2934   bool TopLevelType = TypeUnitsUnderConstruction.empty();
2935   AddrPool.resetUsedFlag();
2936 
2937   auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder,
2938                                                     getDwoLineTable(CU));
2939   DwarfTypeUnit &NewTU = *OwnedUnit;
2940   DIE &UnitDie = NewTU.getUnitDie();
2941   TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy);
2942 
2943   NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
2944                 CU.getLanguage());
2945 
2946   uint64_t Signature = makeTypeSignature(Identifier);
2947   NewTU.setTypeSignature(Signature);
2948   Ins.first->second = Signature;
2949 
2950   if (useSplitDwarf()) {
2951     MCSection *Section =
2952         getDwarfVersion() <= 4
2953             ? Asm->getObjFileLowering().getDwarfTypesDWOSection()
2954             : Asm->getObjFileLowering().getDwarfInfoDWOSection();
2955     NewTU.setSection(Section);
2956   } else {
2957     MCSection *Section =
2958         getDwarfVersion() <= 4
2959             ? Asm->getObjFileLowering().getDwarfTypesSection(Signature)
2960             : Asm->getObjFileLowering().getDwarfInfoSection(Signature);
2961     NewTU.setSection(Section);
2962     // Non-split type units reuse the compile unit's line table.
2963     CU.applyStmtList(UnitDie);
2964   }
2965 
2966   // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type
2967   // units.
2968   if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
2969     NewTU.addStringOffsetsStart();
2970 
2971   NewTU.setType(NewTU.createTypeDIE(CTy));
2972 
2973   if (TopLevelType) {
2974     auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
2975     TypeUnitsUnderConstruction.clear();
2976 
2977     // Types referencing entries in the address table cannot be placed in type
2978     // units.
2979     if (AddrPool.hasBeenUsed()) {
2980 
2981       // Remove all the types built while building this type.
2982       // This is pessimistic as some of these types might not be dependent on
2983       // the type that used an address.
2984       for (const auto &TU : TypeUnitsToAdd)
2985         TypeSignatures.erase(TU.second);
2986 
2987       // Construct this type in the CU directly.
2988       // This is inefficient because all the dependent types will be rebuilt
2989       // from scratch, including building them in type units, discovering that
2990       // they depend on addresses, throwing them out and rebuilding them.
2991       CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy));
2992       return;
2993     }
2994 
2995     // If the type wasn't dependent on fission addresses, finish adding the type
2996     // and all its dependent types.
2997     for (auto &TU : TypeUnitsToAdd) {
2998       InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get());
2999       InfoHolder.emitUnit(TU.first.get(), useSplitDwarf());
3000     }
3001   }
3002   CU.addDIETypeSignature(RefDie, Signature);
3003 }
3004 
3005 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD)
3006     : DD(DD),
3007       TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)) {
3008   DD->TypeUnitsUnderConstruction.clear();
3009   assert(TypeUnitsUnderConstruction.empty() || !DD->AddrPool.hasBeenUsed());
3010 }
3011 
3012 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() {
3013   DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction);
3014   DD->AddrPool.resetUsedFlag();
3015 }
3016 
3017 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() {
3018   return NonTypeUnitContext(this);
3019 }
3020 
3021 // Add the Name along with its companion DIE to the appropriate accelerator
3022 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for
3023 // AccelTableKind::Apple, we use the table we got as an argument). If
3024 // accelerator tables are disabled, this function does nothing.
3025 template <typename DataT>
3026 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU,
3027                                   AccelTable<DataT> &AppleAccel, StringRef Name,
3028                                   const DIE &Die) {
3029   if (getAccelTableKind() == AccelTableKind::None)
3030     return;
3031 
3032   if (getAccelTableKind() != AccelTableKind::Apple &&
3033       CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default)
3034     return;
3035 
3036   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
3037   DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name);
3038 
3039   switch (getAccelTableKind()) {
3040   case AccelTableKind::Apple:
3041     AppleAccel.addName(Ref, Die);
3042     break;
3043   case AccelTableKind::Dwarf:
3044     AccelDebugNames.addName(Ref, Die);
3045     break;
3046   case AccelTableKind::Default:
3047     llvm_unreachable("Default should have already been resolved.");
3048   case AccelTableKind::None:
3049     llvm_unreachable("None handled above");
3050   }
3051 }
3052 
3053 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name,
3054                               const DIE &Die) {
3055   addAccelNameImpl(CU, AccelNames, Name, Die);
3056 }
3057 
3058 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name,
3059                               const DIE &Die) {
3060   // ObjC names go only into the Apple accelerator tables.
3061   if (getAccelTableKind() == AccelTableKind::Apple)
3062     addAccelNameImpl(CU, AccelObjC, Name, Die);
3063 }
3064 
3065 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name,
3066                                    const DIE &Die) {
3067   addAccelNameImpl(CU, AccelNamespace, Name, Die);
3068 }
3069 
3070 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name,
3071                               const DIE &Die, char Flags) {
3072   addAccelNameImpl(CU, AccelTypes, Name, Die);
3073 }
3074 
3075 uint16_t DwarfDebug::getDwarfVersion() const {
3076   return Asm->OutStreamer->getContext().getDwarfVersion();
3077 }
3078 
3079 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) {
3080   return SectionLabels.find(S)->second;
3081 }
3082