1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing dwarf debug info into asm files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DwarfDebug.h" 14 #include "ByteStreamer.h" 15 #include "DIEHash.h" 16 #include "DwarfCompileUnit.h" 17 #include "DwarfExpression.h" 18 #include "DwarfUnit.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/CodeGen/AsmPrinter.h" 24 #include "llvm/CodeGen/DIE.h" 25 #include "llvm/CodeGen/LexicalScopes.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineModuleInfo.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/TargetInstrInfo.h" 31 #include "llvm/CodeGen/TargetLowering.h" 32 #include "llvm/CodeGen/TargetRegisterInfo.h" 33 #include "llvm/CodeGen/TargetSubtargetInfo.h" 34 #include "llvm/DebugInfo/DWARF/DWARFExpression.h" 35 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/MC/MCAsmInfo.h" 41 #include "llvm/MC/MCContext.h" 42 #include "llvm/MC/MCSection.h" 43 #include "llvm/MC/MCStreamer.h" 44 #include "llvm/MC/MCSymbol.h" 45 #include "llvm/MC/MCTargetOptions.h" 46 #include "llvm/MC/MachineLocation.h" 47 #include "llvm/MC/SectionKind.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MD5.h" 54 #include "llvm/Support/MathExtras.h" 55 #include "llvm/Support/Timer.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include "llvm/Target/TargetLoweringObjectFile.h" 58 #include "llvm/Target/TargetMachine.h" 59 #include <algorithm> 60 #include <cstddef> 61 #include <iterator> 62 #include <string> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "dwarfdebug" 67 68 STATISTIC(NumCSParams, "Number of dbg call site params created"); 69 70 static cl::opt<bool> 71 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 72 cl::desc("Disable debug info printing")); 73 74 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier( 75 "use-dwarf-ranges-base-address-specifier", cl::Hidden, 76 cl::desc("Use base address specifiers in debug_ranges"), cl::init(false)); 77 78 static cl::opt<bool> GenerateARangeSection("generate-arange-section", 79 cl::Hidden, 80 cl::desc("Generate dwarf aranges"), 81 cl::init(false)); 82 83 static cl::opt<bool> 84 GenerateDwarfTypeUnits("generate-type-units", cl::Hidden, 85 cl::desc("Generate DWARF4 type units."), 86 cl::init(false)); 87 88 static cl::opt<bool> SplitDwarfCrossCuReferences( 89 "split-dwarf-cross-cu-references", cl::Hidden, 90 cl::desc("Enable cross-cu references in DWO files"), cl::init(false)); 91 92 enum DefaultOnOff { Default, Enable, Disable }; 93 94 static cl::opt<DefaultOnOff> UnknownLocations( 95 "use-unknown-locations", cl::Hidden, 96 cl::desc("Make an absence of debug location information explicit."), 97 cl::values(clEnumVal(Default, "At top of block or after label"), 98 clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")), 99 cl::init(Default)); 100 101 static cl::opt<AccelTableKind> AccelTables( 102 "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."), 103 cl::values(clEnumValN(AccelTableKind::Default, "Default", 104 "Default for platform"), 105 clEnumValN(AccelTableKind::None, "Disable", "Disabled."), 106 clEnumValN(AccelTableKind::Apple, "Apple", "Apple"), 107 clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")), 108 cl::init(AccelTableKind::Default)); 109 110 static cl::opt<DefaultOnOff> 111 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden, 112 cl::desc("Use inlined strings rather than string section."), 113 cl::values(clEnumVal(Default, "Default for platform"), 114 clEnumVal(Enable, "Enabled"), 115 clEnumVal(Disable, "Disabled")), 116 cl::init(Default)); 117 118 static cl::opt<bool> 119 NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden, 120 cl::desc("Disable emission .debug_ranges section."), 121 cl::init(false)); 122 123 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences( 124 "dwarf-sections-as-references", cl::Hidden, 125 cl::desc("Use sections+offset as references rather than labels."), 126 cl::values(clEnumVal(Default, "Default for platform"), 127 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 128 cl::init(Default)); 129 130 static cl::opt<bool> 131 UseGNUDebugMacro("use-gnu-debug-macro", cl::Hidden, 132 cl::desc("Emit the GNU .debug_macro format with DWARF <5"), 133 cl::init(false)); 134 135 static cl::opt<DefaultOnOff> DwarfOpConvert( 136 "dwarf-op-convert", cl::Hidden, 137 cl::desc("Enable use of the DWARFv5 DW_OP_convert operator"), 138 cl::values(clEnumVal(Default, "Default for platform"), 139 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 140 cl::init(Default)); 141 142 enum LinkageNameOption { 143 DefaultLinkageNames, 144 AllLinkageNames, 145 AbstractLinkageNames 146 }; 147 148 static cl::opt<LinkageNameOption> 149 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden, 150 cl::desc("Which DWARF linkage-name attributes to emit."), 151 cl::values(clEnumValN(DefaultLinkageNames, "Default", 152 "Default for platform"), 153 clEnumValN(AllLinkageNames, "All", "All"), 154 clEnumValN(AbstractLinkageNames, "Abstract", 155 "Abstract subprograms")), 156 cl::init(DefaultLinkageNames)); 157 158 static const char *const DWARFGroupName = "dwarf"; 159 static const char *const DWARFGroupDescription = "DWARF Emission"; 160 static const char *const DbgTimerName = "writer"; 161 static const char *const DbgTimerDescription = "DWARF Debug Writer"; 162 static constexpr unsigned ULEB128PadSize = 4; 163 164 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) { 165 getActiveStreamer().EmitInt8( 166 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op) 167 : dwarf::OperationEncodingString(Op)); 168 } 169 170 void DebugLocDwarfExpression::emitSigned(int64_t Value) { 171 getActiveStreamer().emitSLEB128(Value, Twine(Value)); 172 } 173 174 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) { 175 getActiveStreamer().emitULEB128(Value, Twine(Value)); 176 } 177 178 void DebugLocDwarfExpression::emitData1(uint8_t Value) { 179 getActiveStreamer().EmitInt8(Value, Twine(Value)); 180 } 181 182 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) { 183 assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit"); 184 getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize); 185 } 186 187 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI, 188 unsigned MachineReg) { 189 // This information is not available while emitting .debug_loc entries. 190 return false; 191 } 192 193 void DebugLocDwarfExpression::enableTemporaryBuffer() { 194 assert(!IsBuffering && "Already buffering?"); 195 if (!TmpBuf) 196 TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments); 197 IsBuffering = true; 198 } 199 200 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; } 201 202 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() { 203 return TmpBuf ? TmpBuf->Bytes.size() : 0; 204 } 205 206 void DebugLocDwarfExpression::commitTemporaryBuffer() { 207 if (!TmpBuf) 208 return; 209 for (auto Byte : enumerate(TmpBuf->Bytes)) { 210 const char *Comment = (Byte.index() < TmpBuf->Comments.size()) 211 ? TmpBuf->Comments[Byte.index()].c_str() 212 : ""; 213 OutBS.EmitInt8(Byte.value(), Comment); 214 } 215 TmpBuf->Bytes.clear(); 216 TmpBuf->Comments.clear(); 217 } 218 219 const DIType *DbgVariable::getType() const { 220 return getVariable()->getType(); 221 } 222 223 /// Get .debug_loc entry for the instruction range starting at MI. 224 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) { 225 const DIExpression *Expr = MI->getDebugExpression(); 226 assert(MI->getNumOperands() == 4); 227 if (MI->getDebugOperand(0).isReg()) { 228 const auto &RegOp = MI->getDebugOperand(0); 229 const auto &Op1 = MI->getDebugOffset(); 230 // If the second operand is an immediate, this is a 231 // register-indirect address. 232 assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset"); 233 MachineLocation MLoc(RegOp.getReg(), Op1.isImm()); 234 return DbgValueLoc(Expr, MLoc); 235 } 236 if (MI->getDebugOperand(0).isTargetIndex()) { 237 const auto &Op = MI->getDebugOperand(0); 238 return DbgValueLoc(Expr, 239 TargetIndexLocation(Op.getIndex(), Op.getOffset())); 240 } 241 if (MI->getDebugOperand(0).isImm()) 242 return DbgValueLoc(Expr, MI->getDebugOperand(0).getImm()); 243 if (MI->getDebugOperand(0).isFPImm()) 244 return DbgValueLoc(Expr, MI->getDebugOperand(0).getFPImm()); 245 if (MI->getDebugOperand(0).isCImm()) 246 return DbgValueLoc(Expr, MI->getDebugOperand(0).getCImm()); 247 248 llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!"); 249 } 250 251 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) { 252 assert(FrameIndexExprs.empty() && "Already initialized?"); 253 assert(!ValueLoc.get() && "Already initialized?"); 254 255 assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable"); 256 assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() && 257 "Wrong inlined-at"); 258 259 ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue)); 260 if (auto *E = DbgValue->getDebugExpression()) 261 if (E->getNumElements()) 262 FrameIndexExprs.push_back({0, E}); 263 } 264 265 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const { 266 if (FrameIndexExprs.size() == 1) 267 return FrameIndexExprs; 268 269 assert(llvm::all_of(FrameIndexExprs, 270 [](const FrameIndexExpr &A) { 271 return A.Expr->isFragment(); 272 }) && 273 "multiple FI expressions without DW_OP_LLVM_fragment"); 274 llvm::sort(FrameIndexExprs, 275 [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool { 276 return A.Expr->getFragmentInfo()->OffsetInBits < 277 B.Expr->getFragmentInfo()->OffsetInBits; 278 }); 279 280 return FrameIndexExprs; 281 } 282 283 void DbgVariable::addMMIEntry(const DbgVariable &V) { 284 assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry"); 285 assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry"); 286 assert(V.getVariable() == getVariable() && "conflicting variable"); 287 assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location"); 288 289 assert(!FrameIndexExprs.empty() && "Expected an MMI entry"); 290 assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry"); 291 292 // FIXME: This logic should not be necessary anymore, as we now have proper 293 // deduplication. However, without it, we currently run into the assertion 294 // below, which means that we are likely dealing with broken input, i.e. two 295 // non-fragment entries for the same variable at different frame indices. 296 if (FrameIndexExprs.size()) { 297 auto *Expr = FrameIndexExprs.back().Expr; 298 if (!Expr || !Expr->isFragment()) 299 return; 300 } 301 302 for (const auto &FIE : V.FrameIndexExprs) 303 // Ignore duplicate entries. 304 if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) { 305 return FIE.FI == Other.FI && FIE.Expr == Other.Expr; 306 })) 307 FrameIndexExprs.push_back(FIE); 308 309 assert((FrameIndexExprs.size() == 1 || 310 llvm::all_of(FrameIndexExprs, 311 [](FrameIndexExpr &FIE) { 312 return FIE.Expr && FIE.Expr->isFragment(); 313 })) && 314 "conflicting locations for variable"); 315 } 316 317 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion, 318 bool GenerateTypeUnits, 319 DebuggerKind Tuning, 320 const Triple &TT) { 321 // Honor an explicit request. 322 if (AccelTables != AccelTableKind::Default) 323 return AccelTables; 324 325 // Accelerator tables with type units are currently not supported. 326 if (GenerateTypeUnits) 327 return AccelTableKind::None; 328 329 // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5 330 // always implies debug_names. For lower standard versions we use apple 331 // accelerator tables on apple platforms and debug_names elsewhere. 332 if (DwarfVersion >= 5) 333 return AccelTableKind::Dwarf; 334 if (Tuning == DebuggerKind::LLDB) 335 return TT.isOSBinFormatMachO() ? AccelTableKind::Apple 336 : AccelTableKind::Dwarf; 337 return AccelTableKind::None; 338 } 339 340 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M) 341 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()), 342 InfoHolder(A, "info_string", DIEValueAllocator), 343 SkeletonHolder(A, "skel_string", DIEValueAllocator), 344 IsDarwin(A->TM.getTargetTriple().isOSDarwin()) { 345 const Triple &TT = Asm->TM.getTargetTriple(); 346 347 // Make sure we know our "debugger tuning". The target option takes 348 // precedence; fall back to triple-based defaults. 349 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default) 350 DebuggerTuning = Asm->TM.Options.DebuggerTuning; 351 else if (IsDarwin) 352 DebuggerTuning = DebuggerKind::LLDB; 353 else if (TT.isPS4CPU()) 354 DebuggerTuning = DebuggerKind::SCE; 355 else 356 DebuggerTuning = DebuggerKind::GDB; 357 358 if (DwarfInlinedStrings == Default) 359 UseInlineStrings = TT.isNVPTX(); 360 else 361 UseInlineStrings = DwarfInlinedStrings == Enable; 362 363 UseLocSection = !TT.isNVPTX(); 364 365 HasAppleExtensionAttributes = tuneForLLDB(); 366 367 // Handle split DWARF. 368 HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty(); 369 370 // SCE defaults to linkage names only for abstract subprograms. 371 if (DwarfLinkageNames == DefaultLinkageNames) 372 UseAllLinkageNames = !tuneForSCE(); 373 else 374 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames; 375 376 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; 377 unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber 378 : MMI->getModule()->getDwarfVersion(); 379 // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2. 380 DwarfVersion = 381 TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION); 382 383 bool Dwarf64 = Asm->TM.Options.MCOptions.Dwarf64 && 384 DwarfVersion >= 3 && // DWARF64 was introduced in DWARFv3. 385 TT.isArch64Bit() && // DWARF64 requires 64-bit relocations. 386 TT.isOSBinFormatELF(); // Support only ELF for now. 387 388 UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX(); 389 390 // Use sections as references. Force for NVPTX. 391 if (DwarfSectionsAsReferences == Default) 392 UseSectionsAsReferences = TT.isNVPTX(); 393 else 394 UseSectionsAsReferences = DwarfSectionsAsReferences == Enable; 395 396 // Don't generate type units for unsupported object file formats. 397 GenerateTypeUnits = 398 A->TM.getTargetTriple().isOSBinFormatELF() && GenerateDwarfTypeUnits; 399 400 TheAccelTableKind = computeAccelTableKind( 401 DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple()); 402 403 // Work around a GDB bug. GDB doesn't support the standard opcode; 404 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which 405 // is defined as of DWARF 3. 406 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented 407 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616 408 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3; 409 410 // GDB does not fully support the DWARF 4 representation for bitfields. 411 UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB(); 412 413 // The DWARF v5 string offsets table has - possibly shared - contributions 414 // from each compile and type unit each preceded by a header. The string 415 // offsets table used by the pre-DWARF v5 split-DWARF implementation uses 416 // a monolithic string offsets table without any header. 417 UseSegmentedStringOffsetsTable = DwarfVersion >= 5; 418 419 // Emit call-site-param debug info for GDB and LLDB, if the target supports 420 // the debug entry values feature. It can also be enabled explicitly. 421 EmitDebugEntryValues = Asm->TM.Options.ShouldEmitDebugEntryValues(); 422 423 // It is unclear if the GCC .debug_macro extension is well-specified 424 // for split DWARF. For now, do not allow LLVM to emit it. 425 UseDebugMacroSection = 426 DwarfVersion >= 5 || (UseGNUDebugMacro && !useSplitDwarf()); 427 if (DwarfOpConvert == Default) 428 EnableOpConvert = !((tuneForGDB() && useSplitDwarf()) || (tuneForLLDB() && !TT.isOSBinFormatMachO())); 429 else 430 EnableOpConvert = (DwarfOpConvert == Enable); 431 432 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion); 433 Asm->OutStreamer->getContext().setDwarfFormat(Dwarf64 ? dwarf::DWARF64 434 : dwarf::DWARF32); 435 } 436 437 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. 438 DwarfDebug::~DwarfDebug() = default; 439 440 static bool isObjCClass(StringRef Name) { 441 return Name.startswith("+") || Name.startswith("-"); 442 } 443 444 static bool hasObjCCategory(StringRef Name) { 445 if (!isObjCClass(Name)) 446 return false; 447 448 return Name.find(") ") != StringRef::npos; 449 } 450 451 static void getObjCClassCategory(StringRef In, StringRef &Class, 452 StringRef &Category) { 453 if (!hasObjCCategory(In)) { 454 Class = In.slice(In.find('[') + 1, In.find(' ')); 455 Category = ""; 456 return; 457 } 458 459 Class = In.slice(In.find('[') + 1, In.find('(')); 460 Category = In.slice(In.find('[') + 1, In.find(' ')); 461 } 462 463 static StringRef getObjCMethodName(StringRef In) { 464 return In.slice(In.find(' ') + 1, In.find(']')); 465 } 466 467 // Add the various names to the Dwarf accelerator table names. 468 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU, 469 const DISubprogram *SP, DIE &Die) { 470 if (getAccelTableKind() != AccelTableKind::Apple && 471 CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None) 472 return; 473 474 if (!SP->isDefinition()) 475 return; 476 477 if (SP->getName() != "") 478 addAccelName(CU, SP->getName(), Die); 479 480 // If the linkage name is different than the name, go ahead and output that as 481 // well into the name table. Only do that if we are going to actually emit 482 // that name. 483 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() && 484 (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP))) 485 addAccelName(CU, SP->getLinkageName(), Die); 486 487 // If this is an Objective-C selector name add it to the ObjC accelerator 488 // too. 489 if (isObjCClass(SP->getName())) { 490 StringRef Class, Category; 491 getObjCClassCategory(SP->getName(), Class, Category); 492 addAccelObjC(CU, Class, Die); 493 if (Category != "") 494 addAccelObjC(CU, Category, Die); 495 // Also add the base method name to the name table. 496 addAccelName(CU, getObjCMethodName(SP->getName()), Die); 497 } 498 } 499 500 /// Check whether we should create a DIE for the given Scope, return true 501 /// if we don't create a DIE (the corresponding DIE is null). 502 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { 503 if (Scope->isAbstractScope()) 504 return false; 505 506 // We don't create a DIE if there is no Range. 507 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); 508 if (Ranges.empty()) 509 return true; 510 511 if (Ranges.size() > 1) 512 return false; 513 514 // We don't create a DIE if we have a single Range and the end label 515 // is null. 516 return !getLabelAfterInsn(Ranges.front().second); 517 } 518 519 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) { 520 F(CU); 521 if (auto *SkelCU = CU.getSkeleton()) 522 if (CU.getCUNode()->getSplitDebugInlining()) 523 F(*SkelCU); 524 } 525 526 bool DwarfDebug::shareAcrossDWOCUs() const { 527 return SplitDwarfCrossCuReferences; 528 } 529 530 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU, 531 LexicalScope *Scope) { 532 assert(Scope && Scope->getScopeNode()); 533 assert(Scope->isAbstractScope()); 534 assert(!Scope->getInlinedAt()); 535 536 auto *SP = cast<DISubprogram>(Scope->getScopeNode()); 537 538 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram 539 // was inlined from another compile unit. 540 if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining()) 541 // Avoid building the original CU if it won't be used 542 SrcCU.constructAbstractSubprogramScopeDIE(Scope); 543 else { 544 auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 545 if (auto *SkelCU = CU.getSkeleton()) { 546 (shareAcrossDWOCUs() ? CU : SrcCU) 547 .constructAbstractSubprogramScopeDIE(Scope); 548 if (CU.getCUNode()->getSplitDebugInlining()) 549 SkelCU->constructAbstractSubprogramScopeDIE(Scope); 550 } else 551 CU.constructAbstractSubprogramScopeDIE(Scope); 552 } 553 } 554 555 DIE &DwarfDebug::constructSubprogramDefinitionDIE(const DISubprogram *SP) { 556 DICompileUnit *Unit = SP->getUnit(); 557 assert(SP->isDefinition() && "Subprogram not a definition"); 558 assert(Unit && "Subprogram definition without parent unit"); 559 auto &CU = getOrCreateDwarfCompileUnit(Unit); 560 return *CU.getOrCreateSubprogramDIE(SP); 561 } 562 563 /// Represents a parameter whose call site value can be described by applying a 564 /// debug expression to a register in the forwarded register worklist. 565 struct FwdRegParamInfo { 566 /// The described parameter register. 567 unsigned ParamReg; 568 569 /// Debug expression that has been built up when walking through the 570 /// instruction chain that produces the parameter's value. 571 const DIExpression *Expr; 572 }; 573 574 /// Register worklist for finding call site values. 575 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>; 576 577 /// Append the expression \p Addition to \p Original and return the result. 578 static const DIExpression *combineDIExpressions(const DIExpression *Original, 579 const DIExpression *Addition) { 580 std::vector<uint64_t> Elts = Addition->getElements().vec(); 581 // Avoid multiple DW_OP_stack_values. 582 if (Original->isImplicit() && Addition->isImplicit()) 583 erase_if(Elts, [](uint64_t Op) { return Op == dwarf::DW_OP_stack_value; }); 584 const DIExpression *CombinedExpr = 585 (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original; 586 return CombinedExpr; 587 } 588 589 /// Emit call site parameter entries that are described by the given value and 590 /// debug expression. 591 template <typename ValT> 592 static void finishCallSiteParams(ValT Val, const DIExpression *Expr, 593 ArrayRef<FwdRegParamInfo> DescribedParams, 594 ParamSet &Params) { 595 for (auto Param : DescribedParams) { 596 bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0; 597 598 // TODO: Entry value operations can currently not be combined with any 599 // other expressions, so we can't emit call site entries in those cases. 600 if (ShouldCombineExpressions && Expr->isEntryValue()) 601 continue; 602 603 // If a parameter's call site value is produced by a chain of 604 // instructions we may have already created an expression for the 605 // parameter when walking through the instructions. Append that to the 606 // base expression. 607 const DIExpression *CombinedExpr = 608 ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr) 609 : Expr; 610 assert((!CombinedExpr || CombinedExpr->isValid()) && 611 "Combined debug expression is invalid"); 612 613 DbgValueLoc DbgLocVal(CombinedExpr, Val); 614 DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal); 615 Params.push_back(CSParm); 616 ++NumCSParams; 617 } 618 } 619 620 /// Add \p Reg to the worklist, if it's not already present, and mark that the 621 /// given parameter registers' values can (potentially) be described using 622 /// that register and an debug expression. 623 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg, 624 const DIExpression *Expr, 625 ArrayRef<FwdRegParamInfo> ParamsToAdd) { 626 auto I = Worklist.insert({Reg, {}}); 627 auto &ParamsForFwdReg = I.first->second; 628 for (auto Param : ParamsToAdd) { 629 assert(none_of(ParamsForFwdReg, 630 [Param](const FwdRegParamInfo &D) { 631 return D.ParamReg == Param.ParamReg; 632 }) && 633 "Same parameter described twice by forwarding reg"); 634 635 // If a parameter's call site value is produced by a chain of 636 // instructions we may have already created an expression for the 637 // parameter when walking through the instructions. Append that to the 638 // new expression. 639 const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr); 640 ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr}); 641 } 642 } 643 644 /// Interpret values loaded into registers by \p CurMI. 645 static void interpretValues(const MachineInstr *CurMI, 646 FwdRegWorklist &ForwardedRegWorklist, 647 ParamSet &Params) { 648 649 const MachineFunction *MF = CurMI->getMF(); 650 const DIExpression *EmptyExpr = 651 DIExpression::get(MF->getFunction().getContext(), {}); 652 const auto &TRI = *MF->getSubtarget().getRegisterInfo(); 653 const auto &TII = *MF->getSubtarget().getInstrInfo(); 654 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 655 656 // If an instruction defines more than one item in the worklist, we may run 657 // into situations where a worklist register's value is (potentially) 658 // described by the previous value of another register that is also defined 659 // by that instruction. 660 // 661 // This can for example occur in cases like this: 662 // 663 // $r1 = mov 123 664 // $r0, $r1 = mvrr $r1, 456 665 // call @foo, $r0, $r1 666 // 667 // When describing $r1's value for the mvrr instruction, we need to make sure 668 // that we don't finalize an entry value for $r0, as that is dependent on the 669 // previous value of $r1 (123 rather than 456). 670 // 671 // In order to not have to distinguish between those cases when finalizing 672 // entry values, we simply postpone adding new parameter registers to the 673 // worklist, by first keeping them in this temporary container until the 674 // instruction has been handled. 675 FwdRegWorklist TmpWorklistItems; 676 677 // If the MI is an instruction defining one or more parameters' forwarding 678 // registers, add those defines. 679 auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI, 680 SmallSetVector<unsigned, 4> &Defs) { 681 if (MI.isDebugInstr()) 682 return; 683 684 for (const MachineOperand &MO : MI.operands()) { 685 if (MO.isReg() && MO.isDef() && 686 Register::isPhysicalRegister(MO.getReg())) { 687 for (auto FwdReg : ForwardedRegWorklist) 688 if (TRI.regsOverlap(FwdReg.first, MO.getReg())) 689 Defs.insert(FwdReg.first); 690 } 691 } 692 }; 693 694 // Set of worklist registers that are defined by this instruction. 695 SmallSetVector<unsigned, 4> FwdRegDefs; 696 697 getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs); 698 if (FwdRegDefs.empty()) 699 return; 700 701 for (auto ParamFwdReg : FwdRegDefs) { 702 if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) { 703 if (ParamValue->first.isImm()) { 704 int64_t Val = ParamValue->first.getImm(); 705 finishCallSiteParams(Val, ParamValue->second, 706 ForwardedRegWorklist[ParamFwdReg], Params); 707 } else if (ParamValue->first.isReg()) { 708 Register RegLoc = ParamValue->first.getReg(); 709 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 710 Register FP = TRI.getFrameRegister(*MF); 711 bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP); 712 if (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) { 713 MachineLocation MLoc(RegLoc, /*Indirect=*/IsSPorFP); 714 finishCallSiteParams(MLoc, ParamValue->second, 715 ForwardedRegWorklist[ParamFwdReg], Params); 716 } else { 717 // ParamFwdReg was described by the non-callee saved register 718 // RegLoc. Mark that the call site values for the parameters are 719 // dependent on that register instead of ParamFwdReg. Since RegLoc 720 // may be a register that will be handled in this iteration, we 721 // postpone adding the items to the worklist, and instead keep them 722 // in a temporary container. 723 addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second, 724 ForwardedRegWorklist[ParamFwdReg]); 725 } 726 } 727 } 728 } 729 730 // Remove all registers that this instruction defines from the worklist. 731 for (auto ParamFwdReg : FwdRegDefs) 732 ForwardedRegWorklist.erase(ParamFwdReg); 733 734 // Now that we are done handling this instruction, add items from the 735 // temporary worklist to the real one. 736 for (auto New : TmpWorklistItems) 737 addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second); 738 TmpWorklistItems.clear(); 739 } 740 741 static bool interpretNextInstr(const MachineInstr *CurMI, 742 FwdRegWorklist &ForwardedRegWorklist, 743 ParamSet &Params) { 744 // Skip bundle headers. 745 if (CurMI->isBundle()) 746 return true; 747 748 // If the next instruction is a call we can not interpret parameter's 749 // forwarding registers or we finished the interpretation of all 750 // parameters. 751 if (CurMI->isCall()) 752 return false; 753 754 if (ForwardedRegWorklist.empty()) 755 return false; 756 757 // Avoid NOP description. 758 if (CurMI->getNumOperands() == 0) 759 return true; 760 761 interpretValues(CurMI, ForwardedRegWorklist, Params); 762 763 return true; 764 } 765 766 /// Try to interpret values loaded into registers that forward parameters 767 /// for \p CallMI. Store parameters with interpreted value into \p Params. 768 static void collectCallSiteParameters(const MachineInstr *CallMI, 769 ParamSet &Params) { 770 const MachineFunction *MF = CallMI->getMF(); 771 auto CalleesMap = MF->getCallSitesInfo(); 772 auto CallFwdRegsInfo = CalleesMap.find(CallMI); 773 774 // There is no information for the call instruction. 775 if (CallFwdRegsInfo == CalleesMap.end()) 776 return; 777 778 const MachineBasicBlock *MBB = CallMI->getParent(); 779 780 // Skip the call instruction. 781 auto I = std::next(CallMI->getReverseIterator()); 782 783 FwdRegWorklist ForwardedRegWorklist; 784 785 const DIExpression *EmptyExpr = 786 DIExpression::get(MF->getFunction().getContext(), {}); 787 788 // Add all the forwarding registers into the ForwardedRegWorklist. 789 for (auto ArgReg : CallFwdRegsInfo->second) { 790 bool InsertedReg = 791 ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}}) 792 .second; 793 assert(InsertedReg && "Single register used to forward two arguments?"); 794 (void)InsertedReg; 795 } 796 797 // We erase, from the ForwardedRegWorklist, those forwarding registers for 798 // which we successfully describe a loaded value (by using 799 // the describeLoadedValue()). For those remaining arguments in the working 800 // list, for which we do not describe a loaded value by 801 // the describeLoadedValue(), we try to generate an entry value expression 802 // for their call site value description, if the call is within the entry MBB. 803 // TODO: Handle situations when call site parameter value can be described 804 // as the entry value within basic blocks other than the first one. 805 bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin(); 806 807 // Search for a loading value in forwarding registers inside call delay slot. 808 if (CallMI->hasDelaySlot()) { 809 auto Suc = std::next(CallMI->getIterator()); 810 // Only one-instruction delay slot is supported. 811 auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator()); 812 (void)BundleEnd; 813 assert(std::next(Suc) == BundleEnd && 814 "More than one instruction in call delay slot"); 815 // Try to interpret value loaded by instruction. 816 if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params)) 817 return; 818 } 819 820 // Search for a loading value in forwarding registers. 821 for (; I != MBB->rend(); ++I) { 822 // Try to interpret values loaded by instruction. 823 if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params)) 824 return; 825 } 826 827 // Emit the call site parameter's value as an entry value. 828 if (ShouldTryEmitEntryVals) { 829 // Create an expression where the register's entry value is used. 830 DIExpression *EntryExpr = DIExpression::get( 831 MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1}); 832 for (auto RegEntry : ForwardedRegWorklist) { 833 MachineLocation MLoc(RegEntry.first); 834 finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params); 835 } 836 } 837 } 838 839 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP, 840 DwarfCompileUnit &CU, DIE &ScopeDIE, 841 const MachineFunction &MF) { 842 // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if 843 // the subprogram is required to have one. 844 if (!SP.areAllCallsDescribed() || !SP.isDefinition()) 845 return; 846 847 // Use DW_AT_call_all_calls to express that call site entries are present 848 // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls 849 // because one of its requirements is not met: call site entries for 850 // optimized-out calls are elided. 851 CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls)); 852 853 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 854 assert(TII && "TargetInstrInfo not found: cannot label tail calls"); 855 856 // Delay slot support check. 857 auto delaySlotSupported = [&](const MachineInstr &MI) { 858 if (!MI.isBundledWithSucc()) 859 return false; 860 auto Suc = std::next(MI.getIterator()); 861 auto CallInstrBundle = getBundleStart(MI.getIterator()); 862 (void)CallInstrBundle; 863 auto DelaySlotBundle = getBundleStart(Suc); 864 (void)DelaySlotBundle; 865 // Ensure that label after call is following delay slot instruction. 866 // Ex. CALL_INSTRUCTION { 867 // DELAY_SLOT_INSTRUCTION } 868 // LABEL_AFTER_CALL 869 assert(getLabelAfterInsn(&*CallInstrBundle) == 870 getLabelAfterInsn(&*DelaySlotBundle) && 871 "Call and its successor instruction don't have same label after."); 872 return true; 873 }; 874 875 // Emit call site entries for each call or tail call in the function. 876 for (const MachineBasicBlock &MBB : MF) { 877 for (const MachineInstr &MI : MBB.instrs()) { 878 // Bundles with call in them will pass the isCall() test below but do not 879 // have callee operand information so skip them here. Iterator will 880 // eventually reach the call MI. 881 if (MI.isBundle()) 882 continue; 883 884 // Skip instructions which aren't calls. Both calls and tail-calling jump 885 // instructions (e.g TAILJMPd64) are classified correctly here. 886 if (!MI.isCandidateForCallSiteEntry()) 887 continue; 888 889 // Skip instructions marked as frame setup, as they are not interesting to 890 // the user. 891 if (MI.getFlag(MachineInstr::FrameSetup)) 892 continue; 893 894 // Check if delay slot support is enabled. 895 if (MI.hasDelaySlot() && !delaySlotSupported(*&MI)) 896 return; 897 898 // If this is a direct call, find the callee's subprogram. 899 // In the case of an indirect call find the register that holds 900 // the callee. 901 const MachineOperand &CalleeOp = MI.getOperand(0); 902 if (!CalleeOp.isGlobal() && !CalleeOp.isReg()) 903 continue; 904 905 unsigned CallReg = 0; 906 DIE *CalleeDIE = nullptr; 907 const Function *CalleeDecl = nullptr; 908 if (CalleeOp.isReg()) { 909 CallReg = CalleeOp.getReg(); 910 if (!CallReg) 911 continue; 912 } else { 913 CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal()); 914 if (!CalleeDecl || !CalleeDecl->getSubprogram()) 915 continue; 916 const DISubprogram *CalleeSP = CalleeDecl->getSubprogram(); 917 918 if (CalleeSP->isDefinition()) { 919 // Ensure that a subprogram DIE for the callee is available in the 920 // appropriate CU. 921 CalleeDIE = &constructSubprogramDefinitionDIE(CalleeSP); 922 } else { 923 // Create the declaration DIE if it is missing. This is required to 924 // support compilation of old bitcode with an incomplete list of 925 // retained metadata. 926 CalleeDIE = CU.getOrCreateSubprogramDIE(CalleeSP); 927 } 928 assert(CalleeDIE && "Must have a DIE for the callee"); 929 } 930 931 // TODO: Omit call site entries for runtime calls (objc_msgSend, etc). 932 933 bool IsTail = TII->isTailCall(MI); 934 935 // If MI is in a bundle, the label was created after the bundle since 936 // EmitFunctionBody iterates over top-level MIs. Get that top-level MI 937 // to search for that label below. 938 const MachineInstr *TopLevelCallMI = 939 MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI; 940 941 // For non-tail calls, the return PC is needed to disambiguate paths in 942 // the call graph which could lead to some target function. For tail 943 // calls, no return PC information is needed, unless tuning for GDB in 944 // DWARF4 mode in which case we fake a return PC for compatibility. 945 const MCSymbol *PCAddr = 946 (!IsTail || CU.useGNUAnalogForDwarf5Feature()) 947 ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI)) 948 : nullptr; 949 950 // For tail calls, it's necessary to record the address of the branch 951 // instruction so that the debugger can show where the tail call occurred. 952 const MCSymbol *CallAddr = 953 IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr; 954 955 assert((IsTail || PCAddr) && "Non-tail call without return PC"); 956 957 LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> " 958 << (CalleeDecl ? CalleeDecl->getName() 959 : StringRef(MF.getSubtarget() 960 .getRegisterInfo() 961 ->getName(CallReg))) 962 << (IsTail ? " [IsTail]" : "") << "\n"); 963 964 DIE &CallSiteDIE = CU.constructCallSiteEntryDIE( 965 ScopeDIE, CalleeDIE, IsTail, PCAddr, CallAddr, CallReg); 966 967 // Optionally emit call-site-param debug info. 968 if (emitDebugEntryValues()) { 969 ParamSet Params; 970 // Try to interpret values of call site parameters. 971 collectCallSiteParameters(&MI, Params); 972 CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params); 973 } 974 } 975 } 976 } 977 978 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const { 979 if (!U.hasDwarfPubSections()) 980 return; 981 982 U.addFlag(D, dwarf::DW_AT_GNU_pubnames); 983 } 984 985 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit, 986 DwarfCompileUnit &NewCU) { 987 DIE &Die = NewCU.getUnitDie(); 988 StringRef FN = DIUnit->getFilename(); 989 990 StringRef Producer = DIUnit->getProducer(); 991 StringRef Flags = DIUnit->getFlags(); 992 if (!Flags.empty() && !useAppleExtensionAttributes()) { 993 std::string ProducerWithFlags = Producer.str() + " " + Flags.str(); 994 NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags); 995 } else 996 NewCU.addString(Die, dwarf::DW_AT_producer, Producer); 997 998 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 999 DIUnit->getSourceLanguage()); 1000 NewCU.addString(Die, dwarf::DW_AT_name, FN); 1001 StringRef SysRoot = DIUnit->getSysRoot(); 1002 if (!SysRoot.empty()) 1003 NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot); 1004 StringRef SDK = DIUnit->getSDK(); 1005 if (!SDK.empty()) 1006 NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK); 1007 1008 // Add DW_str_offsets_base to the unit DIE, except for split units. 1009 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 1010 NewCU.addStringOffsetsStart(); 1011 1012 if (!useSplitDwarf()) { 1013 NewCU.initStmtList(); 1014 1015 // If we're using split dwarf the compilation dir is going to be in the 1016 // skeleton CU and so we don't need to duplicate it here. 1017 if (!CompilationDir.empty()) 1018 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 1019 addGnuPubAttributes(NewCU, Die); 1020 } 1021 1022 if (useAppleExtensionAttributes()) { 1023 if (DIUnit->isOptimized()) 1024 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); 1025 1026 StringRef Flags = DIUnit->getFlags(); 1027 if (!Flags.empty()) 1028 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); 1029 1030 if (unsigned RVer = DIUnit->getRuntimeVersion()) 1031 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, 1032 dwarf::DW_FORM_data1, RVer); 1033 } 1034 1035 if (DIUnit->getDWOId()) { 1036 // This CU is either a clang module DWO or a skeleton CU. 1037 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, 1038 DIUnit->getDWOId()); 1039 if (!DIUnit->getSplitDebugFilename().empty()) { 1040 // This is a prefabricated skeleton CU. 1041 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1042 ? dwarf::DW_AT_dwo_name 1043 : dwarf::DW_AT_GNU_dwo_name; 1044 NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename()); 1045 } 1046 } 1047 } 1048 // Create new DwarfCompileUnit for the given metadata node with tag 1049 // DW_TAG_compile_unit. 1050 DwarfCompileUnit & 1051 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) { 1052 if (auto *CU = CUMap.lookup(DIUnit)) 1053 return *CU; 1054 1055 CompilationDir = DIUnit->getDirectory(); 1056 1057 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 1058 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); 1059 DwarfCompileUnit &NewCU = *OwnedUnit; 1060 InfoHolder.addUnit(std::move(OwnedUnit)); 1061 1062 for (auto *IE : DIUnit->getImportedEntities()) 1063 NewCU.addImportedEntity(IE); 1064 1065 // LTO with assembly output shares a single line table amongst multiple CUs. 1066 // To avoid the compilation directory being ambiguous, let the line table 1067 // explicitly describe the directory of all files, never relying on the 1068 // compilation directory. 1069 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU) 1070 Asm->OutStreamer->emitDwarfFile0Directive( 1071 CompilationDir, DIUnit->getFilename(), getMD5AsBytes(DIUnit->getFile()), 1072 DIUnit->getSource(), NewCU.getUniqueID()); 1073 1074 if (useSplitDwarf()) { 1075 NewCU.setSkeleton(constructSkeletonCU(NewCU)); 1076 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection()); 1077 } else { 1078 finishUnitAttributes(DIUnit, NewCU); 1079 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 1080 } 1081 1082 CUMap.insert({DIUnit, &NewCU}); 1083 CUDieMap.insert({&NewCU.getUnitDie(), &NewCU}); 1084 return NewCU; 1085 } 1086 1087 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU, 1088 const DIImportedEntity *N) { 1089 if (isa<DILocalScope>(N->getScope())) 1090 return; 1091 if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope())) 1092 D->addChild(TheCU.constructImportedEntityDIE(N)); 1093 } 1094 1095 /// Sort and unique GVEs by comparing their fragment offset. 1096 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & 1097 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) { 1098 llvm::sort( 1099 GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) { 1100 // Sort order: first null exprs, then exprs without fragment 1101 // info, then sort by fragment offset in bits. 1102 // FIXME: Come up with a more comprehensive comparator so 1103 // the sorting isn't non-deterministic, and so the following 1104 // std::unique call works correctly. 1105 if (!A.Expr || !B.Expr) 1106 return !!B.Expr; 1107 auto FragmentA = A.Expr->getFragmentInfo(); 1108 auto FragmentB = B.Expr->getFragmentInfo(); 1109 if (!FragmentA || !FragmentB) 1110 return !!FragmentB; 1111 return FragmentA->OffsetInBits < FragmentB->OffsetInBits; 1112 }); 1113 GVEs.erase(std::unique(GVEs.begin(), GVEs.end(), 1114 [](DwarfCompileUnit::GlobalExpr A, 1115 DwarfCompileUnit::GlobalExpr B) { 1116 return A.Expr == B.Expr; 1117 }), 1118 GVEs.end()); 1119 return GVEs; 1120 } 1121 1122 // Emit all Dwarf sections that should come prior to the content. Create 1123 // global DIEs and emit initial debug info sections. This is invoked by 1124 // the target AsmPrinter. 1125 void DwarfDebug::beginModule() { 1126 NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName, 1127 DWARFGroupDescription, TimePassesIsEnabled); 1128 if (DisableDebugInfoPrinting) { 1129 MMI->setDebugInfoAvailability(false); 1130 return; 1131 } 1132 1133 const Module *M = MMI->getModule(); 1134 1135 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(), 1136 M->debug_compile_units_end()); 1137 // Tell MMI whether we have debug info. 1138 assert(MMI->hasDebugInfo() == (NumDebugCUs > 0) && 1139 "DebugInfoAvailabilty initialized unexpectedly"); 1140 SingleCU = NumDebugCUs == 1; 1141 DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>> 1142 GVMap; 1143 for (const GlobalVariable &Global : M->globals()) { 1144 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1145 Global.getDebugInfo(GVs); 1146 for (auto *GVE : GVs) 1147 GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()}); 1148 } 1149 1150 // Create the symbol that designates the start of the unit's contribution 1151 // to the string offsets table. In a split DWARF scenario, only the skeleton 1152 // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol). 1153 if (useSegmentedStringOffsetsTable()) 1154 (useSplitDwarf() ? SkeletonHolder : InfoHolder) 1155 .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base")); 1156 1157 1158 // Create the symbols that designates the start of the DWARF v5 range list 1159 // and locations list tables. They are located past the table headers. 1160 if (getDwarfVersion() >= 5) { 1161 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1162 Holder.setRnglistsTableBaseSym( 1163 Asm->createTempSymbol("rnglists_table_base")); 1164 1165 if (useSplitDwarf()) 1166 InfoHolder.setRnglistsTableBaseSym( 1167 Asm->createTempSymbol("rnglists_dwo_table_base")); 1168 } 1169 1170 // Create the symbol that points to the first entry following the debug 1171 // address table (.debug_addr) header. 1172 AddrPool.setLabel(Asm->createTempSymbol("addr_table_base")); 1173 DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base")); 1174 1175 for (DICompileUnit *CUNode : M->debug_compile_units()) { 1176 // FIXME: Move local imported entities into a list attached to the 1177 // subprogram, then this search won't be needed and a 1178 // getImportedEntities().empty() test should go below with the rest. 1179 bool HasNonLocalImportedEntities = llvm::any_of( 1180 CUNode->getImportedEntities(), [](const DIImportedEntity *IE) { 1181 return !isa<DILocalScope>(IE->getScope()); 1182 }); 1183 1184 if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() && 1185 CUNode->getRetainedTypes().empty() && 1186 CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty()) 1187 continue; 1188 1189 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode); 1190 1191 // Global Variables. 1192 for (auto *GVE : CUNode->getGlobalVariables()) { 1193 // Don't bother adding DIGlobalVariableExpressions listed in the CU if we 1194 // already know about the variable and it isn't adding a constant 1195 // expression. 1196 auto &GVMapEntry = GVMap[GVE->getVariable()]; 1197 auto *Expr = GVE->getExpression(); 1198 if (!GVMapEntry.size() || (Expr && Expr->isConstant())) 1199 GVMapEntry.push_back({nullptr, Expr}); 1200 } 1201 DenseSet<DIGlobalVariable *> Processed; 1202 for (auto *GVE : CUNode->getGlobalVariables()) { 1203 DIGlobalVariable *GV = GVE->getVariable(); 1204 if (Processed.insert(GV).second) 1205 CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV])); 1206 } 1207 1208 for (auto *Ty : CUNode->getEnumTypes()) { 1209 // The enum types array by design contains pointers to 1210 // MDNodes rather than DIRefs. Unique them here. 1211 CU.getOrCreateTypeDIE(cast<DIType>(Ty)); 1212 } 1213 for (auto *Ty : CUNode->getRetainedTypes()) { 1214 // The retained types array by design contains pointers to 1215 // MDNodes rather than DIRefs. Unique them here. 1216 if (DIType *RT = dyn_cast<DIType>(Ty)) 1217 // There is no point in force-emitting a forward declaration. 1218 CU.getOrCreateTypeDIE(RT); 1219 } 1220 // Emit imported_modules last so that the relevant context is already 1221 // available. 1222 for (auto *IE : CUNode->getImportedEntities()) 1223 constructAndAddImportedEntityDIE(CU, IE); 1224 } 1225 } 1226 1227 void DwarfDebug::finishEntityDefinitions() { 1228 for (const auto &Entity : ConcreteEntities) { 1229 DIE *Die = Entity->getDIE(); 1230 assert(Die); 1231 // FIXME: Consider the time-space tradeoff of just storing the unit pointer 1232 // in the ConcreteEntities list, rather than looking it up again here. 1233 // DIE::getUnit isn't simple - it walks parent pointers, etc. 1234 DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie()); 1235 assert(Unit); 1236 Unit->finishEntityDefinition(Entity.get()); 1237 } 1238 } 1239 1240 void DwarfDebug::finishSubprogramDefinitions() { 1241 for (const DISubprogram *SP : ProcessedSPNodes) { 1242 assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug); 1243 forBothCUs( 1244 getOrCreateDwarfCompileUnit(SP->getUnit()), 1245 [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); }); 1246 } 1247 } 1248 1249 void DwarfDebug::finalizeModuleInfo() { 1250 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 1251 1252 finishSubprogramDefinitions(); 1253 1254 finishEntityDefinitions(); 1255 1256 // Include the DWO file name in the hash if there's more than one CU. 1257 // This handles ThinLTO's situation where imported CUs may very easily be 1258 // duplicate with the same CU partially imported into another ThinLTO unit. 1259 StringRef DWOName; 1260 if (CUMap.size() > 1) 1261 DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile; 1262 1263 // Handle anything that needs to be done on a per-unit basis after 1264 // all other generation. 1265 for (const auto &P : CUMap) { 1266 auto &TheCU = *P.second; 1267 if (TheCU.getCUNode()->isDebugDirectivesOnly()) 1268 continue; 1269 // Emit DW_AT_containing_type attribute to connect types with their 1270 // vtable holding type. 1271 TheCU.constructContainingTypeDIEs(); 1272 1273 // Add CU specific attributes if we need to add any. 1274 // If we're splitting the dwarf out now that we've got the entire 1275 // CU then add the dwo id to it. 1276 auto *SkCU = TheCU.getSkeleton(); 1277 1278 bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty(); 1279 1280 if (HasSplitUnit) { 1281 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1282 ? dwarf::DW_AT_dwo_name 1283 : dwarf::DW_AT_GNU_dwo_name; 1284 finishUnitAttributes(TheCU.getCUNode(), TheCU); 1285 TheCU.addString(TheCU.getUnitDie(), attrDWOName, 1286 Asm->TM.Options.MCOptions.SplitDwarfFile); 1287 SkCU->addString(SkCU->getUnitDie(), attrDWOName, 1288 Asm->TM.Options.MCOptions.SplitDwarfFile); 1289 // Emit a unique identifier for this CU. 1290 uint64_t ID = 1291 DIEHash(Asm, &TheCU).computeCUSignature(DWOName, TheCU.getUnitDie()); 1292 if (getDwarfVersion() >= 5) { 1293 TheCU.setDWOId(ID); 1294 SkCU->setDWOId(ID); 1295 } else { 1296 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1297 dwarf::DW_FORM_data8, ID); 1298 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1299 dwarf::DW_FORM_data8, ID); 1300 } 1301 1302 if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) { 1303 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol(); 1304 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, 1305 Sym, Sym); 1306 } 1307 } else if (SkCU) { 1308 finishUnitAttributes(SkCU->getCUNode(), *SkCU); 1309 } 1310 1311 // If we have code split among multiple sections or non-contiguous 1312 // ranges of code then emit a DW_AT_ranges attribute on the unit that will 1313 // remain in the .o file, otherwise add a DW_AT_low_pc. 1314 // FIXME: We should use ranges allow reordering of code ala 1315 // .subsections_via_symbols in mach-o. This would mean turning on 1316 // ranges for all subprogram DIEs for mach-o. 1317 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 1318 1319 if (unsigned NumRanges = TheCU.getRanges().size()) { 1320 if (NumRanges > 1 && useRangesSection()) 1321 // A DW_AT_low_pc attribute may also be specified in combination with 1322 // DW_AT_ranges to specify the default base address for use in 1323 // location lists (see Section 2.6.2) and range lists (see Section 1324 // 2.17.3). 1325 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); 1326 else 1327 U.setBaseAddress(TheCU.getRanges().front().Begin); 1328 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); 1329 } 1330 1331 // We don't keep track of which addresses are used in which CU so this 1332 // is a bit pessimistic under LTO. 1333 if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty()) 1334 U.addAddrTableBase(); 1335 1336 if (getDwarfVersion() >= 5) { 1337 if (U.hasRangeLists()) 1338 U.addRnglistsBase(); 1339 1340 if (!DebugLocs.getLists().empty()) { 1341 if (!useSplitDwarf()) 1342 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base, 1343 DebugLocs.getSym(), 1344 TLOF.getDwarfLoclistsSection()->getBeginSymbol()); 1345 } 1346 } 1347 1348 auto *CUNode = cast<DICompileUnit>(P.first); 1349 // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros" 1350 // attribute. 1351 if (CUNode->getMacros()) { 1352 if (UseDebugMacroSection) { 1353 if (useSplitDwarf()) 1354 TheCU.addSectionDelta( 1355 TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(), 1356 TLOF.getDwarfMacroDWOSection()->getBeginSymbol()); 1357 else { 1358 dwarf::Attribute MacrosAttr = getDwarfVersion() >= 5 1359 ? dwarf::DW_AT_macros 1360 : dwarf::DW_AT_GNU_macros; 1361 U.addSectionLabel(U.getUnitDie(), MacrosAttr, U.getMacroLabelBegin(), 1362 TLOF.getDwarfMacroSection()->getBeginSymbol()); 1363 } 1364 } else { 1365 if (useSplitDwarf()) 1366 TheCU.addSectionDelta( 1367 TheCU.getUnitDie(), dwarf::DW_AT_macro_info, 1368 U.getMacroLabelBegin(), 1369 TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol()); 1370 else 1371 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info, 1372 U.getMacroLabelBegin(), 1373 TLOF.getDwarfMacinfoSection()->getBeginSymbol()); 1374 } 1375 } 1376 } 1377 1378 // Emit all frontend-produced Skeleton CUs, i.e., Clang modules. 1379 for (auto *CUNode : MMI->getModule()->debug_compile_units()) 1380 if (CUNode->getDWOId()) 1381 getOrCreateDwarfCompileUnit(CUNode); 1382 1383 // Compute DIE offsets and sizes. 1384 InfoHolder.computeSizeAndOffsets(); 1385 if (useSplitDwarf()) 1386 SkeletonHolder.computeSizeAndOffsets(); 1387 } 1388 1389 // Emit all Dwarf sections that should come after the content. 1390 void DwarfDebug::endModule() { 1391 assert(CurFn == nullptr); 1392 assert(CurMI == nullptr); 1393 1394 for (const auto &P : CUMap) { 1395 auto &CU = *P.second; 1396 CU.createBaseTypeDIEs(); 1397 } 1398 1399 // If we aren't actually generating debug info (check beginModule - 1400 // conditionalized on !DisableDebugInfoPrinting and the presence of the 1401 // llvm.dbg.cu metadata node) 1402 if (!MMI->hasDebugInfo()) 1403 return; 1404 1405 // Finalize the debug info for the module. 1406 finalizeModuleInfo(); 1407 1408 if (useSplitDwarf()) 1409 // Emit debug_loc.dwo/debug_loclists.dwo section. 1410 emitDebugLocDWO(); 1411 else 1412 // Emit debug_loc/debug_loclists section. 1413 emitDebugLoc(); 1414 1415 // Corresponding abbreviations into a abbrev section. 1416 emitAbbreviations(); 1417 1418 // Emit all the DIEs into a debug info section. 1419 emitDebugInfo(); 1420 1421 // Emit info into a debug aranges section. 1422 if (GenerateARangeSection) 1423 emitDebugARanges(); 1424 1425 // Emit info into a debug ranges section. 1426 emitDebugRanges(); 1427 1428 if (useSplitDwarf()) 1429 // Emit info into a debug macinfo.dwo section. 1430 emitDebugMacinfoDWO(); 1431 else 1432 // Emit info into a debug macinfo/macro section. 1433 emitDebugMacinfo(); 1434 1435 emitDebugStr(); 1436 1437 if (useSplitDwarf()) { 1438 emitDebugStrDWO(); 1439 emitDebugInfoDWO(); 1440 emitDebugAbbrevDWO(); 1441 emitDebugLineDWO(); 1442 emitDebugRangesDWO(); 1443 } 1444 1445 emitDebugAddr(); 1446 1447 // Emit info into the dwarf accelerator table sections. 1448 switch (getAccelTableKind()) { 1449 case AccelTableKind::Apple: 1450 emitAccelNames(); 1451 emitAccelObjC(); 1452 emitAccelNamespaces(); 1453 emitAccelTypes(); 1454 break; 1455 case AccelTableKind::Dwarf: 1456 emitAccelDebugNames(); 1457 break; 1458 case AccelTableKind::None: 1459 break; 1460 case AccelTableKind::Default: 1461 llvm_unreachable("Default should have already been resolved."); 1462 } 1463 1464 // Emit the pubnames and pubtypes sections if requested. 1465 emitDebugPubSections(); 1466 1467 // clean up. 1468 // FIXME: AbstractVariables.clear(); 1469 } 1470 1471 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU, 1472 const DINode *Node, 1473 const MDNode *ScopeNode) { 1474 if (CU.getExistingAbstractEntity(Node)) 1475 return; 1476 1477 CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope( 1478 cast<DILocalScope>(ScopeNode))); 1479 } 1480 1481 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU, 1482 const DINode *Node, const MDNode *ScopeNode) { 1483 if (CU.getExistingAbstractEntity(Node)) 1484 return; 1485 1486 if (LexicalScope *Scope = 1487 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode))) 1488 CU.createAbstractEntity(Node, Scope); 1489 } 1490 1491 // Collect variable information from side table maintained by MF. 1492 void DwarfDebug::collectVariableInfoFromMFTable( 1493 DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) { 1494 SmallDenseMap<InlinedEntity, DbgVariable *> MFVars; 1495 LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n"); 1496 for (const auto &VI : Asm->MF->getVariableDbgInfo()) { 1497 if (!VI.Var) 1498 continue; 1499 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1500 "Expected inlined-at fields to agree"); 1501 1502 InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt()); 1503 Processed.insert(Var); 1504 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1505 1506 // If variable scope is not found then skip this variable. 1507 if (!Scope) { 1508 LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName() 1509 << ", no variable scope found\n"); 1510 continue; 1511 } 1512 1513 ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode()); 1514 auto RegVar = std::make_unique<DbgVariable>( 1515 cast<DILocalVariable>(Var.first), Var.second); 1516 RegVar->initializeMMI(VI.Expr, VI.Slot); 1517 LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName() 1518 << "\n"); 1519 if (DbgVariable *DbgVar = MFVars.lookup(Var)) 1520 DbgVar->addMMIEntry(*RegVar); 1521 else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) { 1522 MFVars.insert({Var, RegVar.get()}); 1523 ConcreteEntities.push_back(std::move(RegVar)); 1524 } 1525 } 1526 } 1527 1528 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its 1529 /// enclosing lexical scope. The check ensures there are no other instructions 1530 /// in the same lexical scope preceding the DBG_VALUE and that its range is 1531 /// either open or otherwise rolls off the end of the scope. 1532 static bool validThroughout(LexicalScopes &LScopes, 1533 const MachineInstr *DbgValue, 1534 const MachineInstr *RangeEnd, 1535 const InstructionOrdering &Ordering) { 1536 assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location"); 1537 auto MBB = DbgValue->getParent(); 1538 auto DL = DbgValue->getDebugLoc(); 1539 auto *LScope = LScopes.findLexicalScope(DL); 1540 // Scope doesn't exist; this is a dead DBG_VALUE. 1541 if (!LScope) 1542 return false; 1543 auto &LSRange = LScope->getRanges(); 1544 if (LSRange.size() == 0) 1545 return false; 1546 1547 const MachineInstr *LScopeBegin = LSRange.front().first; 1548 // If the scope starts before the DBG_VALUE then we may have a negative 1549 // result. Otherwise the location is live coming into the scope and we 1550 // can skip the following checks. 1551 if (!Ordering.isBefore(DbgValue, LScopeBegin)) { 1552 // Exit if the lexical scope begins outside of the current block. 1553 if (LScopeBegin->getParent() != MBB) 1554 return false; 1555 1556 MachineBasicBlock::const_reverse_iterator Pred(DbgValue); 1557 for (++Pred; Pred != MBB->rend(); ++Pred) { 1558 if (Pred->getFlag(MachineInstr::FrameSetup)) 1559 break; 1560 auto PredDL = Pred->getDebugLoc(); 1561 if (!PredDL || Pred->isMetaInstruction()) 1562 continue; 1563 // Check whether the instruction preceding the DBG_VALUE is in the same 1564 // (sub)scope as the DBG_VALUE. 1565 if (DL->getScope() == PredDL->getScope()) 1566 return false; 1567 auto *PredScope = LScopes.findLexicalScope(PredDL); 1568 if (!PredScope || LScope->dominates(PredScope)) 1569 return false; 1570 } 1571 } 1572 1573 // If the range of the DBG_VALUE is open-ended, report success. 1574 if (!RangeEnd) 1575 return true; 1576 1577 // Single, constant DBG_VALUEs in the prologue are promoted to be live 1578 // throughout the function. This is a hack, presumably for DWARF v2 and not 1579 // necessarily correct. It would be much better to use a dbg.declare instead 1580 // if we know the constant is live throughout the scope. 1581 if (DbgValue->getDebugOperand(0).isImm() && MBB->pred_empty()) 1582 return true; 1583 1584 // Test if the location terminates before the end of the scope. 1585 const MachineInstr *LScopeEnd = LSRange.back().second; 1586 if (Ordering.isBefore(RangeEnd, LScopeEnd)) 1587 return false; 1588 1589 // There's a single location which starts at the scope start, and ends at or 1590 // after the scope end. 1591 return true; 1592 } 1593 1594 /// Build the location list for all DBG_VALUEs in the function that 1595 /// describe the same variable. The resulting DebugLocEntries will have 1596 /// strict monotonically increasing begin addresses and will never 1597 /// overlap. If the resulting list has only one entry that is valid 1598 /// throughout variable's scope return true. 1599 // 1600 // See the definition of DbgValueHistoryMap::Entry for an explanation of the 1601 // different kinds of history map entries. One thing to be aware of is that if 1602 // a debug value is ended by another entry (rather than being valid until the 1603 // end of the function), that entry's instruction may or may not be included in 1604 // the range, depending on if the entry is a clobbering entry (it has an 1605 // instruction that clobbers one or more preceding locations), or if it is an 1606 // (overlapping) debug value entry. This distinction can be seen in the example 1607 // below. The first debug value is ended by the clobbering entry 2, and the 1608 // second and third debug values are ended by the overlapping debug value entry 1609 // 4. 1610 // 1611 // Input: 1612 // 1613 // History map entries [type, end index, mi] 1614 // 1615 // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)] 1616 // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)] 1617 // 2 | | [Clobber, $reg0 = [...], -, -] 1618 // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)] 1619 // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)] 1620 // 1621 // Output [start, end) [Value...]: 1622 // 1623 // [0-1) [(reg0, fragment 0, 32)] 1624 // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)] 1625 // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)] 1626 // [4-) [(@g, fragment 0, 96)] 1627 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc, 1628 const DbgValueHistoryMap::Entries &Entries) { 1629 using OpenRange = 1630 std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>; 1631 SmallVector<OpenRange, 4> OpenRanges; 1632 bool isSafeForSingleLocation = true; 1633 const MachineInstr *StartDebugMI = nullptr; 1634 const MachineInstr *EndMI = nullptr; 1635 1636 for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) { 1637 const MachineInstr *Instr = EI->getInstr(); 1638 1639 // Remove all values that are no longer live. 1640 size_t Index = std::distance(EB, EI); 1641 auto Last = 1642 remove_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; }); 1643 OpenRanges.erase(Last, OpenRanges.end()); 1644 1645 // If we are dealing with a clobbering entry, this iteration will result in 1646 // a location list entry starting after the clobbering instruction. 1647 const MCSymbol *StartLabel = 1648 EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr); 1649 assert(StartLabel && 1650 "Forgot label before/after instruction starting a range!"); 1651 1652 const MCSymbol *EndLabel; 1653 if (std::next(EI) == Entries.end()) { 1654 const MachineBasicBlock &EndMBB = Asm->MF->back(); 1655 EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionIDNum()].EndLabel; 1656 if (EI->isClobber()) 1657 EndMI = EI->getInstr(); 1658 } 1659 else if (std::next(EI)->isClobber()) 1660 EndLabel = getLabelAfterInsn(std::next(EI)->getInstr()); 1661 else 1662 EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr()); 1663 assert(EndLabel && "Forgot label after instruction ending a range!"); 1664 1665 if (EI->isDbgValue()) 1666 LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n"); 1667 1668 // If this history map entry has a debug value, add that to the list of 1669 // open ranges and check if its location is valid for a single value 1670 // location. 1671 if (EI->isDbgValue()) { 1672 // Do not add undef debug values, as they are redundant information in 1673 // the location list entries. An undef debug results in an empty location 1674 // description. If there are any non-undef fragments then padding pieces 1675 // with empty location descriptions will automatically be inserted, and if 1676 // all fragments are undef then the whole location list entry is 1677 // redundant. 1678 if (!Instr->isUndefDebugValue()) { 1679 auto Value = getDebugLocValue(Instr); 1680 OpenRanges.emplace_back(EI->getEndIndex(), Value); 1681 1682 // TODO: Add support for single value fragment locations. 1683 if (Instr->getDebugExpression()->isFragment()) 1684 isSafeForSingleLocation = false; 1685 1686 if (!StartDebugMI) 1687 StartDebugMI = Instr; 1688 } else { 1689 isSafeForSingleLocation = false; 1690 } 1691 } 1692 1693 // Location list entries with empty location descriptions are redundant 1694 // information in DWARF, so do not emit those. 1695 if (OpenRanges.empty()) 1696 continue; 1697 1698 // Omit entries with empty ranges as they do not have any effect in DWARF. 1699 if (StartLabel == EndLabel) { 1700 LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n"); 1701 continue; 1702 } 1703 1704 SmallVector<DbgValueLoc, 4> Values; 1705 for (auto &R : OpenRanges) 1706 Values.push_back(R.second); 1707 DebugLoc.emplace_back(StartLabel, EndLabel, Values); 1708 1709 // Attempt to coalesce the ranges of two otherwise identical 1710 // DebugLocEntries. 1711 auto CurEntry = DebugLoc.rbegin(); 1712 LLVM_DEBUG({ 1713 dbgs() << CurEntry->getValues().size() << " Values:\n"; 1714 for (auto &Value : CurEntry->getValues()) 1715 Value.dump(); 1716 dbgs() << "-----\n"; 1717 }); 1718 1719 auto PrevEntry = std::next(CurEntry); 1720 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) 1721 DebugLoc.pop_back(); 1722 } 1723 1724 return DebugLoc.size() == 1 && isSafeForSingleLocation && 1725 validThroughout(LScopes, StartDebugMI, EndMI, getInstOrdering()); 1726 } 1727 1728 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU, 1729 LexicalScope &Scope, 1730 const DINode *Node, 1731 const DILocation *Location, 1732 const MCSymbol *Sym) { 1733 ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode()); 1734 if (isa<const DILocalVariable>(Node)) { 1735 ConcreteEntities.push_back( 1736 std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node), 1737 Location)); 1738 InfoHolder.addScopeVariable(&Scope, 1739 cast<DbgVariable>(ConcreteEntities.back().get())); 1740 } else if (isa<const DILabel>(Node)) { 1741 ConcreteEntities.push_back( 1742 std::make_unique<DbgLabel>(cast<const DILabel>(Node), 1743 Location, Sym)); 1744 InfoHolder.addScopeLabel(&Scope, 1745 cast<DbgLabel>(ConcreteEntities.back().get())); 1746 } 1747 return ConcreteEntities.back().get(); 1748 } 1749 1750 // Find variables for each lexical scope. 1751 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU, 1752 const DISubprogram *SP, 1753 DenseSet<InlinedEntity> &Processed) { 1754 // Grab the variable info that was squirreled away in the MMI side-table. 1755 collectVariableInfoFromMFTable(TheCU, Processed); 1756 1757 for (const auto &I : DbgValues) { 1758 InlinedEntity IV = I.first; 1759 if (Processed.count(IV)) 1760 continue; 1761 1762 // Instruction ranges, specifying where IV is accessible. 1763 const auto &HistoryMapEntries = I.second; 1764 if (HistoryMapEntries.empty()) 1765 continue; 1766 1767 LexicalScope *Scope = nullptr; 1768 const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first); 1769 if (const DILocation *IA = IV.second) 1770 Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA); 1771 else 1772 Scope = LScopes.findLexicalScope(LocalVar->getScope()); 1773 // If variable scope is not found then skip this variable. 1774 if (!Scope) 1775 continue; 1776 1777 Processed.insert(IV); 1778 DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU, 1779 *Scope, LocalVar, IV.second)); 1780 1781 const MachineInstr *MInsn = HistoryMapEntries.front().getInstr(); 1782 assert(MInsn->isDebugValue() && "History must begin with debug value"); 1783 1784 // Check if there is a single DBG_VALUE, valid throughout the var's scope. 1785 // If the history map contains a single debug value, there may be an 1786 // additional entry which clobbers the debug value. 1787 size_t HistSize = HistoryMapEntries.size(); 1788 bool SingleValueWithClobber = 1789 HistSize == 2 && HistoryMapEntries[1].isClobber(); 1790 if (HistSize == 1 || SingleValueWithClobber) { 1791 const auto *End = 1792 SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr; 1793 if (validThroughout(LScopes, MInsn, End, getInstOrdering())) { 1794 RegVar->initializeDbgValue(MInsn); 1795 continue; 1796 } 1797 } 1798 1799 // Do not emit location lists if .debug_loc secton is disabled. 1800 if (!useLocSection()) 1801 continue; 1802 1803 // Handle multiple DBG_VALUE instructions describing one variable. 1804 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn); 1805 1806 // Build the location list for this variable. 1807 SmallVector<DebugLocEntry, 8> Entries; 1808 bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries); 1809 1810 // Check whether buildLocationList managed to merge all locations to one 1811 // that is valid throughout the variable's scope. If so, produce single 1812 // value location. 1813 if (isValidSingleLocation) { 1814 RegVar->initializeDbgValue(Entries[0].getValues()[0]); 1815 continue; 1816 } 1817 1818 // If the variable has a DIBasicType, extract it. Basic types cannot have 1819 // unique identifiers, so don't bother resolving the type with the 1820 // identifier map. 1821 const DIBasicType *BT = dyn_cast<DIBasicType>( 1822 static_cast<const Metadata *>(LocalVar->getType())); 1823 1824 // Finalize the entry by lowering it into a DWARF bytestream. 1825 for (auto &Entry : Entries) 1826 Entry.finalize(*Asm, List, BT, TheCU); 1827 } 1828 1829 // For each InlinedEntity collected from DBG_LABEL instructions, convert to 1830 // DWARF-related DbgLabel. 1831 for (const auto &I : DbgLabels) { 1832 InlinedEntity IL = I.first; 1833 const MachineInstr *MI = I.second; 1834 if (MI == nullptr) 1835 continue; 1836 1837 LexicalScope *Scope = nullptr; 1838 const DILabel *Label = cast<DILabel>(IL.first); 1839 // The scope could have an extra lexical block file. 1840 const DILocalScope *LocalScope = 1841 Label->getScope()->getNonLexicalBlockFileScope(); 1842 // Get inlined DILocation if it is inlined label. 1843 if (const DILocation *IA = IL.second) 1844 Scope = LScopes.findInlinedScope(LocalScope, IA); 1845 else 1846 Scope = LScopes.findLexicalScope(LocalScope); 1847 // If label scope is not found then skip this label. 1848 if (!Scope) 1849 continue; 1850 1851 Processed.insert(IL); 1852 /// At this point, the temporary label is created. 1853 /// Save the temporary label to DbgLabel entity to get the 1854 /// actually address when generating Dwarf DIE. 1855 MCSymbol *Sym = getLabelBeforeInsn(MI); 1856 createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym); 1857 } 1858 1859 // Collect info for variables/labels that were optimized out. 1860 for (const DINode *DN : SP->getRetainedNodes()) { 1861 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 1862 continue; 1863 LexicalScope *Scope = nullptr; 1864 if (auto *DV = dyn_cast<DILocalVariable>(DN)) { 1865 Scope = LScopes.findLexicalScope(DV->getScope()); 1866 } else if (auto *DL = dyn_cast<DILabel>(DN)) { 1867 Scope = LScopes.findLexicalScope(DL->getScope()); 1868 } 1869 1870 if (Scope) 1871 createConcreteEntity(TheCU, *Scope, DN, nullptr); 1872 } 1873 } 1874 1875 // Process beginning of an instruction. 1876 void DwarfDebug::beginInstruction(const MachineInstr *MI) { 1877 const MachineFunction &MF = *MI->getMF(); 1878 const auto *SP = MF.getFunction().getSubprogram(); 1879 bool NoDebug = 1880 !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug; 1881 1882 // Delay slot support check. 1883 auto delaySlotSupported = [](const MachineInstr &MI) { 1884 if (!MI.isBundledWithSucc()) 1885 return false; 1886 auto Suc = std::next(MI.getIterator()); 1887 (void)Suc; 1888 // Ensure that delay slot instruction is successor of the call instruction. 1889 // Ex. CALL_INSTRUCTION { 1890 // DELAY_SLOT_INSTRUCTION } 1891 assert(Suc->isBundledWithPred() && 1892 "Call bundle instructions are out of order"); 1893 return true; 1894 }; 1895 1896 // When describing calls, we need a label for the call instruction. 1897 if (!NoDebug && SP->areAllCallsDescribed() && 1898 MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) && 1899 (!MI->hasDelaySlot() || delaySlotSupported(*MI))) { 1900 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1901 bool IsTail = TII->isTailCall(*MI); 1902 // For tail calls, we need the address of the branch instruction for 1903 // DW_AT_call_pc. 1904 if (IsTail) 1905 requestLabelBeforeInsn(MI); 1906 // For non-tail calls, we need the return address for the call for 1907 // DW_AT_call_return_pc. Under GDB tuning, this information is needed for 1908 // tail calls as well. 1909 requestLabelAfterInsn(MI); 1910 } 1911 1912 DebugHandlerBase::beginInstruction(MI); 1913 assert(CurMI); 1914 1915 if (NoDebug) 1916 return; 1917 1918 // Check if source location changes, but ignore DBG_VALUE and CFI locations. 1919 // If the instruction is part of the function frame setup code, do not emit 1920 // any line record, as there is no correspondence with any user code. 1921 if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup)) 1922 return; 1923 const DebugLoc &DL = MI->getDebugLoc(); 1924 // When we emit a line-0 record, we don't update PrevInstLoc; so look at 1925 // the last line number actually emitted, to see if it was line 0. 1926 unsigned LastAsmLine = 1927 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine(); 1928 1929 if (DL == PrevInstLoc) { 1930 // If we have an ongoing unspecified location, nothing to do here. 1931 if (!DL) 1932 return; 1933 // We have an explicit location, same as the previous location. 1934 // But we might be coming back to it after a line 0 record. 1935 if (LastAsmLine == 0 && DL.getLine() != 0) { 1936 // Reinstate the source location but not marked as a statement. 1937 const MDNode *Scope = DL.getScope(); 1938 recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0); 1939 } 1940 return; 1941 } 1942 1943 if (!DL) { 1944 // We have an unspecified location, which might want to be line 0. 1945 // If we have already emitted a line-0 record, don't repeat it. 1946 if (LastAsmLine == 0) 1947 return; 1948 // If user said Don't Do That, don't do that. 1949 if (UnknownLocations == Disable) 1950 return; 1951 // See if we have a reason to emit a line-0 record now. 1952 // Reasons to emit a line-0 record include: 1953 // - User asked for it (UnknownLocations). 1954 // - Instruction has a label, so it's referenced from somewhere else, 1955 // possibly debug information; we want it to have a source location. 1956 // - Instruction is at the top of a block; we don't want to inherit the 1957 // location from the physically previous (maybe unrelated) block. 1958 if (UnknownLocations == Enable || PrevLabel || 1959 (PrevInstBB && PrevInstBB != MI->getParent())) { 1960 // Preserve the file and column numbers, if we can, to save space in 1961 // the encoded line table. 1962 // Do not update PrevInstLoc, it remembers the last non-0 line. 1963 const MDNode *Scope = nullptr; 1964 unsigned Column = 0; 1965 if (PrevInstLoc) { 1966 Scope = PrevInstLoc.getScope(); 1967 Column = PrevInstLoc.getCol(); 1968 } 1969 recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0); 1970 } 1971 return; 1972 } 1973 1974 // We have an explicit location, different from the previous location. 1975 // Don't repeat a line-0 record, but otherwise emit the new location. 1976 // (The new location might be an explicit line 0, which we do emit.) 1977 if (DL.getLine() == 0 && LastAsmLine == 0) 1978 return; 1979 unsigned Flags = 0; 1980 if (DL == PrologEndLoc) { 1981 Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT; 1982 PrologEndLoc = DebugLoc(); 1983 } 1984 // If the line changed, we call that a new statement; unless we went to 1985 // line 0 and came back, in which case it is not a new statement. 1986 unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine; 1987 if (DL.getLine() && DL.getLine() != OldLine) 1988 Flags |= DWARF2_FLAG_IS_STMT; 1989 1990 const MDNode *Scope = DL.getScope(); 1991 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); 1992 1993 // If we're not at line 0, remember this location. 1994 if (DL.getLine()) 1995 PrevInstLoc = DL; 1996 } 1997 1998 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) { 1999 // First known non-DBG_VALUE and non-frame setup location marks 2000 // the beginning of the function body. 2001 for (const auto &MBB : *MF) 2002 for (const auto &MI : MBB) 2003 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 2004 MI.getDebugLoc()) 2005 return MI.getDebugLoc(); 2006 return DebugLoc(); 2007 } 2008 2009 /// Register a source line with debug info. Returns the unique label that was 2010 /// emitted and which provides correspondence to the source line list. 2011 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col, 2012 const MDNode *S, unsigned Flags, unsigned CUID, 2013 uint16_t DwarfVersion, 2014 ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) { 2015 StringRef Fn; 2016 unsigned FileNo = 1; 2017 unsigned Discriminator = 0; 2018 if (auto *Scope = cast_or_null<DIScope>(S)) { 2019 Fn = Scope->getFilename(); 2020 if (Line != 0 && DwarfVersion >= 4) 2021 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope)) 2022 Discriminator = LBF->getDiscriminator(); 2023 2024 FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID]) 2025 .getOrCreateSourceID(Scope->getFile()); 2026 } 2027 Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0, 2028 Discriminator, Fn); 2029 } 2030 2031 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF, 2032 unsigned CUID) { 2033 // Get beginning of function. 2034 if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) { 2035 // Ensure the compile unit is created if the function is called before 2036 // beginFunction(). 2037 (void)getOrCreateDwarfCompileUnit( 2038 MF.getFunction().getSubprogram()->getUnit()); 2039 // We'd like to list the prologue as "not statements" but GDB behaves 2040 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. 2041 const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram(); 2042 ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT, 2043 CUID, getDwarfVersion(), getUnits()); 2044 return PrologEndLoc; 2045 } 2046 return DebugLoc(); 2047 } 2048 2049 // Gather pre-function debug information. Assumes being called immediately 2050 // after the function entry point has been emitted. 2051 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) { 2052 CurFn = MF; 2053 2054 auto *SP = MF->getFunction().getSubprogram(); 2055 assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode()); 2056 if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 2057 return; 2058 2059 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 2060 2061 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function 2062 // belongs to so that we add to the correct per-cu line table in the 2063 // non-asm case. 2064 if (Asm->OutStreamer->hasRawTextSupport()) 2065 // Use a single line table if we are generating assembly. 2066 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 2067 else 2068 Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID()); 2069 2070 // Record beginning of function. 2071 PrologEndLoc = emitInitialLocDirective( 2072 *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID()); 2073 } 2074 2075 void DwarfDebug::skippedNonDebugFunction() { 2076 // If we don't have a subprogram for this function then there will be a hole 2077 // in the range information. Keep note of this by setting the previously used 2078 // section to nullptr. 2079 PrevCU = nullptr; 2080 CurFn = nullptr; 2081 } 2082 2083 // Gather and emit post-function debug information. 2084 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) { 2085 const DISubprogram *SP = MF->getFunction().getSubprogram(); 2086 2087 assert(CurFn == MF && 2088 "endFunction should be called with the same function as beginFunction"); 2089 2090 // Set DwarfDwarfCompileUnitID in MCContext to default value. 2091 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 2092 2093 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 2094 assert(!FnScope || SP == FnScope->getScopeNode()); 2095 DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit()); 2096 if (TheCU.getCUNode()->isDebugDirectivesOnly()) { 2097 PrevLabel = nullptr; 2098 CurFn = nullptr; 2099 return; 2100 } 2101 2102 DenseSet<InlinedEntity> Processed; 2103 collectEntityInfo(TheCU, SP, Processed); 2104 2105 // Add the range of this function to the list of ranges for the CU. 2106 // With basic block sections, add ranges for all basic block sections. 2107 for (const auto &R : Asm->MBBSectionRanges) 2108 TheCU.addRange({R.second.BeginLabel, R.second.EndLabel}); 2109 2110 // Under -gmlt, skip building the subprogram if there are no inlined 2111 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram 2112 // is still needed as we need its source location. 2113 if (!TheCU.getCUNode()->getDebugInfoForProfiling() && 2114 TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly && 2115 LScopes.getAbstractScopesList().empty() && !IsDarwin) { 2116 assert(InfoHolder.getScopeVariables().empty()); 2117 PrevLabel = nullptr; 2118 CurFn = nullptr; 2119 return; 2120 } 2121 2122 #ifndef NDEBUG 2123 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size(); 2124 #endif 2125 // Construct abstract scopes. 2126 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { 2127 auto *SP = cast<DISubprogram>(AScope->getScopeNode()); 2128 for (const DINode *DN : SP->getRetainedNodes()) { 2129 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 2130 continue; 2131 2132 const MDNode *Scope = nullptr; 2133 if (auto *DV = dyn_cast<DILocalVariable>(DN)) 2134 Scope = DV->getScope(); 2135 else if (auto *DL = dyn_cast<DILabel>(DN)) 2136 Scope = DL->getScope(); 2137 else 2138 llvm_unreachable("Unexpected DI type!"); 2139 2140 // Collect info for variables/labels that were optimized out. 2141 ensureAbstractEntityIsCreated(TheCU, DN, Scope); 2142 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes 2143 && "ensureAbstractEntityIsCreated inserted abstract scopes"); 2144 } 2145 constructAbstractSubprogramScopeDIE(TheCU, AScope); 2146 } 2147 2148 ProcessedSPNodes.insert(SP); 2149 DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope); 2150 if (auto *SkelCU = TheCU.getSkeleton()) 2151 if (!LScopes.getAbstractScopesList().empty() && 2152 TheCU.getCUNode()->getSplitDebugInlining()) 2153 SkelCU->constructSubprogramScopeDIE(SP, FnScope); 2154 2155 // Construct call site entries. 2156 constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF); 2157 2158 // Clear debug info 2159 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the 2160 // DbgVariables except those that are also in AbstractVariables (since they 2161 // can be used cross-function) 2162 InfoHolder.getScopeVariables().clear(); 2163 InfoHolder.getScopeLabels().clear(); 2164 PrevLabel = nullptr; 2165 CurFn = nullptr; 2166 } 2167 2168 // Register a source line with debug info. Returns the unique label that was 2169 // emitted and which provides correspondence to the source line list. 2170 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, 2171 unsigned Flags) { 2172 ::recordSourceLine(*Asm, Line, Col, S, Flags, 2173 Asm->OutStreamer->getContext().getDwarfCompileUnitID(), 2174 getDwarfVersion(), getUnits()); 2175 } 2176 2177 //===----------------------------------------------------------------------===// 2178 // Emit Methods 2179 //===----------------------------------------------------------------------===// 2180 2181 // Emit the debug info section. 2182 void DwarfDebug::emitDebugInfo() { 2183 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2184 Holder.emitUnits(/* UseOffsets */ false); 2185 } 2186 2187 // Emit the abbreviation section. 2188 void DwarfDebug::emitAbbreviations() { 2189 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2190 2191 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); 2192 } 2193 2194 void DwarfDebug::emitStringOffsetsTableHeader() { 2195 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2196 Holder.getStringPool().emitStringOffsetsTableHeader( 2197 *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(), 2198 Holder.getStringOffsetsStartSym()); 2199 } 2200 2201 template <typename AccelTableT> 2202 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section, 2203 StringRef TableName) { 2204 Asm->OutStreamer->SwitchSection(Section); 2205 2206 // Emit the full data. 2207 emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol()); 2208 } 2209 2210 void DwarfDebug::emitAccelDebugNames() { 2211 // Don't emit anything if we have no compilation units to index. 2212 if (getUnits().empty()) 2213 return; 2214 2215 emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits()); 2216 } 2217 2218 // Emit visible names into a hashed accelerator table section. 2219 void DwarfDebug::emitAccelNames() { 2220 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), 2221 "Names"); 2222 } 2223 2224 // Emit objective C classes and categories into a hashed accelerator table 2225 // section. 2226 void DwarfDebug::emitAccelObjC() { 2227 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), 2228 "ObjC"); 2229 } 2230 2231 // Emit namespace dies into a hashed accelerator table. 2232 void DwarfDebug::emitAccelNamespaces() { 2233 emitAccel(AccelNamespace, 2234 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), 2235 "namespac"); 2236 } 2237 2238 // Emit type dies into a hashed accelerator table. 2239 void DwarfDebug::emitAccelTypes() { 2240 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), 2241 "types"); 2242 } 2243 2244 // Public name handling. 2245 // The format for the various pubnames: 2246 // 2247 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU 2248 // for the DIE that is named. 2249 // 2250 // gnu pubnames - offset/index value/name tuples where the offset is the offset 2251 // into the CU and the index value is computed according to the type of value 2252 // for the DIE that is named. 2253 // 2254 // For type units the offset is the offset of the skeleton DIE. For split dwarf 2255 // it's the offset within the debug_info/debug_types dwo section, however, the 2256 // reference in the pubname header doesn't change. 2257 2258 /// computeIndexValue - Compute the gdb index value for the DIE and CU. 2259 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, 2260 const DIE *Die) { 2261 // Entities that ended up only in a Type Unit reference the CU instead (since 2262 // the pub entry has offsets within the CU there's no real offset that can be 2263 // provided anyway). As it happens all such entities (namespaces and types, 2264 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out 2265 // not to be true it would be necessary to persist this information from the 2266 // point at which the entry is added to the index data structure - since by 2267 // the time the index is built from that, the original type/namespace DIE in a 2268 // type unit has already been destroyed so it can't be queried for properties 2269 // like tag, etc. 2270 if (Die->getTag() == dwarf::DW_TAG_compile_unit) 2271 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, 2272 dwarf::GIEL_EXTERNAL); 2273 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; 2274 2275 // We could have a specification DIE that has our most of our knowledge, 2276 // look for that now. 2277 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) { 2278 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry(); 2279 if (SpecDIE.findAttribute(dwarf::DW_AT_external)) 2280 Linkage = dwarf::GIEL_EXTERNAL; 2281 } else if (Die->findAttribute(dwarf::DW_AT_external)) 2282 Linkage = dwarf::GIEL_EXTERNAL; 2283 2284 switch (Die->getTag()) { 2285 case dwarf::DW_TAG_class_type: 2286 case dwarf::DW_TAG_structure_type: 2287 case dwarf::DW_TAG_union_type: 2288 case dwarf::DW_TAG_enumeration_type: 2289 return dwarf::PubIndexEntryDescriptor( 2290 dwarf::GIEK_TYPE, 2291 dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage()) 2292 ? dwarf::GIEL_EXTERNAL 2293 : dwarf::GIEL_STATIC); 2294 case dwarf::DW_TAG_typedef: 2295 case dwarf::DW_TAG_base_type: 2296 case dwarf::DW_TAG_subrange_type: 2297 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); 2298 case dwarf::DW_TAG_namespace: 2299 return dwarf::GIEK_TYPE; 2300 case dwarf::DW_TAG_subprogram: 2301 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); 2302 case dwarf::DW_TAG_variable: 2303 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); 2304 case dwarf::DW_TAG_enumerator: 2305 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, 2306 dwarf::GIEL_STATIC); 2307 default: 2308 return dwarf::GIEK_NONE; 2309 } 2310 } 2311 2312 /// emitDebugPubSections - Emit visible names and types into debug pubnames and 2313 /// pubtypes sections. 2314 void DwarfDebug::emitDebugPubSections() { 2315 for (const auto &NU : CUMap) { 2316 DwarfCompileUnit *TheU = NU.second; 2317 if (!TheU->hasDwarfPubSections()) 2318 continue; 2319 2320 bool GnuStyle = TheU->getCUNode()->getNameTableKind() == 2321 DICompileUnit::DebugNameTableKind::GNU; 2322 2323 Asm->OutStreamer->SwitchSection( 2324 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() 2325 : Asm->getObjFileLowering().getDwarfPubNamesSection()); 2326 emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames()); 2327 2328 Asm->OutStreamer->SwitchSection( 2329 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() 2330 : Asm->getObjFileLowering().getDwarfPubTypesSection()); 2331 emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes()); 2332 } 2333 } 2334 2335 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) { 2336 if (useSectionsAsReferences()) 2337 Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(), 2338 CU.getDebugSectionOffset()); 2339 else 2340 Asm->emitDwarfSymbolReference(CU.getLabelBegin()); 2341 } 2342 2343 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name, 2344 DwarfCompileUnit *TheU, 2345 const StringMap<const DIE *> &Globals) { 2346 if (auto *Skeleton = TheU->getSkeleton()) 2347 TheU = Skeleton; 2348 2349 // Emit the header. 2350 MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin"); 2351 MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end"); 2352 Asm->emitDwarfUnitLength(EndLabel, BeginLabel, 2353 "Length of Public " + Name + " Info"); 2354 2355 Asm->OutStreamer->emitLabel(BeginLabel); 2356 2357 Asm->OutStreamer->AddComment("DWARF Version"); 2358 Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION); 2359 2360 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info"); 2361 emitSectionReference(*TheU); 2362 2363 Asm->OutStreamer->AddComment("Compilation Unit Length"); 2364 Asm->emitDwarfLengthOrOffset(TheU->getLength()); 2365 2366 // Emit the pubnames for this compilation unit. 2367 for (const auto &GI : Globals) { 2368 const char *Name = GI.getKeyData(); 2369 const DIE *Entity = GI.second; 2370 2371 Asm->OutStreamer->AddComment("DIE offset"); 2372 Asm->emitDwarfLengthOrOffset(Entity->getOffset()); 2373 2374 if (GnuStyle) { 2375 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); 2376 Asm->OutStreamer->AddComment( 2377 Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + 2378 ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); 2379 Asm->emitInt8(Desc.toBits()); 2380 } 2381 2382 Asm->OutStreamer->AddComment("External Name"); 2383 Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1)); 2384 } 2385 2386 Asm->OutStreamer->AddComment("End Mark"); 2387 Asm->emitDwarfLengthOrOffset(0); 2388 Asm->OutStreamer->emitLabel(EndLabel); 2389 } 2390 2391 /// Emit null-terminated strings into a debug str section. 2392 void DwarfDebug::emitDebugStr() { 2393 MCSection *StringOffsetsSection = nullptr; 2394 if (useSegmentedStringOffsetsTable()) { 2395 emitStringOffsetsTableHeader(); 2396 StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection(); 2397 } 2398 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2399 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(), 2400 StringOffsetsSection, /* UseRelativeOffsets = */ true); 2401 } 2402 2403 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, 2404 const DebugLocStream::Entry &Entry, 2405 const DwarfCompileUnit *CU) { 2406 auto &&Comments = DebugLocs.getComments(Entry); 2407 auto Comment = Comments.begin(); 2408 auto End = Comments.end(); 2409 2410 // The expressions are inserted into a byte stream rather early (see 2411 // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that 2412 // need to reference a base_type DIE the offset of that DIE is not yet known. 2413 // To deal with this we instead insert a placeholder early and then extract 2414 // it here and replace it with the real reference. 2415 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2416 DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(), 2417 DebugLocs.getBytes(Entry).size()), 2418 Asm->getDataLayout().isLittleEndian(), PtrSize); 2419 DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat()); 2420 2421 using Encoding = DWARFExpression::Operation::Encoding; 2422 uint64_t Offset = 0; 2423 for (auto &Op : Expr) { 2424 assert(Op.getCode() != dwarf::DW_OP_const_type && 2425 "3 operand ops not yet supported"); 2426 Streamer.EmitInt8(Op.getCode(), Comment != End ? *(Comment++) : ""); 2427 Offset++; 2428 for (unsigned I = 0; I < 2; ++I) { 2429 if (Op.getDescription().Op[I] == Encoding::SizeNA) 2430 continue; 2431 if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) { 2432 uint64_t Offset = 2433 CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset(); 2434 assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit"); 2435 Streamer.emitULEB128(Offset, "", ULEB128PadSize); 2436 // Make sure comments stay aligned. 2437 for (unsigned J = 0; J < ULEB128PadSize; ++J) 2438 if (Comment != End) 2439 Comment++; 2440 } else { 2441 for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J) 2442 Streamer.EmitInt8(Data.getData()[J], Comment != End ? *(Comment++) : ""); 2443 } 2444 Offset = Op.getOperandEndOffset(I); 2445 } 2446 assert(Offset == Op.getEndOffset()); 2447 } 2448 } 2449 2450 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT, 2451 const DbgValueLoc &Value, 2452 DwarfExpression &DwarfExpr) { 2453 auto *DIExpr = Value.getExpression(); 2454 DIExpressionCursor ExprCursor(DIExpr); 2455 DwarfExpr.addFragmentOffset(DIExpr); 2456 // Regular entry. 2457 if (Value.isInt()) { 2458 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed || 2459 BT->getEncoding() == dwarf::DW_ATE_signed_char)) 2460 DwarfExpr.addSignedConstant(Value.getInt()); 2461 else 2462 DwarfExpr.addUnsignedConstant(Value.getInt()); 2463 } else if (Value.isLocation()) { 2464 MachineLocation Location = Value.getLoc(); 2465 DwarfExpr.setLocation(Location, DIExpr); 2466 DIExpressionCursor Cursor(DIExpr); 2467 2468 if (DIExpr->isEntryValue()) 2469 DwarfExpr.beginEntryValueExpression(Cursor); 2470 2471 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2472 if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) 2473 return; 2474 return DwarfExpr.addExpression(std::move(Cursor)); 2475 } else if (Value.isTargetIndexLocation()) { 2476 TargetIndexLocation Loc = Value.getTargetIndexLocation(); 2477 // TODO TargetIndexLocation is a target-independent. Currently only the WebAssembly-specific 2478 // encoding is supported. 2479 DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset)); 2480 DwarfExpr.addExpression(std::move(ExprCursor)); 2481 return; 2482 } else if (Value.isConstantFP()) { 2483 if (AP.getDwarfVersion() >= 4 && !AP.getDwarfDebug()->tuneForSCE()) { 2484 DwarfExpr.addConstantFP(Value.getConstantFP()->getValueAPF(), AP); 2485 return; 2486 } else if (Value.getConstantFP() 2487 ->getValueAPF() 2488 .bitcastToAPInt() 2489 .getBitWidth() <= 64 /*bits*/) 2490 DwarfExpr.addUnsignedConstant( 2491 Value.getConstantFP()->getValueAPF().bitcastToAPInt()); 2492 else 2493 LLVM_DEBUG( 2494 dbgs() 2495 << "Skipped DwarfExpression creation for ConstantFP of size" 2496 << Value.getConstantFP()->getValueAPF().bitcastToAPInt().getBitWidth() 2497 << " bits\n"); 2498 } 2499 DwarfExpr.addExpression(std::move(ExprCursor)); 2500 } 2501 2502 void DebugLocEntry::finalize(const AsmPrinter &AP, 2503 DebugLocStream::ListBuilder &List, 2504 const DIBasicType *BT, 2505 DwarfCompileUnit &TheCU) { 2506 assert(!Values.empty() && 2507 "location list entries without values are redundant"); 2508 assert(Begin != End && "unexpected location list entry with empty range"); 2509 DebugLocStream::EntryBuilder Entry(List, Begin, End); 2510 BufferByteStreamer Streamer = Entry.getStreamer(); 2511 DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU); 2512 const DbgValueLoc &Value = Values[0]; 2513 if (Value.isFragment()) { 2514 // Emit all fragments that belong to the same variable and range. 2515 assert(llvm::all_of(Values, [](DbgValueLoc P) { 2516 return P.isFragment(); 2517 }) && "all values are expected to be fragments"); 2518 assert(llvm::is_sorted(Values) && "fragments are expected to be sorted"); 2519 2520 for (const auto &Fragment : Values) 2521 DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr); 2522 2523 } else { 2524 assert(Values.size() == 1 && "only fragments may have >1 value"); 2525 DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr); 2526 } 2527 DwarfExpr.finalize(); 2528 if (DwarfExpr.TagOffset) 2529 List.setTagOffset(*DwarfExpr.TagOffset); 2530 } 2531 2532 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry, 2533 const DwarfCompileUnit *CU) { 2534 // Emit the size. 2535 Asm->OutStreamer->AddComment("Loc expr size"); 2536 if (getDwarfVersion() >= 5) 2537 Asm->emitULEB128(DebugLocs.getBytes(Entry).size()); 2538 else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max()) 2539 Asm->emitInt16(DebugLocs.getBytes(Entry).size()); 2540 else { 2541 // The entry is too big to fit into 16 bit, drop it as there is nothing we 2542 // can do. 2543 Asm->emitInt16(0); 2544 return; 2545 } 2546 // Emit the entry. 2547 APByteStreamer Streamer(*Asm); 2548 emitDebugLocEntry(Streamer, Entry, CU); 2549 } 2550 2551 // Emit the header of a DWARF 5 range list table list table. Returns the symbol 2552 // that designates the end of the table for the caller to emit when the table is 2553 // complete. 2554 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm, 2555 const DwarfFile &Holder) { 2556 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2557 2558 Asm->OutStreamer->AddComment("Offset entry count"); 2559 Asm->emitInt32(Holder.getRangeLists().size()); 2560 Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym()); 2561 2562 for (const RangeSpanList &List : Holder.getRangeLists()) 2563 Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(), 2564 Asm->getDwarfOffsetByteSize()); 2565 2566 return TableEnd; 2567 } 2568 2569 // Emit the header of a DWARF 5 locations list table. Returns the symbol that 2570 // designates the end of the table for the caller to emit when the table is 2571 // complete. 2572 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm, 2573 const DwarfDebug &DD) { 2574 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2575 2576 const auto &DebugLocs = DD.getDebugLocs(); 2577 2578 Asm->OutStreamer->AddComment("Offset entry count"); 2579 Asm->emitInt32(DebugLocs.getLists().size()); 2580 Asm->OutStreamer->emitLabel(DebugLocs.getSym()); 2581 2582 for (const auto &List : DebugLocs.getLists()) 2583 Asm->emitLabelDifference(List.Label, DebugLocs.getSym(), 2584 Asm->getDwarfOffsetByteSize()); 2585 2586 return TableEnd; 2587 } 2588 2589 template <typename Ranges, typename PayloadEmitter> 2590 static void emitRangeList( 2591 DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R, 2592 const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair, 2593 unsigned StartxLength, unsigned EndOfList, 2594 StringRef (*StringifyEnum)(unsigned), 2595 bool ShouldUseBaseAddress, 2596 PayloadEmitter EmitPayload) { 2597 2598 auto Size = Asm->MAI->getCodePointerSize(); 2599 bool UseDwarf5 = DD.getDwarfVersion() >= 5; 2600 2601 // Emit our symbol so we can find the beginning of the range. 2602 Asm->OutStreamer->emitLabel(Sym); 2603 2604 // Gather all the ranges that apply to the same section so they can share 2605 // a base address entry. 2606 MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges; 2607 2608 for (const auto &Range : R) 2609 SectionRanges[&Range.Begin->getSection()].push_back(&Range); 2610 2611 const MCSymbol *CUBase = CU.getBaseAddress(); 2612 bool BaseIsSet = false; 2613 for (const auto &P : SectionRanges) { 2614 auto *Base = CUBase; 2615 if (!Base && ShouldUseBaseAddress) { 2616 const MCSymbol *Begin = P.second.front()->Begin; 2617 const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection()); 2618 if (!UseDwarf5) { 2619 Base = NewBase; 2620 BaseIsSet = true; 2621 Asm->OutStreamer->emitIntValue(-1, Size); 2622 Asm->OutStreamer->AddComment(" base address"); 2623 Asm->OutStreamer->emitSymbolValue(Base, Size); 2624 } else if (NewBase != Begin || P.second.size() > 1) { 2625 // Only use a base address if 2626 // * the existing pool address doesn't match (NewBase != Begin) 2627 // * or, there's more than one entry to share the base address 2628 Base = NewBase; 2629 BaseIsSet = true; 2630 Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx)); 2631 Asm->emitInt8(BaseAddressx); 2632 Asm->OutStreamer->AddComment(" base address index"); 2633 Asm->emitULEB128(DD.getAddressPool().getIndex(Base)); 2634 } 2635 } else if (BaseIsSet && !UseDwarf5) { 2636 BaseIsSet = false; 2637 assert(!Base); 2638 Asm->OutStreamer->emitIntValue(-1, Size); 2639 Asm->OutStreamer->emitIntValue(0, Size); 2640 } 2641 2642 for (const auto *RS : P.second) { 2643 const MCSymbol *Begin = RS->Begin; 2644 const MCSymbol *End = RS->End; 2645 assert(Begin && "Range without a begin symbol?"); 2646 assert(End && "Range without an end symbol?"); 2647 if (Base) { 2648 if (UseDwarf5) { 2649 // Emit offset_pair when we have a base. 2650 Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair)); 2651 Asm->emitInt8(OffsetPair); 2652 Asm->OutStreamer->AddComment(" starting offset"); 2653 Asm->emitLabelDifferenceAsULEB128(Begin, Base); 2654 Asm->OutStreamer->AddComment(" ending offset"); 2655 Asm->emitLabelDifferenceAsULEB128(End, Base); 2656 } else { 2657 Asm->emitLabelDifference(Begin, Base, Size); 2658 Asm->emitLabelDifference(End, Base, Size); 2659 } 2660 } else if (UseDwarf5) { 2661 Asm->OutStreamer->AddComment(StringifyEnum(StartxLength)); 2662 Asm->emitInt8(StartxLength); 2663 Asm->OutStreamer->AddComment(" start index"); 2664 Asm->emitULEB128(DD.getAddressPool().getIndex(Begin)); 2665 Asm->OutStreamer->AddComment(" length"); 2666 Asm->emitLabelDifferenceAsULEB128(End, Begin); 2667 } else { 2668 Asm->OutStreamer->emitSymbolValue(Begin, Size); 2669 Asm->OutStreamer->emitSymbolValue(End, Size); 2670 } 2671 EmitPayload(*RS); 2672 } 2673 } 2674 2675 if (UseDwarf5) { 2676 Asm->OutStreamer->AddComment(StringifyEnum(EndOfList)); 2677 Asm->emitInt8(EndOfList); 2678 } else { 2679 // Terminate the list with two 0 values. 2680 Asm->OutStreamer->emitIntValue(0, Size); 2681 Asm->OutStreamer->emitIntValue(0, Size); 2682 } 2683 } 2684 2685 // Handles emission of both debug_loclist / debug_loclist.dwo 2686 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) { 2687 emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List), 2688 *List.CU, dwarf::DW_LLE_base_addressx, 2689 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length, 2690 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString, 2691 /* ShouldUseBaseAddress */ true, 2692 [&](const DebugLocStream::Entry &E) { 2693 DD.emitDebugLocEntryLocation(E, List.CU); 2694 }); 2695 } 2696 2697 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) { 2698 if (DebugLocs.getLists().empty()) 2699 return; 2700 2701 Asm->OutStreamer->SwitchSection(Sec); 2702 2703 MCSymbol *TableEnd = nullptr; 2704 if (getDwarfVersion() >= 5) 2705 TableEnd = emitLoclistsTableHeader(Asm, *this); 2706 2707 for (const auto &List : DebugLocs.getLists()) 2708 emitLocList(*this, Asm, List); 2709 2710 if (TableEnd) 2711 Asm->OutStreamer->emitLabel(TableEnd); 2712 } 2713 2714 // Emit locations into the .debug_loc/.debug_loclists section. 2715 void DwarfDebug::emitDebugLoc() { 2716 emitDebugLocImpl( 2717 getDwarfVersion() >= 5 2718 ? Asm->getObjFileLowering().getDwarfLoclistsSection() 2719 : Asm->getObjFileLowering().getDwarfLocSection()); 2720 } 2721 2722 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section. 2723 void DwarfDebug::emitDebugLocDWO() { 2724 if (getDwarfVersion() >= 5) { 2725 emitDebugLocImpl( 2726 Asm->getObjFileLowering().getDwarfLoclistsDWOSection()); 2727 2728 return; 2729 } 2730 2731 for (const auto &List : DebugLocs.getLists()) { 2732 Asm->OutStreamer->SwitchSection( 2733 Asm->getObjFileLowering().getDwarfLocDWOSection()); 2734 Asm->OutStreamer->emitLabel(List.Label); 2735 2736 for (const auto &Entry : DebugLocs.getEntries(List)) { 2737 // GDB only supports startx_length in pre-standard split-DWARF. 2738 // (in v5 standard loclists, it currently* /only/ supports base_address + 2739 // offset_pair, so the implementations can't really share much since they 2740 // need to use different representations) 2741 // * as of October 2018, at least 2742 // 2743 // In v5 (see emitLocList), this uses SectionLabels to reuse existing 2744 // addresses in the address pool to minimize object size/relocations. 2745 Asm->emitInt8(dwarf::DW_LLE_startx_length); 2746 unsigned idx = AddrPool.getIndex(Entry.Begin); 2747 Asm->emitULEB128(idx); 2748 // Also the pre-standard encoding is slightly different, emitting this as 2749 // an address-length entry here, but its a ULEB128 in DWARFv5 loclists. 2750 Asm->emitLabelDifference(Entry.End, Entry.Begin, 4); 2751 emitDebugLocEntryLocation(Entry, List.CU); 2752 } 2753 Asm->emitInt8(dwarf::DW_LLE_end_of_list); 2754 } 2755 } 2756 2757 struct ArangeSpan { 2758 const MCSymbol *Start, *End; 2759 }; 2760 2761 // Emit a debug aranges section, containing a CU lookup for any 2762 // address we can tie back to a CU. 2763 void DwarfDebug::emitDebugARanges() { 2764 // Provides a unique id per text section. 2765 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap; 2766 2767 // Filter labels by section. 2768 for (const SymbolCU &SCU : ArangeLabels) { 2769 if (SCU.Sym->isInSection()) { 2770 // Make a note of this symbol and it's section. 2771 MCSection *Section = &SCU.Sym->getSection(); 2772 if (!Section->getKind().isMetadata()) 2773 SectionMap[Section].push_back(SCU); 2774 } else { 2775 // Some symbols (e.g. common/bss on mach-o) can have no section but still 2776 // appear in the output. This sucks as we rely on sections to build 2777 // arange spans. We can do it without, but it's icky. 2778 SectionMap[nullptr].push_back(SCU); 2779 } 2780 } 2781 2782 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans; 2783 2784 for (auto &I : SectionMap) { 2785 MCSection *Section = I.first; 2786 SmallVector<SymbolCU, 8> &List = I.second; 2787 if (List.size() < 1) 2788 continue; 2789 2790 // If we have no section (e.g. common), just write out 2791 // individual spans for each symbol. 2792 if (!Section) { 2793 for (const SymbolCU &Cur : List) { 2794 ArangeSpan Span; 2795 Span.Start = Cur.Sym; 2796 Span.End = nullptr; 2797 assert(Cur.CU); 2798 Spans[Cur.CU].push_back(Span); 2799 } 2800 continue; 2801 } 2802 2803 // Sort the symbols by offset within the section. 2804 llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) { 2805 unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0; 2806 unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0; 2807 2808 // Symbols with no order assigned should be placed at the end. 2809 // (e.g. section end labels) 2810 if (IA == 0) 2811 return false; 2812 if (IB == 0) 2813 return true; 2814 return IA < IB; 2815 }); 2816 2817 // Insert a final terminator. 2818 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section))); 2819 2820 // Build spans between each label. 2821 const MCSymbol *StartSym = List[0].Sym; 2822 for (size_t n = 1, e = List.size(); n < e; n++) { 2823 const SymbolCU &Prev = List[n - 1]; 2824 const SymbolCU &Cur = List[n]; 2825 2826 // Try and build the longest span we can within the same CU. 2827 if (Cur.CU != Prev.CU) { 2828 ArangeSpan Span; 2829 Span.Start = StartSym; 2830 Span.End = Cur.Sym; 2831 assert(Prev.CU); 2832 Spans[Prev.CU].push_back(Span); 2833 StartSym = Cur.Sym; 2834 } 2835 } 2836 } 2837 2838 // Start the dwarf aranges section. 2839 Asm->OutStreamer->SwitchSection( 2840 Asm->getObjFileLowering().getDwarfARangesSection()); 2841 2842 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2843 2844 // Build a list of CUs used. 2845 std::vector<DwarfCompileUnit *> CUs; 2846 for (const auto &it : Spans) { 2847 DwarfCompileUnit *CU = it.first; 2848 CUs.push_back(CU); 2849 } 2850 2851 // Sort the CU list (again, to ensure consistent output order). 2852 llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) { 2853 return A->getUniqueID() < B->getUniqueID(); 2854 }); 2855 2856 // Emit an arange table for each CU we used. 2857 for (DwarfCompileUnit *CU : CUs) { 2858 std::vector<ArangeSpan> &List = Spans[CU]; 2859 2860 // Describe the skeleton CU's offset and length, not the dwo file's. 2861 if (auto *Skel = CU->getSkeleton()) 2862 CU = Skel; 2863 2864 // Emit size of content not including length itself. 2865 unsigned ContentSize = 2866 sizeof(int16_t) + // DWARF ARange version number 2867 Asm->getDwarfOffsetByteSize() + // Offset of CU in the .debug_info 2868 // section 2869 sizeof(int8_t) + // Pointer Size (in bytes) 2870 sizeof(int8_t); // Segment Size (in bytes) 2871 2872 unsigned TupleSize = PtrSize * 2; 2873 2874 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. 2875 unsigned Padding = offsetToAlignment( 2876 Asm->getUnitLengthFieldByteSize() + ContentSize, Align(TupleSize)); 2877 2878 ContentSize += Padding; 2879 ContentSize += (List.size() + 1) * TupleSize; 2880 2881 // For each compile unit, write the list of spans it covers. 2882 Asm->emitDwarfUnitLength(ContentSize, "Length of ARange Set"); 2883 Asm->OutStreamer->AddComment("DWARF Arange version number"); 2884 Asm->emitInt16(dwarf::DW_ARANGES_VERSION); 2885 Asm->OutStreamer->AddComment("Offset Into Debug Info Section"); 2886 emitSectionReference(*CU); 2887 Asm->OutStreamer->AddComment("Address Size (in bytes)"); 2888 Asm->emitInt8(PtrSize); 2889 Asm->OutStreamer->AddComment("Segment Size (in bytes)"); 2890 Asm->emitInt8(0); 2891 2892 Asm->OutStreamer->emitFill(Padding, 0xff); 2893 2894 for (const ArangeSpan &Span : List) { 2895 Asm->emitLabelReference(Span.Start, PtrSize); 2896 2897 // Calculate the size as being from the span start to it's end. 2898 if (Span.End) { 2899 Asm->emitLabelDifference(Span.End, Span.Start, PtrSize); 2900 } else { 2901 // For symbols without an end marker (e.g. common), we 2902 // write a single arange entry containing just that one symbol. 2903 uint64_t Size = SymSize[Span.Start]; 2904 if (Size == 0) 2905 Size = 1; 2906 2907 Asm->OutStreamer->emitIntValue(Size, PtrSize); 2908 } 2909 } 2910 2911 Asm->OutStreamer->AddComment("ARange terminator"); 2912 Asm->OutStreamer->emitIntValue(0, PtrSize); 2913 Asm->OutStreamer->emitIntValue(0, PtrSize); 2914 } 2915 } 2916 2917 /// Emit a single range list. We handle both DWARF v5 and earlier. 2918 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm, 2919 const RangeSpanList &List) { 2920 emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU, 2921 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair, 2922 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list, 2923 llvm::dwarf::RangeListEncodingString, 2924 List.CU->getCUNode()->getRangesBaseAddress() || 2925 DD.getDwarfVersion() >= 5, 2926 [](auto) {}); 2927 } 2928 2929 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) { 2930 if (Holder.getRangeLists().empty()) 2931 return; 2932 2933 assert(useRangesSection()); 2934 assert(!CUMap.empty()); 2935 assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { 2936 return !Pair.second->getCUNode()->isDebugDirectivesOnly(); 2937 })); 2938 2939 Asm->OutStreamer->SwitchSection(Section); 2940 2941 MCSymbol *TableEnd = nullptr; 2942 if (getDwarfVersion() >= 5) 2943 TableEnd = emitRnglistsTableHeader(Asm, Holder); 2944 2945 for (const RangeSpanList &List : Holder.getRangeLists()) 2946 emitRangeList(*this, Asm, List); 2947 2948 if (TableEnd) 2949 Asm->OutStreamer->emitLabel(TableEnd); 2950 } 2951 2952 /// Emit address ranges into the .debug_ranges section or into the DWARF v5 2953 /// .debug_rnglists section. 2954 void DwarfDebug::emitDebugRanges() { 2955 const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2956 2957 emitDebugRangesImpl(Holder, 2958 getDwarfVersion() >= 5 2959 ? Asm->getObjFileLowering().getDwarfRnglistsSection() 2960 : Asm->getObjFileLowering().getDwarfRangesSection()); 2961 } 2962 2963 void DwarfDebug::emitDebugRangesDWO() { 2964 emitDebugRangesImpl(InfoHolder, 2965 Asm->getObjFileLowering().getDwarfRnglistsDWOSection()); 2966 } 2967 2968 /// Emit the header of a DWARF 5 macro section, or the GNU extension for 2969 /// DWARF 4. 2970 static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD, 2971 const DwarfCompileUnit &CU, uint16_t DwarfVersion) { 2972 enum HeaderFlagMask { 2973 #define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID, 2974 #include "llvm/BinaryFormat/Dwarf.def" 2975 }; 2976 Asm->OutStreamer->AddComment("Macro information version"); 2977 Asm->emitInt16(DwarfVersion >= 5 ? DwarfVersion : 4); 2978 // We emit the line offset flag unconditionally here, since line offset should 2979 // be mostly present. 2980 if (Asm->isDwarf64()) { 2981 Asm->OutStreamer->AddComment("Flags: 64 bit, debug_line_offset present"); 2982 Asm->emitInt8(MACRO_FLAG_OFFSET_SIZE | MACRO_FLAG_DEBUG_LINE_OFFSET); 2983 } else { 2984 Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present"); 2985 Asm->emitInt8(MACRO_FLAG_DEBUG_LINE_OFFSET); 2986 } 2987 Asm->OutStreamer->AddComment("debug_line_offset"); 2988 if (DD.useSplitDwarf()) 2989 Asm->emitDwarfLengthOrOffset(0); 2990 else 2991 Asm->emitDwarfSymbolReference(CU.getLineTableStartSym()); 2992 } 2993 2994 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) { 2995 for (auto *MN : Nodes) { 2996 if (auto *M = dyn_cast<DIMacro>(MN)) 2997 emitMacro(*M); 2998 else if (auto *F = dyn_cast<DIMacroFile>(MN)) 2999 emitMacroFile(*F, U); 3000 else 3001 llvm_unreachable("Unexpected DI type!"); 3002 } 3003 } 3004 3005 void DwarfDebug::emitMacro(DIMacro &M) { 3006 StringRef Name = M.getName(); 3007 StringRef Value = M.getValue(); 3008 3009 // There should be one space between the macro name and the macro value in 3010 // define entries. In undef entries, only the macro name is emitted. 3011 std::string Str = Value.empty() ? Name.str() : (Name + " " + Value).str(); 3012 3013 if (UseDebugMacroSection) { 3014 if (getDwarfVersion() >= 5) { 3015 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define 3016 ? dwarf::DW_MACRO_define_strx 3017 : dwarf::DW_MACRO_undef_strx; 3018 Asm->OutStreamer->AddComment(dwarf::MacroString(Type)); 3019 Asm->emitULEB128(Type); 3020 Asm->OutStreamer->AddComment("Line Number"); 3021 Asm->emitULEB128(M.getLine()); 3022 Asm->OutStreamer->AddComment("Macro String"); 3023 Asm->emitULEB128( 3024 InfoHolder.getStringPool().getIndexedEntry(*Asm, Str).getIndex()); 3025 } else { 3026 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define 3027 ? dwarf::DW_MACRO_GNU_define_indirect 3028 : dwarf::DW_MACRO_GNU_undef_indirect; 3029 Asm->OutStreamer->AddComment(dwarf::GnuMacroString(Type)); 3030 Asm->emitULEB128(Type); 3031 Asm->OutStreamer->AddComment("Line Number"); 3032 Asm->emitULEB128(M.getLine()); 3033 Asm->OutStreamer->AddComment("Macro String"); 3034 Asm->emitDwarfSymbolReference( 3035 InfoHolder.getStringPool().getEntry(*Asm, Str).getSymbol()); 3036 } 3037 } else { 3038 Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType())); 3039 Asm->emitULEB128(M.getMacinfoType()); 3040 Asm->OutStreamer->AddComment("Line Number"); 3041 Asm->emitULEB128(M.getLine()); 3042 Asm->OutStreamer->AddComment("Macro String"); 3043 Asm->OutStreamer->emitBytes(Str); 3044 Asm->emitInt8('\0'); 3045 } 3046 } 3047 3048 void DwarfDebug::emitMacroFileImpl( 3049 DIMacroFile &MF, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile, 3050 StringRef (*MacroFormToString)(unsigned Form)) { 3051 3052 Asm->OutStreamer->AddComment(MacroFormToString(StartFile)); 3053 Asm->emitULEB128(StartFile); 3054 Asm->OutStreamer->AddComment("Line Number"); 3055 Asm->emitULEB128(MF.getLine()); 3056 Asm->OutStreamer->AddComment("File Number"); 3057 DIFile &F = *MF.getFile(); 3058 if (useSplitDwarf()) 3059 Asm->emitULEB128(getDwoLineTable(U)->getFile( 3060 F.getDirectory(), F.getFilename(), getMD5AsBytes(&F), 3061 Asm->OutContext.getDwarfVersion(), F.getSource())); 3062 else 3063 Asm->emitULEB128(U.getOrCreateSourceID(&F)); 3064 handleMacroNodes(MF.getElements(), U); 3065 Asm->OutStreamer->AddComment(MacroFormToString(EndFile)); 3066 Asm->emitULEB128(EndFile); 3067 } 3068 3069 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) { 3070 // DWARFv5 macro and DWARFv4 macinfo share some common encodings, 3071 // so for readibility/uniformity, We are explicitly emitting those. 3072 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file); 3073 if (UseDebugMacroSection) 3074 emitMacroFileImpl( 3075 F, U, dwarf::DW_MACRO_start_file, dwarf::DW_MACRO_end_file, 3076 (getDwarfVersion() >= 5) ? dwarf::MacroString : dwarf::GnuMacroString); 3077 else 3078 emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file, 3079 dwarf::DW_MACINFO_end_file, dwarf::MacinfoString); 3080 } 3081 3082 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) { 3083 for (const auto &P : CUMap) { 3084 auto &TheCU = *P.second; 3085 auto *SkCU = TheCU.getSkeleton(); 3086 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 3087 auto *CUNode = cast<DICompileUnit>(P.first); 3088 DIMacroNodeArray Macros = CUNode->getMacros(); 3089 if (Macros.empty()) 3090 continue; 3091 Asm->OutStreamer->SwitchSection(Section); 3092 Asm->OutStreamer->emitLabel(U.getMacroLabelBegin()); 3093 if (UseDebugMacroSection) 3094 emitMacroHeader(Asm, *this, U, getDwarfVersion()); 3095 handleMacroNodes(Macros, U); 3096 Asm->OutStreamer->AddComment("End Of Macro List Mark"); 3097 Asm->emitInt8(0); 3098 } 3099 } 3100 3101 /// Emit macros into a debug macinfo/macro section. 3102 void DwarfDebug::emitDebugMacinfo() { 3103 auto &ObjLower = Asm->getObjFileLowering(); 3104 emitDebugMacinfoImpl(UseDebugMacroSection 3105 ? ObjLower.getDwarfMacroSection() 3106 : ObjLower.getDwarfMacinfoSection()); 3107 } 3108 3109 void DwarfDebug::emitDebugMacinfoDWO() { 3110 auto &ObjLower = Asm->getObjFileLowering(); 3111 emitDebugMacinfoImpl(UseDebugMacroSection 3112 ? ObjLower.getDwarfMacroDWOSection() 3113 : ObjLower.getDwarfMacinfoDWOSection()); 3114 } 3115 3116 // DWARF5 Experimental Separate Dwarf emitters. 3117 3118 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die, 3119 std::unique_ptr<DwarfCompileUnit> NewU) { 3120 3121 if (!CompilationDir.empty()) 3122 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 3123 addGnuPubAttributes(*NewU, Die); 3124 3125 SkeletonHolder.addUnit(std::move(NewU)); 3126 } 3127 3128 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) { 3129 3130 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 3131 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder, 3132 UnitKind::Skeleton); 3133 DwarfCompileUnit &NewCU = *OwnedUnit; 3134 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 3135 3136 NewCU.initStmtList(); 3137 3138 if (useSegmentedStringOffsetsTable()) 3139 NewCU.addStringOffsetsStart(); 3140 3141 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit)); 3142 3143 return NewCU; 3144 } 3145 3146 // Emit the .debug_info.dwo section for separated dwarf. This contains the 3147 // compile units that would normally be in debug_info. 3148 void DwarfDebug::emitDebugInfoDWO() { 3149 assert(useSplitDwarf() && "No split dwarf debug info?"); 3150 // Don't emit relocations into the dwo file. 3151 InfoHolder.emitUnits(/* UseOffsets */ true); 3152 } 3153 3154 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the 3155 // abbreviations for the .debug_info.dwo section. 3156 void DwarfDebug::emitDebugAbbrevDWO() { 3157 assert(useSplitDwarf() && "No split dwarf?"); 3158 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection()); 3159 } 3160 3161 void DwarfDebug::emitDebugLineDWO() { 3162 assert(useSplitDwarf() && "No split dwarf?"); 3163 SplitTypeUnitFileTable.Emit( 3164 *Asm->OutStreamer, MCDwarfLineTableParams(), 3165 Asm->getObjFileLowering().getDwarfLineDWOSection()); 3166 } 3167 3168 void DwarfDebug::emitStringOffsetsTableHeaderDWO() { 3169 assert(useSplitDwarf() && "No split dwarf?"); 3170 InfoHolder.getStringPool().emitStringOffsetsTableHeader( 3171 *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(), 3172 InfoHolder.getStringOffsetsStartSym()); 3173 } 3174 3175 // Emit the .debug_str.dwo section for separated dwarf. This contains the 3176 // string section and is identical in format to traditional .debug_str 3177 // sections. 3178 void DwarfDebug::emitDebugStrDWO() { 3179 if (useSegmentedStringOffsetsTable()) 3180 emitStringOffsetsTableHeaderDWO(); 3181 assert(useSplitDwarf() && "No split dwarf?"); 3182 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection(); 3183 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), 3184 OffSec, /* UseRelativeOffsets = */ false); 3185 } 3186 3187 // Emit address pool. 3188 void DwarfDebug::emitDebugAddr() { 3189 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection()); 3190 } 3191 3192 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) { 3193 if (!useSplitDwarf()) 3194 return nullptr; 3195 const DICompileUnit *DIUnit = CU.getCUNode(); 3196 SplitTypeUnitFileTable.maybeSetRootFile( 3197 DIUnit->getDirectory(), DIUnit->getFilename(), 3198 getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource()); 3199 return &SplitTypeUnitFileTable; 3200 } 3201 3202 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) { 3203 MD5 Hash; 3204 Hash.update(Identifier); 3205 // ... take the least significant 8 bytes and return those. Our MD5 3206 // implementation always returns its results in little endian, so we actually 3207 // need the "high" word. 3208 MD5::MD5Result Result; 3209 Hash.final(Result); 3210 return Result.high(); 3211 } 3212 3213 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU, 3214 StringRef Identifier, DIE &RefDie, 3215 const DICompositeType *CTy) { 3216 // Fast path if we're building some type units and one has already used the 3217 // address pool we know we're going to throw away all this work anyway, so 3218 // don't bother building dependent types. 3219 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed()) 3220 return; 3221 3222 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0)); 3223 if (!Ins.second) { 3224 CU.addDIETypeSignature(RefDie, Ins.first->second); 3225 return; 3226 } 3227 3228 bool TopLevelType = TypeUnitsUnderConstruction.empty(); 3229 AddrPool.resetUsedFlag(); 3230 3231 auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder, 3232 getDwoLineTable(CU)); 3233 DwarfTypeUnit &NewTU = *OwnedUnit; 3234 DIE &UnitDie = NewTU.getUnitDie(); 3235 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy); 3236 3237 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 3238 CU.getLanguage()); 3239 3240 uint64_t Signature = makeTypeSignature(Identifier); 3241 NewTU.setTypeSignature(Signature); 3242 Ins.first->second = Signature; 3243 3244 if (useSplitDwarf()) { 3245 MCSection *Section = 3246 getDwarfVersion() <= 4 3247 ? Asm->getObjFileLowering().getDwarfTypesDWOSection() 3248 : Asm->getObjFileLowering().getDwarfInfoDWOSection(); 3249 NewTU.setSection(Section); 3250 } else { 3251 MCSection *Section = 3252 getDwarfVersion() <= 4 3253 ? Asm->getObjFileLowering().getDwarfTypesSection(Signature) 3254 : Asm->getObjFileLowering().getDwarfInfoSection(Signature); 3255 NewTU.setSection(Section); 3256 // Non-split type units reuse the compile unit's line table. 3257 CU.applyStmtList(UnitDie); 3258 } 3259 3260 // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type 3261 // units. 3262 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 3263 NewTU.addStringOffsetsStart(); 3264 3265 NewTU.setType(NewTU.createTypeDIE(CTy)); 3266 3267 if (TopLevelType) { 3268 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction); 3269 TypeUnitsUnderConstruction.clear(); 3270 3271 // Types referencing entries in the address table cannot be placed in type 3272 // units. 3273 if (AddrPool.hasBeenUsed()) { 3274 3275 // Remove all the types built while building this type. 3276 // This is pessimistic as some of these types might not be dependent on 3277 // the type that used an address. 3278 for (const auto &TU : TypeUnitsToAdd) 3279 TypeSignatures.erase(TU.second); 3280 3281 // Construct this type in the CU directly. 3282 // This is inefficient because all the dependent types will be rebuilt 3283 // from scratch, including building them in type units, discovering that 3284 // they depend on addresses, throwing them out and rebuilding them. 3285 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy)); 3286 return; 3287 } 3288 3289 // If the type wasn't dependent on fission addresses, finish adding the type 3290 // and all its dependent types. 3291 for (auto &TU : TypeUnitsToAdd) { 3292 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get()); 3293 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf()); 3294 } 3295 } 3296 CU.addDIETypeSignature(RefDie, Signature); 3297 } 3298 3299 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD) 3300 : DD(DD), 3301 TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)), AddrPoolUsed(DD->AddrPool.hasBeenUsed()) { 3302 DD->TypeUnitsUnderConstruction.clear(); 3303 DD->AddrPool.resetUsedFlag(); 3304 } 3305 3306 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() { 3307 DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction); 3308 DD->AddrPool.resetUsedFlag(AddrPoolUsed); 3309 } 3310 3311 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() { 3312 return NonTypeUnitContext(this); 3313 } 3314 3315 // Add the Name along with its companion DIE to the appropriate accelerator 3316 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for 3317 // AccelTableKind::Apple, we use the table we got as an argument). If 3318 // accelerator tables are disabled, this function does nothing. 3319 template <typename DataT> 3320 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU, 3321 AccelTable<DataT> &AppleAccel, StringRef Name, 3322 const DIE &Die) { 3323 if (getAccelTableKind() == AccelTableKind::None) 3324 return; 3325 3326 if (getAccelTableKind() != AccelTableKind::Apple && 3327 CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default) 3328 return; 3329 3330 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 3331 DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name); 3332 3333 switch (getAccelTableKind()) { 3334 case AccelTableKind::Apple: 3335 AppleAccel.addName(Ref, Die); 3336 break; 3337 case AccelTableKind::Dwarf: 3338 AccelDebugNames.addName(Ref, Die); 3339 break; 3340 case AccelTableKind::Default: 3341 llvm_unreachable("Default should have already been resolved."); 3342 case AccelTableKind::None: 3343 llvm_unreachable("None handled above"); 3344 } 3345 } 3346 3347 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name, 3348 const DIE &Die) { 3349 addAccelNameImpl(CU, AccelNames, Name, Die); 3350 } 3351 3352 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name, 3353 const DIE &Die) { 3354 // ObjC names go only into the Apple accelerator tables. 3355 if (getAccelTableKind() == AccelTableKind::Apple) 3356 addAccelNameImpl(CU, AccelObjC, Name, Die); 3357 } 3358 3359 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name, 3360 const DIE &Die) { 3361 addAccelNameImpl(CU, AccelNamespace, Name, Die); 3362 } 3363 3364 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name, 3365 const DIE &Die, char Flags) { 3366 addAccelNameImpl(CU, AccelTypes, Name, Die); 3367 } 3368 3369 uint16_t DwarfDebug::getDwarfVersion() const { 3370 return Asm->OutStreamer->getContext().getDwarfVersion(); 3371 } 3372 3373 dwarf::Form DwarfDebug::getDwarfSectionOffsetForm() const { 3374 if (Asm->getDwarfVersion() >= 4) 3375 return dwarf::Form::DW_FORM_sec_offset; 3376 assert((!Asm->isDwarf64() || (Asm->getDwarfVersion() == 3)) && 3377 "DWARF64 is not defined prior DWARFv3"); 3378 return Asm->isDwarf64() ? dwarf::Form::DW_FORM_data8 3379 : dwarf::Form::DW_FORM_data4; 3380 } 3381 3382 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) { 3383 return SectionLabels.find(S)->second; 3384 } 3385 void DwarfDebug::insertSectionLabel(const MCSymbol *S) { 3386 if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second) 3387 if (useSplitDwarf() || getDwarfVersion() >= 5) 3388 AddrPool.getIndex(S); 3389 } 3390 3391 Optional<MD5::MD5Result> DwarfDebug::getMD5AsBytes(const DIFile *File) const { 3392 assert(File); 3393 if (getDwarfVersion() < 5) 3394 return None; 3395 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = File->getChecksum(); 3396 if (!Checksum || Checksum->Kind != DIFile::CSK_MD5) 3397 return None; 3398 3399 // Convert the string checksum to an MD5Result for the streamer. 3400 // The verifier validates the checksum so we assume it's okay. 3401 // An MD5 checksum is 16 bytes. 3402 std::string ChecksumString = fromHex(Checksum->Value); 3403 MD5::MD5Result CKMem; 3404 std::copy(ChecksumString.begin(), ChecksumString.end(), CKMem.Bytes.data()); 3405 return CKMem; 3406 } 3407