1 //===--- SyncDependenceAnalysis.cpp - Compute Control Divergence Effects --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an algorithm that returns for a divergent branch
10 // the set of basic blocks whose phi nodes become divergent due to divergent
11 // control. These are the blocks that are reachable by two disjoint paths from
12 // the branch or loop exits that have a reaching path that is disjoint from a
13 // path to the loop latch.
14 //
15 // The SyncDependenceAnalysis is used in the DivergenceAnalysis to model
16 // control-induced divergence in phi nodes.
17 //
18 //
19 // -- Reference --
20 // The algorithm is presented in Section 5 of
21 //
22 //   An abstract interpretation for SPMD divergence
23 //       on reducible control flow graphs.
24 //   Julian Rosemann, Simon Moll and Sebastian Hack
25 //   POPL '21
26 //
27 //
28 // -- Sync dependence --
29 // Sync dependence characterizes the control flow aspect of the
30 // propagation of branch divergence. For example,
31 //
32 //   %cond = icmp slt i32 %tid, 10
33 //   br i1 %cond, label %then, label %else
34 // then:
35 //   br label %merge
36 // else:
37 //   br label %merge
38 // merge:
39 //   %a = phi i32 [ 0, %then ], [ 1, %else ]
40 //
41 // Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
42 // because %tid is not on its use-def chains, %a is sync dependent on %tid
43 // because the branch "br i1 %cond" depends on %tid and affects which value %a
44 // is assigned to.
45 //
46 //
47 // -- Reduction to SSA construction --
48 // There are two disjoint paths from A to X, if a certain variant of SSA
49 // construction places a phi node in X under the following set-up scheme.
50 //
51 // This variant of SSA construction ignores incoming undef values.
52 // That is paths from the entry without a definition do not result in
53 // phi nodes.
54 //
55 //       entry
56 //     /      \
57 //    A        \
58 //  /   \       Y
59 // B     C     /
60 //  \   /  \  /
61 //    D     E
62 //     \   /
63 //       F
64 //
65 // Assume that A contains a divergent branch. We are interested
66 // in the set of all blocks where each block is reachable from A
67 // via two disjoint paths. This would be the set {D, F} in this
68 // case.
69 // To generally reduce this query to SSA construction we introduce
70 // a virtual variable x and assign to x different values in each
71 // successor block of A.
72 //
73 //           entry
74 //         /      \
75 //        A        \
76 //      /   \       Y
77 // x = 0   x = 1   /
78 //      \  /   \  /
79 //        D     E
80 //         \   /
81 //           F
82 //
83 // Our flavor of SSA construction for x will construct the following
84 //
85 //            entry
86 //          /      \
87 //         A        \
88 //       /   \       Y
89 // x0 = 0   x1 = 1  /
90 //       \   /   \ /
91 //     x2 = phi   E
92 //         \     /
93 //         x3 = phi
94 //
95 // The blocks D and F contain phi nodes and are thus each reachable
96 // by two disjoins paths from A.
97 //
98 // -- Remarks --
99 // * In case of loop exits we need to check the disjoint path criterion for loops.
100 //   To this end, we check whether the definition of x differs between the
101 //   loop exit and the loop header (_after_ SSA construction).
102 //
103 // -- Known Limitations & Future Work --
104 // * The algorithm requires reducible loops because the implementation
105 //   implicitly performs a single iteration of the underlying data flow analysis.
106 //   This was done for pragmatism, simplicity and speed.
107 //
108 //   Relevant related work for extending the algorithm to irreducible control:
109 //     A simple algorithm for global data flow analysis problems.
110 //     Matthew S. Hecht and Jeffrey D. Ullman.
111 //     SIAM Journal on Computing, 4(4):519–532, December 1975.
112 //
113 // * Another reason for requiring reducible loops is that points of
114 //   synchronization in irreducible loops aren't 'obvious' - there is no unique
115 //   header where threads 'should' synchronize when entering or coming back
116 //   around from the latch.
117 //
118 //===----------------------------------------------------------------------===//
119 
120 #include "llvm/Analysis/SyncDependenceAnalysis.h"
121 #include "llvm/ADT/SmallPtrSet.h"
122 #include "llvm/Analysis/LoopInfo.h"
123 #include "llvm/IR/BasicBlock.h"
124 #include "llvm/IR/CFG.h"
125 #include "llvm/IR/Dominators.h"
126 #include "llvm/IR/Function.h"
127 
128 #include <functional>
129 
130 #define DEBUG_TYPE "sync-dependence"
131 
132 // The SDA algorithm operates on a modified CFG - we modify the edges leaving
133 // loop headers as follows:
134 //
135 // * We remove all edges leaving all loop headers.
136 // * We add additional edges from the loop headers to their exit blocks.
137 //
138 // The modification is virtual, that is whenever we visit a loop header we
139 // pretend it had different successors.
140 namespace {
141 using namespace llvm;
142 
143 // Custom Post-Order Traveral
144 //
145 // We cannot use the vanilla (R)PO computation of LLVM because:
146 // * We (virtually) modify the CFG.
147 // * We want a loop-compact block enumeration, that is the numbers assigned to
148 //   blocks of a loop form an interval
149 //
150 using POCB = std::function<void(const BasicBlock &)>;
151 using VisitedSet = std::set<const BasicBlock *>;
152 using BlockStack = std::vector<const BasicBlock *>;
153 
154 // forward
155 static void computeLoopPO(const LoopInfo &LI, Loop &Loop, POCB CallBack,
156                           VisitedSet &Finalized);
157 
158 // for a nested region (top-level loop or nested loop)
computeStackPO(BlockStack & Stack,const LoopInfo & LI,Loop * Loop,POCB CallBack,VisitedSet & Finalized)159 static void computeStackPO(BlockStack &Stack, const LoopInfo &LI, Loop *Loop,
160                            POCB CallBack, VisitedSet &Finalized) {
161   const auto *LoopHeader = Loop ? Loop->getHeader() : nullptr;
162   while (!Stack.empty()) {
163     const auto *NextBB = Stack.back();
164 
165     auto *NestedLoop = LI.getLoopFor(NextBB);
166     bool IsNestedLoop = NestedLoop != Loop;
167 
168     // Treat the loop as a node
169     if (IsNestedLoop) {
170       SmallVector<BasicBlock *, 3> NestedExits;
171       NestedLoop->getUniqueExitBlocks(NestedExits);
172       bool PushedNodes = false;
173       for (const auto *NestedExitBB : NestedExits) {
174         if (NestedExitBB == LoopHeader)
175           continue;
176         if (Loop && !Loop->contains(NestedExitBB))
177           continue;
178         if (Finalized.count(NestedExitBB))
179           continue;
180         PushedNodes = true;
181         Stack.push_back(NestedExitBB);
182       }
183       if (!PushedNodes) {
184         // All loop exits finalized -> finish this node
185         Stack.pop_back();
186         computeLoopPO(LI, *NestedLoop, CallBack, Finalized);
187       }
188       continue;
189     }
190 
191     // DAG-style
192     bool PushedNodes = false;
193     for (const auto *SuccBB : successors(NextBB)) {
194       if (SuccBB == LoopHeader)
195         continue;
196       if (Loop && !Loop->contains(SuccBB))
197         continue;
198       if (Finalized.count(SuccBB))
199         continue;
200       PushedNodes = true;
201       Stack.push_back(SuccBB);
202     }
203     if (!PushedNodes) {
204       // Never push nodes twice
205       Stack.pop_back();
206       if (!Finalized.insert(NextBB).second)
207         continue;
208       CallBack(*NextBB);
209     }
210   }
211 }
212 
computeTopLevelPO(Function & F,const LoopInfo & LI,POCB CallBack)213 static void computeTopLevelPO(Function &F, const LoopInfo &LI, POCB CallBack) {
214   VisitedSet Finalized;
215   BlockStack Stack;
216   Stack.reserve(24); // FIXME made-up number
217   Stack.push_back(&F.getEntryBlock());
218   computeStackPO(Stack, LI, nullptr, CallBack, Finalized);
219 }
220 
computeLoopPO(const LoopInfo & LI,Loop & Loop,POCB CallBack,VisitedSet & Finalized)221 static void computeLoopPO(const LoopInfo &LI, Loop &Loop, POCB CallBack,
222                           VisitedSet &Finalized) {
223   /// Call CallBack on all loop blocks.
224   std::vector<const BasicBlock *> Stack;
225   const auto *LoopHeader = Loop.getHeader();
226 
227   // Visit the header last
228   Finalized.insert(LoopHeader);
229   CallBack(*LoopHeader);
230 
231   // Initialize with immediate successors
232   for (const auto *BB : successors(LoopHeader)) {
233     if (!Loop.contains(BB))
234       continue;
235     if (BB == LoopHeader)
236       continue;
237     Stack.push_back(BB);
238   }
239 
240   // Compute PO inside region
241   computeStackPO(Stack, LI, &Loop, CallBack, Finalized);
242 }
243 
244 } // namespace
245 
246 namespace llvm {
247 
248 ControlDivergenceDesc SyncDependenceAnalysis::EmptyDivergenceDesc;
249 
SyncDependenceAnalysis(const DominatorTree & DT,const PostDominatorTree & PDT,const LoopInfo & LI)250 SyncDependenceAnalysis::SyncDependenceAnalysis(const DominatorTree &DT,
251                                                const PostDominatorTree &PDT,
252                                                const LoopInfo &LI)
253     : DT(DT), PDT(PDT), LI(LI) {
254   computeTopLevelPO(*DT.getRoot()->getParent(), LI,
255                     [&](const BasicBlock &BB) { LoopPO.appendBlock(BB); });
256 }
257 
258 SyncDependenceAnalysis::~SyncDependenceAnalysis() = default;
259 
260 // divergence propagator for reducible CFGs
261 struct DivergencePropagator {
262   const ModifiedPO &LoopPOT;
263   const DominatorTree &DT;
264   const PostDominatorTree &PDT;
265   const LoopInfo &LI;
266   const BasicBlock &DivTermBlock;
267 
268   // * if BlockLabels[IndexOf(B)] == C then C is the dominating definition at
269   //   block B
270   // * if BlockLabels[IndexOf(B)] ~ undef then we haven't seen B yet
271   // * if BlockLabels[IndexOf(B)] == B then B is a join point of disjoint paths
272   // from X or B is an immediate successor of X (initial value).
273   using BlockLabelVec = std::vector<const BasicBlock *>;
274   BlockLabelVec BlockLabels;
275   // divergent join and loop exit descriptor.
276   std::unique_ptr<ControlDivergenceDesc> DivDesc;
277 
DivergencePropagatorllvm::DivergencePropagator278   DivergencePropagator(const ModifiedPO &LoopPOT, const DominatorTree &DT,
279                        const PostDominatorTree &PDT, const LoopInfo &LI,
280                        const BasicBlock &DivTermBlock)
281       : LoopPOT(LoopPOT), DT(DT), PDT(PDT), LI(LI), DivTermBlock(DivTermBlock),
282         BlockLabels(LoopPOT.size(), nullptr),
283         DivDesc(new ControlDivergenceDesc) {}
284 
printDefsllvm::DivergencePropagator285   void printDefs(raw_ostream &Out) {
286     Out << "Propagator::BlockLabels {\n";
287     for (int BlockIdx = (int)BlockLabels.size() - 1; BlockIdx > 0; --BlockIdx) {
288       const auto *Label = BlockLabels[BlockIdx];
289       Out << LoopPOT.getBlockAt(BlockIdx)->getName().str() << "(" << BlockIdx
290           << ") : ";
291       if (!Label) {
292         Out << "<null>\n";
293       } else {
294         Out << Label->getName() << "\n";
295       }
296     }
297     Out << "}\n";
298   }
299 
300   // Push a definition (\p PushedLabel) to \p SuccBlock and return whether this
301   // causes a divergent join.
computeJoinllvm::DivergencePropagator302   bool computeJoin(const BasicBlock &SuccBlock, const BasicBlock &PushedLabel) {
303     auto SuccIdx = LoopPOT.getIndexOf(SuccBlock);
304 
305     // unset or same reaching label
306     const auto *OldLabel = BlockLabels[SuccIdx];
307     if (!OldLabel || (OldLabel == &PushedLabel)) {
308       BlockLabels[SuccIdx] = &PushedLabel;
309       return false;
310     }
311 
312     // Update the definition
313     BlockLabels[SuccIdx] = &SuccBlock;
314     return true;
315   }
316 
317   // visiting a virtual loop exit edge from the loop header --> temporal
318   // divergence on join
visitLoopExitEdgellvm::DivergencePropagator319   bool visitLoopExitEdge(const BasicBlock &ExitBlock,
320                          const BasicBlock &DefBlock, bool FromParentLoop) {
321     // Pushing from a non-parent loop cannot cause temporal divergence.
322     if (!FromParentLoop)
323       return visitEdge(ExitBlock, DefBlock);
324 
325     if (!computeJoin(ExitBlock, DefBlock))
326       return false;
327 
328     // Identified a divergent loop exit
329     DivDesc->LoopDivBlocks.insert(&ExitBlock);
330     LLVM_DEBUG(dbgs() << "\tDivergent loop exit: " << ExitBlock.getName()
331                       << "\n");
332     return true;
333   }
334 
335   // process \p SuccBlock with reaching definition \p DefBlock
visitEdgellvm::DivergencePropagator336   bool visitEdge(const BasicBlock &SuccBlock, const BasicBlock &DefBlock) {
337     if (!computeJoin(SuccBlock, DefBlock))
338       return false;
339 
340     // Divergent, disjoint paths join.
341     DivDesc->JoinDivBlocks.insert(&SuccBlock);
342     LLVM_DEBUG(dbgs() << "\tDivergent join: " << SuccBlock.getName());
343     return true;
344   }
345 
computeJoinPointsllvm::DivergencePropagator346   std::unique_ptr<ControlDivergenceDesc> computeJoinPoints() {
347     assert(DivDesc);
348 
349     LLVM_DEBUG(dbgs() << "SDA:computeJoinPoints: " << DivTermBlock.getName()
350                       << "\n");
351 
352     const auto *DivBlockLoop = LI.getLoopFor(&DivTermBlock);
353 
354     // Early stopping criterion
355     int FloorIdx = LoopPOT.size() - 1;
356     const BasicBlock *FloorLabel = nullptr;
357 
358     // bootstrap with branch targets
359     int BlockIdx = 0;
360 
361     for (const auto *SuccBlock : successors(&DivTermBlock)) {
362       auto SuccIdx = LoopPOT.getIndexOf(*SuccBlock);
363       BlockLabels[SuccIdx] = SuccBlock;
364 
365       // Find the successor with the highest index to start with
366       BlockIdx = std::max<int>(BlockIdx, SuccIdx);
367       FloorIdx = std::min<int>(FloorIdx, SuccIdx);
368 
369       // Identify immediate divergent loop exits
370       if (!DivBlockLoop)
371         continue;
372 
373       const auto *BlockLoop = LI.getLoopFor(SuccBlock);
374       if (BlockLoop && DivBlockLoop->contains(BlockLoop))
375         continue;
376       DivDesc->LoopDivBlocks.insert(SuccBlock);
377       LLVM_DEBUG(dbgs() << "\tImmediate divergent loop exit: "
378                         << SuccBlock->getName() << "\n");
379     }
380 
381     // propagate definitions at the immediate successors of the node in RPO
382     for (; BlockIdx >= FloorIdx; --BlockIdx) {
383       LLVM_DEBUG(dbgs() << "Before next visit:\n"; printDefs(dbgs()));
384 
385       // Any label available here
386       const auto *Label = BlockLabels[BlockIdx];
387       if (!Label)
388         continue;
389 
390       // Ok. Get the block
391       const auto *Block = LoopPOT.getBlockAt(BlockIdx);
392       LLVM_DEBUG(dbgs() << "SDA::joins. visiting " << Block->getName() << "\n");
393 
394       auto *BlockLoop = LI.getLoopFor(Block);
395       bool IsLoopHeader = BlockLoop && BlockLoop->getHeader() == Block;
396       bool CausedJoin = false;
397       int LoweredFloorIdx = FloorIdx;
398       if (IsLoopHeader) {
399         // Disconnect from immediate successors and propagate directly to loop
400         // exits.
401         SmallVector<BasicBlock *, 4> BlockLoopExits;
402         BlockLoop->getExitBlocks(BlockLoopExits);
403 
404         bool IsParentLoop = BlockLoop->contains(&DivTermBlock);
405         for (const auto *BlockLoopExit : BlockLoopExits) {
406           CausedJoin |= visitLoopExitEdge(*BlockLoopExit, *Label, IsParentLoop);
407           LoweredFloorIdx = std::min<int>(LoweredFloorIdx,
408                                           LoopPOT.getIndexOf(*BlockLoopExit));
409         }
410       } else {
411         // Acyclic successor case
412         for (const auto *SuccBlock : successors(Block)) {
413           CausedJoin |= visitEdge(*SuccBlock, *Label);
414           LoweredFloorIdx =
415               std::min<int>(LoweredFloorIdx, LoopPOT.getIndexOf(*SuccBlock));
416         }
417       }
418 
419       // Floor update
420       if (CausedJoin) {
421         // 1. Different labels pushed to successors
422         FloorIdx = LoweredFloorIdx;
423       } else if (FloorLabel != Label) {
424         // 2. No join caused BUT we pushed a label that is different than the
425         // last pushed label
426         FloorIdx = LoweredFloorIdx;
427         FloorLabel = Label;
428       }
429     }
430 
431     LLVM_DEBUG(dbgs() << "SDA::joins. After propagation:\n"; printDefs(dbgs()));
432 
433     return std::move(DivDesc);
434   }
435 };
436 
437 #ifndef NDEBUG
printBlockSet(ConstBlockSet & Blocks,raw_ostream & Out)438 static void printBlockSet(ConstBlockSet &Blocks, raw_ostream &Out) {
439   Out << "[";
440   ListSeparator LS;
441   for (const auto *BB : Blocks)
442     Out << LS << BB->getName();
443   Out << "]";
444 }
445 #endif
446 
447 const ControlDivergenceDesc &
getJoinBlocks(const Instruction & Term)448 SyncDependenceAnalysis::getJoinBlocks(const Instruction &Term) {
449   // trivial case
450   if (Term.getNumSuccessors() <= 1) {
451     return EmptyDivergenceDesc;
452   }
453 
454   // already available in cache?
455   auto ItCached = CachedControlDivDescs.find(&Term);
456   if (ItCached != CachedControlDivDescs.end())
457     return *ItCached->second;
458 
459   // compute all join points
460   // Special handling of divergent loop exits is not needed for LCSSA
461   const auto &TermBlock = *Term.getParent();
462   DivergencePropagator Propagator(LoopPO, DT, PDT, LI, TermBlock);
463   auto DivDesc = Propagator.computeJoinPoints();
464 
465   LLVM_DEBUG(dbgs() << "Result (" << Term.getParent()->getName() << "):\n";
466              dbgs() << "JoinDivBlocks: ";
467              printBlockSet(DivDesc->JoinDivBlocks, dbgs());
468              dbgs() << "\nLoopDivBlocks: ";
469              printBlockSet(DivDesc->LoopDivBlocks, dbgs()); dbgs() << "\n";);
470 
471   auto ItInserted = CachedControlDivDescs.emplace(&Term, std::move(DivDesc));
472   assert(ItInserted.second);
473   return *ItInserted.first->second;
474 }
475 
476 } // namespace llvm
477