1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an analysis that determines, for a given memory
10 // operation, what preceding memory operations it depends on.  It builds on
11 // alias analysis information, and tries to provide a lazy, caching interface to
12 // a common kind of alias information query.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/Analysis/PHITransAddr.h"
27 #include "llvm/Analysis/PhiValues.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/PredIteratorCache.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Use.h"
47 #include "llvm/IR/User.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/AtomicOrdering.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/MathExtras.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <iterator>
61 #include <utility>
62 
63 using namespace llvm;
64 
65 #define DEBUG_TYPE "memdep"
66 
67 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
68 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
69 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
70 
71 STATISTIC(NumCacheNonLocalPtr,
72           "Number of fully cached non-local ptr responses");
73 STATISTIC(NumCacheDirtyNonLocalPtr,
74           "Number of cached, but dirty, non-local ptr responses");
75 STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses");
76 STATISTIC(NumCacheCompleteNonLocalPtr,
77           "Number of block queries that were completely cached");
78 
79 // Limit for the number of instructions to scan in a block.
80 
81 static cl::opt<unsigned> BlockScanLimit(
82     "memdep-block-scan-limit", cl::Hidden, cl::init(100),
83     cl::desc("The number of instructions to scan in a block in memory "
84              "dependency analysis (default = 100)"));
85 
86 static cl::opt<unsigned>
87     BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000),
88                      cl::desc("The number of blocks to scan during memory "
89                               "dependency analysis (default = 1000)"));
90 
91 // Limit on the number of memdep results to process.
92 static const unsigned int NumResultsLimit = 100;
93 
94 /// This is a helper function that removes Val from 'Inst's set in ReverseMap.
95 ///
96 /// If the set becomes empty, remove Inst's entry.
97 template <typename KeyTy>
98 static void
99 RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap,
100                      Instruction *Inst, KeyTy Val) {
101   typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt =
102       ReverseMap.find(Inst);
103   assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
104   bool Found = InstIt->second.erase(Val);
105   assert(Found && "Invalid reverse map!");
106   (void)Found;
107   if (InstIt->second.empty())
108     ReverseMap.erase(InstIt);
109 }
110 
111 /// If the given instruction references a specific memory location, fill in Loc
112 /// with the details, otherwise set Loc.Ptr to null.
113 ///
114 /// Returns a ModRefInfo value describing the general behavior of the
115 /// instruction.
116 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc,
117                               const TargetLibraryInfo &TLI) {
118   if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
119     if (LI->isUnordered()) {
120       Loc = MemoryLocation::get(LI);
121       return ModRefInfo::Ref;
122     }
123     if (LI->getOrdering() == AtomicOrdering::Monotonic) {
124       Loc = MemoryLocation::get(LI);
125       return ModRefInfo::ModRef;
126     }
127     Loc = MemoryLocation();
128     return ModRefInfo::ModRef;
129   }
130 
131   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
132     if (SI->isUnordered()) {
133       Loc = MemoryLocation::get(SI);
134       return ModRefInfo::Mod;
135     }
136     if (SI->getOrdering() == AtomicOrdering::Monotonic) {
137       Loc = MemoryLocation::get(SI);
138       return ModRefInfo::ModRef;
139     }
140     Loc = MemoryLocation();
141     return ModRefInfo::ModRef;
142   }
143 
144   if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
145     Loc = MemoryLocation::get(V);
146     return ModRefInfo::ModRef;
147   }
148 
149   if (const CallInst *CI = isFreeCall(Inst, &TLI)) {
150     // calls to free() deallocate the entire structure
151     Loc = MemoryLocation(CI->getArgOperand(0));
152     return ModRefInfo::Mod;
153   }
154 
155   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
156     switch (II->getIntrinsicID()) {
157     case Intrinsic::lifetime_start:
158     case Intrinsic::lifetime_end:
159     case Intrinsic::invariant_start:
160       Loc = MemoryLocation::getForArgument(II, 1, TLI);
161       // These intrinsics don't really modify the memory, but returning Mod
162       // will allow them to be handled conservatively.
163       return ModRefInfo::Mod;
164     case Intrinsic::invariant_end:
165       Loc = MemoryLocation::getForArgument(II, 2, TLI);
166       // These intrinsics don't really modify the memory, but returning Mod
167       // will allow them to be handled conservatively.
168       return ModRefInfo::Mod;
169     default:
170       break;
171     }
172   }
173 
174   // Otherwise, just do the coarse-grained thing that always works.
175   if (Inst->mayWriteToMemory())
176     return ModRefInfo::ModRef;
177   if (Inst->mayReadFromMemory())
178     return ModRefInfo::Ref;
179   return ModRefInfo::NoModRef;
180 }
181 
182 /// Private helper for finding the local dependencies of a call site.
183 MemDepResult MemoryDependenceResults::getCallDependencyFrom(
184     CallBase *Call, bool isReadOnlyCall, BasicBlock::iterator ScanIt,
185     BasicBlock *BB) {
186   unsigned Limit = getDefaultBlockScanLimit();
187 
188   // Walk backwards through the block, looking for dependencies.
189   while (ScanIt != BB->begin()) {
190     Instruction *Inst = &*--ScanIt;
191     // Debug intrinsics don't cause dependences and should not affect Limit
192     if (isa<DbgInfoIntrinsic>(Inst))
193       continue;
194 
195     // Limit the amount of scanning we do so we don't end up with quadratic
196     // running time on extreme testcases.
197     --Limit;
198     if (!Limit)
199       return MemDepResult::getUnknown();
200 
201     // If this inst is a memory op, get the pointer it accessed
202     MemoryLocation Loc;
203     ModRefInfo MR = GetLocation(Inst, Loc, TLI);
204     if (Loc.Ptr) {
205       // A simple instruction.
206       if (isModOrRefSet(AA.getModRefInfo(Call, Loc)))
207         return MemDepResult::getClobber(Inst);
208       continue;
209     }
210 
211     if (auto *CallB = dyn_cast<CallBase>(Inst)) {
212       // If these two calls do not interfere, look past it.
213       if (isNoModRef(AA.getModRefInfo(Call, CallB))) {
214         // If the two calls are the same, return Inst as a Def, so that
215         // Call can be found redundant and eliminated.
216         if (isReadOnlyCall && !isModSet(MR) &&
217             Call->isIdenticalToWhenDefined(CallB))
218           return MemDepResult::getDef(Inst);
219 
220         // Otherwise if the two calls don't interact (e.g. CallB is readnone)
221         // keep scanning.
222         continue;
223       } else
224         return MemDepResult::getClobber(Inst);
225     }
226 
227     // If we could not obtain a pointer for the instruction and the instruction
228     // touches memory then assume that this is a dependency.
229     if (isModOrRefSet(MR))
230       return MemDepResult::getClobber(Inst);
231   }
232 
233   // No dependence found.  If this is the entry block of the function, it is
234   // unknown, otherwise it is non-local.
235   if (BB != &BB->getParent()->getEntryBlock())
236     return MemDepResult::getNonLocal();
237   return MemDepResult::getNonFuncLocal();
238 }
239 
240 static bool isVolatile(Instruction *Inst) {
241   if (auto *LI = dyn_cast<LoadInst>(Inst))
242     return LI->isVolatile();
243   if (auto *SI = dyn_cast<StoreInst>(Inst))
244     return SI->isVolatile();
245   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(Inst))
246     return AI->isVolatile();
247   return false;
248 }
249 
250 MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
251     const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
252     BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
253   MemDepResult InvariantGroupDependency = MemDepResult::getUnknown();
254   if (QueryInst != nullptr) {
255     if (auto *LI = dyn_cast<LoadInst>(QueryInst)) {
256       InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB);
257 
258       if (InvariantGroupDependency.isDef())
259         return InvariantGroupDependency;
260     }
261   }
262   MemDepResult SimpleDep = getSimplePointerDependencyFrom(
263       MemLoc, isLoad, ScanIt, BB, QueryInst, Limit);
264   if (SimpleDep.isDef())
265     return SimpleDep;
266   // Non-local invariant group dependency indicates there is non local Def
267   // (it only returns nonLocal if it finds nonLocal def), which is better than
268   // local clobber and everything else.
269   if (InvariantGroupDependency.isNonLocal())
270     return InvariantGroupDependency;
271 
272   assert(InvariantGroupDependency.isUnknown() &&
273          "InvariantGroupDependency should be only unknown at this point");
274   return SimpleDep;
275 }
276 
277 MemDepResult
278 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI,
279                                                             BasicBlock *BB) {
280 
281   if (!LI->hasMetadata(LLVMContext::MD_invariant_group))
282     return MemDepResult::getUnknown();
283 
284   // Take the ptr operand after all casts and geps 0. This way we can search
285   // cast graph down only.
286   Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts();
287 
288   // It's is not safe to walk the use list of global value, because function
289   // passes aren't allowed to look outside their functions.
290   // FIXME: this could be fixed by filtering instructions from outside
291   // of current function.
292   if (isa<GlobalValue>(LoadOperand))
293     return MemDepResult::getUnknown();
294 
295   // Queue to process all pointers that are equivalent to load operand.
296   SmallVector<const Value *, 8> LoadOperandsQueue;
297   LoadOperandsQueue.push_back(LoadOperand);
298 
299   Instruction *ClosestDependency = nullptr;
300   // Order of instructions in uses list is unpredictible. In order to always
301   // get the same result, we will look for the closest dominance.
302   auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) {
303     assert(Other && "Must call it with not null instruction");
304     if (Best == nullptr || DT.dominates(Best, Other))
305       return Other;
306     return Best;
307   };
308 
309   // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case
310   // we will see all the instructions. This should be fixed in MSSA.
311   while (!LoadOperandsQueue.empty()) {
312     const Value *Ptr = LoadOperandsQueue.pop_back_val();
313     assert(Ptr && !isa<GlobalValue>(Ptr) &&
314            "Null or GlobalValue should not be inserted");
315 
316     for (const Use &Us : Ptr->uses()) {
317       auto *U = dyn_cast<Instruction>(Us.getUser());
318       if (!U || U == LI || !DT.dominates(U, LI))
319         continue;
320 
321       // Bitcast or gep with zeros are using Ptr. Add to queue to check it's
322       // users.      U = bitcast Ptr
323       if (isa<BitCastInst>(U)) {
324         LoadOperandsQueue.push_back(U);
325         continue;
326       }
327       // Gep with zeros is equivalent to bitcast.
328       // FIXME: we are not sure if some bitcast should be canonicalized to gep 0
329       // or gep 0 to bitcast because of SROA, so there are 2 forms. When
330       // typeless pointers will be ready then both cases will be gone
331       // (and this BFS also won't be needed).
332       if (auto *GEP = dyn_cast<GetElementPtrInst>(U))
333         if (GEP->hasAllZeroIndices()) {
334           LoadOperandsQueue.push_back(U);
335           continue;
336         }
337 
338       // If we hit load/store with the same invariant.group metadata (and the
339       // same pointer operand) we can assume that value pointed by pointer
340       // operand didn't change.
341       if ((isa<LoadInst>(U) || isa<StoreInst>(U)) &&
342           U->hasMetadata(LLVMContext::MD_invariant_group))
343         ClosestDependency = GetClosestDependency(ClosestDependency, U);
344     }
345   }
346 
347   if (!ClosestDependency)
348     return MemDepResult::getUnknown();
349   if (ClosestDependency->getParent() == BB)
350     return MemDepResult::getDef(ClosestDependency);
351   // Def(U) can't be returned here because it is non-local. If local
352   // dependency won't be found then return nonLocal counting that the
353   // user will call getNonLocalPointerDependency, which will return cached
354   // result.
355   NonLocalDefsCache.try_emplace(
356       LI, NonLocalDepResult(ClosestDependency->getParent(),
357                             MemDepResult::getDef(ClosestDependency), nullptr));
358   ReverseNonLocalDefsCache[ClosestDependency].insert(LI);
359   return MemDepResult::getNonLocal();
360 }
361 
362 MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom(
363     const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
364     BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
365   bool isInvariantLoad = false;
366 
367   unsigned DefaultLimit = getDefaultBlockScanLimit();
368   if (!Limit)
369     Limit = &DefaultLimit;
370 
371   // We must be careful with atomic accesses, as they may allow another thread
372   //   to touch this location, clobbering it. We are conservative: if the
373   //   QueryInst is not a simple (non-atomic) memory access, we automatically
374   //   return getClobber.
375   // If it is simple, we know based on the results of
376   // "Compiler testing via a theory of sound optimisations in the C11/C++11
377   //   memory model" in PLDI 2013, that a non-atomic location can only be
378   //   clobbered between a pair of a release and an acquire action, with no
379   //   access to the location in between.
380   // Here is an example for giving the general intuition behind this rule.
381   // In the following code:
382   //   store x 0;
383   //   release action; [1]
384   //   acquire action; [4]
385   //   %val = load x;
386   // It is unsafe to replace %val by 0 because another thread may be running:
387   //   acquire action; [2]
388   //   store x 42;
389   //   release action; [3]
390   // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
391   // being 42. A key property of this program however is that if either
392   // 1 or 4 were missing, there would be a race between the store of 42
393   // either the store of 0 or the load (making the whole program racy).
394   // The paper mentioned above shows that the same property is respected
395   // by every program that can detect any optimization of that kind: either
396   // it is racy (undefined) or there is a release followed by an acquire
397   // between the pair of accesses under consideration.
398 
399   // If the load is invariant, we "know" that it doesn't alias *any* write. We
400   // do want to respect mustalias results since defs are useful for value
401   // forwarding, but any mayalias write can be assumed to be noalias.
402   // Arguably, this logic should be pushed inside AliasAnalysis itself.
403   if (isLoad && QueryInst) {
404     LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
405     if (LI && LI->hasMetadata(LLVMContext::MD_invariant_load))
406       isInvariantLoad = true;
407   }
408 
409   const DataLayout &DL = BB->getModule()->getDataLayout();
410 
411   // Return "true" if and only if the instruction I is either a non-simple
412   // load or a non-simple store.
413   auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool {
414     if (auto *LI = dyn_cast<LoadInst>(I))
415       return !LI->isSimple();
416     if (auto *SI = dyn_cast<StoreInst>(I))
417       return !SI->isSimple();
418     return false;
419   };
420 
421   // Return "true" if I is not a load and not a store, but it does access
422   // memory.
423   auto isOtherMemAccess = [](Instruction *I) -> bool {
424     return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory();
425   };
426 
427   // Walk backwards through the basic block, looking for dependencies.
428   while (ScanIt != BB->begin()) {
429     Instruction *Inst = &*--ScanIt;
430 
431     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
432       // Debug intrinsics don't (and can't) cause dependencies.
433       if (isa<DbgInfoIntrinsic>(II))
434         continue;
435 
436     // Limit the amount of scanning we do so we don't end up with quadratic
437     // running time on extreme testcases.
438     --*Limit;
439     if (!*Limit)
440       return MemDepResult::getUnknown();
441 
442     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
443       // If we reach a lifetime begin or end marker, then the query ends here
444       // because the value is undefined.
445       if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
446         // FIXME: This only considers queries directly on the invariant-tagged
447         // pointer, not on query pointers that are indexed off of them.  It'd
448         // be nice to handle that at some point (the right approach is to use
449         // GetPointerBaseWithConstantOffset).
450         if (AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc))
451           return MemDepResult::getDef(II);
452         continue;
453       }
454     }
455 
456     // Values depend on loads if the pointers are must aliased.  This means
457     // that a load depends on another must aliased load from the same value.
458     // One exception is atomic loads: a value can depend on an atomic load that
459     // it does not alias with when this atomic load indicates that another
460     // thread may be accessing the location.
461     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
462       // While volatile access cannot be eliminated, they do not have to clobber
463       // non-aliasing locations, as normal accesses, for example, can be safely
464       // reordered with volatile accesses.
465       if (LI->isVolatile()) {
466         if (!QueryInst)
467           // Original QueryInst *may* be volatile
468           return MemDepResult::getClobber(LI);
469         if (isVolatile(QueryInst))
470           // Ordering required if QueryInst is itself volatile
471           return MemDepResult::getClobber(LI);
472         // Otherwise, volatile doesn't imply any special ordering
473       }
474 
475       // Atomic loads have complications involved.
476       // A Monotonic (or higher) load is OK if the query inst is itself not
477       // atomic.
478       // FIXME: This is overly conservative.
479       if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) {
480         if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
481             isOtherMemAccess(QueryInst))
482           return MemDepResult::getClobber(LI);
483         if (LI->getOrdering() != AtomicOrdering::Monotonic)
484           return MemDepResult::getClobber(LI);
485       }
486 
487       MemoryLocation LoadLoc = MemoryLocation::get(LI);
488 
489       // If we found a pointer, check if it could be the same as our pointer.
490       AliasResult R = AA.alias(LoadLoc, MemLoc);
491 
492       if (isLoad) {
493         if (R == NoAlias)
494           continue;
495 
496         // Must aliased loads are defs of each other.
497         if (R == MustAlias)
498           return MemDepResult::getDef(Inst);
499 
500 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
501       // in terms of clobbering loads, but since it does this by looking
502       // at the clobbering load directly, it doesn't know about any
503       // phi translation that may have happened along the way.
504 
505         // If we have a partial alias, then return this as a clobber for the
506         // client to handle.
507         if (R == PartialAlias)
508           return MemDepResult::getClobber(Inst);
509 #endif
510 
511         // Random may-alias loads don't depend on each other without a
512         // dependence.
513         continue;
514       }
515 
516       // Stores don't depend on other no-aliased accesses.
517       if (R == NoAlias)
518         continue;
519 
520       // Stores don't alias loads from read-only memory.
521       if (AA.pointsToConstantMemory(LoadLoc))
522         continue;
523 
524       // Stores depend on may/must aliased loads.
525       return MemDepResult::getDef(Inst);
526     }
527 
528     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
529       // Atomic stores have complications involved.
530       // A Monotonic store is OK if the query inst is itself not atomic.
531       // FIXME: This is overly conservative.
532       if (!SI->isUnordered() && SI->isAtomic()) {
533         if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
534             isOtherMemAccess(QueryInst))
535           return MemDepResult::getClobber(SI);
536         if (SI->getOrdering() != AtomicOrdering::Monotonic)
537           return MemDepResult::getClobber(SI);
538       }
539 
540       // FIXME: this is overly conservative.
541       // While volatile access cannot be eliminated, they do not have to clobber
542       // non-aliasing locations, as normal accesses can for example be reordered
543       // with volatile accesses.
544       if (SI->isVolatile())
545         if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
546             isOtherMemAccess(QueryInst))
547           return MemDepResult::getClobber(SI);
548 
549       // If alias analysis can tell that this store is guaranteed to not modify
550       // the query pointer, ignore it.  Use getModRefInfo to handle cases where
551       // the query pointer points to constant memory etc.
552       if (!isModOrRefSet(AA.getModRefInfo(SI, MemLoc)))
553         continue;
554 
555       // Ok, this store might clobber the query pointer.  Check to see if it is
556       // a must alias: in this case, we want to return this as a def.
557       // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above.
558       MemoryLocation StoreLoc = MemoryLocation::get(SI);
559 
560       // If we found a pointer, check if it could be the same as our pointer.
561       AliasResult R = AA.alias(StoreLoc, MemLoc);
562 
563       if (R == NoAlias)
564         continue;
565       if (R == MustAlias)
566         return MemDepResult::getDef(Inst);
567       if (isInvariantLoad)
568         continue;
569       return MemDepResult::getClobber(Inst);
570     }
571 
572     // If this is an allocation, and if we know that the accessed pointer is to
573     // the allocation, return Def.  This means that there is no dependence and
574     // the access can be optimized based on that.  For example, a load could
575     // turn into undef.  Note that we can bypass the allocation itself when
576     // looking for a clobber in many cases; that's an alias property and is
577     // handled by BasicAA.
578     if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) {
579       const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL);
580       if (AccessPtr == Inst || AA.isMustAlias(Inst, AccessPtr))
581         return MemDepResult::getDef(Inst);
582     }
583 
584     if (isInvariantLoad)
585       continue;
586 
587     // A release fence requires that all stores complete before it, but does
588     // not prevent the reordering of following loads or stores 'before' the
589     // fence.  As a result, we look past it when finding a dependency for
590     // loads.  DSE uses this to find preceding stores to delete and thus we
591     // can't bypass the fence if the query instruction is a store.
592     if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
593       if (isLoad && FI->getOrdering() == AtomicOrdering::Release)
594         continue;
595 
596     // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
597     ModRefInfo MR = AA.getModRefInfo(Inst, MemLoc);
598     // If necessary, perform additional analysis.
599     if (isModAndRefSet(MR))
600       MR = AA.callCapturesBefore(Inst, MemLoc, &DT);
601     switch (clearMust(MR)) {
602     case ModRefInfo::NoModRef:
603       // If the call has no effect on the queried pointer, just ignore it.
604       continue;
605     case ModRefInfo::Mod:
606       return MemDepResult::getClobber(Inst);
607     case ModRefInfo::Ref:
608       // If the call is known to never store to the pointer, and if this is a
609       // load query, we can safely ignore it (scan past it).
610       if (isLoad)
611         continue;
612       LLVM_FALLTHROUGH;
613     default:
614       // Otherwise, there is a potential dependence.  Return a clobber.
615       return MemDepResult::getClobber(Inst);
616     }
617   }
618 
619   // No dependence found.  If this is the entry block of the function, it is
620   // unknown, otherwise it is non-local.
621   if (BB != &BB->getParent()->getEntryBlock())
622     return MemDepResult::getNonLocal();
623   return MemDepResult::getNonFuncLocal();
624 }
625 
626 MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) {
627   Instruction *ScanPos = QueryInst;
628 
629   // Check for a cached result
630   MemDepResult &LocalCache = LocalDeps[QueryInst];
631 
632   // If the cached entry is non-dirty, just return it.  Note that this depends
633   // on MemDepResult's default constructing to 'dirty'.
634   if (!LocalCache.isDirty())
635     return LocalCache;
636 
637   // Otherwise, if we have a dirty entry, we know we can start the scan at that
638   // instruction, which may save us some work.
639   if (Instruction *Inst = LocalCache.getInst()) {
640     ScanPos = Inst;
641 
642     RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
643   }
644 
645   BasicBlock *QueryParent = QueryInst->getParent();
646 
647   // Do the scan.
648   if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
649     // No dependence found. If this is the entry block of the function, it is
650     // unknown, otherwise it is non-local.
651     if (QueryParent != &QueryParent->getParent()->getEntryBlock())
652       LocalCache = MemDepResult::getNonLocal();
653     else
654       LocalCache = MemDepResult::getNonFuncLocal();
655   } else {
656     MemoryLocation MemLoc;
657     ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI);
658     if (MemLoc.Ptr) {
659       // If we can do a pointer scan, make it happen.
660       bool isLoad = !isModSet(MR);
661       if (auto *II = dyn_cast<IntrinsicInst>(QueryInst))
662         isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
663 
664       LocalCache =
665           getPointerDependencyFrom(MemLoc, isLoad, ScanPos->getIterator(),
666                                    QueryParent, QueryInst, nullptr);
667     } else if (auto *QueryCall = dyn_cast<CallBase>(QueryInst)) {
668       bool isReadOnly = AA.onlyReadsMemory(QueryCall);
669       LocalCache = getCallDependencyFrom(QueryCall, isReadOnly,
670                                          ScanPos->getIterator(), QueryParent);
671     } else
672       // Non-memory instruction.
673       LocalCache = MemDepResult::getUnknown();
674   }
675 
676   // Remember the result!
677   if (Instruction *I = LocalCache.getInst())
678     ReverseLocalDeps[I].insert(QueryInst);
679 
680   return LocalCache;
681 }
682 
683 #ifndef NDEBUG
684 /// This method is used when -debug is specified to verify that cache arrays
685 /// are properly kept sorted.
686 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache,
687                          int Count = -1) {
688   if (Count == -1)
689     Count = Cache.size();
690   assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) &&
691          "Cache isn't sorted!");
692 }
693 #endif
694 
695 const MemoryDependenceResults::NonLocalDepInfo &
696 MemoryDependenceResults::getNonLocalCallDependency(CallBase *QueryCall) {
697   assert(getDependency(QueryCall).isNonLocal() &&
698          "getNonLocalCallDependency should only be used on calls with "
699          "non-local deps!");
700   PerInstNLInfo &CacheP = NonLocalDeps[QueryCall];
701   NonLocalDepInfo &Cache = CacheP.first;
702 
703   // This is the set of blocks that need to be recomputed.  In the cached case,
704   // this can happen due to instructions being deleted etc. In the uncached
705   // case, this starts out as the set of predecessors we care about.
706   SmallVector<BasicBlock *, 32> DirtyBlocks;
707 
708   if (!Cache.empty()) {
709     // Okay, we have a cache entry.  If we know it is not dirty, just return it
710     // with no computation.
711     if (!CacheP.second) {
712       ++NumCacheNonLocal;
713       return Cache;
714     }
715 
716     // If we already have a partially computed set of results, scan them to
717     // determine what is dirty, seeding our initial DirtyBlocks worklist.
718     for (auto &Entry : Cache)
719       if (Entry.getResult().isDirty())
720         DirtyBlocks.push_back(Entry.getBB());
721 
722     // Sort the cache so that we can do fast binary search lookups below.
723     llvm::sort(Cache);
724 
725     ++NumCacheDirtyNonLocal;
726     // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
727     //     << Cache.size() << " cached: " << *QueryInst;
728   } else {
729     // Seed DirtyBlocks with each of the preds of QueryInst's block.
730     BasicBlock *QueryBB = QueryCall->getParent();
731     for (BasicBlock *Pred : PredCache.get(QueryBB))
732       DirtyBlocks.push_back(Pred);
733     ++NumUncacheNonLocal;
734   }
735 
736   // isReadonlyCall - If this is a read-only call, we can be more aggressive.
737   bool isReadonlyCall = AA.onlyReadsMemory(QueryCall);
738 
739   SmallPtrSet<BasicBlock *, 32> Visited;
740 
741   unsigned NumSortedEntries = Cache.size();
742   LLVM_DEBUG(AssertSorted(Cache));
743 
744   // Iterate while we still have blocks to update.
745   while (!DirtyBlocks.empty()) {
746     BasicBlock *DirtyBB = DirtyBlocks.back();
747     DirtyBlocks.pop_back();
748 
749     // Already processed this block?
750     if (!Visited.insert(DirtyBB).second)
751       continue;
752 
753     // Do a binary search to see if we already have an entry for this block in
754     // the cache set.  If so, find it.
755     LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries));
756     NonLocalDepInfo::iterator Entry =
757         std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries,
758                          NonLocalDepEntry(DirtyBB));
759     if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
760       --Entry;
761 
762     NonLocalDepEntry *ExistingResult = nullptr;
763     if (Entry != Cache.begin() + NumSortedEntries &&
764         Entry->getBB() == DirtyBB) {
765       // If we already have an entry, and if it isn't already dirty, the block
766       // is done.
767       if (!Entry->getResult().isDirty())
768         continue;
769 
770       // Otherwise, remember this slot so we can update the value.
771       ExistingResult = &*Entry;
772     }
773 
774     // If the dirty entry has a pointer, start scanning from it so we don't have
775     // to rescan the entire block.
776     BasicBlock::iterator ScanPos = DirtyBB->end();
777     if (ExistingResult) {
778       if (Instruction *Inst = ExistingResult->getResult().getInst()) {
779         ScanPos = Inst->getIterator();
780         // We're removing QueryInst's use of Inst.
781         RemoveFromReverseMap<Instruction *>(ReverseNonLocalDeps, Inst,
782                                             QueryCall);
783       }
784     }
785 
786     // Find out if this block has a local dependency for QueryInst.
787     MemDepResult Dep;
788 
789     if (ScanPos != DirtyBB->begin()) {
790       Dep = getCallDependencyFrom(QueryCall, isReadonlyCall, ScanPos, DirtyBB);
791     } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
792       // No dependence found.  If this is the entry block of the function, it is
793       // a clobber, otherwise it is unknown.
794       Dep = MemDepResult::getNonLocal();
795     } else {
796       Dep = MemDepResult::getNonFuncLocal();
797     }
798 
799     // If we had a dirty entry for the block, update it.  Otherwise, just add
800     // a new entry.
801     if (ExistingResult)
802       ExistingResult->setResult(Dep);
803     else
804       Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
805 
806     // If the block has a dependency (i.e. it isn't completely transparent to
807     // the value), remember the association!
808     if (!Dep.isNonLocal()) {
809       // Keep the ReverseNonLocalDeps map up to date so we can efficiently
810       // update this when we remove instructions.
811       if (Instruction *Inst = Dep.getInst())
812         ReverseNonLocalDeps[Inst].insert(QueryCall);
813     } else {
814 
815       // If the block *is* completely transparent to the load, we need to check
816       // the predecessors of this block.  Add them to our worklist.
817       for (BasicBlock *Pred : PredCache.get(DirtyBB))
818         DirtyBlocks.push_back(Pred);
819     }
820   }
821 
822   return Cache;
823 }
824 
825 void MemoryDependenceResults::getNonLocalPointerDependency(
826     Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) {
827   const MemoryLocation Loc = MemoryLocation::get(QueryInst);
828   bool isLoad = isa<LoadInst>(QueryInst);
829   BasicBlock *FromBB = QueryInst->getParent();
830   assert(FromBB);
831 
832   assert(Loc.Ptr->getType()->isPointerTy() &&
833          "Can't get pointer deps of a non-pointer!");
834   Result.clear();
835   {
836     // Check if there is cached Def with invariant.group.
837     auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst);
838     if (NonLocalDefIt != NonLocalDefsCache.end()) {
839       Result.push_back(NonLocalDefIt->second);
840       ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()]
841           .erase(QueryInst);
842       NonLocalDefsCache.erase(NonLocalDefIt);
843       return;
844     }
845   }
846   // This routine does not expect to deal with volatile instructions.
847   // Doing so would require piping through the QueryInst all the way through.
848   // TODO: volatiles can't be elided, but they can be reordered with other
849   // non-volatile accesses.
850 
851   // We currently give up on any instruction which is ordered, but we do handle
852   // atomic instructions which are unordered.
853   // TODO: Handle ordered instructions
854   auto isOrdered = [](Instruction *Inst) {
855     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
856       return !LI->isUnordered();
857     } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
858       return !SI->isUnordered();
859     }
860     return false;
861   };
862   if (isVolatile(QueryInst) || isOrdered(QueryInst)) {
863     Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
864                                        const_cast<Value *>(Loc.Ptr)));
865     return;
866   }
867   const DataLayout &DL = FromBB->getModule()->getDataLayout();
868   PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC);
869 
870   // This is the set of blocks we've inspected, and the pointer we consider in
871   // each block.  Because of critical edges, we currently bail out if querying
872   // a block with multiple different pointers.  This can happen during PHI
873   // translation.
874   DenseMap<BasicBlock *, Value *> Visited;
875   if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB,
876                                    Result, Visited, true))
877     return;
878   Result.clear();
879   Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
880                                      const_cast<Value *>(Loc.Ptr)));
881 }
882 
883 /// Compute the memdep value for BB with Pointer/PointeeSize using either
884 /// cached information in Cache or by doing a lookup (which may use dirty cache
885 /// info if available).
886 ///
887 /// If we do a lookup, add the result to the cache.
888 MemDepResult MemoryDependenceResults::GetNonLocalInfoForBlock(
889     Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad,
890     BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
891 
892   // Do a binary search to see if we already have an entry for this block in
893   // the cache set.  If so, find it.
894   NonLocalDepInfo::iterator Entry = std::upper_bound(
895       Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB));
896   if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB)
897     --Entry;
898 
899   NonLocalDepEntry *ExistingResult = nullptr;
900   if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB)
901     ExistingResult = &*Entry;
902 
903   // If we have a cached entry, and it is non-dirty, use it as the value for
904   // this dependency.
905   if (ExistingResult && !ExistingResult->getResult().isDirty()) {
906     ++NumCacheNonLocalPtr;
907     return ExistingResult->getResult();
908   }
909 
910   // Otherwise, we have to scan for the value.  If we have a dirty cache
911   // entry, start scanning from its position, otherwise we scan from the end
912   // of the block.
913   BasicBlock::iterator ScanPos = BB->end();
914   if (ExistingResult && ExistingResult->getResult().getInst()) {
915     assert(ExistingResult->getResult().getInst()->getParent() == BB &&
916            "Instruction invalidated?");
917     ++NumCacheDirtyNonLocalPtr;
918     ScanPos = ExistingResult->getResult().getInst()->getIterator();
919 
920     // Eliminating the dirty entry from 'Cache', so update the reverse info.
921     ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
922     RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey);
923   } else {
924     ++NumUncacheNonLocalPtr;
925   }
926 
927   // Scan the block for the dependency.
928   MemDepResult Dep =
929       getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, QueryInst);
930 
931   // If we had a dirty entry for the block, update it.  Otherwise, just add
932   // a new entry.
933   if (ExistingResult)
934     ExistingResult->setResult(Dep);
935   else
936     Cache->push_back(NonLocalDepEntry(BB, Dep));
937 
938   // If the block has a dependency (i.e. it isn't completely transparent to
939   // the value), remember the reverse association because we just added it
940   // to Cache!
941   if (!Dep.isDef() && !Dep.isClobber())
942     return Dep;
943 
944   // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
945   // update MemDep when we remove instructions.
946   Instruction *Inst = Dep.getInst();
947   assert(Inst && "Didn't depend on anything?");
948   ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
949   ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
950   return Dep;
951 }
952 
953 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the
954 /// array that are already properly ordered.
955 ///
956 /// This is optimized for the case when only a few entries are added.
957 static void
958 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache,
959                          unsigned NumSortedEntries) {
960   switch (Cache.size() - NumSortedEntries) {
961   case 0:
962     // done, no new entries.
963     break;
964   case 2: {
965     // Two new entries, insert the last one into place.
966     NonLocalDepEntry Val = Cache.back();
967     Cache.pop_back();
968     MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
969         std::upper_bound(Cache.begin(), Cache.end() - 1, Val);
970     Cache.insert(Entry, Val);
971     LLVM_FALLTHROUGH;
972   }
973   case 1:
974     // One new entry, Just insert the new value at the appropriate position.
975     if (Cache.size() != 1) {
976       NonLocalDepEntry Val = Cache.back();
977       Cache.pop_back();
978       MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
979           std::upper_bound(Cache.begin(), Cache.end(), Val);
980       Cache.insert(Entry, Val);
981     }
982     break;
983   default:
984     // Added many values, do a full scale sort.
985     llvm::sort(Cache);
986     break;
987   }
988 }
989 
990 /// Perform a dependency query based on pointer/pointeesize starting at the end
991 /// of StartBB.
992 ///
993 /// Add any clobber/def results to the results vector and keep track of which
994 /// blocks are visited in 'Visited'.
995 ///
996 /// This has special behavior for the first block queries (when SkipFirstBlock
997 /// is true).  In this special case, it ignores the contents of the specified
998 /// block and starts returning dependence info for its predecessors.
999 ///
1000 /// This function returns true on success, or false to indicate that it could
1001 /// not compute dependence information for some reason.  This should be treated
1002 /// as a clobber dependence on the first instruction in the predecessor block.
1003 bool MemoryDependenceResults::getNonLocalPointerDepFromBB(
1004     Instruction *QueryInst, const PHITransAddr &Pointer,
1005     const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB,
1006     SmallVectorImpl<NonLocalDepResult> &Result,
1007     DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock) {
1008   // Look up the cached info for Pointer.
1009   ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
1010 
1011   // Set up a temporary NLPI value. If the map doesn't yet have an entry for
1012   // CacheKey, this value will be inserted as the associated value. Otherwise,
1013   // it'll be ignored, and we'll have to check to see if the cached size and
1014   // aa tags are consistent with the current query.
1015   NonLocalPointerInfo InitialNLPI;
1016   InitialNLPI.Size = Loc.Size;
1017   InitialNLPI.AATags = Loc.AATags;
1018 
1019   // Get the NLPI for CacheKey, inserting one into the map if it doesn't
1020   // already have one.
1021   std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
1022       NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
1023   NonLocalPointerInfo *CacheInfo = &Pair.first->second;
1024 
1025   // If we already have a cache entry for this CacheKey, we may need to do some
1026   // work to reconcile the cache entry and the current query.
1027   if (!Pair.second) {
1028     if (CacheInfo->Size != Loc.Size) {
1029       bool ThrowOutEverything;
1030       if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) {
1031         // FIXME: We may be able to do better in the face of results with mixed
1032         // precision. We don't appear to get them in practice, though, so just
1033         // be conservative.
1034         ThrowOutEverything =
1035             CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() ||
1036             CacheInfo->Size.getValue() < Loc.Size.getValue();
1037       } else {
1038         // For our purposes, unknown size > all others.
1039         ThrowOutEverything = !Loc.Size.hasValue();
1040       }
1041 
1042       if (ThrowOutEverything) {
1043         // The query's Size is greater than the cached one. Throw out the
1044         // cached data and proceed with the query at the greater size.
1045         CacheInfo->Pair = BBSkipFirstBlockPair();
1046         CacheInfo->Size = Loc.Size;
1047         for (auto &Entry : CacheInfo->NonLocalDeps)
1048           if (Instruction *Inst = Entry.getResult().getInst())
1049             RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1050         CacheInfo->NonLocalDeps.clear();
1051       } else {
1052         // This query's Size is less than the cached one. Conservatively restart
1053         // the query using the greater size.
1054         return getNonLocalPointerDepFromBB(
1055             QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad,
1056             StartBB, Result, Visited, SkipFirstBlock);
1057       }
1058     }
1059 
1060     // If the query's AATags are inconsistent with the cached one,
1061     // conservatively throw out the cached data and restart the query with
1062     // no tag if needed.
1063     if (CacheInfo->AATags != Loc.AATags) {
1064       if (CacheInfo->AATags) {
1065         CacheInfo->Pair = BBSkipFirstBlockPair();
1066         CacheInfo->AATags = AAMDNodes();
1067         for (auto &Entry : CacheInfo->NonLocalDeps)
1068           if (Instruction *Inst = Entry.getResult().getInst())
1069             RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1070         CacheInfo->NonLocalDeps.clear();
1071       }
1072       if (Loc.AATags)
1073         return getNonLocalPointerDepFromBB(
1074             QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result,
1075             Visited, SkipFirstBlock);
1076     }
1077   }
1078 
1079   NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
1080 
1081   // If we have valid cached information for exactly the block we are
1082   // investigating, just return it with no recomputation.
1083   if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
1084     // We have a fully cached result for this query then we can just return the
1085     // cached results and populate the visited set.  However, we have to verify
1086     // that we don't already have conflicting results for these blocks.  Check
1087     // to ensure that if a block in the results set is in the visited set that
1088     // it was for the same pointer query.
1089     if (!Visited.empty()) {
1090       for (auto &Entry : *Cache) {
1091         DenseMap<BasicBlock *, Value *>::iterator VI =
1092             Visited.find(Entry.getBB());
1093         if (VI == Visited.end() || VI->second == Pointer.getAddr())
1094           continue;
1095 
1096         // We have a pointer mismatch in a block.  Just return false, saying
1097         // that something was clobbered in this result.  We could also do a
1098         // non-fully cached query, but there is little point in doing this.
1099         return false;
1100       }
1101     }
1102 
1103     Value *Addr = Pointer.getAddr();
1104     for (auto &Entry : *Cache) {
1105       Visited.insert(std::make_pair(Entry.getBB(), Addr));
1106       if (Entry.getResult().isNonLocal()) {
1107         continue;
1108       }
1109 
1110       if (DT.isReachableFromEntry(Entry.getBB())) {
1111         Result.push_back(
1112             NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr));
1113       }
1114     }
1115     ++NumCacheCompleteNonLocalPtr;
1116     return true;
1117   }
1118 
1119   // Otherwise, either this is a new block, a block with an invalid cache
1120   // pointer or one that we're about to invalidate by putting more info into it
1121   // than its valid cache info.  If empty, the result will be valid cache info,
1122   // otherwise it isn't.
1123   if (Cache->empty())
1124     CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1125   else
1126     CacheInfo->Pair = BBSkipFirstBlockPair();
1127 
1128   SmallVector<BasicBlock *, 32> Worklist;
1129   Worklist.push_back(StartBB);
1130 
1131   // PredList used inside loop.
1132   SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList;
1133 
1134   // Keep track of the entries that we know are sorted.  Previously cached
1135   // entries will all be sorted.  The entries we add we only sort on demand (we
1136   // don't insert every element into its sorted position).  We know that we
1137   // won't get any reuse from currently inserted values, because we don't
1138   // revisit blocks after we insert info for them.
1139   unsigned NumSortedEntries = Cache->size();
1140   unsigned WorklistEntries = BlockNumberLimit;
1141   bool GotWorklistLimit = false;
1142   LLVM_DEBUG(AssertSorted(*Cache));
1143 
1144   while (!Worklist.empty()) {
1145     BasicBlock *BB = Worklist.pop_back_val();
1146 
1147     // If we do process a large number of blocks it becomes very expensive and
1148     // likely it isn't worth worrying about
1149     if (Result.size() > NumResultsLimit) {
1150       Worklist.clear();
1151       // Sort it now (if needed) so that recursive invocations of
1152       // getNonLocalPointerDepFromBB and other routines that could reuse the
1153       // cache value will only see properly sorted cache arrays.
1154       if (Cache && NumSortedEntries != Cache->size()) {
1155         SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1156       }
1157       // Since we bail out, the "Cache" set won't contain all of the
1158       // results for the query.  This is ok (we can still use it to accelerate
1159       // specific block queries) but we can't do the fastpath "return all
1160       // results from the set".  Clear out the indicator for this.
1161       CacheInfo->Pair = BBSkipFirstBlockPair();
1162       return false;
1163     }
1164 
1165     // Skip the first block if we have it.
1166     if (!SkipFirstBlock) {
1167       // Analyze the dependency of *Pointer in FromBB.  See if we already have
1168       // been here.
1169       assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1170 
1171       // Get the dependency info for Pointer in BB.  If we have cached
1172       // information, we will use it, otherwise we compute it.
1173       LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries));
1174       MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, Loc, isLoad, BB,
1175                                                  Cache, NumSortedEntries);
1176 
1177       // If we got a Def or Clobber, add this to the list of results.
1178       if (!Dep.isNonLocal()) {
1179         if (DT.isReachableFromEntry(BB)) {
1180           Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1181           continue;
1182         }
1183       }
1184     }
1185 
1186     // If 'Pointer' is an instruction defined in this block, then we need to do
1187     // phi translation to change it into a value live in the predecessor block.
1188     // If not, we just add the predecessors to the worklist and scan them with
1189     // the same Pointer.
1190     if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1191       SkipFirstBlock = false;
1192       SmallVector<BasicBlock *, 16> NewBlocks;
1193       for (BasicBlock *Pred : PredCache.get(BB)) {
1194         // Verify that we haven't looked at this block yet.
1195         std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1196             Visited.insert(std::make_pair(Pred, Pointer.getAddr()));
1197         if (InsertRes.second) {
1198           // First time we've looked at *PI.
1199           NewBlocks.push_back(Pred);
1200           continue;
1201         }
1202 
1203         // If we have seen this block before, but it was with a different
1204         // pointer then we have a phi translation failure and we have to treat
1205         // this as a clobber.
1206         if (InsertRes.first->second != Pointer.getAddr()) {
1207           // Make sure to clean up the Visited map before continuing on to
1208           // PredTranslationFailure.
1209           for (unsigned i = 0; i < NewBlocks.size(); i++)
1210             Visited.erase(NewBlocks[i]);
1211           goto PredTranslationFailure;
1212         }
1213       }
1214       if (NewBlocks.size() > WorklistEntries) {
1215         // Make sure to clean up the Visited map before continuing on to
1216         // PredTranslationFailure.
1217         for (unsigned i = 0; i < NewBlocks.size(); i++)
1218           Visited.erase(NewBlocks[i]);
1219         GotWorklistLimit = true;
1220         goto PredTranslationFailure;
1221       }
1222       WorklistEntries -= NewBlocks.size();
1223       Worklist.append(NewBlocks.begin(), NewBlocks.end());
1224       continue;
1225     }
1226 
1227     // We do need to do phi translation, if we know ahead of time we can't phi
1228     // translate this value, don't even try.
1229     if (!Pointer.IsPotentiallyPHITranslatable())
1230       goto PredTranslationFailure;
1231 
1232     // We may have added values to the cache list before this PHI translation.
1233     // If so, we haven't done anything to ensure that the cache remains sorted.
1234     // Sort it now (if needed) so that recursive invocations of
1235     // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1236     // value will only see properly sorted cache arrays.
1237     if (Cache && NumSortedEntries != Cache->size()) {
1238       SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1239       NumSortedEntries = Cache->size();
1240     }
1241     Cache = nullptr;
1242 
1243     PredList.clear();
1244     for (BasicBlock *Pred : PredCache.get(BB)) {
1245       PredList.push_back(std::make_pair(Pred, Pointer));
1246 
1247       // Get the PHI translated pointer in this predecessor.  This can fail if
1248       // not translatable, in which case the getAddr() returns null.
1249       PHITransAddr &PredPointer = PredList.back().second;
1250       PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false);
1251       Value *PredPtrVal = PredPointer.getAddr();
1252 
1253       // Check to see if we have already visited this pred block with another
1254       // pointer.  If so, we can't do this lookup.  This failure can occur
1255       // with PHI translation when a critical edge exists and the PHI node in
1256       // the successor translates to a pointer value different than the
1257       // pointer the block was first analyzed with.
1258       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1259           Visited.insert(std::make_pair(Pred, PredPtrVal));
1260 
1261       if (!InsertRes.second) {
1262         // We found the pred; take it off the list of preds to visit.
1263         PredList.pop_back();
1264 
1265         // If the predecessor was visited with PredPtr, then we already did
1266         // the analysis and can ignore it.
1267         if (InsertRes.first->second == PredPtrVal)
1268           continue;
1269 
1270         // Otherwise, the block was previously analyzed with a different
1271         // pointer.  We can't represent the result of this case, so we just
1272         // treat this as a phi translation failure.
1273 
1274         // Make sure to clean up the Visited map before continuing on to
1275         // PredTranslationFailure.
1276         for (unsigned i = 0, n = PredList.size(); i < n; ++i)
1277           Visited.erase(PredList[i].first);
1278 
1279         goto PredTranslationFailure;
1280       }
1281     }
1282 
1283     // Actually process results here; this need to be a separate loop to avoid
1284     // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1285     // any results for.  (getNonLocalPointerDepFromBB will modify our
1286     // datastructures in ways the code after the PredTranslationFailure label
1287     // doesn't expect.)
1288     for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
1289       BasicBlock *Pred = PredList[i].first;
1290       PHITransAddr &PredPointer = PredList[i].second;
1291       Value *PredPtrVal = PredPointer.getAddr();
1292 
1293       bool CanTranslate = true;
1294       // If PHI translation was unable to find an available pointer in this
1295       // predecessor, then we have to assume that the pointer is clobbered in
1296       // that predecessor.  We can still do PRE of the load, which would insert
1297       // a computation of the pointer in this predecessor.
1298       if (!PredPtrVal)
1299         CanTranslate = false;
1300 
1301       // FIXME: it is entirely possible that PHI translating will end up with
1302       // the same value.  Consider PHI translating something like:
1303       // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
1304       // to recurse here, pedantically speaking.
1305 
1306       // If getNonLocalPointerDepFromBB fails here, that means the cached
1307       // result conflicted with the Visited list; we have to conservatively
1308       // assume it is unknown, but this also does not block PRE of the load.
1309       if (!CanTranslate ||
1310           !getNonLocalPointerDepFromBB(QueryInst, PredPointer,
1311                                       Loc.getWithNewPtr(PredPtrVal), isLoad,
1312                                       Pred, Result, Visited)) {
1313         // Add the entry to the Result list.
1314         NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1315         Result.push_back(Entry);
1316 
1317         // Since we had a phi translation failure, the cache for CacheKey won't
1318         // include all of the entries that we need to immediately satisfy future
1319         // queries.  Mark this in NonLocalPointerDeps by setting the
1320         // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
1321         // cached value to do more work but not miss the phi trans failure.
1322         NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1323         NLPI.Pair = BBSkipFirstBlockPair();
1324         continue;
1325       }
1326     }
1327 
1328     // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1329     CacheInfo = &NonLocalPointerDeps[CacheKey];
1330     Cache = &CacheInfo->NonLocalDeps;
1331     NumSortedEntries = Cache->size();
1332 
1333     // Since we did phi translation, the "Cache" set won't contain all of the
1334     // results for the query.  This is ok (we can still use it to accelerate
1335     // specific block queries) but we can't do the fastpath "return all
1336     // results from the set"  Clear out the indicator for this.
1337     CacheInfo->Pair = BBSkipFirstBlockPair();
1338     SkipFirstBlock = false;
1339     continue;
1340 
1341   PredTranslationFailure:
1342     // The following code is "failure"; we can't produce a sane translation
1343     // for the given block.  It assumes that we haven't modified any of
1344     // our datastructures while processing the current block.
1345 
1346     if (!Cache) {
1347       // Refresh the CacheInfo/Cache pointer if it got invalidated.
1348       CacheInfo = &NonLocalPointerDeps[CacheKey];
1349       Cache = &CacheInfo->NonLocalDeps;
1350       NumSortedEntries = Cache->size();
1351     }
1352 
1353     // Since we failed phi translation, the "Cache" set won't contain all of the
1354     // results for the query.  This is ok (we can still use it to accelerate
1355     // specific block queries) but we can't do the fastpath "return all
1356     // results from the set".  Clear out the indicator for this.
1357     CacheInfo->Pair = BBSkipFirstBlockPair();
1358 
1359     // If *nothing* works, mark the pointer as unknown.
1360     //
1361     // If this is the magic first block, return this as a clobber of the whole
1362     // incoming value.  Since we can't phi translate to one of the predecessors,
1363     // we have to bail out.
1364     if (SkipFirstBlock)
1365       return false;
1366 
1367     bool foundBlock = false;
1368     for (NonLocalDepEntry &I : llvm::reverse(*Cache)) {
1369       if (I.getBB() != BB)
1370         continue;
1371 
1372       assert((GotWorklistLimit || I.getResult().isNonLocal() ||
1373               !DT.isReachableFromEntry(BB)) &&
1374              "Should only be here with transparent block");
1375       foundBlock = true;
1376       I.setResult(MemDepResult::getUnknown());
1377       Result.push_back(
1378           NonLocalDepResult(I.getBB(), I.getResult(), Pointer.getAddr()));
1379       break;
1380     }
1381     (void)foundBlock; (void)GotWorklistLimit;
1382     assert((foundBlock || GotWorklistLimit) && "Current block not in cache?");
1383   }
1384 
1385   // Okay, we're done now.  If we added new values to the cache, re-sort it.
1386   SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1387   LLVM_DEBUG(AssertSorted(*Cache));
1388   return true;
1389 }
1390 
1391 /// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it.
1392 void MemoryDependenceResults::RemoveCachedNonLocalPointerDependencies(
1393     ValueIsLoadPair P) {
1394 
1395   // Most of the time this cache is empty.
1396   if (!NonLocalDefsCache.empty()) {
1397     auto it = NonLocalDefsCache.find(P.getPointer());
1398     if (it != NonLocalDefsCache.end()) {
1399       RemoveFromReverseMap(ReverseNonLocalDefsCache,
1400                            it->second.getResult().getInst(), P.getPointer());
1401       NonLocalDefsCache.erase(it);
1402     }
1403 
1404     if (auto *I = dyn_cast<Instruction>(P.getPointer())) {
1405       auto toRemoveIt = ReverseNonLocalDefsCache.find(I);
1406       if (toRemoveIt != ReverseNonLocalDefsCache.end()) {
1407         for (const auto *entry : toRemoveIt->second)
1408           NonLocalDefsCache.erase(entry);
1409         ReverseNonLocalDefsCache.erase(toRemoveIt);
1410       }
1411     }
1412   }
1413 
1414   CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P);
1415   if (It == NonLocalPointerDeps.end())
1416     return;
1417 
1418   // Remove all of the entries in the BB->val map.  This involves removing
1419   // instructions from the reverse map.
1420   NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1421 
1422   for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1423     Instruction *Target = PInfo[i].getResult().getInst();
1424     if (!Target)
1425       continue; // Ignore non-local dep results.
1426     assert(Target->getParent() == PInfo[i].getBB());
1427 
1428     // Eliminating the dirty entry from 'Cache', so update the reverse info.
1429     RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1430   }
1431 
1432   // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1433   NonLocalPointerDeps.erase(It);
1434 }
1435 
1436 void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) {
1437   // If Ptr isn't really a pointer, just ignore it.
1438   if (!Ptr->getType()->isPointerTy())
1439     return;
1440   // Flush store info for the pointer.
1441   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1442   // Flush load info for the pointer.
1443   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1444   // Invalidate phis that use the pointer.
1445   PV.invalidateValue(Ptr);
1446 }
1447 
1448 void MemoryDependenceResults::invalidateCachedPredecessors() {
1449   PredCache.clear();
1450 }
1451 
1452 void MemoryDependenceResults::removeInstruction(Instruction *RemInst) {
1453   // Walk through the Non-local dependencies, removing this one as the value
1454   // for any cached queries.
1455   NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1456   if (NLDI != NonLocalDeps.end()) {
1457     NonLocalDepInfo &BlockMap = NLDI->second.first;
1458     for (auto &Entry : BlockMap)
1459       if (Instruction *Inst = Entry.getResult().getInst())
1460         RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1461     NonLocalDeps.erase(NLDI);
1462   }
1463 
1464   // If we have a cached local dependence query for this instruction, remove it.
1465   LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1466   if (LocalDepEntry != LocalDeps.end()) {
1467     // Remove us from DepInst's reverse set now that the local dep info is gone.
1468     if (Instruction *Inst = LocalDepEntry->second.getInst())
1469       RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1470 
1471     // Remove this local dependency info.
1472     LocalDeps.erase(LocalDepEntry);
1473   }
1474 
1475   // If we have any cached pointer dependencies on this instruction, remove
1476   // them.  If the instruction has non-pointer type, then it can't be a pointer
1477   // base.
1478 
1479   // Remove it from both the load info and the store info.  The instruction
1480   // can't be in either of these maps if it is non-pointer.
1481   if (RemInst->getType()->isPointerTy()) {
1482     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1483     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1484   }
1485 
1486   // Loop over all of the things that depend on the instruction we're removing.
1487   SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd;
1488 
1489   // If we find RemInst as a clobber or Def in any of the maps for other values,
1490   // we need to replace its entry with a dirty version of the instruction after
1491   // it.  If RemInst is a terminator, we use a null dirty value.
1492   //
1493   // Using a dirty version of the instruction after RemInst saves having to scan
1494   // the entire block to get to this point.
1495   MemDepResult NewDirtyVal;
1496   if (!RemInst->isTerminator())
1497     NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator());
1498 
1499   ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1500   if (ReverseDepIt != ReverseLocalDeps.end()) {
1501     // RemInst can't be the terminator if it has local stuff depending on it.
1502     assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() &&
1503            "Nothing can locally depend on a terminator");
1504 
1505     for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
1506       assert(InstDependingOnRemInst != RemInst &&
1507              "Already removed our local dep info");
1508 
1509       LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1510 
1511       // Make sure to remember that new things depend on NewDepInst.
1512       assert(NewDirtyVal.getInst() &&
1513              "There is no way something else can have "
1514              "a local dep on this if it is a terminator!");
1515       ReverseDepsToAdd.push_back(
1516           std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst));
1517     }
1518 
1519     ReverseLocalDeps.erase(ReverseDepIt);
1520 
1521     // Add new reverse deps after scanning the set, to avoid invalidating the
1522     // 'ReverseDeps' reference.
1523     while (!ReverseDepsToAdd.empty()) {
1524       ReverseLocalDeps[ReverseDepsToAdd.back().first].insert(
1525           ReverseDepsToAdd.back().second);
1526       ReverseDepsToAdd.pop_back();
1527     }
1528   }
1529 
1530   ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1531   if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1532     for (Instruction *I : ReverseDepIt->second) {
1533       assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
1534 
1535       PerInstNLInfo &INLD = NonLocalDeps[I];
1536       // The information is now dirty!
1537       INLD.second = true;
1538 
1539       for (auto &Entry : INLD.first) {
1540         if (Entry.getResult().getInst() != RemInst)
1541           continue;
1542 
1543         // Convert to a dirty entry for the subsequent instruction.
1544         Entry.setResult(NewDirtyVal);
1545 
1546         if (Instruction *NextI = NewDirtyVal.getInst())
1547           ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
1548       }
1549     }
1550 
1551     ReverseNonLocalDeps.erase(ReverseDepIt);
1552 
1553     // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1554     while (!ReverseDepsToAdd.empty()) {
1555       ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert(
1556           ReverseDepsToAdd.back().second);
1557       ReverseDepsToAdd.pop_back();
1558     }
1559   }
1560 
1561   // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1562   // value in the NonLocalPointerDeps info.
1563   ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1564       ReverseNonLocalPtrDeps.find(RemInst);
1565   if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1566     SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8>
1567         ReversePtrDepsToAdd;
1568 
1569     for (ValueIsLoadPair P : ReversePtrDepIt->second) {
1570       assert(P.getPointer() != RemInst &&
1571              "Already removed NonLocalPointerDeps info for RemInst");
1572 
1573       NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1574 
1575       // The cache is not valid for any specific block anymore.
1576       NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1577 
1578       // Update any entries for RemInst to use the instruction after it.
1579       for (auto &Entry : NLPDI) {
1580         if (Entry.getResult().getInst() != RemInst)
1581           continue;
1582 
1583         // Convert to a dirty entry for the subsequent instruction.
1584         Entry.setResult(NewDirtyVal);
1585 
1586         if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1587           ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1588       }
1589 
1590       // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1591       // subsequent value may invalidate the sortedness.
1592       llvm::sort(NLPDI);
1593     }
1594 
1595     ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1596 
1597     while (!ReversePtrDepsToAdd.empty()) {
1598       ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert(
1599           ReversePtrDepsToAdd.back().second);
1600       ReversePtrDepsToAdd.pop_back();
1601     }
1602   }
1603 
1604   // Invalidate phis that use the removed instruction.
1605   PV.invalidateValue(RemInst);
1606 
1607   assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1608   LLVM_DEBUG(verifyRemoved(RemInst));
1609 }
1610 
1611 /// Verify that the specified instruction does not occur in our internal data
1612 /// structures.
1613 ///
1614 /// This function verifies by asserting in debug builds.
1615 void MemoryDependenceResults::verifyRemoved(Instruction *D) const {
1616 #ifndef NDEBUG
1617   for (const auto &DepKV : LocalDeps) {
1618     assert(DepKV.first != D && "Inst occurs in data structures");
1619     assert(DepKV.second.getInst() != D && "Inst occurs in data structures");
1620   }
1621 
1622   for (const auto &DepKV : NonLocalPointerDeps) {
1623     assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key");
1624     for (const auto &Entry : DepKV.second.NonLocalDeps)
1625       assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value");
1626   }
1627 
1628   for (const auto &DepKV : NonLocalDeps) {
1629     assert(DepKV.first != D && "Inst occurs in data structures");
1630     const PerInstNLInfo &INLD = DepKV.second;
1631     for (const auto &Entry : INLD.first)
1632       assert(Entry.getResult().getInst() != D &&
1633              "Inst occurs in data structures");
1634   }
1635 
1636   for (const auto &DepKV : ReverseLocalDeps) {
1637     assert(DepKV.first != D && "Inst occurs in data structures");
1638     for (Instruction *Inst : DepKV.second)
1639       assert(Inst != D && "Inst occurs in data structures");
1640   }
1641 
1642   for (const auto &DepKV : ReverseNonLocalDeps) {
1643     assert(DepKV.first != D && "Inst occurs in data structures");
1644     for (Instruction *Inst : DepKV.second)
1645       assert(Inst != D && "Inst occurs in data structures");
1646   }
1647 
1648   for (const auto &DepKV : ReverseNonLocalPtrDeps) {
1649     assert(DepKV.first != D && "Inst occurs in rev NLPD map");
1650 
1651     for (ValueIsLoadPair P : DepKV.second)
1652       assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) &&
1653              "Inst occurs in ReverseNonLocalPtrDeps map");
1654   }
1655 #endif
1656 }
1657 
1658 AnalysisKey MemoryDependenceAnalysis::Key;
1659 
1660 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
1661     : DefaultBlockScanLimit(BlockScanLimit) {}
1662 
1663 MemoryDependenceResults
1664 MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
1665   auto &AA = AM.getResult<AAManager>(F);
1666   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1667   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1668   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1669   auto &PV = AM.getResult<PhiValuesAnalysis>(F);
1670   return MemoryDependenceResults(AA, AC, TLI, DT, PV, DefaultBlockScanLimit);
1671 }
1672 
1673 char MemoryDependenceWrapperPass::ID = 0;
1674 
1675 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep",
1676                       "Memory Dependence Analysis", false, true)
1677 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1678 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1679 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1680 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1681 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
1682 INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep",
1683                     "Memory Dependence Analysis", false, true)
1684 
1685 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) {
1686   initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry());
1687 }
1688 
1689 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default;
1690 
1691 void MemoryDependenceWrapperPass::releaseMemory() {
1692   MemDep.reset();
1693 }
1694 
1695 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1696   AU.setPreservesAll();
1697   AU.addRequired<AssumptionCacheTracker>();
1698   AU.addRequired<DominatorTreeWrapperPass>();
1699   AU.addRequired<PhiValuesWrapperPass>();
1700   AU.addRequiredTransitive<AAResultsWrapperPass>();
1701   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1702 }
1703 
1704 bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA,
1705                                FunctionAnalysisManager::Invalidator &Inv) {
1706   // Check whether our analysis is preserved.
1707   auto PAC = PA.getChecker<MemoryDependenceAnalysis>();
1708   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
1709     // If not, give up now.
1710     return true;
1711 
1712   // Check whether the analyses we depend on became invalid for any reason.
1713   if (Inv.invalidate<AAManager>(F, PA) ||
1714       Inv.invalidate<AssumptionAnalysis>(F, PA) ||
1715       Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
1716       Inv.invalidate<PhiValuesAnalysis>(F, PA))
1717     return true;
1718 
1719   // Otherwise this analysis result remains valid.
1720   return false;
1721 }
1722 
1723 unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const {
1724   return DefaultBlockScanLimit;
1725 }
1726 
1727 bool MemoryDependenceWrapperPass::runOnFunction(Function &F) {
1728   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1729   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1730   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1731   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1732   auto &PV = getAnalysis<PhiValuesWrapperPass>().getResult();
1733   MemDep.emplace(AA, AC, TLI, DT, PV, BlockScanLimit);
1734   return false;
1735 }
1736