1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an analysis that determines, for a given memory
10 // operation, what preceding memory operations it depends on. It builds on
11 // alias analysis information, and tries to provide a lazy, caching interface to
12 // a common kind of alias information query.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/Analysis/PHITransAddr.h"
27 #include "llvm/Analysis/PhiValues.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/InstrTypes.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/PredIteratorCache.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/IR/Use.h"
43 #include "llvm/IR/Value.h"
44 #include "llvm/InitializePasses.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/AtomicOrdering.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/Debug.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <iterator>
54 #include <utility>
55
56 using namespace llvm;
57
58 #define DEBUG_TYPE "memdep"
59
60 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
61 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
62 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
63
64 STATISTIC(NumCacheNonLocalPtr,
65 "Number of fully cached non-local ptr responses");
66 STATISTIC(NumCacheDirtyNonLocalPtr,
67 "Number of cached, but dirty, non-local ptr responses");
68 STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses");
69 STATISTIC(NumCacheCompleteNonLocalPtr,
70 "Number of block queries that were completely cached");
71
72 // Limit for the number of instructions to scan in a block.
73
74 static cl::opt<unsigned> BlockScanLimit(
75 "memdep-block-scan-limit", cl::Hidden, cl::init(100),
76 cl::desc("The number of instructions to scan in a block in memory "
77 "dependency analysis (default = 100)"));
78
79 static cl::opt<unsigned>
80 BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000),
81 cl::desc("The number of blocks to scan during memory "
82 "dependency analysis (default = 1000)"));
83
84 // Limit on the number of memdep results to process.
85 static const unsigned int NumResultsLimit = 100;
86
87 /// This is a helper function that removes Val from 'Inst's set in ReverseMap.
88 ///
89 /// If the set becomes empty, remove Inst's entry.
90 template <typename KeyTy>
91 static void
RemoveFromReverseMap(DenseMap<Instruction *,SmallPtrSet<KeyTy,4>> & ReverseMap,Instruction * Inst,KeyTy Val)92 RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap,
93 Instruction *Inst, KeyTy Val) {
94 typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt =
95 ReverseMap.find(Inst);
96 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
97 bool Found = InstIt->second.erase(Val);
98 assert(Found && "Invalid reverse map!");
99 (void)Found;
100 if (InstIt->second.empty())
101 ReverseMap.erase(InstIt);
102 }
103
104 /// If the given instruction references a specific memory location, fill in Loc
105 /// with the details, otherwise set Loc.Ptr to null.
106 ///
107 /// Returns a ModRefInfo value describing the general behavior of the
108 /// instruction.
GetLocation(const Instruction * Inst,MemoryLocation & Loc,const TargetLibraryInfo & TLI)109 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc,
110 const TargetLibraryInfo &TLI) {
111 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
112 if (LI->isUnordered()) {
113 Loc = MemoryLocation::get(LI);
114 return ModRefInfo::Ref;
115 }
116 if (LI->getOrdering() == AtomicOrdering::Monotonic) {
117 Loc = MemoryLocation::get(LI);
118 return ModRefInfo::ModRef;
119 }
120 Loc = MemoryLocation();
121 return ModRefInfo::ModRef;
122 }
123
124 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
125 if (SI->isUnordered()) {
126 Loc = MemoryLocation::get(SI);
127 return ModRefInfo::Mod;
128 }
129 if (SI->getOrdering() == AtomicOrdering::Monotonic) {
130 Loc = MemoryLocation::get(SI);
131 return ModRefInfo::ModRef;
132 }
133 Loc = MemoryLocation();
134 return ModRefInfo::ModRef;
135 }
136
137 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
138 Loc = MemoryLocation::get(V);
139 return ModRefInfo::ModRef;
140 }
141
142 if (const CallBase *CB = dyn_cast<CallBase>(Inst)) {
143 if (Value *FreedOp = getFreedOperand(CB, &TLI)) {
144 // calls to free() deallocate the entire structure
145 Loc = MemoryLocation::getAfter(FreedOp);
146 return ModRefInfo::Mod;
147 }
148 }
149
150 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
151 switch (II->getIntrinsicID()) {
152 case Intrinsic::lifetime_start:
153 case Intrinsic::lifetime_end:
154 case Intrinsic::invariant_start:
155 Loc = MemoryLocation::getForArgument(II, 1, TLI);
156 // These intrinsics don't really modify the memory, but returning Mod
157 // will allow them to be handled conservatively.
158 return ModRefInfo::Mod;
159 case Intrinsic::invariant_end:
160 Loc = MemoryLocation::getForArgument(II, 2, TLI);
161 // These intrinsics don't really modify the memory, but returning Mod
162 // will allow them to be handled conservatively.
163 return ModRefInfo::Mod;
164 case Intrinsic::masked_load:
165 Loc = MemoryLocation::getForArgument(II, 0, TLI);
166 return ModRefInfo::Ref;
167 case Intrinsic::masked_store:
168 Loc = MemoryLocation::getForArgument(II, 1, TLI);
169 return ModRefInfo::Mod;
170 default:
171 break;
172 }
173 }
174
175 // Otherwise, just do the coarse-grained thing that always works.
176 if (Inst->mayWriteToMemory())
177 return ModRefInfo::ModRef;
178 if (Inst->mayReadFromMemory())
179 return ModRefInfo::Ref;
180 return ModRefInfo::NoModRef;
181 }
182
183 /// Private helper for finding the local dependencies of a call site.
getCallDependencyFrom(CallBase * Call,bool isReadOnlyCall,BasicBlock::iterator ScanIt,BasicBlock * BB)184 MemDepResult MemoryDependenceResults::getCallDependencyFrom(
185 CallBase *Call, bool isReadOnlyCall, BasicBlock::iterator ScanIt,
186 BasicBlock *BB) {
187 unsigned Limit = getDefaultBlockScanLimit();
188
189 // Walk backwards through the block, looking for dependencies.
190 while (ScanIt != BB->begin()) {
191 Instruction *Inst = &*--ScanIt;
192 // Debug intrinsics don't cause dependences and should not affect Limit
193 if (isa<DbgInfoIntrinsic>(Inst))
194 continue;
195
196 // Limit the amount of scanning we do so we don't end up with quadratic
197 // running time on extreme testcases.
198 --Limit;
199 if (!Limit)
200 return MemDepResult::getUnknown();
201
202 // If this inst is a memory op, get the pointer it accessed
203 MemoryLocation Loc;
204 ModRefInfo MR = GetLocation(Inst, Loc, TLI);
205 if (Loc.Ptr) {
206 // A simple instruction.
207 if (isModOrRefSet(AA.getModRefInfo(Call, Loc)))
208 return MemDepResult::getClobber(Inst);
209 continue;
210 }
211
212 if (auto *CallB = dyn_cast<CallBase>(Inst)) {
213 // If these two calls do not interfere, look past it.
214 if (isNoModRef(AA.getModRefInfo(Call, CallB))) {
215 // If the two calls are the same, return Inst as a Def, so that
216 // Call can be found redundant and eliminated.
217 if (isReadOnlyCall && !isModSet(MR) &&
218 Call->isIdenticalToWhenDefined(CallB))
219 return MemDepResult::getDef(Inst);
220
221 // Otherwise if the two calls don't interact (e.g. CallB is readnone)
222 // keep scanning.
223 continue;
224 } else
225 return MemDepResult::getClobber(Inst);
226 }
227
228 // If we could not obtain a pointer for the instruction and the instruction
229 // touches memory then assume that this is a dependency.
230 if (isModOrRefSet(MR))
231 return MemDepResult::getClobber(Inst);
232 }
233
234 // No dependence found. If this is the entry block of the function, it is
235 // unknown, otherwise it is non-local.
236 if (BB != &BB->getParent()->getEntryBlock())
237 return MemDepResult::getNonLocal();
238 return MemDepResult::getNonFuncLocal();
239 }
240
getPointerDependencyFrom(const MemoryLocation & MemLoc,bool isLoad,BasicBlock::iterator ScanIt,BasicBlock * BB,Instruction * QueryInst,unsigned * Limit,BatchAAResults & BatchAA)241 MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
242 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
243 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit,
244 BatchAAResults &BatchAA) {
245 MemDepResult InvariantGroupDependency = MemDepResult::getUnknown();
246 if (QueryInst != nullptr) {
247 if (auto *LI = dyn_cast<LoadInst>(QueryInst)) {
248 InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB);
249
250 if (InvariantGroupDependency.isDef())
251 return InvariantGroupDependency;
252 }
253 }
254 MemDepResult SimpleDep = getSimplePointerDependencyFrom(
255 MemLoc, isLoad, ScanIt, BB, QueryInst, Limit, BatchAA);
256 if (SimpleDep.isDef())
257 return SimpleDep;
258 // Non-local invariant group dependency indicates there is non local Def
259 // (it only returns nonLocal if it finds nonLocal def), which is better than
260 // local clobber and everything else.
261 if (InvariantGroupDependency.isNonLocal())
262 return InvariantGroupDependency;
263
264 assert(InvariantGroupDependency.isUnknown() &&
265 "InvariantGroupDependency should be only unknown at this point");
266 return SimpleDep;
267 }
268
getPointerDependencyFrom(const MemoryLocation & MemLoc,bool isLoad,BasicBlock::iterator ScanIt,BasicBlock * BB,Instruction * QueryInst,unsigned * Limit)269 MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
270 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
271 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
272 BatchAAResults BatchAA(AA);
273 return getPointerDependencyFrom(MemLoc, isLoad, ScanIt, BB, QueryInst, Limit,
274 BatchAA);
275 }
276
277 MemDepResult
getInvariantGroupPointerDependency(LoadInst * LI,BasicBlock * BB)278 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI,
279 BasicBlock *BB) {
280
281 if (!LI->hasMetadata(LLVMContext::MD_invariant_group))
282 return MemDepResult::getUnknown();
283
284 // Take the ptr operand after all casts and geps 0. This way we can search
285 // cast graph down only.
286 Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts();
287
288 // It's is not safe to walk the use list of global value, because function
289 // passes aren't allowed to look outside their functions.
290 // FIXME: this could be fixed by filtering instructions from outside
291 // of current function.
292 if (isa<GlobalValue>(LoadOperand))
293 return MemDepResult::getUnknown();
294
295 // Queue to process all pointers that are equivalent to load operand.
296 SmallVector<const Value *, 8> LoadOperandsQueue;
297 LoadOperandsQueue.push_back(LoadOperand);
298
299 Instruction *ClosestDependency = nullptr;
300 // Order of instructions in uses list is unpredictible. In order to always
301 // get the same result, we will look for the closest dominance.
302 auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) {
303 assert(Other && "Must call it with not null instruction");
304 if (Best == nullptr || DT.dominates(Best, Other))
305 return Other;
306 return Best;
307 };
308
309 // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case
310 // we will see all the instructions. This should be fixed in MSSA.
311 while (!LoadOperandsQueue.empty()) {
312 const Value *Ptr = LoadOperandsQueue.pop_back_val();
313 assert(Ptr && !isa<GlobalValue>(Ptr) &&
314 "Null or GlobalValue should not be inserted");
315
316 for (const Use &Us : Ptr->uses()) {
317 auto *U = dyn_cast<Instruction>(Us.getUser());
318 if (!U || U == LI || !DT.dominates(U, LI))
319 continue;
320
321 // Bitcast or gep with zeros are using Ptr. Add to queue to check it's
322 // users. U = bitcast Ptr
323 if (isa<BitCastInst>(U)) {
324 LoadOperandsQueue.push_back(U);
325 continue;
326 }
327 // Gep with zeros is equivalent to bitcast.
328 // FIXME: we are not sure if some bitcast should be canonicalized to gep 0
329 // or gep 0 to bitcast because of SROA, so there are 2 forms. When
330 // typeless pointers will be ready then both cases will be gone
331 // (and this BFS also won't be needed).
332 if (auto *GEP = dyn_cast<GetElementPtrInst>(U))
333 if (GEP->hasAllZeroIndices()) {
334 LoadOperandsQueue.push_back(U);
335 continue;
336 }
337
338 // If we hit load/store with the same invariant.group metadata (and the
339 // same pointer operand) we can assume that value pointed by pointer
340 // operand didn't change.
341 if ((isa<LoadInst>(U) ||
342 (isa<StoreInst>(U) &&
343 cast<StoreInst>(U)->getPointerOperand() == Ptr)) &&
344 U->hasMetadata(LLVMContext::MD_invariant_group))
345 ClosestDependency = GetClosestDependency(ClosestDependency, U);
346 }
347 }
348
349 if (!ClosestDependency)
350 return MemDepResult::getUnknown();
351 if (ClosestDependency->getParent() == BB)
352 return MemDepResult::getDef(ClosestDependency);
353 // Def(U) can't be returned here because it is non-local. If local
354 // dependency won't be found then return nonLocal counting that the
355 // user will call getNonLocalPointerDependency, which will return cached
356 // result.
357 NonLocalDefsCache.try_emplace(
358 LI, NonLocalDepResult(ClosestDependency->getParent(),
359 MemDepResult::getDef(ClosestDependency), nullptr));
360 ReverseNonLocalDefsCache[ClosestDependency].insert(LI);
361 return MemDepResult::getNonLocal();
362 }
363
getSimplePointerDependencyFrom(const MemoryLocation & MemLoc,bool isLoad,BasicBlock::iterator ScanIt,BasicBlock * BB,Instruction * QueryInst,unsigned * Limit,BatchAAResults & BatchAA)364 MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom(
365 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
366 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit,
367 BatchAAResults &BatchAA) {
368 bool isInvariantLoad = false;
369
370 unsigned DefaultLimit = getDefaultBlockScanLimit();
371 if (!Limit)
372 Limit = &DefaultLimit;
373
374 // We must be careful with atomic accesses, as they may allow another thread
375 // to touch this location, clobbering it. We are conservative: if the
376 // QueryInst is not a simple (non-atomic) memory access, we automatically
377 // return getClobber.
378 // If it is simple, we know based on the results of
379 // "Compiler testing via a theory of sound optimisations in the C11/C++11
380 // memory model" in PLDI 2013, that a non-atomic location can only be
381 // clobbered between a pair of a release and an acquire action, with no
382 // access to the location in between.
383 // Here is an example for giving the general intuition behind this rule.
384 // In the following code:
385 // store x 0;
386 // release action; [1]
387 // acquire action; [4]
388 // %val = load x;
389 // It is unsafe to replace %val by 0 because another thread may be running:
390 // acquire action; [2]
391 // store x 42;
392 // release action; [3]
393 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
394 // being 42. A key property of this program however is that if either
395 // 1 or 4 were missing, there would be a race between the store of 42
396 // either the store of 0 or the load (making the whole program racy).
397 // The paper mentioned above shows that the same property is respected
398 // by every program that can detect any optimization of that kind: either
399 // it is racy (undefined) or there is a release followed by an acquire
400 // between the pair of accesses under consideration.
401
402 // If the load is invariant, we "know" that it doesn't alias *any* write. We
403 // do want to respect mustalias results since defs are useful for value
404 // forwarding, but any mayalias write can be assumed to be noalias.
405 // Arguably, this logic should be pushed inside AliasAnalysis itself.
406 if (isLoad && QueryInst) {
407 LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
408 if (LI && LI->hasMetadata(LLVMContext::MD_invariant_load))
409 isInvariantLoad = true;
410 }
411
412 // True for volatile instruction.
413 // For Load/Store return true if atomic ordering is stronger than AO,
414 // for other instruction just true if it can read or write to memory.
415 auto isComplexForReordering = [](Instruction * I, AtomicOrdering AO)->bool {
416 if (I->isVolatile())
417 return true;
418 if (auto *LI = dyn_cast<LoadInst>(I))
419 return isStrongerThan(LI->getOrdering(), AO);
420 if (auto *SI = dyn_cast<StoreInst>(I))
421 return isStrongerThan(SI->getOrdering(), AO);
422 return I->mayReadOrWriteMemory();
423 };
424
425 // Walk backwards through the basic block, looking for dependencies.
426 while (ScanIt != BB->begin()) {
427 Instruction *Inst = &*--ScanIt;
428
429 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
430 // Debug intrinsics don't (and can't) cause dependencies.
431 if (isa<DbgInfoIntrinsic>(II))
432 continue;
433
434 // Limit the amount of scanning we do so we don't end up with quadratic
435 // running time on extreme testcases.
436 --*Limit;
437 if (!*Limit)
438 return MemDepResult::getUnknown();
439
440 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
441 // If we reach a lifetime begin or end marker, then the query ends here
442 // because the value is undefined.
443 Intrinsic::ID ID = II->getIntrinsicID();
444 switch (ID) {
445 case Intrinsic::lifetime_start: {
446 // FIXME: This only considers queries directly on the invariant-tagged
447 // pointer, not on query pointers that are indexed off of them. It'd
448 // be nice to handle that at some point (the right approach is to use
449 // GetPointerBaseWithConstantOffset).
450 MemoryLocation ArgLoc = MemoryLocation::getAfter(II->getArgOperand(1));
451 if (BatchAA.isMustAlias(ArgLoc, MemLoc))
452 return MemDepResult::getDef(II);
453 continue;
454 }
455 case Intrinsic::masked_load:
456 case Intrinsic::masked_store: {
457 MemoryLocation Loc;
458 /*ModRefInfo MR =*/ GetLocation(II, Loc, TLI);
459 AliasResult R = BatchAA.alias(Loc, MemLoc);
460 if (R == AliasResult::NoAlias)
461 continue;
462 if (R == AliasResult::MustAlias)
463 return MemDepResult::getDef(II);
464 if (ID == Intrinsic::masked_load)
465 continue;
466 return MemDepResult::getClobber(II);
467 }
468 }
469 }
470
471 // Values depend on loads if the pointers are must aliased. This means
472 // that a load depends on another must aliased load from the same value.
473 // One exception is atomic loads: a value can depend on an atomic load that
474 // it does not alias with when this atomic load indicates that another
475 // thread may be accessing the location.
476 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
477 // While volatile access cannot be eliminated, they do not have to clobber
478 // non-aliasing locations, as normal accesses, for example, can be safely
479 // reordered with volatile accesses.
480 if (LI->isVolatile()) {
481 if (!QueryInst)
482 // Original QueryInst *may* be volatile
483 return MemDepResult::getClobber(LI);
484 if (QueryInst->isVolatile())
485 // Ordering required if QueryInst is itself volatile
486 return MemDepResult::getClobber(LI);
487 // Otherwise, volatile doesn't imply any special ordering
488 }
489
490 // Atomic loads have complications involved.
491 // A Monotonic (or higher) load is OK if the query inst is itself not
492 // atomic.
493 // FIXME: This is overly conservative.
494 if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) {
495 if (!QueryInst ||
496 isComplexForReordering(QueryInst, AtomicOrdering::NotAtomic))
497 return MemDepResult::getClobber(LI);
498 if (LI->getOrdering() != AtomicOrdering::Monotonic)
499 return MemDepResult::getClobber(LI);
500 }
501
502 MemoryLocation LoadLoc = MemoryLocation::get(LI);
503
504 // If we found a pointer, check if it could be the same as our pointer.
505 AliasResult R = BatchAA.alias(LoadLoc, MemLoc);
506
507 if (R == AliasResult::NoAlias)
508 continue;
509
510 if (isLoad) {
511 // Must aliased loads are defs of each other.
512 if (R == AliasResult::MustAlias)
513 return MemDepResult::getDef(Inst);
514
515 // If we have a partial alias, then return this as a clobber for the
516 // client to handle.
517 if (R == AliasResult::PartialAlias && R.hasOffset()) {
518 ClobberOffsets[LI] = R.getOffset();
519 return MemDepResult::getClobber(Inst);
520 }
521
522 // Random may-alias loads don't depend on each other without a
523 // dependence.
524 continue;
525 }
526
527 // Stores don't alias loads from read-only memory.
528 if (BatchAA.pointsToConstantMemory(LoadLoc))
529 continue;
530
531 // Stores depend on may/must aliased loads.
532 return MemDepResult::getDef(Inst);
533 }
534
535 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
536 // Atomic stores have complications involved.
537 // A Monotonic store is OK if the query inst is itself not atomic.
538 // FIXME: This is overly conservative.
539 if (!SI->isUnordered() && SI->isAtomic()) {
540 if (!QueryInst ||
541 isComplexForReordering(QueryInst, AtomicOrdering::Unordered))
542 return MemDepResult::getClobber(SI);
543 // Ok, if we are here the guard above guarantee us that
544 // QueryInst is a non-atomic or unordered load/store.
545 // SI is atomic with monotonic or release semantic (seq_cst for store
546 // is actually a release semantic plus total order over other seq_cst
547 // instructions, as soon as QueryInst is not seq_cst we can consider it
548 // as simple release semantic).
549 // Monotonic and Release semantic allows re-ordering before store
550 // so we are safe to go further and check the aliasing. It will prohibit
551 // re-ordering in case locations are may or must alias.
552 }
553
554 // While volatile access cannot be eliminated, they do not have to clobber
555 // non-aliasing locations, as normal accesses can for example be reordered
556 // with volatile accesses.
557 if (SI->isVolatile())
558 if (!QueryInst || QueryInst->isVolatile())
559 return MemDepResult::getClobber(SI);
560
561 // If alias analysis can tell that this store is guaranteed to not modify
562 // the query pointer, ignore it. Use getModRefInfo to handle cases where
563 // the query pointer points to constant memory etc.
564 if (!isModOrRefSet(BatchAA.getModRefInfo(SI, MemLoc)))
565 continue;
566
567 // Ok, this store might clobber the query pointer. Check to see if it is
568 // a must alias: in this case, we want to return this as a def.
569 // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above.
570 MemoryLocation StoreLoc = MemoryLocation::get(SI);
571
572 // If we found a pointer, check if it could be the same as our pointer.
573 AliasResult R = BatchAA.alias(StoreLoc, MemLoc);
574
575 if (R == AliasResult::NoAlias)
576 continue;
577 if (R == AliasResult::MustAlias)
578 return MemDepResult::getDef(Inst);
579 if (isInvariantLoad)
580 continue;
581 return MemDepResult::getClobber(Inst);
582 }
583
584 // If this is an allocation, and if we know that the accessed pointer is to
585 // the allocation, return Def. This means that there is no dependence and
586 // the access can be optimized based on that. For example, a load could
587 // turn into undef. Note that we can bypass the allocation itself when
588 // looking for a clobber in many cases; that's an alias property and is
589 // handled by BasicAA.
590 if (isa<AllocaInst>(Inst) || isNoAliasCall(Inst)) {
591 const Value *AccessPtr = getUnderlyingObject(MemLoc.Ptr);
592 if (AccessPtr == Inst || BatchAA.isMustAlias(Inst, AccessPtr))
593 return MemDepResult::getDef(Inst);
594 }
595
596 if (isInvariantLoad)
597 continue;
598
599 // A release fence requires that all stores complete before it, but does
600 // not prevent the reordering of following loads or stores 'before' the
601 // fence. As a result, we look past it when finding a dependency for
602 // loads. DSE uses this to find preceding stores to delete and thus we
603 // can't bypass the fence if the query instruction is a store.
604 if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
605 if (isLoad && FI->getOrdering() == AtomicOrdering::Release)
606 continue;
607
608 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
609 ModRefInfo MR = BatchAA.getModRefInfo(Inst, MemLoc);
610 // If necessary, perform additional analysis.
611 if (isModAndRefSet(MR))
612 MR = BatchAA.callCapturesBefore(Inst, MemLoc, &DT);
613 switch (clearMust(MR)) {
614 case ModRefInfo::NoModRef:
615 // If the call has no effect on the queried pointer, just ignore it.
616 continue;
617 case ModRefInfo::Mod:
618 return MemDepResult::getClobber(Inst);
619 case ModRefInfo::Ref:
620 // If the call is known to never store to the pointer, and if this is a
621 // load query, we can safely ignore it (scan past it).
622 if (isLoad)
623 continue;
624 LLVM_FALLTHROUGH;
625 default:
626 // Otherwise, there is a potential dependence. Return a clobber.
627 return MemDepResult::getClobber(Inst);
628 }
629 }
630
631 // No dependence found. If this is the entry block of the function, it is
632 // unknown, otherwise it is non-local.
633 if (BB != &BB->getParent()->getEntryBlock())
634 return MemDepResult::getNonLocal();
635 return MemDepResult::getNonFuncLocal();
636 }
637
getDependency(Instruction * QueryInst)638 MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) {
639 ClobberOffsets.clear();
640 Instruction *ScanPos = QueryInst;
641
642 // Check for a cached result
643 MemDepResult &LocalCache = LocalDeps[QueryInst];
644
645 // If the cached entry is non-dirty, just return it. Note that this depends
646 // on MemDepResult's default constructing to 'dirty'.
647 if (!LocalCache.isDirty())
648 return LocalCache;
649
650 // Otherwise, if we have a dirty entry, we know we can start the scan at that
651 // instruction, which may save us some work.
652 if (Instruction *Inst = LocalCache.getInst()) {
653 ScanPos = Inst;
654
655 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
656 }
657
658 BasicBlock *QueryParent = QueryInst->getParent();
659
660 // Do the scan.
661 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
662 // No dependence found. If this is the entry block of the function, it is
663 // unknown, otherwise it is non-local.
664 if (QueryParent != &QueryParent->getParent()->getEntryBlock())
665 LocalCache = MemDepResult::getNonLocal();
666 else
667 LocalCache = MemDepResult::getNonFuncLocal();
668 } else {
669 MemoryLocation MemLoc;
670 ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI);
671 if (MemLoc.Ptr) {
672 // If we can do a pointer scan, make it happen.
673 bool isLoad = !isModSet(MR);
674 if (auto *II = dyn_cast<IntrinsicInst>(QueryInst))
675 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
676
677 LocalCache =
678 getPointerDependencyFrom(MemLoc, isLoad, ScanPos->getIterator(),
679 QueryParent, QueryInst, nullptr);
680 } else if (auto *QueryCall = dyn_cast<CallBase>(QueryInst)) {
681 bool isReadOnly = AA.onlyReadsMemory(QueryCall);
682 LocalCache = getCallDependencyFrom(QueryCall, isReadOnly,
683 ScanPos->getIterator(), QueryParent);
684 } else
685 // Non-memory instruction.
686 LocalCache = MemDepResult::getUnknown();
687 }
688
689 // Remember the result!
690 if (Instruction *I = LocalCache.getInst())
691 ReverseLocalDeps[I].insert(QueryInst);
692
693 return LocalCache;
694 }
695
696 #ifndef NDEBUG
697 /// This method is used when -debug is specified to verify that cache arrays
698 /// are properly kept sorted.
AssertSorted(MemoryDependenceResults::NonLocalDepInfo & Cache,int Count=-1)699 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache,
700 int Count = -1) {
701 if (Count == -1)
702 Count = Cache.size();
703 assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) &&
704 "Cache isn't sorted!");
705 }
706 #endif
707
708 const MemoryDependenceResults::NonLocalDepInfo &
getNonLocalCallDependency(CallBase * QueryCall)709 MemoryDependenceResults::getNonLocalCallDependency(CallBase *QueryCall) {
710 assert(getDependency(QueryCall).isNonLocal() &&
711 "getNonLocalCallDependency should only be used on calls with "
712 "non-local deps!");
713 PerInstNLInfo &CacheP = NonLocalDepsMap[QueryCall];
714 NonLocalDepInfo &Cache = CacheP.first;
715
716 // This is the set of blocks that need to be recomputed. In the cached case,
717 // this can happen due to instructions being deleted etc. In the uncached
718 // case, this starts out as the set of predecessors we care about.
719 SmallVector<BasicBlock *, 32> DirtyBlocks;
720
721 if (!Cache.empty()) {
722 // Okay, we have a cache entry. If we know it is not dirty, just return it
723 // with no computation.
724 if (!CacheP.second) {
725 ++NumCacheNonLocal;
726 return Cache;
727 }
728
729 // If we already have a partially computed set of results, scan them to
730 // determine what is dirty, seeding our initial DirtyBlocks worklist.
731 for (auto &Entry : Cache)
732 if (Entry.getResult().isDirty())
733 DirtyBlocks.push_back(Entry.getBB());
734
735 // Sort the cache so that we can do fast binary search lookups below.
736 llvm::sort(Cache);
737
738 ++NumCacheDirtyNonLocal;
739 } else {
740 // Seed DirtyBlocks with each of the preds of QueryInst's block.
741 BasicBlock *QueryBB = QueryCall->getParent();
742 append_range(DirtyBlocks, PredCache.get(QueryBB));
743 ++NumUncacheNonLocal;
744 }
745
746 // isReadonlyCall - If this is a read-only call, we can be more aggressive.
747 bool isReadonlyCall = AA.onlyReadsMemory(QueryCall);
748
749 SmallPtrSet<BasicBlock *, 32> Visited;
750
751 unsigned NumSortedEntries = Cache.size();
752 LLVM_DEBUG(AssertSorted(Cache));
753
754 // Iterate while we still have blocks to update.
755 while (!DirtyBlocks.empty()) {
756 BasicBlock *DirtyBB = DirtyBlocks.pop_back_val();
757
758 // Already processed this block?
759 if (!Visited.insert(DirtyBB).second)
760 continue;
761
762 // Do a binary search to see if we already have an entry for this block in
763 // the cache set. If so, find it.
764 LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries));
765 NonLocalDepInfo::iterator Entry =
766 std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries,
767 NonLocalDepEntry(DirtyBB));
768 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
769 --Entry;
770
771 NonLocalDepEntry *ExistingResult = nullptr;
772 if (Entry != Cache.begin() + NumSortedEntries &&
773 Entry->getBB() == DirtyBB) {
774 // If we already have an entry, and if it isn't already dirty, the block
775 // is done.
776 if (!Entry->getResult().isDirty())
777 continue;
778
779 // Otherwise, remember this slot so we can update the value.
780 ExistingResult = &*Entry;
781 }
782
783 // If the dirty entry has a pointer, start scanning from it so we don't have
784 // to rescan the entire block.
785 BasicBlock::iterator ScanPos = DirtyBB->end();
786 if (ExistingResult) {
787 if (Instruction *Inst = ExistingResult->getResult().getInst()) {
788 ScanPos = Inst->getIterator();
789 // We're removing QueryInst's use of Inst.
790 RemoveFromReverseMap<Instruction *>(ReverseNonLocalDeps, Inst,
791 QueryCall);
792 }
793 }
794
795 // Find out if this block has a local dependency for QueryInst.
796 MemDepResult Dep;
797
798 if (ScanPos != DirtyBB->begin()) {
799 Dep = getCallDependencyFrom(QueryCall, isReadonlyCall, ScanPos, DirtyBB);
800 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
801 // No dependence found. If this is the entry block of the function, it is
802 // a clobber, otherwise it is unknown.
803 Dep = MemDepResult::getNonLocal();
804 } else {
805 Dep = MemDepResult::getNonFuncLocal();
806 }
807
808 // If we had a dirty entry for the block, update it. Otherwise, just add
809 // a new entry.
810 if (ExistingResult)
811 ExistingResult->setResult(Dep);
812 else
813 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
814
815 // If the block has a dependency (i.e. it isn't completely transparent to
816 // the value), remember the association!
817 if (!Dep.isNonLocal()) {
818 // Keep the ReverseNonLocalDeps map up to date so we can efficiently
819 // update this when we remove instructions.
820 if (Instruction *Inst = Dep.getInst())
821 ReverseNonLocalDeps[Inst].insert(QueryCall);
822 } else {
823
824 // If the block *is* completely transparent to the load, we need to check
825 // the predecessors of this block. Add them to our worklist.
826 append_range(DirtyBlocks, PredCache.get(DirtyBB));
827 }
828 }
829
830 return Cache;
831 }
832
getNonLocalPointerDependency(Instruction * QueryInst,SmallVectorImpl<NonLocalDepResult> & Result)833 void MemoryDependenceResults::getNonLocalPointerDependency(
834 Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) {
835 const MemoryLocation Loc = MemoryLocation::get(QueryInst);
836 bool isLoad = isa<LoadInst>(QueryInst);
837 BasicBlock *FromBB = QueryInst->getParent();
838 assert(FromBB);
839
840 assert(Loc.Ptr->getType()->isPointerTy() &&
841 "Can't get pointer deps of a non-pointer!");
842 Result.clear();
843 {
844 // Check if there is cached Def with invariant.group.
845 auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst);
846 if (NonLocalDefIt != NonLocalDefsCache.end()) {
847 Result.push_back(NonLocalDefIt->second);
848 ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()]
849 .erase(QueryInst);
850 NonLocalDefsCache.erase(NonLocalDefIt);
851 return;
852 }
853 }
854 // This routine does not expect to deal with volatile instructions.
855 // Doing so would require piping through the QueryInst all the way through.
856 // TODO: volatiles can't be elided, but they can be reordered with other
857 // non-volatile accesses.
858
859 // We currently give up on any instruction which is ordered, but we do handle
860 // atomic instructions which are unordered.
861 // TODO: Handle ordered instructions
862 auto isOrdered = [](Instruction *Inst) {
863 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
864 return !LI->isUnordered();
865 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
866 return !SI->isUnordered();
867 }
868 return false;
869 };
870 if (QueryInst->isVolatile() || isOrdered(QueryInst)) {
871 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
872 const_cast<Value *>(Loc.Ptr)));
873 return;
874 }
875 const DataLayout &DL = FromBB->getModule()->getDataLayout();
876 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC);
877
878 // This is the set of blocks we've inspected, and the pointer we consider in
879 // each block. Because of critical edges, we currently bail out if querying
880 // a block with multiple different pointers. This can happen during PHI
881 // translation.
882 DenseMap<BasicBlock *, Value *> Visited;
883 if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB,
884 Result, Visited, true))
885 return;
886 Result.clear();
887 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
888 const_cast<Value *>(Loc.Ptr)));
889 }
890
891 /// Compute the memdep value for BB with Pointer/PointeeSize using either
892 /// cached information in Cache or by doing a lookup (which may use dirty cache
893 /// info if available).
894 ///
895 /// If we do a lookup, add the result to the cache.
getNonLocalInfoForBlock(Instruction * QueryInst,const MemoryLocation & Loc,bool isLoad,BasicBlock * BB,NonLocalDepInfo * Cache,unsigned NumSortedEntries,BatchAAResults & BatchAA)896 MemDepResult MemoryDependenceResults::getNonLocalInfoForBlock(
897 Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad,
898 BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries,
899 BatchAAResults &BatchAA) {
900
901 bool isInvariantLoad = false;
902
903 if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst))
904 isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load);
905
906 // Do a binary search to see if we already have an entry for this block in
907 // the cache set. If so, find it.
908 NonLocalDepInfo::iterator Entry = std::upper_bound(
909 Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB));
910 if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB)
911 --Entry;
912
913 NonLocalDepEntry *ExistingResult = nullptr;
914 if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB)
915 ExistingResult = &*Entry;
916
917 // Use cached result for invariant load only if there is no dependency for non
918 // invariant load. In this case invariant load can not have any dependency as
919 // well.
920 if (ExistingResult && isInvariantLoad &&
921 !ExistingResult->getResult().isNonFuncLocal())
922 ExistingResult = nullptr;
923
924 // If we have a cached entry, and it is non-dirty, use it as the value for
925 // this dependency.
926 if (ExistingResult && !ExistingResult->getResult().isDirty()) {
927 ++NumCacheNonLocalPtr;
928 return ExistingResult->getResult();
929 }
930
931 // Otherwise, we have to scan for the value. If we have a dirty cache
932 // entry, start scanning from its position, otherwise we scan from the end
933 // of the block.
934 BasicBlock::iterator ScanPos = BB->end();
935 if (ExistingResult && ExistingResult->getResult().getInst()) {
936 assert(ExistingResult->getResult().getInst()->getParent() == BB &&
937 "Instruction invalidated?");
938 ++NumCacheDirtyNonLocalPtr;
939 ScanPos = ExistingResult->getResult().getInst()->getIterator();
940
941 // Eliminating the dirty entry from 'Cache', so update the reverse info.
942 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
943 RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey);
944 } else {
945 ++NumUncacheNonLocalPtr;
946 }
947
948 // Scan the block for the dependency.
949 MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB,
950 QueryInst, nullptr, BatchAA);
951
952 // Don't cache results for invariant load.
953 if (isInvariantLoad)
954 return Dep;
955
956 // If we had a dirty entry for the block, update it. Otherwise, just add
957 // a new entry.
958 if (ExistingResult)
959 ExistingResult->setResult(Dep);
960 else
961 Cache->push_back(NonLocalDepEntry(BB, Dep));
962
963 // If the block has a dependency (i.e. it isn't completely transparent to
964 // the value), remember the reverse association because we just added it
965 // to Cache!
966 if (!Dep.isDef() && !Dep.isClobber())
967 return Dep;
968
969 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
970 // update MemDep when we remove instructions.
971 Instruction *Inst = Dep.getInst();
972 assert(Inst && "Didn't depend on anything?");
973 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
974 ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
975 return Dep;
976 }
977
978 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the
979 /// array that are already properly ordered.
980 ///
981 /// This is optimized for the case when only a few entries are added.
982 static void
SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo & Cache,unsigned NumSortedEntries)983 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache,
984 unsigned NumSortedEntries) {
985 switch (Cache.size() - NumSortedEntries) {
986 case 0:
987 // done, no new entries.
988 break;
989 case 2: {
990 // Two new entries, insert the last one into place.
991 NonLocalDepEntry Val = Cache.back();
992 Cache.pop_back();
993 MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
994 std::upper_bound(Cache.begin(), Cache.end() - 1, Val);
995 Cache.insert(Entry, Val);
996 LLVM_FALLTHROUGH;
997 }
998 case 1:
999 // One new entry, Just insert the new value at the appropriate position.
1000 if (Cache.size() != 1) {
1001 NonLocalDepEntry Val = Cache.back();
1002 Cache.pop_back();
1003 MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
1004 llvm::upper_bound(Cache, Val);
1005 Cache.insert(Entry, Val);
1006 }
1007 break;
1008 default:
1009 // Added many values, do a full scale sort.
1010 llvm::sort(Cache);
1011 break;
1012 }
1013 }
1014
1015 /// Perform a dependency query based on pointer/pointeesize starting at the end
1016 /// of StartBB.
1017 ///
1018 /// Add any clobber/def results to the results vector and keep track of which
1019 /// blocks are visited in 'Visited'.
1020 ///
1021 /// This has special behavior for the first block queries (when SkipFirstBlock
1022 /// is true). In this special case, it ignores the contents of the specified
1023 /// block and starts returning dependence info for its predecessors.
1024 ///
1025 /// This function returns true on success, or false to indicate that it could
1026 /// not compute dependence information for some reason. This should be treated
1027 /// as a clobber dependence on the first instruction in the predecessor block.
getNonLocalPointerDepFromBB(Instruction * QueryInst,const PHITransAddr & Pointer,const MemoryLocation & Loc,bool isLoad,BasicBlock * StartBB,SmallVectorImpl<NonLocalDepResult> & Result,DenseMap<BasicBlock *,Value * > & Visited,bool SkipFirstBlock,bool IsIncomplete)1028 bool MemoryDependenceResults::getNonLocalPointerDepFromBB(
1029 Instruction *QueryInst, const PHITransAddr &Pointer,
1030 const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB,
1031 SmallVectorImpl<NonLocalDepResult> &Result,
1032 DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock,
1033 bool IsIncomplete) {
1034 // Look up the cached info for Pointer.
1035 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
1036
1037 // Set up a temporary NLPI value. If the map doesn't yet have an entry for
1038 // CacheKey, this value will be inserted as the associated value. Otherwise,
1039 // it'll be ignored, and we'll have to check to see if the cached size and
1040 // aa tags are consistent with the current query.
1041 NonLocalPointerInfo InitialNLPI;
1042 InitialNLPI.Size = Loc.Size;
1043 InitialNLPI.AATags = Loc.AATags;
1044
1045 bool isInvariantLoad = false;
1046 if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst))
1047 isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load);
1048
1049 // Get the NLPI for CacheKey, inserting one into the map if it doesn't
1050 // already have one.
1051 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
1052 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
1053 NonLocalPointerInfo *CacheInfo = &Pair.first->second;
1054
1055 // If we already have a cache entry for this CacheKey, we may need to do some
1056 // work to reconcile the cache entry and the current query.
1057 // Invariant loads don't participate in caching. Thus no need to reconcile.
1058 if (!isInvariantLoad && !Pair.second) {
1059 if (CacheInfo->Size != Loc.Size) {
1060 bool ThrowOutEverything;
1061 if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) {
1062 // FIXME: We may be able to do better in the face of results with mixed
1063 // precision. We don't appear to get them in practice, though, so just
1064 // be conservative.
1065 ThrowOutEverything =
1066 CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() ||
1067 CacheInfo->Size.getValue() < Loc.Size.getValue();
1068 } else {
1069 // For our purposes, unknown size > all others.
1070 ThrowOutEverything = !Loc.Size.hasValue();
1071 }
1072
1073 if (ThrowOutEverything) {
1074 // The query's Size is greater than the cached one. Throw out the
1075 // cached data and proceed with the query at the greater size.
1076 CacheInfo->Pair = BBSkipFirstBlockPair();
1077 CacheInfo->Size = Loc.Size;
1078 for (auto &Entry : CacheInfo->NonLocalDeps)
1079 if (Instruction *Inst = Entry.getResult().getInst())
1080 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1081 CacheInfo->NonLocalDeps.clear();
1082 // The cache is cleared (in the above line) so we will have lost
1083 // information about blocks we have already visited. We therefore must
1084 // assume that the cache information is incomplete.
1085 IsIncomplete = true;
1086 } else {
1087 // This query's Size is less than the cached one. Conservatively restart
1088 // the query using the greater size.
1089 return getNonLocalPointerDepFromBB(
1090 QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad,
1091 StartBB, Result, Visited, SkipFirstBlock, IsIncomplete);
1092 }
1093 }
1094
1095 // If the query's AATags are inconsistent with the cached one,
1096 // conservatively throw out the cached data and restart the query with
1097 // no tag if needed.
1098 if (CacheInfo->AATags != Loc.AATags) {
1099 if (CacheInfo->AATags) {
1100 CacheInfo->Pair = BBSkipFirstBlockPair();
1101 CacheInfo->AATags = AAMDNodes();
1102 for (auto &Entry : CacheInfo->NonLocalDeps)
1103 if (Instruction *Inst = Entry.getResult().getInst())
1104 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1105 CacheInfo->NonLocalDeps.clear();
1106 // The cache is cleared (in the above line) so we will have lost
1107 // information about blocks we have already visited. We therefore must
1108 // assume that the cache information is incomplete.
1109 IsIncomplete = true;
1110 }
1111 if (Loc.AATags)
1112 return getNonLocalPointerDepFromBB(
1113 QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result,
1114 Visited, SkipFirstBlock, IsIncomplete);
1115 }
1116 }
1117
1118 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
1119
1120 // If we have valid cached information for exactly the block we are
1121 // investigating, just return it with no recomputation.
1122 // Don't use cached information for invariant loads since it is valid for
1123 // non-invariant loads only.
1124 if (!IsIncomplete && !isInvariantLoad &&
1125 CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
1126 // We have a fully cached result for this query then we can just return the
1127 // cached results and populate the visited set. However, we have to verify
1128 // that we don't already have conflicting results for these blocks. Check
1129 // to ensure that if a block in the results set is in the visited set that
1130 // it was for the same pointer query.
1131 if (!Visited.empty()) {
1132 for (auto &Entry : *Cache) {
1133 DenseMap<BasicBlock *, Value *>::iterator VI =
1134 Visited.find(Entry.getBB());
1135 if (VI == Visited.end() || VI->second == Pointer.getAddr())
1136 continue;
1137
1138 // We have a pointer mismatch in a block. Just return false, saying
1139 // that something was clobbered in this result. We could also do a
1140 // non-fully cached query, but there is little point in doing this.
1141 return false;
1142 }
1143 }
1144
1145 Value *Addr = Pointer.getAddr();
1146 for (auto &Entry : *Cache) {
1147 Visited.insert(std::make_pair(Entry.getBB(), Addr));
1148 if (Entry.getResult().isNonLocal()) {
1149 continue;
1150 }
1151
1152 if (DT.isReachableFromEntry(Entry.getBB())) {
1153 Result.push_back(
1154 NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr));
1155 }
1156 }
1157 ++NumCacheCompleteNonLocalPtr;
1158 return true;
1159 }
1160
1161 // Otherwise, either this is a new block, a block with an invalid cache
1162 // pointer or one that we're about to invalidate by putting more info into
1163 // it than its valid cache info. If empty and not explicitly indicated as
1164 // incomplete, the result will be valid cache info, otherwise it isn't.
1165 //
1166 // Invariant loads don't affect cache in any way thus no need to update
1167 // CacheInfo as well.
1168 if (!isInvariantLoad) {
1169 if (!IsIncomplete && Cache->empty())
1170 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1171 else
1172 CacheInfo->Pair = BBSkipFirstBlockPair();
1173 }
1174
1175 SmallVector<BasicBlock *, 32> Worklist;
1176 Worklist.push_back(StartBB);
1177
1178 // PredList used inside loop.
1179 SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList;
1180
1181 // Keep track of the entries that we know are sorted. Previously cached
1182 // entries will all be sorted. The entries we add we only sort on demand (we
1183 // don't insert every element into its sorted position). We know that we
1184 // won't get any reuse from currently inserted values, because we don't
1185 // revisit blocks after we insert info for them.
1186 unsigned NumSortedEntries = Cache->size();
1187 unsigned WorklistEntries = BlockNumberLimit;
1188 bool GotWorklistLimit = false;
1189 LLVM_DEBUG(AssertSorted(*Cache));
1190
1191 BatchAAResults BatchAA(AA);
1192 while (!Worklist.empty()) {
1193 BasicBlock *BB = Worklist.pop_back_val();
1194
1195 // If we do process a large number of blocks it becomes very expensive and
1196 // likely it isn't worth worrying about
1197 if (Result.size() > NumResultsLimit) {
1198 // Sort it now (if needed) so that recursive invocations of
1199 // getNonLocalPointerDepFromBB and other routines that could reuse the
1200 // cache value will only see properly sorted cache arrays.
1201 if (Cache && NumSortedEntries != Cache->size()) {
1202 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1203 }
1204 // Since we bail out, the "Cache" set won't contain all of the
1205 // results for the query. This is ok (we can still use it to accelerate
1206 // specific block queries) but we can't do the fastpath "return all
1207 // results from the set". Clear out the indicator for this.
1208 CacheInfo->Pair = BBSkipFirstBlockPair();
1209 return false;
1210 }
1211
1212 // Skip the first block if we have it.
1213 if (!SkipFirstBlock) {
1214 // Analyze the dependency of *Pointer in FromBB. See if we already have
1215 // been here.
1216 assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1217
1218 // Get the dependency info for Pointer in BB. If we have cached
1219 // information, we will use it, otherwise we compute it.
1220 LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries));
1221 MemDepResult Dep = getNonLocalInfoForBlock(
1222 QueryInst, Loc, isLoad, BB, Cache, NumSortedEntries, BatchAA);
1223
1224 // If we got a Def or Clobber, add this to the list of results.
1225 if (!Dep.isNonLocal()) {
1226 if (DT.isReachableFromEntry(BB)) {
1227 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1228 continue;
1229 }
1230 }
1231 }
1232
1233 // If 'Pointer' is an instruction defined in this block, then we need to do
1234 // phi translation to change it into a value live in the predecessor block.
1235 // If not, we just add the predecessors to the worklist and scan them with
1236 // the same Pointer.
1237 if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1238 SkipFirstBlock = false;
1239 SmallVector<BasicBlock *, 16> NewBlocks;
1240 for (BasicBlock *Pred : PredCache.get(BB)) {
1241 // Verify that we haven't looked at this block yet.
1242 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1243 Visited.insert(std::make_pair(Pred, Pointer.getAddr()));
1244 if (InsertRes.second) {
1245 // First time we've looked at *PI.
1246 NewBlocks.push_back(Pred);
1247 continue;
1248 }
1249
1250 // If we have seen this block before, but it was with a different
1251 // pointer then we have a phi translation failure and we have to treat
1252 // this as a clobber.
1253 if (InsertRes.first->second != Pointer.getAddr()) {
1254 // Make sure to clean up the Visited map before continuing on to
1255 // PredTranslationFailure.
1256 for (unsigned i = 0; i < NewBlocks.size(); i++)
1257 Visited.erase(NewBlocks[i]);
1258 goto PredTranslationFailure;
1259 }
1260 }
1261 if (NewBlocks.size() > WorklistEntries) {
1262 // Make sure to clean up the Visited map before continuing on to
1263 // PredTranslationFailure.
1264 for (unsigned i = 0; i < NewBlocks.size(); i++)
1265 Visited.erase(NewBlocks[i]);
1266 GotWorklistLimit = true;
1267 goto PredTranslationFailure;
1268 }
1269 WorklistEntries -= NewBlocks.size();
1270 Worklist.append(NewBlocks.begin(), NewBlocks.end());
1271 continue;
1272 }
1273
1274 // We do need to do phi translation, if we know ahead of time we can't phi
1275 // translate this value, don't even try.
1276 if (!Pointer.IsPotentiallyPHITranslatable())
1277 goto PredTranslationFailure;
1278
1279 // We may have added values to the cache list before this PHI translation.
1280 // If so, we haven't done anything to ensure that the cache remains sorted.
1281 // Sort it now (if needed) so that recursive invocations of
1282 // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1283 // value will only see properly sorted cache arrays.
1284 if (Cache && NumSortedEntries != Cache->size()) {
1285 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1286 NumSortedEntries = Cache->size();
1287 }
1288 Cache = nullptr;
1289
1290 PredList.clear();
1291 for (BasicBlock *Pred : PredCache.get(BB)) {
1292 PredList.push_back(std::make_pair(Pred, Pointer));
1293
1294 // Get the PHI translated pointer in this predecessor. This can fail if
1295 // not translatable, in which case the getAddr() returns null.
1296 PHITransAddr &PredPointer = PredList.back().second;
1297 PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false);
1298 Value *PredPtrVal = PredPointer.getAddr();
1299
1300 // Check to see if we have already visited this pred block with another
1301 // pointer. If so, we can't do this lookup. This failure can occur
1302 // with PHI translation when a critical edge exists and the PHI node in
1303 // the successor translates to a pointer value different than the
1304 // pointer the block was first analyzed with.
1305 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1306 Visited.insert(std::make_pair(Pred, PredPtrVal));
1307
1308 if (!InsertRes.second) {
1309 // We found the pred; take it off the list of preds to visit.
1310 PredList.pop_back();
1311
1312 // If the predecessor was visited with PredPtr, then we already did
1313 // the analysis and can ignore it.
1314 if (InsertRes.first->second == PredPtrVal)
1315 continue;
1316
1317 // Otherwise, the block was previously analyzed with a different
1318 // pointer. We can't represent the result of this case, so we just
1319 // treat this as a phi translation failure.
1320
1321 // Make sure to clean up the Visited map before continuing on to
1322 // PredTranslationFailure.
1323 for (unsigned i = 0, n = PredList.size(); i < n; ++i)
1324 Visited.erase(PredList[i].first);
1325
1326 goto PredTranslationFailure;
1327 }
1328 }
1329
1330 // Actually process results here; this need to be a separate loop to avoid
1331 // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1332 // any results for. (getNonLocalPointerDepFromBB will modify our
1333 // datastructures in ways the code after the PredTranslationFailure label
1334 // doesn't expect.)
1335 for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
1336 BasicBlock *Pred = PredList[i].first;
1337 PHITransAddr &PredPointer = PredList[i].second;
1338 Value *PredPtrVal = PredPointer.getAddr();
1339
1340 bool CanTranslate = true;
1341 // If PHI translation was unable to find an available pointer in this
1342 // predecessor, then we have to assume that the pointer is clobbered in
1343 // that predecessor. We can still do PRE of the load, which would insert
1344 // a computation of the pointer in this predecessor.
1345 if (!PredPtrVal)
1346 CanTranslate = false;
1347
1348 // FIXME: it is entirely possible that PHI translating will end up with
1349 // the same value. Consider PHI translating something like:
1350 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need*
1351 // to recurse here, pedantically speaking.
1352
1353 // If getNonLocalPointerDepFromBB fails here, that means the cached
1354 // result conflicted with the Visited list; we have to conservatively
1355 // assume it is unknown, but this also does not block PRE of the load.
1356 if (!CanTranslate ||
1357 !getNonLocalPointerDepFromBB(QueryInst, PredPointer,
1358 Loc.getWithNewPtr(PredPtrVal), isLoad,
1359 Pred, Result, Visited)) {
1360 // Add the entry to the Result list.
1361 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1362 Result.push_back(Entry);
1363
1364 // Since we had a phi translation failure, the cache for CacheKey won't
1365 // include all of the entries that we need to immediately satisfy future
1366 // queries. Mark this in NonLocalPointerDeps by setting the
1367 // BBSkipFirstBlockPair pointer to null. This requires reuse of the
1368 // cached value to do more work but not miss the phi trans failure.
1369 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1370 NLPI.Pair = BBSkipFirstBlockPair();
1371 continue;
1372 }
1373 }
1374
1375 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1376 CacheInfo = &NonLocalPointerDeps[CacheKey];
1377 Cache = &CacheInfo->NonLocalDeps;
1378 NumSortedEntries = Cache->size();
1379
1380 // Since we did phi translation, the "Cache" set won't contain all of the
1381 // results for the query. This is ok (we can still use it to accelerate
1382 // specific block queries) but we can't do the fastpath "return all
1383 // results from the set" Clear out the indicator for this.
1384 CacheInfo->Pair = BBSkipFirstBlockPair();
1385 SkipFirstBlock = false;
1386 continue;
1387
1388 PredTranslationFailure:
1389 // The following code is "failure"; we can't produce a sane translation
1390 // for the given block. It assumes that we haven't modified any of
1391 // our datastructures while processing the current block.
1392
1393 if (!Cache) {
1394 // Refresh the CacheInfo/Cache pointer if it got invalidated.
1395 CacheInfo = &NonLocalPointerDeps[CacheKey];
1396 Cache = &CacheInfo->NonLocalDeps;
1397 NumSortedEntries = Cache->size();
1398 }
1399
1400 // Since we failed phi translation, the "Cache" set won't contain all of the
1401 // results for the query. This is ok (we can still use it to accelerate
1402 // specific block queries) but we can't do the fastpath "return all
1403 // results from the set". Clear out the indicator for this.
1404 CacheInfo->Pair = BBSkipFirstBlockPair();
1405
1406 // If *nothing* works, mark the pointer as unknown.
1407 //
1408 // If this is the magic first block, return this as a clobber of the whole
1409 // incoming value. Since we can't phi translate to one of the predecessors,
1410 // we have to bail out.
1411 if (SkipFirstBlock)
1412 return false;
1413
1414 // Results of invariant loads are not cached thus no need to update cached
1415 // information.
1416 if (!isInvariantLoad) {
1417 for (NonLocalDepEntry &I : llvm::reverse(*Cache)) {
1418 if (I.getBB() != BB)
1419 continue;
1420
1421 assert((GotWorklistLimit || I.getResult().isNonLocal() ||
1422 !DT.isReachableFromEntry(BB)) &&
1423 "Should only be here with transparent block");
1424
1425 I.setResult(MemDepResult::getUnknown());
1426
1427
1428 break;
1429 }
1430 }
1431 (void)GotWorklistLimit;
1432 // Go ahead and report unknown dependence.
1433 Result.push_back(
1434 NonLocalDepResult(BB, MemDepResult::getUnknown(), Pointer.getAddr()));
1435 }
1436
1437 // Okay, we're done now. If we added new values to the cache, re-sort it.
1438 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1439 LLVM_DEBUG(AssertSorted(*Cache));
1440 return true;
1441 }
1442
1443 /// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it.
removeCachedNonLocalPointerDependencies(ValueIsLoadPair P)1444 void MemoryDependenceResults::removeCachedNonLocalPointerDependencies(
1445 ValueIsLoadPair P) {
1446
1447 // Most of the time this cache is empty.
1448 if (!NonLocalDefsCache.empty()) {
1449 auto it = NonLocalDefsCache.find(P.getPointer());
1450 if (it != NonLocalDefsCache.end()) {
1451 RemoveFromReverseMap(ReverseNonLocalDefsCache,
1452 it->second.getResult().getInst(), P.getPointer());
1453 NonLocalDefsCache.erase(it);
1454 }
1455
1456 if (auto *I = dyn_cast<Instruction>(P.getPointer())) {
1457 auto toRemoveIt = ReverseNonLocalDefsCache.find(I);
1458 if (toRemoveIt != ReverseNonLocalDefsCache.end()) {
1459 for (const auto *entry : toRemoveIt->second)
1460 NonLocalDefsCache.erase(entry);
1461 ReverseNonLocalDefsCache.erase(toRemoveIt);
1462 }
1463 }
1464 }
1465
1466 CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P);
1467 if (It == NonLocalPointerDeps.end())
1468 return;
1469
1470 // Remove all of the entries in the BB->val map. This involves removing
1471 // instructions from the reverse map.
1472 NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1473
1474 for (const NonLocalDepEntry &DE : PInfo) {
1475 Instruction *Target = DE.getResult().getInst();
1476 if (!Target)
1477 continue; // Ignore non-local dep results.
1478 assert(Target->getParent() == DE.getBB());
1479
1480 // Eliminating the dirty entry from 'Cache', so update the reverse info.
1481 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1482 }
1483
1484 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1485 NonLocalPointerDeps.erase(It);
1486 }
1487
invalidateCachedPointerInfo(Value * Ptr)1488 void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) {
1489 // If Ptr isn't really a pointer, just ignore it.
1490 if (!Ptr->getType()->isPointerTy())
1491 return;
1492 // Flush store info for the pointer.
1493 removeCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1494 // Flush load info for the pointer.
1495 removeCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1496 // Invalidate phis that use the pointer.
1497 PV.invalidateValue(Ptr);
1498 }
1499
invalidateCachedPredecessors()1500 void MemoryDependenceResults::invalidateCachedPredecessors() {
1501 PredCache.clear();
1502 }
1503
removeInstruction(Instruction * RemInst)1504 void MemoryDependenceResults::removeInstruction(Instruction *RemInst) {
1505 // Walk through the Non-local dependencies, removing this one as the value
1506 // for any cached queries.
1507 NonLocalDepMapType::iterator NLDI = NonLocalDepsMap.find(RemInst);
1508 if (NLDI != NonLocalDepsMap.end()) {
1509 NonLocalDepInfo &BlockMap = NLDI->second.first;
1510 for (auto &Entry : BlockMap)
1511 if (Instruction *Inst = Entry.getResult().getInst())
1512 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1513 NonLocalDepsMap.erase(NLDI);
1514 }
1515
1516 // If we have a cached local dependence query for this instruction, remove it.
1517 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1518 if (LocalDepEntry != LocalDeps.end()) {
1519 // Remove us from DepInst's reverse set now that the local dep info is gone.
1520 if (Instruction *Inst = LocalDepEntry->second.getInst())
1521 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1522
1523 // Remove this local dependency info.
1524 LocalDeps.erase(LocalDepEntry);
1525 }
1526
1527 // If we have any cached dependencies on this instruction, remove
1528 // them.
1529
1530 // If the instruction is a pointer, remove it from both the load info and the
1531 // store info.
1532 if (RemInst->getType()->isPointerTy()) {
1533 removeCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1534 removeCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1535 } else {
1536 // Otherwise, if the instructions is in the map directly, it must be a load.
1537 // Remove it.
1538 auto toRemoveIt = NonLocalDefsCache.find(RemInst);
1539 if (toRemoveIt != NonLocalDefsCache.end()) {
1540 assert(isa<LoadInst>(RemInst) &&
1541 "only load instructions should be added directly");
1542 const Instruction *DepV = toRemoveIt->second.getResult().getInst();
1543 ReverseNonLocalDefsCache.find(DepV)->second.erase(RemInst);
1544 NonLocalDefsCache.erase(toRemoveIt);
1545 }
1546 }
1547
1548 // Loop over all of the things that depend on the instruction we're removing.
1549 SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd;
1550
1551 // If we find RemInst as a clobber or Def in any of the maps for other values,
1552 // we need to replace its entry with a dirty version of the instruction after
1553 // it. If RemInst is a terminator, we use a null dirty value.
1554 //
1555 // Using a dirty version of the instruction after RemInst saves having to scan
1556 // the entire block to get to this point.
1557 MemDepResult NewDirtyVal;
1558 if (!RemInst->isTerminator())
1559 NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator());
1560
1561 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1562 if (ReverseDepIt != ReverseLocalDeps.end()) {
1563 // RemInst can't be the terminator if it has local stuff depending on it.
1564 assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() &&
1565 "Nothing can locally depend on a terminator");
1566
1567 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
1568 assert(InstDependingOnRemInst != RemInst &&
1569 "Already removed our local dep info");
1570
1571 LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1572
1573 // Make sure to remember that new things depend on NewDepInst.
1574 assert(NewDirtyVal.getInst() &&
1575 "There is no way something else can have "
1576 "a local dep on this if it is a terminator!");
1577 ReverseDepsToAdd.push_back(
1578 std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst));
1579 }
1580
1581 ReverseLocalDeps.erase(ReverseDepIt);
1582
1583 // Add new reverse deps after scanning the set, to avoid invalidating the
1584 // 'ReverseDeps' reference.
1585 while (!ReverseDepsToAdd.empty()) {
1586 ReverseLocalDeps[ReverseDepsToAdd.back().first].insert(
1587 ReverseDepsToAdd.back().second);
1588 ReverseDepsToAdd.pop_back();
1589 }
1590 }
1591
1592 ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1593 if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1594 for (Instruction *I : ReverseDepIt->second) {
1595 assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
1596
1597 PerInstNLInfo &INLD = NonLocalDepsMap[I];
1598 // The information is now dirty!
1599 INLD.second = true;
1600
1601 for (auto &Entry : INLD.first) {
1602 if (Entry.getResult().getInst() != RemInst)
1603 continue;
1604
1605 // Convert to a dirty entry for the subsequent instruction.
1606 Entry.setResult(NewDirtyVal);
1607
1608 if (Instruction *NextI = NewDirtyVal.getInst())
1609 ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
1610 }
1611 }
1612
1613 ReverseNonLocalDeps.erase(ReverseDepIt);
1614
1615 // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1616 while (!ReverseDepsToAdd.empty()) {
1617 ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert(
1618 ReverseDepsToAdd.back().second);
1619 ReverseDepsToAdd.pop_back();
1620 }
1621 }
1622
1623 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1624 // value in the NonLocalPointerDeps info.
1625 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1626 ReverseNonLocalPtrDeps.find(RemInst);
1627 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1628 SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8>
1629 ReversePtrDepsToAdd;
1630
1631 for (ValueIsLoadPair P : ReversePtrDepIt->second) {
1632 assert(P.getPointer() != RemInst &&
1633 "Already removed NonLocalPointerDeps info for RemInst");
1634
1635 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1636
1637 // The cache is not valid for any specific block anymore.
1638 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1639
1640 // Update any entries for RemInst to use the instruction after it.
1641 for (auto &Entry : NLPDI) {
1642 if (Entry.getResult().getInst() != RemInst)
1643 continue;
1644
1645 // Convert to a dirty entry for the subsequent instruction.
1646 Entry.setResult(NewDirtyVal);
1647
1648 if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1649 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1650 }
1651
1652 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its
1653 // subsequent value may invalidate the sortedness.
1654 llvm::sort(NLPDI);
1655 }
1656
1657 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1658
1659 while (!ReversePtrDepsToAdd.empty()) {
1660 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert(
1661 ReversePtrDepsToAdd.back().second);
1662 ReversePtrDepsToAdd.pop_back();
1663 }
1664 }
1665
1666 // Invalidate phis that use the removed instruction.
1667 PV.invalidateValue(RemInst);
1668
1669 assert(!NonLocalDepsMap.count(RemInst) && "RemInst got reinserted?");
1670 LLVM_DEBUG(verifyRemoved(RemInst));
1671 }
1672
1673 /// Verify that the specified instruction does not occur in our internal data
1674 /// structures.
1675 ///
1676 /// This function verifies by asserting in debug builds.
verifyRemoved(Instruction * D) const1677 void MemoryDependenceResults::verifyRemoved(Instruction *D) const {
1678 #ifndef NDEBUG
1679 for (const auto &DepKV : LocalDeps) {
1680 assert(DepKV.first != D && "Inst occurs in data structures");
1681 assert(DepKV.second.getInst() != D && "Inst occurs in data structures");
1682 }
1683
1684 for (const auto &DepKV : NonLocalPointerDeps) {
1685 assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key");
1686 for (const auto &Entry : DepKV.second.NonLocalDeps)
1687 assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value");
1688 }
1689
1690 for (const auto &DepKV : NonLocalDepsMap) {
1691 assert(DepKV.first != D && "Inst occurs in data structures");
1692 const PerInstNLInfo &INLD = DepKV.second;
1693 for (const auto &Entry : INLD.first)
1694 assert(Entry.getResult().getInst() != D &&
1695 "Inst occurs in data structures");
1696 }
1697
1698 for (const auto &DepKV : ReverseLocalDeps) {
1699 assert(DepKV.first != D && "Inst occurs in data structures");
1700 for (Instruction *Inst : DepKV.second)
1701 assert(Inst != D && "Inst occurs in data structures");
1702 }
1703
1704 for (const auto &DepKV : ReverseNonLocalDeps) {
1705 assert(DepKV.first != D && "Inst occurs in data structures");
1706 for (Instruction *Inst : DepKV.second)
1707 assert(Inst != D && "Inst occurs in data structures");
1708 }
1709
1710 for (const auto &DepKV : ReverseNonLocalPtrDeps) {
1711 assert(DepKV.first != D && "Inst occurs in rev NLPD map");
1712
1713 for (ValueIsLoadPair P : DepKV.second)
1714 assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) &&
1715 "Inst occurs in ReverseNonLocalPtrDeps map");
1716 }
1717 #endif
1718 }
1719
1720 AnalysisKey MemoryDependenceAnalysis::Key;
1721
MemoryDependenceAnalysis()1722 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
1723 : DefaultBlockScanLimit(BlockScanLimit) {}
1724
1725 MemoryDependenceResults
run(Function & F,FunctionAnalysisManager & AM)1726 MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
1727 auto &AA = AM.getResult<AAManager>(F);
1728 auto &AC = AM.getResult<AssumptionAnalysis>(F);
1729 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1730 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1731 auto &PV = AM.getResult<PhiValuesAnalysis>(F);
1732 return MemoryDependenceResults(AA, AC, TLI, DT, PV, DefaultBlockScanLimit);
1733 }
1734
1735 char MemoryDependenceWrapperPass::ID = 0;
1736
1737 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep",
1738 "Memory Dependence Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)1739 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1740 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1741 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1742 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1743 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
1744 INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep",
1745 "Memory Dependence Analysis", false, true)
1746
1747 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) {
1748 initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry());
1749 }
1750
1751 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default;
1752
releaseMemory()1753 void MemoryDependenceWrapperPass::releaseMemory() {
1754 MemDep.reset();
1755 }
1756
getAnalysisUsage(AnalysisUsage & AU) const1757 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1758 AU.setPreservesAll();
1759 AU.addRequired<AssumptionCacheTracker>();
1760 AU.addRequired<DominatorTreeWrapperPass>();
1761 AU.addRequired<PhiValuesWrapperPass>();
1762 AU.addRequiredTransitive<AAResultsWrapperPass>();
1763 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1764 }
1765
invalidate(Function & F,const PreservedAnalyses & PA,FunctionAnalysisManager::Invalidator & Inv)1766 bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA,
1767 FunctionAnalysisManager::Invalidator &Inv) {
1768 // Check whether our analysis is preserved.
1769 auto PAC = PA.getChecker<MemoryDependenceAnalysis>();
1770 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
1771 // If not, give up now.
1772 return true;
1773
1774 // Check whether the analyses we depend on became invalid for any reason.
1775 if (Inv.invalidate<AAManager>(F, PA) ||
1776 Inv.invalidate<AssumptionAnalysis>(F, PA) ||
1777 Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
1778 Inv.invalidate<PhiValuesAnalysis>(F, PA))
1779 return true;
1780
1781 // Otherwise this analysis result remains valid.
1782 return false;
1783 }
1784
getDefaultBlockScanLimit() const1785 unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const {
1786 return DefaultBlockScanLimit;
1787 }
1788
runOnFunction(Function & F)1789 bool MemoryDependenceWrapperPass::runOnFunction(Function &F) {
1790 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1791 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1792 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1793 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1794 auto &PV = getAnalysis<PhiValuesWrapperPass>().getResult();
1795 MemDep.emplace(AA, AC, TLI, DT, PV, BlockScanLimit);
1796 return false;
1797 }
1798