1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an analysis that determines, for a given memory
10 // operation, what preceding memory operations it depends on.  It builds on
11 // alias analysis information, and tries to provide a lazy, caching interface to
12 // a common kind of alias information query.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/Analysis/PHITransAddr.h"
27 #include "llvm/Analysis/PhiValues.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/PredIteratorCache.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Use.h"
47 #include "llvm/IR/User.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/AtomicOrdering.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/MathExtras.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <iterator>
61 #include <utility>
62 
63 using namespace llvm;
64 
65 #define DEBUG_TYPE "memdep"
66 
67 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
68 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
69 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
70 
71 STATISTIC(NumCacheNonLocalPtr,
72           "Number of fully cached non-local ptr responses");
73 STATISTIC(NumCacheDirtyNonLocalPtr,
74           "Number of cached, but dirty, non-local ptr responses");
75 STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses");
76 STATISTIC(NumCacheCompleteNonLocalPtr,
77           "Number of block queries that were completely cached");
78 
79 // Limit for the number of instructions to scan in a block.
80 
81 static cl::opt<unsigned> BlockScanLimit(
82     "memdep-block-scan-limit", cl::Hidden, cl::init(100),
83     cl::desc("The number of instructions to scan in a block in memory "
84              "dependency analysis (default = 100)"));
85 
86 static cl::opt<unsigned>
87     BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000),
88                      cl::desc("The number of blocks to scan during memory "
89                               "dependency analysis (default = 1000)"));
90 
91 // Limit on the number of memdep results to process.
92 static const unsigned int NumResultsLimit = 100;
93 
94 /// This is a helper function that removes Val from 'Inst's set in ReverseMap.
95 ///
96 /// If the set becomes empty, remove Inst's entry.
97 template <typename KeyTy>
98 static void
99 RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap,
100                      Instruction *Inst, KeyTy Val) {
101   typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt =
102       ReverseMap.find(Inst);
103   assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
104   bool Found = InstIt->second.erase(Val);
105   assert(Found && "Invalid reverse map!");
106   (void)Found;
107   if (InstIt->second.empty())
108     ReverseMap.erase(InstIt);
109 }
110 
111 /// If the given instruction references a specific memory location, fill in Loc
112 /// with the details, otherwise set Loc.Ptr to null.
113 ///
114 /// Returns a ModRefInfo value describing the general behavior of the
115 /// instruction.
116 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc,
117                               const TargetLibraryInfo &TLI) {
118   if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
119     if (LI->isUnordered()) {
120       Loc = MemoryLocation::get(LI);
121       return ModRefInfo::Ref;
122     }
123     if (LI->getOrdering() == AtomicOrdering::Monotonic) {
124       Loc = MemoryLocation::get(LI);
125       return ModRefInfo::ModRef;
126     }
127     Loc = MemoryLocation();
128     return ModRefInfo::ModRef;
129   }
130 
131   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
132     if (SI->isUnordered()) {
133       Loc = MemoryLocation::get(SI);
134       return ModRefInfo::Mod;
135     }
136     if (SI->getOrdering() == AtomicOrdering::Monotonic) {
137       Loc = MemoryLocation::get(SI);
138       return ModRefInfo::ModRef;
139     }
140     Loc = MemoryLocation();
141     return ModRefInfo::ModRef;
142   }
143 
144   if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
145     Loc = MemoryLocation::get(V);
146     return ModRefInfo::ModRef;
147   }
148 
149   if (const CallInst *CI = isFreeCall(Inst, &TLI)) {
150     // calls to free() deallocate the entire structure
151     Loc = MemoryLocation::getAfter(CI->getArgOperand(0));
152     return ModRefInfo::Mod;
153   }
154 
155   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
156     switch (II->getIntrinsicID()) {
157     case Intrinsic::lifetime_start:
158     case Intrinsic::lifetime_end:
159     case Intrinsic::invariant_start:
160       Loc = MemoryLocation::getForArgument(II, 1, TLI);
161       // These intrinsics don't really modify the memory, but returning Mod
162       // will allow them to be handled conservatively.
163       return ModRefInfo::Mod;
164     case Intrinsic::invariant_end:
165       Loc = MemoryLocation::getForArgument(II, 2, TLI);
166       // These intrinsics don't really modify the memory, but returning Mod
167       // will allow them to be handled conservatively.
168       return ModRefInfo::Mod;
169     case Intrinsic::masked_load:
170       Loc = MemoryLocation::getForArgument(II, 0, TLI);
171       return ModRefInfo::Ref;
172     case Intrinsic::masked_store:
173       Loc = MemoryLocation::getForArgument(II, 1, TLI);
174       return ModRefInfo::Mod;
175     default:
176       break;
177     }
178   }
179 
180   // Otherwise, just do the coarse-grained thing that always works.
181   if (Inst->mayWriteToMemory())
182     return ModRefInfo::ModRef;
183   if (Inst->mayReadFromMemory())
184     return ModRefInfo::Ref;
185   return ModRefInfo::NoModRef;
186 }
187 
188 /// Private helper for finding the local dependencies of a call site.
189 MemDepResult MemoryDependenceResults::getCallDependencyFrom(
190     CallBase *Call, bool isReadOnlyCall, BasicBlock::iterator ScanIt,
191     BasicBlock *BB) {
192   unsigned Limit = getDefaultBlockScanLimit();
193 
194   // Walk backwards through the block, looking for dependencies.
195   while (ScanIt != BB->begin()) {
196     Instruction *Inst = &*--ScanIt;
197     // Debug intrinsics don't cause dependences and should not affect Limit
198     if (isa<DbgInfoIntrinsic>(Inst))
199       continue;
200 
201     // Limit the amount of scanning we do so we don't end up with quadratic
202     // running time on extreme testcases.
203     --Limit;
204     if (!Limit)
205       return MemDepResult::getUnknown();
206 
207     // If this inst is a memory op, get the pointer it accessed
208     MemoryLocation Loc;
209     ModRefInfo MR = GetLocation(Inst, Loc, TLI);
210     if (Loc.Ptr) {
211       // A simple instruction.
212       if (isModOrRefSet(AA.getModRefInfo(Call, Loc)))
213         return MemDepResult::getClobber(Inst);
214       continue;
215     }
216 
217     if (auto *CallB = dyn_cast<CallBase>(Inst)) {
218       // If these two calls do not interfere, look past it.
219       if (isNoModRef(AA.getModRefInfo(Call, CallB))) {
220         // If the two calls are the same, return Inst as a Def, so that
221         // Call can be found redundant and eliminated.
222         if (isReadOnlyCall && !isModSet(MR) &&
223             Call->isIdenticalToWhenDefined(CallB))
224           return MemDepResult::getDef(Inst);
225 
226         // Otherwise if the two calls don't interact (e.g. CallB is readnone)
227         // keep scanning.
228         continue;
229       } else
230         return MemDepResult::getClobber(Inst);
231     }
232 
233     // If we could not obtain a pointer for the instruction and the instruction
234     // touches memory then assume that this is a dependency.
235     if (isModOrRefSet(MR))
236       return MemDepResult::getClobber(Inst);
237   }
238 
239   // No dependence found.  If this is the entry block of the function, it is
240   // unknown, otherwise it is non-local.
241   if (BB != &BB->getParent()->getEntryBlock())
242     return MemDepResult::getNonLocal();
243   return MemDepResult::getNonFuncLocal();
244 }
245 
246 MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
247     const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
248     BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
249   MemDepResult InvariantGroupDependency = MemDepResult::getUnknown();
250   if (QueryInst != nullptr) {
251     if (auto *LI = dyn_cast<LoadInst>(QueryInst)) {
252       InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB);
253 
254       if (InvariantGroupDependency.isDef())
255         return InvariantGroupDependency;
256     }
257   }
258   MemDepResult SimpleDep = getSimplePointerDependencyFrom(
259       MemLoc, isLoad, ScanIt, BB, QueryInst, Limit);
260   if (SimpleDep.isDef())
261     return SimpleDep;
262   // Non-local invariant group dependency indicates there is non local Def
263   // (it only returns nonLocal if it finds nonLocal def), which is better than
264   // local clobber and everything else.
265   if (InvariantGroupDependency.isNonLocal())
266     return InvariantGroupDependency;
267 
268   assert(InvariantGroupDependency.isUnknown() &&
269          "InvariantGroupDependency should be only unknown at this point");
270   return SimpleDep;
271 }
272 
273 MemDepResult
274 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI,
275                                                             BasicBlock *BB) {
276 
277   if (!LI->hasMetadata(LLVMContext::MD_invariant_group))
278     return MemDepResult::getUnknown();
279 
280   // Take the ptr operand after all casts and geps 0. This way we can search
281   // cast graph down only.
282   Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts();
283 
284   // It's is not safe to walk the use list of global value, because function
285   // passes aren't allowed to look outside their functions.
286   // FIXME: this could be fixed by filtering instructions from outside
287   // of current function.
288   if (isa<GlobalValue>(LoadOperand))
289     return MemDepResult::getUnknown();
290 
291   // Queue to process all pointers that are equivalent to load operand.
292   SmallVector<const Value *, 8> LoadOperandsQueue;
293   LoadOperandsQueue.push_back(LoadOperand);
294 
295   Instruction *ClosestDependency = nullptr;
296   // Order of instructions in uses list is unpredictible. In order to always
297   // get the same result, we will look for the closest dominance.
298   auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) {
299     assert(Other && "Must call it with not null instruction");
300     if (Best == nullptr || DT.dominates(Best, Other))
301       return Other;
302     return Best;
303   };
304 
305   // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case
306   // we will see all the instructions. This should be fixed in MSSA.
307   while (!LoadOperandsQueue.empty()) {
308     const Value *Ptr = LoadOperandsQueue.pop_back_val();
309     assert(Ptr && !isa<GlobalValue>(Ptr) &&
310            "Null or GlobalValue should not be inserted");
311 
312     for (const Use &Us : Ptr->uses()) {
313       auto *U = dyn_cast<Instruction>(Us.getUser());
314       if (!U || U == LI || !DT.dominates(U, LI))
315         continue;
316 
317       // Bitcast or gep with zeros are using Ptr. Add to queue to check it's
318       // users.      U = bitcast Ptr
319       if (isa<BitCastInst>(U)) {
320         LoadOperandsQueue.push_back(U);
321         continue;
322       }
323       // Gep with zeros is equivalent to bitcast.
324       // FIXME: we are not sure if some bitcast should be canonicalized to gep 0
325       // or gep 0 to bitcast because of SROA, so there are 2 forms. When
326       // typeless pointers will be ready then both cases will be gone
327       // (and this BFS also won't be needed).
328       if (auto *GEP = dyn_cast<GetElementPtrInst>(U))
329         if (GEP->hasAllZeroIndices()) {
330           LoadOperandsQueue.push_back(U);
331           continue;
332         }
333 
334       // If we hit load/store with the same invariant.group metadata (and the
335       // same pointer operand) we can assume that value pointed by pointer
336       // operand didn't change.
337       if ((isa<LoadInst>(U) ||
338            (isa<StoreInst>(U) &&
339             cast<StoreInst>(U)->getPointerOperand() == Ptr)) &&
340           U->hasMetadata(LLVMContext::MD_invariant_group))
341         ClosestDependency = GetClosestDependency(ClosestDependency, U);
342     }
343   }
344 
345   if (!ClosestDependency)
346     return MemDepResult::getUnknown();
347   if (ClosestDependency->getParent() == BB)
348     return MemDepResult::getDef(ClosestDependency);
349   // Def(U) can't be returned here because it is non-local. If local
350   // dependency won't be found then return nonLocal counting that the
351   // user will call getNonLocalPointerDependency, which will return cached
352   // result.
353   NonLocalDefsCache.try_emplace(
354       LI, NonLocalDepResult(ClosestDependency->getParent(),
355                             MemDepResult::getDef(ClosestDependency), nullptr));
356   ReverseNonLocalDefsCache[ClosestDependency].insert(LI);
357   return MemDepResult::getNonLocal();
358 }
359 
360 MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom(
361     const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
362     BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
363   // We can batch AA queries, because IR does not change during a MemDep query.
364   BatchAAResults BatchAA(AA);
365   bool isInvariantLoad = false;
366 
367   unsigned DefaultLimit = getDefaultBlockScanLimit();
368   if (!Limit)
369     Limit = &DefaultLimit;
370 
371   // We must be careful with atomic accesses, as they may allow another thread
372   //   to touch this location, clobbering it. We are conservative: if the
373   //   QueryInst is not a simple (non-atomic) memory access, we automatically
374   //   return getClobber.
375   // If it is simple, we know based on the results of
376   // "Compiler testing via a theory of sound optimisations in the C11/C++11
377   //   memory model" in PLDI 2013, that a non-atomic location can only be
378   //   clobbered between a pair of a release and an acquire action, with no
379   //   access to the location in between.
380   // Here is an example for giving the general intuition behind this rule.
381   // In the following code:
382   //   store x 0;
383   //   release action; [1]
384   //   acquire action; [4]
385   //   %val = load x;
386   // It is unsafe to replace %val by 0 because another thread may be running:
387   //   acquire action; [2]
388   //   store x 42;
389   //   release action; [3]
390   // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
391   // being 42. A key property of this program however is that if either
392   // 1 or 4 were missing, there would be a race between the store of 42
393   // either the store of 0 or the load (making the whole program racy).
394   // The paper mentioned above shows that the same property is respected
395   // by every program that can detect any optimization of that kind: either
396   // it is racy (undefined) or there is a release followed by an acquire
397   // between the pair of accesses under consideration.
398 
399   // If the load is invariant, we "know" that it doesn't alias *any* write. We
400   // do want to respect mustalias results since defs are useful for value
401   // forwarding, but any mayalias write can be assumed to be noalias.
402   // Arguably, this logic should be pushed inside AliasAnalysis itself.
403   if (isLoad && QueryInst) {
404     LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
405     if (LI && LI->hasMetadata(LLVMContext::MD_invariant_load))
406       isInvariantLoad = true;
407   }
408 
409   // Return "true" if and only if the instruction I is either a non-simple
410   // load or a non-simple store.
411   auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool {
412     if (auto *LI = dyn_cast<LoadInst>(I))
413       return !LI->isSimple();
414     if (auto *SI = dyn_cast<StoreInst>(I))
415       return !SI->isSimple();
416     return false;
417   };
418 
419   // Return "true" if I is not a load and not a store, but it does access
420   // memory.
421   auto isOtherMemAccess = [](Instruction *I) -> bool {
422     return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory();
423   };
424 
425   // Walk backwards through the basic block, looking for dependencies.
426   while (ScanIt != BB->begin()) {
427     Instruction *Inst = &*--ScanIt;
428 
429     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
430       // Debug intrinsics don't (and can't) cause dependencies.
431       if (isa<DbgInfoIntrinsic>(II))
432         continue;
433 
434     // Limit the amount of scanning we do so we don't end up with quadratic
435     // running time on extreme testcases.
436     --*Limit;
437     if (!*Limit)
438       return MemDepResult::getUnknown();
439 
440     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
441       // If we reach a lifetime begin or end marker, then the query ends here
442       // because the value is undefined.
443       Intrinsic::ID ID = II->getIntrinsicID();
444       switch (ID) {
445       case Intrinsic::lifetime_start: {
446         // FIXME: This only considers queries directly on the invariant-tagged
447         // pointer, not on query pointers that are indexed off of them.  It'd
448         // be nice to handle that at some point (the right approach is to use
449         // GetPointerBaseWithConstantOffset).
450         MemoryLocation ArgLoc = MemoryLocation::getAfter(II->getArgOperand(1));
451         if (BatchAA.isMustAlias(ArgLoc, MemLoc))
452           return MemDepResult::getDef(II);
453         continue;
454       }
455       case Intrinsic::masked_load:
456       case Intrinsic::masked_store: {
457         MemoryLocation Loc;
458         /*ModRefInfo MR =*/ GetLocation(II, Loc, TLI);
459         AliasResult R = BatchAA.alias(Loc, MemLoc);
460         if (R == AliasResult::NoAlias)
461           continue;
462         if (R == AliasResult::MustAlias)
463           return MemDepResult::getDef(II);
464         if (ID == Intrinsic::masked_load)
465           continue;
466         return MemDepResult::getClobber(II);
467       }
468       }
469     }
470 
471     // Values depend on loads if the pointers are must aliased.  This means
472     // that a load depends on another must aliased load from the same value.
473     // One exception is atomic loads: a value can depend on an atomic load that
474     // it does not alias with when this atomic load indicates that another
475     // thread may be accessing the location.
476     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
477       // While volatile access cannot be eliminated, they do not have to clobber
478       // non-aliasing locations, as normal accesses, for example, can be safely
479       // reordered with volatile accesses.
480       if (LI->isVolatile()) {
481         if (!QueryInst)
482           // Original QueryInst *may* be volatile
483           return MemDepResult::getClobber(LI);
484         if (QueryInst->isVolatile())
485           // Ordering required if QueryInst is itself volatile
486           return MemDepResult::getClobber(LI);
487         // Otherwise, volatile doesn't imply any special ordering
488       }
489 
490       // Atomic loads have complications involved.
491       // A Monotonic (or higher) load is OK if the query inst is itself not
492       // atomic.
493       // FIXME: This is overly conservative.
494       if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) {
495         if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
496             isOtherMemAccess(QueryInst))
497           return MemDepResult::getClobber(LI);
498         if (LI->getOrdering() != AtomicOrdering::Monotonic)
499           return MemDepResult::getClobber(LI);
500       }
501 
502       MemoryLocation LoadLoc = MemoryLocation::get(LI);
503 
504       // If we found a pointer, check if it could be the same as our pointer.
505       AliasResult R = BatchAA.alias(LoadLoc, MemLoc);
506 
507       if (isLoad) {
508         if (R == AliasResult::NoAlias)
509           continue;
510 
511         // Must aliased loads are defs of each other.
512         if (R == AliasResult::MustAlias)
513           return MemDepResult::getDef(Inst);
514 
515         // If we have a partial alias, then return this as a clobber for the
516         // client to handle.
517         if (R == AliasResult::PartialAlias && R.hasOffset()) {
518           ClobberOffsets[LI] = R.getOffset();
519           return MemDepResult::getClobber(Inst);
520         }
521 
522         // Random may-alias loads don't depend on each other without a
523         // dependence.
524         continue;
525       }
526 
527       // Stores don't depend on other no-aliased accesses.
528       if (R == AliasResult::NoAlias)
529         continue;
530 
531       // Stores don't alias loads from read-only memory.
532       if (BatchAA.pointsToConstantMemory(LoadLoc))
533         continue;
534 
535       // Stores depend on may/must aliased loads.
536       return MemDepResult::getDef(Inst);
537     }
538 
539     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
540       // Atomic stores have complications involved.
541       // A Monotonic store is OK if the query inst is itself not atomic.
542       // FIXME: This is overly conservative.
543       if (!SI->isUnordered() && SI->isAtomic()) {
544         if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
545             isOtherMemAccess(QueryInst))
546           return MemDepResult::getClobber(SI);
547         if (SI->getOrdering() != AtomicOrdering::Monotonic)
548           return MemDepResult::getClobber(SI);
549       }
550 
551       // FIXME: this is overly conservative.
552       // While volatile access cannot be eliminated, they do not have to clobber
553       // non-aliasing locations, as normal accesses can for example be reordered
554       // with volatile accesses.
555       if (SI->isVolatile())
556         if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
557             isOtherMemAccess(QueryInst))
558           return MemDepResult::getClobber(SI);
559 
560       // If alias analysis can tell that this store is guaranteed to not modify
561       // the query pointer, ignore it.  Use getModRefInfo to handle cases where
562       // the query pointer points to constant memory etc.
563       if (!isModOrRefSet(BatchAA.getModRefInfo(SI, MemLoc)))
564         continue;
565 
566       // Ok, this store might clobber the query pointer.  Check to see if it is
567       // a must alias: in this case, we want to return this as a def.
568       // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above.
569       MemoryLocation StoreLoc = MemoryLocation::get(SI);
570 
571       // If we found a pointer, check if it could be the same as our pointer.
572       AliasResult R = BatchAA.alias(StoreLoc, MemLoc);
573 
574       if (R == AliasResult::NoAlias)
575         continue;
576       if (R == AliasResult::MustAlias)
577         return MemDepResult::getDef(Inst);
578       if (isInvariantLoad)
579         continue;
580       return MemDepResult::getClobber(Inst);
581     }
582 
583     // If this is an allocation, and if we know that the accessed pointer is to
584     // the allocation, return Def.  This means that there is no dependence and
585     // the access can be optimized based on that.  For example, a load could
586     // turn into undef.  Note that we can bypass the allocation itself when
587     // looking for a clobber in many cases; that's an alias property and is
588     // handled by BasicAA.
589     if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) {
590       const Value *AccessPtr = getUnderlyingObject(MemLoc.Ptr);
591       if (AccessPtr == Inst || BatchAA.isMustAlias(Inst, AccessPtr))
592         return MemDepResult::getDef(Inst);
593     }
594 
595     if (isInvariantLoad)
596       continue;
597 
598     // A release fence requires that all stores complete before it, but does
599     // not prevent the reordering of following loads or stores 'before' the
600     // fence.  As a result, we look past it when finding a dependency for
601     // loads.  DSE uses this to find preceding stores to delete and thus we
602     // can't bypass the fence if the query instruction is a store.
603     if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
604       if (isLoad && FI->getOrdering() == AtomicOrdering::Release)
605         continue;
606 
607     // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
608     ModRefInfo MR = BatchAA.getModRefInfo(Inst, MemLoc);
609     // If necessary, perform additional analysis.
610     if (isModAndRefSet(MR))
611       // TODO: Support callCapturesBefore() on BatchAAResults.
612       MR = AA.callCapturesBefore(Inst, MemLoc, &DT);
613     switch (clearMust(MR)) {
614     case ModRefInfo::NoModRef:
615       // If the call has no effect on the queried pointer, just ignore it.
616       continue;
617     case ModRefInfo::Mod:
618       return MemDepResult::getClobber(Inst);
619     case ModRefInfo::Ref:
620       // If the call is known to never store to the pointer, and if this is a
621       // load query, we can safely ignore it (scan past it).
622       if (isLoad)
623         continue;
624       LLVM_FALLTHROUGH;
625     default:
626       // Otherwise, there is a potential dependence.  Return a clobber.
627       return MemDepResult::getClobber(Inst);
628     }
629   }
630 
631   // No dependence found.  If this is the entry block of the function, it is
632   // unknown, otherwise it is non-local.
633   if (BB != &BB->getParent()->getEntryBlock())
634     return MemDepResult::getNonLocal();
635   return MemDepResult::getNonFuncLocal();
636 }
637 
638 MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) {
639   ClobberOffsets.clear();
640   Instruction *ScanPos = QueryInst;
641 
642   // Check for a cached result
643   MemDepResult &LocalCache = LocalDeps[QueryInst];
644 
645   // If the cached entry is non-dirty, just return it.  Note that this depends
646   // on MemDepResult's default constructing to 'dirty'.
647   if (!LocalCache.isDirty())
648     return LocalCache;
649 
650   // Otherwise, if we have a dirty entry, we know we can start the scan at that
651   // instruction, which may save us some work.
652   if (Instruction *Inst = LocalCache.getInst()) {
653     ScanPos = Inst;
654 
655     RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
656   }
657 
658   BasicBlock *QueryParent = QueryInst->getParent();
659 
660   // Do the scan.
661   if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
662     // No dependence found. If this is the entry block of the function, it is
663     // unknown, otherwise it is non-local.
664     if (QueryParent != &QueryParent->getParent()->getEntryBlock())
665       LocalCache = MemDepResult::getNonLocal();
666     else
667       LocalCache = MemDepResult::getNonFuncLocal();
668   } else {
669     MemoryLocation MemLoc;
670     ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI);
671     if (MemLoc.Ptr) {
672       // If we can do a pointer scan, make it happen.
673       bool isLoad = !isModSet(MR);
674       if (auto *II = dyn_cast<IntrinsicInst>(QueryInst))
675         isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
676 
677       LocalCache =
678           getPointerDependencyFrom(MemLoc, isLoad, ScanPos->getIterator(),
679                                    QueryParent, QueryInst, nullptr);
680     } else if (auto *QueryCall = dyn_cast<CallBase>(QueryInst)) {
681       bool isReadOnly = AA.onlyReadsMemory(QueryCall);
682       LocalCache = getCallDependencyFrom(QueryCall, isReadOnly,
683                                          ScanPos->getIterator(), QueryParent);
684     } else
685       // Non-memory instruction.
686       LocalCache = MemDepResult::getUnknown();
687   }
688 
689   // Remember the result!
690   if (Instruction *I = LocalCache.getInst())
691     ReverseLocalDeps[I].insert(QueryInst);
692 
693   return LocalCache;
694 }
695 
696 #ifndef NDEBUG
697 /// This method is used when -debug is specified to verify that cache arrays
698 /// are properly kept sorted.
699 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache,
700                          int Count = -1) {
701   if (Count == -1)
702     Count = Cache.size();
703   assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) &&
704          "Cache isn't sorted!");
705 }
706 #endif
707 
708 const MemoryDependenceResults::NonLocalDepInfo &
709 MemoryDependenceResults::getNonLocalCallDependency(CallBase *QueryCall) {
710   assert(getDependency(QueryCall).isNonLocal() &&
711          "getNonLocalCallDependency should only be used on calls with "
712          "non-local deps!");
713   PerInstNLInfo &CacheP = NonLocalDeps[QueryCall];
714   NonLocalDepInfo &Cache = CacheP.first;
715 
716   // This is the set of blocks that need to be recomputed.  In the cached case,
717   // this can happen due to instructions being deleted etc. In the uncached
718   // case, this starts out as the set of predecessors we care about.
719   SmallVector<BasicBlock *, 32> DirtyBlocks;
720 
721   if (!Cache.empty()) {
722     // Okay, we have a cache entry.  If we know it is not dirty, just return it
723     // with no computation.
724     if (!CacheP.second) {
725       ++NumCacheNonLocal;
726       return Cache;
727     }
728 
729     // If we already have a partially computed set of results, scan them to
730     // determine what is dirty, seeding our initial DirtyBlocks worklist.
731     for (auto &Entry : Cache)
732       if (Entry.getResult().isDirty())
733         DirtyBlocks.push_back(Entry.getBB());
734 
735     // Sort the cache so that we can do fast binary search lookups below.
736     llvm::sort(Cache);
737 
738     ++NumCacheDirtyNonLocal;
739     // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
740     //     << Cache.size() << " cached: " << *QueryInst;
741   } else {
742     // Seed DirtyBlocks with each of the preds of QueryInst's block.
743     BasicBlock *QueryBB = QueryCall->getParent();
744     append_range(DirtyBlocks, PredCache.get(QueryBB));
745     ++NumUncacheNonLocal;
746   }
747 
748   // isReadonlyCall - If this is a read-only call, we can be more aggressive.
749   bool isReadonlyCall = AA.onlyReadsMemory(QueryCall);
750 
751   SmallPtrSet<BasicBlock *, 32> Visited;
752 
753   unsigned NumSortedEntries = Cache.size();
754   LLVM_DEBUG(AssertSorted(Cache));
755 
756   // Iterate while we still have blocks to update.
757   while (!DirtyBlocks.empty()) {
758     BasicBlock *DirtyBB = DirtyBlocks.pop_back_val();
759 
760     // Already processed this block?
761     if (!Visited.insert(DirtyBB).second)
762       continue;
763 
764     // Do a binary search to see if we already have an entry for this block in
765     // the cache set.  If so, find it.
766     LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries));
767     NonLocalDepInfo::iterator Entry =
768         std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries,
769                          NonLocalDepEntry(DirtyBB));
770     if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
771       --Entry;
772 
773     NonLocalDepEntry *ExistingResult = nullptr;
774     if (Entry != Cache.begin() + NumSortedEntries &&
775         Entry->getBB() == DirtyBB) {
776       // If we already have an entry, and if it isn't already dirty, the block
777       // is done.
778       if (!Entry->getResult().isDirty())
779         continue;
780 
781       // Otherwise, remember this slot so we can update the value.
782       ExistingResult = &*Entry;
783     }
784 
785     // If the dirty entry has a pointer, start scanning from it so we don't have
786     // to rescan the entire block.
787     BasicBlock::iterator ScanPos = DirtyBB->end();
788     if (ExistingResult) {
789       if (Instruction *Inst = ExistingResult->getResult().getInst()) {
790         ScanPos = Inst->getIterator();
791         // We're removing QueryInst's use of Inst.
792         RemoveFromReverseMap<Instruction *>(ReverseNonLocalDeps, Inst,
793                                             QueryCall);
794       }
795     }
796 
797     // Find out if this block has a local dependency for QueryInst.
798     MemDepResult Dep;
799 
800     if (ScanPos != DirtyBB->begin()) {
801       Dep = getCallDependencyFrom(QueryCall, isReadonlyCall, ScanPos, DirtyBB);
802     } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
803       // No dependence found.  If this is the entry block of the function, it is
804       // a clobber, otherwise it is unknown.
805       Dep = MemDepResult::getNonLocal();
806     } else {
807       Dep = MemDepResult::getNonFuncLocal();
808     }
809 
810     // If we had a dirty entry for the block, update it.  Otherwise, just add
811     // a new entry.
812     if (ExistingResult)
813       ExistingResult->setResult(Dep);
814     else
815       Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
816 
817     // If the block has a dependency (i.e. it isn't completely transparent to
818     // the value), remember the association!
819     if (!Dep.isNonLocal()) {
820       // Keep the ReverseNonLocalDeps map up to date so we can efficiently
821       // update this when we remove instructions.
822       if (Instruction *Inst = Dep.getInst())
823         ReverseNonLocalDeps[Inst].insert(QueryCall);
824     } else {
825 
826       // If the block *is* completely transparent to the load, we need to check
827       // the predecessors of this block.  Add them to our worklist.
828       append_range(DirtyBlocks, PredCache.get(DirtyBB));
829     }
830   }
831 
832   return Cache;
833 }
834 
835 void MemoryDependenceResults::getNonLocalPointerDependency(
836     Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) {
837   const MemoryLocation Loc = MemoryLocation::get(QueryInst);
838   bool isLoad = isa<LoadInst>(QueryInst);
839   BasicBlock *FromBB = QueryInst->getParent();
840   assert(FromBB);
841 
842   assert(Loc.Ptr->getType()->isPointerTy() &&
843          "Can't get pointer deps of a non-pointer!");
844   Result.clear();
845   {
846     // Check if there is cached Def with invariant.group.
847     auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst);
848     if (NonLocalDefIt != NonLocalDefsCache.end()) {
849       Result.push_back(NonLocalDefIt->second);
850       ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()]
851           .erase(QueryInst);
852       NonLocalDefsCache.erase(NonLocalDefIt);
853       return;
854     }
855   }
856   // This routine does not expect to deal with volatile instructions.
857   // Doing so would require piping through the QueryInst all the way through.
858   // TODO: volatiles can't be elided, but they can be reordered with other
859   // non-volatile accesses.
860 
861   // We currently give up on any instruction which is ordered, but we do handle
862   // atomic instructions which are unordered.
863   // TODO: Handle ordered instructions
864   auto isOrdered = [](Instruction *Inst) {
865     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
866       return !LI->isUnordered();
867     } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
868       return !SI->isUnordered();
869     }
870     return false;
871   };
872   if (QueryInst->isVolatile() || isOrdered(QueryInst)) {
873     Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
874                                        const_cast<Value *>(Loc.Ptr)));
875     return;
876   }
877   const DataLayout &DL = FromBB->getModule()->getDataLayout();
878   PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC);
879 
880   // This is the set of blocks we've inspected, and the pointer we consider in
881   // each block.  Because of critical edges, we currently bail out if querying
882   // a block with multiple different pointers.  This can happen during PHI
883   // translation.
884   DenseMap<BasicBlock *, Value *> Visited;
885   if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB,
886                                    Result, Visited, true))
887     return;
888   Result.clear();
889   Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
890                                      const_cast<Value *>(Loc.Ptr)));
891 }
892 
893 /// Compute the memdep value for BB with Pointer/PointeeSize using either
894 /// cached information in Cache or by doing a lookup (which may use dirty cache
895 /// info if available).
896 ///
897 /// If we do a lookup, add the result to the cache.
898 MemDepResult MemoryDependenceResults::GetNonLocalInfoForBlock(
899     Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad,
900     BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
901 
902   bool isInvariantLoad = false;
903 
904   if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst))
905     isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load);
906 
907   // Do a binary search to see if we already have an entry for this block in
908   // the cache set.  If so, find it.
909   NonLocalDepInfo::iterator Entry = std::upper_bound(
910       Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB));
911   if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB)
912     --Entry;
913 
914   NonLocalDepEntry *ExistingResult = nullptr;
915   if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB)
916     ExistingResult = &*Entry;
917 
918   // Use cached result for invariant load only if there is no dependency for non
919   // invariant load. In this case invariant load can not have any dependency as
920   // well.
921   if (ExistingResult && isInvariantLoad &&
922       !ExistingResult->getResult().isNonFuncLocal())
923     ExistingResult = nullptr;
924 
925   // If we have a cached entry, and it is non-dirty, use it as the value for
926   // this dependency.
927   if (ExistingResult && !ExistingResult->getResult().isDirty()) {
928     ++NumCacheNonLocalPtr;
929     return ExistingResult->getResult();
930   }
931 
932   // Otherwise, we have to scan for the value.  If we have a dirty cache
933   // entry, start scanning from its position, otherwise we scan from the end
934   // of the block.
935   BasicBlock::iterator ScanPos = BB->end();
936   if (ExistingResult && ExistingResult->getResult().getInst()) {
937     assert(ExistingResult->getResult().getInst()->getParent() == BB &&
938            "Instruction invalidated?");
939     ++NumCacheDirtyNonLocalPtr;
940     ScanPos = ExistingResult->getResult().getInst()->getIterator();
941 
942     // Eliminating the dirty entry from 'Cache', so update the reverse info.
943     ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
944     RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey);
945   } else {
946     ++NumUncacheNonLocalPtr;
947   }
948 
949   // Scan the block for the dependency.
950   MemDepResult Dep =
951       getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, QueryInst);
952 
953   // Don't cache results for invariant load.
954   if (isInvariantLoad)
955     return Dep;
956 
957   // If we had a dirty entry for the block, update it.  Otherwise, just add
958   // a new entry.
959   if (ExistingResult)
960     ExistingResult->setResult(Dep);
961   else
962     Cache->push_back(NonLocalDepEntry(BB, Dep));
963 
964   // If the block has a dependency (i.e. it isn't completely transparent to
965   // the value), remember the reverse association because we just added it
966   // to Cache!
967   if (!Dep.isDef() && !Dep.isClobber())
968     return Dep;
969 
970   // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
971   // update MemDep when we remove instructions.
972   Instruction *Inst = Dep.getInst();
973   assert(Inst && "Didn't depend on anything?");
974   ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
975   ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
976   return Dep;
977 }
978 
979 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the
980 /// array that are already properly ordered.
981 ///
982 /// This is optimized for the case when only a few entries are added.
983 static void
984 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache,
985                          unsigned NumSortedEntries) {
986   switch (Cache.size() - NumSortedEntries) {
987   case 0:
988     // done, no new entries.
989     break;
990   case 2: {
991     // Two new entries, insert the last one into place.
992     NonLocalDepEntry Val = Cache.back();
993     Cache.pop_back();
994     MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
995         std::upper_bound(Cache.begin(), Cache.end() - 1, Val);
996     Cache.insert(Entry, Val);
997     LLVM_FALLTHROUGH;
998   }
999   case 1:
1000     // One new entry, Just insert the new value at the appropriate position.
1001     if (Cache.size() != 1) {
1002       NonLocalDepEntry Val = Cache.back();
1003       Cache.pop_back();
1004       MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
1005           llvm::upper_bound(Cache, Val);
1006       Cache.insert(Entry, Val);
1007     }
1008     break;
1009   default:
1010     // Added many values, do a full scale sort.
1011     llvm::sort(Cache);
1012     break;
1013   }
1014 }
1015 
1016 /// Perform a dependency query based on pointer/pointeesize starting at the end
1017 /// of StartBB.
1018 ///
1019 /// Add any clobber/def results to the results vector and keep track of which
1020 /// blocks are visited in 'Visited'.
1021 ///
1022 /// This has special behavior for the first block queries (when SkipFirstBlock
1023 /// is true).  In this special case, it ignores the contents of the specified
1024 /// block and starts returning dependence info for its predecessors.
1025 ///
1026 /// This function returns true on success, or false to indicate that it could
1027 /// not compute dependence information for some reason.  This should be treated
1028 /// as a clobber dependence on the first instruction in the predecessor block.
1029 bool MemoryDependenceResults::getNonLocalPointerDepFromBB(
1030     Instruction *QueryInst, const PHITransAddr &Pointer,
1031     const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB,
1032     SmallVectorImpl<NonLocalDepResult> &Result,
1033     DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock,
1034     bool IsIncomplete) {
1035   // Look up the cached info for Pointer.
1036   ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
1037 
1038   // Set up a temporary NLPI value. If the map doesn't yet have an entry for
1039   // CacheKey, this value will be inserted as the associated value. Otherwise,
1040   // it'll be ignored, and we'll have to check to see if the cached size and
1041   // aa tags are consistent with the current query.
1042   NonLocalPointerInfo InitialNLPI;
1043   InitialNLPI.Size = Loc.Size;
1044   InitialNLPI.AATags = Loc.AATags;
1045 
1046   bool isInvariantLoad = false;
1047   if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst))
1048     isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load);
1049 
1050   // Get the NLPI for CacheKey, inserting one into the map if it doesn't
1051   // already have one.
1052   std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
1053       NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
1054   NonLocalPointerInfo *CacheInfo = &Pair.first->second;
1055 
1056   // If we already have a cache entry for this CacheKey, we may need to do some
1057   // work to reconcile the cache entry and the current query.
1058   // Invariant loads don't participate in caching. Thus no need to reconcile.
1059   if (!isInvariantLoad && !Pair.second) {
1060     if (CacheInfo->Size != Loc.Size) {
1061       bool ThrowOutEverything;
1062       if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) {
1063         // FIXME: We may be able to do better in the face of results with mixed
1064         // precision. We don't appear to get them in practice, though, so just
1065         // be conservative.
1066         ThrowOutEverything =
1067             CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() ||
1068             CacheInfo->Size.getValue() < Loc.Size.getValue();
1069       } else {
1070         // For our purposes, unknown size > all others.
1071         ThrowOutEverything = !Loc.Size.hasValue();
1072       }
1073 
1074       if (ThrowOutEverything) {
1075         // The query's Size is greater than the cached one. Throw out the
1076         // cached data and proceed with the query at the greater size.
1077         CacheInfo->Pair = BBSkipFirstBlockPair();
1078         CacheInfo->Size = Loc.Size;
1079         for (auto &Entry : CacheInfo->NonLocalDeps)
1080           if (Instruction *Inst = Entry.getResult().getInst())
1081             RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1082         CacheInfo->NonLocalDeps.clear();
1083         // The cache is cleared (in the above line) so we will have lost
1084         // information about blocks we have already visited. We therefore must
1085         // assume that the cache information is incomplete.
1086         IsIncomplete = true;
1087       } else {
1088         // This query's Size is less than the cached one. Conservatively restart
1089         // the query using the greater size.
1090         return getNonLocalPointerDepFromBB(
1091             QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad,
1092             StartBB, Result, Visited, SkipFirstBlock, IsIncomplete);
1093       }
1094     }
1095 
1096     // If the query's AATags are inconsistent with the cached one,
1097     // conservatively throw out the cached data and restart the query with
1098     // no tag if needed.
1099     if (CacheInfo->AATags != Loc.AATags) {
1100       if (CacheInfo->AATags) {
1101         CacheInfo->Pair = BBSkipFirstBlockPair();
1102         CacheInfo->AATags = AAMDNodes();
1103         for (auto &Entry : CacheInfo->NonLocalDeps)
1104           if (Instruction *Inst = Entry.getResult().getInst())
1105             RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1106         CacheInfo->NonLocalDeps.clear();
1107         // The cache is cleared (in the above line) so we will have lost
1108         // information about blocks we have already visited. We therefore must
1109         // assume that the cache information is incomplete.
1110         IsIncomplete = true;
1111       }
1112       if (Loc.AATags)
1113         return getNonLocalPointerDepFromBB(
1114             QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result,
1115             Visited, SkipFirstBlock, IsIncomplete);
1116     }
1117   }
1118 
1119   NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
1120 
1121   // If we have valid cached information for exactly the block we are
1122   // investigating, just return it with no recomputation.
1123   // Don't use cached information for invariant loads since it is valid for
1124   // non-invariant loads only.
1125   if (!IsIncomplete && !isInvariantLoad &&
1126       CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
1127     // We have a fully cached result for this query then we can just return the
1128     // cached results and populate the visited set.  However, we have to verify
1129     // that we don't already have conflicting results for these blocks.  Check
1130     // to ensure that if a block in the results set is in the visited set that
1131     // it was for the same pointer query.
1132     if (!Visited.empty()) {
1133       for (auto &Entry : *Cache) {
1134         DenseMap<BasicBlock *, Value *>::iterator VI =
1135             Visited.find(Entry.getBB());
1136         if (VI == Visited.end() || VI->second == Pointer.getAddr())
1137           continue;
1138 
1139         // We have a pointer mismatch in a block.  Just return false, saying
1140         // that something was clobbered in this result.  We could also do a
1141         // non-fully cached query, but there is little point in doing this.
1142         return false;
1143       }
1144     }
1145 
1146     Value *Addr = Pointer.getAddr();
1147     for (auto &Entry : *Cache) {
1148       Visited.insert(std::make_pair(Entry.getBB(), Addr));
1149       if (Entry.getResult().isNonLocal()) {
1150         continue;
1151       }
1152 
1153       if (DT.isReachableFromEntry(Entry.getBB())) {
1154         Result.push_back(
1155             NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr));
1156       }
1157     }
1158     ++NumCacheCompleteNonLocalPtr;
1159     return true;
1160   }
1161 
1162   // Otherwise, either this is a new block, a block with an invalid cache
1163   // pointer or one that we're about to invalidate by putting more info into
1164   // it than its valid cache info.  If empty and not explicitly indicated as
1165   // incomplete, the result will be valid cache info, otherwise it isn't.
1166   //
1167   // Invariant loads don't affect cache in any way thus no need to update
1168   // CacheInfo as well.
1169   if (!isInvariantLoad) {
1170     if (!IsIncomplete && Cache->empty())
1171       CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1172     else
1173       CacheInfo->Pair = BBSkipFirstBlockPair();
1174   }
1175 
1176   SmallVector<BasicBlock *, 32> Worklist;
1177   Worklist.push_back(StartBB);
1178 
1179   // PredList used inside loop.
1180   SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList;
1181 
1182   // Keep track of the entries that we know are sorted.  Previously cached
1183   // entries will all be sorted.  The entries we add we only sort on demand (we
1184   // don't insert every element into its sorted position).  We know that we
1185   // won't get any reuse from currently inserted values, because we don't
1186   // revisit blocks after we insert info for them.
1187   unsigned NumSortedEntries = Cache->size();
1188   unsigned WorklistEntries = BlockNumberLimit;
1189   bool GotWorklistLimit = false;
1190   LLVM_DEBUG(AssertSorted(*Cache));
1191 
1192   while (!Worklist.empty()) {
1193     BasicBlock *BB = Worklist.pop_back_val();
1194 
1195     // If we do process a large number of blocks it becomes very expensive and
1196     // likely it isn't worth worrying about
1197     if (Result.size() > NumResultsLimit) {
1198       Worklist.clear();
1199       // Sort it now (if needed) so that recursive invocations of
1200       // getNonLocalPointerDepFromBB and other routines that could reuse the
1201       // cache value will only see properly sorted cache arrays.
1202       if (Cache && NumSortedEntries != Cache->size()) {
1203         SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1204       }
1205       // Since we bail out, the "Cache" set won't contain all of the
1206       // results for the query.  This is ok (we can still use it to accelerate
1207       // specific block queries) but we can't do the fastpath "return all
1208       // results from the set".  Clear out the indicator for this.
1209       CacheInfo->Pair = BBSkipFirstBlockPair();
1210       return false;
1211     }
1212 
1213     // Skip the first block if we have it.
1214     if (!SkipFirstBlock) {
1215       // Analyze the dependency of *Pointer in FromBB.  See if we already have
1216       // been here.
1217       assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1218 
1219       // Get the dependency info for Pointer in BB.  If we have cached
1220       // information, we will use it, otherwise we compute it.
1221       LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries));
1222       MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, Loc, isLoad, BB,
1223                                                  Cache, NumSortedEntries);
1224 
1225       // If we got a Def or Clobber, add this to the list of results.
1226       if (!Dep.isNonLocal()) {
1227         if (DT.isReachableFromEntry(BB)) {
1228           Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1229           continue;
1230         }
1231       }
1232     }
1233 
1234     // If 'Pointer' is an instruction defined in this block, then we need to do
1235     // phi translation to change it into a value live in the predecessor block.
1236     // If not, we just add the predecessors to the worklist and scan them with
1237     // the same Pointer.
1238     if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1239       SkipFirstBlock = false;
1240       SmallVector<BasicBlock *, 16> NewBlocks;
1241       for (BasicBlock *Pred : PredCache.get(BB)) {
1242         // Verify that we haven't looked at this block yet.
1243         std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1244             Visited.insert(std::make_pair(Pred, Pointer.getAddr()));
1245         if (InsertRes.second) {
1246           // First time we've looked at *PI.
1247           NewBlocks.push_back(Pred);
1248           continue;
1249         }
1250 
1251         // If we have seen this block before, but it was with a different
1252         // pointer then we have a phi translation failure and we have to treat
1253         // this as a clobber.
1254         if (InsertRes.first->second != Pointer.getAddr()) {
1255           // Make sure to clean up the Visited map before continuing on to
1256           // PredTranslationFailure.
1257           for (unsigned i = 0; i < NewBlocks.size(); i++)
1258             Visited.erase(NewBlocks[i]);
1259           goto PredTranslationFailure;
1260         }
1261       }
1262       if (NewBlocks.size() > WorklistEntries) {
1263         // Make sure to clean up the Visited map before continuing on to
1264         // PredTranslationFailure.
1265         for (unsigned i = 0; i < NewBlocks.size(); i++)
1266           Visited.erase(NewBlocks[i]);
1267         GotWorklistLimit = true;
1268         goto PredTranslationFailure;
1269       }
1270       WorklistEntries -= NewBlocks.size();
1271       Worklist.append(NewBlocks.begin(), NewBlocks.end());
1272       continue;
1273     }
1274 
1275     // We do need to do phi translation, if we know ahead of time we can't phi
1276     // translate this value, don't even try.
1277     if (!Pointer.IsPotentiallyPHITranslatable())
1278       goto PredTranslationFailure;
1279 
1280     // We may have added values to the cache list before this PHI translation.
1281     // If so, we haven't done anything to ensure that the cache remains sorted.
1282     // Sort it now (if needed) so that recursive invocations of
1283     // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1284     // value will only see properly sorted cache arrays.
1285     if (Cache && NumSortedEntries != Cache->size()) {
1286       SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1287       NumSortedEntries = Cache->size();
1288     }
1289     Cache = nullptr;
1290 
1291     PredList.clear();
1292     for (BasicBlock *Pred : PredCache.get(BB)) {
1293       PredList.push_back(std::make_pair(Pred, Pointer));
1294 
1295       // Get the PHI translated pointer in this predecessor.  This can fail if
1296       // not translatable, in which case the getAddr() returns null.
1297       PHITransAddr &PredPointer = PredList.back().second;
1298       PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false);
1299       Value *PredPtrVal = PredPointer.getAddr();
1300 
1301       // Check to see if we have already visited this pred block with another
1302       // pointer.  If so, we can't do this lookup.  This failure can occur
1303       // with PHI translation when a critical edge exists and the PHI node in
1304       // the successor translates to a pointer value different than the
1305       // pointer the block was first analyzed with.
1306       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1307           Visited.insert(std::make_pair(Pred, PredPtrVal));
1308 
1309       if (!InsertRes.second) {
1310         // We found the pred; take it off the list of preds to visit.
1311         PredList.pop_back();
1312 
1313         // If the predecessor was visited with PredPtr, then we already did
1314         // the analysis and can ignore it.
1315         if (InsertRes.first->second == PredPtrVal)
1316           continue;
1317 
1318         // Otherwise, the block was previously analyzed with a different
1319         // pointer.  We can't represent the result of this case, so we just
1320         // treat this as a phi translation failure.
1321 
1322         // Make sure to clean up the Visited map before continuing on to
1323         // PredTranslationFailure.
1324         for (unsigned i = 0, n = PredList.size(); i < n; ++i)
1325           Visited.erase(PredList[i].first);
1326 
1327         goto PredTranslationFailure;
1328       }
1329     }
1330 
1331     // Actually process results here; this need to be a separate loop to avoid
1332     // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1333     // any results for.  (getNonLocalPointerDepFromBB will modify our
1334     // datastructures in ways the code after the PredTranslationFailure label
1335     // doesn't expect.)
1336     for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
1337       BasicBlock *Pred = PredList[i].first;
1338       PHITransAddr &PredPointer = PredList[i].second;
1339       Value *PredPtrVal = PredPointer.getAddr();
1340 
1341       bool CanTranslate = true;
1342       // If PHI translation was unable to find an available pointer in this
1343       // predecessor, then we have to assume that the pointer is clobbered in
1344       // that predecessor.  We can still do PRE of the load, which would insert
1345       // a computation of the pointer in this predecessor.
1346       if (!PredPtrVal)
1347         CanTranslate = false;
1348 
1349       // FIXME: it is entirely possible that PHI translating will end up with
1350       // the same value.  Consider PHI translating something like:
1351       // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
1352       // to recurse here, pedantically speaking.
1353 
1354       // If getNonLocalPointerDepFromBB fails here, that means the cached
1355       // result conflicted with the Visited list; we have to conservatively
1356       // assume it is unknown, but this also does not block PRE of the load.
1357       if (!CanTranslate ||
1358           !getNonLocalPointerDepFromBB(QueryInst, PredPointer,
1359                                       Loc.getWithNewPtr(PredPtrVal), isLoad,
1360                                       Pred, Result, Visited)) {
1361         // Add the entry to the Result list.
1362         NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1363         Result.push_back(Entry);
1364 
1365         // Since we had a phi translation failure, the cache for CacheKey won't
1366         // include all of the entries that we need to immediately satisfy future
1367         // queries.  Mark this in NonLocalPointerDeps by setting the
1368         // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
1369         // cached value to do more work but not miss the phi trans failure.
1370         NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1371         NLPI.Pair = BBSkipFirstBlockPair();
1372         continue;
1373       }
1374     }
1375 
1376     // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1377     CacheInfo = &NonLocalPointerDeps[CacheKey];
1378     Cache = &CacheInfo->NonLocalDeps;
1379     NumSortedEntries = Cache->size();
1380 
1381     // Since we did phi translation, the "Cache" set won't contain all of the
1382     // results for the query.  This is ok (we can still use it to accelerate
1383     // specific block queries) but we can't do the fastpath "return all
1384     // results from the set"  Clear out the indicator for this.
1385     CacheInfo->Pair = BBSkipFirstBlockPair();
1386     SkipFirstBlock = false;
1387     continue;
1388 
1389   PredTranslationFailure:
1390     // The following code is "failure"; we can't produce a sane translation
1391     // for the given block.  It assumes that we haven't modified any of
1392     // our datastructures while processing the current block.
1393 
1394     if (!Cache) {
1395       // Refresh the CacheInfo/Cache pointer if it got invalidated.
1396       CacheInfo = &NonLocalPointerDeps[CacheKey];
1397       Cache = &CacheInfo->NonLocalDeps;
1398       NumSortedEntries = Cache->size();
1399     }
1400 
1401     // Since we failed phi translation, the "Cache" set won't contain all of the
1402     // results for the query.  This is ok (we can still use it to accelerate
1403     // specific block queries) but we can't do the fastpath "return all
1404     // results from the set".  Clear out the indicator for this.
1405     CacheInfo->Pair = BBSkipFirstBlockPair();
1406 
1407     // If *nothing* works, mark the pointer as unknown.
1408     //
1409     // If this is the magic first block, return this as a clobber of the whole
1410     // incoming value.  Since we can't phi translate to one of the predecessors,
1411     // we have to bail out.
1412     if (SkipFirstBlock)
1413       return false;
1414 
1415     // Results of invariant loads are not cached thus no need to update cached
1416     // information.
1417     if (!isInvariantLoad) {
1418       for (NonLocalDepEntry &I : llvm::reverse(*Cache)) {
1419         if (I.getBB() != BB)
1420           continue;
1421 
1422         assert((GotWorklistLimit || I.getResult().isNonLocal() ||
1423                 !DT.isReachableFromEntry(BB)) &&
1424                "Should only be here with transparent block");
1425 
1426         I.setResult(MemDepResult::getUnknown());
1427 
1428 
1429         break;
1430       }
1431     }
1432     (void)GotWorklistLimit;
1433     // Go ahead and report unknown dependence.
1434     Result.push_back(
1435         NonLocalDepResult(BB, MemDepResult::getUnknown(), Pointer.getAddr()));
1436   }
1437 
1438   // Okay, we're done now.  If we added new values to the cache, re-sort it.
1439   SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1440   LLVM_DEBUG(AssertSorted(*Cache));
1441   return true;
1442 }
1443 
1444 /// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it.
1445 void MemoryDependenceResults::RemoveCachedNonLocalPointerDependencies(
1446     ValueIsLoadPair P) {
1447 
1448   // Most of the time this cache is empty.
1449   if (!NonLocalDefsCache.empty()) {
1450     auto it = NonLocalDefsCache.find(P.getPointer());
1451     if (it != NonLocalDefsCache.end()) {
1452       RemoveFromReverseMap(ReverseNonLocalDefsCache,
1453                            it->second.getResult().getInst(), P.getPointer());
1454       NonLocalDefsCache.erase(it);
1455     }
1456 
1457     if (auto *I = dyn_cast<Instruction>(P.getPointer())) {
1458       auto toRemoveIt = ReverseNonLocalDefsCache.find(I);
1459       if (toRemoveIt != ReverseNonLocalDefsCache.end()) {
1460         for (const auto *entry : toRemoveIt->second)
1461           NonLocalDefsCache.erase(entry);
1462         ReverseNonLocalDefsCache.erase(toRemoveIt);
1463       }
1464     }
1465   }
1466 
1467   CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P);
1468   if (It == NonLocalPointerDeps.end())
1469     return;
1470 
1471   // Remove all of the entries in the BB->val map.  This involves removing
1472   // instructions from the reverse map.
1473   NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1474 
1475   for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1476     Instruction *Target = PInfo[i].getResult().getInst();
1477     if (!Target)
1478       continue; // Ignore non-local dep results.
1479     assert(Target->getParent() == PInfo[i].getBB());
1480 
1481     // Eliminating the dirty entry from 'Cache', so update the reverse info.
1482     RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1483   }
1484 
1485   // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1486   NonLocalPointerDeps.erase(It);
1487 }
1488 
1489 void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) {
1490   // If Ptr isn't really a pointer, just ignore it.
1491   if (!Ptr->getType()->isPointerTy())
1492     return;
1493   // Flush store info for the pointer.
1494   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1495   // Flush load info for the pointer.
1496   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1497   // Invalidate phis that use the pointer.
1498   PV.invalidateValue(Ptr);
1499 }
1500 
1501 void MemoryDependenceResults::invalidateCachedPredecessors() {
1502   PredCache.clear();
1503 }
1504 
1505 void MemoryDependenceResults::removeInstruction(Instruction *RemInst) {
1506   // Walk through the Non-local dependencies, removing this one as the value
1507   // for any cached queries.
1508   NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1509   if (NLDI != NonLocalDeps.end()) {
1510     NonLocalDepInfo &BlockMap = NLDI->second.first;
1511     for (auto &Entry : BlockMap)
1512       if (Instruction *Inst = Entry.getResult().getInst())
1513         RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1514     NonLocalDeps.erase(NLDI);
1515   }
1516 
1517   // If we have a cached local dependence query for this instruction, remove it.
1518   LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1519   if (LocalDepEntry != LocalDeps.end()) {
1520     // Remove us from DepInst's reverse set now that the local dep info is gone.
1521     if (Instruction *Inst = LocalDepEntry->second.getInst())
1522       RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1523 
1524     // Remove this local dependency info.
1525     LocalDeps.erase(LocalDepEntry);
1526   }
1527 
1528   // If we have any cached dependencies on this instruction, remove
1529   // them.
1530 
1531   // If the instruction is a pointer, remove it from both the load info and the
1532   // store info.
1533   if (RemInst->getType()->isPointerTy()) {
1534     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1535     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1536   } else {
1537     // Otherwise, if the instructions is in the map directly, it must be a load.
1538     // Remove it.
1539     auto toRemoveIt = NonLocalDefsCache.find(RemInst);
1540     if (toRemoveIt != NonLocalDefsCache.end()) {
1541       assert(isa<LoadInst>(RemInst) &&
1542              "only load instructions should be added directly");
1543       const Instruction *DepV = toRemoveIt->second.getResult().getInst();
1544       ReverseNonLocalDefsCache.find(DepV)->second.erase(RemInst);
1545       NonLocalDefsCache.erase(toRemoveIt);
1546     }
1547   }
1548 
1549   // Loop over all of the things that depend on the instruction we're removing.
1550   SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd;
1551 
1552   // If we find RemInst as a clobber or Def in any of the maps for other values,
1553   // we need to replace its entry with a dirty version of the instruction after
1554   // it.  If RemInst is a terminator, we use a null dirty value.
1555   //
1556   // Using a dirty version of the instruction after RemInst saves having to scan
1557   // the entire block to get to this point.
1558   MemDepResult NewDirtyVal;
1559   if (!RemInst->isTerminator())
1560     NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator());
1561 
1562   ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1563   if (ReverseDepIt != ReverseLocalDeps.end()) {
1564     // RemInst can't be the terminator if it has local stuff depending on it.
1565     assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() &&
1566            "Nothing can locally depend on a terminator");
1567 
1568     for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
1569       assert(InstDependingOnRemInst != RemInst &&
1570              "Already removed our local dep info");
1571 
1572       LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1573 
1574       // Make sure to remember that new things depend on NewDepInst.
1575       assert(NewDirtyVal.getInst() &&
1576              "There is no way something else can have "
1577              "a local dep on this if it is a terminator!");
1578       ReverseDepsToAdd.push_back(
1579           std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst));
1580     }
1581 
1582     ReverseLocalDeps.erase(ReverseDepIt);
1583 
1584     // Add new reverse deps after scanning the set, to avoid invalidating the
1585     // 'ReverseDeps' reference.
1586     while (!ReverseDepsToAdd.empty()) {
1587       ReverseLocalDeps[ReverseDepsToAdd.back().first].insert(
1588           ReverseDepsToAdd.back().second);
1589       ReverseDepsToAdd.pop_back();
1590     }
1591   }
1592 
1593   ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1594   if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1595     for (Instruction *I : ReverseDepIt->second) {
1596       assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
1597 
1598       PerInstNLInfo &INLD = NonLocalDeps[I];
1599       // The information is now dirty!
1600       INLD.second = true;
1601 
1602       for (auto &Entry : INLD.first) {
1603         if (Entry.getResult().getInst() != RemInst)
1604           continue;
1605 
1606         // Convert to a dirty entry for the subsequent instruction.
1607         Entry.setResult(NewDirtyVal);
1608 
1609         if (Instruction *NextI = NewDirtyVal.getInst())
1610           ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
1611       }
1612     }
1613 
1614     ReverseNonLocalDeps.erase(ReverseDepIt);
1615 
1616     // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1617     while (!ReverseDepsToAdd.empty()) {
1618       ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert(
1619           ReverseDepsToAdd.back().second);
1620       ReverseDepsToAdd.pop_back();
1621     }
1622   }
1623 
1624   // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1625   // value in the NonLocalPointerDeps info.
1626   ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1627       ReverseNonLocalPtrDeps.find(RemInst);
1628   if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1629     SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8>
1630         ReversePtrDepsToAdd;
1631 
1632     for (ValueIsLoadPair P : ReversePtrDepIt->second) {
1633       assert(P.getPointer() != RemInst &&
1634              "Already removed NonLocalPointerDeps info for RemInst");
1635 
1636       NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1637 
1638       // The cache is not valid for any specific block anymore.
1639       NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1640 
1641       // Update any entries for RemInst to use the instruction after it.
1642       for (auto &Entry : NLPDI) {
1643         if (Entry.getResult().getInst() != RemInst)
1644           continue;
1645 
1646         // Convert to a dirty entry for the subsequent instruction.
1647         Entry.setResult(NewDirtyVal);
1648 
1649         if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1650           ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1651       }
1652 
1653       // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1654       // subsequent value may invalidate the sortedness.
1655       llvm::sort(NLPDI);
1656     }
1657 
1658     ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1659 
1660     while (!ReversePtrDepsToAdd.empty()) {
1661       ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert(
1662           ReversePtrDepsToAdd.back().second);
1663       ReversePtrDepsToAdd.pop_back();
1664     }
1665   }
1666 
1667   // Invalidate phis that use the removed instruction.
1668   PV.invalidateValue(RemInst);
1669 
1670   assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1671   LLVM_DEBUG(verifyRemoved(RemInst));
1672 }
1673 
1674 /// Verify that the specified instruction does not occur in our internal data
1675 /// structures.
1676 ///
1677 /// This function verifies by asserting in debug builds.
1678 void MemoryDependenceResults::verifyRemoved(Instruction *D) const {
1679 #ifndef NDEBUG
1680   for (const auto &DepKV : LocalDeps) {
1681     assert(DepKV.first != D && "Inst occurs in data structures");
1682     assert(DepKV.second.getInst() != D && "Inst occurs in data structures");
1683   }
1684 
1685   for (const auto &DepKV : NonLocalPointerDeps) {
1686     assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key");
1687     for (const auto &Entry : DepKV.second.NonLocalDeps)
1688       assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value");
1689   }
1690 
1691   for (const auto &DepKV : NonLocalDeps) {
1692     assert(DepKV.first != D && "Inst occurs in data structures");
1693     const PerInstNLInfo &INLD = DepKV.second;
1694     for (const auto &Entry : INLD.first)
1695       assert(Entry.getResult().getInst() != D &&
1696              "Inst occurs in data structures");
1697   }
1698 
1699   for (const auto &DepKV : ReverseLocalDeps) {
1700     assert(DepKV.first != D && "Inst occurs in data structures");
1701     for (Instruction *Inst : DepKV.second)
1702       assert(Inst != D && "Inst occurs in data structures");
1703   }
1704 
1705   for (const auto &DepKV : ReverseNonLocalDeps) {
1706     assert(DepKV.first != D && "Inst occurs in data structures");
1707     for (Instruction *Inst : DepKV.second)
1708       assert(Inst != D && "Inst occurs in data structures");
1709   }
1710 
1711   for (const auto &DepKV : ReverseNonLocalPtrDeps) {
1712     assert(DepKV.first != D && "Inst occurs in rev NLPD map");
1713 
1714     for (ValueIsLoadPair P : DepKV.second)
1715       assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) &&
1716              "Inst occurs in ReverseNonLocalPtrDeps map");
1717   }
1718 #endif
1719 }
1720 
1721 AnalysisKey MemoryDependenceAnalysis::Key;
1722 
1723 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
1724     : DefaultBlockScanLimit(BlockScanLimit) {}
1725 
1726 MemoryDependenceResults
1727 MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
1728   auto &AA = AM.getResult<AAManager>(F);
1729   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1730   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1731   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1732   auto &PV = AM.getResult<PhiValuesAnalysis>(F);
1733   return MemoryDependenceResults(AA, AC, TLI, DT, PV, DefaultBlockScanLimit);
1734 }
1735 
1736 char MemoryDependenceWrapperPass::ID = 0;
1737 
1738 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep",
1739                       "Memory Dependence Analysis", false, true)
1740 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1741 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1742 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1743 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1744 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
1745 INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep",
1746                     "Memory Dependence Analysis", false, true)
1747 
1748 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) {
1749   initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry());
1750 }
1751 
1752 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default;
1753 
1754 void MemoryDependenceWrapperPass::releaseMemory() {
1755   MemDep.reset();
1756 }
1757 
1758 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1759   AU.setPreservesAll();
1760   AU.addRequired<AssumptionCacheTracker>();
1761   AU.addRequired<DominatorTreeWrapperPass>();
1762   AU.addRequired<PhiValuesWrapperPass>();
1763   AU.addRequiredTransitive<AAResultsWrapperPass>();
1764   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1765 }
1766 
1767 bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA,
1768                                FunctionAnalysisManager::Invalidator &Inv) {
1769   // Check whether our analysis is preserved.
1770   auto PAC = PA.getChecker<MemoryDependenceAnalysis>();
1771   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
1772     // If not, give up now.
1773     return true;
1774 
1775   // Check whether the analyses we depend on became invalid for any reason.
1776   if (Inv.invalidate<AAManager>(F, PA) ||
1777       Inv.invalidate<AssumptionAnalysis>(F, PA) ||
1778       Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
1779       Inv.invalidate<PhiValuesAnalysis>(F, PA))
1780     return true;
1781 
1782   // Otherwise this analysis result remains valid.
1783   return false;
1784 }
1785 
1786 unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const {
1787   return DefaultBlockScanLimit;
1788 }
1789 
1790 bool MemoryDependenceWrapperPass::runOnFunction(Function &F) {
1791   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1792   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1793   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1794   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1795   auto &PV = getAnalysis<PhiValuesWrapperPass>().getResult();
1796   MemDep.emplace(AA, AC, TLI, DT, PV, BlockScanLimit);
1797   return false;
1798 }
1799