1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements an analysis that determines, for a given memory 11 // operation, what preceding memory operations it depends on. It builds on 12 // alias analysis information, and tries to provide a lazy, caching interface to 13 // a common kind of alias information query. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/PHITransAddr.h" 26 #include "llvm/Analysis/OrderedBasicBlock.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/IR/CallSite.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/PredIteratorCache.h" 40 #include "llvm/Support/AtomicOrdering.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Compiler.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/MathExtras.h" 46 #include <algorithm> 47 #include <cassert> 48 #include <iterator> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "memdep" 53 54 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); 55 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); 56 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); 57 58 STATISTIC(NumCacheNonLocalPtr, 59 "Number of fully cached non-local ptr responses"); 60 STATISTIC(NumCacheDirtyNonLocalPtr, 61 "Number of cached, but dirty, non-local ptr responses"); 62 STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses"); 63 STATISTIC(NumCacheCompleteNonLocalPtr, 64 "Number of block queries that were completely cached"); 65 66 // Limit for the number of instructions to scan in a block. 67 68 static cl::opt<unsigned> BlockScanLimit( 69 "memdep-block-scan-limit", cl::Hidden, cl::init(100), 70 cl::desc("The number of instructions to scan in a block in memory " 71 "dependency analysis (default = 100)")); 72 73 static cl::opt<unsigned> 74 BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000), 75 cl::desc("The number of blocks to scan during memory " 76 "dependency analysis (default = 1000)")); 77 78 // Limit on the number of memdep results to process. 79 static const unsigned int NumResultsLimit = 100; 80 81 /// This is a helper function that removes Val from 'Inst's set in ReverseMap. 82 /// 83 /// If the set becomes empty, remove Inst's entry. 84 template <typename KeyTy> 85 static void 86 RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap, 87 Instruction *Inst, KeyTy Val) { 88 typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt = 89 ReverseMap.find(Inst); 90 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); 91 bool Found = InstIt->second.erase(Val); 92 assert(Found && "Invalid reverse map!"); 93 (void)Found; 94 if (InstIt->second.empty()) 95 ReverseMap.erase(InstIt); 96 } 97 98 /// If the given instruction references a specific memory location, fill in Loc 99 /// with the details, otherwise set Loc.Ptr to null. 100 /// 101 /// Returns a ModRefInfo value describing the general behavior of the 102 /// instruction. 103 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc, 104 const TargetLibraryInfo &TLI) { 105 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 106 if (LI->isUnordered()) { 107 Loc = MemoryLocation::get(LI); 108 return MRI_Ref; 109 } 110 if (LI->getOrdering() == AtomicOrdering::Monotonic) { 111 Loc = MemoryLocation::get(LI); 112 return MRI_ModRef; 113 } 114 Loc = MemoryLocation(); 115 return MRI_ModRef; 116 } 117 118 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 119 if (SI->isUnordered()) { 120 Loc = MemoryLocation::get(SI); 121 return MRI_Mod; 122 } 123 if (SI->getOrdering() == AtomicOrdering::Monotonic) { 124 Loc = MemoryLocation::get(SI); 125 return MRI_ModRef; 126 } 127 Loc = MemoryLocation(); 128 return MRI_ModRef; 129 } 130 131 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { 132 Loc = MemoryLocation::get(V); 133 return MRI_ModRef; 134 } 135 136 if (const CallInst *CI = isFreeCall(Inst, &TLI)) { 137 // calls to free() deallocate the entire structure 138 Loc = MemoryLocation(CI->getArgOperand(0)); 139 return MRI_Mod; 140 } 141 142 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 143 AAMDNodes AAInfo; 144 145 switch (II->getIntrinsicID()) { 146 case Intrinsic::lifetime_start: 147 case Intrinsic::lifetime_end: 148 case Intrinsic::invariant_start: 149 II->getAAMetadata(AAInfo); 150 Loc = MemoryLocation( 151 II->getArgOperand(1), 152 cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(), AAInfo); 153 // These intrinsics don't really modify the memory, but returning Mod 154 // will allow them to be handled conservatively. 155 return MRI_Mod; 156 case Intrinsic::invariant_end: 157 II->getAAMetadata(AAInfo); 158 Loc = MemoryLocation( 159 II->getArgOperand(2), 160 cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(), AAInfo); 161 // These intrinsics don't really modify the memory, but returning Mod 162 // will allow them to be handled conservatively. 163 return MRI_Mod; 164 default: 165 break; 166 } 167 } 168 169 // Otherwise, just do the coarse-grained thing that always works. 170 if (Inst->mayWriteToMemory()) 171 return MRI_ModRef; 172 if (Inst->mayReadFromMemory()) 173 return MRI_Ref; 174 return MRI_NoModRef; 175 } 176 177 /// Private helper for finding the local dependencies of a call site. 178 MemDepResult MemoryDependenceResults::getCallSiteDependencyFrom( 179 CallSite CS, bool isReadOnlyCall, BasicBlock::iterator ScanIt, 180 BasicBlock *BB) { 181 unsigned Limit = BlockScanLimit; 182 183 // Walk backwards through the block, looking for dependencies 184 while (ScanIt != BB->begin()) { 185 // Limit the amount of scanning we do so we don't end up with quadratic 186 // running time on extreme testcases. 187 --Limit; 188 if (!Limit) 189 return MemDepResult::getUnknown(); 190 191 Instruction *Inst = &*--ScanIt; 192 193 // If this inst is a memory op, get the pointer it accessed 194 MemoryLocation Loc; 195 ModRefInfo MR = GetLocation(Inst, Loc, TLI); 196 if (Loc.Ptr) { 197 // A simple instruction. 198 if (AA.getModRefInfo(CS, Loc) != MRI_NoModRef) 199 return MemDepResult::getClobber(Inst); 200 continue; 201 } 202 203 if (auto InstCS = CallSite(Inst)) { 204 // Debug intrinsics don't cause dependences. 205 if (isa<DbgInfoIntrinsic>(Inst)) 206 continue; 207 // If these two calls do not interfere, look past it. 208 switch (AA.getModRefInfo(CS, InstCS)) { 209 case MRI_NoModRef: 210 // If the two calls are the same, return InstCS as a Def, so that 211 // CS can be found redundant and eliminated. 212 if (isReadOnlyCall && !(MR & MRI_Mod) && 213 CS.getInstruction()->isIdenticalToWhenDefined(Inst)) 214 return MemDepResult::getDef(Inst); 215 216 // Otherwise if the two calls don't interact (e.g. InstCS is readnone) 217 // keep scanning. 218 continue; 219 default: 220 return MemDepResult::getClobber(Inst); 221 } 222 } 223 224 // If we could not obtain a pointer for the instruction and the instruction 225 // touches memory then assume that this is a dependency. 226 if (MR != MRI_NoModRef) 227 return MemDepResult::getClobber(Inst); 228 } 229 230 // No dependence found. If this is the entry block of the function, it is 231 // unknown, otherwise it is non-local. 232 if (BB != &BB->getParent()->getEntryBlock()) 233 return MemDepResult::getNonLocal(); 234 return MemDepResult::getNonFuncLocal(); 235 } 236 237 /// Return true if LI is a load that would fully overlap MemLoc if done as 238 /// a wider legal integer load. 239 /// 240 /// MemLocBase, MemLocOffset are lazily computed here the first time the 241 /// base/offs of memloc is needed. 242 static bool isLoadLoadClobberIfExtendedToFullWidth(const MemoryLocation &MemLoc, 243 const Value *&MemLocBase, 244 int64_t &MemLocOffs, 245 const LoadInst *LI) { 246 const DataLayout &DL = LI->getModule()->getDataLayout(); 247 248 // If we haven't already computed the base/offset of MemLoc, do so now. 249 if (!MemLocBase) 250 MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, DL); 251 252 unsigned Size = MemoryDependenceResults::getLoadLoadClobberFullWidthSize( 253 MemLocBase, MemLocOffs, MemLoc.Size, LI); 254 return Size != 0; 255 } 256 257 unsigned MemoryDependenceResults::getLoadLoadClobberFullWidthSize( 258 const Value *MemLocBase, int64_t MemLocOffs, unsigned MemLocSize, 259 const LoadInst *LI) { 260 // We can only extend simple integer loads. 261 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) 262 return 0; 263 264 // Load widening is hostile to ThreadSanitizer: it may cause false positives 265 // or make the reports more cryptic (access sizes are wrong). 266 if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread)) 267 return 0; 268 269 const DataLayout &DL = LI->getModule()->getDataLayout(); 270 271 // Get the base of this load. 272 int64_t LIOffs = 0; 273 const Value *LIBase = 274 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL); 275 276 // If the two pointers are not based on the same pointer, we can't tell that 277 // they are related. 278 if (LIBase != MemLocBase) 279 return 0; 280 281 // Okay, the two values are based on the same pointer, but returned as 282 // no-alias. This happens when we have things like two byte loads at "P+1" 283 // and "P+3". Check to see if increasing the size of the "LI" load up to its 284 // alignment (or the largest native integer type) will allow us to load all 285 // the bits required by MemLoc. 286 287 // If MemLoc is before LI, then no widening of LI will help us out. 288 if (MemLocOffs < LIOffs) 289 return 0; 290 291 // Get the alignment of the load in bytes. We assume that it is safe to load 292 // any legal integer up to this size without a problem. For example, if we're 293 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can 294 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it 295 // to i16. 296 unsigned LoadAlign = LI->getAlignment(); 297 298 int64_t MemLocEnd = MemLocOffs + MemLocSize; 299 300 // If no amount of rounding up will let MemLoc fit into LI, then bail out. 301 if (LIOffs + LoadAlign < MemLocEnd) 302 return 0; 303 304 // This is the size of the load to try. Start with the next larger power of 305 // two. 306 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits() / 8U; 307 NewLoadByteSize = NextPowerOf2(NewLoadByteSize); 308 309 while (true) { 310 // If this load size is bigger than our known alignment or would not fit 311 // into a native integer register, then we fail. 312 if (NewLoadByteSize > LoadAlign || 313 !DL.fitsInLegalInteger(NewLoadByteSize * 8)) 314 return 0; 315 316 if (LIOffs + NewLoadByteSize > MemLocEnd && 317 LI->getParent()->getParent()->hasFnAttribute( 318 Attribute::SanitizeAddress)) 319 // We will be reading past the location accessed by the original program. 320 // While this is safe in a regular build, Address Safety analysis tools 321 // may start reporting false warnings. So, don't do widening. 322 return 0; 323 324 // If a load of this width would include all of MemLoc, then we succeed. 325 if (LIOffs + NewLoadByteSize >= MemLocEnd) 326 return NewLoadByteSize; 327 328 NewLoadByteSize <<= 1; 329 } 330 } 331 332 static bool isVolatile(Instruction *Inst) { 333 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 334 return LI->isVolatile(); 335 else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) 336 return SI->isVolatile(); 337 else if (AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(Inst)) 338 return AI->isVolatile(); 339 return false; 340 } 341 342 MemDepResult MemoryDependenceResults::getPointerDependencyFrom( 343 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 344 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) { 345 346 if (QueryInst != nullptr) { 347 if (auto *LI = dyn_cast<LoadInst>(QueryInst)) { 348 MemDepResult invariantGroupDependency = 349 getInvariantGroupPointerDependency(LI, BB); 350 351 if (invariantGroupDependency.isDef()) 352 return invariantGroupDependency; 353 } 354 } 355 return getSimplePointerDependencyFrom(MemLoc, isLoad, ScanIt, BB, QueryInst, 356 Limit); 357 } 358 359 MemDepResult 360 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI, 361 BasicBlock *BB) { 362 Value *LoadOperand = LI->getPointerOperand(); 363 // It's is not safe to walk the use list of global value, because function 364 // passes aren't allowed to look outside their functions. 365 if (isa<GlobalValue>(LoadOperand)) 366 return MemDepResult::getUnknown(); 367 368 auto *InvariantGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group); 369 if (!InvariantGroupMD) 370 return MemDepResult::getUnknown(); 371 372 MemDepResult Result = MemDepResult::getUnknown(); 373 SmallSet<Value *, 14> Seen; 374 // Queue to process all pointers that are equivalent to load operand. 375 SmallVector<Value *, 8> LoadOperandsQueue; 376 LoadOperandsQueue.push_back(LoadOperand); 377 while (!LoadOperandsQueue.empty()) { 378 Value *Ptr = LoadOperandsQueue.pop_back_val(); 379 if (isa<GlobalValue>(Ptr)) 380 continue; 381 382 if (auto *BCI = dyn_cast<BitCastInst>(Ptr)) { 383 if (Seen.insert(BCI->getOperand(0)).second) { 384 LoadOperandsQueue.push_back(BCI->getOperand(0)); 385 } 386 } 387 388 for (Use &Us : Ptr->uses()) { 389 auto *U = dyn_cast<Instruction>(Us.getUser()); 390 if (!U || U == LI || !DT.dominates(U, LI)) 391 continue; 392 393 if (auto *BCI = dyn_cast<BitCastInst>(U)) { 394 if (Seen.insert(BCI).second) { 395 LoadOperandsQueue.push_back(BCI); 396 } 397 continue; 398 } 399 // If we hit load/store with the same invariant.group metadata (and the 400 // same pointer operand) we can assume that value pointed by pointer 401 // operand didn't change. 402 if ((isa<LoadInst>(U) || isa<StoreInst>(U)) && U->getParent() == BB && 403 U->getMetadata(LLVMContext::MD_invariant_group) == InvariantGroupMD) 404 return MemDepResult::getDef(U); 405 } 406 } 407 return Result; 408 } 409 410 MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom( 411 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 412 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) { 413 414 const Value *MemLocBase = nullptr; 415 int64_t MemLocOffset = 0; 416 bool isInvariantLoad = false; 417 418 if (!Limit) { 419 unsigned DefaultLimit = BlockScanLimit; 420 return getSimplePointerDependencyFrom(MemLoc, isLoad, ScanIt, BB, QueryInst, 421 &DefaultLimit); 422 } 423 424 // We must be careful with atomic accesses, as they may allow another thread 425 // to touch this location, clobbering it. We are conservative: if the 426 // QueryInst is not a simple (non-atomic) memory access, we automatically 427 // return getClobber. 428 // If it is simple, we know based on the results of 429 // "Compiler testing via a theory of sound optimisations in the C11/C++11 430 // memory model" in PLDI 2013, that a non-atomic location can only be 431 // clobbered between a pair of a release and an acquire action, with no 432 // access to the location in between. 433 // Here is an example for giving the general intuition behind this rule. 434 // In the following code: 435 // store x 0; 436 // release action; [1] 437 // acquire action; [4] 438 // %val = load x; 439 // It is unsafe to replace %val by 0 because another thread may be running: 440 // acquire action; [2] 441 // store x 42; 442 // release action; [3] 443 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val 444 // being 42. A key property of this program however is that if either 445 // 1 or 4 were missing, there would be a race between the store of 42 446 // either the store of 0 or the load (making the whole program racy). 447 // The paper mentioned above shows that the same property is respected 448 // by every program that can detect any optimization of that kind: either 449 // it is racy (undefined) or there is a release followed by an acquire 450 // between the pair of accesses under consideration. 451 452 // If the load is invariant, we "know" that it doesn't alias *any* write. We 453 // do want to respect mustalias results since defs are useful for value 454 // forwarding, but any mayalias write can be assumed to be noalias. 455 // Arguably, this logic should be pushed inside AliasAnalysis itself. 456 if (isLoad && QueryInst) { 457 LoadInst *LI = dyn_cast<LoadInst>(QueryInst); 458 if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr) 459 isInvariantLoad = true; 460 } 461 462 const DataLayout &DL = BB->getModule()->getDataLayout(); 463 464 // Create a numbered basic block to lazily compute and cache instruction 465 // positions inside a BB. This is used to provide fast queries for relative 466 // position between two instructions in a BB and can be used by 467 // AliasAnalysis::callCapturesBefore. 468 OrderedBasicBlock OBB(BB); 469 470 // Return "true" if and only if the instruction I is either a non-simple 471 // load or a non-simple store. 472 auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool { 473 if (auto *LI = dyn_cast<LoadInst>(I)) 474 return !LI->isSimple(); 475 if (auto *SI = dyn_cast<StoreInst>(I)) 476 return !SI->isSimple(); 477 return false; 478 }; 479 480 // Return "true" if I is not a load and not a store, but it does access 481 // memory. 482 auto isOtherMemAccess = [](Instruction *I) -> bool { 483 return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory(); 484 }; 485 486 // Walk backwards through the basic block, looking for dependencies. 487 while (ScanIt != BB->begin()) { 488 Instruction *Inst = &*--ScanIt; 489 490 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 491 // Debug intrinsics don't (and can't) cause dependencies. 492 if (isa<DbgInfoIntrinsic>(II)) 493 continue; 494 495 // Limit the amount of scanning we do so we don't end up with quadratic 496 // running time on extreme testcases. 497 --*Limit; 498 if (!*Limit) 499 return MemDepResult::getUnknown(); 500 501 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 502 // If we reach a lifetime begin or end marker, then the query ends here 503 // because the value is undefined. 504 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 505 // FIXME: This only considers queries directly on the invariant-tagged 506 // pointer, not on query pointers that are indexed off of them. It'd 507 // be nice to handle that at some point (the right approach is to use 508 // GetPointerBaseWithConstantOffset). 509 if (AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc)) 510 return MemDepResult::getDef(II); 511 continue; 512 } 513 } 514 515 // Values depend on loads if the pointers are must aliased. This means 516 // that a load depends on another must aliased load from the same value. 517 // One exception is atomic loads: a value can depend on an atomic load that 518 // it does not alias with when this atomic load indicates that another 519 // thread may be accessing the location. 520 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 521 522 // While volatile access cannot be eliminated, they do not have to clobber 523 // non-aliasing locations, as normal accesses, for example, can be safely 524 // reordered with volatile accesses. 525 if (LI->isVolatile()) { 526 if (!QueryInst) 527 // Original QueryInst *may* be volatile 528 return MemDepResult::getClobber(LI); 529 if (isVolatile(QueryInst)) 530 // Ordering required if QueryInst is itself volatile 531 return MemDepResult::getClobber(LI); 532 // Otherwise, volatile doesn't imply any special ordering 533 } 534 535 // Atomic loads have complications involved. 536 // A Monotonic (or higher) load is OK if the query inst is itself not 537 // atomic. 538 // FIXME: This is overly conservative. 539 if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) { 540 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 541 isOtherMemAccess(QueryInst)) 542 return MemDepResult::getClobber(LI); 543 if (LI->getOrdering() != AtomicOrdering::Monotonic) 544 return MemDepResult::getClobber(LI); 545 } 546 547 MemoryLocation LoadLoc = MemoryLocation::get(LI); 548 549 // If we found a pointer, check if it could be the same as our pointer. 550 AliasResult R = AA.alias(LoadLoc, MemLoc); 551 552 if (isLoad) { 553 if (R == NoAlias) { 554 // If this is an over-aligned integer load (for example, 555 // "load i8* %P, align 4") see if it would obviously overlap with the 556 // queried location if widened to a larger load (e.g. if the queried 557 // location is 1 byte at P+1). If so, return it as a load/load 558 // clobber result, allowing the client to decide to widen the load if 559 // it wants to. 560 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) { 561 if (LI->getAlignment() * 8 > ITy->getPrimitiveSizeInBits() && 562 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase, 563 MemLocOffset, LI)) 564 return MemDepResult::getClobber(Inst); 565 } 566 continue; 567 } 568 569 // Must aliased loads are defs of each other. 570 if (R == MustAlias) 571 return MemDepResult::getDef(Inst); 572 573 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads 574 // in terms of clobbering loads, but since it does this by looking 575 // at the clobbering load directly, it doesn't know about any 576 // phi translation that may have happened along the way. 577 578 // If we have a partial alias, then return this as a clobber for the 579 // client to handle. 580 if (R == PartialAlias) 581 return MemDepResult::getClobber(Inst); 582 #endif 583 584 // Random may-alias loads don't depend on each other without a 585 // dependence. 586 continue; 587 } 588 589 // Stores don't depend on other no-aliased accesses. 590 if (R == NoAlias) 591 continue; 592 593 // Stores don't alias loads from read-only memory. 594 if (AA.pointsToConstantMemory(LoadLoc)) 595 continue; 596 597 // Stores depend on may/must aliased loads. 598 return MemDepResult::getDef(Inst); 599 } 600 601 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 602 // Atomic stores have complications involved. 603 // A Monotonic store is OK if the query inst is itself not atomic. 604 // FIXME: This is overly conservative. 605 if (!SI->isUnordered() && SI->isAtomic()) { 606 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 607 isOtherMemAccess(QueryInst)) 608 return MemDepResult::getClobber(SI); 609 if (SI->getOrdering() != AtomicOrdering::Monotonic) 610 return MemDepResult::getClobber(SI); 611 } 612 613 // FIXME: this is overly conservative. 614 // While volatile access cannot be eliminated, they do not have to clobber 615 // non-aliasing locations, as normal accesses can for example be reordered 616 // with volatile accesses. 617 if (SI->isVolatile()) 618 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 619 isOtherMemAccess(QueryInst)) 620 return MemDepResult::getClobber(SI); 621 622 // If alias analysis can tell that this store is guaranteed to not modify 623 // the query pointer, ignore it. Use getModRefInfo to handle cases where 624 // the query pointer points to constant memory etc. 625 if (AA.getModRefInfo(SI, MemLoc) == MRI_NoModRef) 626 continue; 627 628 // Ok, this store might clobber the query pointer. Check to see if it is 629 // a must alias: in this case, we want to return this as a def. 630 MemoryLocation StoreLoc = MemoryLocation::get(SI); 631 632 // If we found a pointer, check if it could be the same as our pointer. 633 AliasResult R = AA.alias(StoreLoc, MemLoc); 634 635 if (R == NoAlias) 636 continue; 637 if (R == MustAlias) 638 return MemDepResult::getDef(Inst); 639 if (isInvariantLoad) 640 continue; 641 return MemDepResult::getClobber(Inst); 642 } 643 644 // If this is an allocation, and if we know that the accessed pointer is to 645 // the allocation, return Def. This means that there is no dependence and 646 // the access can be optimized based on that. For example, a load could 647 // turn into undef. Note that we can bypass the allocation itself when 648 // looking for a clobber in many cases; that's an alias property and is 649 // handled by BasicAA. 650 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) { 651 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL); 652 if (AccessPtr == Inst || AA.isMustAlias(Inst, AccessPtr)) 653 return MemDepResult::getDef(Inst); 654 } 655 656 if (isInvariantLoad) 657 continue; 658 659 // A release fence requires that all stores complete before it, but does 660 // not prevent the reordering of following loads or stores 'before' the 661 // fence. As a result, we look past it when finding a dependency for 662 // loads. DSE uses this to find preceeding stores to delete and thus we 663 // can't bypass the fence if the query instruction is a store. 664 if (FenceInst *FI = dyn_cast<FenceInst>(Inst)) 665 if (isLoad && FI->getOrdering() == AtomicOrdering::Release) 666 continue; 667 668 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. 669 ModRefInfo MR = AA.getModRefInfo(Inst, MemLoc); 670 // If necessary, perform additional analysis. 671 if (MR == MRI_ModRef) 672 MR = AA.callCapturesBefore(Inst, MemLoc, &DT, &OBB); 673 switch (MR) { 674 case MRI_NoModRef: 675 // If the call has no effect on the queried pointer, just ignore it. 676 continue; 677 case MRI_Mod: 678 return MemDepResult::getClobber(Inst); 679 case MRI_Ref: 680 // If the call is known to never store to the pointer, and if this is a 681 // load query, we can safely ignore it (scan past it). 682 if (isLoad) 683 continue; 684 default: 685 // Otherwise, there is a potential dependence. Return a clobber. 686 return MemDepResult::getClobber(Inst); 687 } 688 } 689 690 // No dependence found. If this is the entry block of the function, it is 691 // unknown, otherwise it is non-local. 692 if (BB != &BB->getParent()->getEntryBlock()) 693 return MemDepResult::getNonLocal(); 694 return MemDepResult::getNonFuncLocal(); 695 } 696 697 MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) { 698 Instruction *ScanPos = QueryInst; 699 700 // Check for a cached result 701 MemDepResult &LocalCache = LocalDeps[QueryInst]; 702 703 // If the cached entry is non-dirty, just return it. Note that this depends 704 // on MemDepResult's default constructing to 'dirty'. 705 if (!LocalCache.isDirty()) 706 return LocalCache; 707 708 // Otherwise, if we have a dirty entry, we know we can start the scan at that 709 // instruction, which may save us some work. 710 if (Instruction *Inst = LocalCache.getInst()) { 711 ScanPos = Inst; 712 713 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); 714 } 715 716 BasicBlock *QueryParent = QueryInst->getParent(); 717 718 // Do the scan. 719 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { 720 // No dependence found. If this is the entry block of the function, it is 721 // unknown, otherwise it is non-local. 722 if (QueryParent != &QueryParent->getParent()->getEntryBlock()) 723 LocalCache = MemDepResult::getNonLocal(); 724 else 725 LocalCache = MemDepResult::getNonFuncLocal(); 726 } else { 727 MemoryLocation MemLoc; 728 ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI); 729 if (MemLoc.Ptr) { 730 // If we can do a pointer scan, make it happen. 731 bool isLoad = !(MR & MRI_Mod); 732 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst)) 733 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start; 734 735 LocalCache = getPointerDependencyFrom( 736 MemLoc, isLoad, ScanPos->getIterator(), QueryParent, QueryInst); 737 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) { 738 CallSite QueryCS(QueryInst); 739 bool isReadOnly = AA.onlyReadsMemory(QueryCS); 740 LocalCache = getCallSiteDependencyFrom( 741 QueryCS, isReadOnly, ScanPos->getIterator(), QueryParent); 742 } else 743 // Non-memory instruction. 744 LocalCache = MemDepResult::getUnknown(); 745 } 746 747 // Remember the result! 748 if (Instruction *I = LocalCache.getInst()) 749 ReverseLocalDeps[I].insert(QueryInst); 750 751 return LocalCache; 752 } 753 754 #ifndef NDEBUG 755 /// This method is used when -debug is specified to verify that cache arrays 756 /// are properly kept sorted. 757 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache, 758 int Count = -1) { 759 if (Count == -1) 760 Count = Cache.size(); 761 assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) && 762 "Cache isn't sorted!"); 763 } 764 #endif 765 766 const MemoryDependenceResults::NonLocalDepInfo & 767 MemoryDependenceResults::getNonLocalCallDependency(CallSite QueryCS) { 768 assert(getDependency(QueryCS.getInstruction()).isNonLocal() && 769 "getNonLocalCallDependency should only be used on calls with " 770 "non-local deps!"); 771 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()]; 772 NonLocalDepInfo &Cache = CacheP.first; 773 774 // This is the set of blocks that need to be recomputed. In the cached case, 775 // this can happen due to instructions being deleted etc. In the uncached 776 // case, this starts out as the set of predecessors we care about. 777 SmallVector<BasicBlock *, 32> DirtyBlocks; 778 779 if (!Cache.empty()) { 780 // Okay, we have a cache entry. If we know it is not dirty, just return it 781 // with no computation. 782 if (!CacheP.second) { 783 ++NumCacheNonLocal; 784 return Cache; 785 } 786 787 // If we already have a partially computed set of results, scan them to 788 // determine what is dirty, seeding our initial DirtyBlocks worklist. 789 for (auto &Entry : Cache) 790 if (Entry.getResult().isDirty()) 791 DirtyBlocks.push_back(Entry.getBB()); 792 793 // Sort the cache so that we can do fast binary search lookups below. 794 std::sort(Cache.begin(), Cache.end()); 795 796 ++NumCacheDirtyNonLocal; 797 // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " 798 // << Cache.size() << " cached: " << *QueryInst; 799 } else { 800 // Seed DirtyBlocks with each of the preds of QueryInst's block. 801 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent(); 802 for (BasicBlock *Pred : PredCache.get(QueryBB)) 803 DirtyBlocks.push_back(Pred); 804 ++NumUncacheNonLocal; 805 } 806 807 // isReadonlyCall - If this is a read-only call, we can be more aggressive. 808 bool isReadonlyCall = AA.onlyReadsMemory(QueryCS); 809 810 SmallPtrSet<BasicBlock *, 32> Visited; 811 812 unsigned NumSortedEntries = Cache.size(); 813 DEBUG(AssertSorted(Cache)); 814 815 // Iterate while we still have blocks to update. 816 while (!DirtyBlocks.empty()) { 817 BasicBlock *DirtyBB = DirtyBlocks.back(); 818 DirtyBlocks.pop_back(); 819 820 // Already processed this block? 821 if (!Visited.insert(DirtyBB).second) 822 continue; 823 824 // Do a binary search to see if we already have an entry for this block in 825 // the cache set. If so, find it. 826 DEBUG(AssertSorted(Cache, NumSortedEntries)); 827 NonLocalDepInfo::iterator Entry = 828 std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries, 829 NonLocalDepEntry(DirtyBB)); 830 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB) 831 --Entry; 832 833 NonLocalDepEntry *ExistingResult = nullptr; 834 if (Entry != Cache.begin() + NumSortedEntries && 835 Entry->getBB() == DirtyBB) { 836 // If we already have an entry, and if it isn't already dirty, the block 837 // is done. 838 if (!Entry->getResult().isDirty()) 839 continue; 840 841 // Otherwise, remember this slot so we can update the value. 842 ExistingResult = &*Entry; 843 } 844 845 // If the dirty entry has a pointer, start scanning from it so we don't have 846 // to rescan the entire block. 847 BasicBlock::iterator ScanPos = DirtyBB->end(); 848 if (ExistingResult) { 849 if (Instruction *Inst = ExistingResult->getResult().getInst()) { 850 ScanPos = Inst->getIterator(); 851 // We're removing QueryInst's use of Inst. 852 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, 853 QueryCS.getInstruction()); 854 } 855 } 856 857 // Find out if this block has a local dependency for QueryInst. 858 MemDepResult Dep; 859 860 if (ScanPos != DirtyBB->begin()) { 861 Dep = 862 getCallSiteDependencyFrom(QueryCS, isReadonlyCall, ScanPos, DirtyBB); 863 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { 864 // No dependence found. If this is the entry block of the function, it is 865 // a clobber, otherwise it is unknown. 866 Dep = MemDepResult::getNonLocal(); 867 } else { 868 Dep = MemDepResult::getNonFuncLocal(); 869 } 870 871 // If we had a dirty entry for the block, update it. Otherwise, just add 872 // a new entry. 873 if (ExistingResult) 874 ExistingResult->setResult(Dep); 875 else 876 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); 877 878 // If the block has a dependency (i.e. it isn't completely transparent to 879 // the value), remember the association! 880 if (!Dep.isNonLocal()) { 881 // Keep the ReverseNonLocalDeps map up to date so we can efficiently 882 // update this when we remove instructions. 883 if (Instruction *Inst = Dep.getInst()) 884 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction()); 885 } else { 886 887 // If the block *is* completely transparent to the load, we need to check 888 // the predecessors of this block. Add them to our worklist. 889 for (BasicBlock *Pred : PredCache.get(DirtyBB)) 890 DirtyBlocks.push_back(Pred); 891 } 892 } 893 894 return Cache; 895 } 896 897 void MemoryDependenceResults::getNonLocalPointerDependency( 898 Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) { 899 const MemoryLocation Loc = MemoryLocation::get(QueryInst); 900 bool isLoad = isa<LoadInst>(QueryInst); 901 BasicBlock *FromBB = QueryInst->getParent(); 902 assert(FromBB); 903 904 assert(Loc.Ptr->getType()->isPointerTy() && 905 "Can't get pointer deps of a non-pointer!"); 906 Result.clear(); 907 908 // This routine does not expect to deal with volatile instructions. 909 // Doing so would require piping through the QueryInst all the way through. 910 // TODO: volatiles can't be elided, but they can be reordered with other 911 // non-volatile accesses. 912 913 // We currently give up on any instruction which is ordered, but we do handle 914 // atomic instructions which are unordered. 915 // TODO: Handle ordered instructions 916 auto isOrdered = [](Instruction *Inst) { 917 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 918 return !LI->isUnordered(); 919 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 920 return !SI->isUnordered(); 921 } 922 return false; 923 }; 924 if (isVolatile(QueryInst) || isOrdered(QueryInst)) { 925 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(), 926 const_cast<Value *>(Loc.Ptr))); 927 return; 928 } 929 const DataLayout &DL = FromBB->getModule()->getDataLayout(); 930 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC); 931 932 // This is the set of blocks we've inspected, and the pointer we consider in 933 // each block. Because of critical edges, we currently bail out if querying 934 // a block with multiple different pointers. This can happen during PHI 935 // translation. 936 DenseMap<BasicBlock *, Value *> Visited; 937 if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB, 938 Result, Visited, true)) 939 return; 940 Result.clear(); 941 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(), 942 const_cast<Value *>(Loc.Ptr))); 943 } 944 945 /// Compute the memdep value for BB with Pointer/PointeeSize using either 946 /// cached information in Cache or by doing a lookup (which may use dirty cache 947 /// info if available). 948 /// 949 /// If we do a lookup, add the result to the cache. 950 MemDepResult MemoryDependenceResults::GetNonLocalInfoForBlock( 951 Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad, 952 BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) { 953 954 // Do a binary search to see if we already have an entry for this block in 955 // the cache set. If so, find it. 956 NonLocalDepInfo::iterator Entry = std::upper_bound( 957 Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB)); 958 if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB) 959 --Entry; 960 961 NonLocalDepEntry *ExistingResult = nullptr; 962 if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB) 963 ExistingResult = &*Entry; 964 965 // If we have a cached entry, and it is non-dirty, use it as the value for 966 // this dependency. 967 if (ExistingResult && !ExistingResult->getResult().isDirty()) { 968 ++NumCacheNonLocalPtr; 969 return ExistingResult->getResult(); 970 } 971 972 // Otherwise, we have to scan for the value. If we have a dirty cache 973 // entry, start scanning from its position, otherwise we scan from the end 974 // of the block. 975 BasicBlock::iterator ScanPos = BB->end(); 976 if (ExistingResult && ExistingResult->getResult().getInst()) { 977 assert(ExistingResult->getResult().getInst()->getParent() == BB && 978 "Instruction invalidated?"); 979 ++NumCacheDirtyNonLocalPtr; 980 ScanPos = ExistingResult->getResult().getInst()->getIterator(); 981 982 // Eliminating the dirty entry from 'Cache', so update the reverse info. 983 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 984 RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey); 985 } else { 986 ++NumUncacheNonLocalPtr; 987 } 988 989 // Scan the block for the dependency. 990 MemDepResult Dep = 991 getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, QueryInst); 992 993 // If we had a dirty entry for the block, update it. Otherwise, just add 994 // a new entry. 995 if (ExistingResult) 996 ExistingResult->setResult(Dep); 997 else 998 Cache->push_back(NonLocalDepEntry(BB, Dep)); 999 1000 // If the block has a dependency (i.e. it isn't completely transparent to 1001 // the value), remember the reverse association because we just added it 1002 // to Cache! 1003 if (!Dep.isDef() && !Dep.isClobber()) 1004 return Dep; 1005 1006 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently 1007 // update MemDep when we remove instructions. 1008 Instruction *Inst = Dep.getInst(); 1009 assert(Inst && "Didn't depend on anything?"); 1010 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 1011 ReverseNonLocalPtrDeps[Inst].insert(CacheKey); 1012 return Dep; 1013 } 1014 1015 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the 1016 /// array that are already properly ordered. 1017 /// 1018 /// This is optimized for the case when only a few entries are added. 1019 static void 1020 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache, 1021 unsigned NumSortedEntries) { 1022 switch (Cache.size() - NumSortedEntries) { 1023 case 0: 1024 // done, no new entries. 1025 break; 1026 case 2: { 1027 // Two new entries, insert the last one into place. 1028 NonLocalDepEntry Val = Cache.back(); 1029 Cache.pop_back(); 1030 MemoryDependenceResults::NonLocalDepInfo::iterator Entry = 1031 std::upper_bound(Cache.begin(), Cache.end() - 1, Val); 1032 Cache.insert(Entry, Val); 1033 LLVM_FALLTHROUGH; 1034 } 1035 case 1: 1036 // One new entry, Just insert the new value at the appropriate position. 1037 if (Cache.size() != 1) { 1038 NonLocalDepEntry Val = Cache.back(); 1039 Cache.pop_back(); 1040 MemoryDependenceResults::NonLocalDepInfo::iterator Entry = 1041 std::upper_bound(Cache.begin(), Cache.end(), Val); 1042 Cache.insert(Entry, Val); 1043 } 1044 break; 1045 default: 1046 // Added many values, do a full scale sort. 1047 std::sort(Cache.begin(), Cache.end()); 1048 break; 1049 } 1050 } 1051 1052 /// Perform a dependency query based on pointer/pointeesize starting at the end 1053 /// of StartBB. 1054 /// 1055 /// Add any clobber/def results to the results vector and keep track of which 1056 /// blocks are visited in 'Visited'. 1057 /// 1058 /// This has special behavior for the first block queries (when SkipFirstBlock 1059 /// is true). In this special case, it ignores the contents of the specified 1060 /// block and starts returning dependence info for its predecessors. 1061 /// 1062 /// This function returns true on success, or false to indicate that it could 1063 /// not compute dependence information for some reason. This should be treated 1064 /// as a clobber dependence on the first instruction in the predecessor block. 1065 bool MemoryDependenceResults::getNonLocalPointerDepFromBB( 1066 Instruction *QueryInst, const PHITransAddr &Pointer, 1067 const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB, 1068 SmallVectorImpl<NonLocalDepResult> &Result, 1069 DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock) { 1070 // Look up the cached info for Pointer. 1071 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); 1072 1073 // Set up a temporary NLPI value. If the map doesn't yet have an entry for 1074 // CacheKey, this value will be inserted as the associated value. Otherwise, 1075 // it'll be ignored, and we'll have to check to see if the cached size and 1076 // aa tags are consistent with the current query. 1077 NonLocalPointerInfo InitialNLPI; 1078 InitialNLPI.Size = Loc.Size; 1079 InitialNLPI.AATags = Loc.AATags; 1080 1081 // Get the NLPI for CacheKey, inserting one into the map if it doesn't 1082 // already have one. 1083 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = 1084 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); 1085 NonLocalPointerInfo *CacheInfo = &Pair.first->second; 1086 1087 // If we already have a cache entry for this CacheKey, we may need to do some 1088 // work to reconcile the cache entry and the current query. 1089 if (!Pair.second) { 1090 if (CacheInfo->Size < Loc.Size) { 1091 // The query's Size is greater than the cached one. Throw out the 1092 // cached data and proceed with the query at the greater size. 1093 CacheInfo->Pair = BBSkipFirstBlockPair(); 1094 CacheInfo->Size = Loc.Size; 1095 for (auto &Entry : CacheInfo->NonLocalDeps) 1096 if (Instruction *Inst = Entry.getResult().getInst()) 1097 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1098 CacheInfo->NonLocalDeps.clear(); 1099 } else if (CacheInfo->Size > Loc.Size) { 1100 // This query's Size is less than the cached one. Conservatively restart 1101 // the query using the greater size. 1102 return getNonLocalPointerDepFromBB( 1103 QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad, 1104 StartBB, Result, Visited, SkipFirstBlock); 1105 } 1106 1107 // If the query's AATags are inconsistent with the cached one, 1108 // conservatively throw out the cached data and restart the query with 1109 // no tag if needed. 1110 if (CacheInfo->AATags != Loc.AATags) { 1111 if (CacheInfo->AATags) { 1112 CacheInfo->Pair = BBSkipFirstBlockPair(); 1113 CacheInfo->AATags = AAMDNodes(); 1114 for (auto &Entry : CacheInfo->NonLocalDeps) 1115 if (Instruction *Inst = Entry.getResult().getInst()) 1116 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1117 CacheInfo->NonLocalDeps.clear(); 1118 } 1119 if (Loc.AATags) 1120 return getNonLocalPointerDepFromBB( 1121 QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result, 1122 Visited, SkipFirstBlock); 1123 } 1124 } 1125 1126 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; 1127 1128 // If we have valid cached information for exactly the block we are 1129 // investigating, just return it with no recomputation. 1130 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { 1131 // We have a fully cached result for this query then we can just return the 1132 // cached results and populate the visited set. However, we have to verify 1133 // that we don't already have conflicting results for these blocks. Check 1134 // to ensure that if a block in the results set is in the visited set that 1135 // it was for the same pointer query. 1136 if (!Visited.empty()) { 1137 for (auto &Entry : *Cache) { 1138 DenseMap<BasicBlock *, Value *>::iterator VI = 1139 Visited.find(Entry.getBB()); 1140 if (VI == Visited.end() || VI->second == Pointer.getAddr()) 1141 continue; 1142 1143 // We have a pointer mismatch in a block. Just return false, saying 1144 // that something was clobbered in this result. We could also do a 1145 // non-fully cached query, but there is little point in doing this. 1146 return false; 1147 } 1148 } 1149 1150 Value *Addr = Pointer.getAddr(); 1151 for (auto &Entry : *Cache) { 1152 Visited.insert(std::make_pair(Entry.getBB(), Addr)); 1153 if (Entry.getResult().isNonLocal()) { 1154 continue; 1155 } 1156 1157 if (DT.isReachableFromEntry(Entry.getBB())) { 1158 Result.push_back( 1159 NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr)); 1160 } 1161 } 1162 ++NumCacheCompleteNonLocalPtr; 1163 return true; 1164 } 1165 1166 // Otherwise, either this is a new block, a block with an invalid cache 1167 // pointer or one that we're about to invalidate by putting more info into it 1168 // than its valid cache info. If empty, the result will be valid cache info, 1169 // otherwise it isn't. 1170 if (Cache->empty()) 1171 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); 1172 else 1173 CacheInfo->Pair = BBSkipFirstBlockPair(); 1174 1175 SmallVector<BasicBlock *, 32> Worklist; 1176 Worklist.push_back(StartBB); 1177 1178 // PredList used inside loop. 1179 SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList; 1180 1181 // Keep track of the entries that we know are sorted. Previously cached 1182 // entries will all be sorted. The entries we add we only sort on demand (we 1183 // don't insert every element into its sorted position). We know that we 1184 // won't get any reuse from currently inserted values, because we don't 1185 // revisit blocks after we insert info for them. 1186 unsigned NumSortedEntries = Cache->size(); 1187 unsigned WorklistEntries = BlockNumberLimit; 1188 bool GotWorklistLimit = false; 1189 DEBUG(AssertSorted(*Cache)); 1190 1191 while (!Worklist.empty()) { 1192 BasicBlock *BB = Worklist.pop_back_val(); 1193 1194 // If we do process a large number of blocks it becomes very expensive and 1195 // likely it isn't worth worrying about 1196 if (Result.size() > NumResultsLimit) { 1197 Worklist.clear(); 1198 // Sort it now (if needed) so that recursive invocations of 1199 // getNonLocalPointerDepFromBB and other routines that could reuse the 1200 // cache value will only see properly sorted cache arrays. 1201 if (Cache && NumSortedEntries != Cache->size()) { 1202 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1203 } 1204 // Since we bail out, the "Cache" set won't contain all of the 1205 // results for the query. This is ok (we can still use it to accelerate 1206 // specific block queries) but we can't do the fastpath "return all 1207 // results from the set". Clear out the indicator for this. 1208 CacheInfo->Pair = BBSkipFirstBlockPair(); 1209 return false; 1210 } 1211 1212 // Skip the first block if we have it. 1213 if (!SkipFirstBlock) { 1214 // Analyze the dependency of *Pointer in FromBB. See if we already have 1215 // been here. 1216 assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); 1217 1218 // Get the dependency info for Pointer in BB. If we have cached 1219 // information, we will use it, otherwise we compute it. 1220 DEBUG(AssertSorted(*Cache, NumSortedEntries)); 1221 MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, Loc, isLoad, BB, 1222 Cache, NumSortedEntries); 1223 1224 // If we got a Def or Clobber, add this to the list of results. 1225 if (!Dep.isNonLocal()) { 1226 if (DT.isReachableFromEntry(BB)) { 1227 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); 1228 continue; 1229 } 1230 } 1231 } 1232 1233 // If 'Pointer' is an instruction defined in this block, then we need to do 1234 // phi translation to change it into a value live in the predecessor block. 1235 // If not, we just add the predecessors to the worklist and scan them with 1236 // the same Pointer. 1237 if (!Pointer.NeedsPHITranslationFromBlock(BB)) { 1238 SkipFirstBlock = false; 1239 SmallVector<BasicBlock *, 16> NewBlocks; 1240 for (BasicBlock *Pred : PredCache.get(BB)) { 1241 // Verify that we haven't looked at this block yet. 1242 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = 1243 Visited.insert(std::make_pair(Pred, Pointer.getAddr())); 1244 if (InsertRes.second) { 1245 // First time we've looked at *PI. 1246 NewBlocks.push_back(Pred); 1247 continue; 1248 } 1249 1250 // If we have seen this block before, but it was with a different 1251 // pointer then we have a phi translation failure and we have to treat 1252 // this as a clobber. 1253 if (InsertRes.first->second != Pointer.getAddr()) { 1254 // Make sure to clean up the Visited map before continuing on to 1255 // PredTranslationFailure. 1256 for (unsigned i = 0; i < NewBlocks.size(); i++) 1257 Visited.erase(NewBlocks[i]); 1258 goto PredTranslationFailure; 1259 } 1260 } 1261 if (NewBlocks.size() > WorklistEntries) { 1262 // Make sure to clean up the Visited map before continuing on to 1263 // PredTranslationFailure. 1264 for (unsigned i = 0; i < NewBlocks.size(); i++) 1265 Visited.erase(NewBlocks[i]); 1266 GotWorklistLimit = true; 1267 goto PredTranslationFailure; 1268 } 1269 WorklistEntries -= NewBlocks.size(); 1270 Worklist.append(NewBlocks.begin(), NewBlocks.end()); 1271 continue; 1272 } 1273 1274 // We do need to do phi translation, if we know ahead of time we can't phi 1275 // translate this value, don't even try. 1276 if (!Pointer.IsPotentiallyPHITranslatable()) 1277 goto PredTranslationFailure; 1278 1279 // We may have added values to the cache list before this PHI translation. 1280 // If so, we haven't done anything to ensure that the cache remains sorted. 1281 // Sort it now (if needed) so that recursive invocations of 1282 // getNonLocalPointerDepFromBB and other routines that could reuse the cache 1283 // value will only see properly sorted cache arrays. 1284 if (Cache && NumSortedEntries != Cache->size()) { 1285 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1286 NumSortedEntries = Cache->size(); 1287 } 1288 Cache = nullptr; 1289 1290 PredList.clear(); 1291 for (BasicBlock *Pred : PredCache.get(BB)) { 1292 PredList.push_back(std::make_pair(Pred, Pointer)); 1293 1294 // Get the PHI translated pointer in this predecessor. This can fail if 1295 // not translatable, in which case the getAddr() returns null. 1296 PHITransAddr &PredPointer = PredList.back().second; 1297 PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false); 1298 Value *PredPtrVal = PredPointer.getAddr(); 1299 1300 // Check to see if we have already visited this pred block with another 1301 // pointer. If so, we can't do this lookup. This failure can occur 1302 // with PHI translation when a critical edge exists and the PHI node in 1303 // the successor translates to a pointer value different than the 1304 // pointer the block was first analyzed with. 1305 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = 1306 Visited.insert(std::make_pair(Pred, PredPtrVal)); 1307 1308 if (!InsertRes.second) { 1309 // We found the pred; take it off the list of preds to visit. 1310 PredList.pop_back(); 1311 1312 // If the predecessor was visited with PredPtr, then we already did 1313 // the analysis and can ignore it. 1314 if (InsertRes.first->second == PredPtrVal) 1315 continue; 1316 1317 // Otherwise, the block was previously analyzed with a different 1318 // pointer. We can't represent the result of this case, so we just 1319 // treat this as a phi translation failure. 1320 1321 // Make sure to clean up the Visited map before continuing on to 1322 // PredTranslationFailure. 1323 for (unsigned i = 0, n = PredList.size(); i < n; ++i) 1324 Visited.erase(PredList[i].first); 1325 1326 goto PredTranslationFailure; 1327 } 1328 } 1329 1330 // Actually process results here; this need to be a separate loop to avoid 1331 // calling getNonLocalPointerDepFromBB for blocks we don't want to return 1332 // any results for. (getNonLocalPointerDepFromBB will modify our 1333 // datastructures in ways the code after the PredTranslationFailure label 1334 // doesn't expect.) 1335 for (unsigned i = 0, n = PredList.size(); i < n; ++i) { 1336 BasicBlock *Pred = PredList[i].first; 1337 PHITransAddr &PredPointer = PredList[i].second; 1338 Value *PredPtrVal = PredPointer.getAddr(); 1339 1340 bool CanTranslate = true; 1341 // If PHI translation was unable to find an available pointer in this 1342 // predecessor, then we have to assume that the pointer is clobbered in 1343 // that predecessor. We can still do PRE of the load, which would insert 1344 // a computation of the pointer in this predecessor. 1345 if (!PredPtrVal) 1346 CanTranslate = false; 1347 1348 // FIXME: it is entirely possible that PHI translating will end up with 1349 // the same value. Consider PHI translating something like: 1350 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* 1351 // to recurse here, pedantically speaking. 1352 1353 // If getNonLocalPointerDepFromBB fails here, that means the cached 1354 // result conflicted with the Visited list; we have to conservatively 1355 // assume it is unknown, but this also does not block PRE of the load. 1356 if (!CanTranslate || 1357 !getNonLocalPointerDepFromBB(QueryInst, PredPointer, 1358 Loc.getWithNewPtr(PredPtrVal), isLoad, 1359 Pred, Result, Visited)) { 1360 // Add the entry to the Result list. 1361 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal); 1362 Result.push_back(Entry); 1363 1364 // Since we had a phi translation failure, the cache for CacheKey won't 1365 // include all of the entries that we need to immediately satisfy future 1366 // queries. Mark this in NonLocalPointerDeps by setting the 1367 // BBSkipFirstBlockPair pointer to null. This requires reuse of the 1368 // cached value to do more work but not miss the phi trans failure. 1369 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; 1370 NLPI.Pair = BBSkipFirstBlockPair(); 1371 continue; 1372 } 1373 } 1374 1375 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. 1376 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1377 Cache = &CacheInfo->NonLocalDeps; 1378 NumSortedEntries = Cache->size(); 1379 1380 // Since we did phi translation, the "Cache" set won't contain all of the 1381 // results for the query. This is ok (we can still use it to accelerate 1382 // specific block queries) but we can't do the fastpath "return all 1383 // results from the set" Clear out the indicator for this. 1384 CacheInfo->Pair = BBSkipFirstBlockPair(); 1385 SkipFirstBlock = false; 1386 continue; 1387 1388 PredTranslationFailure: 1389 // The following code is "failure"; we can't produce a sane translation 1390 // for the given block. It assumes that we haven't modified any of 1391 // our datastructures while processing the current block. 1392 1393 if (!Cache) { 1394 // Refresh the CacheInfo/Cache pointer if it got invalidated. 1395 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1396 Cache = &CacheInfo->NonLocalDeps; 1397 NumSortedEntries = Cache->size(); 1398 } 1399 1400 // Since we failed phi translation, the "Cache" set won't contain all of the 1401 // results for the query. This is ok (we can still use it to accelerate 1402 // specific block queries) but we can't do the fastpath "return all 1403 // results from the set". Clear out the indicator for this. 1404 CacheInfo->Pair = BBSkipFirstBlockPair(); 1405 1406 // If *nothing* works, mark the pointer as unknown. 1407 // 1408 // If this is the magic first block, return this as a clobber of the whole 1409 // incoming value. Since we can't phi translate to one of the predecessors, 1410 // we have to bail out. 1411 if (SkipFirstBlock) 1412 return false; 1413 1414 bool foundBlock = false; 1415 for (NonLocalDepEntry &I : llvm::reverse(*Cache)) { 1416 if (I.getBB() != BB) 1417 continue; 1418 1419 assert((GotWorklistLimit || I.getResult().isNonLocal() || 1420 !DT.isReachableFromEntry(BB)) && 1421 "Should only be here with transparent block"); 1422 foundBlock = true; 1423 I.setResult(MemDepResult::getUnknown()); 1424 Result.push_back( 1425 NonLocalDepResult(I.getBB(), I.getResult(), Pointer.getAddr())); 1426 break; 1427 } 1428 (void)foundBlock; (void)GotWorklistLimit; 1429 assert((foundBlock || GotWorklistLimit) && "Current block not in cache?"); 1430 } 1431 1432 // Okay, we're done now. If we added new values to the cache, re-sort it. 1433 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1434 DEBUG(AssertSorted(*Cache)); 1435 return true; 1436 } 1437 1438 /// If P exists in CachedNonLocalPointerInfo, remove it. 1439 void MemoryDependenceResults::RemoveCachedNonLocalPointerDependencies( 1440 ValueIsLoadPair P) { 1441 CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P); 1442 if (It == NonLocalPointerDeps.end()) 1443 return; 1444 1445 // Remove all of the entries in the BB->val map. This involves removing 1446 // instructions from the reverse map. 1447 NonLocalDepInfo &PInfo = It->second.NonLocalDeps; 1448 1449 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { 1450 Instruction *Target = PInfo[i].getResult().getInst(); 1451 if (!Target) 1452 continue; // Ignore non-local dep results. 1453 assert(Target->getParent() == PInfo[i].getBB()); 1454 1455 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1456 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); 1457 } 1458 1459 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). 1460 NonLocalPointerDeps.erase(It); 1461 } 1462 1463 void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) { 1464 // If Ptr isn't really a pointer, just ignore it. 1465 if (!Ptr->getType()->isPointerTy()) 1466 return; 1467 // Flush store info for the pointer. 1468 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); 1469 // Flush load info for the pointer. 1470 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); 1471 } 1472 1473 void MemoryDependenceResults::invalidateCachedPredecessors() { 1474 PredCache.clear(); 1475 } 1476 1477 void MemoryDependenceResults::removeInstruction(Instruction *RemInst) { 1478 // Walk through the Non-local dependencies, removing this one as the value 1479 // for any cached queries. 1480 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); 1481 if (NLDI != NonLocalDeps.end()) { 1482 NonLocalDepInfo &BlockMap = NLDI->second.first; 1483 for (auto &Entry : BlockMap) 1484 if (Instruction *Inst = Entry.getResult().getInst()) 1485 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); 1486 NonLocalDeps.erase(NLDI); 1487 } 1488 1489 // If we have a cached local dependence query for this instruction, remove it. 1490 // 1491 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); 1492 if (LocalDepEntry != LocalDeps.end()) { 1493 // Remove us from DepInst's reverse set now that the local dep info is gone. 1494 if (Instruction *Inst = LocalDepEntry->second.getInst()) 1495 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); 1496 1497 // Remove this local dependency info. 1498 LocalDeps.erase(LocalDepEntry); 1499 } 1500 1501 // If we have any cached pointer dependencies on this instruction, remove 1502 // them. If the instruction has non-pointer type, then it can't be a pointer 1503 // base. 1504 1505 // Remove it from both the load info and the store info. The instruction 1506 // can't be in either of these maps if it is non-pointer. 1507 if (RemInst->getType()->isPointerTy()) { 1508 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); 1509 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); 1510 } 1511 1512 // Loop over all of the things that depend on the instruction we're removing. 1513 // 1514 SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd; 1515 1516 // If we find RemInst as a clobber or Def in any of the maps for other values, 1517 // we need to replace its entry with a dirty version of the instruction after 1518 // it. If RemInst is a terminator, we use a null dirty value. 1519 // 1520 // Using a dirty version of the instruction after RemInst saves having to scan 1521 // the entire block to get to this point. 1522 MemDepResult NewDirtyVal; 1523 if (!RemInst->isTerminator()) 1524 NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator()); 1525 1526 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); 1527 if (ReverseDepIt != ReverseLocalDeps.end()) { 1528 // RemInst can't be the terminator if it has local stuff depending on it. 1529 assert(!ReverseDepIt->second.empty() && !isa<TerminatorInst>(RemInst) && 1530 "Nothing can locally depend on a terminator"); 1531 1532 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) { 1533 assert(InstDependingOnRemInst != RemInst && 1534 "Already removed our local dep info"); 1535 1536 LocalDeps[InstDependingOnRemInst] = NewDirtyVal; 1537 1538 // Make sure to remember that new things depend on NewDepInst. 1539 assert(NewDirtyVal.getInst() && 1540 "There is no way something else can have " 1541 "a local dep on this if it is a terminator!"); 1542 ReverseDepsToAdd.push_back( 1543 std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst)); 1544 } 1545 1546 ReverseLocalDeps.erase(ReverseDepIt); 1547 1548 // Add new reverse deps after scanning the set, to avoid invalidating the 1549 // 'ReverseDeps' reference. 1550 while (!ReverseDepsToAdd.empty()) { 1551 ReverseLocalDeps[ReverseDepsToAdd.back().first].insert( 1552 ReverseDepsToAdd.back().second); 1553 ReverseDepsToAdd.pop_back(); 1554 } 1555 } 1556 1557 ReverseDepIt = ReverseNonLocalDeps.find(RemInst); 1558 if (ReverseDepIt != ReverseNonLocalDeps.end()) { 1559 for (Instruction *I : ReverseDepIt->second) { 1560 assert(I != RemInst && "Already removed NonLocalDep info for RemInst"); 1561 1562 PerInstNLInfo &INLD = NonLocalDeps[I]; 1563 // The information is now dirty! 1564 INLD.second = true; 1565 1566 for (auto &Entry : INLD.first) { 1567 if (Entry.getResult().getInst() != RemInst) 1568 continue; 1569 1570 // Convert to a dirty entry for the subsequent instruction. 1571 Entry.setResult(NewDirtyVal); 1572 1573 if (Instruction *NextI = NewDirtyVal.getInst()) 1574 ReverseDepsToAdd.push_back(std::make_pair(NextI, I)); 1575 } 1576 } 1577 1578 ReverseNonLocalDeps.erase(ReverseDepIt); 1579 1580 // Add new reverse deps after scanning the set, to avoid invalidating 'Set' 1581 while (!ReverseDepsToAdd.empty()) { 1582 ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert( 1583 ReverseDepsToAdd.back().second); 1584 ReverseDepsToAdd.pop_back(); 1585 } 1586 } 1587 1588 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a 1589 // value in the NonLocalPointerDeps info. 1590 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = 1591 ReverseNonLocalPtrDeps.find(RemInst); 1592 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { 1593 SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8> 1594 ReversePtrDepsToAdd; 1595 1596 for (ValueIsLoadPair P : ReversePtrDepIt->second) { 1597 assert(P.getPointer() != RemInst && 1598 "Already removed NonLocalPointerDeps info for RemInst"); 1599 1600 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; 1601 1602 // The cache is not valid for any specific block anymore. 1603 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); 1604 1605 // Update any entries for RemInst to use the instruction after it. 1606 for (auto &Entry : NLPDI) { 1607 if (Entry.getResult().getInst() != RemInst) 1608 continue; 1609 1610 // Convert to a dirty entry for the subsequent instruction. 1611 Entry.setResult(NewDirtyVal); 1612 1613 if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) 1614 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); 1615 } 1616 1617 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its 1618 // subsequent value may invalidate the sortedness. 1619 std::sort(NLPDI.begin(), NLPDI.end()); 1620 } 1621 1622 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); 1623 1624 while (!ReversePtrDepsToAdd.empty()) { 1625 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert( 1626 ReversePtrDepsToAdd.back().second); 1627 ReversePtrDepsToAdd.pop_back(); 1628 } 1629 } 1630 1631 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); 1632 DEBUG(verifyRemoved(RemInst)); 1633 } 1634 1635 /// Verify that the specified instruction does not occur in our internal data 1636 /// structures. 1637 /// 1638 /// This function verifies by asserting in debug builds. 1639 void MemoryDependenceResults::verifyRemoved(Instruction *D) const { 1640 #ifndef NDEBUG 1641 for (const auto &DepKV : LocalDeps) { 1642 assert(DepKV.first != D && "Inst occurs in data structures"); 1643 assert(DepKV.second.getInst() != D && "Inst occurs in data structures"); 1644 } 1645 1646 for (const auto &DepKV : NonLocalPointerDeps) { 1647 assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key"); 1648 for (const auto &Entry : DepKV.second.NonLocalDeps) 1649 assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value"); 1650 } 1651 1652 for (const auto &DepKV : NonLocalDeps) { 1653 assert(DepKV.first != D && "Inst occurs in data structures"); 1654 const PerInstNLInfo &INLD = DepKV.second; 1655 for (const auto &Entry : INLD.first) 1656 assert(Entry.getResult().getInst() != D && 1657 "Inst occurs in data structures"); 1658 } 1659 1660 for (const auto &DepKV : ReverseLocalDeps) { 1661 assert(DepKV.first != D && "Inst occurs in data structures"); 1662 for (Instruction *Inst : DepKV.second) 1663 assert(Inst != D && "Inst occurs in data structures"); 1664 } 1665 1666 for (const auto &DepKV : ReverseNonLocalDeps) { 1667 assert(DepKV.first != D && "Inst occurs in data structures"); 1668 for (Instruction *Inst : DepKV.second) 1669 assert(Inst != D && "Inst occurs in data structures"); 1670 } 1671 1672 for (const auto &DepKV : ReverseNonLocalPtrDeps) { 1673 assert(DepKV.first != D && "Inst occurs in rev NLPD map"); 1674 1675 for (ValueIsLoadPair P : DepKV.second) 1676 assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) && 1677 "Inst occurs in ReverseNonLocalPtrDeps map"); 1678 } 1679 #endif 1680 } 1681 1682 char MemoryDependenceAnalysis::PassID; 1683 1684 MemoryDependenceResults 1685 MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 1686 auto &AA = AM.getResult<AAManager>(F); 1687 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1688 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1689 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1690 return MemoryDependenceResults(AA, AC, TLI, DT); 1691 } 1692 1693 char MemoryDependenceWrapperPass::ID = 0; 1694 1695 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep", 1696 "Memory Dependence Analysis", false, true) 1697 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1698 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1699 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1700 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1701 INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep", 1702 "Memory Dependence Analysis", false, true) 1703 1704 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) { 1705 initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry()); 1706 } 1707 1708 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() {} 1709 1710 void MemoryDependenceWrapperPass::releaseMemory() { 1711 MemDep.reset(); 1712 } 1713 1714 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1715 AU.setPreservesAll(); 1716 AU.addRequired<AssumptionCacheTracker>(); 1717 AU.addRequired<DominatorTreeWrapperPass>(); 1718 AU.addRequiredTransitive<AAResultsWrapperPass>(); 1719 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 1720 } 1721 1722 unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const { 1723 return BlockScanLimit; 1724 } 1725 1726 bool MemoryDependenceWrapperPass::runOnFunction(Function &F) { 1727 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1728 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1729 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1730 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1731 MemDep.emplace(AA, AC, TLI, DT); 1732 return false; 1733 } 1734