1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an analysis that determines, for a given memory
10 // operation, what preceding memory operations it depends on.  It builds on
11 // alias analysis information, and tries to provide a lazy, caching interface to
12 // a common kind of alias information query.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/Analysis/PHITransAddr.h"
27 #include "llvm/Analysis/PhiValues.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/PredIteratorCache.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Use.h"
47 #include "llvm/IR/User.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/AtomicOrdering.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/MathExtras.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <iterator>
61 #include <utility>
62 
63 using namespace llvm;
64 
65 #define DEBUG_TYPE "memdep"
66 
67 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
68 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
69 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
70 
71 STATISTIC(NumCacheNonLocalPtr,
72           "Number of fully cached non-local ptr responses");
73 STATISTIC(NumCacheDirtyNonLocalPtr,
74           "Number of cached, but dirty, non-local ptr responses");
75 STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses");
76 STATISTIC(NumCacheCompleteNonLocalPtr,
77           "Number of block queries that were completely cached");
78 
79 // Limit for the number of instructions to scan in a block.
80 
81 static cl::opt<unsigned> BlockScanLimit(
82     "memdep-block-scan-limit", cl::Hidden, cl::init(100),
83     cl::desc("The number of instructions to scan in a block in memory "
84              "dependency analysis (default = 100)"));
85 
86 static cl::opt<unsigned>
87     BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000),
88                      cl::desc("The number of blocks to scan during memory "
89                               "dependency analysis (default = 1000)"));
90 
91 // Limit on the number of memdep results to process.
92 static const unsigned int NumResultsLimit = 100;
93 
94 /// This is a helper function that removes Val from 'Inst's set in ReverseMap.
95 ///
96 /// If the set becomes empty, remove Inst's entry.
97 template <typename KeyTy>
98 static void
99 RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap,
100                      Instruction *Inst, KeyTy Val) {
101   typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt =
102       ReverseMap.find(Inst);
103   assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
104   bool Found = InstIt->second.erase(Val);
105   assert(Found && "Invalid reverse map!");
106   (void)Found;
107   if (InstIt->second.empty())
108     ReverseMap.erase(InstIt);
109 }
110 
111 /// If the given instruction references a specific memory location, fill in Loc
112 /// with the details, otherwise set Loc.Ptr to null.
113 ///
114 /// Returns a ModRefInfo value describing the general behavior of the
115 /// instruction.
116 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc,
117                               const TargetLibraryInfo &TLI) {
118   if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
119     if (LI->isUnordered()) {
120       Loc = MemoryLocation::get(LI);
121       return ModRefInfo::Ref;
122     }
123     if (LI->getOrdering() == AtomicOrdering::Monotonic) {
124       Loc = MemoryLocation::get(LI);
125       return ModRefInfo::ModRef;
126     }
127     Loc = MemoryLocation();
128     return ModRefInfo::ModRef;
129   }
130 
131   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
132     if (SI->isUnordered()) {
133       Loc = MemoryLocation::get(SI);
134       return ModRefInfo::Mod;
135     }
136     if (SI->getOrdering() == AtomicOrdering::Monotonic) {
137       Loc = MemoryLocation::get(SI);
138       return ModRefInfo::ModRef;
139     }
140     Loc = MemoryLocation();
141     return ModRefInfo::ModRef;
142   }
143 
144   if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
145     Loc = MemoryLocation::get(V);
146     return ModRefInfo::ModRef;
147   }
148 
149   if (const CallInst *CI = isFreeCall(Inst, &TLI)) {
150     // calls to free() deallocate the entire structure
151     Loc = MemoryLocation::getAfter(CI->getArgOperand(0));
152     return ModRefInfo::Mod;
153   }
154 
155   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
156     switch (II->getIntrinsicID()) {
157     case Intrinsic::lifetime_start:
158     case Intrinsic::lifetime_end:
159     case Intrinsic::invariant_start:
160       Loc = MemoryLocation::getForArgument(II, 1, TLI);
161       // These intrinsics don't really modify the memory, but returning Mod
162       // will allow them to be handled conservatively.
163       return ModRefInfo::Mod;
164     case Intrinsic::invariant_end:
165       Loc = MemoryLocation::getForArgument(II, 2, TLI);
166       // These intrinsics don't really modify the memory, but returning Mod
167       // will allow them to be handled conservatively.
168       return ModRefInfo::Mod;
169     case Intrinsic::masked_load:
170       Loc = MemoryLocation::getForArgument(II, 0, TLI);
171       return ModRefInfo::Ref;
172     case Intrinsic::masked_store:
173       Loc = MemoryLocation::getForArgument(II, 1, TLI);
174       return ModRefInfo::Mod;
175     default:
176       break;
177     }
178   }
179 
180   // Otherwise, just do the coarse-grained thing that always works.
181   if (Inst->mayWriteToMemory())
182     return ModRefInfo::ModRef;
183   if (Inst->mayReadFromMemory())
184     return ModRefInfo::Ref;
185   return ModRefInfo::NoModRef;
186 }
187 
188 /// Private helper for finding the local dependencies of a call site.
189 MemDepResult MemoryDependenceResults::getCallDependencyFrom(
190     CallBase *Call, bool isReadOnlyCall, BasicBlock::iterator ScanIt,
191     BasicBlock *BB) {
192   unsigned Limit = getDefaultBlockScanLimit();
193 
194   // Walk backwards through the block, looking for dependencies.
195   while (ScanIt != BB->begin()) {
196     Instruction *Inst = &*--ScanIt;
197     // Debug intrinsics don't cause dependences and should not affect Limit
198     if (isa<DbgInfoIntrinsic>(Inst))
199       continue;
200 
201     // Limit the amount of scanning we do so we don't end up with quadratic
202     // running time on extreme testcases.
203     --Limit;
204     if (!Limit)
205       return MemDepResult::getUnknown();
206 
207     // If this inst is a memory op, get the pointer it accessed
208     MemoryLocation Loc;
209     ModRefInfo MR = GetLocation(Inst, Loc, TLI);
210     if (Loc.Ptr) {
211       // A simple instruction.
212       if (isModOrRefSet(AA.getModRefInfo(Call, Loc)))
213         return MemDepResult::getClobber(Inst);
214       continue;
215     }
216 
217     if (auto *CallB = dyn_cast<CallBase>(Inst)) {
218       // If these two calls do not interfere, look past it.
219       if (isNoModRef(AA.getModRefInfo(Call, CallB))) {
220         // If the two calls are the same, return Inst as a Def, so that
221         // Call can be found redundant and eliminated.
222         if (isReadOnlyCall && !isModSet(MR) &&
223             Call->isIdenticalToWhenDefined(CallB))
224           return MemDepResult::getDef(Inst);
225 
226         // Otherwise if the two calls don't interact (e.g. CallB is readnone)
227         // keep scanning.
228         continue;
229       } else
230         return MemDepResult::getClobber(Inst);
231     }
232 
233     // If we could not obtain a pointer for the instruction and the instruction
234     // touches memory then assume that this is a dependency.
235     if (isModOrRefSet(MR))
236       return MemDepResult::getClobber(Inst);
237   }
238 
239   // No dependence found.  If this is the entry block of the function, it is
240   // unknown, otherwise it is non-local.
241   if (BB != &BB->getParent()->getEntryBlock())
242     return MemDepResult::getNonLocal();
243   return MemDepResult::getNonFuncLocal();
244 }
245 
246 MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
247     const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
248     BasicBlock *BB, Instruction *QueryInst, unsigned *Limit,
249     BatchAAResults &BatchAA) {
250   MemDepResult InvariantGroupDependency = MemDepResult::getUnknown();
251   if (QueryInst != nullptr) {
252     if (auto *LI = dyn_cast<LoadInst>(QueryInst)) {
253       InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB);
254 
255       if (InvariantGroupDependency.isDef())
256         return InvariantGroupDependency;
257     }
258   }
259   MemDepResult SimpleDep = getSimplePointerDependencyFrom(
260       MemLoc, isLoad, ScanIt, BB, QueryInst, Limit, BatchAA);
261   if (SimpleDep.isDef())
262     return SimpleDep;
263   // Non-local invariant group dependency indicates there is non local Def
264   // (it only returns nonLocal if it finds nonLocal def), which is better than
265   // local clobber and everything else.
266   if (InvariantGroupDependency.isNonLocal())
267     return InvariantGroupDependency;
268 
269   assert(InvariantGroupDependency.isUnknown() &&
270          "InvariantGroupDependency should be only unknown at this point");
271   return SimpleDep;
272 }
273 
274 MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
275     const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
276     BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
277   BatchAAResults BatchAA(AA);
278   return getPointerDependencyFrom(MemLoc, isLoad, ScanIt, BB, QueryInst, Limit,
279                                   BatchAA);
280 }
281 
282 MemDepResult
283 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI,
284                                                             BasicBlock *BB) {
285 
286   if (!LI->hasMetadata(LLVMContext::MD_invariant_group))
287     return MemDepResult::getUnknown();
288 
289   // Take the ptr operand after all casts and geps 0. This way we can search
290   // cast graph down only.
291   Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts();
292 
293   // It's is not safe to walk the use list of global value, because function
294   // passes aren't allowed to look outside their functions.
295   // FIXME: this could be fixed by filtering instructions from outside
296   // of current function.
297   if (isa<GlobalValue>(LoadOperand))
298     return MemDepResult::getUnknown();
299 
300   // Queue to process all pointers that are equivalent to load operand.
301   SmallVector<const Value *, 8> LoadOperandsQueue;
302   LoadOperandsQueue.push_back(LoadOperand);
303 
304   Instruction *ClosestDependency = nullptr;
305   // Order of instructions in uses list is unpredictible. In order to always
306   // get the same result, we will look for the closest dominance.
307   auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) {
308     assert(Other && "Must call it with not null instruction");
309     if (Best == nullptr || DT.dominates(Best, Other))
310       return Other;
311     return Best;
312   };
313 
314   // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case
315   // we will see all the instructions. This should be fixed in MSSA.
316   while (!LoadOperandsQueue.empty()) {
317     const Value *Ptr = LoadOperandsQueue.pop_back_val();
318     assert(Ptr && !isa<GlobalValue>(Ptr) &&
319            "Null or GlobalValue should not be inserted");
320 
321     for (const Use &Us : Ptr->uses()) {
322       auto *U = dyn_cast<Instruction>(Us.getUser());
323       if (!U || U == LI || !DT.dominates(U, LI))
324         continue;
325 
326       // Bitcast or gep with zeros are using Ptr. Add to queue to check it's
327       // users.      U = bitcast Ptr
328       if (isa<BitCastInst>(U)) {
329         LoadOperandsQueue.push_back(U);
330         continue;
331       }
332       // Gep with zeros is equivalent to bitcast.
333       // FIXME: we are not sure if some bitcast should be canonicalized to gep 0
334       // or gep 0 to bitcast because of SROA, so there are 2 forms. When
335       // typeless pointers will be ready then both cases will be gone
336       // (and this BFS also won't be needed).
337       if (auto *GEP = dyn_cast<GetElementPtrInst>(U))
338         if (GEP->hasAllZeroIndices()) {
339           LoadOperandsQueue.push_back(U);
340           continue;
341         }
342 
343       // If we hit load/store with the same invariant.group metadata (and the
344       // same pointer operand) we can assume that value pointed by pointer
345       // operand didn't change.
346       if ((isa<LoadInst>(U) ||
347            (isa<StoreInst>(U) &&
348             cast<StoreInst>(U)->getPointerOperand() == Ptr)) &&
349           U->hasMetadata(LLVMContext::MD_invariant_group))
350         ClosestDependency = GetClosestDependency(ClosestDependency, U);
351     }
352   }
353 
354   if (!ClosestDependency)
355     return MemDepResult::getUnknown();
356   if (ClosestDependency->getParent() == BB)
357     return MemDepResult::getDef(ClosestDependency);
358   // Def(U) can't be returned here because it is non-local. If local
359   // dependency won't be found then return nonLocal counting that the
360   // user will call getNonLocalPointerDependency, which will return cached
361   // result.
362   NonLocalDefsCache.try_emplace(
363       LI, NonLocalDepResult(ClosestDependency->getParent(),
364                             MemDepResult::getDef(ClosestDependency), nullptr));
365   ReverseNonLocalDefsCache[ClosestDependency].insert(LI);
366   return MemDepResult::getNonLocal();
367 }
368 
369 MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom(
370     const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
371     BasicBlock *BB, Instruction *QueryInst, unsigned *Limit,
372     BatchAAResults &BatchAA) {
373   bool isInvariantLoad = false;
374 
375   unsigned DefaultLimit = getDefaultBlockScanLimit();
376   if (!Limit)
377     Limit = &DefaultLimit;
378 
379   // We must be careful with atomic accesses, as they may allow another thread
380   //   to touch this location, clobbering it. We are conservative: if the
381   //   QueryInst is not a simple (non-atomic) memory access, we automatically
382   //   return getClobber.
383   // If it is simple, we know based on the results of
384   // "Compiler testing via a theory of sound optimisations in the C11/C++11
385   //   memory model" in PLDI 2013, that a non-atomic location can only be
386   //   clobbered between a pair of a release and an acquire action, with no
387   //   access to the location in between.
388   // Here is an example for giving the general intuition behind this rule.
389   // In the following code:
390   //   store x 0;
391   //   release action; [1]
392   //   acquire action; [4]
393   //   %val = load x;
394   // It is unsafe to replace %val by 0 because another thread may be running:
395   //   acquire action; [2]
396   //   store x 42;
397   //   release action; [3]
398   // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
399   // being 42. A key property of this program however is that if either
400   // 1 or 4 were missing, there would be a race between the store of 42
401   // either the store of 0 or the load (making the whole program racy).
402   // The paper mentioned above shows that the same property is respected
403   // by every program that can detect any optimization of that kind: either
404   // it is racy (undefined) or there is a release followed by an acquire
405   // between the pair of accesses under consideration.
406 
407   // If the load is invariant, we "know" that it doesn't alias *any* write. We
408   // do want to respect mustalias results since defs are useful for value
409   // forwarding, but any mayalias write can be assumed to be noalias.
410   // Arguably, this logic should be pushed inside AliasAnalysis itself.
411   if (isLoad && QueryInst) {
412     LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
413     if (LI && LI->hasMetadata(LLVMContext::MD_invariant_load))
414       isInvariantLoad = true;
415   }
416 
417   // Return "true" if and only if the instruction I is either a non-simple
418   // load or a non-simple store.
419   auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool {
420     if (auto *LI = dyn_cast<LoadInst>(I))
421       return !LI->isSimple();
422     if (auto *SI = dyn_cast<StoreInst>(I))
423       return !SI->isSimple();
424     return false;
425   };
426 
427   // Return "true" if and only if the instruction I is either a non-unordered
428   // load or a non-unordered store.
429   auto isNonUnorderedLoadOrStore = [](Instruction *I) -> bool {
430     if (auto *LI = dyn_cast<LoadInst>(I))
431       return !LI->isUnordered();
432     if (auto *SI = dyn_cast<StoreInst>(I))
433       return !SI->isUnordered();
434     return false;
435   };
436 
437   // Return "true" if I is not a load and not a store, but it does access
438   // memory.
439   auto isOtherMemAccess = [](Instruction *I) -> bool {
440     return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory();
441   };
442 
443   // Walk backwards through the basic block, looking for dependencies.
444   while (ScanIt != BB->begin()) {
445     Instruction *Inst = &*--ScanIt;
446 
447     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
448       // Debug intrinsics don't (and can't) cause dependencies.
449       if (isa<DbgInfoIntrinsic>(II))
450         continue;
451 
452     // Limit the amount of scanning we do so we don't end up with quadratic
453     // running time on extreme testcases.
454     --*Limit;
455     if (!*Limit)
456       return MemDepResult::getUnknown();
457 
458     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
459       // If we reach a lifetime begin or end marker, then the query ends here
460       // because the value is undefined.
461       Intrinsic::ID ID = II->getIntrinsicID();
462       switch (ID) {
463       case Intrinsic::lifetime_start: {
464         // FIXME: This only considers queries directly on the invariant-tagged
465         // pointer, not on query pointers that are indexed off of them.  It'd
466         // be nice to handle that at some point (the right approach is to use
467         // GetPointerBaseWithConstantOffset).
468         MemoryLocation ArgLoc = MemoryLocation::getAfter(II->getArgOperand(1));
469         if (BatchAA.isMustAlias(ArgLoc, MemLoc))
470           return MemDepResult::getDef(II);
471         continue;
472       }
473       case Intrinsic::masked_load:
474       case Intrinsic::masked_store: {
475         MemoryLocation Loc;
476         /*ModRefInfo MR =*/ GetLocation(II, Loc, TLI);
477         AliasResult R = BatchAA.alias(Loc, MemLoc);
478         if (R == AliasResult::NoAlias)
479           continue;
480         if (R == AliasResult::MustAlias)
481           return MemDepResult::getDef(II);
482         if (ID == Intrinsic::masked_load)
483           continue;
484         return MemDepResult::getClobber(II);
485       }
486       }
487     }
488 
489     // Values depend on loads if the pointers are must aliased.  This means
490     // that a load depends on another must aliased load from the same value.
491     // One exception is atomic loads: a value can depend on an atomic load that
492     // it does not alias with when this atomic load indicates that another
493     // thread may be accessing the location.
494     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
495       // While volatile access cannot be eliminated, they do not have to clobber
496       // non-aliasing locations, as normal accesses, for example, can be safely
497       // reordered with volatile accesses.
498       if (LI->isVolatile()) {
499         if (!QueryInst)
500           // Original QueryInst *may* be volatile
501           return MemDepResult::getClobber(LI);
502         if (QueryInst->isVolatile())
503           // Ordering required if QueryInst is itself volatile
504           return MemDepResult::getClobber(LI);
505         // Otherwise, volatile doesn't imply any special ordering
506       }
507 
508       // Atomic loads have complications involved.
509       // A Monotonic (or higher) load is OK if the query inst is itself not
510       // atomic.
511       // FIXME: This is overly conservative.
512       if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) {
513         if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
514             isOtherMemAccess(QueryInst))
515           return MemDepResult::getClobber(LI);
516         if (LI->getOrdering() != AtomicOrdering::Monotonic)
517           return MemDepResult::getClobber(LI);
518       }
519 
520       MemoryLocation LoadLoc = MemoryLocation::get(LI);
521 
522       // If we found a pointer, check if it could be the same as our pointer.
523       AliasResult R = BatchAA.alias(LoadLoc, MemLoc);
524 
525       if (isLoad) {
526         if (R == AliasResult::NoAlias)
527           continue;
528 
529         // Must aliased loads are defs of each other.
530         if (R == AliasResult::MustAlias)
531           return MemDepResult::getDef(Inst);
532 
533         // If we have a partial alias, then return this as a clobber for the
534         // client to handle.
535         if (R == AliasResult::PartialAlias && R.hasOffset()) {
536           ClobberOffsets[LI] = R.getOffset();
537           return MemDepResult::getClobber(Inst);
538         }
539 
540         // Random may-alias loads don't depend on each other without a
541         // dependence.
542         continue;
543       }
544 
545       // Stores don't depend on other no-aliased accesses.
546       if (R == AliasResult::NoAlias)
547         continue;
548 
549       // Stores don't alias loads from read-only memory.
550       if (BatchAA.pointsToConstantMemory(LoadLoc))
551         continue;
552 
553       // Stores depend on may/must aliased loads.
554       return MemDepResult::getDef(Inst);
555     }
556 
557     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
558       // Atomic stores have complications involved.
559       // A Monotonic store is OK if the query inst is itself not atomic.
560       // FIXME: This is overly conservative.
561       if (!SI->isUnordered() && SI->isAtomic()) {
562         if (!QueryInst || isNonUnorderedLoadOrStore(QueryInst) ||
563             isOtherMemAccess(QueryInst))
564           return MemDepResult::getClobber(SI);
565         // Ok, if we are here the guard above guarantee us that
566         // QueryInst is a non-atomic or unordered load/store.
567         // SI is atomic with monotonic or release semantic (seq_cst for store
568         // is actually a release semantic plus total order over other seq_cst
569         // instructions, as soon as QueryInst is not seq_cst we can consider it
570         // as simple release semantic).
571         // Monotonic and Release semantic allows re-ordering before store
572         // so we are safe to go further and check the aliasing. It will prohibit
573         // re-ordering in case locations are may or must alias.
574       }
575 
576       // While volatile access cannot be eliminated, they do not have to clobber
577       // non-aliasing locations, as normal accesses can for example be reordered
578       // with volatile accesses.
579       if (SI->isVolatile())
580         if (!QueryInst || QueryInst->isVolatile())
581           return MemDepResult::getClobber(SI);
582 
583       // If alias analysis can tell that this store is guaranteed to not modify
584       // the query pointer, ignore it.  Use getModRefInfo to handle cases where
585       // the query pointer points to constant memory etc.
586       if (!isModOrRefSet(BatchAA.getModRefInfo(SI, MemLoc)))
587         continue;
588 
589       // Ok, this store might clobber the query pointer.  Check to see if it is
590       // a must alias: in this case, we want to return this as a def.
591       // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above.
592       MemoryLocation StoreLoc = MemoryLocation::get(SI);
593 
594       // If we found a pointer, check if it could be the same as our pointer.
595       AliasResult R = BatchAA.alias(StoreLoc, MemLoc);
596 
597       if (R == AliasResult::NoAlias)
598         continue;
599       if (R == AliasResult::MustAlias)
600         return MemDepResult::getDef(Inst);
601       if (isInvariantLoad)
602         continue;
603       return MemDepResult::getClobber(Inst);
604     }
605 
606     // If this is an allocation, and if we know that the accessed pointer is to
607     // the allocation, return Def.  This means that there is no dependence and
608     // the access can be optimized based on that.  For example, a load could
609     // turn into undef.  Note that we can bypass the allocation itself when
610     // looking for a clobber in many cases; that's an alias property and is
611     // handled by BasicAA.
612     if (isa<AllocaInst>(Inst) || isNoAliasCall(Inst)) {
613       const Value *AccessPtr = getUnderlyingObject(MemLoc.Ptr);
614       if (AccessPtr == Inst || BatchAA.isMustAlias(Inst, AccessPtr))
615         return MemDepResult::getDef(Inst);
616     }
617 
618     if (isInvariantLoad)
619       continue;
620 
621     // A release fence requires that all stores complete before it, but does
622     // not prevent the reordering of following loads or stores 'before' the
623     // fence.  As a result, we look past it when finding a dependency for
624     // loads.  DSE uses this to find preceding stores to delete and thus we
625     // can't bypass the fence if the query instruction is a store.
626     if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
627       if (isLoad && FI->getOrdering() == AtomicOrdering::Release)
628         continue;
629 
630     // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
631     ModRefInfo MR = BatchAA.getModRefInfo(Inst, MemLoc);
632     // If necessary, perform additional analysis.
633     if (isModAndRefSet(MR))
634       MR = BatchAA.callCapturesBefore(Inst, MemLoc, &DT);
635     switch (clearMust(MR)) {
636     case ModRefInfo::NoModRef:
637       // If the call has no effect on the queried pointer, just ignore it.
638       continue;
639     case ModRefInfo::Mod:
640       return MemDepResult::getClobber(Inst);
641     case ModRefInfo::Ref:
642       // If the call is known to never store to the pointer, and if this is a
643       // load query, we can safely ignore it (scan past it).
644       if (isLoad)
645         continue;
646       LLVM_FALLTHROUGH;
647     default:
648       // Otherwise, there is a potential dependence.  Return a clobber.
649       return MemDepResult::getClobber(Inst);
650     }
651   }
652 
653   // No dependence found.  If this is the entry block of the function, it is
654   // unknown, otherwise it is non-local.
655   if (BB != &BB->getParent()->getEntryBlock())
656     return MemDepResult::getNonLocal();
657   return MemDepResult::getNonFuncLocal();
658 }
659 
660 MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) {
661   ClobberOffsets.clear();
662   Instruction *ScanPos = QueryInst;
663 
664   // Check for a cached result
665   MemDepResult &LocalCache = LocalDeps[QueryInst];
666 
667   // If the cached entry is non-dirty, just return it.  Note that this depends
668   // on MemDepResult's default constructing to 'dirty'.
669   if (!LocalCache.isDirty())
670     return LocalCache;
671 
672   // Otherwise, if we have a dirty entry, we know we can start the scan at that
673   // instruction, which may save us some work.
674   if (Instruction *Inst = LocalCache.getInst()) {
675     ScanPos = Inst;
676 
677     RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
678   }
679 
680   BasicBlock *QueryParent = QueryInst->getParent();
681 
682   // Do the scan.
683   if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
684     // No dependence found. If this is the entry block of the function, it is
685     // unknown, otherwise it is non-local.
686     if (QueryParent != &QueryParent->getParent()->getEntryBlock())
687       LocalCache = MemDepResult::getNonLocal();
688     else
689       LocalCache = MemDepResult::getNonFuncLocal();
690   } else {
691     MemoryLocation MemLoc;
692     ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI);
693     if (MemLoc.Ptr) {
694       // If we can do a pointer scan, make it happen.
695       bool isLoad = !isModSet(MR);
696       if (auto *II = dyn_cast<IntrinsicInst>(QueryInst))
697         isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
698 
699       LocalCache =
700           getPointerDependencyFrom(MemLoc, isLoad, ScanPos->getIterator(),
701                                    QueryParent, QueryInst, nullptr);
702     } else if (auto *QueryCall = dyn_cast<CallBase>(QueryInst)) {
703       bool isReadOnly = AA.onlyReadsMemory(QueryCall);
704       LocalCache = getCallDependencyFrom(QueryCall, isReadOnly,
705                                          ScanPos->getIterator(), QueryParent);
706     } else
707       // Non-memory instruction.
708       LocalCache = MemDepResult::getUnknown();
709   }
710 
711   // Remember the result!
712   if (Instruction *I = LocalCache.getInst())
713     ReverseLocalDeps[I].insert(QueryInst);
714 
715   return LocalCache;
716 }
717 
718 #ifndef NDEBUG
719 /// This method is used when -debug is specified to verify that cache arrays
720 /// are properly kept sorted.
721 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache,
722                          int Count = -1) {
723   if (Count == -1)
724     Count = Cache.size();
725   assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) &&
726          "Cache isn't sorted!");
727 }
728 #endif
729 
730 const MemoryDependenceResults::NonLocalDepInfo &
731 MemoryDependenceResults::getNonLocalCallDependency(CallBase *QueryCall) {
732   assert(getDependency(QueryCall).isNonLocal() &&
733          "getNonLocalCallDependency should only be used on calls with "
734          "non-local deps!");
735   PerInstNLInfo &CacheP = NonLocalDepsMap[QueryCall];
736   NonLocalDepInfo &Cache = CacheP.first;
737 
738   // This is the set of blocks that need to be recomputed.  In the cached case,
739   // this can happen due to instructions being deleted etc. In the uncached
740   // case, this starts out as the set of predecessors we care about.
741   SmallVector<BasicBlock *, 32> DirtyBlocks;
742 
743   if (!Cache.empty()) {
744     // Okay, we have a cache entry.  If we know it is not dirty, just return it
745     // with no computation.
746     if (!CacheP.second) {
747       ++NumCacheNonLocal;
748       return Cache;
749     }
750 
751     // If we already have a partially computed set of results, scan them to
752     // determine what is dirty, seeding our initial DirtyBlocks worklist.
753     for (auto &Entry : Cache)
754       if (Entry.getResult().isDirty())
755         DirtyBlocks.push_back(Entry.getBB());
756 
757     // Sort the cache so that we can do fast binary search lookups below.
758     llvm::sort(Cache);
759 
760     ++NumCacheDirtyNonLocal;
761     // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
762     //     << Cache.size() << " cached: " << *QueryInst;
763   } else {
764     // Seed DirtyBlocks with each of the preds of QueryInst's block.
765     BasicBlock *QueryBB = QueryCall->getParent();
766     append_range(DirtyBlocks, PredCache.get(QueryBB));
767     ++NumUncacheNonLocal;
768   }
769 
770   // isReadonlyCall - If this is a read-only call, we can be more aggressive.
771   bool isReadonlyCall = AA.onlyReadsMemory(QueryCall);
772 
773   SmallPtrSet<BasicBlock *, 32> Visited;
774 
775   unsigned NumSortedEntries = Cache.size();
776   LLVM_DEBUG(AssertSorted(Cache));
777 
778   // Iterate while we still have blocks to update.
779   while (!DirtyBlocks.empty()) {
780     BasicBlock *DirtyBB = DirtyBlocks.pop_back_val();
781 
782     // Already processed this block?
783     if (!Visited.insert(DirtyBB).second)
784       continue;
785 
786     // Do a binary search to see if we already have an entry for this block in
787     // the cache set.  If so, find it.
788     LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries));
789     NonLocalDepInfo::iterator Entry =
790         std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries,
791                          NonLocalDepEntry(DirtyBB));
792     if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
793       --Entry;
794 
795     NonLocalDepEntry *ExistingResult = nullptr;
796     if (Entry != Cache.begin() + NumSortedEntries &&
797         Entry->getBB() == DirtyBB) {
798       // If we already have an entry, and if it isn't already dirty, the block
799       // is done.
800       if (!Entry->getResult().isDirty())
801         continue;
802 
803       // Otherwise, remember this slot so we can update the value.
804       ExistingResult = &*Entry;
805     }
806 
807     // If the dirty entry has a pointer, start scanning from it so we don't have
808     // to rescan the entire block.
809     BasicBlock::iterator ScanPos = DirtyBB->end();
810     if (ExistingResult) {
811       if (Instruction *Inst = ExistingResult->getResult().getInst()) {
812         ScanPos = Inst->getIterator();
813         // We're removing QueryInst's use of Inst.
814         RemoveFromReverseMap<Instruction *>(ReverseNonLocalDeps, Inst,
815                                             QueryCall);
816       }
817     }
818 
819     // Find out if this block has a local dependency for QueryInst.
820     MemDepResult Dep;
821 
822     if (ScanPos != DirtyBB->begin()) {
823       Dep = getCallDependencyFrom(QueryCall, isReadonlyCall, ScanPos, DirtyBB);
824     } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
825       // No dependence found.  If this is the entry block of the function, it is
826       // a clobber, otherwise it is unknown.
827       Dep = MemDepResult::getNonLocal();
828     } else {
829       Dep = MemDepResult::getNonFuncLocal();
830     }
831 
832     // If we had a dirty entry for the block, update it.  Otherwise, just add
833     // a new entry.
834     if (ExistingResult)
835       ExistingResult->setResult(Dep);
836     else
837       Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
838 
839     // If the block has a dependency (i.e. it isn't completely transparent to
840     // the value), remember the association!
841     if (!Dep.isNonLocal()) {
842       // Keep the ReverseNonLocalDeps map up to date so we can efficiently
843       // update this when we remove instructions.
844       if (Instruction *Inst = Dep.getInst())
845         ReverseNonLocalDeps[Inst].insert(QueryCall);
846     } else {
847 
848       // If the block *is* completely transparent to the load, we need to check
849       // the predecessors of this block.  Add them to our worklist.
850       append_range(DirtyBlocks, PredCache.get(DirtyBB));
851     }
852   }
853 
854   return Cache;
855 }
856 
857 void MemoryDependenceResults::getNonLocalPointerDependency(
858     Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) {
859   const MemoryLocation Loc = MemoryLocation::get(QueryInst);
860   bool isLoad = isa<LoadInst>(QueryInst);
861   BasicBlock *FromBB = QueryInst->getParent();
862   assert(FromBB);
863 
864   assert(Loc.Ptr->getType()->isPointerTy() &&
865          "Can't get pointer deps of a non-pointer!");
866   Result.clear();
867   {
868     // Check if there is cached Def with invariant.group.
869     auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst);
870     if (NonLocalDefIt != NonLocalDefsCache.end()) {
871       Result.push_back(NonLocalDefIt->second);
872       ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()]
873           .erase(QueryInst);
874       NonLocalDefsCache.erase(NonLocalDefIt);
875       return;
876     }
877   }
878   // This routine does not expect to deal with volatile instructions.
879   // Doing so would require piping through the QueryInst all the way through.
880   // TODO: volatiles can't be elided, but they can be reordered with other
881   // non-volatile accesses.
882 
883   // We currently give up on any instruction which is ordered, but we do handle
884   // atomic instructions which are unordered.
885   // TODO: Handle ordered instructions
886   auto isOrdered = [](Instruction *Inst) {
887     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
888       return !LI->isUnordered();
889     } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
890       return !SI->isUnordered();
891     }
892     return false;
893   };
894   if (QueryInst->isVolatile() || isOrdered(QueryInst)) {
895     Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
896                                        const_cast<Value *>(Loc.Ptr)));
897     return;
898   }
899   const DataLayout &DL = FromBB->getModule()->getDataLayout();
900   PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC);
901 
902   // This is the set of blocks we've inspected, and the pointer we consider in
903   // each block.  Because of critical edges, we currently bail out if querying
904   // a block with multiple different pointers.  This can happen during PHI
905   // translation.
906   DenseMap<BasicBlock *, Value *> Visited;
907   if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB,
908                                    Result, Visited, true))
909     return;
910   Result.clear();
911   Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
912                                      const_cast<Value *>(Loc.Ptr)));
913 }
914 
915 /// Compute the memdep value for BB with Pointer/PointeeSize using either
916 /// cached information in Cache or by doing a lookup (which may use dirty cache
917 /// info if available).
918 ///
919 /// If we do a lookup, add the result to the cache.
920 MemDepResult MemoryDependenceResults::getNonLocalInfoForBlock(
921     Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad,
922     BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries,
923     BatchAAResults &BatchAA) {
924 
925   bool isInvariantLoad = false;
926 
927   if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst))
928     isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load);
929 
930   // Do a binary search to see if we already have an entry for this block in
931   // the cache set.  If so, find it.
932   NonLocalDepInfo::iterator Entry = std::upper_bound(
933       Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB));
934   if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB)
935     --Entry;
936 
937   NonLocalDepEntry *ExistingResult = nullptr;
938   if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB)
939     ExistingResult = &*Entry;
940 
941   // Use cached result for invariant load only if there is no dependency for non
942   // invariant load. In this case invariant load can not have any dependency as
943   // well.
944   if (ExistingResult && isInvariantLoad &&
945       !ExistingResult->getResult().isNonFuncLocal())
946     ExistingResult = nullptr;
947 
948   // If we have a cached entry, and it is non-dirty, use it as the value for
949   // this dependency.
950   if (ExistingResult && !ExistingResult->getResult().isDirty()) {
951     ++NumCacheNonLocalPtr;
952     return ExistingResult->getResult();
953   }
954 
955   // Otherwise, we have to scan for the value.  If we have a dirty cache
956   // entry, start scanning from its position, otherwise we scan from the end
957   // of the block.
958   BasicBlock::iterator ScanPos = BB->end();
959   if (ExistingResult && ExistingResult->getResult().getInst()) {
960     assert(ExistingResult->getResult().getInst()->getParent() == BB &&
961            "Instruction invalidated?");
962     ++NumCacheDirtyNonLocalPtr;
963     ScanPos = ExistingResult->getResult().getInst()->getIterator();
964 
965     // Eliminating the dirty entry from 'Cache', so update the reverse info.
966     ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
967     RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey);
968   } else {
969     ++NumUncacheNonLocalPtr;
970   }
971 
972   // Scan the block for the dependency.
973   MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB,
974                                               QueryInst, nullptr, BatchAA);
975 
976   // Don't cache results for invariant load.
977   if (isInvariantLoad)
978     return Dep;
979 
980   // If we had a dirty entry for the block, update it.  Otherwise, just add
981   // a new entry.
982   if (ExistingResult)
983     ExistingResult->setResult(Dep);
984   else
985     Cache->push_back(NonLocalDepEntry(BB, Dep));
986 
987   // If the block has a dependency (i.e. it isn't completely transparent to
988   // the value), remember the reverse association because we just added it
989   // to Cache!
990   if (!Dep.isDef() && !Dep.isClobber())
991     return Dep;
992 
993   // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
994   // update MemDep when we remove instructions.
995   Instruction *Inst = Dep.getInst();
996   assert(Inst && "Didn't depend on anything?");
997   ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
998   ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
999   return Dep;
1000 }
1001 
1002 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the
1003 /// array that are already properly ordered.
1004 ///
1005 /// This is optimized for the case when only a few entries are added.
1006 static void
1007 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache,
1008                          unsigned NumSortedEntries) {
1009   switch (Cache.size() - NumSortedEntries) {
1010   case 0:
1011     // done, no new entries.
1012     break;
1013   case 2: {
1014     // Two new entries, insert the last one into place.
1015     NonLocalDepEntry Val = Cache.back();
1016     Cache.pop_back();
1017     MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
1018         std::upper_bound(Cache.begin(), Cache.end() - 1, Val);
1019     Cache.insert(Entry, Val);
1020     LLVM_FALLTHROUGH;
1021   }
1022   case 1:
1023     // One new entry, Just insert the new value at the appropriate position.
1024     if (Cache.size() != 1) {
1025       NonLocalDepEntry Val = Cache.back();
1026       Cache.pop_back();
1027       MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
1028           llvm::upper_bound(Cache, Val);
1029       Cache.insert(Entry, Val);
1030     }
1031     break;
1032   default:
1033     // Added many values, do a full scale sort.
1034     llvm::sort(Cache);
1035     break;
1036   }
1037 }
1038 
1039 /// Perform a dependency query based on pointer/pointeesize starting at the end
1040 /// of StartBB.
1041 ///
1042 /// Add any clobber/def results to the results vector and keep track of which
1043 /// blocks are visited in 'Visited'.
1044 ///
1045 /// This has special behavior for the first block queries (when SkipFirstBlock
1046 /// is true).  In this special case, it ignores the contents of the specified
1047 /// block and starts returning dependence info for its predecessors.
1048 ///
1049 /// This function returns true on success, or false to indicate that it could
1050 /// not compute dependence information for some reason.  This should be treated
1051 /// as a clobber dependence on the first instruction in the predecessor block.
1052 bool MemoryDependenceResults::getNonLocalPointerDepFromBB(
1053     Instruction *QueryInst, const PHITransAddr &Pointer,
1054     const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB,
1055     SmallVectorImpl<NonLocalDepResult> &Result,
1056     DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock,
1057     bool IsIncomplete) {
1058   // Look up the cached info for Pointer.
1059   ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
1060 
1061   // Set up a temporary NLPI value. If the map doesn't yet have an entry for
1062   // CacheKey, this value will be inserted as the associated value. Otherwise,
1063   // it'll be ignored, and we'll have to check to see if the cached size and
1064   // aa tags are consistent with the current query.
1065   NonLocalPointerInfo InitialNLPI;
1066   InitialNLPI.Size = Loc.Size;
1067   InitialNLPI.AATags = Loc.AATags;
1068 
1069   bool isInvariantLoad = false;
1070   if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst))
1071     isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load);
1072 
1073   // Get the NLPI for CacheKey, inserting one into the map if it doesn't
1074   // already have one.
1075   std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
1076       NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
1077   NonLocalPointerInfo *CacheInfo = &Pair.first->second;
1078 
1079   // If we already have a cache entry for this CacheKey, we may need to do some
1080   // work to reconcile the cache entry and the current query.
1081   // Invariant loads don't participate in caching. Thus no need to reconcile.
1082   if (!isInvariantLoad && !Pair.second) {
1083     if (CacheInfo->Size != Loc.Size) {
1084       bool ThrowOutEverything;
1085       if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) {
1086         // FIXME: We may be able to do better in the face of results with mixed
1087         // precision. We don't appear to get them in practice, though, so just
1088         // be conservative.
1089         ThrowOutEverything =
1090             CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() ||
1091             CacheInfo->Size.getValue() < Loc.Size.getValue();
1092       } else {
1093         // For our purposes, unknown size > all others.
1094         ThrowOutEverything = !Loc.Size.hasValue();
1095       }
1096 
1097       if (ThrowOutEverything) {
1098         // The query's Size is greater than the cached one. Throw out the
1099         // cached data and proceed with the query at the greater size.
1100         CacheInfo->Pair = BBSkipFirstBlockPair();
1101         CacheInfo->Size = Loc.Size;
1102         for (auto &Entry : CacheInfo->NonLocalDeps)
1103           if (Instruction *Inst = Entry.getResult().getInst())
1104             RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1105         CacheInfo->NonLocalDeps.clear();
1106         // The cache is cleared (in the above line) so we will have lost
1107         // information about blocks we have already visited. We therefore must
1108         // assume that the cache information is incomplete.
1109         IsIncomplete = true;
1110       } else {
1111         // This query's Size is less than the cached one. Conservatively restart
1112         // the query using the greater size.
1113         return getNonLocalPointerDepFromBB(
1114             QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad,
1115             StartBB, Result, Visited, SkipFirstBlock, IsIncomplete);
1116       }
1117     }
1118 
1119     // If the query's AATags are inconsistent with the cached one,
1120     // conservatively throw out the cached data and restart the query with
1121     // no tag if needed.
1122     if (CacheInfo->AATags != Loc.AATags) {
1123       if (CacheInfo->AATags) {
1124         CacheInfo->Pair = BBSkipFirstBlockPair();
1125         CacheInfo->AATags = AAMDNodes();
1126         for (auto &Entry : CacheInfo->NonLocalDeps)
1127           if (Instruction *Inst = Entry.getResult().getInst())
1128             RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1129         CacheInfo->NonLocalDeps.clear();
1130         // The cache is cleared (in the above line) so we will have lost
1131         // information about blocks we have already visited. We therefore must
1132         // assume that the cache information is incomplete.
1133         IsIncomplete = true;
1134       }
1135       if (Loc.AATags)
1136         return getNonLocalPointerDepFromBB(
1137             QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result,
1138             Visited, SkipFirstBlock, IsIncomplete);
1139     }
1140   }
1141 
1142   NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
1143 
1144   // If we have valid cached information for exactly the block we are
1145   // investigating, just return it with no recomputation.
1146   // Don't use cached information for invariant loads since it is valid for
1147   // non-invariant loads only.
1148   if (!IsIncomplete && !isInvariantLoad &&
1149       CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
1150     // We have a fully cached result for this query then we can just return the
1151     // cached results and populate the visited set.  However, we have to verify
1152     // that we don't already have conflicting results for these blocks.  Check
1153     // to ensure that if a block in the results set is in the visited set that
1154     // it was for the same pointer query.
1155     if (!Visited.empty()) {
1156       for (auto &Entry : *Cache) {
1157         DenseMap<BasicBlock *, Value *>::iterator VI =
1158             Visited.find(Entry.getBB());
1159         if (VI == Visited.end() || VI->second == Pointer.getAddr())
1160           continue;
1161 
1162         // We have a pointer mismatch in a block.  Just return false, saying
1163         // that something was clobbered in this result.  We could also do a
1164         // non-fully cached query, but there is little point in doing this.
1165         return false;
1166       }
1167     }
1168 
1169     Value *Addr = Pointer.getAddr();
1170     for (auto &Entry : *Cache) {
1171       Visited.insert(std::make_pair(Entry.getBB(), Addr));
1172       if (Entry.getResult().isNonLocal()) {
1173         continue;
1174       }
1175 
1176       if (DT.isReachableFromEntry(Entry.getBB())) {
1177         Result.push_back(
1178             NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr));
1179       }
1180     }
1181     ++NumCacheCompleteNonLocalPtr;
1182     return true;
1183   }
1184 
1185   // Otherwise, either this is a new block, a block with an invalid cache
1186   // pointer or one that we're about to invalidate by putting more info into
1187   // it than its valid cache info.  If empty and not explicitly indicated as
1188   // incomplete, the result will be valid cache info, otherwise it isn't.
1189   //
1190   // Invariant loads don't affect cache in any way thus no need to update
1191   // CacheInfo as well.
1192   if (!isInvariantLoad) {
1193     if (!IsIncomplete && Cache->empty())
1194       CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1195     else
1196       CacheInfo->Pair = BBSkipFirstBlockPair();
1197   }
1198 
1199   SmallVector<BasicBlock *, 32> Worklist;
1200   Worklist.push_back(StartBB);
1201 
1202   // PredList used inside loop.
1203   SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList;
1204 
1205   // Keep track of the entries that we know are sorted.  Previously cached
1206   // entries will all be sorted.  The entries we add we only sort on demand (we
1207   // don't insert every element into its sorted position).  We know that we
1208   // won't get any reuse from currently inserted values, because we don't
1209   // revisit blocks after we insert info for them.
1210   unsigned NumSortedEntries = Cache->size();
1211   unsigned WorklistEntries = BlockNumberLimit;
1212   bool GotWorklistLimit = false;
1213   LLVM_DEBUG(AssertSorted(*Cache));
1214 
1215   BatchAAResults BatchAA(AA);
1216   while (!Worklist.empty()) {
1217     BasicBlock *BB = Worklist.pop_back_val();
1218 
1219     // If we do process a large number of blocks it becomes very expensive and
1220     // likely it isn't worth worrying about
1221     if (Result.size() > NumResultsLimit) {
1222       Worklist.clear();
1223       // Sort it now (if needed) so that recursive invocations of
1224       // getNonLocalPointerDepFromBB and other routines that could reuse the
1225       // cache value will only see properly sorted cache arrays.
1226       if (Cache && NumSortedEntries != Cache->size()) {
1227         SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1228       }
1229       // Since we bail out, the "Cache" set won't contain all of the
1230       // results for the query.  This is ok (we can still use it to accelerate
1231       // specific block queries) but we can't do the fastpath "return all
1232       // results from the set".  Clear out the indicator for this.
1233       CacheInfo->Pair = BBSkipFirstBlockPair();
1234       return false;
1235     }
1236 
1237     // Skip the first block if we have it.
1238     if (!SkipFirstBlock) {
1239       // Analyze the dependency of *Pointer in FromBB.  See if we already have
1240       // been here.
1241       assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1242 
1243       // Get the dependency info for Pointer in BB.  If we have cached
1244       // information, we will use it, otherwise we compute it.
1245       LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries));
1246       MemDepResult Dep = getNonLocalInfoForBlock(
1247           QueryInst, Loc, isLoad, BB, Cache, NumSortedEntries, BatchAA);
1248 
1249       // If we got a Def or Clobber, add this to the list of results.
1250       if (!Dep.isNonLocal()) {
1251         if (DT.isReachableFromEntry(BB)) {
1252           Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1253           continue;
1254         }
1255       }
1256     }
1257 
1258     // If 'Pointer' is an instruction defined in this block, then we need to do
1259     // phi translation to change it into a value live in the predecessor block.
1260     // If not, we just add the predecessors to the worklist and scan them with
1261     // the same Pointer.
1262     if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1263       SkipFirstBlock = false;
1264       SmallVector<BasicBlock *, 16> NewBlocks;
1265       for (BasicBlock *Pred : PredCache.get(BB)) {
1266         // Verify that we haven't looked at this block yet.
1267         std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1268             Visited.insert(std::make_pair(Pred, Pointer.getAddr()));
1269         if (InsertRes.second) {
1270           // First time we've looked at *PI.
1271           NewBlocks.push_back(Pred);
1272           continue;
1273         }
1274 
1275         // If we have seen this block before, but it was with a different
1276         // pointer then we have a phi translation failure and we have to treat
1277         // this as a clobber.
1278         if (InsertRes.first->second != Pointer.getAddr()) {
1279           // Make sure to clean up the Visited map before continuing on to
1280           // PredTranslationFailure.
1281           for (unsigned i = 0; i < NewBlocks.size(); i++)
1282             Visited.erase(NewBlocks[i]);
1283           goto PredTranslationFailure;
1284         }
1285       }
1286       if (NewBlocks.size() > WorklistEntries) {
1287         // Make sure to clean up the Visited map before continuing on to
1288         // PredTranslationFailure.
1289         for (unsigned i = 0; i < NewBlocks.size(); i++)
1290           Visited.erase(NewBlocks[i]);
1291         GotWorklistLimit = true;
1292         goto PredTranslationFailure;
1293       }
1294       WorklistEntries -= NewBlocks.size();
1295       Worklist.append(NewBlocks.begin(), NewBlocks.end());
1296       continue;
1297     }
1298 
1299     // We do need to do phi translation, if we know ahead of time we can't phi
1300     // translate this value, don't even try.
1301     if (!Pointer.IsPotentiallyPHITranslatable())
1302       goto PredTranslationFailure;
1303 
1304     // We may have added values to the cache list before this PHI translation.
1305     // If so, we haven't done anything to ensure that the cache remains sorted.
1306     // Sort it now (if needed) so that recursive invocations of
1307     // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1308     // value will only see properly sorted cache arrays.
1309     if (Cache && NumSortedEntries != Cache->size()) {
1310       SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1311       NumSortedEntries = Cache->size();
1312     }
1313     Cache = nullptr;
1314 
1315     PredList.clear();
1316     for (BasicBlock *Pred : PredCache.get(BB)) {
1317       PredList.push_back(std::make_pair(Pred, Pointer));
1318 
1319       // Get the PHI translated pointer in this predecessor.  This can fail if
1320       // not translatable, in which case the getAddr() returns null.
1321       PHITransAddr &PredPointer = PredList.back().second;
1322       PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false);
1323       Value *PredPtrVal = PredPointer.getAddr();
1324 
1325       // Check to see if we have already visited this pred block with another
1326       // pointer.  If so, we can't do this lookup.  This failure can occur
1327       // with PHI translation when a critical edge exists and the PHI node in
1328       // the successor translates to a pointer value different than the
1329       // pointer the block was first analyzed with.
1330       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1331           Visited.insert(std::make_pair(Pred, PredPtrVal));
1332 
1333       if (!InsertRes.second) {
1334         // We found the pred; take it off the list of preds to visit.
1335         PredList.pop_back();
1336 
1337         // If the predecessor was visited with PredPtr, then we already did
1338         // the analysis and can ignore it.
1339         if (InsertRes.first->second == PredPtrVal)
1340           continue;
1341 
1342         // Otherwise, the block was previously analyzed with a different
1343         // pointer.  We can't represent the result of this case, so we just
1344         // treat this as a phi translation failure.
1345 
1346         // Make sure to clean up the Visited map before continuing on to
1347         // PredTranslationFailure.
1348         for (unsigned i = 0, n = PredList.size(); i < n; ++i)
1349           Visited.erase(PredList[i].first);
1350 
1351         goto PredTranslationFailure;
1352       }
1353     }
1354 
1355     // Actually process results here; this need to be a separate loop to avoid
1356     // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1357     // any results for.  (getNonLocalPointerDepFromBB will modify our
1358     // datastructures in ways the code after the PredTranslationFailure label
1359     // doesn't expect.)
1360     for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
1361       BasicBlock *Pred = PredList[i].first;
1362       PHITransAddr &PredPointer = PredList[i].second;
1363       Value *PredPtrVal = PredPointer.getAddr();
1364 
1365       bool CanTranslate = true;
1366       // If PHI translation was unable to find an available pointer in this
1367       // predecessor, then we have to assume that the pointer is clobbered in
1368       // that predecessor.  We can still do PRE of the load, which would insert
1369       // a computation of the pointer in this predecessor.
1370       if (!PredPtrVal)
1371         CanTranslate = false;
1372 
1373       // FIXME: it is entirely possible that PHI translating will end up with
1374       // the same value.  Consider PHI translating something like:
1375       // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
1376       // to recurse here, pedantically speaking.
1377 
1378       // If getNonLocalPointerDepFromBB fails here, that means the cached
1379       // result conflicted with the Visited list; we have to conservatively
1380       // assume it is unknown, but this also does not block PRE of the load.
1381       if (!CanTranslate ||
1382           !getNonLocalPointerDepFromBB(QueryInst, PredPointer,
1383                                       Loc.getWithNewPtr(PredPtrVal), isLoad,
1384                                       Pred, Result, Visited)) {
1385         // Add the entry to the Result list.
1386         NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1387         Result.push_back(Entry);
1388 
1389         // Since we had a phi translation failure, the cache for CacheKey won't
1390         // include all of the entries that we need to immediately satisfy future
1391         // queries.  Mark this in NonLocalPointerDeps by setting the
1392         // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
1393         // cached value to do more work but not miss the phi trans failure.
1394         NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1395         NLPI.Pair = BBSkipFirstBlockPair();
1396         continue;
1397       }
1398     }
1399 
1400     // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1401     CacheInfo = &NonLocalPointerDeps[CacheKey];
1402     Cache = &CacheInfo->NonLocalDeps;
1403     NumSortedEntries = Cache->size();
1404 
1405     // Since we did phi translation, the "Cache" set won't contain all of the
1406     // results for the query.  This is ok (we can still use it to accelerate
1407     // specific block queries) but we can't do the fastpath "return all
1408     // results from the set"  Clear out the indicator for this.
1409     CacheInfo->Pair = BBSkipFirstBlockPair();
1410     SkipFirstBlock = false;
1411     continue;
1412 
1413   PredTranslationFailure:
1414     // The following code is "failure"; we can't produce a sane translation
1415     // for the given block.  It assumes that we haven't modified any of
1416     // our datastructures while processing the current block.
1417 
1418     if (!Cache) {
1419       // Refresh the CacheInfo/Cache pointer if it got invalidated.
1420       CacheInfo = &NonLocalPointerDeps[CacheKey];
1421       Cache = &CacheInfo->NonLocalDeps;
1422       NumSortedEntries = Cache->size();
1423     }
1424 
1425     // Since we failed phi translation, the "Cache" set won't contain all of the
1426     // results for the query.  This is ok (we can still use it to accelerate
1427     // specific block queries) but we can't do the fastpath "return all
1428     // results from the set".  Clear out the indicator for this.
1429     CacheInfo->Pair = BBSkipFirstBlockPair();
1430 
1431     // If *nothing* works, mark the pointer as unknown.
1432     //
1433     // If this is the magic first block, return this as a clobber of the whole
1434     // incoming value.  Since we can't phi translate to one of the predecessors,
1435     // we have to bail out.
1436     if (SkipFirstBlock)
1437       return false;
1438 
1439     // Results of invariant loads are not cached thus no need to update cached
1440     // information.
1441     if (!isInvariantLoad) {
1442       for (NonLocalDepEntry &I : llvm::reverse(*Cache)) {
1443         if (I.getBB() != BB)
1444           continue;
1445 
1446         assert((GotWorklistLimit || I.getResult().isNonLocal() ||
1447                 !DT.isReachableFromEntry(BB)) &&
1448                "Should only be here with transparent block");
1449 
1450         I.setResult(MemDepResult::getUnknown());
1451 
1452 
1453         break;
1454       }
1455     }
1456     (void)GotWorklistLimit;
1457     // Go ahead and report unknown dependence.
1458     Result.push_back(
1459         NonLocalDepResult(BB, MemDepResult::getUnknown(), Pointer.getAddr()));
1460   }
1461 
1462   // Okay, we're done now.  If we added new values to the cache, re-sort it.
1463   SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1464   LLVM_DEBUG(AssertSorted(*Cache));
1465   return true;
1466 }
1467 
1468 /// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it.
1469 void MemoryDependenceResults::removeCachedNonLocalPointerDependencies(
1470     ValueIsLoadPair P) {
1471 
1472   // Most of the time this cache is empty.
1473   if (!NonLocalDefsCache.empty()) {
1474     auto it = NonLocalDefsCache.find(P.getPointer());
1475     if (it != NonLocalDefsCache.end()) {
1476       RemoveFromReverseMap(ReverseNonLocalDefsCache,
1477                            it->second.getResult().getInst(), P.getPointer());
1478       NonLocalDefsCache.erase(it);
1479     }
1480 
1481     if (auto *I = dyn_cast<Instruction>(P.getPointer())) {
1482       auto toRemoveIt = ReverseNonLocalDefsCache.find(I);
1483       if (toRemoveIt != ReverseNonLocalDefsCache.end()) {
1484         for (const auto *entry : toRemoveIt->second)
1485           NonLocalDefsCache.erase(entry);
1486         ReverseNonLocalDefsCache.erase(toRemoveIt);
1487       }
1488     }
1489   }
1490 
1491   CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P);
1492   if (It == NonLocalPointerDeps.end())
1493     return;
1494 
1495   // Remove all of the entries in the BB->val map.  This involves removing
1496   // instructions from the reverse map.
1497   NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1498 
1499   for (const NonLocalDepEntry &DE : PInfo) {
1500     Instruction *Target = DE.getResult().getInst();
1501     if (!Target)
1502       continue; // Ignore non-local dep results.
1503     assert(Target->getParent() == DE.getBB());
1504 
1505     // Eliminating the dirty entry from 'Cache', so update the reverse info.
1506     RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1507   }
1508 
1509   // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1510   NonLocalPointerDeps.erase(It);
1511 }
1512 
1513 void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) {
1514   // If Ptr isn't really a pointer, just ignore it.
1515   if (!Ptr->getType()->isPointerTy())
1516     return;
1517   // Flush store info for the pointer.
1518   removeCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1519   // Flush load info for the pointer.
1520   removeCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1521   // Invalidate phis that use the pointer.
1522   PV.invalidateValue(Ptr);
1523 }
1524 
1525 void MemoryDependenceResults::invalidateCachedPredecessors() {
1526   PredCache.clear();
1527 }
1528 
1529 void MemoryDependenceResults::removeInstruction(Instruction *RemInst) {
1530   // Walk through the Non-local dependencies, removing this one as the value
1531   // for any cached queries.
1532   NonLocalDepMapType::iterator NLDI = NonLocalDepsMap.find(RemInst);
1533   if (NLDI != NonLocalDepsMap.end()) {
1534     NonLocalDepInfo &BlockMap = NLDI->second.first;
1535     for (auto &Entry : BlockMap)
1536       if (Instruction *Inst = Entry.getResult().getInst())
1537         RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1538     NonLocalDepsMap.erase(NLDI);
1539   }
1540 
1541   // If we have a cached local dependence query for this instruction, remove it.
1542   LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1543   if (LocalDepEntry != LocalDeps.end()) {
1544     // Remove us from DepInst's reverse set now that the local dep info is gone.
1545     if (Instruction *Inst = LocalDepEntry->second.getInst())
1546       RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1547 
1548     // Remove this local dependency info.
1549     LocalDeps.erase(LocalDepEntry);
1550   }
1551 
1552   // If we have any cached dependencies on this instruction, remove
1553   // them.
1554 
1555   // If the instruction is a pointer, remove it from both the load info and the
1556   // store info.
1557   if (RemInst->getType()->isPointerTy()) {
1558     removeCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1559     removeCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1560   } else {
1561     // Otherwise, if the instructions is in the map directly, it must be a load.
1562     // Remove it.
1563     auto toRemoveIt = NonLocalDefsCache.find(RemInst);
1564     if (toRemoveIt != NonLocalDefsCache.end()) {
1565       assert(isa<LoadInst>(RemInst) &&
1566              "only load instructions should be added directly");
1567       const Instruction *DepV = toRemoveIt->second.getResult().getInst();
1568       ReverseNonLocalDefsCache.find(DepV)->second.erase(RemInst);
1569       NonLocalDefsCache.erase(toRemoveIt);
1570     }
1571   }
1572 
1573   // Loop over all of the things that depend on the instruction we're removing.
1574   SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd;
1575 
1576   // If we find RemInst as a clobber or Def in any of the maps for other values,
1577   // we need to replace its entry with a dirty version of the instruction after
1578   // it.  If RemInst is a terminator, we use a null dirty value.
1579   //
1580   // Using a dirty version of the instruction after RemInst saves having to scan
1581   // the entire block to get to this point.
1582   MemDepResult NewDirtyVal;
1583   if (!RemInst->isTerminator())
1584     NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator());
1585 
1586   ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1587   if (ReverseDepIt != ReverseLocalDeps.end()) {
1588     // RemInst can't be the terminator if it has local stuff depending on it.
1589     assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() &&
1590            "Nothing can locally depend on a terminator");
1591 
1592     for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
1593       assert(InstDependingOnRemInst != RemInst &&
1594              "Already removed our local dep info");
1595 
1596       LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1597 
1598       // Make sure to remember that new things depend on NewDepInst.
1599       assert(NewDirtyVal.getInst() &&
1600              "There is no way something else can have "
1601              "a local dep on this if it is a terminator!");
1602       ReverseDepsToAdd.push_back(
1603           std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst));
1604     }
1605 
1606     ReverseLocalDeps.erase(ReverseDepIt);
1607 
1608     // Add new reverse deps after scanning the set, to avoid invalidating the
1609     // 'ReverseDeps' reference.
1610     while (!ReverseDepsToAdd.empty()) {
1611       ReverseLocalDeps[ReverseDepsToAdd.back().first].insert(
1612           ReverseDepsToAdd.back().second);
1613       ReverseDepsToAdd.pop_back();
1614     }
1615   }
1616 
1617   ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1618   if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1619     for (Instruction *I : ReverseDepIt->second) {
1620       assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
1621 
1622       PerInstNLInfo &INLD = NonLocalDepsMap[I];
1623       // The information is now dirty!
1624       INLD.second = true;
1625 
1626       for (auto &Entry : INLD.first) {
1627         if (Entry.getResult().getInst() != RemInst)
1628           continue;
1629 
1630         // Convert to a dirty entry for the subsequent instruction.
1631         Entry.setResult(NewDirtyVal);
1632 
1633         if (Instruction *NextI = NewDirtyVal.getInst())
1634           ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
1635       }
1636     }
1637 
1638     ReverseNonLocalDeps.erase(ReverseDepIt);
1639 
1640     // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1641     while (!ReverseDepsToAdd.empty()) {
1642       ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert(
1643           ReverseDepsToAdd.back().second);
1644       ReverseDepsToAdd.pop_back();
1645     }
1646   }
1647 
1648   // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1649   // value in the NonLocalPointerDeps info.
1650   ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1651       ReverseNonLocalPtrDeps.find(RemInst);
1652   if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1653     SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8>
1654         ReversePtrDepsToAdd;
1655 
1656     for (ValueIsLoadPair P : ReversePtrDepIt->second) {
1657       assert(P.getPointer() != RemInst &&
1658              "Already removed NonLocalPointerDeps info for RemInst");
1659 
1660       NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1661 
1662       // The cache is not valid for any specific block anymore.
1663       NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1664 
1665       // Update any entries for RemInst to use the instruction after it.
1666       for (auto &Entry : NLPDI) {
1667         if (Entry.getResult().getInst() != RemInst)
1668           continue;
1669 
1670         // Convert to a dirty entry for the subsequent instruction.
1671         Entry.setResult(NewDirtyVal);
1672 
1673         if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1674           ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1675       }
1676 
1677       // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1678       // subsequent value may invalidate the sortedness.
1679       llvm::sort(NLPDI);
1680     }
1681 
1682     ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1683 
1684     while (!ReversePtrDepsToAdd.empty()) {
1685       ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert(
1686           ReversePtrDepsToAdd.back().second);
1687       ReversePtrDepsToAdd.pop_back();
1688     }
1689   }
1690 
1691   // Invalidate phis that use the removed instruction.
1692   PV.invalidateValue(RemInst);
1693 
1694   assert(!NonLocalDepsMap.count(RemInst) && "RemInst got reinserted?");
1695   LLVM_DEBUG(verifyRemoved(RemInst));
1696 }
1697 
1698 /// Verify that the specified instruction does not occur in our internal data
1699 /// structures.
1700 ///
1701 /// This function verifies by asserting in debug builds.
1702 void MemoryDependenceResults::verifyRemoved(Instruction *D) const {
1703 #ifndef NDEBUG
1704   for (const auto &DepKV : LocalDeps) {
1705     assert(DepKV.first != D && "Inst occurs in data structures");
1706     assert(DepKV.second.getInst() != D && "Inst occurs in data structures");
1707   }
1708 
1709   for (const auto &DepKV : NonLocalPointerDeps) {
1710     assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key");
1711     for (const auto &Entry : DepKV.second.NonLocalDeps)
1712       assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value");
1713   }
1714 
1715   for (const auto &DepKV : NonLocalDepsMap) {
1716     assert(DepKV.first != D && "Inst occurs in data structures");
1717     const PerInstNLInfo &INLD = DepKV.second;
1718     for (const auto &Entry : INLD.first)
1719       assert(Entry.getResult().getInst() != D &&
1720              "Inst occurs in data structures");
1721   }
1722 
1723   for (const auto &DepKV : ReverseLocalDeps) {
1724     assert(DepKV.first != D && "Inst occurs in data structures");
1725     for (Instruction *Inst : DepKV.second)
1726       assert(Inst != D && "Inst occurs in data structures");
1727   }
1728 
1729   for (const auto &DepKV : ReverseNonLocalDeps) {
1730     assert(DepKV.first != D && "Inst occurs in data structures");
1731     for (Instruction *Inst : DepKV.second)
1732       assert(Inst != D && "Inst occurs in data structures");
1733   }
1734 
1735   for (const auto &DepKV : ReverseNonLocalPtrDeps) {
1736     assert(DepKV.first != D && "Inst occurs in rev NLPD map");
1737 
1738     for (ValueIsLoadPair P : DepKV.second)
1739       assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) &&
1740              "Inst occurs in ReverseNonLocalPtrDeps map");
1741   }
1742 #endif
1743 }
1744 
1745 AnalysisKey MemoryDependenceAnalysis::Key;
1746 
1747 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
1748     : DefaultBlockScanLimit(BlockScanLimit) {}
1749 
1750 MemoryDependenceResults
1751 MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
1752   auto &AA = AM.getResult<AAManager>(F);
1753   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1754   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1755   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1756   auto &PV = AM.getResult<PhiValuesAnalysis>(F);
1757   return MemoryDependenceResults(AA, AC, TLI, DT, PV, DefaultBlockScanLimit);
1758 }
1759 
1760 char MemoryDependenceWrapperPass::ID = 0;
1761 
1762 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep",
1763                       "Memory Dependence Analysis", false, true)
1764 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1765 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1766 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1767 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1768 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
1769 INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep",
1770                     "Memory Dependence Analysis", false, true)
1771 
1772 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) {
1773   initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry());
1774 }
1775 
1776 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default;
1777 
1778 void MemoryDependenceWrapperPass::releaseMemory() {
1779   MemDep.reset();
1780 }
1781 
1782 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1783   AU.setPreservesAll();
1784   AU.addRequired<AssumptionCacheTracker>();
1785   AU.addRequired<DominatorTreeWrapperPass>();
1786   AU.addRequired<PhiValuesWrapperPass>();
1787   AU.addRequiredTransitive<AAResultsWrapperPass>();
1788   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1789 }
1790 
1791 bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA,
1792                                FunctionAnalysisManager::Invalidator &Inv) {
1793   // Check whether our analysis is preserved.
1794   auto PAC = PA.getChecker<MemoryDependenceAnalysis>();
1795   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
1796     // If not, give up now.
1797     return true;
1798 
1799   // Check whether the analyses we depend on became invalid for any reason.
1800   if (Inv.invalidate<AAManager>(F, PA) ||
1801       Inv.invalidate<AssumptionAnalysis>(F, PA) ||
1802       Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
1803       Inv.invalidate<PhiValuesAnalysis>(F, PA))
1804     return true;
1805 
1806   // Otherwise this analysis result remains valid.
1807   return false;
1808 }
1809 
1810 unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const {
1811   return DefaultBlockScanLimit;
1812 }
1813 
1814 bool MemoryDependenceWrapperPass::runOnFunction(Function &F) {
1815   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1816   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1817   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1818   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1819   auto &PV = getAnalysis<PhiValuesWrapperPass>().getResult();
1820   MemDep.emplace(AA, AC, TLI, DT, PV, BlockScanLimit);
1821   return false;
1822 }
1823