1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements an analysis that determines, for a given memory 10 // operation, what preceding memory operations it depends on. It builds on 11 // alias analysis information, and tries to provide a lazy, caching interface to 12 // a common kind of alias information query. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/MemoryLocation.h" 26 #include "llvm/Analysis/PHITransAddr.h" 27 #include "llvm/Analysis/PhiValues.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/Attributes.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/InstrTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/Metadata.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/PredIteratorCache.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/Use.h" 47 #include "llvm/IR/User.h" 48 #include "llvm/IR/Value.h" 49 #include "llvm/InitializePasses.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/AtomicOrdering.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Compiler.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/MathExtras.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <cstdint> 60 #include <iterator> 61 #include <utility> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "memdep" 66 67 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); 68 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); 69 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); 70 71 STATISTIC(NumCacheNonLocalPtr, 72 "Number of fully cached non-local ptr responses"); 73 STATISTIC(NumCacheDirtyNonLocalPtr, 74 "Number of cached, but dirty, non-local ptr responses"); 75 STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses"); 76 STATISTIC(NumCacheCompleteNonLocalPtr, 77 "Number of block queries that were completely cached"); 78 79 // Limit for the number of instructions to scan in a block. 80 81 static cl::opt<unsigned> BlockScanLimit( 82 "memdep-block-scan-limit", cl::Hidden, cl::init(100), 83 cl::desc("The number of instructions to scan in a block in memory " 84 "dependency analysis (default = 100)")); 85 86 static cl::opt<unsigned> 87 BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000), 88 cl::desc("The number of blocks to scan during memory " 89 "dependency analysis (default = 1000)")); 90 91 // Limit on the number of memdep results to process. 92 static const unsigned int NumResultsLimit = 100; 93 94 /// This is a helper function that removes Val from 'Inst's set in ReverseMap. 95 /// 96 /// If the set becomes empty, remove Inst's entry. 97 template <typename KeyTy> 98 static void 99 RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap, 100 Instruction *Inst, KeyTy Val) { 101 typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt = 102 ReverseMap.find(Inst); 103 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); 104 bool Found = InstIt->second.erase(Val); 105 assert(Found && "Invalid reverse map!"); 106 (void)Found; 107 if (InstIt->second.empty()) 108 ReverseMap.erase(InstIt); 109 } 110 111 /// If the given instruction references a specific memory location, fill in Loc 112 /// with the details, otherwise set Loc.Ptr to null. 113 /// 114 /// Returns a ModRefInfo value describing the general behavior of the 115 /// instruction. 116 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc, 117 const TargetLibraryInfo &TLI) { 118 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 119 if (LI->isUnordered()) { 120 Loc = MemoryLocation::get(LI); 121 return ModRefInfo::Ref; 122 } 123 if (LI->getOrdering() == AtomicOrdering::Monotonic) { 124 Loc = MemoryLocation::get(LI); 125 return ModRefInfo::ModRef; 126 } 127 Loc = MemoryLocation(); 128 return ModRefInfo::ModRef; 129 } 130 131 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 132 if (SI->isUnordered()) { 133 Loc = MemoryLocation::get(SI); 134 return ModRefInfo::Mod; 135 } 136 if (SI->getOrdering() == AtomicOrdering::Monotonic) { 137 Loc = MemoryLocation::get(SI); 138 return ModRefInfo::ModRef; 139 } 140 Loc = MemoryLocation(); 141 return ModRefInfo::ModRef; 142 } 143 144 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { 145 Loc = MemoryLocation::get(V); 146 return ModRefInfo::ModRef; 147 } 148 149 if (const CallInst *CI = isFreeCall(Inst, &TLI)) { 150 // calls to free() deallocate the entire structure 151 Loc = MemoryLocation::getAfter(CI->getArgOperand(0)); 152 return ModRefInfo::Mod; 153 } 154 155 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 156 switch (II->getIntrinsicID()) { 157 case Intrinsic::lifetime_start: 158 case Intrinsic::lifetime_end: 159 case Intrinsic::invariant_start: 160 Loc = MemoryLocation::getForArgument(II, 1, TLI); 161 // These intrinsics don't really modify the memory, but returning Mod 162 // will allow them to be handled conservatively. 163 return ModRefInfo::Mod; 164 case Intrinsic::invariant_end: 165 Loc = MemoryLocation::getForArgument(II, 2, TLI); 166 // These intrinsics don't really modify the memory, but returning Mod 167 // will allow them to be handled conservatively. 168 return ModRefInfo::Mod; 169 case Intrinsic::masked_load: 170 Loc = MemoryLocation::getForArgument(II, 0, TLI); 171 return ModRefInfo::Ref; 172 case Intrinsic::masked_store: 173 Loc = MemoryLocation::getForArgument(II, 1, TLI); 174 return ModRefInfo::Mod; 175 default: 176 break; 177 } 178 } 179 180 // Otherwise, just do the coarse-grained thing that always works. 181 if (Inst->mayWriteToMemory()) 182 return ModRefInfo::ModRef; 183 if (Inst->mayReadFromMemory()) 184 return ModRefInfo::Ref; 185 return ModRefInfo::NoModRef; 186 } 187 188 /// Private helper for finding the local dependencies of a call site. 189 MemDepResult MemoryDependenceResults::getCallDependencyFrom( 190 CallBase *Call, bool isReadOnlyCall, BasicBlock::iterator ScanIt, 191 BasicBlock *BB) { 192 unsigned Limit = getDefaultBlockScanLimit(); 193 194 // Walk backwards through the block, looking for dependencies. 195 while (ScanIt != BB->begin()) { 196 Instruction *Inst = &*--ScanIt; 197 // Debug intrinsics don't cause dependences and should not affect Limit 198 if (isa<DbgInfoIntrinsic>(Inst)) 199 continue; 200 201 // Limit the amount of scanning we do so we don't end up with quadratic 202 // running time on extreme testcases. 203 --Limit; 204 if (!Limit) 205 return MemDepResult::getUnknown(); 206 207 // If this inst is a memory op, get the pointer it accessed 208 MemoryLocation Loc; 209 ModRefInfo MR = GetLocation(Inst, Loc, TLI); 210 if (Loc.Ptr) { 211 // A simple instruction. 212 if (isModOrRefSet(AA.getModRefInfo(Call, Loc))) 213 return MemDepResult::getClobber(Inst); 214 continue; 215 } 216 217 if (auto *CallB = dyn_cast<CallBase>(Inst)) { 218 // If these two calls do not interfere, look past it. 219 if (isNoModRef(AA.getModRefInfo(Call, CallB))) { 220 // If the two calls are the same, return Inst as a Def, so that 221 // Call can be found redundant and eliminated. 222 if (isReadOnlyCall && !isModSet(MR) && 223 Call->isIdenticalToWhenDefined(CallB)) 224 return MemDepResult::getDef(Inst); 225 226 // Otherwise if the two calls don't interact (e.g. CallB is readnone) 227 // keep scanning. 228 continue; 229 } else 230 return MemDepResult::getClobber(Inst); 231 } 232 233 // If we could not obtain a pointer for the instruction and the instruction 234 // touches memory then assume that this is a dependency. 235 if (isModOrRefSet(MR)) 236 return MemDepResult::getClobber(Inst); 237 } 238 239 // No dependence found. If this is the entry block of the function, it is 240 // unknown, otherwise it is non-local. 241 if (BB != &BB->getParent()->getEntryBlock()) 242 return MemDepResult::getNonLocal(); 243 return MemDepResult::getNonFuncLocal(); 244 } 245 246 MemDepResult MemoryDependenceResults::getPointerDependencyFrom( 247 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 248 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit, 249 BatchAAResults &BatchAA) { 250 MemDepResult InvariantGroupDependency = MemDepResult::getUnknown(); 251 if (QueryInst != nullptr) { 252 if (auto *LI = dyn_cast<LoadInst>(QueryInst)) { 253 InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB); 254 255 if (InvariantGroupDependency.isDef()) 256 return InvariantGroupDependency; 257 } 258 } 259 MemDepResult SimpleDep = getSimplePointerDependencyFrom( 260 MemLoc, isLoad, ScanIt, BB, QueryInst, Limit, BatchAA); 261 if (SimpleDep.isDef()) 262 return SimpleDep; 263 // Non-local invariant group dependency indicates there is non local Def 264 // (it only returns nonLocal if it finds nonLocal def), which is better than 265 // local clobber and everything else. 266 if (InvariantGroupDependency.isNonLocal()) 267 return InvariantGroupDependency; 268 269 assert(InvariantGroupDependency.isUnknown() && 270 "InvariantGroupDependency should be only unknown at this point"); 271 return SimpleDep; 272 } 273 274 MemDepResult MemoryDependenceResults::getPointerDependencyFrom( 275 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 276 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) { 277 BatchAAResults BatchAA(AA); 278 return getPointerDependencyFrom(MemLoc, isLoad, ScanIt, BB, QueryInst, Limit, 279 BatchAA); 280 } 281 282 MemDepResult 283 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI, 284 BasicBlock *BB) { 285 286 if (!LI->hasMetadata(LLVMContext::MD_invariant_group)) 287 return MemDepResult::getUnknown(); 288 289 // Take the ptr operand after all casts and geps 0. This way we can search 290 // cast graph down only. 291 Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts(); 292 293 // It's is not safe to walk the use list of global value, because function 294 // passes aren't allowed to look outside their functions. 295 // FIXME: this could be fixed by filtering instructions from outside 296 // of current function. 297 if (isa<GlobalValue>(LoadOperand)) 298 return MemDepResult::getUnknown(); 299 300 // Queue to process all pointers that are equivalent to load operand. 301 SmallVector<const Value *, 8> LoadOperandsQueue; 302 LoadOperandsQueue.push_back(LoadOperand); 303 304 Instruction *ClosestDependency = nullptr; 305 // Order of instructions in uses list is unpredictible. In order to always 306 // get the same result, we will look for the closest dominance. 307 auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) { 308 assert(Other && "Must call it with not null instruction"); 309 if (Best == nullptr || DT.dominates(Best, Other)) 310 return Other; 311 return Best; 312 }; 313 314 // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case 315 // we will see all the instructions. This should be fixed in MSSA. 316 while (!LoadOperandsQueue.empty()) { 317 const Value *Ptr = LoadOperandsQueue.pop_back_val(); 318 assert(Ptr && !isa<GlobalValue>(Ptr) && 319 "Null or GlobalValue should not be inserted"); 320 321 for (const Use &Us : Ptr->uses()) { 322 auto *U = dyn_cast<Instruction>(Us.getUser()); 323 if (!U || U == LI || !DT.dominates(U, LI)) 324 continue; 325 326 // Bitcast or gep with zeros are using Ptr. Add to queue to check it's 327 // users. U = bitcast Ptr 328 if (isa<BitCastInst>(U)) { 329 LoadOperandsQueue.push_back(U); 330 continue; 331 } 332 // Gep with zeros is equivalent to bitcast. 333 // FIXME: we are not sure if some bitcast should be canonicalized to gep 0 334 // or gep 0 to bitcast because of SROA, so there are 2 forms. When 335 // typeless pointers will be ready then both cases will be gone 336 // (and this BFS also won't be needed). 337 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) 338 if (GEP->hasAllZeroIndices()) { 339 LoadOperandsQueue.push_back(U); 340 continue; 341 } 342 343 // If we hit load/store with the same invariant.group metadata (and the 344 // same pointer operand) we can assume that value pointed by pointer 345 // operand didn't change. 346 if ((isa<LoadInst>(U) || 347 (isa<StoreInst>(U) && 348 cast<StoreInst>(U)->getPointerOperand() == Ptr)) && 349 U->hasMetadata(LLVMContext::MD_invariant_group)) 350 ClosestDependency = GetClosestDependency(ClosestDependency, U); 351 } 352 } 353 354 if (!ClosestDependency) 355 return MemDepResult::getUnknown(); 356 if (ClosestDependency->getParent() == BB) 357 return MemDepResult::getDef(ClosestDependency); 358 // Def(U) can't be returned here because it is non-local. If local 359 // dependency won't be found then return nonLocal counting that the 360 // user will call getNonLocalPointerDependency, which will return cached 361 // result. 362 NonLocalDefsCache.try_emplace( 363 LI, NonLocalDepResult(ClosestDependency->getParent(), 364 MemDepResult::getDef(ClosestDependency), nullptr)); 365 ReverseNonLocalDefsCache[ClosestDependency].insert(LI); 366 return MemDepResult::getNonLocal(); 367 } 368 369 MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom( 370 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 371 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit, 372 BatchAAResults &BatchAA) { 373 bool isInvariantLoad = false; 374 375 unsigned DefaultLimit = getDefaultBlockScanLimit(); 376 if (!Limit) 377 Limit = &DefaultLimit; 378 379 // We must be careful with atomic accesses, as they may allow another thread 380 // to touch this location, clobbering it. We are conservative: if the 381 // QueryInst is not a simple (non-atomic) memory access, we automatically 382 // return getClobber. 383 // If it is simple, we know based on the results of 384 // "Compiler testing via a theory of sound optimisations in the C11/C++11 385 // memory model" in PLDI 2013, that a non-atomic location can only be 386 // clobbered between a pair of a release and an acquire action, with no 387 // access to the location in between. 388 // Here is an example for giving the general intuition behind this rule. 389 // In the following code: 390 // store x 0; 391 // release action; [1] 392 // acquire action; [4] 393 // %val = load x; 394 // It is unsafe to replace %val by 0 because another thread may be running: 395 // acquire action; [2] 396 // store x 42; 397 // release action; [3] 398 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val 399 // being 42. A key property of this program however is that if either 400 // 1 or 4 were missing, there would be a race between the store of 42 401 // either the store of 0 or the load (making the whole program racy). 402 // The paper mentioned above shows that the same property is respected 403 // by every program that can detect any optimization of that kind: either 404 // it is racy (undefined) or there is a release followed by an acquire 405 // between the pair of accesses under consideration. 406 407 // If the load is invariant, we "know" that it doesn't alias *any* write. We 408 // do want to respect mustalias results since defs are useful for value 409 // forwarding, but any mayalias write can be assumed to be noalias. 410 // Arguably, this logic should be pushed inside AliasAnalysis itself. 411 if (isLoad && QueryInst) { 412 LoadInst *LI = dyn_cast<LoadInst>(QueryInst); 413 if (LI && LI->hasMetadata(LLVMContext::MD_invariant_load)) 414 isInvariantLoad = true; 415 } 416 417 // Return "true" if and only if the instruction I is either a non-simple 418 // load or a non-simple store. 419 auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool { 420 if (auto *LI = dyn_cast<LoadInst>(I)) 421 return !LI->isSimple(); 422 if (auto *SI = dyn_cast<StoreInst>(I)) 423 return !SI->isSimple(); 424 return false; 425 }; 426 427 // Return "true" if I is not a load and not a store, but it does access 428 // memory. 429 auto isOtherMemAccess = [](Instruction *I) -> bool { 430 return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory(); 431 }; 432 433 // Walk backwards through the basic block, looking for dependencies. 434 while (ScanIt != BB->begin()) { 435 Instruction *Inst = &*--ScanIt; 436 437 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 438 // Debug intrinsics don't (and can't) cause dependencies. 439 if (isa<DbgInfoIntrinsic>(II)) 440 continue; 441 442 // Limit the amount of scanning we do so we don't end up with quadratic 443 // running time on extreme testcases. 444 --*Limit; 445 if (!*Limit) 446 return MemDepResult::getUnknown(); 447 448 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 449 // If we reach a lifetime begin or end marker, then the query ends here 450 // because the value is undefined. 451 Intrinsic::ID ID = II->getIntrinsicID(); 452 switch (ID) { 453 case Intrinsic::lifetime_start: { 454 // FIXME: This only considers queries directly on the invariant-tagged 455 // pointer, not on query pointers that are indexed off of them. It'd 456 // be nice to handle that at some point (the right approach is to use 457 // GetPointerBaseWithConstantOffset). 458 MemoryLocation ArgLoc = MemoryLocation::getAfter(II->getArgOperand(1)); 459 if (BatchAA.isMustAlias(ArgLoc, MemLoc)) 460 return MemDepResult::getDef(II); 461 continue; 462 } 463 case Intrinsic::masked_load: 464 case Intrinsic::masked_store: { 465 MemoryLocation Loc; 466 /*ModRefInfo MR =*/ GetLocation(II, Loc, TLI); 467 AliasResult R = BatchAA.alias(Loc, MemLoc); 468 if (R == AliasResult::NoAlias) 469 continue; 470 if (R == AliasResult::MustAlias) 471 return MemDepResult::getDef(II); 472 if (ID == Intrinsic::masked_load) 473 continue; 474 return MemDepResult::getClobber(II); 475 } 476 } 477 } 478 479 // Values depend on loads if the pointers are must aliased. This means 480 // that a load depends on another must aliased load from the same value. 481 // One exception is atomic loads: a value can depend on an atomic load that 482 // it does not alias with when this atomic load indicates that another 483 // thread may be accessing the location. 484 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 485 // While volatile access cannot be eliminated, they do not have to clobber 486 // non-aliasing locations, as normal accesses, for example, can be safely 487 // reordered with volatile accesses. 488 if (LI->isVolatile()) { 489 if (!QueryInst) 490 // Original QueryInst *may* be volatile 491 return MemDepResult::getClobber(LI); 492 if (QueryInst->isVolatile()) 493 // Ordering required if QueryInst is itself volatile 494 return MemDepResult::getClobber(LI); 495 // Otherwise, volatile doesn't imply any special ordering 496 } 497 498 // Atomic loads have complications involved. 499 // A Monotonic (or higher) load is OK if the query inst is itself not 500 // atomic. 501 // FIXME: This is overly conservative. 502 if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) { 503 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 504 isOtherMemAccess(QueryInst)) 505 return MemDepResult::getClobber(LI); 506 if (LI->getOrdering() != AtomicOrdering::Monotonic) 507 return MemDepResult::getClobber(LI); 508 } 509 510 MemoryLocation LoadLoc = MemoryLocation::get(LI); 511 512 // If we found a pointer, check if it could be the same as our pointer. 513 AliasResult R = BatchAA.alias(LoadLoc, MemLoc); 514 515 if (isLoad) { 516 if (R == AliasResult::NoAlias) 517 continue; 518 519 // Must aliased loads are defs of each other. 520 if (R == AliasResult::MustAlias) 521 return MemDepResult::getDef(Inst); 522 523 // If we have a partial alias, then return this as a clobber for the 524 // client to handle. 525 if (R == AliasResult::PartialAlias && R.hasOffset()) { 526 ClobberOffsets[LI] = R.getOffset(); 527 return MemDepResult::getClobber(Inst); 528 } 529 530 // Random may-alias loads don't depend on each other without a 531 // dependence. 532 continue; 533 } 534 535 // Stores don't depend on other no-aliased accesses. 536 if (R == AliasResult::NoAlias) 537 continue; 538 539 // Stores don't alias loads from read-only memory. 540 if (BatchAA.pointsToConstantMemory(LoadLoc)) 541 continue; 542 543 // Stores depend on may/must aliased loads. 544 return MemDepResult::getDef(Inst); 545 } 546 547 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 548 // Atomic stores have complications involved. 549 // A Monotonic store is OK if the query inst is itself not atomic. 550 // FIXME: This is overly conservative. 551 if (!SI->isUnordered() && SI->isAtomic()) { 552 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 553 isOtherMemAccess(QueryInst)) 554 return MemDepResult::getClobber(SI); 555 if (SI->getOrdering() != AtomicOrdering::Monotonic) 556 return MemDepResult::getClobber(SI); 557 } 558 559 // While volatile access cannot be eliminated, they do not have to clobber 560 // non-aliasing locations, as normal accesses can for example be reordered 561 // with volatile accesses. 562 if (SI->isVolatile()) 563 if (!QueryInst || QueryInst->isVolatile()) 564 return MemDepResult::getClobber(SI); 565 566 // If alias analysis can tell that this store is guaranteed to not modify 567 // the query pointer, ignore it. Use getModRefInfo to handle cases where 568 // the query pointer points to constant memory etc. 569 if (!isModOrRefSet(BatchAA.getModRefInfo(SI, MemLoc))) 570 continue; 571 572 // Ok, this store might clobber the query pointer. Check to see if it is 573 // a must alias: in this case, we want to return this as a def. 574 // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above. 575 MemoryLocation StoreLoc = MemoryLocation::get(SI); 576 577 // If we found a pointer, check if it could be the same as our pointer. 578 AliasResult R = BatchAA.alias(StoreLoc, MemLoc); 579 580 if (R == AliasResult::NoAlias) 581 continue; 582 if (R == AliasResult::MustAlias) 583 return MemDepResult::getDef(Inst); 584 if (isInvariantLoad) 585 continue; 586 return MemDepResult::getClobber(Inst); 587 } 588 589 // If this is an allocation, and if we know that the accessed pointer is to 590 // the allocation, return Def. This means that there is no dependence and 591 // the access can be optimized based on that. For example, a load could 592 // turn into undef. Note that we can bypass the allocation itself when 593 // looking for a clobber in many cases; that's an alias property and is 594 // handled by BasicAA. 595 if (isa<AllocaInst>(Inst) || isNoAliasCall(Inst)) { 596 const Value *AccessPtr = getUnderlyingObject(MemLoc.Ptr); 597 if (AccessPtr == Inst || BatchAA.isMustAlias(Inst, AccessPtr)) 598 return MemDepResult::getDef(Inst); 599 } 600 601 if (isInvariantLoad) 602 continue; 603 604 // A release fence requires that all stores complete before it, but does 605 // not prevent the reordering of following loads or stores 'before' the 606 // fence. As a result, we look past it when finding a dependency for 607 // loads. DSE uses this to find preceding stores to delete and thus we 608 // can't bypass the fence if the query instruction is a store. 609 if (FenceInst *FI = dyn_cast<FenceInst>(Inst)) 610 if (isLoad && FI->getOrdering() == AtomicOrdering::Release) 611 continue; 612 613 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. 614 ModRefInfo MR = BatchAA.getModRefInfo(Inst, MemLoc); 615 // If necessary, perform additional analysis. 616 if (isModAndRefSet(MR)) 617 MR = BatchAA.callCapturesBefore(Inst, MemLoc, &DT); 618 switch (clearMust(MR)) { 619 case ModRefInfo::NoModRef: 620 // If the call has no effect on the queried pointer, just ignore it. 621 continue; 622 case ModRefInfo::Mod: 623 return MemDepResult::getClobber(Inst); 624 case ModRefInfo::Ref: 625 // If the call is known to never store to the pointer, and if this is a 626 // load query, we can safely ignore it (scan past it). 627 if (isLoad) 628 continue; 629 LLVM_FALLTHROUGH; 630 default: 631 // Otherwise, there is a potential dependence. Return a clobber. 632 return MemDepResult::getClobber(Inst); 633 } 634 } 635 636 // No dependence found. If this is the entry block of the function, it is 637 // unknown, otherwise it is non-local. 638 if (BB != &BB->getParent()->getEntryBlock()) 639 return MemDepResult::getNonLocal(); 640 return MemDepResult::getNonFuncLocal(); 641 } 642 643 MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) { 644 ClobberOffsets.clear(); 645 Instruction *ScanPos = QueryInst; 646 647 // Check for a cached result 648 MemDepResult &LocalCache = LocalDeps[QueryInst]; 649 650 // If the cached entry is non-dirty, just return it. Note that this depends 651 // on MemDepResult's default constructing to 'dirty'. 652 if (!LocalCache.isDirty()) 653 return LocalCache; 654 655 // Otherwise, if we have a dirty entry, we know we can start the scan at that 656 // instruction, which may save us some work. 657 if (Instruction *Inst = LocalCache.getInst()) { 658 ScanPos = Inst; 659 660 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); 661 } 662 663 BasicBlock *QueryParent = QueryInst->getParent(); 664 665 // Do the scan. 666 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { 667 // No dependence found. If this is the entry block of the function, it is 668 // unknown, otherwise it is non-local. 669 if (QueryParent != &QueryParent->getParent()->getEntryBlock()) 670 LocalCache = MemDepResult::getNonLocal(); 671 else 672 LocalCache = MemDepResult::getNonFuncLocal(); 673 } else { 674 MemoryLocation MemLoc; 675 ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI); 676 if (MemLoc.Ptr) { 677 // If we can do a pointer scan, make it happen. 678 bool isLoad = !isModSet(MR); 679 if (auto *II = dyn_cast<IntrinsicInst>(QueryInst)) 680 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start; 681 682 LocalCache = 683 getPointerDependencyFrom(MemLoc, isLoad, ScanPos->getIterator(), 684 QueryParent, QueryInst, nullptr); 685 } else if (auto *QueryCall = dyn_cast<CallBase>(QueryInst)) { 686 bool isReadOnly = AA.onlyReadsMemory(QueryCall); 687 LocalCache = getCallDependencyFrom(QueryCall, isReadOnly, 688 ScanPos->getIterator(), QueryParent); 689 } else 690 // Non-memory instruction. 691 LocalCache = MemDepResult::getUnknown(); 692 } 693 694 // Remember the result! 695 if (Instruction *I = LocalCache.getInst()) 696 ReverseLocalDeps[I].insert(QueryInst); 697 698 return LocalCache; 699 } 700 701 #ifndef NDEBUG 702 /// This method is used when -debug is specified to verify that cache arrays 703 /// are properly kept sorted. 704 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache, 705 int Count = -1) { 706 if (Count == -1) 707 Count = Cache.size(); 708 assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) && 709 "Cache isn't sorted!"); 710 } 711 #endif 712 713 const MemoryDependenceResults::NonLocalDepInfo & 714 MemoryDependenceResults::getNonLocalCallDependency(CallBase *QueryCall) { 715 assert(getDependency(QueryCall).isNonLocal() && 716 "getNonLocalCallDependency should only be used on calls with " 717 "non-local deps!"); 718 PerInstNLInfo &CacheP = NonLocalDepsMap[QueryCall]; 719 NonLocalDepInfo &Cache = CacheP.first; 720 721 // This is the set of blocks that need to be recomputed. In the cached case, 722 // this can happen due to instructions being deleted etc. In the uncached 723 // case, this starts out as the set of predecessors we care about. 724 SmallVector<BasicBlock *, 32> DirtyBlocks; 725 726 if (!Cache.empty()) { 727 // Okay, we have a cache entry. If we know it is not dirty, just return it 728 // with no computation. 729 if (!CacheP.second) { 730 ++NumCacheNonLocal; 731 return Cache; 732 } 733 734 // If we already have a partially computed set of results, scan them to 735 // determine what is dirty, seeding our initial DirtyBlocks worklist. 736 for (auto &Entry : Cache) 737 if (Entry.getResult().isDirty()) 738 DirtyBlocks.push_back(Entry.getBB()); 739 740 // Sort the cache so that we can do fast binary search lookups below. 741 llvm::sort(Cache); 742 743 ++NumCacheDirtyNonLocal; 744 // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " 745 // << Cache.size() << " cached: " << *QueryInst; 746 } else { 747 // Seed DirtyBlocks with each of the preds of QueryInst's block. 748 BasicBlock *QueryBB = QueryCall->getParent(); 749 append_range(DirtyBlocks, PredCache.get(QueryBB)); 750 ++NumUncacheNonLocal; 751 } 752 753 // isReadonlyCall - If this is a read-only call, we can be more aggressive. 754 bool isReadonlyCall = AA.onlyReadsMemory(QueryCall); 755 756 SmallPtrSet<BasicBlock *, 32> Visited; 757 758 unsigned NumSortedEntries = Cache.size(); 759 LLVM_DEBUG(AssertSorted(Cache)); 760 761 // Iterate while we still have blocks to update. 762 while (!DirtyBlocks.empty()) { 763 BasicBlock *DirtyBB = DirtyBlocks.pop_back_val(); 764 765 // Already processed this block? 766 if (!Visited.insert(DirtyBB).second) 767 continue; 768 769 // Do a binary search to see if we already have an entry for this block in 770 // the cache set. If so, find it. 771 LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries)); 772 NonLocalDepInfo::iterator Entry = 773 std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries, 774 NonLocalDepEntry(DirtyBB)); 775 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB) 776 --Entry; 777 778 NonLocalDepEntry *ExistingResult = nullptr; 779 if (Entry != Cache.begin() + NumSortedEntries && 780 Entry->getBB() == DirtyBB) { 781 // If we already have an entry, and if it isn't already dirty, the block 782 // is done. 783 if (!Entry->getResult().isDirty()) 784 continue; 785 786 // Otherwise, remember this slot so we can update the value. 787 ExistingResult = &*Entry; 788 } 789 790 // If the dirty entry has a pointer, start scanning from it so we don't have 791 // to rescan the entire block. 792 BasicBlock::iterator ScanPos = DirtyBB->end(); 793 if (ExistingResult) { 794 if (Instruction *Inst = ExistingResult->getResult().getInst()) { 795 ScanPos = Inst->getIterator(); 796 // We're removing QueryInst's use of Inst. 797 RemoveFromReverseMap<Instruction *>(ReverseNonLocalDeps, Inst, 798 QueryCall); 799 } 800 } 801 802 // Find out if this block has a local dependency for QueryInst. 803 MemDepResult Dep; 804 805 if (ScanPos != DirtyBB->begin()) { 806 Dep = getCallDependencyFrom(QueryCall, isReadonlyCall, ScanPos, DirtyBB); 807 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { 808 // No dependence found. If this is the entry block of the function, it is 809 // a clobber, otherwise it is unknown. 810 Dep = MemDepResult::getNonLocal(); 811 } else { 812 Dep = MemDepResult::getNonFuncLocal(); 813 } 814 815 // If we had a dirty entry for the block, update it. Otherwise, just add 816 // a new entry. 817 if (ExistingResult) 818 ExistingResult->setResult(Dep); 819 else 820 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); 821 822 // If the block has a dependency (i.e. it isn't completely transparent to 823 // the value), remember the association! 824 if (!Dep.isNonLocal()) { 825 // Keep the ReverseNonLocalDeps map up to date so we can efficiently 826 // update this when we remove instructions. 827 if (Instruction *Inst = Dep.getInst()) 828 ReverseNonLocalDeps[Inst].insert(QueryCall); 829 } else { 830 831 // If the block *is* completely transparent to the load, we need to check 832 // the predecessors of this block. Add them to our worklist. 833 append_range(DirtyBlocks, PredCache.get(DirtyBB)); 834 } 835 } 836 837 return Cache; 838 } 839 840 void MemoryDependenceResults::getNonLocalPointerDependency( 841 Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) { 842 const MemoryLocation Loc = MemoryLocation::get(QueryInst); 843 bool isLoad = isa<LoadInst>(QueryInst); 844 BasicBlock *FromBB = QueryInst->getParent(); 845 assert(FromBB); 846 847 assert(Loc.Ptr->getType()->isPointerTy() && 848 "Can't get pointer deps of a non-pointer!"); 849 Result.clear(); 850 { 851 // Check if there is cached Def with invariant.group. 852 auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst); 853 if (NonLocalDefIt != NonLocalDefsCache.end()) { 854 Result.push_back(NonLocalDefIt->second); 855 ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()] 856 .erase(QueryInst); 857 NonLocalDefsCache.erase(NonLocalDefIt); 858 return; 859 } 860 } 861 // This routine does not expect to deal with volatile instructions. 862 // Doing so would require piping through the QueryInst all the way through. 863 // TODO: volatiles can't be elided, but they can be reordered with other 864 // non-volatile accesses. 865 866 // We currently give up on any instruction which is ordered, but we do handle 867 // atomic instructions which are unordered. 868 // TODO: Handle ordered instructions 869 auto isOrdered = [](Instruction *Inst) { 870 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 871 return !LI->isUnordered(); 872 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 873 return !SI->isUnordered(); 874 } 875 return false; 876 }; 877 if (QueryInst->isVolatile() || isOrdered(QueryInst)) { 878 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(), 879 const_cast<Value *>(Loc.Ptr))); 880 return; 881 } 882 const DataLayout &DL = FromBB->getModule()->getDataLayout(); 883 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC); 884 885 // This is the set of blocks we've inspected, and the pointer we consider in 886 // each block. Because of critical edges, we currently bail out if querying 887 // a block with multiple different pointers. This can happen during PHI 888 // translation. 889 DenseMap<BasicBlock *, Value *> Visited; 890 if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB, 891 Result, Visited, true)) 892 return; 893 Result.clear(); 894 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(), 895 const_cast<Value *>(Loc.Ptr))); 896 } 897 898 /// Compute the memdep value for BB with Pointer/PointeeSize using either 899 /// cached information in Cache or by doing a lookup (which may use dirty cache 900 /// info if available). 901 /// 902 /// If we do a lookup, add the result to the cache. 903 MemDepResult MemoryDependenceResults::getNonLocalInfoForBlock( 904 Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad, 905 BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries, 906 BatchAAResults &BatchAA) { 907 908 bool isInvariantLoad = false; 909 910 if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst)) 911 isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load); 912 913 // Do a binary search to see if we already have an entry for this block in 914 // the cache set. If so, find it. 915 NonLocalDepInfo::iterator Entry = std::upper_bound( 916 Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB)); 917 if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB) 918 --Entry; 919 920 NonLocalDepEntry *ExistingResult = nullptr; 921 if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB) 922 ExistingResult = &*Entry; 923 924 // Use cached result for invariant load only if there is no dependency for non 925 // invariant load. In this case invariant load can not have any dependency as 926 // well. 927 if (ExistingResult && isInvariantLoad && 928 !ExistingResult->getResult().isNonFuncLocal()) 929 ExistingResult = nullptr; 930 931 // If we have a cached entry, and it is non-dirty, use it as the value for 932 // this dependency. 933 if (ExistingResult && !ExistingResult->getResult().isDirty()) { 934 ++NumCacheNonLocalPtr; 935 return ExistingResult->getResult(); 936 } 937 938 // Otherwise, we have to scan for the value. If we have a dirty cache 939 // entry, start scanning from its position, otherwise we scan from the end 940 // of the block. 941 BasicBlock::iterator ScanPos = BB->end(); 942 if (ExistingResult && ExistingResult->getResult().getInst()) { 943 assert(ExistingResult->getResult().getInst()->getParent() == BB && 944 "Instruction invalidated?"); 945 ++NumCacheDirtyNonLocalPtr; 946 ScanPos = ExistingResult->getResult().getInst()->getIterator(); 947 948 // Eliminating the dirty entry from 'Cache', so update the reverse info. 949 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 950 RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey); 951 } else { 952 ++NumUncacheNonLocalPtr; 953 } 954 955 // Scan the block for the dependency. 956 MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, 957 QueryInst, nullptr, BatchAA); 958 959 // Don't cache results for invariant load. 960 if (isInvariantLoad) 961 return Dep; 962 963 // If we had a dirty entry for the block, update it. Otherwise, just add 964 // a new entry. 965 if (ExistingResult) 966 ExistingResult->setResult(Dep); 967 else 968 Cache->push_back(NonLocalDepEntry(BB, Dep)); 969 970 // If the block has a dependency (i.e. it isn't completely transparent to 971 // the value), remember the reverse association because we just added it 972 // to Cache! 973 if (!Dep.isDef() && !Dep.isClobber()) 974 return Dep; 975 976 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently 977 // update MemDep when we remove instructions. 978 Instruction *Inst = Dep.getInst(); 979 assert(Inst && "Didn't depend on anything?"); 980 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 981 ReverseNonLocalPtrDeps[Inst].insert(CacheKey); 982 return Dep; 983 } 984 985 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the 986 /// array that are already properly ordered. 987 /// 988 /// This is optimized for the case when only a few entries are added. 989 static void 990 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache, 991 unsigned NumSortedEntries) { 992 switch (Cache.size() - NumSortedEntries) { 993 case 0: 994 // done, no new entries. 995 break; 996 case 2: { 997 // Two new entries, insert the last one into place. 998 NonLocalDepEntry Val = Cache.back(); 999 Cache.pop_back(); 1000 MemoryDependenceResults::NonLocalDepInfo::iterator Entry = 1001 std::upper_bound(Cache.begin(), Cache.end() - 1, Val); 1002 Cache.insert(Entry, Val); 1003 LLVM_FALLTHROUGH; 1004 } 1005 case 1: 1006 // One new entry, Just insert the new value at the appropriate position. 1007 if (Cache.size() != 1) { 1008 NonLocalDepEntry Val = Cache.back(); 1009 Cache.pop_back(); 1010 MemoryDependenceResults::NonLocalDepInfo::iterator Entry = 1011 llvm::upper_bound(Cache, Val); 1012 Cache.insert(Entry, Val); 1013 } 1014 break; 1015 default: 1016 // Added many values, do a full scale sort. 1017 llvm::sort(Cache); 1018 break; 1019 } 1020 } 1021 1022 /// Perform a dependency query based on pointer/pointeesize starting at the end 1023 /// of StartBB. 1024 /// 1025 /// Add any clobber/def results to the results vector and keep track of which 1026 /// blocks are visited in 'Visited'. 1027 /// 1028 /// This has special behavior for the first block queries (when SkipFirstBlock 1029 /// is true). In this special case, it ignores the contents of the specified 1030 /// block and starts returning dependence info for its predecessors. 1031 /// 1032 /// This function returns true on success, or false to indicate that it could 1033 /// not compute dependence information for some reason. This should be treated 1034 /// as a clobber dependence on the first instruction in the predecessor block. 1035 bool MemoryDependenceResults::getNonLocalPointerDepFromBB( 1036 Instruction *QueryInst, const PHITransAddr &Pointer, 1037 const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB, 1038 SmallVectorImpl<NonLocalDepResult> &Result, 1039 DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock, 1040 bool IsIncomplete) { 1041 // Look up the cached info for Pointer. 1042 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); 1043 1044 // Set up a temporary NLPI value. If the map doesn't yet have an entry for 1045 // CacheKey, this value will be inserted as the associated value. Otherwise, 1046 // it'll be ignored, and we'll have to check to see if the cached size and 1047 // aa tags are consistent with the current query. 1048 NonLocalPointerInfo InitialNLPI; 1049 InitialNLPI.Size = Loc.Size; 1050 InitialNLPI.AATags = Loc.AATags; 1051 1052 bool isInvariantLoad = false; 1053 if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst)) 1054 isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load); 1055 1056 // Get the NLPI for CacheKey, inserting one into the map if it doesn't 1057 // already have one. 1058 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = 1059 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); 1060 NonLocalPointerInfo *CacheInfo = &Pair.first->second; 1061 1062 // If we already have a cache entry for this CacheKey, we may need to do some 1063 // work to reconcile the cache entry and the current query. 1064 // Invariant loads don't participate in caching. Thus no need to reconcile. 1065 if (!isInvariantLoad && !Pair.second) { 1066 if (CacheInfo->Size != Loc.Size) { 1067 bool ThrowOutEverything; 1068 if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) { 1069 // FIXME: We may be able to do better in the face of results with mixed 1070 // precision. We don't appear to get them in practice, though, so just 1071 // be conservative. 1072 ThrowOutEverything = 1073 CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() || 1074 CacheInfo->Size.getValue() < Loc.Size.getValue(); 1075 } else { 1076 // For our purposes, unknown size > all others. 1077 ThrowOutEverything = !Loc.Size.hasValue(); 1078 } 1079 1080 if (ThrowOutEverything) { 1081 // The query's Size is greater than the cached one. Throw out the 1082 // cached data and proceed with the query at the greater size. 1083 CacheInfo->Pair = BBSkipFirstBlockPair(); 1084 CacheInfo->Size = Loc.Size; 1085 for (auto &Entry : CacheInfo->NonLocalDeps) 1086 if (Instruction *Inst = Entry.getResult().getInst()) 1087 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1088 CacheInfo->NonLocalDeps.clear(); 1089 // The cache is cleared (in the above line) so we will have lost 1090 // information about blocks we have already visited. We therefore must 1091 // assume that the cache information is incomplete. 1092 IsIncomplete = true; 1093 } else { 1094 // This query's Size is less than the cached one. Conservatively restart 1095 // the query using the greater size. 1096 return getNonLocalPointerDepFromBB( 1097 QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad, 1098 StartBB, Result, Visited, SkipFirstBlock, IsIncomplete); 1099 } 1100 } 1101 1102 // If the query's AATags are inconsistent with the cached one, 1103 // conservatively throw out the cached data and restart the query with 1104 // no tag if needed. 1105 if (CacheInfo->AATags != Loc.AATags) { 1106 if (CacheInfo->AATags) { 1107 CacheInfo->Pair = BBSkipFirstBlockPair(); 1108 CacheInfo->AATags = AAMDNodes(); 1109 for (auto &Entry : CacheInfo->NonLocalDeps) 1110 if (Instruction *Inst = Entry.getResult().getInst()) 1111 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1112 CacheInfo->NonLocalDeps.clear(); 1113 // The cache is cleared (in the above line) so we will have lost 1114 // information about blocks we have already visited. We therefore must 1115 // assume that the cache information is incomplete. 1116 IsIncomplete = true; 1117 } 1118 if (Loc.AATags) 1119 return getNonLocalPointerDepFromBB( 1120 QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result, 1121 Visited, SkipFirstBlock, IsIncomplete); 1122 } 1123 } 1124 1125 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; 1126 1127 // If we have valid cached information for exactly the block we are 1128 // investigating, just return it with no recomputation. 1129 // Don't use cached information for invariant loads since it is valid for 1130 // non-invariant loads only. 1131 if (!IsIncomplete && !isInvariantLoad && 1132 CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { 1133 // We have a fully cached result for this query then we can just return the 1134 // cached results and populate the visited set. However, we have to verify 1135 // that we don't already have conflicting results for these blocks. Check 1136 // to ensure that if a block in the results set is in the visited set that 1137 // it was for the same pointer query. 1138 if (!Visited.empty()) { 1139 for (auto &Entry : *Cache) { 1140 DenseMap<BasicBlock *, Value *>::iterator VI = 1141 Visited.find(Entry.getBB()); 1142 if (VI == Visited.end() || VI->second == Pointer.getAddr()) 1143 continue; 1144 1145 // We have a pointer mismatch in a block. Just return false, saying 1146 // that something was clobbered in this result. We could also do a 1147 // non-fully cached query, but there is little point in doing this. 1148 return false; 1149 } 1150 } 1151 1152 Value *Addr = Pointer.getAddr(); 1153 for (auto &Entry : *Cache) { 1154 Visited.insert(std::make_pair(Entry.getBB(), Addr)); 1155 if (Entry.getResult().isNonLocal()) { 1156 continue; 1157 } 1158 1159 if (DT.isReachableFromEntry(Entry.getBB())) { 1160 Result.push_back( 1161 NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr)); 1162 } 1163 } 1164 ++NumCacheCompleteNonLocalPtr; 1165 return true; 1166 } 1167 1168 // Otherwise, either this is a new block, a block with an invalid cache 1169 // pointer or one that we're about to invalidate by putting more info into 1170 // it than its valid cache info. If empty and not explicitly indicated as 1171 // incomplete, the result will be valid cache info, otherwise it isn't. 1172 // 1173 // Invariant loads don't affect cache in any way thus no need to update 1174 // CacheInfo as well. 1175 if (!isInvariantLoad) { 1176 if (!IsIncomplete && Cache->empty()) 1177 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); 1178 else 1179 CacheInfo->Pair = BBSkipFirstBlockPair(); 1180 } 1181 1182 SmallVector<BasicBlock *, 32> Worklist; 1183 Worklist.push_back(StartBB); 1184 1185 // PredList used inside loop. 1186 SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList; 1187 1188 // Keep track of the entries that we know are sorted. Previously cached 1189 // entries will all be sorted. The entries we add we only sort on demand (we 1190 // don't insert every element into its sorted position). We know that we 1191 // won't get any reuse from currently inserted values, because we don't 1192 // revisit blocks after we insert info for them. 1193 unsigned NumSortedEntries = Cache->size(); 1194 unsigned WorklistEntries = BlockNumberLimit; 1195 bool GotWorklistLimit = false; 1196 LLVM_DEBUG(AssertSorted(*Cache)); 1197 1198 BatchAAResults BatchAA(AA); 1199 while (!Worklist.empty()) { 1200 BasicBlock *BB = Worklist.pop_back_val(); 1201 1202 // If we do process a large number of blocks it becomes very expensive and 1203 // likely it isn't worth worrying about 1204 if (Result.size() > NumResultsLimit) { 1205 Worklist.clear(); 1206 // Sort it now (if needed) so that recursive invocations of 1207 // getNonLocalPointerDepFromBB and other routines that could reuse the 1208 // cache value will only see properly sorted cache arrays. 1209 if (Cache && NumSortedEntries != Cache->size()) { 1210 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1211 } 1212 // Since we bail out, the "Cache" set won't contain all of the 1213 // results for the query. This is ok (we can still use it to accelerate 1214 // specific block queries) but we can't do the fastpath "return all 1215 // results from the set". Clear out the indicator for this. 1216 CacheInfo->Pair = BBSkipFirstBlockPair(); 1217 return false; 1218 } 1219 1220 // Skip the first block if we have it. 1221 if (!SkipFirstBlock) { 1222 // Analyze the dependency of *Pointer in FromBB. See if we already have 1223 // been here. 1224 assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); 1225 1226 // Get the dependency info for Pointer in BB. If we have cached 1227 // information, we will use it, otherwise we compute it. 1228 LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries)); 1229 MemDepResult Dep = getNonLocalInfoForBlock( 1230 QueryInst, Loc, isLoad, BB, Cache, NumSortedEntries, BatchAA); 1231 1232 // If we got a Def or Clobber, add this to the list of results. 1233 if (!Dep.isNonLocal()) { 1234 if (DT.isReachableFromEntry(BB)) { 1235 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); 1236 continue; 1237 } 1238 } 1239 } 1240 1241 // If 'Pointer' is an instruction defined in this block, then we need to do 1242 // phi translation to change it into a value live in the predecessor block. 1243 // If not, we just add the predecessors to the worklist and scan them with 1244 // the same Pointer. 1245 if (!Pointer.NeedsPHITranslationFromBlock(BB)) { 1246 SkipFirstBlock = false; 1247 SmallVector<BasicBlock *, 16> NewBlocks; 1248 for (BasicBlock *Pred : PredCache.get(BB)) { 1249 // Verify that we haven't looked at this block yet. 1250 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = 1251 Visited.insert(std::make_pair(Pred, Pointer.getAddr())); 1252 if (InsertRes.second) { 1253 // First time we've looked at *PI. 1254 NewBlocks.push_back(Pred); 1255 continue; 1256 } 1257 1258 // If we have seen this block before, but it was with a different 1259 // pointer then we have a phi translation failure and we have to treat 1260 // this as a clobber. 1261 if (InsertRes.first->second != Pointer.getAddr()) { 1262 // Make sure to clean up the Visited map before continuing on to 1263 // PredTranslationFailure. 1264 for (unsigned i = 0; i < NewBlocks.size(); i++) 1265 Visited.erase(NewBlocks[i]); 1266 goto PredTranslationFailure; 1267 } 1268 } 1269 if (NewBlocks.size() > WorklistEntries) { 1270 // Make sure to clean up the Visited map before continuing on to 1271 // PredTranslationFailure. 1272 for (unsigned i = 0; i < NewBlocks.size(); i++) 1273 Visited.erase(NewBlocks[i]); 1274 GotWorklistLimit = true; 1275 goto PredTranslationFailure; 1276 } 1277 WorklistEntries -= NewBlocks.size(); 1278 Worklist.append(NewBlocks.begin(), NewBlocks.end()); 1279 continue; 1280 } 1281 1282 // We do need to do phi translation, if we know ahead of time we can't phi 1283 // translate this value, don't even try. 1284 if (!Pointer.IsPotentiallyPHITranslatable()) 1285 goto PredTranslationFailure; 1286 1287 // We may have added values to the cache list before this PHI translation. 1288 // If so, we haven't done anything to ensure that the cache remains sorted. 1289 // Sort it now (if needed) so that recursive invocations of 1290 // getNonLocalPointerDepFromBB and other routines that could reuse the cache 1291 // value will only see properly sorted cache arrays. 1292 if (Cache && NumSortedEntries != Cache->size()) { 1293 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1294 NumSortedEntries = Cache->size(); 1295 } 1296 Cache = nullptr; 1297 1298 PredList.clear(); 1299 for (BasicBlock *Pred : PredCache.get(BB)) { 1300 PredList.push_back(std::make_pair(Pred, Pointer)); 1301 1302 // Get the PHI translated pointer in this predecessor. This can fail if 1303 // not translatable, in which case the getAddr() returns null. 1304 PHITransAddr &PredPointer = PredList.back().second; 1305 PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false); 1306 Value *PredPtrVal = PredPointer.getAddr(); 1307 1308 // Check to see if we have already visited this pred block with another 1309 // pointer. If so, we can't do this lookup. This failure can occur 1310 // with PHI translation when a critical edge exists and the PHI node in 1311 // the successor translates to a pointer value different than the 1312 // pointer the block was first analyzed with. 1313 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = 1314 Visited.insert(std::make_pair(Pred, PredPtrVal)); 1315 1316 if (!InsertRes.second) { 1317 // We found the pred; take it off the list of preds to visit. 1318 PredList.pop_back(); 1319 1320 // If the predecessor was visited with PredPtr, then we already did 1321 // the analysis and can ignore it. 1322 if (InsertRes.first->second == PredPtrVal) 1323 continue; 1324 1325 // Otherwise, the block was previously analyzed with a different 1326 // pointer. We can't represent the result of this case, so we just 1327 // treat this as a phi translation failure. 1328 1329 // Make sure to clean up the Visited map before continuing on to 1330 // PredTranslationFailure. 1331 for (unsigned i = 0, n = PredList.size(); i < n; ++i) 1332 Visited.erase(PredList[i].first); 1333 1334 goto PredTranslationFailure; 1335 } 1336 } 1337 1338 // Actually process results here; this need to be a separate loop to avoid 1339 // calling getNonLocalPointerDepFromBB for blocks we don't want to return 1340 // any results for. (getNonLocalPointerDepFromBB will modify our 1341 // datastructures in ways the code after the PredTranslationFailure label 1342 // doesn't expect.) 1343 for (unsigned i = 0, n = PredList.size(); i < n; ++i) { 1344 BasicBlock *Pred = PredList[i].first; 1345 PHITransAddr &PredPointer = PredList[i].second; 1346 Value *PredPtrVal = PredPointer.getAddr(); 1347 1348 bool CanTranslate = true; 1349 // If PHI translation was unable to find an available pointer in this 1350 // predecessor, then we have to assume that the pointer is clobbered in 1351 // that predecessor. We can still do PRE of the load, which would insert 1352 // a computation of the pointer in this predecessor. 1353 if (!PredPtrVal) 1354 CanTranslate = false; 1355 1356 // FIXME: it is entirely possible that PHI translating will end up with 1357 // the same value. Consider PHI translating something like: 1358 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* 1359 // to recurse here, pedantically speaking. 1360 1361 // If getNonLocalPointerDepFromBB fails here, that means the cached 1362 // result conflicted with the Visited list; we have to conservatively 1363 // assume it is unknown, but this also does not block PRE of the load. 1364 if (!CanTranslate || 1365 !getNonLocalPointerDepFromBB(QueryInst, PredPointer, 1366 Loc.getWithNewPtr(PredPtrVal), isLoad, 1367 Pred, Result, Visited)) { 1368 // Add the entry to the Result list. 1369 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal); 1370 Result.push_back(Entry); 1371 1372 // Since we had a phi translation failure, the cache for CacheKey won't 1373 // include all of the entries that we need to immediately satisfy future 1374 // queries. Mark this in NonLocalPointerDeps by setting the 1375 // BBSkipFirstBlockPair pointer to null. This requires reuse of the 1376 // cached value to do more work but not miss the phi trans failure. 1377 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; 1378 NLPI.Pair = BBSkipFirstBlockPair(); 1379 continue; 1380 } 1381 } 1382 1383 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. 1384 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1385 Cache = &CacheInfo->NonLocalDeps; 1386 NumSortedEntries = Cache->size(); 1387 1388 // Since we did phi translation, the "Cache" set won't contain all of the 1389 // results for the query. This is ok (we can still use it to accelerate 1390 // specific block queries) but we can't do the fastpath "return all 1391 // results from the set" Clear out the indicator for this. 1392 CacheInfo->Pair = BBSkipFirstBlockPair(); 1393 SkipFirstBlock = false; 1394 continue; 1395 1396 PredTranslationFailure: 1397 // The following code is "failure"; we can't produce a sane translation 1398 // for the given block. It assumes that we haven't modified any of 1399 // our datastructures while processing the current block. 1400 1401 if (!Cache) { 1402 // Refresh the CacheInfo/Cache pointer if it got invalidated. 1403 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1404 Cache = &CacheInfo->NonLocalDeps; 1405 NumSortedEntries = Cache->size(); 1406 } 1407 1408 // Since we failed phi translation, the "Cache" set won't contain all of the 1409 // results for the query. This is ok (we can still use it to accelerate 1410 // specific block queries) but we can't do the fastpath "return all 1411 // results from the set". Clear out the indicator for this. 1412 CacheInfo->Pair = BBSkipFirstBlockPair(); 1413 1414 // If *nothing* works, mark the pointer as unknown. 1415 // 1416 // If this is the magic first block, return this as a clobber of the whole 1417 // incoming value. Since we can't phi translate to one of the predecessors, 1418 // we have to bail out. 1419 if (SkipFirstBlock) 1420 return false; 1421 1422 // Results of invariant loads are not cached thus no need to update cached 1423 // information. 1424 if (!isInvariantLoad) { 1425 for (NonLocalDepEntry &I : llvm::reverse(*Cache)) { 1426 if (I.getBB() != BB) 1427 continue; 1428 1429 assert((GotWorklistLimit || I.getResult().isNonLocal() || 1430 !DT.isReachableFromEntry(BB)) && 1431 "Should only be here with transparent block"); 1432 1433 I.setResult(MemDepResult::getUnknown()); 1434 1435 1436 break; 1437 } 1438 } 1439 (void)GotWorklistLimit; 1440 // Go ahead and report unknown dependence. 1441 Result.push_back( 1442 NonLocalDepResult(BB, MemDepResult::getUnknown(), Pointer.getAddr())); 1443 } 1444 1445 // Okay, we're done now. If we added new values to the cache, re-sort it. 1446 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1447 LLVM_DEBUG(AssertSorted(*Cache)); 1448 return true; 1449 } 1450 1451 /// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it. 1452 void MemoryDependenceResults::removeCachedNonLocalPointerDependencies( 1453 ValueIsLoadPair P) { 1454 1455 // Most of the time this cache is empty. 1456 if (!NonLocalDefsCache.empty()) { 1457 auto it = NonLocalDefsCache.find(P.getPointer()); 1458 if (it != NonLocalDefsCache.end()) { 1459 RemoveFromReverseMap(ReverseNonLocalDefsCache, 1460 it->second.getResult().getInst(), P.getPointer()); 1461 NonLocalDefsCache.erase(it); 1462 } 1463 1464 if (auto *I = dyn_cast<Instruction>(P.getPointer())) { 1465 auto toRemoveIt = ReverseNonLocalDefsCache.find(I); 1466 if (toRemoveIt != ReverseNonLocalDefsCache.end()) { 1467 for (const auto *entry : toRemoveIt->second) 1468 NonLocalDefsCache.erase(entry); 1469 ReverseNonLocalDefsCache.erase(toRemoveIt); 1470 } 1471 } 1472 } 1473 1474 CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P); 1475 if (It == NonLocalPointerDeps.end()) 1476 return; 1477 1478 // Remove all of the entries in the BB->val map. This involves removing 1479 // instructions from the reverse map. 1480 NonLocalDepInfo &PInfo = It->second.NonLocalDeps; 1481 1482 for (const NonLocalDepEntry &DE : PInfo) { 1483 Instruction *Target = DE.getResult().getInst(); 1484 if (!Target) 1485 continue; // Ignore non-local dep results. 1486 assert(Target->getParent() == DE.getBB()); 1487 1488 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1489 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); 1490 } 1491 1492 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). 1493 NonLocalPointerDeps.erase(It); 1494 } 1495 1496 void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) { 1497 // If Ptr isn't really a pointer, just ignore it. 1498 if (!Ptr->getType()->isPointerTy()) 1499 return; 1500 // Flush store info for the pointer. 1501 removeCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); 1502 // Flush load info for the pointer. 1503 removeCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); 1504 // Invalidate phis that use the pointer. 1505 PV.invalidateValue(Ptr); 1506 } 1507 1508 void MemoryDependenceResults::invalidateCachedPredecessors() { 1509 PredCache.clear(); 1510 } 1511 1512 void MemoryDependenceResults::removeInstruction(Instruction *RemInst) { 1513 // Walk through the Non-local dependencies, removing this one as the value 1514 // for any cached queries. 1515 NonLocalDepMapType::iterator NLDI = NonLocalDepsMap.find(RemInst); 1516 if (NLDI != NonLocalDepsMap.end()) { 1517 NonLocalDepInfo &BlockMap = NLDI->second.first; 1518 for (auto &Entry : BlockMap) 1519 if (Instruction *Inst = Entry.getResult().getInst()) 1520 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); 1521 NonLocalDepsMap.erase(NLDI); 1522 } 1523 1524 // If we have a cached local dependence query for this instruction, remove it. 1525 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); 1526 if (LocalDepEntry != LocalDeps.end()) { 1527 // Remove us from DepInst's reverse set now that the local dep info is gone. 1528 if (Instruction *Inst = LocalDepEntry->second.getInst()) 1529 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); 1530 1531 // Remove this local dependency info. 1532 LocalDeps.erase(LocalDepEntry); 1533 } 1534 1535 // If we have any cached dependencies on this instruction, remove 1536 // them. 1537 1538 // If the instruction is a pointer, remove it from both the load info and the 1539 // store info. 1540 if (RemInst->getType()->isPointerTy()) { 1541 removeCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); 1542 removeCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); 1543 } else { 1544 // Otherwise, if the instructions is in the map directly, it must be a load. 1545 // Remove it. 1546 auto toRemoveIt = NonLocalDefsCache.find(RemInst); 1547 if (toRemoveIt != NonLocalDefsCache.end()) { 1548 assert(isa<LoadInst>(RemInst) && 1549 "only load instructions should be added directly"); 1550 const Instruction *DepV = toRemoveIt->second.getResult().getInst(); 1551 ReverseNonLocalDefsCache.find(DepV)->second.erase(RemInst); 1552 NonLocalDefsCache.erase(toRemoveIt); 1553 } 1554 } 1555 1556 // Loop over all of the things that depend on the instruction we're removing. 1557 SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd; 1558 1559 // If we find RemInst as a clobber or Def in any of the maps for other values, 1560 // we need to replace its entry with a dirty version of the instruction after 1561 // it. If RemInst is a terminator, we use a null dirty value. 1562 // 1563 // Using a dirty version of the instruction after RemInst saves having to scan 1564 // the entire block to get to this point. 1565 MemDepResult NewDirtyVal; 1566 if (!RemInst->isTerminator()) 1567 NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator()); 1568 1569 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); 1570 if (ReverseDepIt != ReverseLocalDeps.end()) { 1571 // RemInst can't be the terminator if it has local stuff depending on it. 1572 assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() && 1573 "Nothing can locally depend on a terminator"); 1574 1575 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) { 1576 assert(InstDependingOnRemInst != RemInst && 1577 "Already removed our local dep info"); 1578 1579 LocalDeps[InstDependingOnRemInst] = NewDirtyVal; 1580 1581 // Make sure to remember that new things depend on NewDepInst. 1582 assert(NewDirtyVal.getInst() && 1583 "There is no way something else can have " 1584 "a local dep on this if it is a terminator!"); 1585 ReverseDepsToAdd.push_back( 1586 std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst)); 1587 } 1588 1589 ReverseLocalDeps.erase(ReverseDepIt); 1590 1591 // Add new reverse deps after scanning the set, to avoid invalidating the 1592 // 'ReverseDeps' reference. 1593 while (!ReverseDepsToAdd.empty()) { 1594 ReverseLocalDeps[ReverseDepsToAdd.back().first].insert( 1595 ReverseDepsToAdd.back().second); 1596 ReverseDepsToAdd.pop_back(); 1597 } 1598 } 1599 1600 ReverseDepIt = ReverseNonLocalDeps.find(RemInst); 1601 if (ReverseDepIt != ReverseNonLocalDeps.end()) { 1602 for (Instruction *I : ReverseDepIt->second) { 1603 assert(I != RemInst && "Already removed NonLocalDep info for RemInst"); 1604 1605 PerInstNLInfo &INLD = NonLocalDepsMap[I]; 1606 // The information is now dirty! 1607 INLD.second = true; 1608 1609 for (auto &Entry : INLD.first) { 1610 if (Entry.getResult().getInst() != RemInst) 1611 continue; 1612 1613 // Convert to a dirty entry for the subsequent instruction. 1614 Entry.setResult(NewDirtyVal); 1615 1616 if (Instruction *NextI = NewDirtyVal.getInst()) 1617 ReverseDepsToAdd.push_back(std::make_pair(NextI, I)); 1618 } 1619 } 1620 1621 ReverseNonLocalDeps.erase(ReverseDepIt); 1622 1623 // Add new reverse deps after scanning the set, to avoid invalidating 'Set' 1624 while (!ReverseDepsToAdd.empty()) { 1625 ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert( 1626 ReverseDepsToAdd.back().second); 1627 ReverseDepsToAdd.pop_back(); 1628 } 1629 } 1630 1631 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a 1632 // value in the NonLocalPointerDeps info. 1633 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = 1634 ReverseNonLocalPtrDeps.find(RemInst); 1635 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { 1636 SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8> 1637 ReversePtrDepsToAdd; 1638 1639 for (ValueIsLoadPair P : ReversePtrDepIt->second) { 1640 assert(P.getPointer() != RemInst && 1641 "Already removed NonLocalPointerDeps info for RemInst"); 1642 1643 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; 1644 1645 // The cache is not valid for any specific block anymore. 1646 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); 1647 1648 // Update any entries for RemInst to use the instruction after it. 1649 for (auto &Entry : NLPDI) { 1650 if (Entry.getResult().getInst() != RemInst) 1651 continue; 1652 1653 // Convert to a dirty entry for the subsequent instruction. 1654 Entry.setResult(NewDirtyVal); 1655 1656 if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) 1657 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); 1658 } 1659 1660 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its 1661 // subsequent value may invalidate the sortedness. 1662 llvm::sort(NLPDI); 1663 } 1664 1665 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); 1666 1667 while (!ReversePtrDepsToAdd.empty()) { 1668 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert( 1669 ReversePtrDepsToAdd.back().second); 1670 ReversePtrDepsToAdd.pop_back(); 1671 } 1672 } 1673 1674 // Invalidate phis that use the removed instruction. 1675 PV.invalidateValue(RemInst); 1676 1677 assert(!NonLocalDepsMap.count(RemInst) && "RemInst got reinserted?"); 1678 LLVM_DEBUG(verifyRemoved(RemInst)); 1679 } 1680 1681 /// Verify that the specified instruction does not occur in our internal data 1682 /// structures. 1683 /// 1684 /// This function verifies by asserting in debug builds. 1685 void MemoryDependenceResults::verifyRemoved(Instruction *D) const { 1686 #ifndef NDEBUG 1687 for (const auto &DepKV : LocalDeps) { 1688 assert(DepKV.first != D && "Inst occurs in data structures"); 1689 assert(DepKV.second.getInst() != D && "Inst occurs in data structures"); 1690 } 1691 1692 for (const auto &DepKV : NonLocalPointerDeps) { 1693 assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key"); 1694 for (const auto &Entry : DepKV.second.NonLocalDeps) 1695 assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value"); 1696 } 1697 1698 for (const auto &DepKV : NonLocalDepsMap) { 1699 assert(DepKV.first != D && "Inst occurs in data structures"); 1700 const PerInstNLInfo &INLD = DepKV.second; 1701 for (const auto &Entry : INLD.first) 1702 assert(Entry.getResult().getInst() != D && 1703 "Inst occurs in data structures"); 1704 } 1705 1706 for (const auto &DepKV : ReverseLocalDeps) { 1707 assert(DepKV.first != D && "Inst occurs in data structures"); 1708 for (Instruction *Inst : DepKV.second) 1709 assert(Inst != D && "Inst occurs in data structures"); 1710 } 1711 1712 for (const auto &DepKV : ReverseNonLocalDeps) { 1713 assert(DepKV.first != D && "Inst occurs in data structures"); 1714 for (Instruction *Inst : DepKV.second) 1715 assert(Inst != D && "Inst occurs in data structures"); 1716 } 1717 1718 for (const auto &DepKV : ReverseNonLocalPtrDeps) { 1719 assert(DepKV.first != D && "Inst occurs in rev NLPD map"); 1720 1721 for (ValueIsLoadPair P : DepKV.second) 1722 assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) && 1723 "Inst occurs in ReverseNonLocalPtrDeps map"); 1724 } 1725 #endif 1726 } 1727 1728 AnalysisKey MemoryDependenceAnalysis::Key; 1729 1730 MemoryDependenceAnalysis::MemoryDependenceAnalysis() 1731 : DefaultBlockScanLimit(BlockScanLimit) {} 1732 1733 MemoryDependenceResults 1734 MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 1735 auto &AA = AM.getResult<AAManager>(F); 1736 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1737 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1738 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1739 auto &PV = AM.getResult<PhiValuesAnalysis>(F); 1740 return MemoryDependenceResults(AA, AC, TLI, DT, PV, DefaultBlockScanLimit); 1741 } 1742 1743 char MemoryDependenceWrapperPass::ID = 0; 1744 1745 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep", 1746 "Memory Dependence Analysis", false, true) 1747 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1748 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1749 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1750 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1751 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass) 1752 INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep", 1753 "Memory Dependence Analysis", false, true) 1754 1755 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) { 1756 initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry()); 1757 } 1758 1759 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default; 1760 1761 void MemoryDependenceWrapperPass::releaseMemory() { 1762 MemDep.reset(); 1763 } 1764 1765 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1766 AU.setPreservesAll(); 1767 AU.addRequired<AssumptionCacheTracker>(); 1768 AU.addRequired<DominatorTreeWrapperPass>(); 1769 AU.addRequired<PhiValuesWrapperPass>(); 1770 AU.addRequiredTransitive<AAResultsWrapperPass>(); 1771 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 1772 } 1773 1774 bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA, 1775 FunctionAnalysisManager::Invalidator &Inv) { 1776 // Check whether our analysis is preserved. 1777 auto PAC = PA.getChecker<MemoryDependenceAnalysis>(); 1778 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>()) 1779 // If not, give up now. 1780 return true; 1781 1782 // Check whether the analyses we depend on became invalid for any reason. 1783 if (Inv.invalidate<AAManager>(F, PA) || 1784 Inv.invalidate<AssumptionAnalysis>(F, PA) || 1785 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 1786 Inv.invalidate<PhiValuesAnalysis>(F, PA)) 1787 return true; 1788 1789 // Otherwise this analysis result remains valid. 1790 return false; 1791 } 1792 1793 unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const { 1794 return DefaultBlockScanLimit; 1795 } 1796 1797 bool MemoryDependenceWrapperPass::runOnFunction(Function &F) { 1798 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1799 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1800 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1801 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1802 auto &PV = getAnalysis<PhiValuesWrapperPass>().getResult(); 1803 MemDep.emplace(AA, AC, TLI, DT, PV, BlockScanLimit); 1804 return false; 1805 } 1806