1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements an analysis that determines, for a given memory 11 // operation, what preceding memory operations it depends on. It builds on 12 // alias analysis information, and tries to provide a lazy, caching interface to 13 // a common kind of alias information query. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/MemoryBuiltins.h" 24 #include "llvm/Analysis/PHITransAddr.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/IR/PredIteratorCache.h" 33 #include "llvm/Support/Debug.h" 34 using namespace llvm; 35 36 #define DEBUG_TYPE "memdep" 37 38 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); 39 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); 40 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); 41 42 STATISTIC(NumCacheNonLocalPtr, 43 "Number of fully cached non-local ptr responses"); 44 STATISTIC(NumCacheDirtyNonLocalPtr, 45 "Number of cached, but dirty, non-local ptr responses"); 46 STATISTIC(NumUncacheNonLocalPtr, 47 "Number of uncached non-local ptr responses"); 48 STATISTIC(NumCacheCompleteNonLocalPtr, 49 "Number of block queries that were completely cached"); 50 51 // Limit for the number of instructions to scan in a block. 52 static const unsigned int BlockScanLimit = 100; 53 54 // Limit on the number of memdep results to process. 55 static const unsigned int NumResultsLimit = 100; 56 57 char MemoryDependenceAnalysis::ID = 0; 58 59 // Register this pass... 60 INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep", 61 "Memory Dependence Analysis", false, true) 62 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 63 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 64 INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep", 65 "Memory Dependence Analysis", false, true) 66 67 MemoryDependenceAnalysis::MemoryDependenceAnalysis() 68 : FunctionPass(ID), PredCache() { 69 initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry()); 70 } 71 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() { 72 } 73 74 /// Clean up memory in between runs 75 void MemoryDependenceAnalysis::releaseMemory() { 76 LocalDeps.clear(); 77 NonLocalDeps.clear(); 78 NonLocalPointerDeps.clear(); 79 ReverseLocalDeps.clear(); 80 ReverseNonLocalDeps.clear(); 81 ReverseNonLocalPtrDeps.clear(); 82 PredCache->clear(); 83 } 84 85 /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis. 86 /// 87 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 88 AU.setPreservesAll(); 89 AU.addRequired<AssumptionCacheTracker>(); 90 AU.addRequiredTransitive<AliasAnalysis>(); 91 } 92 93 bool MemoryDependenceAnalysis::runOnFunction(Function &F) { 94 AA = &getAnalysis<AliasAnalysis>(); 95 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 96 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 97 DL = DLP ? &DLP->getDataLayout() : nullptr; 98 DominatorTreeWrapperPass *DTWP = 99 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 100 DT = DTWP ? &DTWP->getDomTree() : nullptr; 101 if (!PredCache) 102 PredCache.reset(new PredIteratorCache()); 103 return false; 104 } 105 106 /// RemoveFromReverseMap - This is a helper function that removes Val from 107 /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry. 108 template <typename KeyTy> 109 static void RemoveFromReverseMap(DenseMap<Instruction*, 110 SmallPtrSet<KeyTy, 4> > &ReverseMap, 111 Instruction *Inst, KeyTy Val) { 112 typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator 113 InstIt = ReverseMap.find(Inst); 114 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); 115 bool Found = InstIt->second.erase(Val); 116 assert(Found && "Invalid reverse map!"); (void)Found; 117 if (InstIt->second.empty()) 118 ReverseMap.erase(InstIt); 119 } 120 121 /// GetLocation - If the given instruction references a specific memory 122 /// location, fill in Loc with the details, otherwise set Loc.Ptr to null. 123 /// Return a ModRefInfo value describing the general behavior of the 124 /// instruction. 125 static 126 AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst, 127 AliasAnalysis::Location &Loc, 128 AliasAnalysis *AA) { 129 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 130 if (LI->isUnordered()) { 131 Loc = AA->getLocation(LI); 132 return AliasAnalysis::Ref; 133 } 134 if (LI->getOrdering() == Monotonic) { 135 Loc = AA->getLocation(LI); 136 return AliasAnalysis::ModRef; 137 } 138 Loc = AliasAnalysis::Location(); 139 return AliasAnalysis::ModRef; 140 } 141 142 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 143 if (SI->isUnordered()) { 144 Loc = AA->getLocation(SI); 145 return AliasAnalysis::Mod; 146 } 147 if (SI->getOrdering() == Monotonic) { 148 Loc = AA->getLocation(SI); 149 return AliasAnalysis::ModRef; 150 } 151 Loc = AliasAnalysis::Location(); 152 return AliasAnalysis::ModRef; 153 } 154 155 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { 156 Loc = AA->getLocation(V); 157 return AliasAnalysis::ModRef; 158 } 159 160 if (const CallInst *CI = isFreeCall(Inst, AA->getTargetLibraryInfo())) { 161 // calls to free() deallocate the entire structure 162 Loc = AliasAnalysis::Location(CI->getArgOperand(0)); 163 return AliasAnalysis::Mod; 164 } 165 166 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 167 AAMDNodes AAInfo; 168 169 switch (II->getIntrinsicID()) { 170 case Intrinsic::lifetime_start: 171 case Intrinsic::lifetime_end: 172 case Intrinsic::invariant_start: 173 II->getAAMetadata(AAInfo); 174 Loc = AliasAnalysis::Location(II->getArgOperand(1), 175 cast<ConstantInt>(II->getArgOperand(0)) 176 ->getZExtValue(), AAInfo); 177 // These intrinsics don't really modify the memory, but returning Mod 178 // will allow them to be handled conservatively. 179 return AliasAnalysis::Mod; 180 case Intrinsic::invariant_end: 181 II->getAAMetadata(AAInfo); 182 Loc = AliasAnalysis::Location(II->getArgOperand(2), 183 cast<ConstantInt>(II->getArgOperand(1)) 184 ->getZExtValue(), AAInfo); 185 // These intrinsics don't really modify the memory, but returning Mod 186 // will allow them to be handled conservatively. 187 return AliasAnalysis::Mod; 188 default: 189 break; 190 } 191 } 192 193 // Otherwise, just do the coarse-grained thing that always works. 194 if (Inst->mayWriteToMemory()) 195 return AliasAnalysis::ModRef; 196 if (Inst->mayReadFromMemory()) 197 return AliasAnalysis::Ref; 198 return AliasAnalysis::NoModRef; 199 } 200 201 /// getCallSiteDependencyFrom - Private helper for finding the local 202 /// dependencies of a call site. 203 MemDepResult MemoryDependenceAnalysis:: 204 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall, 205 BasicBlock::iterator ScanIt, BasicBlock *BB) { 206 unsigned Limit = BlockScanLimit; 207 208 // Walk backwards through the block, looking for dependencies 209 while (ScanIt != BB->begin()) { 210 // Limit the amount of scanning we do so we don't end up with quadratic 211 // running time on extreme testcases. 212 --Limit; 213 if (!Limit) 214 return MemDepResult::getUnknown(); 215 216 Instruction *Inst = --ScanIt; 217 218 // If this inst is a memory op, get the pointer it accessed 219 AliasAnalysis::Location Loc; 220 AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA); 221 if (Loc.Ptr) { 222 // A simple instruction. 223 if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef) 224 return MemDepResult::getClobber(Inst); 225 continue; 226 } 227 228 if (CallSite InstCS = cast<Value>(Inst)) { 229 // Debug intrinsics don't cause dependences. 230 if (isa<DbgInfoIntrinsic>(Inst)) continue; 231 // If these two calls do not interfere, look past it. 232 switch (AA->getModRefInfo(CS, InstCS)) { 233 case AliasAnalysis::NoModRef: 234 // If the two calls are the same, return InstCS as a Def, so that 235 // CS can be found redundant and eliminated. 236 if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) && 237 CS.getInstruction()->isIdenticalToWhenDefined(Inst)) 238 return MemDepResult::getDef(Inst); 239 240 // Otherwise if the two calls don't interact (e.g. InstCS is readnone) 241 // keep scanning. 242 continue; 243 default: 244 return MemDepResult::getClobber(Inst); 245 } 246 } 247 248 // If we could not obtain a pointer for the instruction and the instruction 249 // touches memory then assume that this is a dependency. 250 if (MR != AliasAnalysis::NoModRef) 251 return MemDepResult::getClobber(Inst); 252 } 253 254 // No dependence found. If this is the entry block of the function, it is 255 // unknown, otherwise it is non-local. 256 if (BB != &BB->getParent()->getEntryBlock()) 257 return MemDepResult::getNonLocal(); 258 return MemDepResult::getNonFuncLocal(); 259 } 260 261 /// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that 262 /// would fully overlap MemLoc if done as a wider legal integer load. 263 /// 264 /// MemLocBase, MemLocOffset are lazily computed here the first time the 265 /// base/offs of memloc is needed. 266 static bool 267 isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc, 268 const Value *&MemLocBase, 269 int64_t &MemLocOffs, 270 const LoadInst *LI, 271 const DataLayout *DL) { 272 // If we have no target data, we can't do this. 273 if (!DL) return false; 274 275 // If we haven't already computed the base/offset of MemLoc, do so now. 276 if (!MemLocBase) 277 MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, DL); 278 279 unsigned Size = MemoryDependenceAnalysis:: 280 getLoadLoadClobberFullWidthSize(MemLocBase, MemLocOffs, MemLoc.Size, 281 LI, *DL); 282 return Size != 0; 283 } 284 285 /// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that 286 /// looks at a memory location for a load (specified by MemLocBase, Offs, 287 /// and Size) and compares it against a load. If the specified load could 288 /// be safely widened to a larger integer load that is 1) still efficient, 289 /// 2) safe for the target, and 3) would provide the specified memory 290 /// location value, then this function returns the size in bytes of the 291 /// load width to use. If not, this returns zero. 292 unsigned MemoryDependenceAnalysis:: 293 getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs, 294 unsigned MemLocSize, const LoadInst *LI, 295 const DataLayout &DL) { 296 // We can only extend simple integer loads. 297 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0; 298 299 // Load widening is hostile to ThreadSanitizer: it may cause false positives 300 // or make the reports more cryptic (access sizes are wrong). 301 if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread)) 302 return 0; 303 304 // Get the base of this load. 305 int64_t LIOffs = 0; 306 const Value *LIBase = 307 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, &DL); 308 309 // If the two pointers are not based on the same pointer, we can't tell that 310 // they are related. 311 if (LIBase != MemLocBase) return 0; 312 313 // Okay, the two values are based on the same pointer, but returned as 314 // no-alias. This happens when we have things like two byte loads at "P+1" 315 // and "P+3". Check to see if increasing the size of the "LI" load up to its 316 // alignment (or the largest native integer type) will allow us to load all 317 // the bits required by MemLoc. 318 319 // If MemLoc is before LI, then no widening of LI will help us out. 320 if (MemLocOffs < LIOffs) return 0; 321 322 // Get the alignment of the load in bytes. We assume that it is safe to load 323 // any legal integer up to this size without a problem. For example, if we're 324 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can 325 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it 326 // to i16. 327 unsigned LoadAlign = LI->getAlignment(); 328 329 int64_t MemLocEnd = MemLocOffs+MemLocSize; 330 331 // If no amount of rounding up will let MemLoc fit into LI, then bail out. 332 if (LIOffs+LoadAlign < MemLocEnd) return 0; 333 334 // This is the size of the load to try. Start with the next larger power of 335 // two. 336 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U; 337 NewLoadByteSize = NextPowerOf2(NewLoadByteSize); 338 339 while (1) { 340 // If this load size is bigger than our known alignment or would not fit 341 // into a native integer register, then we fail. 342 if (NewLoadByteSize > LoadAlign || 343 !DL.fitsInLegalInteger(NewLoadByteSize*8)) 344 return 0; 345 346 if (LIOffs + NewLoadByteSize > MemLocEnd && 347 LI->getParent()->getParent()->hasFnAttribute( 348 Attribute::SanitizeAddress)) 349 // We will be reading past the location accessed by the original program. 350 // While this is safe in a regular build, Address Safety analysis tools 351 // may start reporting false warnings. So, don't do widening. 352 return 0; 353 354 // If a load of this width would include all of MemLoc, then we succeed. 355 if (LIOffs+NewLoadByteSize >= MemLocEnd) 356 return NewLoadByteSize; 357 358 NewLoadByteSize <<= 1; 359 } 360 } 361 362 static bool isVolatile(Instruction *Inst) { 363 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 364 return LI->isVolatile(); 365 else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) 366 return SI->isVolatile(); 367 else if (AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(Inst)) 368 return AI->isVolatile(); 369 return false; 370 } 371 372 373 /// getPointerDependencyFrom - Return the instruction on which a memory 374 /// location depends. If isLoad is true, this routine ignores may-aliases with 375 /// read-only operations. If isLoad is false, this routine ignores may-aliases 376 /// with reads from read-only locations. If possible, pass the query 377 /// instruction as well; this function may take advantage of the metadata 378 /// annotated to the query instruction to refine the result. 379 MemDepResult MemoryDependenceAnalysis:: 380 getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, 381 BasicBlock::iterator ScanIt, BasicBlock *BB, 382 Instruction *QueryInst) { 383 384 const Value *MemLocBase = nullptr; 385 int64_t MemLocOffset = 0; 386 unsigned Limit = BlockScanLimit; 387 bool isInvariantLoad = false; 388 389 // We must be careful with atomic accesses, as they may allow another thread 390 // to touch this location, cloberring it. We are conservative: if the 391 // QueryInst is not a simple (non-atomic) memory access, we automatically 392 // return getClobber. 393 // If it is simple, we know based on the results of 394 // "Compiler testing via a theory of sound optimisations in the C11/C++11 395 // memory model" in PLDI 2013, that a non-atomic location can only be 396 // clobbered between a pair of a release and an acquire action, with no 397 // access to the location in between. 398 // Here is an example for giving the general intuition behind this rule. 399 // In the following code: 400 // store x 0; 401 // release action; [1] 402 // acquire action; [4] 403 // %val = load x; 404 // It is unsafe to replace %val by 0 because another thread may be running: 405 // acquire action; [2] 406 // store x 42; 407 // release action; [3] 408 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val 409 // being 42. A key property of this program however is that if either 410 // 1 or 4 were missing, there would be a race between the store of 42 411 // either the store of 0 or the load (making the whole progam racy). 412 // The paper mentionned above shows that the same property is respected 413 // by every program that can detect any optimisation of that kind: either 414 // it is racy (undefined) or there is a release followed by an acquire 415 // between the pair of accesses under consideration. 416 bool HasSeenAcquire = false; 417 418 if (isLoad && QueryInst) { 419 LoadInst *LI = dyn_cast<LoadInst>(QueryInst); 420 if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr) 421 isInvariantLoad = true; 422 } 423 424 // Walk backwards through the basic block, looking for dependencies. 425 while (ScanIt != BB->begin()) { 426 Instruction *Inst = --ScanIt; 427 428 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 429 // Debug intrinsics don't (and can't) cause dependencies. 430 if (isa<DbgInfoIntrinsic>(II)) continue; 431 432 // Limit the amount of scanning we do so we don't end up with quadratic 433 // running time on extreme testcases. 434 --Limit; 435 if (!Limit) 436 return MemDepResult::getUnknown(); 437 438 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 439 // If we reach a lifetime begin or end marker, then the query ends here 440 // because the value is undefined. 441 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 442 // FIXME: This only considers queries directly on the invariant-tagged 443 // pointer, not on query pointers that are indexed off of them. It'd 444 // be nice to handle that at some point (the right approach is to use 445 // GetPointerBaseWithConstantOffset). 446 if (AA->isMustAlias(AliasAnalysis::Location(II->getArgOperand(1)), 447 MemLoc)) 448 return MemDepResult::getDef(II); 449 continue; 450 } 451 } 452 453 // Values depend on loads if the pointers are must aliased. This means that 454 // a load depends on another must aliased load from the same value. 455 // One exception is atomic loads: a value can depend on an atomic load that it 456 // does not alias with when this atomic load indicates that another thread may 457 // be accessing the location. 458 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 459 460 // While volatile access cannot be eliminated, they do not have to clobber 461 // non-aliasing locations, as normal accesses, for example, can be safely 462 // reordered with volatile accesses. 463 if (LI->isVolatile()) { 464 if (!QueryInst) 465 // Original QueryInst *may* be volatile 466 return MemDepResult::getClobber(LI); 467 if (isVolatile(QueryInst)) 468 // Ordering required if QueryInst is itself volatile 469 return MemDepResult::getClobber(LI); 470 // Otherwise, volatile doesn't imply any special ordering 471 } 472 473 // Atomic loads have complications involved. 474 // A Monotonic (or higher) load is OK if the query inst is itself not atomic. 475 // An Acquire (or higher) load sets the HasSeenAcquire flag, so that any 476 // release store will know to return getClobber. 477 // FIXME: This is overly conservative. 478 if (LI->isAtomic() && LI->getOrdering() > Unordered) { 479 if (!QueryInst) 480 return MemDepResult::getClobber(LI); 481 if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) { 482 if (!QueryLI->isSimple()) 483 return MemDepResult::getClobber(LI); 484 } else if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) { 485 if (!QuerySI->isSimple()) 486 return MemDepResult::getClobber(LI); 487 } else if (QueryInst->mayReadOrWriteMemory()) { 488 return MemDepResult::getClobber(LI); 489 } 490 491 if (isAtLeastAcquire(LI->getOrdering())) 492 HasSeenAcquire = true; 493 } 494 495 AliasAnalysis::Location LoadLoc = AA->getLocation(LI); 496 497 // If we found a pointer, check if it could be the same as our pointer. 498 AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc); 499 500 if (isLoad) { 501 if (R == AliasAnalysis::NoAlias) { 502 // If this is an over-aligned integer load (for example, 503 // "load i8* %P, align 4") see if it would obviously overlap with the 504 // queried location if widened to a larger load (e.g. if the queried 505 // location is 1 byte at P+1). If so, return it as a load/load 506 // clobber result, allowing the client to decide to widen the load if 507 // it wants to. 508 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) 509 if (LI->getAlignment()*8 > ITy->getPrimitiveSizeInBits() && 510 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase, 511 MemLocOffset, LI, DL)) 512 return MemDepResult::getClobber(Inst); 513 514 continue; 515 } 516 517 // Must aliased loads are defs of each other. 518 if (R == AliasAnalysis::MustAlias) 519 return MemDepResult::getDef(Inst); 520 521 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads 522 // in terms of clobbering loads, but since it does this by looking 523 // at the clobbering load directly, it doesn't know about any 524 // phi translation that may have happened along the way. 525 526 // If we have a partial alias, then return this as a clobber for the 527 // client to handle. 528 if (R == AliasAnalysis::PartialAlias) 529 return MemDepResult::getClobber(Inst); 530 #endif 531 532 // Random may-alias loads don't depend on each other without a 533 // dependence. 534 continue; 535 } 536 537 // Stores don't depend on other no-aliased accesses. 538 if (R == AliasAnalysis::NoAlias) 539 continue; 540 541 // Stores don't alias loads from read-only memory. 542 if (AA->pointsToConstantMemory(LoadLoc)) 543 continue; 544 545 // Stores depend on may/must aliased loads. 546 return MemDepResult::getDef(Inst); 547 } 548 549 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 550 // Atomic stores have complications involved. 551 // A Monotonic store is OK if the query inst is itself not atomic. 552 // A Release (or higher) store further requires that no acquire load 553 // has been seen. 554 // FIXME: This is overly conservative. 555 if (!SI->isUnordered()) { 556 if (!QueryInst) 557 return MemDepResult::getClobber(SI); 558 if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) { 559 if (!QueryLI->isSimple()) 560 return MemDepResult::getClobber(SI); 561 } else if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) { 562 if (!QuerySI->isSimple()) 563 return MemDepResult::getClobber(SI); 564 } else if (QueryInst->mayReadOrWriteMemory()) { 565 return MemDepResult::getClobber(SI); 566 } 567 568 if (HasSeenAcquire && isAtLeastRelease(SI->getOrdering())) 569 return MemDepResult::getClobber(SI); 570 } 571 572 // FIXME: this is overly conservative. 573 // While volatile access cannot be eliminated, they do not have to clobber 574 // non-aliasing locations, as normal accesses can for example be reordered 575 // with volatile accesses. 576 if (SI->isVolatile()) 577 return MemDepResult::getClobber(SI); 578 579 // If alias analysis can tell that this store is guaranteed to not modify 580 // the query pointer, ignore it. Use getModRefInfo to handle cases where 581 // the query pointer points to constant memory etc. 582 if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef) 583 continue; 584 585 // Ok, this store might clobber the query pointer. Check to see if it is 586 // a must alias: in this case, we want to return this as a def. 587 AliasAnalysis::Location StoreLoc = AA->getLocation(SI); 588 589 // If we found a pointer, check if it could be the same as our pointer. 590 AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc); 591 592 if (R == AliasAnalysis::NoAlias) 593 continue; 594 if (R == AliasAnalysis::MustAlias) 595 return MemDepResult::getDef(Inst); 596 if (isInvariantLoad) 597 continue; 598 return MemDepResult::getClobber(Inst); 599 } 600 601 // If this is an allocation, and if we know that the accessed pointer is to 602 // the allocation, return Def. This means that there is no dependence and 603 // the access can be optimized based on that. For example, a load could 604 // turn into undef. 605 // Note: Only determine this to be a malloc if Inst is the malloc call, not 606 // a subsequent bitcast of the malloc call result. There can be stores to 607 // the malloced memory between the malloc call and its bitcast uses, and we 608 // need to continue scanning until the malloc call. 609 const TargetLibraryInfo *TLI = AA->getTargetLibraryInfo(); 610 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, TLI)) { 611 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL); 612 613 if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr)) 614 return MemDepResult::getDef(Inst); 615 // Be conservative if the accessed pointer may alias the allocation. 616 if (AA->alias(Inst, AccessPtr) != AliasAnalysis::NoAlias) 617 return MemDepResult::getClobber(Inst); 618 // If the allocation is not aliased and does not read memory (like 619 // strdup), it is safe to ignore. 620 if (isa<AllocaInst>(Inst) || 621 isMallocLikeFn(Inst, TLI) || isCallocLikeFn(Inst, TLI)) 622 continue; 623 } 624 625 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. 626 AliasAnalysis::ModRefResult MR = AA->getModRefInfo(Inst, MemLoc); 627 // If necessary, perform additional analysis. 628 if (MR == AliasAnalysis::ModRef) 629 MR = AA->callCapturesBefore(Inst, MemLoc, DT); 630 switch (MR) { 631 case AliasAnalysis::NoModRef: 632 // If the call has no effect on the queried pointer, just ignore it. 633 continue; 634 case AliasAnalysis::Mod: 635 return MemDepResult::getClobber(Inst); 636 case AliasAnalysis::Ref: 637 // If the call is known to never store to the pointer, and if this is a 638 // load query, we can safely ignore it (scan past it). 639 if (isLoad) 640 continue; 641 default: 642 // Otherwise, there is a potential dependence. Return a clobber. 643 return MemDepResult::getClobber(Inst); 644 } 645 } 646 647 // No dependence found. If this is the entry block of the function, it is 648 // unknown, otherwise it is non-local. 649 if (BB != &BB->getParent()->getEntryBlock()) 650 return MemDepResult::getNonLocal(); 651 return MemDepResult::getNonFuncLocal(); 652 } 653 654 /// getDependency - Return the instruction on which a memory operation 655 /// depends. 656 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) { 657 Instruction *ScanPos = QueryInst; 658 659 // Check for a cached result 660 MemDepResult &LocalCache = LocalDeps[QueryInst]; 661 662 // If the cached entry is non-dirty, just return it. Note that this depends 663 // on MemDepResult's default constructing to 'dirty'. 664 if (!LocalCache.isDirty()) 665 return LocalCache; 666 667 // Otherwise, if we have a dirty entry, we know we can start the scan at that 668 // instruction, which may save us some work. 669 if (Instruction *Inst = LocalCache.getInst()) { 670 ScanPos = Inst; 671 672 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); 673 } 674 675 BasicBlock *QueryParent = QueryInst->getParent(); 676 677 // Do the scan. 678 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { 679 // No dependence found. If this is the entry block of the function, it is 680 // unknown, otherwise it is non-local. 681 if (QueryParent != &QueryParent->getParent()->getEntryBlock()) 682 LocalCache = MemDepResult::getNonLocal(); 683 else 684 LocalCache = MemDepResult::getNonFuncLocal(); 685 } else { 686 AliasAnalysis::Location MemLoc; 687 AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA); 688 if (MemLoc.Ptr) { 689 // If we can do a pointer scan, make it happen. 690 bool isLoad = !(MR & AliasAnalysis::Mod); 691 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst)) 692 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start; 693 694 LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos, 695 QueryParent, QueryInst); 696 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) { 697 CallSite QueryCS(QueryInst); 698 bool isReadOnly = AA->onlyReadsMemory(QueryCS); 699 LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos, 700 QueryParent); 701 } else 702 // Non-memory instruction. 703 LocalCache = MemDepResult::getUnknown(); 704 } 705 706 // Remember the result! 707 if (Instruction *I = LocalCache.getInst()) 708 ReverseLocalDeps[I].insert(QueryInst); 709 710 return LocalCache; 711 } 712 713 #ifndef NDEBUG 714 /// AssertSorted - This method is used when -debug is specified to verify that 715 /// cache arrays are properly kept sorted. 716 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 717 int Count = -1) { 718 if (Count == -1) Count = Cache.size(); 719 if (Count == 0) return; 720 721 for (unsigned i = 1; i != unsigned(Count); ++i) 722 assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!"); 723 } 724 #endif 725 726 /// getNonLocalCallDependency - Perform a full dependency query for the 727 /// specified call, returning the set of blocks that the value is 728 /// potentially live across. The returned set of results will include a 729 /// "NonLocal" result for all blocks where the value is live across. 730 /// 731 /// This method assumes the instruction returns a "NonLocal" dependency 732 /// within its own block. 733 /// 734 /// This returns a reference to an internal data structure that may be 735 /// invalidated on the next non-local query or when an instruction is 736 /// removed. Clients must copy this data if they want it around longer than 737 /// that. 738 const MemoryDependenceAnalysis::NonLocalDepInfo & 739 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { 740 assert(getDependency(QueryCS.getInstruction()).isNonLocal() && 741 "getNonLocalCallDependency should only be used on calls with non-local deps!"); 742 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()]; 743 NonLocalDepInfo &Cache = CacheP.first; 744 745 /// DirtyBlocks - This is the set of blocks that need to be recomputed. In 746 /// the cached case, this can happen due to instructions being deleted etc. In 747 /// the uncached case, this starts out as the set of predecessors we care 748 /// about. 749 SmallVector<BasicBlock*, 32> DirtyBlocks; 750 751 if (!Cache.empty()) { 752 // Okay, we have a cache entry. If we know it is not dirty, just return it 753 // with no computation. 754 if (!CacheP.second) { 755 ++NumCacheNonLocal; 756 return Cache; 757 } 758 759 // If we already have a partially computed set of results, scan them to 760 // determine what is dirty, seeding our initial DirtyBlocks worklist. 761 for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end(); 762 I != E; ++I) 763 if (I->getResult().isDirty()) 764 DirtyBlocks.push_back(I->getBB()); 765 766 // Sort the cache so that we can do fast binary search lookups below. 767 std::sort(Cache.begin(), Cache.end()); 768 769 ++NumCacheDirtyNonLocal; 770 //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " 771 // << Cache.size() << " cached: " << *QueryInst; 772 } else { 773 // Seed DirtyBlocks with each of the preds of QueryInst's block. 774 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent(); 775 for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI) 776 DirtyBlocks.push_back(*PI); 777 ++NumUncacheNonLocal; 778 } 779 780 // isReadonlyCall - If this is a read-only call, we can be more aggressive. 781 bool isReadonlyCall = AA->onlyReadsMemory(QueryCS); 782 783 SmallPtrSet<BasicBlock*, 64> Visited; 784 785 unsigned NumSortedEntries = Cache.size(); 786 DEBUG(AssertSorted(Cache)); 787 788 // Iterate while we still have blocks to update. 789 while (!DirtyBlocks.empty()) { 790 BasicBlock *DirtyBB = DirtyBlocks.back(); 791 DirtyBlocks.pop_back(); 792 793 // Already processed this block? 794 if (!Visited.insert(DirtyBB).second) 795 continue; 796 797 // Do a binary search to see if we already have an entry for this block in 798 // the cache set. If so, find it. 799 DEBUG(AssertSorted(Cache, NumSortedEntries)); 800 NonLocalDepInfo::iterator Entry = 801 std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries, 802 NonLocalDepEntry(DirtyBB)); 803 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB) 804 --Entry; 805 806 NonLocalDepEntry *ExistingResult = nullptr; 807 if (Entry != Cache.begin()+NumSortedEntries && 808 Entry->getBB() == DirtyBB) { 809 // If we already have an entry, and if it isn't already dirty, the block 810 // is done. 811 if (!Entry->getResult().isDirty()) 812 continue; 813 814 // Otherwise, remember this slot so we can update the value. 815 ExistingResult = &*Entry; 816 } 817 818 // If the dirty entry has a pointer, start scanning from it so we don't have 819 // to rescan the entire block. 820 BasicBlock::iterator ScanPos = DirtyBB->end(); 821 if (ExistingResult) { 822 if (Instruction *Inst = ExistingResult->getResult().getInst()) { 823 ScanPos = Inst; 824 // We're removing QueryInst's use of Inst. 825 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, 826 QueryCS.getInstruction()); 827 } 828 } 829 830 // Find out if this block has a local dependency for QueryInst. 831 MemDepResult Dep; 832 833 if (ScanPos != DirtyBB->begin()) { 834 Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB); 835 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { 836 // No dependence found. If this is the entry block of the function, it is 837 // a clobber, otherwise it is unknown. 838 Dep = MemDepResult::getNonLocal(); 839 } else { 840 Dep = MemDepResult::getNonFuncLocal(); 841 } 842 843 // If we had a dirty entry for the block, update it. Otherwise, just add 844 // a new entry. 845 if (ExistingResult) 846 ExistingResult->setResult(Dep); 847 else 848 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); 849 850 // If the block has a dependency (i.e. it isn't completely transparent to 851 // the value), remember the association! 852 if (!Dep.isNonLocal()) { 853 // Keep the ReverseNonLocalDeps map up to date so we can efficiently 854 // update this when we remove instructions. 855 if (Instruction *Inst = Dep.getInst()) 856 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction()); 857 } else { 858 859 // If the block *is* completely transparent to the load, we need to check 860 // the predecessors of this block. Add them to our worklist. 861 for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI) 862 DirtyBlocks.push_back(*PI); 863 } 864 } 865 866 return Cache; 867 } 868 869 /// getNonLocalPointerDependency - Perform a full dependency query for an 870 /// access to the specified (non-volatile) memory location, returning the 871 /// set of instructions that either define or clobber the value. 872 /// 873 /// This method assumes the pointer has a "NonLocal" dependency within its 874 /// own block. 875 /// 876 void MemoryDependenceAnalysis:: 877 getNonLocalPointerDependency(Instruction *QueryInst, 878 SmallVectorImpl<NonLocalDepResult> &Result) { 879 880 auto getLocation = [](AliasAnalysis *AA, Instruction *Inst) { 881 if (auto *I = dyn_cast<LoadInst>(Inst)) 882 return AA->getLocation(I); 883 else if (auto *I = dyn_cast<StoreInst>(Inst)) 884 return AA->getLocation(I); 885 else if (auto *I = dyn_cast<VAArgInst>(Inst)) 886 return AA->getLocation(I); 887 else if (auto *I = dyn_cast<AtomicCmpXchgInst>(Inst)) 888 return AA->getLocation(I); 889 else if (auto *I = dyn_cast<AtomicRMWInst>(Inst)) 890 return AA->getLocation(I); 891 else 892 llvm_unreachable("unsupported memory instruction"); 893 }; 894 895 const AliasAnalysis::Location Loc = getLocation(AA, QueryInst); 896 bool isLoad = isa<LoadInst>(QueryInst); 897 BasicBlock *FromBB = QueryInst->getParent(); 898 assert(FromBB); 899 900 assert(Loc.Ptr->getType()->isPointerTy() && 901 "Can't get pointer deps of a non-pointer!"); 902 Result.clear(); 903 904 // This routine does not expect to deal with volatile instructions. 905 // Doing so would require piping through the QueryInst all the way through. 906 // TODO: volatiles can't be elided, but they can be reordered with other 907 // non-volatile accesses. 908 909 // We currently give up on any instruction which is ordered, but we do handle 910 // atomic instructions which are unordered. 911 // TODO: Handle ordered instructions 912 auto isOrdered = [](Instruction *Inst) { 913 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 914 return !LI->isUnordered(); 915 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 916 return !SI->isUnordered(); 917 } 918 return false; 919 }; 920 if (isVolatile(QueryInst) || isOrdered(QueryInst)) { 921 Result.push_back(NonLocalDepResult(FromBB, 922 MemDepResult::getUnknown(), 923 const_cast<Value *>(Loc.Ptr))); 924 return; 925 } 926 927 928 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, AC); 929 930 // This is the set of blocks we've inspected, and the pointer we consider in 931 // each block. Because of critical edges, we currently bail out if querying 932 // a block with multiple different pointers. This can happen during PHI 933 // translation. 934 DenseMap<BasicBlock*, Value*> Visited; 935 if (!getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB, 936 Result, Visited, true)) 937 return; 938 Result.clear(); 939 Result.push_back(NonLocalDepResult(FromBB, 940 MemDepResult::getUnknown(), 941 const_cast<Value *>(Loc.Ptr))); 942 } 943 944 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with 945 /// Pointer/PointeeSize using either cached information in Cache or by doing a 946 /// lookup (which may use dirty cache info if available). If we do a lookup, 947 /// add the result to the cache. 948 MemDepResult MemoryDependenceAnalysis:: 949 GetNonLocalInfoForBlock(Instruction *QueryInst, 950 const AliasAnalysis::Location &Loc, 951 bool isLoad, BasicBlock *BB, 952 NonLocalDepInfo *Cache, unsigned NumSortedEntries) { 953 954 // Do a binary search to see if we already have an entry for this block in 955 // the cache set. If so, find it. 956 NonLocalDepInfo::iterator Entry = 957 std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries, 958 NonLocalDepEntry(BB)); 959 if (Entry != Cache->begin() && (Entry-1)->getBB() == BB) 960 --Entry; 961 962 NonLocalDepEntry *ExistingResult = nullptr; 963 if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB) 964 ExistingResult = &*Entry; 965 966 // If we have a cached entry, and it is non-dirty, use it as the value for 967 // this dependency. 968 if (ExistingResult && !ExistingResult->getResult().isDirty()) { 969 ++NumCacheNonLocalPtr; 970 return ExistingResult->getResult(); 971 } 972 973 // Otherwise, we have to scan for the value. If we have a dirty cache 974 // entry, start scanning from its position, otherwise we scan from the end 975 // of the block. 976 BasicBlock::iterator ScanPos = BB->end(); 977 if (ExistingResult && ExistingResult->getResult().getInst()) { 978 assert(ExistingResult->getResult().getInst()->getParent() == BB && 979 "Instruction invalidated?"); 980 ++NumCacheDirtyNonLocalPtr; 981 ScanPos = ExistingResult->getResult().getInst(); 982 983 // Eliminating the dirty entry from 'Cache', so update the reverse info. 984 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 985 RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey); 986 } else { 987 ++NumUncacheNonLocalPtr; 988 } 989 990 // Scan the block for the dependency. 991 MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, 992 QueryInst); 993 994 // If we had a dirty entry for the block, update it. Otherwise, just add 995 // a new entry. 996 if (ExistingResult) 997 ExistingResult->setResult(Dep); 998 else 999 Cache->push_back(NonLocalDepEntry(BB, Dep)); 1000 1001 // If the block has a dependency (i.e. it isn't completely transparent to 1002 // the value), remember the reverse association because we just added it 1003 // to Cache! 1004 if (!Dep.isDef() && !Dep.isClobber()) 1005 return Dep; 1006 1007 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently 1008 // update MemDep when we remove instructions. 1009 Instruction *Inst = Dep.getInst(); 1010 assert(Inst && "Didn't depend on anything?"); 1011 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 1012 ReverseNonLocalPtrDeps[Inst].insert(CacheKey); 1013 return Dep; 1014 } 1015 1016 /// SortNonLocalDepInfoCache - Sort the NonLocalDepInfo cache, given a certain 1017 /// number of elements in the array that are already properly ordered. This is 1018 /// optimized for the case when only a few entries are added. 1019 static void 1020 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 1021 unsigned NumSortedEntries) { 1022 switch (Cache.size() - NumSortedEntries) { 1023 case 0: 1024 // done, no new entries. 1025 break; 1026 case 2: { 1027 // Two new entries, insert the last one into place. 1028 NonLocalDepEntry Val = Cache.back(); 1029 Cache.pop_back(); 1030 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 1031 std::upper_bound(Cache.begin(), Cache.end()-1, Val); 1032 Cache.insert(Entry, Val); 1033 // FALL THROUGH. 1034 } 1035 case 1: 1036 // One new entry, Just insert the new value at the appropriate position. 1037 if (Cache.size() != 1) { 1038 NonLocalDepEntry Val = Cache.back(); 1039 Cache.pop_back(); 1040 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 1041 std::upper_bound(Cache.begin(), Cache.end(), Val); 1042 Cache.insert(Entry, Val); 1043 } 1044 break; 1045 default: 1046 // Added many values, do a full scale sort. 1047 std::sort(Cache.begin(), Cache.end()); 1048 break; 1049 } 1050 } 1051 1052 /// getNonLocalPointerDepFromBB - Perform a dependency query based on 1053 /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def 1054 /// results to the results vector and keep track of which blocks are visited in 1055 /// 'Visited'. 1056 /// 1057 /// This has special behavior for the first block queries (when SkipFirstBlock 1058 /// is true). In this special case, it ignores the contents of the specified 1059 /// block and starts returning dependence info for its predecessors. 1060 /// 1061 /// This function returns false on success, or true to indicate that it could 1062 /// not compute dependence information for some reason. This should be treated 1063 /// as a clobber dependence on the first instruction in the predecessor block. 1064 bool MemoryDependenceAnalysis:: 1065 getNonLocalPointerDepFromBB(Instruction *QueryInst, 1066 const PHITransAddr &Pointer, 1067 const AliasAnalysis::Location &Loc, 1068 bool isLoad, BasicBlock *StartBB, 1069 SmallVectorImpl<NonLocalDepResult> &Result, 1070 DenseMap<BasicBlock*, Value*> &Visited, 1071 bool SkipFirstBlock) { 1072 // Look up the cached info for Pointer. 1073 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); 1074 1075 // Set up a temporary NLPI value. If the map doesn't yet have an entry for 1076 // CacheKey, this value will be inserted as the associated value. Otherwise, 1077 // it'll be ignored, and we'll have to check to see if the cached size and 1078 // aa tags are consistent with the current query. 1079 NonLocalPointerInfo InitialNLPI; 1080 InitialNLPI.Size = Loc.Size; 1081 InitialNLPI.AATags = Loc.AATags; 1082 1083 // Get the NLPI for CacheKey, inserting one into the map if it doesn't 1084 // already have one. 1085 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = 1086 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); 1087 NonLocalPointerInfo *CacheInfo = &Pair.first->second; 1088 1089 // If we already have a cache entry for this CacheKey, we may need to do some 1090 // work to reconcile the cache entry and the current query. 1091 if (!Pair.second) { 1092 if (CacheInfo->Size < Loc.Size) { 1093 // The query's Size is greater than the cached one. Throw out the 1094 // cached data and proceed with the query at the greater size. 1095 CacheInfo->Pair = BBSkipFirstBlockPair(); 1096 CacheInfo->Size = Loc.Size; 1097 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(), 1098 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI) 1099 if (Instruction *Inst = DI->getResult().getInst()) 1100 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1101 CacheInfo->NonLocalDeps.clear(); 1102 } else if (CacheInfo->Size > Loc.Size) { 1103 // This query's Size is less than the cached one. Conservatively restart 1104 // the query using the greater size. 1105 return getNonLocalPointerDepFromBB(QueryInst, Pointer, 1106 Loc.getWithNewSize(CacheInfo->Size), 1107 isLoad, StartBB, Result, Visited, 1108 SkipFirstBlock); 1109 } 1110 1111 // If the query's AATags are inconsistent with the cached one, 1112 // conservatively throw out the cached data and restart the query with 1113 // no tag if needed. 1114 if (CacheInfo->AATags != Loc.AATags) { 1115 if (CacheInfo->AATags) { 1116 CacheInfo->Pair = BBSkipFirstBlockPair(); 1117 CacheInfo->AATags = AAMDNodes(); 1118 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(), 1119 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI) 1120 if (Instruction *Inst = DI->getResult().getInst()) 1121 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1122 CacheInfo->NonLocalDeps.clear(); 1123 } 1124 if (Loc.AATags) 1125 return getNonLocalPointerDepFromBB(QueryInst, 1126 Pointer, Loc.getWithoutAATags(), 1127 isLoad, StartBB, Result, Visited, 1128 SkipFirstBlock); 1129 } 1130 } 1131 1132 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; 1133 1134 // If we have valid cached information for exactly the block we are 1135 // investigating, just return it with no recomputation. 1136 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { 1137 // We have a fully cached result for this query then we can just return the 1138 // cached results and populate the visited set. However, we have to verify 1139 // that we don't already have conflicting results for these blocks. Check 1140 // to ensure that if a block in the results set is in the visited set that 1141 // it was for the same pointer query. 1142 if (!Visited.empty()) { 1143 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 1144 I != E; ++I) { 1145 DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB()); 1146 if (VI == Visited.end() || VI->second == Pointer.getAddr()) 1147 continue; 1148 1149 // We have a pointer mismatch in a block. Just return clobber, saying 1150 // that something was clobbered in this result. We could also do a 1151 // non-fully cached query, but there is little point in doing this. 1152 return true; 1153 } 1154 } 1155 1156 Value *Addr = Pointer.getAddr(); 1157 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 1158 I != E; ++I) { 1159 Visited.insert(std::make_pair(I->getBB(), Addr)); 1160 if (I->getResult().isNonLocal()) { 1161 continue; 1162 } 1163 1164 if (!DT) { 1165 Result.push_back(NonLocalDepResult(I->getBB(), 1166 MemDepResult::getUnknown(), 1167 Addr)); 1168 } else if (DT->isReachableFromEntry(I->getBB())) { 1169 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr)); 1170 } 1171 } 1172 ++NumCacheCompleteNonLocalPtr; 1173 return false; 1174 } 1175 1176 // Otherwise, either this is a new block, a block with an invalid cache 1177 // pointer or one that we're about to invalidate by putting more info into it 1178 // than its valid cache info. If empty, the result will be valid cache info, 1179 // otherwise it isn't. 1180 if (Cache->empty()) 1181 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); 1182 else 1183 CacheInfo->Pair = BBSkipFirstBlockPair(); 1184 1185 SmallVector<BasicBlock*, 32> Worklist; 1186 Worklist.push_back(StartBB); 1187 1188 // PredList used inside loop. 1189 SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList; 1190 1191 // Keep track of the entries that we know are sorted. Previously cached 1192 // entries will all be sorted. The entries we add we only sort on demand (we 1193 // don't insert every element into its sorted position). We know that we 1194 // won't get any reuse from currently inserted values, because we don't 1195 // revisit blocks after we insert info for them. 1196 unsigned NumSortedEntries = Cache->size(); 1197 DEBUG(AssertSorted(*Cache)); 1198 1199 while (!Worklist.empty()) { 1200 BasicBlock *BB = Worklist.pop_back_val(); 1201 1202 // If we do process a large number of blocks it becomes very expensive and 1203 // likely it isn't worth worrying about 1204 if (Result.size() > NumResultsLimit) { 1205 Worklist.clear(); 1206 // Sort it now (if needed) so that recursive invocations of 1207 // getNonLocalPointerDepFromBB and other routines that could reuse the 1208 // cache value will only see properly sorted cache arrays. 1209 if (Cache && NumSortedEntries != Cache->size()) { 1210 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1211 } 1212 // Since we bail out, the "Cache" set won't contain all of the 1213 // results for the query. This is ok (we can still use it to accelerate 1214 // specific block queries) but we can't do the fastpath "return all 1215 // results from the set". Clear out the indicator for this. 1216 CacheInfo->Pair = BBSkipFirstBlockPair(); 1217 return true; 1218 } 1219 1220 // Skip the first block if we have it. 1221 if (!SkipFirstBlock) { 1222 // Analyze the dependency of *Pointer in FromBB. See if we already have 1223 // been here. 1224 assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); 1225 1226 // Get the dependency info for Pointer in BB. If we have cached 1227 // information, we will use it, otherwise we compute it. 1228 DEBUG(AssertSorted(*Cache, NumSortedEntries)); 1229 MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, 1230 Loc, isLoad, BB, Cache, 1231 NumSortedEntries); 1232 1233 // If we got a Def or Clobber, add this to the list of results. 1234 if (!Dep.isNonLocal()) { 1235 if (!DT) { 1236 Result.push_back(NonLocalDepResult(BB, 1237 MemDepResult::getUnknown(), 1238 Pointer.getAddr())); 1239 continue; 1240 } else if (DT->isReachableFromEntry(BB)) { 1241 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); 1242 continue; 1243 } 1244 } 1245 } 1246 1247 // If 'Pointer' is an instruction defined in this block, then we need to do 1248 // phi translation to change it into a value live in the predecessor block. 1249 // If not, we just add the predecessors to the worklist and scan them with 1250 // the same Pointer. 1251 if (!Pointer.NeedsPHITranslationFromBlock(BB)) { 1252 SkipFirstBlock = false; 1253 SmallVector<BasicBlock*, 16> NewBlocks; 1254 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { 1255 // Verify that we haven't looked at this block yet. 1256 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 1257 InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr())); 1258 if (InsertRes.second) { 1259 // First time we've looked at *PI. 1260 NewBlocks.push_back(*PI); 1261 continue; 1262 } 1263 1264 // If we have seen this block before, but it was with a different 1265 // pointer then we have a phi translation failure and we have to treat 1266 // this as a clobber. 1267 if (InsertRes.first->second != Pointer.getAddr()) { 1268 // Make sure to clean up the Visited map before continuing on to 1269 // PredTranslationFailure. 1270 for (unsigned i = 0; i < NewBlocks.size(); i++) 1271 Visited.erase(NewBlocks[i]); 1272 goto PredTranslationFailure; 1273 } 1274 } 1275 Worklist.append(NewBlocks.begin(), NewBlocks.end()); 1276 continue; 1277 } 1278 1279 // We do need to do phi translation, if we know ahead of time we can't phi 1280 // translate this value, don't even try. 1281 if (!Pointer.IsPotentiallyPHITranslatable()) 1282 goto PredTranslationFailure; 1283 1284 // We may have added values to the cache list before this PHI translation. 1285 // If so, we haven't done anything to ensure that the cache remains sorted. 1286 // Sort it now (if needed) so that recursive invocations of 1287 // getNonLocalPointerDepFromBB and other routines that could reuse the cache 1288 // value will only see properly sorted cache arrays. 1289 if (Cache && NumSortedEntries != Cache->size()) { 1290 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1291 NumSortedEntries = Cache->size(); 1292 } 1293 Cache = nullptr; 1294 1295 PredList.clear(); 1296 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { 1297 BasicBlock *Pred = *PI; 1298 PredList.push_back(std::make_pair(Pred, Pointer)); 1299 1300 // Get the PHI translated pointer in this predecessor. This can fail if 1301 // not translatable, in which case the getAddr() returns null. 1302 PHITransAddr &PredPointer = PredList.back().second; 1303 PredPointer.PHITranslateValue(BB, Pred, nullptr); 1304 1305 Value *PredPtrVal = PredPointer.getAddr(); 1306 1307 // Check to see if we have already visited this pred block with another 1308 // pointer. If so, we can't do this lookup. This failure can occur 1309 // with PHI translation when a critical edge exists and the PHI node in 1310 // the successor translates to a pointer value different than the 1311 // pointer the block was first analyzed with. 1312 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 1313 InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal)); 1314 1315 if (!InsertRes.second) { 1316 // We found the pred; take it off the list of preds to visit. 1317 PredList.pop_back(); 1318 1319 // If the predecessor was visited with PredPtr, then we already did 1320 // the analysis and can ignore it. 1321 if (InsertRes.first->second == PredPtrVal) 1322 continue; 1323 1324 // Otherwise, the block was previously analyzed with a different 1325 // pointer. We can't represent the result of this case, so we just 1326 // treat this as a phi translation failure. 1327 1328 // Make sure to clean up the Visited map before continuing on to 1329 // PredTranslationFailure. 1330 for (unsigned i = 0, n = PredList.size(); i < n; ++i) 1331 Visited.erase(PredList[i].first); 1332 1333 goto PredTranslationFailure; 1334 } 1335 } 1336 1337 // Actually process results here; this need to be a separate loop to avoid 1338 // calling getNonLocalPointerDepFromBB for blocks we don't want to return 1339 // any results for. (getNonLocalPointerDepFromBB will modify our 1340 // datastructures in ways the code after the PredTranslationFailure label 1341 // doesn't expect.) 1342 for (unsigned i = 0, n = PredList.size(); i < n; ++i) { 1343 BasicBlock *Pred = PredList[i].first; 1344 PHITransAddr &PredPointer = PredList[i].second; 1345 Value *PredPtrVal = PredPointer.getAddr(); 1346 1347 bool CanTranslate = true; 1348 // If PHI translation was unable to find an available pointer in this 1349 // predecessor, then we have to assume that the pointer is clobbered in 1350 // that predecessor. We can still do PRE of the load, which would insert 1351 // a computation of the pointer in this predecessor. 1352 if (!PredPtrVal) 1353 CanTranslate = false; 1354 1355 // FIXME: it is entirely possible that PHI translating will end up with 1356 // the same value. Consider PHI translating something like: 1357 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* 1358 // to recurse here, pedantically speaking. 1359 1360 // If getNonLocalPointerDepFromBB fails here, that means the cached 1361 // result conflicted with the Visited list; we have to conservatively 1362 // assume it is unknown, but this also does not block PRE of the load. 1363 if (!CanTranslate || 1364 getNonLocalPointerDepFromBB(QueryInst, PredPointer, 1365 Loc.getWithNewPtr(PredPtrVal), 1366 isLoad, Pred, 1367 Result, Visited)) { 1368 // Add the entry to the Result list. 1369 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal); 1370 Result.push_back(Entry); 1371 1372 // Since we had a phi translation failure, the cache for CacheKey won't 1373 // include all of the entries that we need to immediately satisfy future 1374 // queries. Mark this in NonLocalPointerDeps by setting the 1375 // BBSkipFirstBlockPair pointer to null. This requires reuse of the 1376 // cached value to do more work but not miss the phi trans failure. 1377 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; 1378 NLPI.Pair = BBSkipFirstBlockPair(); 1379 continue; 1380 } 1381 } 1382 1383 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. 1384 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1385 Cache = &CacheInfo->NonLocalDeps; 1386 NumSortedEntries = Cache->size(); 1387 1388 // Since we did phi translation, the "Cache" set won't contain all of the 1389 // results for the query. This is ok (we can still use it to accelerate 1390 // specific block queries) but we can't do the fastpath "return all 1391 // results from the set" Clear out the indicator for this. 1392 CacheInfo->Pair = BBSkipFirstBlockPair(); 1393 SkipFirstBlock = false; 1394 continue; 1395 1396 PredTranslationFailure: 1397 // The following code is "failure"; we can't produce a sane translation 1398 // for the given block. It assumes that we haven't modified any of 1399 // our datastructures while processing the current block. 1400 1401 if (!Cache) { 1402 // Refresh the CacheInfo/Cache pointer if it got invalidated. 1403 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1404 Cache = &CacheInfo->NonLocalDeps; 1405 NumSortedEntries = Cache->size(); 1406 } 1407 1408 // Since we failed phi translation, the "Cache" set won't contain all of the 1409 // results for the query. This is ok (we can still use it to accelerate 1410 // specific block queries) but we can't do the fastpath "return all 1411 // results from the set". Clear out the indicator for this. 1412 CacheInfo->Pair = BBSkipFirstBlockPair(); 1413 1414 // If *nothing* works, mark the pointer as unknown. 1415 // 1416 // If this is the magic first block, return this as a clobber of the whole 1417 // incoming value. Since we can't phi translate to one of the predecessors, 1418 // we have to bail out. 1419 if (SkipFirstBlock) 1420 return true; 1421 1422 for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) { 1423 assert(I != Cache->rend() && "Didn't find current block??"); 1424 if (I->getBB() != BB) 1425 continue; 1426 1427 assert((I->getResult().isNonLocal() || !DT->isReachableFromEntry(BB)) && 1428 "Should only be here with transparent block"); 1429 I->setResult(MemDepResult::getUnknown()); 1430 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), 1431 Pointer.getAddr())); 1432 break; 1433 } 1434 } 1435 1436 // Okay, we're done now. If we added new values to the cache, re-sort it. 1437 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1438 DEBUG(AssertSorted(*Cache)); 1439 return false; 1440 } 1441 1442 /// RemoveCachedNonLocalPointerDependencies - If P exists in 1443 /// CachedNonLocalPointerInfo, remove it. 1444 void MemoryDependenceAnalysis:: 1445 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) { 1446 CachedNonLocalPointerInfo::iterator It = 1447 NonLocalPointerDeps.find(P); 1448 if (It == NonLocalPointerDeps.end()) return; 1449 1450 // Remove all of the entries in the BB->val map. This involves removing 1451 // instructions from the reverse map. 1452 NonLocalDepInfo &PInfo = It->second.NonLocalDeps; 1453 1454 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { 1455 Instruction *Target = PInfo[i].getResult().getInst(); 1456 if (!Target) continue; // Ignore non-local dep results. 1457 assert(Target->getParent() == PInfo[i].getBB()); 1458 1459 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1460 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); 1461 } 1462 1463 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). 1464 NonLocalPointerDeps.erase(It); 1465 } 1466 1467 1468 /// invalidateCachedPointerInfo - This method is used to invalidate cached 1469 /// information about the specified pointer, because it may be too 1470 /// conservative in memdep. This is an optional call that can be used when 1471 /// the client detects an equivalence between the pointer and some other 1472 /// value and replaces the other value with ptr. This can make Ptr available 1473 /// in more places that cached info does not necessarily keep. 1474 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) { 1475 // If Ptr isn't really a pointer, just ignore it. 1476 if (!Ptr->getType()->isPointerTy()) return; 1477 // Flush store info for the pointer. 1478 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); 1479 // Flush load info for the pointer. 1480 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); 1481 } 1482 1483 /// invalidateCachedPredecessors - Clear the PredIteratorCache info. 1484 /// This needs to be done when the CFG changes, e.g., due to splitting 1485 /// critical edges. 1486 void MemoryDependenceAnalysis::invalidateCachedPredecessors() { 1487 PredCache->clear(); 1488 } 1489 1490 /// removeInstruction - Remove an instruction from the dependence analysis, 1491 /// updating the dependence of instructions that previously depended on it. 1492 /// This method attempts to keep the cache coherent using the reverse map. 1493 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) { 1494 // Walk through the Non-local dependencies, removing this one as the value 1495 // for any cached queries. 1496 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); 1497 if (NLDI != NonLocalDeps.end()) { 1498 NonLocalDepInfo &BlockMap = NLDI->second.first; 1499 for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end(); 1500 DI != DE; ++DI) 1501 if (Instruction *Inst = DI->getResult().getInst()) 1502 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); 1503 NonLocalDeps.erase(NLDI); 1504 } 1505 1506 // If we have a cached local dependence query for this instruction, remove it. 1507 // 1508 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); 1509 if (LocalDepEntry != LocalDeps.end()) { 1510 // Remove us from DepInst's reverse set now that the local dep info is gone. 1511 if (Instruction *Inst = LocalDepEntry->second.getInst()) 1512 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); 1513 1514 // Remove this local dependency info. 1515 LocalDeps.erase(LocalDepEntry); 1516 } 1517 1518 // If we have any cached pointer dependencies on this instruction, remove 1519 // them. If the instruction has non-pointer type, then it can't be a pointer 1520 // base. 1521 1522 // Remove it from both the load info and the store info. The instruction 1523 // can't be in either of these maps if it is non-pointer. 1524 if (RemInst->getType()->isPointerTy()) { 1525 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); 1526 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); 1527 } 1528 1529 // Loop over all of the things that depend on the instruction we're removing. 1530 // 1531 SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd; 1532 1533 // If we find RemInst as a clobber or Def in any of the maps for other values, 1534 // we need to replace its entry with a dirty version of the instruction after 1535 // it. If RemInst is a terminator, we use a null dirty value. 1536 // 1537 // Using a dirty version of the instruction after RemInst saves having to scan 1538 // the entire block to get to this point. 1539 MemDepResult NewDirtyVal; 1540 if (!RemInst->isTerminator()) 1541 NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst)); 1542 1543 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); 1544 if (ReverseDepIt != ReverseLocalDeps.end()) { 1545 // RemInst can't be the terminator if it has local stuff depending on it. 1546 assert(!ReverseDepIt->second.empty() && !isa<TerminatorInst>(RemInst) && 1547 "Nothing can locally depend on a terminator"); 1548 1549 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) { 1550 assert(InstDependingOnRemInst != RemInst && 1551 "Already removed our local dep info"); 1552 1553 LocalDeps[InstDependingOnRemInst] = NewDirtyVal; 1554 1555 // Make sure to remember that new things depend on NewDepInst. 1556 assert(NewDirtyVal.getInst() && "There is no way something else can have " 1557 "a local dep on this if it is a terminator!"); 1558 ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(), 1559 InstDependingOnRemInst)); 1560 } 1561 1562 ReverseLocalDeps.erase(ReverseDepIt); 1563 1564 // Add new reverse deps after scanning the set, to avoid invalidating the 1565 // 'ReverseDeps' reference. 1566 while (!ReverseDepsToAdd.empty()) { 1567 ReverseLocalDeps[ReverseDepsToAdd.back().first] 1568 .insert(ReverseDepsToAdd.back().second); 1569 ReverseDepsToAdd.pop_back(); 1570 } 1571 } 1572 1573 ReverseDepIt = ReverseNonLocalDeps.find(RemInst); 1574 if (ReverseDepIt != ReverseNonLocalDeps.end()) { 1575 for (Instruction *I : ReverseDepIt->second) { 1576 assert(I != RemInst && "Already removed NonLocalDep info for RemInst"); 1577 1578 PerInstNLInfo &INLD = NonLocalDeps[I]; 1579 // The information is now dirty! 1580 INLD.second = true; 1581 1582 for (NonLocalDepInfo::iterator DI = INLD.first.begin(), 1583 DE = INLD.first.end(); DI != DE; ++DI) { 1584 if (DI->getResult().getInst() != RemInst) continue; 1585 1586 // Convert to a dirty entry for the subsequent instruction. 1587 DI->setResult(NewDirtyVal); 1588 1589 if (Instruction *NextI = NewDirtyVal.getInst()) 1590 ReverseDepsToAdd.push_back(std::make_pair(NextI, I)); 1591 } 1592 } 1593 1594 ReverseNonLocalDeps.erase(ReverseDepIt); 1595 1596 // Add new reverse deps after scanning the set, to avoid invalidating 'Set' 1597 while (!ReverseDepsToAdd.empty()) { 1598 ReverseNonLocalDeps[ReverseDepsToAdd.back().first] 1599 .insert(ReverseDepsToAdd.back().second); 1600 ReverseDepsToAdd.pop_back(); 1601 } 1602 } 1603 1604 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a 1605 // value in the NonLocalPointerDeps info. 1606 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = 1607 ReverseNonLocalPtrDeps.find(RemInst); 1608 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { 1609 SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd; 1610 1611 for (ValueIsLoadPair P : ReversePtrDepIt->second) { 1612 assert(P.getPointer() != RemInst && 1613 "Already removed NonLocalPointerDeps info for RemInst"); 1614 1615 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; 1616 1617 // The cache is not valid for any specific block anymore. 1618 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); 1619 1620 // Update any entries for RemInst to use the instruction after it. 1621 for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end(); 1622 DI != DE; ++DI) { 1623 if (DI->getResult().getInst() != RemInst) continue; 1624 1625 // Convert to a dirty entry for the subsequent instruction. 1626 DI->setResult(NewDirtyVal); 1627 1628 if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) 1629 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); 1630 } 1631 1632 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its 1633 // subsequent value may invalidate the sortedness. 1634 std::sort(NLPDI.begin(), NLPDI.end()); 1635 } 1636 1637 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); 1638 1639 while (!ReversePtrDepsToAdd.empty()) { 1640 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first] 1641 .insert(ReversePtrDepsToAdd.back().second); 1642 ReversePtrDepsToAdd.pop_back(); 1643 } 1644 } 1645 1646 1647 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); 1648 AA->deleteValue(RemInst); 1649 DEBUG(verifyRemoved(RemInst)); 1650 } 1651 /// verifyRemoved - Verify that the specified instruction does not occur 1652 /// in our internal data structures. This function verifies by asserting in 1653 /// debug builds. 1654 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const { 1655 #ifndef NDEBUG 1656 for (LocalDepMapType::const_iterator I = LocalDeps.begin(), 1657 E = LocalDeps.end(); I != E; ++I) { 1658 assert(I->first != D && "Inst occurs in data structures"); 1659 assert(I->second.getInst() != D && 1660 "Inst occurs in data structures"); 1661 } 1662 1663 for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(), 1664 E = NonLocalPointerDeps.end(); I != E; ++I) { 1665 assert(I->first.getPointer() != D && "Inst occurs in NLPD map key"); 1666 const NonLocalDepInfo &Val = I->second.NonLocalDeps; 1667 for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end(); 1668 II != E; ++II) 1669 assert(II->getResult().getInst() != D && "Inst occurs as NLPD value"); 1670 } 1671 1672 for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(), 1673 E = NonLocalDeps.end(); I != E; ++I) { 1674 assert(I->first != D && "Inst occurs in data structures"); 1675 const PerInstNLInfo &INLD = I->second; 1676 for (NonLocalDepInfo::const_iterator II = INLD.first.begin(), 1677 EE = INLD.first.end(); II != EE; ++II) 1678 assert(II->getResult().getInst() != D && "Inst occurs in data structures"); 1679 } 1680 1681 for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(), 1682 E = ReverseLocalDeps.end(); I != E; ++I) { 1683 assert(I->first != D && "Inst occurs in data structures"); 1684 for (Instruction *Inst : I->second) 1685 assert(Inst != D && "Inst occurs in data structures"); 1686 } 1687 1688 for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(), 1689 E = ReverseNonLocalDeps.end(); 1690 I != E; ++I) { 1691 assert(I->first != D && "Inst occurs in data structures"); 1692 for (Instruction *Inst : I->second) 1693 assert(Inst != D && "Inst occurs in data structures"); 1694 } 1695 1696 for (ReverseNonLocalPtrDepTy::const_iterator 1697 I = ReverseNonLocalPtrDeps.begin(), 1698 E = ReverseNonLocalPtrDeps.end(); I != E; ++I) { 1699 assert(I->first != D && "Inst occurs in rev NLPD map"); 1700 1701 for (ValueIsLoadPair P : I->second) 1702 assert(P != ValueIsLoadPair(D, false) && 1703 P != ValueIsLoadPair(D, true) && 1704 "Inst occurs in ReverseNonLocalPtrDeps map"); 1705 } 1706 #endif 1707 } 1708