1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements an analysis that determines, for a given memory 11 // operation, what preceding memory operations it depends on. It builds on 12 // alias analysis information, and tries to provide a lazy, caching interface to 13 // a common kind of alias information query. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/MemoryBuiltins.h" 23 #include "llvm/Analysis/PHITransAddr.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/PredIteratorCache.h" 32 #include "llvm/Support/Debug.h" 33 using namespace llvm; 34 35 #define DEBUG_TYPE "memdep" 36 37 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); 38 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); 39 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); 40 41 STATISTIC(NumCacheNonLocalPtr, 42 "Number of fully cached non-local ptr responses"); 43 STATISTIC(NumCacheDirtyNonLocalPtr, 44 "Number of cached, but dirty, non-local ptr responses"); 45 STATISTIC(NumUncacheNonLocalPtr, 46 "Number of uncached non-local ptr responses"); 47 STATISTIC(NumCacheCompleteNonLocalPtr, 48 "Number of block queries that were completely cached"); 49 50 // Limit for the number of instructions to scan in a block. 51 static const int BlockScanLimit = 100; 52 53 char MemoryDependenceAnalysis::ID = 0; 54 55 // Register this pass... 56 INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep", 57 "Memory Dependence Analysis", false, true) 58 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 59 INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep", 60 "Memory Dependence Analysis", false, true) 61 62 MemoryDependenceAnalysis::MemoryDependenceAnalysis() 63 : FunctionPass(ID), PredCache() { 64 initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry()); 65 } 66 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() { 67 } 68 69 /// Clean up memory in between runs 70 void MemoryDependenceAnalysis::releaseMemory() { 71 LocalDeps.clear(); 72 NonLocalDeps.clear(); 73 NonLocalPointerDeps.clear(); 74 ReverseLocalDeps.clear(); 75 ReverseNonLocalDeps.clear(); 76 ReverseNonLocalPtrDeps.clear(); 77 PredCache->clear(); 78 } 79 80 81 82 /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis. 83 /// 84 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 85 AU.setPreservesAll(); 86 AU.addRequiredTransitive<AliasAnalysis>(); 87 } 88 89 bool MemoryDependenceAnalysis::runOnFunction(Function &) { 90 AA = &getAnalysis<AliasAnalysis>(); 91 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 92 DL = DLP ? &DLP->getDataLayout() : nullptr; 93 DominatorTreeWrapperPass *DTWP = 94 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 95 DT = DTWP ? &DTWP->getDomTree() : nullptr; 96 if (!PredCache) 97 PredCache.reset(new PredIteratorCache()); 98 return false; 99 } 100 101 /// RemoveFromReverseMap - This is a helper function that removes Val from 102 /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry. 103 template <typename KeyTy> 104 static void RemoveFromReverseMap(DenseMap<Instruction*, 105 SmallPtrSet<KeyTy, 4> > &ReverseMap, 106 Instruction *Inst, KeyTy Val) { 107 typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator 108 InstIt = ReverseMap.find(Inst); 109 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); 110 bool Found = InstIt->second.erase(Val); 111 assert(Found && "Invalid reverse map!"); (void)Found; 112 if (InstIt->second.empty()) 113 ReverseMap.erase(InstIt); 114 } 115 116 /// GetLocation - If the given instruction references a specific memory 117 /// location, fill in Loc with the details, otherwise set Loc.Ptr to null. 118 /// Return a ModRefInfo value describing the general behavior of the 119 /// instruction. 120 static 121 AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst, 122 AliasAnalysis::Location &Loc, 123 AliasAnalysis *AA) { 124 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 125 if (LI->isUnordered()) { 126 Loc = AA->getLocation(LI); 127 return AliasAnalysis::Ref; 128 } 129 if (LI->getOrdering() == Monotonic) { 130 Loc = AA->getLocation(LI); 131 return AliasAnalysis::ModRef; 132 } 133 Loc = AliasAnalysis::Location(); 134 return AliasAnalysis::ModRef; 135 } 136 137 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 138 if (SI->isUnordered()) { 139 Loc = AA->getLocation(SI); 140 return AliasAnalysis::Mod; 141 } 142 if (SI->getOrdering() == Monotonic) { 143 Loc = AA->getLocation(SI); 144 return AliasAnalysis::ModRef; 145 } 146 Loc = AliasAnalysis::Location(); 147 return AliasAnalysis::ModRef; 148 } 149 150 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { 151 Loc = AA->getLocation(V); 152 return AliasAnalysis::ModRef; 153 } 154 155 if (const CallInst *CI = isFreeCall(Inst, AA->getTargetLibraryInfo())) { 156 // calls to free() deallocate the entire structure 157 Loc = AliasAnalysis::Location(CI->getArgOperand(0)); 158 return AliasAnalysis::Mod; 159 } 160 161 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 162 AAMDNodes AAInfo; 163 164 switch (II->getIntrinsicID()) { 165 case Intrinsic::lifetime_start: 166 case Intrinsic::lifetime_end: 167 case Intrinsic::invariant_start: 168 II->getAAMetadata(AAInfo); 169 Loc = AliasAnalysis::Location(II->getArgOperand(1), 170 cast<ConstantInt>(II->getArgOperand(0)) 171 ->getZExtValue(), AAInfo); 172 // These intrinsics don't really modify the memory, but returning Mod 173 // will allow them to be handled conservatively. 174 return AliasAnalysis::Mod; 175 case Intrinsic::invariant_end: 176 II->getAAMetadata(AAInfo); 177 Loc = AliasAnalysis::Location(II->getArgOperand(2), 178 cast<ConstantInt>(II->getArgOperand(1)) 179 ->getZExtValue(), AAInfo); 180 // These intrinsics don't really modify the memory, but returning Mod 181 // will allow them to be handled conservatively. 182 return AliasAnalysis::Mod; 183 default: 184 break; 185 } 186 } 187 188 // Otherwise, just do the coarse-grained thing that always works. 189 if (Inst->mayWriteToMemory()) 190 return AliasAnalysis::ModRef; 191 if (Inst->mayReadFromMemory()) 192 return AliasAnalysis::Ref; 193 return AliasAnalysis::NoModRef; 194 } 195 196 /// getCallSiteDependencyFrom - Private helper for finding the local 197 /// dependencies of a call site. 198 MemDepResult MemoryDependenceAnalysis:: 199 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall, 200 BasicBlock::iterator ScanIt, BasicBlock *BB) { 201 unsigned Limit = BlockScanLimit; 202 203 // Walk backwards through the block, looking for dependencies 204 while (ScanIt != BB->begin()) { 205 // Limit the amount of scanning we do so we don't end up with quadratic 206 // running time on extreme testcases. 207 --Limit; 208 if (!Limit) 209 return MemDepResult::getUnknown(); 210 211 Instruction *Inst = --ScanIt; 212 213 // If this inst is a memory op, get the pointer it accessed 214 AliasAnalysis::Location Loc; 215 AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA); 216 if (Loc.Ptr) { 217 // A simple instruction. 218 if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef) 219 return MemDepResult::getClobber(Inst); 220 continue; 221 } 222 223 if (CallSite InstCS = cast<Value>(Inst)) { 224 // Debug intrinsics don't cause dependences. 225 if (isa<DbgInfoIntrinsic>(Inst)) continue; 226 // If these two calls do not interfere, look past it. 227 switch (AA->getModRefInfo(CS, InstCS)) { 228 case AliasAnalysis::NoModRef: 229 // If the two calls are the same, return InstCS as a Def, so that 230 // CS can be found redundant and eliminated. 231 if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) && 232 CS.getInstruction()->isIdenticalToWhenDefined(Inst)) 233 return MemDepResult::getDef(Inst); 234 235 // Otherwise if the two calls don't interact (e.g. InstCS is readnone) 236 // keep scanning. 237 continue; 238 default: 239 return MemDepResult::getClobber(Inst); 240 } 241 } 242 243 // If we could not obtain a pointer for the instruction and the instruction 244 // touches memory then assume that this is a dependency. 245 if (MR != AliasAnalysis::NoModRef) 246 return MemDepResult::getClobber(Inst); 247 } 248 249 // No dependence found. If this is the entry block of the function, it is 250 // unknown, otherwise it is non-local. 251 if (BB != &BB->getParent()->getEntryBlock()) 252 return MemDepResult::getNonLocal(); 253 return MemDepResult::getNonFuncLocal(); 254 } 255 256 /// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that 257 /// would fully overlap MemLoc if done as a wider legal integer load. 258 /// 259 /// MemLocBase, MemLocOffset are lazily computed here the first time the 260 /// base/offs of memloc is needed. 261 static bool 262 isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc, 263 const Value *&MemLocBase, 264 int64_t &MemLocOffs, 265 const LoadInst *LI, 266 const DataLayout *DL) { 267 // If we have no target data, we can't do this. 268 if (!DL) return false; 269 270 // If we haven't already computed the base/offset of MemLoc, do so now. 271 if (!MemLocBase) 272 MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, DL); 273 274 unsigned Size = MemoryDependenceAnalysis:: 275 getLoadLoadClobberFullWidthSize(MemLocBase, MemLocOffs, MemLoc.Size, 276 LI, *DL); 277 return Size != 0; 278 } 279 280 /// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that 281 /// looks at a memory location for a load (specified by MemLocBase, Offs, 282 /// and Size) and compares it against a load. If the specified load could 283 /// be safely widened to a larger integer load that is 1) still efficient, 284 /// 2) safe for the target, and 3) would provide the specified memory 285 /// location value, then this function returns the size in bytes of the 286 /// load width to use. If not, this returns zero. 287 unsigned MemoryDependenceAnalysis:: 288 getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs, 289 unsigned MemLocSize, const LoadInst *LI, 290 const DataLayout &DL) { 291 // We can only extend simple integer loads. 292 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0; 293 294 // Load widening is hostile to ThreadSanitizer: it may cause false positives 295 // or make the reports more cryptic (access sizes are wrong). 296 if (LI->getParent()->getParent()->getAttributes(). 297 hasAttribute(AttributeSet::FunctionIndex, Attribute::SanitizeThread)) 298 return 0; 299 300 // Get the base of this load. 301 int64_t LIOffs = 0; 302 const Value *LIBase = 303 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, &DL); 304 305 // If the two pointers are not based on the same pointer, we can't tell that 306 // they are related. 307 if (LIBase != MemLocBase) return 0; 308 309 // Okay, the two values are based on the same pointer, but returned as 310 // no-alias. This happens when we have things like two byte loads at "P+1" 311 // and "P+3". Check to see if increasing the size of the "LI" load up to its 312 // alignment (or the largest native integer type) will allow us to load all 313 // the bits required by MemLoc. 314 315 // If MemLoc is before LI, then no widening of LI will help us out. 316 if (MemLocOffs < LIOffs) return 0; 317 318 // Get the alignment of the load in bytes. We assume that it is safe to load 319 // any legal integer up to this size without a problem. For example, if we're 320 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can 321 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it 322 // to i16. 323 unsigned LoadAlign = LI->getAlignment(); 324 325 int64_t MemLocEnd = MemLocOffs+MemLocSize; 326 327 // If no amount of rounding up will let MemLoc fit into LI, then bail out. 328 if (LIOffs+LoadAlign < MemLocEnd) return 0; 329 330 // This is the size of the load to try. Start with the next larger power of 331 // two. 332 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U; 333 NewLoadByteSize = NextPowerOf2(NewLoadByteSize); 334 335 while (1) { 336 // If this load size is bigger than our known alignment or would not fit 337 // into a native integer register, then we fail. 338 if (NewLoadByteSize > LoadAlign || 339 !DL.fitsInLegalInteger(NewLoadByteSize*8)) 340 return 0; 341 342 if (LIOffs+NewLoadByteSize > MemLocEnd && 343 LI->getParent()->getParent()->getAttributes(). 344 hasAttribute(AttributeSet::FunctionIndex, Attribute::SanitizeAddress)) 345 // We will be reading past the location accessed by the original program. 346 // While this is safe in a regular build, Address Safety analysis tools 347 // may start reporting false warnings. So, don't do widening. 348 return 0; 349 350 // If a load of this width would include all of MemLoc, then we succeed. 351 if (LIOffs+NewLoadByteSize >= MemLocEnd) 352 return NewLoadByteSize; 353 354 NewLoadByteSize <<= 1; 355 } 356 } 357 358 /// getPointerDependencyFrom - Return the instruction on which a memory 359 /// location depends. If isLoad is true, this routine ignores may-aliases with 360 /// read-only operations. If isLoad is false, this routine ignores may-aliases 361 /// with reads from read-only locations. If possible, pass the query 362 /// instruction as well; this function may take advantage of the metadata 363 /// annotated to the query instruction to refine the result. 364 MemDepResult MemoryDependenceAnalysis:: 365 getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, 366 BasicBlock::iterator ScanIt, BasicBlock *BB, 367 Instruction *QueryInst) { 368 369 const Value *MemLocBase = nullptr; 370 int64_t MemLocOffset = 0; 371 unsigned Limit = BlockScanLimit; 372 bool isInvariantLoad = false; 373 374 // We must be careful with atomic accesses, as they may allow another thread 375 // to touch this location, cloberring it. We are conservative: if the 376 // QueryInst is not a simple (non-atomic) memory access, we automatically 377 // return getClobber. 378 // If it is simple, we know based on the results of 379 // "Compiler testing via a theory of sound optimisations in the C11/C++11 380 // memory model" in PLDI 2013, that a non-atomic location can only be 381 // clobbered between a pair of a release and an acquire action, with no 382 // access to the location in between. 383 // Here is an example for giving the general intuition behind this rule. 384 // In the following code: 385 // store x 0; 386 // release action; [1] 387 // acquire action; [4] 388 // %val = load x; 389 // It is unsafe to replace %val by 0 because another thread may be running: 390 // acquire action; [2] 391 // store x 42; 392 // release action; [3] 393 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val 394 // being 42. A key property of this program however is that if either 395 // 1 or 4 were missing, there would be a race between the store of 42 396 // either the store of 0 or the load (making the whole progam racy). 397 // The paper mentionned above shows that the same property is respected 398 // by every program that can detect any optimisation of that kind: either 399 // it is racy (undefined) or there is a release followed by an acquire 400 // between the pair of accesses under consideration. 401 bool HasSeenAcquire = false; 402 403 if (isLoad && QueryInst) { 404 LoadInst *LI = dyn_cast<LoadInst>(QueryInst); 405 if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr) 406 isInvariantLoad = true; 407 } 408 409 // Walk backwards through the basic block, looking for dependencies. 410 while (ScanIt != BB->begin()) { 411 Instruction *Inst = --ScanIt; 412 413 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 414 // Debug intrinsics don't (and can't) cause dependencies. 415 if (isa<DbgInfoIntrinsic>(II)) continue; 416 417 // Limit the amount of scanning we do so we don't end up with quadratic 418 // running time on extreme testcases. 419 --Limit; 420 if (!Limit) 421 return MemDepResult::getUnknown(); 422 423 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 424 // If we reach a lifetime begin or end marker, then the query ends here 425 // because the value is undefined. 426 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 427 // FIXME: This only considers queries directly on the invariant-tagged 428 // pointer, not on query pointers that are indexed off of them. It'd 429 // be nice to handle that at some point (the right approach is to use 430 // GetPointerBaseWithConstantOffset). 431 if (AA->isMustAlias(AliasAnalysis::Location(II->getArgOperand(1)), 432 MemLoc)) 433 return MemDepResult::getDef(II); 434 continue; 435 } 436 } 437 438 // Values depend on loads if the pointers are must aliased. This means that 439 // a load depends on another must aliased load from the same value. 440 // One exception is atomic loads: a value can depend on an atomic load that it 441 // does not alias with when this atomic load indicates that another thread may 442 // be accessing the location. 443 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 444 // Atomic loads have complications involved. 445 // A Monotonic (or higher) load is OK if the query inst is itself not atomic. 446 // An Acquire (or higher) load sets the HasSeenAcquire flag, so that any 447 // release store will know to return getClobber. 448 // FIXME: This is overly conservative. 449 if (!LI->isUnordered()) { 450 if (!QueryInst) 451 return MemDepResult::getClobber(LI); 452 if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) 453 if (!QueryLI->isSimple()) 454 return MemDepResult::getClobber(LI); 455 if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) 456 if (!QuerySI->isSimple()) 457 return MemDepResult::getClobber(LI); 458 if (isAtLeastAcquire(LI->getOrdering())) 459 HasSeenAcquire = true; 460 } 461 462 // FIXME: this is overly conservative. 463 // While volatile access cannot be eliminated, they do not have to clobber 464 // non-aliasing locations, as normal accesses can for example be reordered 465 // with volatile accesses. 466 if (LI->isVolatile()) 467 return MemDepResult::getClobber(LI); 468 469 AliasAnalysis::Location LoadLoc = AA->getLocation(LI); 470 471 // If we found a pointer, check if it could be the same as our pointer. 472 AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc); 473 474 if (isLoad) { 475 if (R == AliasAnalysis::NoAlias) { 476 // If this is an over-aligned integer load (for example, 477 // "load i8* %P, align 4") see if it would obviously overlap with the 478 // queried location if widened to a larger load (e.g. if the queried 479 // location is 1 byte at P+1). If so, return it as a load/load 480 // clobber result, allowing the client to decide to widen the load if 481 // it wants to. 482 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) 483 if (LI->getAlignment()*8 > ITy->getPrimitiveSizeInBits() && 484 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase, 485 MemLocOffset, LI, DL)) 486 return MemDepResult::getClobber(Inst); 487 488 continue; 489 } 490 491 // Must aliased loads are defs of each other. 492 if (R == AliasAnalysis::MustAlias) 493 return MemDepResult::getDef(Inst); 494 495 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads 496 // in terms of clobbering loads, but since it does this by looking 497 // at the clobbering load directly, it doesn't know about any 498 // phi translation that may have happened along the way. 499 500 // If we have a partial alias, then return this as a clobber for the 501 // client to handle. 502 if (R == AliasAnalysis::PartialAlias) 503 return MemDepResult::getClobber(Inst); 504 #endif 505 506 // Random may-alias loads don't depend on each other without a 507 // dependence. 508 continue; 509 } 510 511 // Stores don't depend on other no-aliased accesses. 512 if (R == AliasAnalysis::NoAlias) 513 continue; 514 515 // Stores don't alias loads from read-only memory. 516 if (AA->pointsToConstantMemory(LoadLoc)) 517 continue; 518 519 // Stores depend on may/must aliased loads. 520 return MemDepResult::getDef(Inst); 521 } 522 523 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 524 // Atomic stores have complications involved. 525 // A Monotonic store is OK if the query inst is itself not atomic. 526 // A Release (or higher) store further requires that no acquire load 527 // has been seen. 528 // FIXME: This is overly conservative. 529 if (!SI->isUnordered()) { 530 if (!QueryInst) 531 return MemDepResult::getClobber(SI); 532 if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) 533 if (!QueryLI->isSimple()) 534 return MemDepResult::getClobber(SI); 535 if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) 536 if (!QuerySI->isSimple()) 537 return MemDepResult::getClobber(SI); 538 if (HasSeenAcquire && isAtLeastRelease(SI->getOrdering())) 539 return MemDepResult::getClobber(SI); 540 } 541 542 // FIXME: this is overly conservative. 543 // While volatile access cannot be eliminated, they do not have to clobber 544 // non-aliasing locations, as normal accesses can for example be reordered 545 // with volatile accesses. 546 if (SI->isVolatile()) 547 return MemDepResult::getClobber(SI); 548 549 // If alias analysis can tell that this store is guaranteed to not modify 550 // the query pointer, ignore it. Use getModRefInfo to handle cases where 551 // the query pointer points to constant memory etc. 552 if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef) 553 continue; 554 555 // Ok, this store might clobber the query pointer. Check to see if it is 556 // a must alias: in this case, we want to return this as a def. 557 AliasAnalysis::Location StoreLoc = AA->getLocation(SI); 558 559 // If we found a pointer, check if it could be the same as our pointer. 560 AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc); 561 562 if (R == AliasAnalysis::NoAlias) 563 continue; 564 if (R == AliasAnalysis::MustAlias) 565 return MemDepResult::getDef(Inst); 566 if (isInvariantLoad) 567 continue; 568 return MemDepResult::getClobber(Inst); 569 } 570 571 // If this is an allocation, and if we know that the accessed pointer is to 572 // the allocation, return Def. This means that there is no dependence and 573 // the access can be optimized based on that. For example, a load could 574 // turn into undef. 575 // Note: Only determine this to be a malloc if Inst is the malloc call, not 576 // a subsequent bitcast of the malloc call result. There can be stores to 577 // the malloced memory between the malloc call and its bitcast uses, and we 578 // need to continue scanning until the malloc call. 579 const TargetLibraryInfo *TLI = AA->getTargetLibraryInfo(); 580 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, TLI)) { 581 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL); 582 583 if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr)) 584 return MemDepResult::getDef(Inst); 585 // Be conservative if the accessed pointer may alias the allocation. 586 if (AA->alias(Inst, AccessPtr) != AliasAnalysis::NoAlias) 587 return MemDepResult::getClobber(Inst); 588 // If the allocation is not aliased and does not read memory (like 589 // strdup), it is safe to ignore. 590 if (isa<AllocaInst>(Inst) || 591 isMallocLikeFn(Inst, TLI) || isCallocLikeFn(Inst, TLI)) 592 continue; 593 } 594 595 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. 596 AliasAnalysis::ModRefResult MR = AA->getModRefInfo(Inst, MemLoc); 597 // If necessary, perform additional analysis. 598 if (MR == AliasAnalysis::ModRef) 599 MR = AA->callCapturesBefore(Inst, MemLoc, DT); 600 switch (MR) { 601 case AliasAnalysis::NoModRef: 602 // If the call has no effect on the queried pointer, just ignore it. 603 continue; 604 case AliasAnalysis::Mod: 605 return MemDepResult::getClobber(Inst); 606 case AliasAnalysis::Ref: 607 // If the call is known to never store to the pointer, and if this is a 608 // load query, we can safely ignore it (scan past it). 609 if (isLoad) 610 continue; 611 default: 612 // Otherwise, there is a potential dependence. Return a clobber. 613 return MemDepResult::getClobber(Inst); 614 } 615 } 616 617 // No dependence found. If this is the entry block of the function, it is 618 // unknown, otherwise it is non-local. 619 if (BB != &BB->getParent()->getEntryBlock()) 620 return MemDepResult::getNonLocal(); 621 return MemDepResult::getNonFuncLocal(); 622 } 623 624 /// getDependency - Return the instruction on which a memory operation 625 /// depends. 626 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) { 627 Instruction *ScanPos = QueryInst; 628 629 // Check for a cached result 630 MemDepResult &LocalCache = LocalDeps[QueryInst]; 631 632 // If the cached entry is non-dirty, just return it. Note that this depends 633 // on MemDepResult's default constructing to 'dirty'. 634 if (!LocalCache.isDirty()) 635 return LocalCache; 636 637 // Otherwise, if we have a dirty entry, we know we can start the scan at that 638 // instruction, which may save us some work. 639 if (Instruction *Inst = LocalCache.getInst()) { 640 ScanPos = Inst; 641 642 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); 643 } 644 645 BasicBlock *QueryParent = QueryInst->getParent(); 646 647 // Do the scan. 648 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { 649 // No dependence found. If this is the entry block of the function, it is 650 // unknown, otherwise it is non-local. 651 if (QueryParent != &QueryParent->getParent()->getEntryBlock()) 652 LocalCache = MemDepResult::getNonLocal(); 653 else 654 LocalCache = MemDepResult::getNonFuncLocal(); 655 } else { 656 AliasAnalysis::Location MemLoc; 657 AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA); 658 if (MemLoc.Ptr) { 659 // If we can do a pointer scan, make it happen. 660 bool isLoad = !(MR & AliasAnalysis::Mod); 661 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst)) 662 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start; 663 664 LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos, 665 QueryParent, QueryInst); 666 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) { 667 CallSite QueryCS(QueryInst); 668 bool isReadOnly = AA->onlyReadsMemory(QueryCS); 669 LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos, 670 QueryParent); 671 } else 672 // Non-memory instruction. 673 LocalCache = MemDepResult::getUnknown(); 674 } 675 676 // Remember the result! 677 if (Instruction *I = LocalCache.getInst()) 678 ReverseLocalDeps[I].insert(QueryInst); 679 680 return LocalCache; 681 } 682 683 #ifndef NDEBUG 684 /// AssertSorted - This method is used when -debug is specified to verify that 685 /// cache arrays are properly kept sorted. 686 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 687 int Count = -1) { 688 if (Count == -1) Count = Cache.size(); 689 if (Count == 0) return; 690 691 for (unsigned i = 1; i != unsigned(Count); ++i) 692 assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!"); 693 } 694 #endif 695 696 /// getNonLocalCallDependency - Perform a full dependency query for the 697 /// specified call, returning the set of blocks that the value is 698 /// potentially live across. The returned set of results will include a 699 /// "NonLocal" result for all blocks where the value is live across. 700 /// 701 /// This method assumes the instruction returns a "NonLocal" dependency 702 /// within its own block. 703 /// 704 /// This returns a reference to an internal data structure that may be 705 /// invalidated on the next non-local query or when an instruction is 706 /// removed. Clients must copy this data if they want it around longer than 707 /// that. 708 const MemoryDependenceAnalysis::NonLocalDepInfo & 709 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { 710 assert(getDependency(QueryCS.getInstruction()).isNonLocal() && 711 "getNonLocalCallDependency should only be used on calls with non-local deps!"); 712 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()]; 713 NonLocalDepInfo &Cache = CacheP.first; 714 715 /// DirtyBlocks - This is the set of blocks that need to be recomputed. In 716 /// the cached case, this can happen due to instructions being deleted etc. In 717 /// the uncached case, this starts out as the set of predecessors we care 718 /// about. 719 SmallVector<BasicBlock*, 32> DirtyBlocks; 720 721 if (!Cache.empty()) { 722 // Okay, we have a cache entry. If we know it is not dirty, just return it 723 // with no computation. 724 if (!CacheP.second) { 725 ++NumCacheNonLocal; 726 return Cache; 727 } 728 729 // If we already have a partially computed set of results, scan them to 730 // determine what is dirty, seeding our initial DirtyBlocks worklist. 731 for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end(); 732 I != E; ++I) 733 if (I->getResult().isDirty()) 734 DirtyBlocks.push_back(I->getBB()); 735 736 // Sort the cache so that we can do fast binary search lookups below. 737 std::sort(Cache.begin(), Cache.end()); 738 739 ++NumCacheDirtyNonLocal; 740 //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " 741 // << Cache.size() << " cached: " << *QueryInst; 742 } else { 743 // Seed DirtyBlocks with each of the preds of QueryInst's block. 744 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent(); 745 for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI) 746 DirtyBlocks.push_back(*PI); 747 ++NumUncacheNonLocal; 748 } 749 750 // isReadonlyCall - If this is a read-only call, we can be more aggressive. 751 bool isReadonlyCall = AA->onlyReadsMemory(QueryCS); 752 753 SmallPtrSet<BasicBlock*, 64> Visited; 754 755 unsigned NumSortedEntries = Cache.size(); 756 DEBUG(AssertSorted(Cache)); 757 758 // Iterate while we still have blocks to update. 759 while (!DirtyBlocks.empty()) { 760 BasicBlock *DirtyBB = DirtyBlocks.back(); 761 DirtyBlocks.pop_back(); 762 763 // Already processed this block? 764 if (!Visited.insert(DirtyBB)) 765 continue; 766 767 // Do a binary search to see if we already have an entry for this block in 768 // the cache set. If so, find it. 769 DEBUG(AssertSorted(Cache, NumSortedEntries)); 770 NonLocalDepInfo::iterator Entry = 771 std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries, 772 NonLocalDepEntry(DirtyBB)); 773 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB) 774 --Entry; 775 776 NonLocalDepEntry *ExistingResult = nullptr; 777 if (Entry != Cache.begin()+NumSortedEntries && 778 Entry->getBB() == DirtyBB) { 779 // If we already have an entry, and if it isn't already dirty, the block 780 // is done. 781 if (!Entry->getResult().isDirty()) 782 continue; 783 784 // Otherwise, remember this slot so we can update the value. 785 ExistingResult = &*Entry; 786 } 787 788 // If the dirty entry has a pointer, start scanning from it so we don't have 789 // to rescan the entire block. 790 BasicBlock::iterator ScanPos = DirtyBB->end(); 791 if (ExistingResult) { 792 if (Instruction *Inst = ExistingResult->getResult().getInst()) { 793 ScanPos = Inst; 794 // We're removing QueryInst's use of Inst. 795 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, 796 QueryCS.getInstruction()); 797 } 798 } 799 800 // Find out if this block has a local dependency for QueryInst. 801 MemDepResult Dep; 802 803 if (ScanPos != DirtyBB->begin()) { 804 Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB); 805 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { 806 // No dependence found. If this is the entry block of the function, it is 807 // a clobber, otherwise it is unknown. 808 Dep = MemDepResult::getNonLocal(); 809 } else { 810 Dep = MemDepResult::getNonFuncLocal(); 811 } 812 813 // If we had a dirty entry for the block, update it. Otherwise, just add 814 // a new entry. 815 if (ExistingResult) 816 ExistingResult->setResult(Dep); 817 else 818 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); 819 820 // If the block has a dependency (i.e. it isn't completely transparent to 821 // the value), remember the association! 822 if (!Dep.isNonLocal()) { 823 // Keep the ReverseNonLocalDeps map up to date so we can efficiently 824 // update this when we remove instructions. 825 if (Instruction *Inst = Dep.getInst()) 826 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction()); 827 } else { 828 829 // If the block *is* completely transparent to the load, we need to check 830 // the predecessors of this block. Add them to our worklist. 831 for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI) 832 DirtyBlocks.push_back(*PI); 833 } 834 } 835 836 return Cache; 837 } 838 839 /// getNonLocalPointerDependency - Perform a full dependency query for an 840 /// access to the specified (non-volatile) memory location, returning the 841 /// set of instructions that either define or clobber the value. 842 /// 843 /// This method assumes the pointer has a "NonLocal" dependency within its 844 /// own block. 845 /// 846 void MemoryDependenceAnalysis:: 847 getNonLocalPointerDependency(const AliasAnalysis::Location &Loc, bool isLoad, 848 BasicBlock *FromBB, 849 SmallVectorImpl<NonLocalDepResult> &Result) { 850 assert(Loc.Ptr->getType()->isPointerTy() && 851 "Can't get pointer deps of a non-pointer!"); 852 Result.clear(); 853 854 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL); 855 856 // This is the set of blocks we've inspected, and the pointer we consider in 857 // each block. Because of critical edges, we currently bail out if querying 858 // a block with multiple different pointers. This can happen during PHI 859 // translation. 860 DenseMap<BasicBlock*, Value*> Visited; 861 if (!getNonLocalPointerDepFromBB(Address, Loc, isLoad, FromBB, 862 Result, Visited, true)) 863 return; 864 Result.clear(); 865 Result.push_back(NonLocalDepResult(FromBB, 866 MemDepResult::getUnknown(), 867 const_cast<Value *>(Loc.Ptr))); 868 } 869 870 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with 871 /// Pointer/PointeeSize using either cached information in Cache or by doing a 872 /// lookup (which may use dirty cache info if available). If we do a lookup, 873 /// add the result to the cache. 874 MemDepResult MemoryDependenceAnalysis:: 875 GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc, 876 bool isLoad, BasicBlock *BB, 877 NonLocalDepInfo *Cache, unsigned NumSortedEntries) { 878 879 // Do a binary search to see if we already have an entry for this block in 880 // the cache set. If so, find it. 881 NonLocalDepInfo::iterator Entry = 882 std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries, 883 NonLocalDepEntry(BB)); 884 if (Entry != Cache->begin() && (Entry-1)->getBB() == BB) 885 --Entry; 886 887 NonLocalDepEntry *ExistingResult = nullptr; 888 if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB) 889 ExistingResult = &*Entry; 890 891 // If we have a cached entry, and it is non-dirty, use it as the value for 892 // this dependency. 893 if (ExistingResult && !ExistingResult->getResult().isDirty()) { 894 ++NumCacheNonLocalPtr; 895 return ExistingResult->getResult(); 896 } 897 898 // Otherwise, we have to scan for the value. If we have a dirty cache 899 // entry, start scanning from its position, otherwise we scan from the end 900 // of the block. 901 BasicBlock::iterator ScanPos = BB->end(); 902 if (ExistingResult && ExistingResult->getResult().getInst()) { 903 assert(ExistingResult->getResult().getInst()->getParent() == BB && 904 "Instruction invalidated?"); 905 ++NumCacheDirtyNonLocalPtr; 906 ScanPos = ExistingResult->getResult().getInst(); 907 908 // Eliminating the dirty entry from 'Cache', so update the reverse info. 909 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 910 RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey); 911 } else { 912 ++NumUncacheNonLocalPtr; 913 } 914 915 // Scan the block for the dependency. 916 MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB); 917 918 // If we had a dirty entry for the block, update it. Otherwise, just add 919 // a new entry. 920 if (ExistingResult) 921 ExistingResult->setResult(Dep); 922 else 923 Cache->push_back(NonLocalDepEntry(BB, Dep)); 924 925 // If the block has a dependency (i.e. it isn't completely transparent to 926 // the value), remember the reverse association because we just added it 927 // to Cache! 928 if (!Dep.isDef() && !Dep.isClobber()) 929 return Dep; 930 931 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently 932 // update MemDep when we remove instructions. 933 Instruction *Inst = Dep.getInst(); 934 assert(Inst && "Didn't depend on anything?"); 935 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 936 ReverseNonLocalPtrDeps[Inst].insert(CacheKey); 937 return Dep; 938 } 939 940 /// SortNonLocalDepInfoCache - Sort the NonLocalDepInfo cache, given a certain 941 /// number of elements in the array that are already properly ordered. This is 942 /// optimized for the case when only a few entries are added. 943 static void 944 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 945 unsigned NumSortedEntries) { 946 switch (Cache.size() - NumSortedEntries) { 947 case 0: 948 // done, no new entries. 949 break; 950 case 2: { 951 // Two new entries, insert the last one into place. 952 NonLocalDepEntry Val = Cache.back(); 953 Cache.pop_back(); 954 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 955 std::upper_bound(Cache.begin(), Cache.end()-1, Val); 956 Cache.insert(Entry, Val); 957 // FALL THROUGH. 958 } 959 case 1: 960 // One new entry, Just insert the new value at the appropriate position. 961 if (Cache.size() != 1) { 962 NonLocalDepEntry Val = Cache.back(); 963 Cache.pop_back(); 964 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 965 std::upper_bound(Cache.begin(), Cache.end(), Val); 966 Cache.insert(Entry, Val); 967 } 968 break; 969 default: 970 // Added many values, do a full scale sort. 971 std::sort(Cache.begin(), Cache.end()); 972 break; 973 } 974 } 975 976 /// getNonLocalPointerDepFromBB - Perform a dependency query based on 977 /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def 978 /// results to the results vector and keep track of which blocks are visited in 979 /// 'Visited'. 980 /// 981 /// This has special behavior for the first block queries (when SkipFirstBlock 982 /// is true). In this special case, it ignores the contents of the specified 983 /// block and starts returning dependence info for its predecessors. 984 /// 985 /// This function returns false on success, or true to indicate that it could 986 /// not compute dependence information for some reason. This should be treated 987 /// as a clobber dependence on the first instruction in the predecessor block. 988 bool MemoryDependenceAnalysis:: 989 getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, 990 const AliasAnalysis::Location &Loc, 991 bool isLoad, BasicBlock *StartBB, 992 SmallVectorImpl<NonLocalDepResult> &Result, 993 DenseMap<BasicBlock*, Value*> &Visited, 994 bool SkipFirstBlock) { 995 // Look up the cached info for Pointer. 996 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); 997 998 // Set up a temporary NLPI value. If the map doesn't yet have an entry for 999 // CacheKey, this value will be inserted as the associated value. Otherwise, 1000 // it'll be ignored, and we'll have to check to see if the cached size and 1001 // aa tags are consistent with the current query. 1002 NonLocalPointerInfo InitialNLPI; 1003 InitialNLPI.Size = Loc.Size; 1004 InitialNLPI.AATags = Loc.AATags; 1005 1006 // Get the NLPI for CacheKey, inserting one into the map if it doesn't 1007 // already have one. 1008 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = 1009 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); 1010 NonLocalPointerInfo *CacheInfo = &Pair.first->second; 1011 1012 // If we already have a cache entry for this CacheKey, we may need to do some 1013 // work to reconcile the cache entry and the current query. 1014 if (!Pair.second) { 1015 if (CacheInfo->Size < Loc.Size) { 1016 // The query's Size is greater than the cached one. Throw out the 1017 // cached data and proceed with the query at the greater size. 1018 CacheInfo->Pair = BBSkipFirstBlockPair(); 1019 CacheInfo->Size = Loc.Size; 1020 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(), 1021 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI) 1022 if (Instruction *Inst = DI->getResult().getInst()) 1023 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1024 CacheInfo->NonLocalDeps.clear(); 1025 } else if (CacheInfo->Size > Loc.Size) { 1026 // This query's Size is less than the cached one. Conservatively restart 1027 // the query using the greater size. 1028 return getNonLocalPointerDepFromBB(Pointer, 1029 Loc.getWithNewSize(CacheInfo->Size), 1030 isLoad, StartBB, Result, Visited, 1031 SkipFirstBlock); 1032 } 1033 1034 // If the query's AATags are inconsistent with the cached one, 1035 // conservatively throw out the cached data and restart the query with 1036 // no tag if needed. 1037 if (CacheInfo->AATags != Loc.AATags) { 1038 if (CacheInfo->AATags) { 1039 CacheInfo->Pair = BBSkipFirstBlockPair(); 1040 CacheInfo->AATags = AAMDNodes(); 1041 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(), 1042 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI) 1043 if (Instruction *Inst = DI->getResult().getInst()) 1044 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1045 CacheInfo->NonLocalDeps.clear(); 1046 } 1047 if (Loc.AATags) 1048 return getNonLocalPointerDepFromBB(Pointer, Loc.getWithoutAATags(), 1049 isLoad, StartBB, Result, Visited, 1050 SkipFirstBlock); 1051 } 1052 } 1053 1054 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; 1055 1056 // If we have valid cached information for exactly the block we are 1057 // investigating, just return it with no recomputation. 1058 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { 1059 // We have a fully cached result for this query then we can just return the 1060 // cached results and populate the visited set. However, we have to verify 1061 // that we don't already have conflicting results for these blocks. Check 1062 // to ensure that if a block in the results set is in the visited set that 1063 // it was for the same pointer query. 1064 if (!Visited.empty()) { 1065 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 1066 I != E; ++I) { 1067 DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB()); 1068 if (VI == Visited.end() || VI->second == Pointer.getAddr()) 1069 continue; 1070 1071 // We have a pointer mismatch in a block. Just return clobber, saying 1072 // that something was clobbered in this result. We could also do a 1073 // non-fully cached query, but there is little point in doing this. 1074 return true; 1075 } 1076 } 1077 1078 Value *Addr = Pointer.getAddr(); 1079 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 1080 I != E; ++I) { 1081 Visited.insert(std::make_pair(I->getBB(), Addr)); 1082 if (I->getResult().isNonLocal()) { 1083 continue; 1084 } 1085 1086 if (!DT) { 1087 Result.push_back(NonLocalDepResult(I->getBB(), 1088 MemDepResult::getUnknown(), 1089 Addr)); 1090 } else if (DT->isReachableFromEntry(I->getBB())) { 1091 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr)); 1092 } 1093 } 1094 ++NumCacheCompleteNonLocalPtr; 1095 return false; 1096 } 1097 1098 // Otherwise, either this is a new block, a block with an invalid cache 1099 // pointer or one that we're about to invalidate by putting more info into it 1100 // than its valid cache info. If empty, the result will be valid cache info, 1101 // otherwise it isn't. 1102 if (Cache->empty()) 1103 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); 1104 else 1105 CacheInfo->Pair = BBSkipFirstBlockPair(); 1106 1107 SmallVector<BasicBlock*, 32> Worklist; 1108 Worklist.push_back(StartBB); 1109 1110 // PredList used inside loop. 1111 SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList; 1112 1113 // Keep track of the entries that we know are sorted. Previously cached 1114 // entries will all be sorted. The entries we add we only sort on demand (we 1115 // don't insert every element into its sorted position). We know that we 1116 // won't get any reuse from currently inserted values, because we don't 1117 // revisit blocks after we insert info for them. 1118 unsigned NumSortedEntries = Cache->size(); 1119 DEBUG(AssertSorted(*Cache)); 1120 1121 while (!Worklist.empty()) { 1122 BasicBlock *BB = Worklist.pop_back_val(); 1123 1124 // Skip the first block if we have it. 1125 if (!SkipFirstBlock) { 1126 // Analyze the dependency of *Pointer in FromBB. See if we already have 1127 // been here. 1128 assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); 1129 1130 // Get the dependency info for Pointer in BB. If we have cached 1131 // information, we will use it, otherwise we compute it. 1132 DEBUG(AssertSorted(*Cache, NumSortedEntries)); 1133 MemDepResult Dep = GetNonLocalInfoForBlock(Loc, isLoad, BB, Cache, 1134 NumSortedEntries); 1135 1136 // If we got a Def or Clobber, add this to the list of results. 1137 if (!Dep.isNonLocal()) { 1138 if (!DT) { 1139 Result.push_back(NonLocalDepResult(BB, 1140 MemDepResult::getUnknown(), 1141 Pointer.getAddr())); 1142 continue; 1143 } else if (DT->isReachableFromEntry(BB)) { 1144 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); 1145 continue; 1146 } 1147 } 1148 } 1149 1150 // If 'Pointer' is an instruction defined in this block, then we need to do 1151 // phi translation to change it into a value live in the predecessor block. 1152 // If not, we just add the predecessors to the worklist and scan them with 1153 // the same Pointer. 1154 if (!Pointer.NeedsPHITranslationFromBlock(BB)) { 1155 SkipFirstBlock = false; 1156 SmallVector<BasicBlock*, 16> NewBlocks; 1157 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { 1158 // Verify that we haven't looked at this block yet. 1159 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 1160 InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr())); 1161 if (InsertRes.second) { 1162 // First time we've looked at *PI. 1163 NewBlocks.push_back(*PI); 1164 continue; 1165 } 1166 1167 // If we have seen this block before, but it was with a different 1168 // pointer then we have a phi translation failure and we have to treat 1169 // this as a clobber. 1170 if (InsertRes.first->second != Pointer.getAddr()) { 1171 // Make sure to clean up the Visited map before continuing on to 1172 // PredTranslationFailure. 1173 for (unsigned i = 0; i < NewBlocks.size(); i++) 1174 Visited.erase(NewBlocks[i]); 1175 goto PredTranslationFailure; 1176 } 1177 } 1178 Worklist.append(NewBlocks.begin(), NewBlocks.end()); 1179 continue; 1180 } 1181 1182 // We do need to do phi translation, if we know ahead of time we can't phi 1183 // translate this value, don't even try. 1184 if (!Pointer.IsPotentiallyPHITranslatable()) 1185 goto PredTranslationFailure; 1186 1187 // We may have added values to the cache list before this PHI translation. 1188 // If so, we haven't done anything to ensure that the cache remains sorted. 1189 // Sort it now (if needed) so that recursive invocations of 1190 // getNonLocalPointerDepFromBB and other routines that could reuse the cache 1191 // value will only see properly sorted cache arrays. 1192 if (Cache && NumSortedEntries != Cache->size()) { 1193 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1194 NumSortedEntries = Cache->size(); 1195 } 1196 Cache = nullptr; 1197 1198 PredList.clear(); 1199 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { 1200 BasicBlock *Pred = *PI; 1201 PredList.push_back(std::make_pair(Pred, Pointer)); 1202 1203 // Get the PHI translated pointer in this predecessor. This can fail if 1204 // not translatable, in which case the getAddr() returns null. 1205 PHITransAddr &PredPointer = PredList.back().second; 1206 PredPointer.PHITranslateValue(BB, Pred, nullptr); 1207 1208 Value *PredPtrVal = PredPointer.getAddr(); 1209 1210 // Check to see if we have already visited this pred block with another 1211 // pointer. If so, we can't do this lookup. This failure can occur 1212 // with PHI translation when a critical edge exists and the PHI node in 1213 // the successor translates to a pointer value different than the 1214 // pointer the block was first analyzed with. 1215 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 1216 InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal)); 1217 1218 if (!InsertRes.second) { 1219 // We found the pred; take it off the list of preds to visit. 1220 PredList.pop_back(); 1221 1222 // If the predecessor was visited with PredPtr, then we already did 1223 // the analysis and can ignore it. 1224 if (InsertRes.first->second == PredPtrVal) 1225 continue; 1226 1227 // Otherwise, the block was previously analyzed with a different 1228 // pointer. We can't represent the result of this case, so we just 1229 // treat this as a phi translation failure. 1230 1231 // Make sure to clean up the Visited map before continuing on to 1232 // PredTranslationFailure. 1233 for (unsigned i = 0, n = PredList.size(); i < n; ++i) 1234 Visited.erase(PredList[i].first); 1235 1236 goto PredTranslationFailure; 1237 } 1238 } 1239 1240 // Actually process results here; this need to be a separate loop to avoid 1241 // calling getNonLocalPointerDepFromBB for blocks we don't want to return 1242 // any results for. (getNonLocalPointerDepFromBB will modify our 1243 // datastructures in ways the code after the PredTranslationFailure label 1244 // doesn't expect.) 1245 for (unsigned i = 0, n = PredList.size(); i < n; ++i) { 1246 BasicBlock *Pred = PredList[i].first; 1247 PHITransAddr &PredPointer = PredList[i].second; 1248 Value *PredPtrVal = PredPointer.getAddr(); 1249 1250 bool CanTranslate = true; 1251 // If PHI translation was unable to find an available pointer in this 1252 // predecessor, then we have to assume that the pointer is clobbered in 1253 // that predecessor. We can still do PRE of the load, which would insert 1254 // a computation of the pointer in this predecessor. 1255 if (!PredPtrVal) 1256 CanTranslate = false; 1257 1258 // FIXME: it is entirely possible that PHI translating will end up with 1259 // the same value. Consider PHI translating something like: 1260 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* 1261 // to recurse here, pedantically speaking. 1262 1263 // If getNonLocalPointerDepFromBB fails here, that means the cached 1264 // result conflicted with the Visited list; we have to conservatively 1265 // assume it is unknown, but this also does not block PRE of the load. 1266 if (!CanTranslate || 1267 getNonLocalPointerDepFromBB(PredPointer, 1268 Loc.getWithNewPtr(PredPtrVal), 1269 isLoad, Pred, 1270 Result, Visited)) { 1271 // Add the entry to the Result list. 1272 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal); 1273 Result.push_back(Entry); 1274 1275 // Since we had a phi translation failure, the cache for CacheKey won't 1276 // include all of the entries that we need to immediately satisfy future 1277 // queries. Mark this in NonLocalPointerDeps by setting the 1278 // BBSkipFirstBlockPair pointer to null. This requires reuse of the 1279 // cached value to do more work but not miss the phi trans failure. 1280 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; 1281 NLPI.Pair = BBSkipFirstBlockPair(); 1282 continue; 1283 } 1284 } 1285 1286 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. 1287 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1288 Cache = &CacheInfo->NonLocalDeps; 1289 NumSortedEntries = Cache->size(); 1290 1291 // Since we did phi translation, the "Cache" set won't contain all of the 1292 // results for the query. This is ok (we can still use it to accelerate 1293 // specific block queries) but we can't do the fastpath "return all 1294 // results from the set" Clear out the indicator for this. 1295 CacheInfo->Pair = BBSkipFirstBlockPair(); 1296 SkipFirstBlock = false; 1297 continue; 1298 1299 PredTranslationFailure: 1300 // The following code is "failure"; we can't produce a sane translation 1301 // for the given block. It assumes that we haven't modified any of 1302 // our datastructures while processing the current block. 1303 1304 if (!Cache) { 1305 // Refresh the CacheInfo/Cache pointer if it got invalidated. 1306 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1307 Cache = &CacheInfo->NonLocalDeps; 1308 NumSortedEntries = Cache->size(); 1309 } 1310 1311 // Since we failed phi translation, the "Cache" set won't contain all of the 1312 // results for the query. This is ok (we can still use it to accelerate 1313 // specific block queries) but we can't do the fastpath "return all 1314 // results from the set". Clear out the indicator for this. 1315 CacheInfo->Pair = BBSkipFirstBlockPair(); 1316 1317 // If *nothing* works, mark the pointer as unknown. 1318 // 1319 // If this is the magic first block, return this as a clobber of the whole 1320 // incoming value. Since we can't phi translate to one of the predecessors, 1321 // we have to bail out. 1322 if (SkipFirstBlock) 1323 return true; 1324 1325 for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) { 1326 assert(I != Cache->rend() && "Didn't find current block??"); 1327 if (I->getBB() != BB) 1328 continue; 1329 1330 assert(I->getResult().isNonLocal() && 1331 "Should only be here with transparent block"); 1332 I->setResult(MemDepResult::getUnknown()); 1333 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), 1334 Pointer.getAddr())); 1335 break; 1336 } 1337 } 1338 1339 // Okay, we're done now. If we added new values to the cache, re-sort it. 1340 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1341 DEBUG(AssertSorted(*Cache)); 1342 return false; 1343 } 1344 1345 /// RemoveCachedNonLocalPointerDependencies - If P exists in 1346 /// CachedNonLocalPointerInfo, remove it. 1347 void MemoryDependenceAnalysis:: 1348 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) { 1349 CachedNonLocalPointerInfo::iterator It = 1350 NonLocalPointerDeps.find(P); 1351 if (It == NonLocalPointerDeps.end()) return; 1352 1353 // Remove all of the entries in the BB->val map. This involves removing 1354 // instructions from the reverse map. 1355 NonLocalDepInfo &PInfo = It->second.NonLocalDeps; 1356 1357 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { 1358 Instruction *Target = PInfo[i].getResult().getInst(); 1359 if (!Target) continue; // Ignore non-local dep results. 1360 assert(Target->getParent() == PInfo[i].getBB()); 1361 1362 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1363 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); 1364 } 1365 1366 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). 1367 NonLocalPointerDeps.erase(It); 1368 } 1369 1370 1371 /// invalidateCachedPointerInfo - This method is used to invalidate cached 1372 /// information about the specified pointer, because it may be too 1373 /// conservative in memdep. This is an optional call that can be used when 1374 /// the client detects an equivalence between the pointer and some other 1375 /// value and replaces the other value with ptr. This can make Ptr available 1376 /// in more places that cached info does not necessarily keep. 1377 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) { 1378 // If Ptr isn't really a pointer, just ignore it. 1379 if (!Ptr->getType()->isPointerTy()) return; 1380 // Flush store info for the pointer. 1381 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); 1382 // Flush load info for the pointer. 1383 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); 1384 } 1385 1386 /// invalidateCachedPredecessors - Clear the PredIteratorCache info. 1387 /// This needs to be done when the CFG changes, e.g., due to splitting 1388 /// critical edges. 1389 void MemoryDependenceAnalysis::invalidateCachedPredecessors() { 1390 PredCache->clear(); 1391 } 1392 1393 /// removeInstruction - Remove an instruction from the dependence analysis, 1394 /// updating the dependence of instructions that previously depended on it. 1395 /// This method attempts to keep the cache coherent using the reverse map. 1396 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) { 1397 // Walk through the Non-local dependencies, removing this one as the value 1398 // for any cached queries. 1399 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); 1400 if (NLDI != NonLocalDeps.end()) { 1401 NonLocalDepInfo &BlockMap = NLDI->second.first; 1402 for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end(); 1403 DI != DE; ++DI) 1404 if (Instruction *Inst = DI->getResult().getInst()) 1405 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); 1406 NonLocalDeps.erase(NLDI); 1407 } 1408 1409 // If we have a cached local dependence query for this instruction, remove it. 1410 // 1411 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); 1412 if (LocalDepEntry != LocalDeps.end()) { 1413 // Remove us from DepInst's reverse set now that the local dep info is gone. 1414 if (Instruction *Inst = LocalDepEntry->second.getInst()) 1415 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); 1416 1417 // Remove this local dependency info. 1418 LocalDeps.erase(LocalDepEntry); 1419 } 1420 1421 // If we have any cached pointer dependencies on this instruction, remove 1422 // them. If the instruction has non-pointer type, then it can't be a pointer 1423 // base. 1424 1425 // Remove it from both the load info and the store info. The instruction 1426 // can't be in either of these maps if it is non-pointer. 1427 if (RemInst->getType()->isPointerTy()) { 1428 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); 1429 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); 1430 } 1431 1432 // Loop over all of the things that depend on the instruction we're removing. 1433 // 1434 SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd; 1435 1436 // If we find RemInst as a clobber or Def in any of the maps for other values, 1437 // we need to replace its entry with a dirty version of the instruction after 1438 // it. If RemInst is a terminator, we use a null dirty value. 1439 // 1440 // Using a dirty version of the instruction after RemInst saves having to scan 1441 // the entire block to get to this point. 1442 MemDepResult NewDirtyVal; 1443 if (!RemInst->isTerminator()) 1444 NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst)); 1445 1446 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); 1447 if (ReverseDepIt != ReverseLocalDeps.end()) { 1448 // RemInst can't be the terminator if it has local stuff depending on it. 1449 assert(!ReverseDepIt->second.empty() && !isa<TerminatorInst>(RemInst) && 1450 "Nothing can locally depend on a terminator"); 1451 1452 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) { 1453 assert(InstDependingOnRemInst != RemInst && 1454 "Already removed our local dep info"); 1455 1456 LocalDeps[InstDependingOnRemInst] = NewDirtyVal; 1457 1458 // Make sure to remember that new things depend on NewDepInst. 1459 assert(NewDirtyVal.getInst() && "There is no way something else can have " 1460 "a local dep on this if it is a terminator!"); 1461 ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(), 1462 InstDependingOnRemInst)); 1463 } 1464 1465 ReverseLocalDeps.erase(ReverseDepIt); 1466 1467 // Add new reverse deps after scanning the set, to avoid invalidating the 1468 // 'ReverseDeps' reference. 1469 while (!ReverseDepsToAdd.empty()) { 1470 ReverseLocalDeps[ReverseDepsToAdd.back().first] 1471 .insert(ReverseDepsToAdd.back().second); 1472 ReverseDepsToAdd.pop_back(); 1473 } 1474 } 1475 1476 ReverseDepIt = ReverseNonLocalDeps.find(RemInst); 1477 if (ReverseDepIt != ReverseNonLocalDeps.end()) { 1478 for (Instruction *I : ReverseDepIt->second) { 1479 assert(I != RemInst && "Already removed NonLocalDep info for RemInst"); 1480 1481 PerInstNLInfo &INLD = NonLocalDeps[I]; 1482 // The information is now dirty! 1483 INLD.second = true; 1484 1485 for (NonLocalDepInfo::iterator DI = INLD.first.begin(), 1486 DE = INLD.first.end(); DI != DE; ++DI) { 1487 if (DI->getResult().getInst() != RemInst) continue; 1488 1489 // Convert to a dirty entry for the subsequent instruction. 1490 DI->setResult(NewDirtyVal); 1491 1492 if (Instruction *NextI = NewDirtyVal.getInst()) 1493 ReverseDepsToAdd.push_back(std::make_pair(NextI, I)); 1494 } 1495 } 1496 1497 ReverseNonLocalDeps.erase(ReverseDepIt); 1498 1499 // Add new reverse deps after scanning the set, to avoid invalidating 'Set' 1500 while (!ReverseDepsToAdd.empty()) { 1501 ReverseNonLocalDeps[ReverseDepsToAdd.back().first] 1502 .insert(ReverseDepsToAdd.back().second); 1503 ReverseDepsToAdd.pop_back(); 1504 } 1505 } 1506 1507 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a 1508 // value in the NonLocalPointerDeps info. 1509 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = 1510 ReverseNonLocalPtrDeps.find(RemInst); 1511 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { 1512 SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd; 1513 1514 for (ValueIsLoadPair P : ReversePtrDepIt->second) { 1515 assert(P.getPointer() != RemInst && 1516 "Already removed NonLocalPointerDeps info for RemInst"); 1517 1518 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; 1519 1520 // The cache is not valid for any specific block anymore. 1521 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); 1522 1523 // Update any entries for RemInst to use the instruction after it. 1524 for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end(); 1525 DI != DE; ++DI) { 1526 if (DI->getResult().getInst() != RemInst) continue; 1527 1528 // Convert to a dirty entry for the subsequent instruction. 1529 DI->setResult(NewDirtyVal); 1530 1531 if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) 1532 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); 1533 } 1534 1535 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its 1536 // subsequent value may invalidate the sortedness. 1537 std::sort(NLPDI.begin(), NLPDI.end()); 1538 } 1539 1540 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); 1541 1542 while (!ReversePtrDepsToAdd.empty()) { 1543 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first] 1544 .insert(ReversePtrDepsToAdd.back().second); 1545 ReversePtrDepsToAdd.pop_back(); 1546 } 1547 } 1548 1549 1550 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); 1551 AA->deleteValue(RemInst); 1552 DEBUG(verifyRemoved(RemInst)); 1553 } 1554 /// verifyRemoved - Verify that the specified instruction does not occur 1555 /// in our internal data structures. This function verifies by asserting in 1556 /// debug builds. 1557 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const { 1558 #ifndef NDEBUG 1559 for (LocalDepMapType::const_iterator I = LocalDeps.begin(), 1560 E = LocalDeps.end(); I != E; ++I) { 1561 assert(I->first != D && "Inst occurs in data structures"); 1562 assert(I->second.getInst() != D && 1563 "Inst occurs in data structures"); 1564 } 1565 1566 for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(), 1567 E = NonLocalPointerDeps.end(); I != E; ++I) { 1568 assert(I->first.getPointer() != D && "Inst occurs in NLPD map key"); 1569 const NonLocalDepInfo &Val = I->second.NonLocalDeps; 1570 for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end(); 1571 II != E; ++II) 1572 assert(II->getResult().getInst() != D && "Inst occurs as NLPD value"); 1573 } 1574 1575 for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(), 1576 E = NonLocalDeps.end(); I != E; ++I) { 1577 assert(I->first != D && "Inst occurs in data structures"); 1578 const PerInstNLInfo &INLD = I->second; 1579 for (NonLocalDepInfo::const_iterator II = INLD.first.begin(), 1580 EE = INLD.first.end(); II != EE; ++II) 1581 assert(II->getResult().getInst() != D && "Inst occurs in data structures"); 1582 } 1583 1584 for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(), 1585 E = ReverseLocalDeps.end(); I != E; ++I) { 1586 assert(I->first != D && "Inst occurs in data structures"); 1587 for (Instruction *Inst : I->second) 1588 assert(Inst != D && "Inst occurs in data structures"); 1589 } 1590 1591 for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(), 1592 E = ReverseNonLocalDeps.end(); 1593 I != E; ++I) { 1594 assert(I->first != D && "Inst occurs in data structures"); 1595 for (Instruction *Inst : I->second) 1596 assert(Inst != D && "Inst occurs in data structures"); 1597 } 1598 1599 for (ReverseNonLocalPtrDepTy::const_iterator 1600 I = ReverseNonLocalPtrDeps.begin(), 1601 E = ReverseNonLocalPtrDeps.end(); I != E; ++I) { 1602 assert(I->first != D && "Inst occurs in rev NLPD map"); 1603 1604 for (ValueIsLoadPair P : I->second) 1605 assert(P != ValueIsLoadPair(D, false) && 1606 P != ValueIsLoadPair(D, true) && 1607 "Inst occurs in ReverseNonLocalPtrDeps map"); 1608 } 1609 #endif 1610 } 1611