1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements an analysis that determines, for a given memory 10 // operation, what preceding memory operations it depends on. It builds on 11 // alias analysis information, and tries to provide a lazy, caching interface to 12 // a common kind of alias information query. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/MemoryLocation.h" 26 #include "llvm/Analysis/OrderedBasicBlock.h" 27 #include "llvm/Analysis/PHITransAddr.h" 28 #include "llvm/Analysis/PhiValues.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/LLVMContext.h" 43 #include "llvm/IR/Metadata.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/IR/PredIteratorCache.h" 46 #include "llvm/IR/Type.h" 47 #include "llvm/IR/Use.h" 48 #include "llvm/IR/User.h" 49 #include "llvm/IR/Value.h" 50 #include "llvm/InitializePasses.h" 51 #include "llvm/Pass.h" 52 #include "llvm/Support/AtomicOrdering.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Compiler.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/MathExtras.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <cstdint> 61 #include <iterator> 62 #include <utility> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "memdep" 67 68 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); 69 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); 70 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); 71 72 STATISTIC(NumCacheNonLocalPtr, 73 "Number of fully cached non-local ptr responses"); 74 STATISTIC(NumCacheDirtyNonLocalPtr, 75 "Number of cached, but dirty, non-local ptr responses"); 76 STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses"); 77 STATISTIC(NumCacheCompleteNonLocalPtr, 78 "Number of block queries that were completely cached"); 79 80 // Limit for the number of instructions to scan in a block. 81 82 static cl::opt<unsigned> BlockScanLimit( 83 "memdep-block-scan-limit", cl::Hidden, cl::init(100), 84 cl::desc("The number of instructions to scan in a block in memory " 85 "dependency analysis (default = 100)")); 86 87 static cl::opt<unsigned> 88 BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000), 89 cl::desc("The number of blocks to scan during memory " 90 "dependency analysis (default = 1000)")); 91 92 // Limit on the number of memdep results to process. 93 static const unsigned int NumResultsLimit = 100; 94 95 /// This is a helper function that removes Val from 'Inst's set in ReverseMap. 96 /// 97 /// If the set becomes empty, remove Inst's entry. 98 template <typename KeyTy> 99 static void 100 RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap, 101 Instruction *Inst, KeyTy Val) { 102 typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt = 103 ReverseMap.find(Inst); 104 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); 105 bool Found = InstIt->second.erase(Val); 106 assert(Found && "Invalid reverse map!"); 107 (void)Found; 108 if (InstIt->second.empty()) 109 ReverseMap.erase(InstIt); 110 } 111 112 /// If the given instruction references a specific memory location, fill in Loc 113 /// with the details, otherwise set Loc.Ptr to null. 114 /// 115 /// Returns a ModRefInfo value describing the general behavior of the 116 /// instruction. 117 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc, 118 const TargetLibraryInfo &TLI) { 119 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 120 if (LI->isUnordered()) { 121 Loc = MemoryLocation::get(LI); 122 return ModRefInfo::Ref; 123 } 124 if (LI->getOrdering() == AtomicOrdering::Monotonic) { 125 Loc = MemoryLocation::get(LI); 126 return ModRefInfo::ModRef; 127 } 128 Loc = MemoryLocation(); 129 return ModRefInfo::ModRef; 130 } 131 132 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 133 if (SI->isUnordered()) { 134 Loc = MemoryLocation::get(SI); 135 return ModRefInfo::Mod; 136 } 137 if (SI->getOrdering() == AtomicOrdering::Monotonic) { 138 Loc = MemoryLocation::get(SI); 139 return ModRefInfo::ModRef; 140 } 141 Loc = MemoryLocation(); 142 return ModRefInfo::ModRef; 143 } 144 145 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { 146 Loc = MemoryLocation::get(V); 147 return ModRefInfo::ModRef; 148 } 149 150 if (const CallInst *CI = isFreeCall(Inst, &TLI)) { 151 // calls to free() deallocate the entire structure 152 Loc = MemoryLocation(CI->getArgOperand(0)); 153 return ModRefInfo::Mod; 154 } 155 156 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 157 switch (II->getIntrinsicID()) { 158 case Intrinsic::lifetime_start: 159 case Intrinsic::lifetime_end: 160 case Intrinsic::invariant_start: 161 Loc = MemoryLocation::getForArgument(II, 1, TLI); 162 // These intrinsics don't really modify the memory, but returning Mod 163 // will allow them to be handled conservatively. 164 return ModRefInfo::Mod; 165 case Intrinsic::invariant_end: 166 Loc = MemoryLocation::getForArgument(II, 2, TLI); 167 // These intrinsics don't really modify the memory, but returning Mod 168 // will allow them to be handled conservatively. 169 return ModRefInfo::Mod; 170 default: 171 break; 172 } 173 } 174 175 // Otherwise, just do the coarse-grained thing that always works. 176 if (Inst->mayWriteToMemory()) 177 return ModRefInfo::ModRef; 178 if (Inst->mayReadFromMemory()) 179 return ModRefInfo::Ref; 180 return ModRefInfo::NoModRef; 181 } 182 183 /// Private helper for finding the local dependencies of a call site. 184 MemDepResult MemoryDependenceResults::getCallDependencyFrom( 185 CallBase *Call, bool isReadOnlyCall, BasicBlock::iterator ScanIt, 186 BasicBlock *BB) { 187 unsigned Limit = getDefaultBlockScanLimit(); 188 189 // Walk backwards through the block, looking for dependencies. 190 while (ScanIt != BB->begin()) { 191 Instruction *Inst = &*--ScanIt; 192 // Debug intrinsics don't cause dependences and should not affect Limit 193 if (isa<DbgInfoIntrinsic>(Inst)) 194 continue; 195 196 // Limit the amount of scanning we do so we don't end up with quadratic 197 // running time on extreme testcases. 198 --Limit; 199 if (!Limit) 200 return MemDepResult::getUnknown(); 201 202 // If this inst is a memory op, get the pointer it accessed 203 MemoryLocation Loc; 204 ModRefInfo MR = GetLocation(Inst, Loc, TLI); 205 if (Loc.Ptr) { 206 // A simple instruction. 207 if (isModOrRefSet(AA.getModRefInfo(Call, Loc))) 208 return MemDepResult::getClobber(Inst); 209 continue; 210 } 211 212 if (auto *CallB = dyn_cast<CallBase>(Inst)) { 213 // If these two calls do not interfere, look past it. 214 if (isNoModRef(AA.getModRefInfo(Call, CallB))) { 215 // If the two calls are the same, return Inst as a Def, so that 216 // Call can be found redundant and eliminated. 217 if (isReadOnlyCall && !isModSet(MR) && 218 Call->isIdenticalToWhenDefined(CallB)) 219 return MemDepResult::getDef(Inst); 220 221 // Otherwise if the two calls don't interact (e.g. CallB is readnone) 222 // keep scanning. 223 continue; 224 } else 225 return MemDepResult::getClobber(Inst); 226 } 227 228 // If we could not obtain a pointer for the instruction and the instruction 229 // touches memory then assume that this is a dependency. 230 if (isModOrRefSet(MR)) 231 return MemDepResult::getClobber(Inst); 232 } 233 234 // No dependence found. If this is the entry block of the function, it is 235 // unknown, otherwise it is non-local. 236 if (BB != &BB->getParent()->getEntryBlock()) 237 return MemDepResult::getNonLocal(); 238 return MemDepResult::getNonFuncLocal(); 239 } 240 241 static bool isVolatile(Instruction *Inst) { 242 if (auto *LI = dyn_cast<LoadInst>(Inst)) 243 return LI->isVolatile(); 244 if (auto *SI = dyn_cast<StoreInst>(Inst)) 245 return SI->isVolatile(); 246 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(Inst)) 247 return AI->isVolatile(); 248 return false; 249 } 250 251 MemDepResult MemoryDependenceResults::getPointerDependencyFrom( 252 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 253 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit, 254 OrderedBasicBlock *OBB) { 255 MemDepResult InvariantGroupDependency = MemDepResult::getUnknown(); 256 if (QueryInst != nullptr) { 257 if (auto *LI = dyn_cast<LoadInst>(QueryInst)) { 258 InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB); 259 260 if (InvariantGroupDependency.isDef()) 261 return InvariantGroupDependency; 262 } 263 } 264 MemDepResult SimpleDep = getSimplePointerDependencyFrom( 265 MemLoc, isLoad, ScanIt, BB, QueryInst, Limit, OBB); 266 if (SimpleDep.isDef()) 267 return SimpleDep; 268 // Non-local invariant group dependency indicates there is non local Def 269 // (it only returns nonLocal if it finds nonLocal def), which is better than 270 // local clobber and everything else. 271 if (InvariantGroupDependency.isNonLocal()) 272 return InvariantGroupDependency; 273 274 assert(InvariantGroupDependency.isUnknown() && 275 "InvariantGroupDependency should be only unknown at this point"); 276 return SimpleDep; 277 } 278 279 MemDepResult 280 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI, 281 BasicBlock *BB) { 282 283 if (!LI->hasMetadata(LLVMContext::MD_invariant_group)) 284 return MemDepResult::getUnknown(); 285 286 // Take the ptr operand after all casts and geps 0. This way we can search 287 // cast graph down only. 288 Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts(); 289 290 // It's is not safe to walk the use list of global value, because function 291 // passes aren't allowed to look outside their functions. 292 // FIXME: this could be fixed by filtering instructions from outside 293 // of current function. 294 if (isa<GlobalValue>(LoadOperand)) 295 return MemDepResult::getUnknown(); 296 297 // Queue to process all pointers that are equivalent to load operand. 298 SmallVector<const Value *, 8> LoadOperandsQueue; 299 LoadOperandsQueue.push_back(LoadOperand); 300 301 Instruction *ClosestDependency = nullptr; 302 // Order of instructions in uses list is unpredictible. In order to always 303 // get the same result, we will look for the closest dominance. 304 auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) { 305 assert(Other && "Must call it with not null instruction"); 306 if (Best == nullptr || DT.dominates(Best, Other)) 307 return Other; 308 return Best; 309 }; 310 311 // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case 312 // we will see all the instructions. This should be fixed in MSSA. 313 while (!LoadOperandsQueue.empty()) { 314 const Value *Ptr = LoadOperandsQueue.pop_back_val(); 315 assert(Ptr && !isa<GlobalValue>(Ptr) && 316 "Null or GlobalValue should not be inserted"); 317 318 for (const Use &Us : Ptr->uses()) { 319 auto *U = dyn_cast<Instruction>(Us.getUser()); 320 if (!U || U == LI || !DT.dominates(U, LI)) 321 continue; 322 323 // Bitcast or gep with zeros are using Ptr. Add to queue to check it's 324 // users. U = bitcast Ptr 325 if (isa<BitCastInst>(U)) { 326 LoadOperandsQueue.push_back(U); 327 continue; 328 } 329 // Gep with zeros is equivalent to bitcast. 330 // FIXME: we are not sure if some bitcast should be canonicalized to gep 0 331 // or gep 0 to bitcast because of SROA, so there are 2 forms. When 332 // typeless pointers will be ready then both cases will be gone 333 // (and this BFS also won't be needed). 334 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) 335 if (GEP->hasAllZeroIndices()) { 336 LoadOperandsQueue.push_back(U); 337 continue; 338 } 339 340 // If we hit load/store with the same invariant.group metadata (and the 341 // same pointer operand) we can assume that value pointed by pointer 342 // operand didn't change. 343 if ((isa<LoadInst>(U) || isa<StoreInst>(U)) && 344 U->hasMetadata(LLVMContext::MD_invariant_group)) 345 ClosestDependency = GetClosestDependency(ClosestDependency, U); 346 } 347 } 348 349 if (!ClosestDependency) 350 return MemDepResult::getUnknown(); 351 if (ClosestDependency->getParent() == BB) 352 return MemDepResult::getDef(ClosestDependency); 353 // Def(U) can't be returned here because it is non-local. If local 354 // dependency won't be found then return nonLocal counting that the 355 // user will call getNonLocalPointerDependency, which will return cached 356 // result. 357 NonLocalDefsCache.try_emplace( 358 LI, NonLocalDepResult(ClosestDependency->getParent(), 359 MemDepResult::getDef(ClosestDependency), nullptr)); 360 ReverseNonLocalDefsCache[ClosestDependency].insert(LI); 361 return MemDepResult::getNonLocal(); 362 } 363 364 MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom( 365 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 366 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit, 367 OrderedBasicBlock *OBB) { 368 bool isInvariantLoad = false; 369 370 unsigned DefaultLimit = getDefaultBlockScanLimit(); 371 if (!Limit) 372 Limit = &DefaultLimit; 373 374 // We must be careful with atomic accesses, as they may allow another thread 375 // to touch this location, clobbering it. We are conservative: if the 376 // QueryInst is not a simple (non-atomic) memory access, we automatically 377 // return getClobber. 378 // If it is simple, we know based on the results of 379 // "Compiler testing via a theory of sound optimisations in the C11/C++11 380 // memory model" in PLDI 2013, that a non-atomic location can only be 381 // clobbered between a pair of a release and an acquire action, with no 382 // access to the location in between. 383 // Here is an example for giving the general intuition behind this rule. 384 // In the following code: 385 // store x 0; 386 // release action; [1] 387 // acquire action; [4] 388 // %val = load x; 389 // It is unsafe to replace %val by 0 because another thread may be running: 390 // acquire action; [2] 391 // store x 42; 392 // release action; [3] 393 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val 394 // being 42. A key property of this program however is that if either 395 // 1 or 4 were missing, there would be a race between the store of 42 396 // either the store of 0 or the load (making the whole program racy). 397 // The paper mentioned above shows that the same property is respected 398 // by every program that can detect any optimization of that kind: either 399 // it is racy (undefined) or there is a release followed by an acquire 400 // between the pair of accesses under consideration. 401 402 // If the load is invariant, we "know" that it doesn't alias *any* write. We 403 // do want to respect mustalias results since defs are useful for value 404 // forwarding, but any mayalias write can be assumed to be noalias. 405 // Arguably, this logic should be pushed inside AliasAnalysis itself. 406 if (isLoad && QueryInst) { 407 LoadInst *LI = dyn_cast<LoadInst>(QueryInst); 408 if (LI && LI->hasMetadata(LLVMContext::MD_invariant_load)) 409 isInvariantLoad = true; 410 } 411 412 const DataLayout &DL = BB->getModule()->getDataLayout(); 413 414 // If the caller did not provide an ordered basic block, 415 // create one to lazily compute and cache instruction 416 // positions inside a BB. This is used to provide fast queries for relative 417 // position between two instructions in a BB and can be used by 418 // AliasAnalysis::callCapturesBefore. 419 OrderedBasicBlock OBBTmp(BB); 420 if (!OBB) 421 OBB = &OBBTmp; 422 423 // Return "true" if and only if the instruction I is either a non-simple 424 // load or a non-simple store. 425 auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool { 426 if (auto *LI = dyn_cast<LoadInst>(I)) 427 return !LI->isSimple(); 428 if (auto *SI = dyn_cast<StoreInst>(I)) 429 return !SI->isSimple(); 430 return false; 431 }; 432 433 // Return "true" if I is not a load and not a store, but it does access 434 // memory. 435 auto isOtherMemAccess = [](Instruction *I) -> bool { 436 return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory(); 437 }; 438 439 // Walk backwards through the basic block, looking for dependencies. 440 while (ScanIt != BB->begin()) { 441 Instruction *Inst = &*--ScanIt; 442 443 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 444 // Debug intrinsics don't (and can't) cause dependencies. 445 if (isa<DbgInfoIntrinsic>(II)) 446 continue; 447 448 // Limit the amount of scanning we do so we don't end up with quadratic 449 // running time on extreme testcases. 450 --*Limit; 451 if (!*Limit) 452 return MemDepResult::getUnknown(); 453 454 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 455 // If we reach a lifetime begin or end marker, then the query ends here 456 // because the value is undefined. 457 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 458 // FIXME: This only considers queries directly on the invariant-tagged 459 // pointer, not on query pointers that are indexed off of them. It'd 460 // be nice to handle that at some point (the right approach is to use 461 // GetPointerBaseWithConstantOffset). 462 if (AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc)) 463 return MemDepResult::getDef(II); 464 continue; 465 } 466 } 467 468 // Values depend on loads if the pointers are must aliased. This means 469 // that a load depends on another must aliased load from the same value. 470 // One exception is atomic loads: a value can depend on an atomic load that 471 // it does not alias with when this atomic load indicates that another 472 // thread may be accessing the location. 473 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 474 // While volatile access cannot be eliminated, they do not have to clobber 475 // non-aliasing locations, as normal accesses, for example, can be safely 476 // reordered with volatile accesses. 477 if (LI->isVolatile()) { 478 if (!QueryInst) 479 // Original QueryInst *may* be volatile 480 return MemDepResult::getClobber(LI); 481 if (isVolatile(QueryInst)) 482 // Ordering required if QueryInst is itself volatile 483 return MemDepResult::getClobber(LI); 484 // Otherwise, volatile doesn't imply any special ordering 485 } 486 487 // Atomic loads have complications involved. 488 // A Monotonic (or higher) load is OK if the query inst is itself not 489 // atomic. 490 // FIXME: This is overly conservative. 491 if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) { 492 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 493 isOtherMemAccess(QueryInst)) 494 return MemDepResult::getClobber(LI); 495 if (LI->getOrdering() != AtomicOrdering::Monotonic) 496 return MemDepResult::getClobber(LI); 497 } 498 499 MemoryLocation LoadLoc = MemoryLocation::get(LI); 500 501 // If we found a pointer, check if it could be the same as our pointer. 502 AliasResult R = AA.alias(LoadLoc, MemLoc); 503 504 if (isLoad) { 505 if (R == NoAlias) 506 continue; 507 508 // Must aliased loads are defs of each other. 509 if (R == MustAlias) 510 return MemDepResult::getDef(Inst); 511 512 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads 513 // in terms of clobbering loads, but since it does this by looking 514 // at the clobbering load directly, it doesn't know about any 515 // phi translation that may have happened along the way. 516 517 // If we have a partial alias, then return this as a clobber for the 518 // client to handle. 519 if (R == PartialAlias) 520 return MemDepResult::getClobber(Inst); 521 #endif 522 523 // Random may-alias loads don't depend on each other without a 524 // dependence. 525 continue; 526 } 527 528 // Stores don't depend on other no-aliased accesses. 529 if (R == NoAlias) 530 continue; 531 532 // Stores don't alias loads from read-only memory. 533 if (AA.pointsToConstantMemory(LoadLoc)) 534 continue; 535 536 // Stores depend on may/must aliased loads. 537 return MemDepResult::getDef(Inst); 538 } 539 540 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 541 // Atomic stores have complications involved. 542 // A Monotonic store is OK if the query inst is itself not atomic. 543 // FIXME: This is overly conservative. 544 if (!SI->isUnordered() && SI->isAtomic()) { 545 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 546 isOtherMemAccess(QueryInst)) 547 return MemDepResult::getClobber(SI); 548 if (SI->getOrdering() != AtomicOrdering::Monotonic) 549 return MemDepResult::getClobber(SI); 550 } 551 552 // FIXME: this is overly conservative. 553 // While volatile access cannot be eliminated, they do not have to clobber 554 // non-aliasing locations, as normal accesses can for example be reordered 555 // with volatile accesses. 556 if (SI->isVolatile()) 557 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 558 isOtherMemAccess(QueryInst)) 559 return MemDepResult::getClobber(SI); 560 561 // If alias analysis can tell that this store is guaranteed to not modify 562 // the query pointer, ignore it. Use getModRefInfo to handle cases where 563 // the query pointer points to constant memory etc. 564 if (!isModOrRefSet(AA.getModRefInfo(SI, MemLoc))) 565 continue; 566 567 // Ok, this store might clobber the query pointer. Check to see if it is 568 // a must alias: in this case, we want to return this as a def. 569 // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above. 570 MemoryLocation StoreLoc = MemoryLocation::get(SI); 571 572 // If we found a pointer, check if it could be the same as our pointer. 573 AliasResult R = AA.alias(StoreLoc, MemLoc); 574 575 if (R == NoAlias) 576 continue; 577 if (R == MustAlias) 578 return MemDepResult::getDef(Inst); 579 if (isInvariantLoad) 580 continue; 581 return MemDepResult::getClobber(Inst); 582 } 583 584 // If this is an allocation, and if we know that the accessed pointer is to 585 // the allocation, return Def. This means that there is no dependence and 586 // the access can be optimized based on that. For example, a load could 587 // turn into undef. Note that we can bypass the allocation itself when 588 // looking for a clobber in many cases; that's an alias property and is 589 // handled by BasicAA. 590 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) { 591 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL); 592 if (AccessPtr == Inst || AA.isMustAlias(Inst, AccessPtr)) 593 return MemDepResult::getDef(Inst); 594 } 595 596 if (isInvariantLoad) 597 continue; 598 599 // A release fence requires that all stores complete before it, but does 600 // not prevent the reordering of following loads or stores 'before' the 601 // fence. As a result, we look past it when finding a dependency for 602 // loads. DSE uses this to find preceding stores to delete and thus we 603 // can't bypass the fence if the query instruction is a store. 604 if (FenceInst *FI = dyn_cast<FenceInst>(Inst)) 605 if (isLoad && FI->getOrdering() == AtomicOrdering::Release) 606 continue; 607 608 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. 609 ModRefInfo MR = AA.getModRefInfo(Inst, MemLoc); 610 // If necessary, perform additional analysis. 611 if (isModAndRefSet(MR)) 612 MR = AA.callCapturesBefore(Inst, MemLoc, &DT, OBB); 613 switch (clearMust(MR)) { 614 case ModRefInfo::NoModRef: 615 // If the call has no effect on the queried pointer, just ignore it. 616 continue; 617 case ModRefInfo::Mod: 618 return MemDepResult::getClobber(Inst); 619 case ModRefInfo::Ref: 620 // If the call is known to never store to the pointer, and if this is a 621 // load query, we can safely ignore it (scan past it). 622 if (isLoad) 623 continue; 624 LLVM_FALLTHROUGH; 625 default: 626 // Otherwise, there is a potential dependence. Return a clobber. 627 return MemDepResult::getClobber(Inst); 628 } 629 } 630 631 // No dependence found. If this is the entry block of the function, it is 632 // unknown, otherwise it is non-local. 633 if (BB != &BB->getParent()->getEntryBlock()) 634 return MemDepResult::getNonLocal(); 635 return MemDepResult::getNonFuncLocal(); 636 } 637 638 MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst, 639 OrderedBasicBlock *OBB) { 640 Instruction *ScanPos = QueryInst; 641 642 // Check for a cached result 643 MemDepResult &LocalCache = LocalDeps[QueryInst]; 644 645 // If the cached entry is non-dirty, just return it. Note that this depends 646 // on MemDepResult's default constructing to 'dirty'. 647 if (!LocalCache.isDirty()) 648 return LocalCache; 649 650 // Otherwise, if we have a dirty entry, we know we can start the scan at that 651 // instruction, which may save us some work. 652 if (Instruction *Inst = LocalCache.getInst()) { 653 ScanPos = Inst; 654 655 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); 656 } 657 658 BasicBlock *QueryParent = QueryInst->getParent(); 659 660 // Do the scan. 661 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { 662 // No dependence found. If this is the entry block of the function, it is 663 // unknown, otherwise it is non-local. 664 if (QueryParent != &QueryParent->getParent()->getEntryBlock()) 665 LocalCache = MemDepResult::getNonLocal(); 666 else 667 LocalCache = MemDepResult::getNonFuncLocal(); 668 } else { 669 MemoryLocation MemLoc; 670 ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI); 671 if (MemLoc.Ptr) { 672 // If we can do a pointer scan, make it happen. 673 bool isLoad = !isModSet(MR); 674 if (auto *II = dyn_cast<IntrinsicInst>(QueryInst)) 675 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start; 676 677 LocalCache = 678 getPointerDependencyFrom(MemLoc, isLoad, ScanPos->getIterator(), 679 QueryParent, QueryInst, nullptr, OBB); 680 } else if (auto *QueryCall = dyn_cast<CallBase>(QueryInst)) { 681 bool isReadOnly = AA.onlyReadsMemory(QueryCall); 682 LocalCache = getCallDependencyFrom(QueryCall, isReadOnly, 683 ScanPos->getIterator(), QueryParent); 684 } else 685 // Non-memory instruction. 686 LocalCache = MemDepResult::getUnknown(); 687 } 688 689 // Remember the result! 690 if (Instruction *I = LocalCache.getInst()) 691 ReverseLocalDeps[I].insert(QueryInst); 692 693 return LocalCache; 694 } 695 696 #ifndef NDEBUG 697 /// This method is used when -debug is specified to verify that cache arrays 698 /// are properly kept sorted. 699 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache, 700 int Count = -1) { 701 if (Count == -1) 702 Count = Cache.size(); 703 assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) && 704 "Cache isn't sorted!"); 705 } 706 #endif 707 708 const MemoryDependenceResults::NonLocalDepInfo & 709 MemoryDependenceResults::getNonLocalCallDependency(CallBase *QueryCall) { 710 assert(getDependency(QueryCall).isNonLocal() && 711 "getNonLocalCallDependency should only be used on calls with " 712 "non-local deps!"); 713 PerInstNLInfo &CacheP = NonLocalDeps[QueryCall]; 714 NonLocalDepInfo &Cache = CacheP.first; 715 716 // This is the set of blocks that need to be recomputed. In the cached case, 717 // this can happen due to instructions being deleted etc. In the uncached 718 // case, this starts out as the set of predecessors we care about. 719 SmallVector<BasicBlock *, 32> DirtyBlocks; 720 721 if (!Cache.empty()) { 722 // Okay, we have a cache entry. If we know it is not dirty, just return it 723 // with no computation. 724 if (!CacheP.second) { 725 ++NumCacheNonLocal; 726 return Cache; 727 } 728 729 // If we already have a partially computed set of results, scan them to 730 // determine what is dirty, seeding our initial DirtyBlocks worklist. 731 for (auto &Entry : Cache) 732 if (Entry.getResult().isDirty()) 733 DirtyBlocks.push_back(Entry.getBB()); 734 735 // Sort the cache so that we can do fast binary search lookups below. 736 llvm::sort(Cache); 737 738 ++NumCacheDirtyNonLocal; 739 // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " 740 // << Cache.size() << " cached: " << *QueryInst; 741 } else { 742 // Seed DirtyBlocks with each of the preds of QueryInst's block. 743 BasicBlock *QueryBB = QueryCall->getParent(); 744 for (BasicBlock *Pred : PredCache.get(QueryBB)) 745 DirtyBlocks.push_back(Pred); 746 ++NumUncacheNonLocal; 747 } 748 749 // isReadonlyCall - If this is a read-only call, we can be more aggressive. 750 bool isReadonlyCall = AA.onlyReadsMemory(QueryCall); 751 752 SmallPtrSet<BasicBlock *, 32> Visited; 753 754 unsigned NumSortedEntries = Cache.size(); 755 LLVM_DEBUG(AssertSorted(Cache)); 756 757 // Iterate while we still have blocks to update. 758 while (!DirtyBlocks.empty()) { 759 BasicBlock *DirtyBB = DirtyBlocks.back(); 760 DirtyBlocks.pop_back(); 761 762 // Already processed this block? 763 if (!Visited.insert(DirtyBB).second) 764 continue; 765 766 // Do a binary search to see if we already have an entry for this block in 767 // the cache set. If so, find it. 768 LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries)); 769 NonLocalDepInfo::iterator Entry = 770 std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries, 771 NonLocalDepEntry(DirtyBB)); 772 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB) 773 --Entry; 774 775 NonLocalDepEntry *ExistingResult = nullptr; 776 if (Entry != Cache.begin() + NumSortedEntries && 777 Entry->getBB() == DirtyBB) { 778 // If we already have an entry, and if it isn't already dirty, the block 779 // is done. 780 if (!Entry->getResult().isDirty()) 781 continue; 782 783 // Otherwise, remember this slot so we can update the value. 784 ExistingResult = &*Entry; 785 } 786 787 // If the dirty entry has a pointer, start scanning from it so we don't have 788 // to rescan the entire block. 789 BasicBlock::iterator ScanPos = DirtyBB->end(); 790 if (ExistingResult) { 791 if (Instruction *Inst = ExistingResult->getResult().getInst()) { 792 ScanPos = Inst->getIterator(); 793 // We're removing QueryInst's use of Inst. 794 RemoveFromReverseMap<Instruction *>(ReverseNonLocalDeps, Inst, 795 QueryCall); 796 } 797 } 798 799 // Find out if this block has a local dependency for QueryInst. 800 MemDepResult Dep; 801 802 if (ScanPos != DirtyBB->begin()) { 803 Dep = getCallDependencyFrom(QueryCall, isReadonlyCall, ScanPos, DirtyBB); 804 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { 805 // No dependence found. If this is the entry block of the function, it is 806 // a clobber, otherwise it is unknown. 807 Dep = MemDepResult::getNonLocal(); 808 } else { 809 Dep = MemDepResult::getNonFuncLocal(); 810 } 811 812 // If we had a dirty entry for the block, update it. Otherwise, just add 813 // a new entry. 814 if (ExistingResult) 815 ExistingResult->setResult(Dep); 816 else 817 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); 818 819 // If the block has a dependency (i.e. it isn't completely transparent to 820 // the value), remember the association! 821 if (!Dep.isNonLocal()) { 822 // Keep the ReverseNonLocalDeps map up to date so we can efficiently 823 // update this when we remove instructions. 824 if (Instruction *Inst = Dep.getInst()) 825 ReverseNonLocalDeps[Inst].insert(QueryCall); 826 } else { 827 828 // If the block *is* completely transparent to the load, we need to check 829 // the predecessors of this block. Add them to our worklist. 830 for (BasicBlock *Pred : PredCache.get(DirtyBB)) 831 DirtyBlocks.push_back(Pred); 832 } 833 } 834 835 return Cache; 836 } 837 838 void MemoryDependenceResults::getNonLocalPointerDependency( 839 Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) { 840 const MemoryLocation Loc = MemoryLocation::get(QueryInst); 841 bool isLoad = isa<LoadInst>(QueryInst); 842 BasicBlock *FromBB = QueryInst->getParent(); 843 assert(FromBB); 844 845 assert(Loc.Ptr->getType()->isPointerTy() && 846 "Can't get pointer deps of a non-pointer!"); 847 Result.clear(); 848 { 849 // Check if there is cached Def with invariant.group. 850 auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst); 851 if (NonLocalDefIt != NonLocalDefsCache.end()) { 852 Result.push_back(NonLocalDefIt->second); 853 ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()] 854 .erase(QueryInst); 855 NonLocalDefsCache.erase(NonLocalDefIt); 856 return; 857 } 858 } 859 // This routine does not expect to deal with volatile instructions. 860 // Doing so would require piping through the QueryInst all the way through. 861 // TODO: volatiles can't be elided, but they can be reordered with other 862 // non-volatile accesses. 863 864 // We currently give up on any instruction which is ordered, but we do handle 865 // atomic instructions which are unordered. 866 // TODO: Handle ordered instructions 867 auto isOrdered = [](Instruction *Inst) { 868 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 869 return !LI->isUnordered(); 870 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 871 return !SI->isUnordered(); 872 } 873 return false; 874 }; 875 if (isVolatile(QueryInst) || isOrdered(QueryInst)) { 876 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(), 877 const_cast<Value *>(Loc.Ptr))); 878 return; 879 } 880 const DataLayout &DL = FromBB->getModule()->getDataLayout(); 881 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC); 882 883 // This is the set of blocks we've inspected, and the pointer we consider in 884 // each block. Because of critical edges, we currently bail out if querying 885 // a block with multiple different pointers. This can happen during PHI 886 // translation. 887 DenseMap<BasicBlock *, Value *> Visited; 888 if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB, 889 Result, Visited, true)) 890 return; 891 Result.clear(); 892 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(), 893 const_cast<Value *>(Loc.Ptr))); 894 } 895 896 /// Compute the memdep value for BB with Pointer/PointeeSize using either 897 /// cached information in Cache or by doing a lookup (which may use dirty cache 898 /// info if available). 899 /// 900 /// If we do a lookup, add the result to the cache. 901 MemDepResult MemoryDependenceResults::GetNonLocalInfoForBlock( 902 Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad, 903 BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) { 904 905 // Do a binary search to see if we already have an entry for this block in 906 // the cache set. If so, find it. 907 NonLocalDepInfo::iterator Entry = std::upper_bound( 908 Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB)); 909 if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB) 910 --Entry; 911 912 NonLocalDepEntry *ExistingResult = nullptr; 913 if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB) 914 ExistingResult = &*Entry; 915 916 // If we have a cached entry, and it is non-dirty, use it as the value for 917 // this dependency. 918 if (ExistingResult && !ExistingResult->getResult().isDirty()) { 919 ++NumCacheNonLocalPtr; 920 return ExistingResult->getResult(); 921 } 922 923 // Otherwise, we have to scan for the value. If we have a dirty cache 924 // entry, start scanning from its position, otherwise we scan from the end 925 // of the block. 926 BasicBlock::iterator ScanPos = BB->end(); 927 if (ExistingResult && ExistingResult->getResult().getInst()) { 928 assert(ExistingResult->getResult().getInst()->getParent() == BB && 929 "Instruction invalidated?"); 930 ++NumCacheDirtyNonLocalPtr; 931 ScanPos = ExistingResult->getResult().getInst()->getIterator(); 932 933 // Eliminating the dirty entry from 'Cache', so update the reverse info. 934 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 935 RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey); 936 } else { 937 ++NumUncacheNonLocalPtr; 938 } 939 940 // Scan the block for the dependency. 941 MemDepResult Dep = 942 getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, QueryInst); 943 944 // If we had a dirty entry for the block, update it. Otherwise, just add 945 // a new entry. 946 if (ExistingResult) 947 ExistingResult->setResult(Dep); 948 else 949 Cache->push_back(NonLocalDepEntry(BB, Dep)); 950 951 // If the block has a dependency (i.e. it isn't completely transparent to 952 // the value), remember the reverse association because we just added it 953 // to Cache! 954 if (!Dep.isDef() && !Dep.isClobber()) 955 return Dep; 956 957 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently 958 // update MemDep when we remove instructions. 959 Instruction *Inst = Dep.getInst(); 960 assert(Inst && "Didn't depend on anything?"); 961 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 962 ReverseNonLocalPtrDeps[Inst].insert(CacheKey); 963 return Dep; 964 } 965 966 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the 967 /// array that are already properly ordered. 968 /// 969 /// This is optimized for the case when only a few entries are added. 970 static void 971 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache, 972 unsigned NumSortedEntries) { 973 switch (Cache.size() - NumSortedEntries) { 974 case 0: 975 // done, no new entries. 976 break; 977 case 2: { 978 // Two new entries, insert the last one into place. 979 NonLocalDepEntry Val = Cache.back(); 980 Cache.pop_back(); 981 MemoryDependenceResults::NonLocalDepInfo::iterator Entry = 982 std::upper_bound(Cache.begin(), Cache.end() - 1, Val); 983 Cache.insert(Entry, Val); 984 LLVM_FALLTHROUGH; 985 } 986 case 1: 987 // One new entry, Just insert the new value at the appropriate position. 988 if (Cache.size() != 1) { 989 NonLocalDepEntry Val = Cache.back(); 990 Cache.pop_back(); 991 MemoryDependenceResults::NonLocalDepInfo::iterator Entry = 992 std::upper_bound(Cache.begin(), Cache.end(), Val); 993 Cache.insert(Entry, Val); 994 } 995 break; 996 default: 997 // Added many values, do a full scale sort. 998 llvm::sort(Cache); 999 break; 1000 } 1001 } 1002 1003 /// Perform a dependency query based on pointer/pointeesize starting at the end 1004 /// of StartBB. 1005 /// 1006 /// Add any clobber/def results to the results vector and keep track of which 1007 /// blocks are visited in 'Visited'. 1008 /// 1009 /// This has special behavior for the first block queries (when SkipFirstBlock 1010 /// is true). In this special case, it ignores the contents of the specified 1011 /// block and starts returning dependence info for its predecessors. 1012 /// 1013 /// This function returns true on success, or false to indicate that it could 1014 /// not compute dependence information for some reason. This should be treated 1015 /// as a clobber dependence on the first instruction in the predecessor block. 1016 bool MemoryDependenceResults::getNonLocalPointerDepFromBB( 1017 Instruction *QueryInst, const PHITransAddr &Pointer, 1018 const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB, 1019 SmallVectorImpl<NonLocalDepResult> &Result, 1020 DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock) { 1021 // Look up the cached info for Pointer. 1022 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); 1023 1024 // Set up a temporary NLPI value. If the map doesn't yet have an entry for 1025 // CacheKey, this value will be inserted as the associated value. Otherwise, 1026 // it'll be ignored, and we'll have to check to see if the cached size and 1027 // aa tags are consistent with the current query. 1028 NonLocalPointerInfo InitialNLPI; 1029 InitialNLPI.Size = Loc.Size; 1030 InitialNLPI.AATags = Loc.AATags; 1031 1032 // Get the NLPI for CacheKey, inserting one into the map if it doesn't 1033 // already have one. 1034 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = 1035 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); 1036 NonLocalPointerInfo *CacheInfo = &Pair.first->second; 1037 1038 // If we already have a cache entry for this CacheKey, we may need to do some 1039 // work to reconcile the cache entry and the current query. 1040 if (!Pair.second) { 1041 if (CacheInfo->Size != Loc.Size) { 1042 bool ThrowOutEverything; 1043 if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) { 1044 // FIXME: We may be able to do better in the face of results with mixed 1045 // precision. We don't appear to get them in practice, though, so just 1046 // be conservative. 1047 ThrowOutEverything = 1048 CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() || 1049 CacheInfo->Size.getValue() < Loc.Size.getValue(); 1050 } else { 1051 // For our purposes, unknown size > all others. 1052 ThrowOutEverything = !Loc.Size.hasValue(); 1053 } 1054 1055 if (ThrowOutEverything) { 1056 // The query's Size is greater than the cached one. Throw out the 1057 // cached data and proceed with the query at the greater size. 1058 CacheInfo->Pair = BBSkipFirstBlockPair(); 1059 CacheInfo->Size = Loc.Size; 1060 for (auto &Entry : CacheInfo->NonLocalDeps) 1061 if (Instruction *Inst = Entry.getResult().getInst()) 1062 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1063 CacheInfo->NonLocalDeps.clear(); 1064 } else { 1065 // This query's Size is less than the cached one. Conservatively restart 1066 // the query using the greater size. 1067 return getNonLocalPointerDepFromBB( 1068 QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad, 1069 StartBB, Result, Visited, SkipFirstBlock); 1070 } 1071 } 1072 1073 // If the query's AATags are inconsistent with the cached one, 1074 // conservatively throw out the cached data and restart the query with 1075 // no tag if needed. 1076 if (CacheInfo->AATags != Loc.AATags) { 1077 if (CacheInfo->AATags) { 1078 CacheInfo->Pair = BBSkipFirstBlockPair(); 1079 CacheInfo->AATags = AAMDNodes(); 1080 for (auto &Entry : CacheInfo->NonLocalDeps) 1081 if (Instruction *Inst = Entry.getResult().getInst()) 1082 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1083 CacheInfo->NonLocalDeps.clear(); 1084 } 1085 if (Loc.AATags) 1086 return getNonLocalPointerDepFromBB( 1087 QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result, 1088 Visited, SkipFirstBlock); 1089 } 1090 } 1091 1092 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; 1093 1094 // If we have valid cached information for exactly the block we are 1095 // investigating, just return it with no recomputation. 1096 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { 1097 // We have a fully cached result for this query then we can just return the 1098 // cached results and populate the visited set. However, we have to verify 1099 // that we don't already have conflicting results for these blocks. Check 1100 // to ensure that if a block in the results set is in the visited set that 1101 // it was for the same pointer query. 1102 if (!Visited.empty()) { 1103 for (auto &Entry : *Cache) { 1104 DenseMap<BasicBlock *, Value *>::iterator VI = 1105 Visited.find(Entry.getBB()); 1106 if (VI == Visited.end() || VI->second == Pointer.getAddr()) 1107 continue; 1108 1109 // We have a pointer mismatch in a block. Just return false, saying 1110 // that something was clobbered in this result. We could also do a 1111 // non-fully cached query, but there is little point in doing this. 1112 return false; 1113 } 1114 } 1115 1116 Value *Addr = Pointer.getAddr(); 1117 for (auto &Entry : *Cache) { 1118 Visited.insert(std::make_pair(Entry.getBB(), Addr)); 1119 if (Entry.getResult().isNonLocal()) { 1120 continue; 1121 } 1122 1123 if (DT.isReachableFromEntry(Entry.getBB())) { 1124 Result.push_back( 1125 NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr)); 1126 } 1127 } 1128 ++NumCacheCompleteNonLocalPtr; 1129 return true; 1130 } 1131 1132 // Otherwise, either this is a new block, a block with an invalid cache 1133 // pointer or one that we're about to invalidate by putting more info into it 1134 // than its valid cache info. If empty, the result will be valid cache info, 1135 // otherwise it isn't. 1136 if (Cache->empty()) 1137 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); 1138 else 1139 CacheInfo->Pair = BBSkipFirstBlockPair(); 1140 1141 SmallVector<BasicBlock *, 32> Worklist; 1142 Worklist.push_back(StartBB); 1143 1144 // PredList used inside loop. 1145 SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList; 1146 1147 // Keep track of the entries that we know are sorted. Previously cached 1148 // entries will all be sorted. The entries we add we only sort on demand (we 1149 // don't insert every element into its sorted position). We know that we 1150 // won't get any reuse from currently inserted values, because we don't 1151 // revisit blocks after we insert info for them. 1152 unsigned NumSortedEntries = Cache->size(); 1153 unsigned WorklistEntries = BlockNumberLimit; 1154 bool GotWorklistLimit = false; 1155 LLVM_DEBUG(AssertSorted(*Cache)); 1156 1157 while (!Worklist.empty()) { 1158 BasicBlock *BB = Worklist.pop_back_val(); 1159 1160 // If we do process a large number of blocks it becomes very expensive and 1161 // likely it isn't worth worrying about 1162 if (Result.size() > NumResultsLimit) { 1163 Worklist.clear(); 1164 // Sort it now (if needed) so that recursive invocations of 1165 // getNonLocalPointerDepFromBB and other routines that could reuse the 1166 // cache value will only see properly sorted cache arrays. 1167 if (Cache && NumSortedEntries != Cache->size()) { 1168 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1169 } 1170 // Since we bail out, the "Cache" set won't contain all of the 1171 // results for the query. This is ok (we can still use it to accelerate 1172 // specific block queries) but we can't do the fastpath "return all 1173 // results from the set". Clear out the indicator for this. 1174 CacheInfo->Pair = BBSkipFirstBlockPair(); 1175 return false; 1176 } 1177 1178 // Skip the first block if we have it. 1179 if (!SkipFirstBlock) { 1180 // Analyze the dependency of *Pointer in FromBB. See if we already have 1181 // been here. 1182 assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); 1183 1184 // Get the dependency info for Pointer in BB. If we have cached 1185 // information, we will use it, otherwise we compute it. 1186 LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries)); 1187 MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, Loc, isLoad, BB, 1188 Cache, NumSortedEntries); 1189 1190 // If we got a Def or Clobber, add this to the list of results. 1191 if (!Dep.isNonLocal()) { 1192 if (DT.isReachableFromEntry(BB)) { 1193 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); 1194 continue; 1195 } 1196 } 1197 } 1198 1199 // If 'Pointer' is an instruction defined in this block, then we need to do 1200 // phi translation to change it into a value live in the predecessor block. 1201 // If not, we just add the predecessors to the worklist and scan them with 1202 // the same Pointer. 1203 if (!Pointer.NeedsPHITranslationFromBlock(BB)) { 1204 SkipFirstBlock = false; 1205 SmallVector<BasicBlock *, 16> NewBlocks; 1206 for (BasicBlock *Pred : PredCache.get(BB)) { 1207 // Verify that we haven't looked at this block yet. 1208 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = 1209 Visited.insert(std::make_pair(Pred, Pointer.getAddr())); 1210 if (InsertRes.second) { 1211 // First time we've looked at *PI. 1212 NewBlocks.push_back(Pred); 1213 continue; 1214 } 1215 1216 // If we have seen this block before, but it was with a different 1217 // pointer then we have a phi translation failure and we have to treat 1218 // this as a clobber. 1219 if (InsertRes.first->second != Pointer.getAddr()) { 1220 // Make sure to clean up the Visited map before continuing on to 1221 // PredTranslationFailure. 1222 for (unsigned i = 0; i < NewBlocks.size(); i++) 1223 Visited.erase(NewBlocks[i]); 1224 goto PredTranslationFailure; 1225 } 1226 } 1227 if (NewBlocks.size() > WorklistEntries) { 1228 // Make sure to clean up the Visited map before continuing on to 1229 // PredTranslationFailure. 1230 for (unsigned i = 0; i < NewBlocks.size(); i++) 1231 Visited.erase(NewBlocks[i]); 1232 GotWorklistLimit = true; 1233 goto PredTranslationFailure; 1234 } 1235 WorklistEntries -= NewBlocks.size(); 1236 Worklist.append(NewBlocks.begin(), NewBlocks.end()); 1237 continue; 1238 } 1239 1240 // We do need to do phi translation, if we know ahead of time we can't phi 1241 // translate this value, don't even try. 1242 if (!Pointer.IsPotentiallyPHITranslatable()) 1243 goto PredTranslationFailure; 1244 1245 // We may have added values to the cache list before this PHI translation. 1246 // If so, we haven't done anything to ensure that the cache remains sorted. 1247 // Sort it now (if needed) so that recursive invocations of 1248 // getNonLocalPointerDepFromBB and other routines that could reuse the cache 1249 // value will only see properly sorted cache arrays. 1250 if (Cache && NumSortedEntries != Cache->size()) { 1251 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1252 NumSortedEntries = Cache->size(); 1253 } 1254 Cache = nullptr; 1255 1256 PredList.clear(); 1257 for (BasicBlock *Pred : PredCache.get(BB)) { 1258 PredList.push_back(std::make_pair(Pred, Pointer)); 1259 1260 // Get the PHI translated pointer in this predecessor. This can fail if 1261 // not translatable, in which case the getAddr() returns null. 1262 PHITransAddr &PredPointer = PredList.back().second; 1263 PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false); 1264 Value *PredPtrVal = PredPointer.getAddr(); 1265 1266 // Check to see if we have already visited this pred block with another 1267 // pointer. If so, we can't do this lookup. This failure can occur 1268 // with PHI translation when a critical edge exists and the PHI node in 1269 // the successor translates to a pointer value different than the 1270 // pointer the block was first analyzed with. 1271 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = 1272 Visited.insert(std::make_pair(Pred, PredPtrVal)); 1273 1274 if (!InsertRes.second) { 1275 // We found the pred; take it off the list of preds to visit. 1276 PredList.pop_back(); 1277 1278 // If the predecessor was visited with PredPtr, then we already did 1279 // the analysis and can ignore it. 1280 if (InsertRes.first->second == PredPtrVal) 1281 continue; 1282 1283 // Otherwise, the block was previously analyzed with a different 1284 // pointer. We can't represent the result of this case, so we just 1285 // treat this as a phi translation failure. 1286 1287 // Make sure to clean up the Visited map before continuing on to 1288 // PredTranslationFailure. 1289 for (unsigned i = 0, n = PredList.size(); i < n; ++i) 1290 Visited.erase(PredList[i].first); 1291 1292 goto PredTranslationFailure; 1293 } 1294 } 1295 1296 // Actually process results here; this need to be a separate loop to avoid 1297 // calling getNonLocalPointerDepFromBB for blocks we don't want to return 1298 // any results for. (getNonLocalPointerDepFromBB will modify our 1299 // datastructures in ways the code after the PredTranslationFailure label 1300 // doesn't expect.) 1301 for (unsigned i = 0, n = PredList.size(); i < n; ++i) { 1302 BasicBlock *Pred = PredList[i].first; 1303 PHITransAddr &PredPointer = PredList[i].second; 1304 Value *PredPtrVal = PredPointer.getAddr(); 1305 1306 bool CanTranslate = true; 1307 // If PHI translation was unable to find an available pointer in this 1308 // predecessor, then we have to assume that the pointer is clobbered in 1309 // that predecessor. We can still do PRE of the load, which would insert 1310 // a computation of the pointer in this predecessor. 1311 if (!PredPtrVal) 1312 CanTranslate = false; 1313 1314 // FIXME: it is entirely possible that PHI translating will end up with 1315 // the same value. Consider PHI translating something like: 1316 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* 1317 // to recurse here, pedantically speaking. 1318 1319 // If getNonLocalPointerDepFromBB fails here, that means the cached 1320 // result conflicted with the Visited list; we have to conservatively 1321 // assume it is unknown, but this also does not block PRE of the load. 1322 if (!CanTranslate || 1323 !getNonLocalPointerDepFromBB(QueryInst, PredPointer, 1324 Loc.getWithNewPtr(PredPtrVal), isLoad, 1325 Pred, Result, Visited)) { 1326 // Add the entry to the Result list. 1327 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal); 1328 Result.push_back(Entry); 1329 1330 // Since we had a phi translation failure, the cache for CacheKey won't 1331 // include all of the entries that we need to immediately satisfy future 1332 // queries. Mark this in NonLocalPointerDeps by setting the 1333 // BBSkipFirstBlockPair pointer to null. This requires reuse of the 1334 // cached value to do more work but not miss the phi trans failure. 1335 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; 1336 NLPI.Pair = BBSkipFirstBlockPair(); 1337 continue; 1338 } 1339 } 1340 1341 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. 1342 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1343 Cache = &CacheInfo->NonLocalDeps; 1344 NumSortedEntries = Cache->size(); 1345 1346 // Since we did phi translation, the "Cache" set won't contain all of the 1347 // results for the query. This is ok (we can still use it to accelerate 1348 // specific block queries) but we can't do the fastpath "return all 1349 // results from the set" Clear out the indicator for this. 1350 CacheInfo->Pair = BBSkipFirstBlockPair(); 1351 SkipFirstBlock = false; 1352 continue; 1353 1354 PredTranslationFailure: 1355 // The following code is "failure"; we can't produce a sane translation 1356 // for the given block. It assumes that we haven't modified any of 1357 // our datastructures while processing the current block. 1358 1359 if (!Cache) { 1360 // Refresh the CacheInfo/Cache pointer if it got invalidated. 1361 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1362 Cache = &CacheInfo->NonLocalDeps; 1363 NumSortedEntries = Cache->size(); 1364 } 1365 1366 // Since we failed phi translation, the "Cache" set won't contain all of the 1367 // results for the query. This is ok (we can still use it to accelerate 1368 // specific block queries) but we can't do the fastpath "return all 1369 // results from the set". Clear out the indicator for this. 1370 CacheInfo->Pair = BBSkipFirstBlockPair(); 1371 1372 // If *nothing* works, mark the pointer as unknown. 1373 // 1374 // If this is the magic first block, return this as a clobber of the whole 1375 // incoming value. Since we can't phi translate to one of the predecessors, 1376 // we have to bail out. 1377 if (SkipFirstBlock) 1378 return false; 1379 1380 bool foundBlock = false; 1381 for (NonLocalDepEntry &I : llvm::reverse(*Cache)) { 1382 if (I.getBB() != BB) 1383 continue; 1384 1385 assert((GotWorklistLimit || I.getResult().isNonLocal() || 1386 !DT.isReachableFromEntry(BB)) && 1387 "Should only be here with transparent block"); 1388 foundBlock = true; 1389 I.setResult(MemDepResult::getUnknown()); 1390 Result.push_back( 1391 NonLocalDepResult(I.getBB(), I.getResult(), Pointer.getAddr())); 1392 break; 1393 } 1394 (void)foundBlock; (void)GotWorklistLimit; 1395 assert((foundBlock || GotWorklistLimit) && "Current block not in cache?"); 1396 } 1397 1398 // Okay, we're done now. If we added new values to the cache, re-sort it. 1399 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1400 LLVM_DEBUG(AssertSorted(*Cache)); 1401 return true; 1402 } 1403 1404 /// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it. 1405 void MemoryDependenceResults::RemoveCachedNonLocalPointerDependencies( 1406 ValueIsLoadPair P) { 1407 1408 // Most of the time this cache is empty. 1409 if (!NonLocalDefsCache.empty()) { 1410 auto it = NonLocalDefsCache.find(P.getPointer()); 1411 if (it != NonLocalDefsCache.end()) { 1412 RemoveFromReverseMap(ReverseNonLocalDefsCache, 1413 it->second.getResult().getInst(), P.getPointer()); 1414 NonLocalDefsCache.erase(it); 1415 } 1416 1417 if (auto *I = dyn_cast<Instruction>(P.getPointer())) { 1418 auto toRemoveIt = ReverseNonLocalDefsCache.find(I); 1419 if (toRemoveIt != ReverseNonLocalDefsCache.end()) { 1420 for (const auto *entry : toRemoveIt->second) 1421 NonLocalDefsCache.erase(entry); 1422 ReverseNonLocalDefsCache.erase(toRemoveIt); 1423 } 1424 } 1425 } 1426 1427 CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P); 1428 if (It == NonLocalPointerDeps.end()) 1429 return; 1430 1431 // Remove all of the entries in the BB->val map. This involves removing 1432 // instructions from the reverse map. 1433 NonLocalDepInfo &PInfo = It->second.NonLocalDeps; 1434 1435 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { 1436 Instruction *Target = PInfo[i].getResult().getInst(); 1437 if (!Target) 1438 continue; // Ignore non-local dep results. 1439 assert(Target->getParent() == PInfo[i].getBB()); 1440 1441 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1442 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); 1443 } 1444 1445 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). 1446 NonLocalPointerDeps.erase(It); 1447 } 1448 1449 void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) { 1450 // If Ptr isn't really a pointer, just ignore it. 1451 if (!Ptr->getType()->isPointerTy()) 1452 return; 1453 // Flush store info for the pointer. 1454 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); 1455 // Flush load info for the pointer. 1456 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); 1457 // Invalidate phis that use the pointer. 1458 PV.invalidateValue(Ptr); 1459 } 1460 1461 void MemoryDependenceResults::invalidateCachedPredecessors() { 1462 PredCache.clear(); 1463 } 1464 1465 void MemoryDependenceResults::removeInstruction(Instruction *RemInst) { 1466 // Walk through the Non-local dependencies, removing this one as the value 1467 // for any cached queries. 1468 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); 1469 if (NLDI != NonLocalDeps.end()) { 1470 NonLocalDepInfo &BlockMap = NLDI->second.first; 1471 for (auto &Entry : BlockMap) 1472 if (Instruction *Inst = Entry.getResult().getInst()) 1473 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); 1474 NonLocalDeps.erase(NLDI); 1475 } 1476 1477 // If we have a cached local dependence query for this instruction, remove it. 1478 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); 1479 if (LocalDepEntry != LocalDeps.end()) { 1480 // Remove us from DepInst's reverse set now that the local dep info is gone. 1481 if (Instruction *Inst = LocalDepEntry->second.getInst()) 1482 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); 1483 1484 // Remove this local dependency info. 1485 LocalDeps.erase(LocalDepEntry); 1486 } 1487 1488 // If we have any cached pointer dependencies on this instruction, remove 1489 // them. If the instruction has non-pointer type, then it can't be a pointer 1490 // base. 1491 1492 // Remove it from both the load info and the store info. The instruction 1493 // can't be in either of these maps if it is non-pointer. 1494 if (RemInst->getType()->isPointerTy()) { 1495 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); 1496 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); 1497 } 1498 1499 // Loop over all of the things that depend on the instruction we're removing. 1500 SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd; 1501 1502 // If we find RemInst as a clobber or Def in any of the maps for other values, 1503 // we need to replace its entry with a dirty version of the instruction after 1504 // it. If RemInst is a terminator, we use a null dirty value. 1505 // 1506 // Using a dirty version of the instruction after RemInst saves having to scan 1507 // the entire block to get to this point. 1508 MemDepResult NewDirtyVal; 1509 if (!RemInst->isTerminator()) 1510 NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator()); 1511 1512 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); 1513 if (ReverseDepIt != ReverseLocalDeps.end()) { 1514 // RemInst can't be the terminator if it has local stuff depending on it. 1515 assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() && 1516 "Nothing can locally depend on a terminator"); 1517 1518 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) { 1519 assert(InstDependingOnRemInst != RemInst && 1520 "Already removed our local dep info"); 1521 1522 LocalDeps[InstDependingOnRemInst] = NewDirtyVal; 1523 1524 // Make sure to remember that new things depend on NewDepInst. 1525 assert(NewDirtyVal.getInst() && 1526 "There is no way something else can have " 1527 "a local dep on this if it is a terminator!"); 1528 ReverseDepsToAdd.push_back( 1529 std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst)); 1530 } 1531 1532 ReverseLocalDeps.erase(ReverseDepIt); 1533 1534 // Add new reverse deps after scanning the set, to avoid invalidating the 1535 // 'ReverseDeps' reference. 1536 while (!ReverseDepsToAdd.empty()) { 1537 ReverseLocalDeps[ReverseDepsToAdd.back().first].insert( 1538 ReverseDepsToAdd.back().second); 1539 ReverseDepsToAdd.pop_back(); 1540 } 1541 } 1542 1543 ReverseDepIt = ReverseNonLocalDeps.find(RemInst); 1544 if (ReverseDepIt != ReverseNonLocalDeps.end()) { 1545 for (Instruction *I : ReverseDepIt->second) { 1546 assert(I != RemInst && "Already removed NonLocalDep info for RemInst"); 1547 1548 PerInstNLInfo &INLD = NonLocalDeps[I]; 1549 // The information is now dirty! 1550 INLD.second = true; 1551 1552 for (auto &Entry : INLD.first) { 1553 if (Entry.getResult().getInst() != RemInst) 1554 continue; 1555 1556 // Convert to a dirty entry for the subsequent instruction. 1557 Entry.setResult(NewDirtyVal); 1558 1559 if (Instruction *NextI = NewDirtyVal.getInst()) 1560 ReverseDepsToAdd.push_back(std::make_pair(NextI, I)); 1561 } 1562 } 1563 1564 ReverseNonLocalDeps.erase(ReverseDepIt); 1565 1566 // Add new reverse deps after scanning the set, to avoid invalidating 'Set' 1567 while (!ReverseDepsToAdd.empty()) { 1568 ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert( 1569 ReverseDepsToAdd.back().second); 1570 ReverseDepsToAdd.pop_back(); 1571 } 1572 } 1573 1574 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a 1575 // value in the NonLocalPointerDeps info. 1576 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = 1577 ReverseNonLocalPtrDeps.find(RemInst); 1578 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { 1579 SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8> 1580 ReversePtrDepsToAdd; 1581 1582 for (ValueIsLoadPair P : ReversePtrDepIt->second) { 1583 assert(P.getPointer() != RemInst && 1584 "Already removed NonLocalPointerDeps info for RemInst"); 1585 1586 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; 1587 1588 // The cache is not valid for any specific block anymore. 1589 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); 1590 1591 // Update any entries for RemInst to use the instruction after it. 1592 for (auto &Entry : NLPDI) { 1593 if (Entry.getResult().getInst() != RemInst) 1594 continue; 1595 1596 // Convert to a dirty entry for the subsequent instruction. 1597 Entry.setResult(NewDirtyVal); 1598 1599 if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) 1600 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); 1601 } 1602 1603 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its 1604 // subsequent value may invalidate the sortedness. 1605 llvm::sort(NLPDI); 1606 } 1607 1608 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); 1609 1610 while (!ReversePtrDepsToAdd.empty()) { 1611 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert( 1612 ReversePtrDepsToAdd.back().second); 1613 ReversePtrDepsToAdd.pop_back(); 1614 } 1615 } 1616 1617 // Invalidate phis that use the removed instruction. 1618 PV.invalidateValue(RemInst); 1619 1620 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); 1621 LLVM_DEBUG(verifyRemoved(RemInst)); 1622 } 1623 1624 /// Verify that the specified instruction does not occur in our internal data 1625 /// structures. 1626 /// 1627 /// This function verifies by asserting in debug builds. 1628 void MemoryDependenceResults::verifyRemoved(Instruction *D) const { 1629 #ifndef NDEBUG 1630 for (const auto &DepKV : LocalDeps) { 1631 assert(DepKV.first != D && "Inst occurs in data structures"); 1632 assert(DepKV.second.getInst() != D && "Inst occurs in data structures"); 1633 } 1634 1635 for (const auto &DepKV : NonLocalPointerDeps) { 1636 assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key"); 1637 for (const auto &Entry : DepKV.second.NonLocalDeps) 1638 assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value"); 1639 } 1640 1641 for (const auto &DepKV : NonLocalDeps) { 1642 assert(DepKV.first != D && "Inst occurs in data structures"); 1643 const PerInstNLInfo &INLD = DepKV.second; 1644 for (const auto &Entry : INLD.first) 1645 assert(Entry.getResult().getInst() != D && 1646 "Inst occurs in data structures"); 1647 } 1648 1649 for (const auto &DepKV : ReverseLocalDeps) { 1650 assert(DepKV.first != D && "Inst occurs in data structures"); 1651 for (Instruction *Inst : DepKV.second) 1652 assert(Inst != D && "Inst occurs in data structures"); 1653 } 1654 1655 for (const auto &DepKV : ReverseNonLocalDeps) { 1656 assert(DepKV.first != D && "Inst occurs in data structures"); 1657 for (Instruction *Inst : DepKV.second) 1658 assert(Inst != D && "Inst occurs in data structures"); 1659 } 1660 1661 for (const auto &DepKV : ReverseNonLocalPtrDeps) { 1662 assert(DepKV.first != D && "Inst occurs in rev NLPD map"); 1663 1664 for (ValueIsLoadPair P : DepKV.second) 1665 assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) && 1666 "Inst occurs in ReverseNonLocalPtrDeps map"); 1667 } 1668 #endif 1669 } 1670 1671 AnalysisKey MemoryDependenceAnalysis::Key; 1672 1673 MemoryDependenceAnalysis::MemoryDependenceAnalysis() 1674 : DefaultBlockScanLimit(BlockScanLimit) {} 1675 1676 MemoryDependenceResults 1677 MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 1678 auto &AA = AM.getResult<AAManager>(F); 1679 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1680 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1681 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1682 auto &PV = AM.getResult<PhiValuesAnalysis>(F); 1683 return MemoryDependenceResults(AA, AC, TLI, DT, PV, DefaultBlockScanLimit); 1684 } 1685 1686 char MemoryDependenceWrapperPass::ID = 0; 1687 1688 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep", 1689 "Memory Dependence Analysis", false, true) 1690 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1691 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1692 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1693 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1694 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass) 1695 INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep", 1696 "Memory Dependence Analysis", false, true) 1697 1698 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) { 1699 initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry()); 1700 } 1701 1702 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default; 1703 1704 void MemoryDependenceWrapperPass::releaseMemory() { 1705 MemDep.reset(); 1706 } 1707 1708 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1709 AU.setPreservesAll(); 1710 AU.addRequired<AssumptionCacheTracker>(); 1711 AU.addRequired<DominatorTreeWrapperPass>(); 1712 AU.addRequired<PhiValuesWrapperPass>(); 1713 AU.addRequiredTransitive<AAResultsWrapperPass>(); 1714 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 1715 } 1716 1717 bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA, 1718 FunctionAnalysisManager::Invalidator &Inv) { 1719 // Check whether our analysis is preserved. 1720 auto PAC = PA.getChecker<MemoryDependenceAnalysis>(); 1721 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>()) 1722 // If not, give up now. 1723 return true; 1724 1725 // Check whether the analyses we depend on became invalid for any reason. 1726 if (Inv.invalidate<AAManager>(F, PA) || 1727 Inv.invalidate<AssumptionAnalysis>(F, PA) || 1728 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 1729 Inv.invalidate<PhiValuesAnalysis>(F, PA)) 1730 return true; 1731 1732 // Otherwise this analysis result remains valid. 1733 return false; 1734 } 1735 1736 unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const { 1737 return DefaultBlockScanLimit; 1738 } 1739 1740 bool MemoryDependenceWrapperPass::runOnFunction(Function &F) { 1741 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1742 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1743 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1744 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1745 auto &PV = getAnalysis<PhiValuesWrapperPass>().getResult(); 1746 MemDep.emplace(AA, AC, TLI, DT, PV, BlockScanLimit); 1747 return false; 1748 } 1749