1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements an analysis that determines, for a given memory 11 // operation, what preceding memory operations it depends on. It builds on 12 // alias analysis information, and tries to provide a lazy, caching interface to 13 // a common kind of alias information query. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/MemoryBuiltins.h" 24 #include "llvm/Analysis/PHITransAddr.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/IR/PredIteratorCache.h" 33 #include "llvm/Support/Debug.h" 34 using namespace llvm; 35 36 #define DEBUG_TYPE "memdep" 37 38 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); 39 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); 40 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); 41 42 STATISTIC(NumCacheNonLocalPtr, 43 "Number of fully cached non-local ptr responses"); 44 STATISTIC(NumCacheDirtyNonLocalPtr, 45 "Number of cached, but dirty, non-local ptr responses"); 46 STATISTIC(NumUncacheNonLocalPtr, 47 "Number of uncached non-local ptr responses"); 48 STATISTIC(NumCacheCompleteNonLocalPtr, 49 "Number of block queries that were completely cached"); 50 51 // Limit for the number of instructions to scan in a block. 52 static const unsigned int BlockScanLimit = 100; 53 54 // Limit on the number of memdep results to process. 55 static const unsigned int NumResultsLimit = 100; 56 57 char MemoryDependenceAnalysis::ID = 0; 58 59 // Register this pass... 60 INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep", 61 "Memory Dependence Analysis", false, true) 62 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 63 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 64 INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep", 65 "Memory Dependence Analysis", false, true) 66 67 MemoryDependenceAnalysis::MemoryDependenceAnalysis() 68 : FunctionPass(ID), PredCache() { 69 initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry()); 70 } 71 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() { 72 } 73 74 /// Clean up memory in between runs 75 void MemoryDependenceAnalysis::releaseMemory() { 76 LocalDeps.clear(); 77 NonLocalDeps.clear(); 78 NonLocalPointerDeps.clear(); 79 ReverseLocalDeps.clear(); 80 ReverseNonLocalDeps.clear(); 81 ReverseNonLocalPtrDeps.clear(); 82 PredCache->clear(); 83 } 84 85 86 87 /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis. 88 /// 89 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 90 AU.setPreservesAll(); 91 AU.addRequired<AssumptionCacheTracker>(); 92 AU.addRequiredTransitive<AliasAnalysis>(); 93 } 94 95 bool MemoryDependenceAnalysis::runOnFunction(Function &F) { 96 AA = &getAnalysis<AliasAnalysis>(); 97 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 98 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 99 DL = DLP ? &DLP->getDataLayout() : nullptr; 100 DominatorTreeWrapperPass *DTWP = 101 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 102 DT = DTWP ? &DTWP->getDomTree() : nullptr; 103 if (!PredCache) 104 PredCache.reset(new PredIteratorCache()); 105 return false; 106 } 107 108 /// RemoveFromReverseMap - This is a helper function that removes Val from 109 /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry. 110 template <typename KeyTy> 111 static void RemoveFromReverseMap(DenseMap<Instruction*, 112 SmallPtrSet<KeyTy, 4> > &ReverseMap, 113 Instruction *Inst, KeyTy Val) { 114 typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator 115 InstIt = ReverseMap.find(Inst); 116 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); 117 bool Found = InstIt->second.erase(Val); 118 assert(Found && "Invalid reverse map!"); (void)Found; 119 if (InstIt->second.empty()) 120 ReverseMap.erase(InstIt); 121 } 122 123 /// GetLocation - If the given instruction references a specific memory 124 /// location, fill in Loc with the details, otherwise set Loc.Ptr to null. 125 /// Return a ModRefInfo value describing the general behavior of the 126 /// instruction. 127 static 128 AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst, 129 AliasAnalysis::Location &Loc, 130 AliasAnalysis *AA) { 131 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 132 if (LI->isUnordered()) { 133 Loc = AA->getLocation(LI); 134 return AliasAnalysis::Ref; 135 } 136 if (LI->getOrdering() == Monotonic) { 137 Loc = AA->getLocation(LI); 138 return AliasAnalysis::ModRef; 139 } 140 Loc = AliasAnalysis::Location(); 141 return AliasAnalysis::ModRef; 142 } 143 144 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 145 if (SI->isUnordered()) { 146 Loc = AA->getLocation(SI); 147 return AliasAnalysis::Mod; 148 } 149 if (SI->getOrdering() == Monotonic) { 150 Loc = AA->getLocation(SI); 151 return AliasAnalysis::ModRef; 152 } 153 Loc = AliasAnalysis::Location(); 154 return AliasAnalysis::ModRef; 155 } 156 157 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { 158 Loc = AA->getLocation(V); 159 return AliasAnalysis::ModRef; 160 } 161 162 if (const CallInst *CI = isFreeCall(Inst, AA->getTargetLibraryInfo())) { 163 // calls to free() deallocate the entire structure 164 Loc = AliasAnalysis::Location(CI->getArgOperand(0)); 165 return AliasAnalysis::Mod; 166 } 167 168 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 169 AAMDNodes AAInfo; 170 171 switch (II->getIntrinsicID()) { 172 case Intrinsic::lifetime_start: 173 case Intrinsic::lifetime_end: 174 case Intrinsic::invariant_start: 175 II->getAAMetadata(AAInfo); 176 Loc = AliasAnalysis::Location(II->getArgOperand(1), 177 cast<ConstantInt>(II->getArgOperand(0)) 178 ->getZExtValue(), AAInfo); 179 // These intrinsics don't really modify the memory, but returning Mod 180 // will allow them to be handled conservatively. 181 return AliasAnalysis::Mod; 182 case Intrinsic::invariant_end: 183 II->getAAMetadata(AAInfo); 184 Loc = AliasAnalysis::Location(II->getArgOperand(2), 185 cast<ConstantInt>(II->getArgOperand(1)) 186 ->getZExtValue(), AAInfo); 187 // These intrinsics don't really modify the memory, but returning Mod 188 // will allow them to be handled conservatively. 189 return AliasAnalysis::Mod; 190 default: 191 break; 192 } 193 } 194 195 // Otherwise, just do the coarse-grained thing that always works. 196 if (Inst->mayWriteToMemory()) 197 return AliasAnalysis::ModRef; 198 if (Inst->mayReadFromMemory()) 199 return AliasAnalysis::Ref; 200 return AliasAnalysis::NoModRef; 201 } 202 203 /// getCallSiteDependencyFrom - Private helper for finding the local 204 /// dependencies of a call site. 205 MemDepResult MemoryDependenceAnalysis:: 206 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall, 207 BasicBlock::iterator ScanIt, BasicBlock *BB) { 208 unsigned Limit = BlockScanLimit; 209 210 // Walk backwards through the block, looking for dependencies 211 while (ScanIt != BB->begin()) { 212 // Limit the amount of scanning we do so we don't end up with quadratic 213 // running time on extreme testcases. 214 --Limit; 215 if (!Limit) 216 return MemDepResult::getUnknown(); 217 218 Instruction *Inst = --ScanIt; 219 220 // If this inst is a memory op, get the pointer it accessed 221 AliasAnalysis::Location Loc; 222 AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA); 223 if (Loc.Ptr) { 224 // A simple instruction. 225 if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef) 226 return MemDepResult::getClobber(Inst); 227 continue; 228 } 229 230 if (CallSite InstCS = cast<Value>(Inst)) { 231 // Debug intrinsics don't cause dependences. 232 if (isa<DbgInfoIntrinsic>(Inst)) continue; 233 // If these two calls do not interfere, look past it. 234 switch (AA->getModRefInfo(CS, InstCS)) { 235 case AliasAnalysis::NoModRef: 236 // If the two calls are the same, return InstCS as a Def, so that 237 // CS can be found redundant and eliminated. 238 if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) && 239 CS.getInstruction()->isIdenticalToWhenDefined(Inst)) 240 return MemDepResult::getDef(Inst); 241 242 // Otherwise if the two calls don't interact (e.g. InstCS is readnone) 243 // keep scanning. 244 continue; 245 default: 246 return MemDepResult::getClobber(Inst); 247 } 248 } 249 250 // If we could not obtain a pointer for the instruction and the instruction 251 // touches memory then assume that this is a dependency. 252 if (MR != AliasAnalysis::NoModRef) 253 return MemDepResult::getClobber(Inst); 254 } 255 256 // No dependence found. If this is the entry block of the function, it is 257 // unknown, otherwise it is non-local. 258 if (BB != &BB->getParent()->getEntryBlock()) 259 return MemDepResult::getNonLocal(); 260 return MemDepResult::getNonFuncLocal(); 261 } 262 263 /// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that 264 /// would fully overlap MemLoc if done as a wider legal integer load. 265 /// 266 /// MemLocBase, MemLocOffset are lazily computed here the first time the 267 /// base/offs of memloc is needed. 268 static bool 269 isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc, 270 const Value *&MemLocBase, 271 int64_t &MemLocOffs, 272 const LoadInst *LI, 273 const DataLayout *DL) { 274 // If we have no target data, we can't do this. 275 if (!DL) return false; 276 277 // If we haven't already computed the base/offset of MemLoc, do so now. 278 if (!MemLocBase) 279 MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, DL); 280 281 unsigned Size = MemoryDependenceAnalysis:: 282 getLoadLoadClobberFullWidthSize(MemLocBase, MemLocOffs, MemLoc.Size, 283 LI, *DL); 284 return Size != 0; 285 } 286 287 /// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that 288 /// looks at a memory location for a load (specified by MemLocBase, Offs, 289 /// and Size) and compares it against a load. If the specified load could 290 /// be safely widened to a larger integer load that is 1) still efficient, 291 /// 2) safe for the target, and 3) would provide the specified memory 292 /// location value, then this function returns the size in bytes of the 293 /// load width to use. If not, this returns zero. 294 unsigned MemoryDependenceAnalysis:: 295 getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs, 296 unsigned MemLocSize, const LoadInst *LI, 297 const DataLayout &DL) { 298 // We can only extend simple integer loads. 299 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0; 300 301 // Load widening is hostile to ThreadSanitizer: it may cause false positives 302 // or make the reports more cryptic (access sizes are wrong). 303 if (LI->getParent()->getParent()->getAttributes(). 304 hasAttribute(AttributeSet::FunctionIndex, Attribute::SanitizeThread)) 305 return 0; 306 307 // Get the base of this load. 308 int64_t LIOffs = 0; 309 const Value *LIBase = 310 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, &DL); 311 312 // If the two pointers are not based on the same pointer, we can't tell that 313 // they are related. 314 if (LIBase != MemLocBase) return 0; 315 316 // Okay, the two values are based on the same pointer, but returned as 317 // no-alias. This happens when we have things like two byte loads at "P+1" 318 // and "P+3". Check to see if increasing the size of the "LI" load up to its 319 // alignment (or the largest native integer type) will allow us to load all 320 // the bits required by MemLoc. 321 322 // If MemLoc is before LI, then no widening of LI will help us out. 323 if (MemLocOffs < LIOffs) return 0; 324 325 // Get the alignment of the load in bytes. We assume that it is safe to load 326 // any legal integer up to this size without a problem. For example, if we're 327 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can 328 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it 329 // to i16. 330 unsigned LoadAlign = LI->getAlignment(); 331 332 int64_t MemLocEnd = MemLocOffs+MemLocSize; 333 334 // If no amount of rounding up will let MemLoc fit into LI, then bail out. 335 if (LIOffs+LoadAlign < MemLocEnd) return 0; 336 337 // This is the size of the load to try. Start with the next larger power of 338 // two. 339 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U; 340 NewLoadByteSize = NextPowerOf2(NewLoadByteSize); 341 342 while (1) { 343 // If this load size is bigger than our known alignment or would not fit 344 // into a native integer register, then we fail. 345 if (NewLoadByteSize > LoadAlign || 346 !DL.fitsInLegalInteger(NewLoadByteSize*8)) 347 return 0; 348 349 if (LIOffs+NewLoadByteSize > MemLocEnd && 350 LI->getParent()->getParent()->getAttributes(). 351 hasAttribute(AttributeSet::FunctionIndex, Attribute::SanitizeAddress)) 352 // We will be reading past the location accessed by the original program. 353 // While this is safe in a regular build, Address Safety analysis tools 354 // may start reporting false warnings. So, don't do widening. 355 return 0; 356 357 // If a load of this width would include all of MemLoc, then we succeed. 358 if (LIOffs+NewLoadByteSize >= MemLocEnd) 359 return NewLoadByteSize; 360 361 NewLoadByteSize <<= 1; 362 } 363 } 364 365 /// getPointerDependencyFrom - Return the instruction on which a memory 366 /// location depends. If isLoad is true, this routine ignores may-aliases with 367 /// read-only operations. If isLoad is false, this routine ignores may-aliases 368 /// with reads from read-only locations. If possible, pass the query 369 /// instruction as well; this function may take advantage of the metadata 370 /// annotated to the query instruction to refine the result. 371 MemDepResult MemoryDependenceAnalysis:: 372 getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, 373 BasicBlock::iterator ScanIt, BasicBlock *BB, 374 Instruction *QueryInst) { 375 376 const Value *MemLocBase = nullptr; 377 int64_t MemLocOffset = 0; 378 unsigned Limit = BlockScanLimit; 379 bool isInvariantLoad = false; 380 381 // We must be careful with atomic accesses, as they may allow another thread 382 // to touch this location, cloberring it. We are conservative: if the 383 // QueryInst is not a simple (non-atomic) memory access, we automatically 384 // return getClobber. 385 // If it is simple, we know based on the results of 386 // "Compiler testing via a theory of sound optimisations in the C11/C++11 387 // memory model" in PLDI 2013, that a non-atomic location can only be 388 // clobbered between a pair of a release and an acquire action, with no 389 // access to the location in between. 390 // Here is an example for giving the general intuition behind this rule. 391 // In the following code: 392 // store x 0; 393 // release action; [1] 394 // acquire action; [4] 395 // %val = load x; 396 // It is unsafe to replace %val by 0 because another thread may be running: 397 // acquire action; [2] 398 // store x 42; 399 // release action; [3] 400 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val 401 // being 42. A key property of this program however is that if either 402 // 1 or 4 were missing, there would be a race between the store of 42 403 // either the store of 0 or the load (making the whole progam racy). 404 // The paper mentionned above shows that the same property is respected 405 // by every program that can detect any optimisation of that kind: either 406 // it is racy (undefined) or there is a release followed by an acquire 407 // between the pair of accesses under consideration. 408 bool HasSeenAcquire = false; 409 410 if (isLoad && QueryInst) { 411 LoadInst *LI = dyn_cast<LoadInst>(QueryInst); 412 if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr) 413 isInvariantLoad = true; 414 } 415 416 // Walk backwards through the basic block, looking for dependencies. 417 while (ScanIt != BB->begin()) { 418 Instruction *Inst = --ScanIt; 419 420 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 421 // Debug intrinsics don't (and can't) cause dependencies. 422 if (isa<DbgInfoIntrinsic>(II)) continue; 423 424 // Limit the amount of scanning we do so we don't end up with quadratic 425 // running time on extreme testcases. 426 --Limit; 427 if (!Limit) 428 return MemDepResult::getUnknown(); 429 430 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 431 // If we reach a lifetime begin or end marker, then the query ends here 432 // because the value is undefined. 433 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 434 // FIXME: This only considers queries directly on the invariant-tagged 435 // pointer, not on query pointers that are indexed off of them. It'd 436 // be nice to handle that at some point (the right approach is to use 437 // GetPointerBaseWithConstantOffset). 438 if (AA->isMustAlias(AliasAnalysis::Location(II->getArgOperand(1)), 439 MemLoc)) 440 return MemDepResult::getDef(II); 441 continue; 442 } 443 } 444 445 // Values depend on loads if the pointers are must aliased. This means that 446 // a load depends on another must aliased load from the same value. 447 // One exception is atomic loads: a value can depend on an atomic load that it 448 // does not alias with when this atomic load indicates that another thread may 449 // be accessing the location. 450 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 451 // Atomic loads have complications involved. 452 // A Monotonic (or higher) load is OK if the query inst is itself not atomic. 453 // An Acquire (or higher) load sets the HasSeenAcquire flag, so that any 454 // release store will know to return getClobber. 455 // FIXME: This is overly conservative. 456 if (!LI->isUnordered()) { 457 if (!QueryInst) 458 return MemDepResult::getClobber(LI); 459 if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) { 460 if (!QueryLI->isSimple()) 461 return MemDepResult::getClobber(LI); 462 } else if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) { 463 if (!QuerySI->isSimple()) 464 return MemDepResult::getClobber(LI); 465 } else if (QueryInst->mayReadOrWriteMemory()) { 466 return MemDepResult::getClobber(LI); 467 } 468 469 if (isAtLeastAcquire(LI->getOrdering())) 470 HasSeenAcquire = true; 471 } 472 473 // FIXME: this is overly conservative. 474 // While volatile access cannot be eliminated, they do not have to clobber 475 // non-aliasing locations, as normal accesses can for example be reordered 476 // with volatile accesses. 477 if (LI->isVolatile()) 478 return MemDepResult::getClobber(LI); 479 480 AliasAnalysis::Location LoadLoc = AA->getLocation(LI); 481 482 // If we found a pointer, check if it could be the same as our pointer. 483 AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc); 484 485 if (isLoad) { 486 if (R == AliasAnalysis::NoAlias) { 487 // If this is an over-aligned integer load (for example, 488 // "load i8* %P, align 4") see if it would obviously overlap with the 489 // queried location if widened to a larger load (e.g. if the queried 490 // location is 1 byte at P+1). If so, return it as a load/load 491 // clobber result, allowing the client to decide to widen the load if 492 // it wants to. 493 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) 494 if (LI->getAlignment()*8 > ITy->getPrimitiveSizeInBits() && 495 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase, 496 MemLocOffset, LI, DL)) 497 return MemDepResult::getClobber(Inst); 498 499 continue; 500 } 501 502 // Must aliased loads are defs of each other. 503 if (R == AliasAnalysis::MustAlias) 504 return MemDepResult::getDef(Inst); 505 506 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads 507 // in terms of clobbering loads, but since it does this by looking 508 // at the clobbering load directly, it doesn't know about any 509 // phi translation that may have happened along the way. 510 511 // If we have a partial alias, then return this as a clobber for the 512 // client to handle. 513 if (R == AliasAnalysis::PartialAlias) 514 return MemDepResult::getClobber(Inst); 515 #endif 516 517 // Random may-alias loads don't depend on each other without a 518 // dependence. 519 continue; 520 } 521 522 // Stores don't depend on other no-aliased accesses. 523 if (R == AliasAnalysis::NoAlias) 524 continue; 525 526 // Stores don't alias loads from read-only memory. 527 if (AA->pointsToConstantMemory(LoadLoc)) 528 continue; 529 530 // Stores depend on may/must aliased loads. 531 return MemDepResult::getDef(Inst); 532 } 533 534 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 535 // Atomic stores have complications involved. 536 // A Monotonic store is OK if the query inst is itself not atomic. 537 // A Release (or higher) store further requires that no acquire load 538 // has been seen. 539 // FIXME: This is overly conservative. 540 if (!SI->isUnordered()) { 541 if (!QueryInst) 542 return MemDepResult::getClobber(SI); 543 if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) { 544 if (!QueryLI->isSimple()) 545 return MemDepResult::getClobber(SI); 546 } else if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) { 547 if (!QuerySI->isSimple()) 548 return MemDepResult::getClobber(SI); 549 } else if (QueryInst->mayReadOrWriteMemory()) { 550 return MemDepResult::getClobber(SI); 551 } 552 553 if (HasSeenAcquire && isAtLeastRelease(SI->getOrdering())) 554 return MemDepResult::getClobber(SI); 555 } 556 557 // FIXME: this is overly conservative. 558 // While volatile access cannot be eliminated, they do not have to clobber 559 // non-aliasing locations, as normal accesses can for example be reordered 560 // with volatile accesses. 561 if (SI->isVolatile()) 562 return MemDepResult::getClobber(SI); 563 564 // If alias analysis can tell that this store is guaranteed to not modify 565 // the query pointer, ignore it. Use getModRefInfo to handle cases where 566 // the query pointer points to constant memory etc. 567 if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef) 568 continue; 569 570 // Ok, this store might clobber the query pointer. Check to see if it is 571 // a must alias: in this case, we want to return this as a def. 572 AliasAnalysis::Location StoreLoc = AA->getLocation(SI); 573 574 // If we found a pointer, check if it could be the same as our pointer. 575 AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc); 576 577 if (R == AliasAnalysis::NoAlias) 578 continue; 579 if (R == AliasAnalysis::MustAlias) 580 return MemDepResult::getDef(Inst); 581 if (isInvariantLoad) 582 continue; 583 return MemDepResult::getClobber(Inst); 584 } 585 586 // If this is an allocation, and if we know that the accessed pointer is to 587 // the allocation, return Def. This means that there is no dependence and 588 // the access can be optimized based on that. For example, a load could 589 // turn into undef. 590 // Note: Only determine this to be a malloc if Inst is the malloc call, not 591 // a subsequent bitcast of the malloc call result. There can be stores to 592 // the malloced memory between the malloc call and its bitcast uses, and we 593 // need to continue scanning until the malloc call. 594 const TargetLibraryInfo *TLI = AA->getTargetLibraryInfo(); 595 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, TLI)) { 596 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL); 597 598 if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr)) 599 return MemDepResult::getDef(Inst); 600 // Be conservative if the accessed pointer may alias the allocation. 601 if (AA->alias(Inst, AccessPtr) != AliasAnalysis::NoAlias) 602 return MemDepResult::getClobber(Inst); 603 // If the allocation is not aliased and does not read memory (like 604 // strdup), it is safe to ignore. 605 if (isa<AllocaInst>(Inst) || 606 isMallocLikeFn(Inst, TLI) || isCallocLikeFn(Inst, TLI)) 607 continue; 608 } 609 610 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. 611 AliasAnalysis::ModRefResult MR = AA->getModRefInfo(Inst, MemLoc); 612 // If necessary, perform additional analysis. 613 if (MR == AliasAnalysis::ModRef) 614 MR = AA->callCapturesBefore(Inst, MemLoc, DT); 615 switch (MR) { 616 case AliasAnalysis::NoModRef: 617 // If the call has no effect on the queried pointer, just ignore it. 618 continue; 619 case AliasAnalysis::Mod: 620 return MemDepResult::getClobber(Inst); 621 case AliasAnalysis::Ref: 622 // If the call is known to never store to the pointer, and if this is a 623 // load query, we can safely ignore it (scan past it). 624 if (isLoad) 625 continue; 626 default: 627 // Otherwise, there is a potential dependence. Return a clobber. 628 return MemDepResult::getClobber(Inst); 629 } 630 } 631 632 // No dependence found. If this is the entry block of the function, it is 633 // unknown, otherwise it is non-local. 634 if (BB != &BB->getParent()->getEntryBlock()) 635 return MemDepResult::getNonLocal(); 636 return MemDepResult::getNonFuncLocal(); 637 } 638 639 /// getDependency - Return the instruction on which a memory operation 640 /// depends. 641 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) { 642 Instruction *ScanPos = QueryInst; 643 644 // Check for a cached result 645 MemDepResult &LocalCache = LocalDeps[QueryInst]; 646 647 // If the cached entry is non-dirty, just return it. Note that this depends 648 // on MemDepResult's default constructing to 'dirty'. 649 if (!LocalCache.isDirty()) 650 return LocalCache; 651 652 // Otherwise, if we have a dirty entry, we know we can start the scan at that 653 // instruction, which may save us some work. 654 if (Instruction *Inst = LocalCache.getInst()) { 655 ScanPos = Inst; 656 657 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); 658 } 659 660 BasicBlock *QueryParent = QueryInst->getParent(); 661 662 // Do the scan. 663 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { 664 // No dependence found. If this is the entry block of the function, it is 665 // unknown, otherwise it is non-local. 666 if (QueryParent != &QueryParent->getParent()->getEntryBlock()) 667 LocalCache = MemDepResult::getNonLocal(); 668 else 669 LocalCache = MemDepResult::getNonFuncLocal(); 670 } else { 671 AliasAnalysis::Location MemLoc; 672 AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA); 673 if (MemLoc.Ptr) { 674 // If we can do a pointer scan, make it happen. 675 bool isLoad = !(MR & AliasAnalysis::Mod); 676 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst)) 677 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start; 678 679 LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos, 680 QueryParent, QueryInst); 681 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) { 682 CallSite QueryCS(QueryInst); 683 bool isReadOnly = AA->onlyReadsMemory(QueryCS); 684 LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos, 685 QueryParent); 686 } else 687 // Non-memory instruction. 688 LocalCache = MemDepResult::getUnknown(); 689 } 690 691 // Remember the result! 692 if (Instruction *I = LocalCache.getInst()) 693 ReverseLocalDeps[I].insert(QueryInst); 694 695 return LocalCache; 696 } 697 698 #ifndef NDEBUG 699 /// AssertSorted - This method is used when -debug is specified to verify that 700 /// cache arrays are properly kept sorted. 701 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 702 int Count = -1) { 703 if (Count == -1) Count = Cache.size(); 704 if (Count == 0) return; 705 706 for (unsigned i = 1; i != unsigned(Count); ++i) 707 assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!"); 708 } 709 #endif 710 711 /// getNonLocalCallDependency - Perform a full dependency query for the 712 /// specified call, returning the set of blocks that the value is 713 /// potentially live across. The returned set of results will include a 714 /// "NonLocal" result for all blocks where the value is live across. 715 /// 716 /// This method assumes the instruction returns a "NonLocal" dependency 717 /// within its own block. 718 /// 719 /// This returns a reference to an internal data structure that may be 720 /// invalidated on the next non-local query or when an instruction is 721 /// removed. Clients must copy this data if they want it around longer than 722 /// that. 723 const MemoryDependenceAnalysis::NonLocalDepInfo & 724 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { 725 assert(getDependency(QueryCS.getInstruction()).isNonLocal() && 726 "getNonLocalCallDependency should only be used on calls with non-local deps!"); 727 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()]; 728 NonLocalDepInfo &Cache = CacheP.first; 729 730 /// DirtyBlocks - This is the set of blocks that need to be recomputed. In 731 /// the cached case, this can happen due to instructions being deleted etc. In 732 /// the uncached case, this starts out as the set of predecessors we care 733 /// about. 734 SmallVector<BasicBlock*, 32> DirtyBlocks; 735 736 if (!Cache.empty()) { 737 // Okay, we have a cache entry. If we know it is not dirty, just return it 738 // with no computation. 739 if (!CacheP.second) { 740 ++NumCacheNonLocal; 741 return Cache; 742 } 743 744 // If we already have a partially computed set of results, scan them to 745 // determine what is dirty, seeding our initial DirtyBlocks worklist. 746 for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end(); 747 I != E; ++I) 748 if (I->getResult().isDirty()) 749 DirtyBlocks.push_back(I->getBB()); 750 751 // Sort the cache so that we can do fast binary search lookups below. 752 std::sort(Cache.begin(), Cache.end()); 753 754 ++NumCacheDirtyNonLocal; 755 //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " 756 // << Cache.size() << " cached: " << *QueryInst; 757 } else { 758 // Seed DirtyBlocks with each of the preds of QueryInst's block. 759 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent(); 760 for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI) 761 DirtyBlocks.push_back(*PI); 762 ++NumUncacheNonLocal; 763 } 764 765 // isReadonlyCall - If this is a read-only call, we can be more aggressive. 766 bool isReadonlyCall = AA->onlyReadsMemory(QueryCS); 767 768 SmallPtrSet<BasicBlock*, 64> Visited; 769 770 unsigned NumSortedEntries = Cache.size(); 771 DEBUG(AssertSorted(Cache)); 772 773 // Iterate while we still have blocks to update. 774 while (!DirtyBlocks.empty()) { 775 BasicBlock *DirtyBB = DirtyBlocks.back(); 776 DirtyBlocks.pop_back(); 777 778 // Already processed this block? 779 if (!Visited.insert(DirtyBB).second) 780 continue; 781 782 // Do a binary search to see if we already have an entry for this block in 783 // the cache set. If so, find it. 784 DEBUG(AssertSorted(Cache, NumSortedEntries)); 785 NonLocalDepInfo::iterator Entry = 786 std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries, 787 NonLocalDepEntry(DirtyBB)); 788 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB) 789 --Entry; 790 791 NonLocalDepEntry *ExistingResult = nullptr; 792 if (Entry != Cache.begin()+NumSortedEntries && 793 Entry->getBB() == DirtyBB) { 794 // If we already have an entry, and if it isn't already dirty, the block 795 // is done. 796 if (!Entry->getResult().isDirty()) 797 continue; 798 799 // Otherwise, remember this slot so we can update the value. 800 ExistingResult = &*Entry; 801 } 802 803 // If the dirty entry has a pointer, start scanning from it so we don't have 804 // to rescan the entire block. 805 BasicBlock::iterator ScanPos = DirtyBB->end(); 806 if (ExistingResult) { 807 if (Instruction *Inst = ExistingResult->getResult().getInst()) { 808 ScanPos = Inst; 809 // We're removing QueryInst's use of Inst. 810 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, 811 QueryCS.getInstruction()); 812 } 813 } 814 815 // Find out if this block has a local dependency for QueryInst. 816 MemDepResult Dep; 817 818 if (ScanPos != DirtyBB->begin()) { 819 Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB); 820 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { 821 // No dependence found. If this is the entry block of the function, it is 822 // a clobber, otherwise it is unknown. 823 Dep = MemDepResult::getNonLocal(); 824 } else { 825 Dep = MemDepResult::getNonFuncLocal(); 826 } 827 828 // If we had a dirty entry for the block, update it. Otherwise, just add 829 // a new entry. 830 if (ExistingResult) 831 ExistingResult->setResult(Dep); 832 else 833 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); 834 835 // If the block has a dependency (i.e. it isn't completely transparent to 836 // the value), remember the association! 837 if (!Dep.isNonLocal()) { 838 // Keep the ReverseNonLocalDeps map up to date so we can efficiently 839 // update this when we remove instructions. 840 if (Instruction *Inst = Dep.getInst()) 841 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction()); 842 } else { 843 844 // If the block *is* completely transparent to the load, we need to check 845 // the predecessors of this block. Add them to our worklist. 846 for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI) 847 DirtyBlocks.push_back(*PI); 848 } 849 } 850 851 return Cache; 852 } 853 854 /// getNonLocalPointerDependency - Perform a full dependency query for an 855 /// access to the specified (non-volatile) memory location, returning the 856 /// set of instructions that either define or clobber the value. 857 /// 858 /// This method assumes the pointer has a "NonLocal" dependency within its 859 /// own block. 860 /// 861 void MemoryDependenceAnalysis:: 862 getNonLocalPointerDependency(Instruction *QueryInst, 863 SmallVectorImpl<NonLocalDepResult> &Result) { 864 865 auto getLocation = [](AliasAnalysis *AA, Instruction *Inst) { 866 if (auto *I = dyn_cast<LoadInst>(Inst)) 867 return AA->getLocation(I); 868 else if (auto *I = dyn_cast<StoreInst>(Inst)) 869 return AA->getLocation(I); 870 else if (auto *I = dyn_cast<VAArgInst>(Inst)) 871 return AA->getLocation(I); 872 else if (auto *I = dyn_cast<AtomicCmpXchgInst>(Inst)) 873 return AA->getLocation(I); 874 else if (auto *I = dyn_cast<AtomicRMWInst>(Inst)) 875 return AA->getLocation(I); 876 else 877 llvm_unreachable("unsupported memory instruction"); 878 }; 879 880 const AliasAnalysis::Location Loc = getLocation(AA, QueryInst); 881 bool isLoad = isa<LoadInst>(QueryInst); 882 BasicBlock *FromBB = QueryInst->getParent(); 883 assert(FromBB); 884 885 assert(Loc.Ptr->getType()->isPointerTy() && 886 "Can't get pointer deps of a non-pointer!"); 887 Result.clear(); 888 889 // This routine does not expect to deal with volatile instructions. 890 // Doing so would require piping through the QueryInst all the way through. 891 // TODO: volatiles can't be elided, but they can be reordered with other 892 // non-volatile accesses. 893 auto isVolatile = [](Instruction *Inst) { 894 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 895 return LI->isVolatile(); 896 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 897 return SI->isVolatile(); 898 } 899 return false; 900 }; 901 // We currently give up on any instruction which is ordered, but we do handle 902 // atomic instructions which are unordered. 903 // TODO: Handle ordered instructions 904 auto isOrdered = [](Instruction *Inst) { 905 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 906 return !LI->isUnordered(); 907 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 908 return !SI->isUnordered(); 909 } 910 return false; 911 }; 912 if (isVolatile(QueryInst) || isOrdered(QueryInst)) { 913 Result.push_back(NonLocalDepResult(FromBB, 914 MemDepResult::getUnknown(), 915 const_cast<Value *>(Loc.Ptr))); 916 return; 917 } 918 919 920 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, AC); 921 922 // This is the set of blocks we've inspected, and the pointer we consider in 923 // each block. Because of critical edges, we currently bail out if querying 924 // a block with multiple different pointers. This can happen during PHI 925 // translation. 926 DenseMap<BasicBlock*, Value*> Visited; 927 if (!getNonLocalPointerDepFromBB(Address, Loc, isLoad, FromBB, 928 Result, Visited, true)) 929 return; 930 Result.clear(); 931 Result.push_back(NonLocalDepResult(FromBB, 932 MemDepResult::getUnknown(), 933 const_cast<Value *>(Loc.Ptr))); 934 } 935 936 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with 937 /// Pointer/PointeeSize using either cached information in Cache or by doing a 938 /// lookup (which may use dirty cache info if available). If we do a lookup, 939 /// add the result to the cache. 940 MemDepResult MemoryDependenceAnalysis:: 941 GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc, 942 bool isLoad, BasicBlock *BB, 943 NonLocalDepInfo *Cache, unsigned NumSortedEntries) { 944 945 // Do a binary search to see if we already have an entry for this block in 946 // the cache set. If so, find it. 947 NonLocalDepInfo::iterator Entry = 948 std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries, 949 NonLocalDepEntry(BB)); 950 if (Entry != Cache->begin() && (Entry-1)->getBB() == BB) 951 --Entry; 952 953 NonLocalDepEntry *ExistingResult = nullptr; 954 if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB) 955 ExistingResult = &*Entry; 956 957 // If we have a cached entry, and it is non-dirty, use it as the value for 958 // this dependency. 959 if (ExistingResult && !ExistingResult->getResult().isDirty()) { 960 ++NumCacheNonLocalPtr; 961 return ExistingResult->getResult(); 962 } 963 964 // Otherwise, we have to scan for the value. If we have a dirty cache 965 // entry, start scanning from its position, otherwise we scan from the end 966 // of the block. 967 BasicBlock::iterator ScanPos = BB->end(); 968 if (ExistingResult && ExistingResult->getResult().getInst()) { 969 assert(ExistingResult->getResult().getInst()->getParent() == BB && 970 "Instruction invalidated?"); 971 ++NumCacheDirtyNonLocalPtr; 972 ScanPos = ExistingResult->getResult().getInst(); 973 974 // Eliminating the dirty entry from 'Cache', so update the reverse info. 975 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 976 RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey); 977 } else { 978 ++NumUncacheNonLocalPtr; 979 } 980 981 // Scan the block for the dependency. 982 MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB); 983 984 // If we had a dirty entry for the block, update it. Otherwise, just add 985 // a new entry. 986 if (ExistingResult) 987 ExistingResult->setResult(Dep); 988 else 989 Cache->push_back(NonLocalDepEntry(BB, Dep)); 990 991 // If the block has a dependency (i.e. it isn't completely transparent to 992 // the value), remember the reverse association because we just added it 993 // to Cache! 994 if (!Dep.isDef() && !Dep.isClobber()) 995 return Dep; 996 997 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently 998 // update MemDep when we remove instructions. 999 Instruction *Inst = Dep.getInst(); 1000 assert(Inst && "Didn't depend on anything?"); 1001 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 1002 ReverseNonLocalPtrDeps[Inst].insert(CacheKey); 1003 return Dep; 1004 } 1005 1006 /// SortNonLocalDepInfoCache - Sort the NonLocalDepInfo cache, given a certain 1007 /// number of elements in the array that are already properly ordered. This is 1008 /// optimized for the case when only a few entries are added. 1009 static void 1010 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 1011 unsigned NumSortedEntries) { 1012 switch (Cache.size() - NumSortedEntries) { 1013 case 0: 1014 // done, no new entries. 1015 break; 1016 case 2: { 1017 // Two new entries, insert the last one into place. 1018 NonLocalDepEntry Val = Cache.back(); 1019 Cache.pop_back(); 1020 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 1021 std::upper_bound(Cache.begin(), Cache.end()-1, Val); 1022 Cache.insert(Entry, Val); 1023 // FALL THROUGH. 1024 } 1025 case 1: 1026 // One new entry, Just insert the new value at the appropriate position. 1027 if (Cache.size() != 1) { 1028 NonLocalDepEntry Val = Cache.back(); 1029 Cache.pop_back(); 1030 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 1031 std::upper_bound(Cache.begin(), Cache.end(), Val); 1032 Cache.insert(Entry, Val); 1033 } 1034 break; 1035 default: 1036 // Added many values, do a full scale sort. 1037 std::sort(Cache.begin(), Cache.end()); 1038 break; 1039 } 1040 } 1041 1042 /// getNonLocalPointerDepFromBB - Perform a dependency query based on 1043 /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def 1044 /// results to the results vector and keep track of which blocks are visited in 1045 /// 'Visited'. 1046 /// 1047 /// This has special behavior for the first block queries (when SkipFirstBlock 1048 /// is true). In this special case, it ignores the contents of the specified 1049 /// block and starts returning dependence info for its predecessors. 1050 /// 1051 /// This function returns false on success, or true to indicate that it could 1052 /// not compute dependence information for some reason. This should be treated 1053 /// as a clobber dependence on the first instruction in the predecessor block. 1054 bool MemoryDependenceAnalysis:: 1055 getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, 1056 const AliasAnalysis::Location &Loc, 1057 bool isLoad, BasicBlock *StartBB, 1058 SmallVectorImpl<NonLocalDepResult> &Result, 1059 DenseMap<BasicBlock*, Value*> &Visited, 1060 bool SkipFirstBlock) { 1061 // Look up the cached info for Pointer. 1062 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); 1063 1064 // Set up a temporary NLPI value. If the map doesn't yet have an entry for 1065 // CacheKey, this value will be inserted as the associated value. Otherwise, 1066 // it'll be ignored, and we'll have to check to see if the cached size and 1067 // aa tags are consistent with the current query. 1068 NonLocalPointerInfo InitialNLPI; 1069 InitialNLPI.Size = Loc.Size; 1070 InitialNLPI.AATags = Loc.AATags; 1071 1072 // Get the NLPI for CacheKey, inserting one into the map if it doesn't 1073 // already have one. 1074 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = 1075 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); 1076 NonLocalPointerInfo *CacheInfo = &Pair.first->second; 1077 1078 // If we already have a cache entry for this CacheKey, we may need to do some 1079 // work to reconcile the cache entry and the current query. 1080 if (!Pair.second) { 1081 if (CacheInfo->Size < Loc.Size) { 1082 // The query's Size is greater than the cached one. Throw out the 1083 // cached data and proceed with the query at the greater size. 1084 CacheInfo->Pair = BBSkipFirstBlockPair(); 1085 CacheInfo->Size = Loc.Size; 1086 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(), 1087 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI) 1088 if (Instruction *Inst = DI->getResult().getInst()) 1089 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1090 CacheInfo->NonLocalDeps.clear(); 1091 } else if (CacheInfo->Size > Loc.Size) { 1092 // This query's Size is less than the cached one. Conservatively restart 1093 // the query using the greater size. 1094 return getNonLocalPointerDepFromBB(Pointer, 1095 Loc.getWithNewSize(CacheInfo->Size), 1096 isLoad, StartBB, Result, Visited, 1097 SkipFirstBlock); 1098 } 1099 1100 // If the query's AATags are inconsistent with the cached one, 1101 // conservatively throw out the cached data and restart the query with 1102 // no tag if needed. 1103 if (CacheInfo->AATags != Loc.AATags) { 1104 if (CacheInfo->AATags) { 1105 CacheInfo->Pair = BBSkipFirstBlockPair(); 1106 CacheInfo->AATags = AAMDNodes(); 1107 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(), 1108 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI) 1109 if (Instruction *Inst = DI->getResult().getInst()) 1110 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1111 CacheInfo->NonLocalDeps.clear(); 1112 } 1113 if (Loc.AATags) 1114 return getNonLocalPointerDepFromBB(Pointer, Loc.getWithoutAATags(), 1115 isLoad, StartBB, Result, Visited, 1116 SkipFirstBlock); 1117 } 1118 } 1119 1120 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; 1121 1122 // If we have valid cached information for exactly the block we are 1123 // investigating, just return it with no recomputation. 1124 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { 1125 // We have a fully cached result for this query then we can just return the 1126 // cached results and populate the visited set. However, we have to verify 1127 // that we don't already have conflicting results for these blocks. Check 1128 // to ensure that if a block in the results set is in the visited set that 1129 // it was for the same pointer query. 1130 if (!Visited.empty()) { 1131 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 1132 I != E; ++I) { 1133 DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB()); 1134 if (VI == Visited.end() || VI->second == Pointer.getAddr()) 1135 continue; 1136 1137 // We have a pointer mismatch in a block. Just return clobber, saying 1138 // that something was clobbered in this result. We could also do a 1139 // non-fully cached query, but there is little point in doing this. 1140 return true; 1141 } 1142 } 1143 1144 Value *Addr = Pointer.getAddr(); 1145 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 1146 I != E; ++I) { 1147 Visited.insert(std::make_pair(I->getBB(), Addr)); 1148 if (I->getResult().isNonLocal()) { 1149 continue; 1150 } 1151 1152 if (!DT) { 1153 Result.push_back(NonLocalDepResult(I->getBB(), 1154 MemDepResult::getUnknown(), 1155 Addr)); 1156 } else if (DT->isReachableFromEntry(I->getBB())) { 1157 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr)); 1158 } 1159 } 1160 ++NumCacheCompleteNonLocalPtr; 1161 return false; 1162 } 1163 1164 // Otherwise, either this is a new block, a block with an invalid cache 1165 // pointer or one that we're about to invalidate by putting more info into it 1166 // than its valid cache info. If empty, the result will be valid cache info, 1167 // otherwise it isn't. 1168 if (Cache->empty()) 1169 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); 1170 else 1171 CacheInfo->Pair = BBSkipFirstBlockPair(); 1172 1173 SmallVector<BasicBlock*, 32> Worklist; 1174 Worklist.push_back(StartBB); 1175 1176 // PredList used inside loop. 1177 SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList; 1178 1179 // Keep track of the entries that we know are sorted. Previously cached 1180 // entries will all be sorted. The entries we add we only sort on demand (we 1181 // don't insert every element into its sorted position). We know that we 1182 // won't get any reuse from currently inserted values, because we don't 1183 // revisit blocks after we insert info for them. 1184 unsigned NumSortedEntries = Cache->size(); 1185 DEBUG(AssertSorted(*Cache)); 1186 1187 while (!Worklist.empty()) { 1188 BasicBlock *BB = Worklist.pop_back_val(); 1189 1190 // If we do process a large number of blocks it becomes very expensive and 1191 // likely it isn't worth worrying about 1192 if (Result.size() > NumResultsLimit) { 1193 Worklist.clear(); 1194 // Sort it now (if needed) so that recursive invocations of 1195 // getNonLocalPointerDepFromBB and other routines that could reuse the 1196 // cache value will only see properly sorted cache arrays. 1197 if (Cache && NumSortedEntries != Cache->size()) { 1198 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1199 } 1200 // Since we bail out, the "Cache" set won't contain all of the 1201 // results for the query. This is ok (we can still use it to accelerate 1202 // specific block queries) but we can't do the fastpath "return all 1203 // results from the set". Clear out the indicator for this. 1204 CacheInfo->Pair = BBSkipFirstBlockPair(); 1205 return true; 1206 } 1207 1208 // Skip the first block if we have it. 1209 if (!SkipFirstBlock) { 1210 // Analyze the dependency of *Pointer in FromBB. See if we already have 1211 // been here. 1212 assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); 1213 1214 // Get the dependency info for Pointer in BB. If we have cached 1215 // information, we will use it, otherwise we compute it. 1216 DEBUG(AssertSorted(*Cache, NumSortedEntries)); 1217 MemDepResult Dep = GetNonLocalInfoForBlock(Loc, isLoad, BB, Cache, 1218 NumSortedEntries); 1219 1220 // If we got a Def or Clobber, add this to the list of results. 1221 if (!Dep.isNonLocal()) { 1222 if (!DT) { 1223 Result.push_back(NonLocalDepResult(BB, 1224 MemDepResult::getUnknown(), 1225 Pointer.getAddr())); 1226 continue; 1227 } else if (DT->isReachableFromEntry(BB)) { 1228 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); 1229 continue; 1230 } 1231 } 1232 } 1233 1234 // If 'Pointer' is an instruction defined in this block, then we need to do 1235 // phi translation to change it into a value live in the predecessor block. 1236 // If not, we just add the predecessors to the worklist and scan them with 1237 // the same Pointer. 1238 if (!Pointer.NeedsPHITranslationFromBlock(BB)) { 1239 SkipFirstBlock = false; 1240 SmallVector<BasicBlock*, 16> NewBlocks; 1241 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { 1242 // Verify that we haven't looked at this block yet. 1243 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 1244 InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr())); 1245 if (InsertRes.second) { 1246 // First time we've looked at *PI. 1247 NewBlocks.push_back(*PI); 1248 continue; 1249 } 1250 1251 // If we have seen this block before, but it was with a different 1252 // pointer then we have a phi translation failure and we have to treat 1253 // this as a clobber. 1254 if (InsertRes.first->second != Pointer.getAddr()) { 1255 // Make sure to clean up the Visited map before continuing on to 1256 // PredTranslationFailure. 1257 for (unsigned i = 0; i < NewBlocks.size(); i++) 1258 Visited.erase(NewBlocks[i]); 1259 goto PredTranslationFailure; 1260 } 1261 } 1262 Worklist.append(NewBlocks.begin(), NewBlocks.end()); 1263 continue; 1264 } 1265 1266 // We do need to do phi translation, if we know ahead of time we can't phi 1267 // translate this value, don't even try. 1268 if (!Pointer.IsPotentiallyPHITranslatable()) 1269 goto PredTranslationFailure; 1270 1271 // We may have added values to the cache list before this PHI translation. 1272 // If so, we haven't done anything to ensure that the cache remains sorted. 1273 // Sort it now (if needed) so that recursive invocations of 1274 // getNonLocalPointerDepFromBB and other routines that could reuse the cache 1275 // value will only see properly sorted cache arrays. 1276 if (Cache && NumSortedEntries != Cache->size()) { 1277 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1278 NumSortedEntries = Cache->size(); 1279 } 1280 Cache = nullptr; 1281 1282 PredList.clear(); 1283 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { 1284 BasicBlock *Pred = *PI; 1285 PredList.push_back(std::make_pair(Pred, Pointer)); 1286 1287 // Get the PHI translated pointer in this predecessor. This can fail if 1288 // not translatable, in which case the getAddr() returns null. 1289 PHITransAddr &PredPointer = PredList.back().second; 1290 PredPointer.PHITranslateValue(BB, Pred, nullptr); 1291 1292 Value *PredPtrVal = PredPointer.getAddr(); 1293 1294 // Check to see if we have already visited this pred block with another 1295 // pointer. If so, we can't do this lookup. This failure can occur 1296 // with PHI translation when a critical edge exists and the PHI node in 1297 // the successor translates to a pointer value different than the 1298 // pointer the block was first analyzed with. 1299 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 1300 InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal)); 1301 1302 if (!InsertRes.second) { 1303 // We found the pred; take it off the list of preds to visit. 1304 PredList.pop_back(); 1305 1306 // If the predecessor was visited with PredPtr, then we already did 1307 // the analysis and can ignore it. 1308 if (InsertRes.first->second == PredPtrVal) 1309 continue; 1310 1311 // Otherwise, the block was previously analyzed with a different 1312 // pointer. We can't represent the result of this case, so we just 1313 // treat this as a phi translation failure. 1314 1315 // Make sure to clean up the Visited map before continuing on to 1316 // PredTranslationFailure. 1317 for (unsigned i = 0, n = PredList.size(); i < n; ++i) 1318 Visited.erase(PredList[i].first); 1319 1320 goto PredTranslationFailure; 1321 } 1322 } 1323 1324 // Actually process results here; this need to be a separate loop to avoid 1325 // calling getNonLocalPointerDepFromBB for blocks we don't want to return 1326 // any results for. (getNonLocalPointerDepFromBB will modify our 1327 // datastructures in ways the code after the PredTranslationFailure label 1328 // doesn't expect.) 1329 for (unsigned i = 0, n = PredList.size(); i < n; ++i) { 1330 BasicBlock *Pred = PredList[i].first; 1331 PHITransAddr &PredPointer = PredList[i].second; 1332 Value *PredPtrVal = PredPointer.getAddr(); 1333 1334 bool CanTranslate = true; 1335 // If PHI translation was unable to find an available pointer in this 1336 // predecessor, then we have to assume that the pointer is clobbered in 1337 // that predecessor. We can still do PRE of the load, which would insert 1338 // a computation of the pointer in this predecessor. 1339 if (!PredPtrVal) 1340 CanTranslate = false; 1341 1342 // FIXME: it is entirely possible that PHI translating will end up with 1343 // the same value. Consider PHI translating something like: 1344 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* 1345 // to recurse here, pedantically speaking. 1346 1347 // If getNonLocalPointerDepFromBB fails here, that means the cached 1348 // result conflicted with the Visited list; we have to conservatively 1349 // assume it is unknown, but this also does not block PRE of the load. 1350 if (!CanTranslate || 1351 getNonLocalPointerDepFromBB(PredPointer, 1352 Loc.getWithNewPtr(PredPtrVal), 1353 isLoad, Pred, 1354 Result, Visited)) { 1355 // Add the entry to the Result list. 1356 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal); 1357 Result.push_back(Entry); 1358 1359 // Since we had a phi translation failure, the cache for CacheKey won't 1360 // include all of the entries that we need to immediately satisfy future 1361 // queries. Mark this in NonLocalPointerDeps by setting the 1362 // BBSkipFirstBlockPair pointer to null. This requires reuse of the 1363 // cached value to do more work but not miss the phi trans failure. 1364 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; 1365 NLPI.Pair = BBSkipFirstBlockPair(); 1366 continue; 1367 } 1368 } 1369 1370 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. 1371 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1372 Cache = &CacheInfo->NonLocalDeps; 1373 NumSortedEntries = Cache->size(); 1374 1375 // Since we did phi translation, the "Cache" set won't contain all of the 1376 // results for the query. This is ok (we can still use it to accelerate 1377 // specific block queries) but we can't do the fastpath "return all 1378 // results from the set" Clear out the indicator for this. 1379 CacheInfo->Pair = BBSkipFirstBlockPair(); 1380 SkipFirstBlock = false; 1381 continue; 1382 1383 PredTranslationFailure: 1384 // The following code is "failure"; we can't produce a sane translation 1385 // for the given block. It assumes that we haven't modified any of 1386 // our datastructures while processing the current block. 1387 1388 if (!Cache) { 1389 // Refresh the CacheInfo/Cache pointer if it got invalidated. 1390 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1391 Cache = &CacheInfo->NonLocalDeps; 1392 NumSortedEntries = Cache->size(); 1393 } 1394 1395 // Since we failed phi translation, the "Cache" set won't contain all of the 1396 // results for the query. This is ok (we can still use it to accelerate 1397 // specific block queries) but we can't do the fastpath "return all 1398 // results from the set". Clear out the indicator for this. 1399 CacheInfo->Pair = BBSkipFirstBlockPair(); 1400 1401 // If *nothing* works, mark the pointer as unknown. 1402 // 1403 // If this is the magic first block, return this as a clobber of the whole 1404 // incoming value. Since we can't phi translate to one of the predecessors, 1405 // we have to bail out. 1406 if (SkipFirstBlock) 1407 return true; 1408 1409 for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) { 1410 assert(I != Cache->rend() && "Didn't find current block??"); 1411 if (I->getBB() != BB) 1412 continue; 1413 1414 assert((I->getResult().isNonLocal() || !DT->isReachableFromEntry(BB)) && 1415 "Should only be here with transparent block"); 1416 I->setResult(MemDepResult::getUnknown()); 1417 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), 1418 Pointer.getAddr())); 1419 break; 1420 } 1421 } 1422 1423 // Okay, we're done now. If we added new values to the cache, re-sort it. 1424 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1425 DEBUG(AssertSorted(*Cache)); 1426 return false; 1427 } 1428 1429 /// RemoveCachedNonLocalPointerDependencies - If P exists in 1430 /// CachedNonLocalPointerInfo, remove it. 1431 void MemoryDependenceAnalysis:: 1432 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) { 1433 CachedNonLocalPointerInfo::iterator It = 1434 NonLocalPointerDeps.find(P); 1435 if (It == NonLocalPointerDeps.end()) return; 1436 1437 // Remove all of the entries in the BB->val map. This involves removing 1438 // instructions from the reverse map. 1439 NonLocalDepInfo &PInfo = It->second.NonLocalDeps; 1440 1441 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { 1442 Instruction *Target = PInfo[i].getResult().getInst(); 1443 if (!Target) continue; // Ignore non-local dep results. 1444 assert(Target->getParent() == PInfo[i].getBB()); 1445 1446 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1447 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); 1448 } 1449 1450 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). 1451 NonLocalPointerDeps.erase(It); 1452 } 1453 1454 1455 /// invalidateCachedPointerInfo - This method is used to invalidate cached 1456 /// information about the specified pointer, because it may be too 1457 /// conservative in memdep. This is an optional call that can be used when 1458 /// the client detects an equivalence between the pointer and some other 1459 /// value and replaces the other value with ptr. This can make Ptr available 1460 /// in more places that cached info does not necessarily keep. 1461 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) { 1462 // If Ptr isn't really a pointer, just ignore it. 1463 if (!Ptr->getType()->isPointerTy()) return; 1464 // Flush store info for the pointer. 1465 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); 1466 // Flush load info for the pointer. 1467 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); 1468 } 1469 1470 /// invalidateCachedPredecessors - Clear the PredIteratorCache info. 1471 /// This needs to be done when the CFG changes, e.g., due to splitting 1472 /// critical edges. 1473 void MemoryDependenceAnalysis::invalidateCachedPredecessors() { 1474 PredCache->clear(); 1475 } 1476 1477 /// removeInstruction - Remove an instruction from the dependence analysis, 1478 /// updating the dependence of instructions that previously depended on it. 1479 /// This method attempts to keep the cache coherent using the reverse map. 1480 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) { 1481 // Walk through the Non-local dependencies, removing this one as the value 1482 // for any cached queries. 1483 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); 1484 if (NLDI != NonLocalDeps.end()) { 1485 NonLocalDepInfo &BlockMap = NLDI->second.first; 1486 for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end(); 1487 DI != DE; ++DI) 1488 if (Instruction *Inst = DI->getResult().getInst()) 1489 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); 1490 NonLocalDeps.erase(NLDI); 1491 } 1492 1493 // If we have a cached local dependence query for this instruction, remove it. 1494 // 1495 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); 1496 if (LocalDepEntry != LocalDeps.end()) { 1497 // Remove us from DepInst's reverse set now that the local dep info is gone. 1498 if (Instruction *Inst = LocalDepEntry->second.getInst()) 1499 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); 1500 1501 // Remove this local dependency info. 1502 LocalDeps.erase(LocalDepEntry); 1503 } 1504 1505 // If we have any cached pointer dependencies on this instruction, remove 1506 // them. If the instruction has non-pointer type, then it can't be a pointer 1507 // base. 1508 1509 // Remove it from both the load info and the store info. The instruction 1510 // can't be in either of these maps if it is non-pointer. 1511 if (RemInst->getType()->isPointerTy()) { 1512 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); 1513 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); 1514 } 1515 1516 // Loop over all of the things that depend on the instruction we're removing. 1517 // 1518 SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd; 1519 1520 // If we find RemInst as a clobber or Def in any of the maps for other values, 1521 // we need to replace its entry with a dirty version of the instruction after 1522 // it. If RemInst is a terminator, we use a null dirty value. 1523 // 1524 // Using a dirty version of the instruction after RemInst saves having to scan 1525 // the entire block to get to this point. 1526 MemDepResult NewDirtyVal; 1527 if (!RemInst->isTerminator()) 1528 NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst)); 1529 1530 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); 1531 if (ReverseDepIt != ReverseLocalDeps.end()) { 1532 // RemInst can't be the terminator if it has local stuff depending on it. 1533 assert(!ReverseDepIt->second.empty() && !isa<TerminatorInst>(RemInst) && 1534 "Nothing can locally depend on a terminator"); 1535 1536 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) { 1537 assert(InstDependingOnRemInst != RemInst && 1538 "Already removed our local dep info"); 1539 1540 LocalDeps[InstDependingOnRemInst] = NewDirtyVal; 1541 1542 // Make sure to remember that new things depend on NewDepInst. 1543 assert(NewDirtyVal.getInst() && "There is no way something else can have " 1544 "a local dep on this if it is a terminator!"); 1545 ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(), 1546 InstDependingOnRemInst)); 1547 } 1548 1549 ReverseLocalDeps.erase(ReverseDepIt); 1550 1551 // Add new reverse deps after scanning the set, to avoid invalidating the 1552 // 'ReverseDeps' reference. 1553 while (!ReverseDepsToAdd.empty()) { 1554 ReverseLocalDeps[ReverseDepsToAdd.back().first] 1555 .insert(ReverseDepsToAdd.back().second); 1556 ReverseDepsToAdd.pop_back(); 1557 } 1558 } 1559 1560 ReverseDepIt = ReverseNonLocalDeps.find(RemInst); 1561 if (ReverseDepIt != ReverseNonLocalDeps.end()) { 1562 for (Instruction *I : ReverseDepIt->second) { 1563 assert(I != RemInst && "Already removed NonLocalDep info for RemInst"); 1564 1565 PerInstNLInfo &INLD = NonLocalDeps[I]; 1566 // The information is now dirty! 1567 INLD.second = true; 1568 1569 for (NonLocalDepInfo::iterator DI = INLD.first.begin(), 1570 DE = INLD.first.end(); DI != DE; ++DI) { 1571 if (DI->getResult().getInst() != RemInst) continue; 1572 1573 // Convert to a dirty entry for the subsequent instruction. 1574 DI->setResult(NewDirtyVal); 1575 1576 if (Instruction *NextI = NewDirtyVal.getInst()) 1577 ReverseDepsToAdd.push_back(std::make_pair(NextI, I)); 1578 } 1579 } 1580 1581 ReverseNonLocalDeps.erase(ReverseDepIt); 1582 1583 // Add new reverse deps after scanning the set, to avoid invalidating 'Set' 1584 while (!ReverseDepsToAdd.empty()) { 1585 ReverseNonLocalDeps[ReverseDepsToAdd.back().first] 1586 .insert(ReverseDepsToAdd.back().second); 1587 ReverseDepsToAdd.pop_back(); 1588 } 1589 } 1590 1591 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a 1592 // value in the NonLocalPointerDeps info. 1593 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = 1594 ReverseNonLocalPtrDeps.find(RemInst); 1595 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { 1596 SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd; 1597 1598 for (ValueIsLoadPair P : ReversePtrDepIt->second) { 1599 assert(P.getPointer() != RemInst && 1600 "Already removed NonLocalPointerDeps info for RemInst"); 1601 1602 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; 1603 1604 // The cache is not valid for any specific block anymore. 1605 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); 1606 1607 // Update any entries for RemInst to use the instruction after it. 1608 for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end(); 1609 DI != DE; ++DI) { 1610 if (DI->getResult().getInst() != RemInst) continue; 1611 1612 // Convert to a dirty entry for the subsequent instruction. 1613 DI->setResult(NewDirtyVal); 1614 1615 if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) 1616 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); 1617 } 1618 1619 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its 1620 // subsequent value may invalidate the sortedness. 1621 std::sort(NLPDI.begin(), NLPDI.end()); 1622 } 1623 1624 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); 1625 1626 while (!ReversePtrDepsToAdd.empty()) { 1627 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first] 1628 .insert(ReversePtrDepsToAdd.back().second); 1629 ReversePtrDepsToAdd.pop_back(); 1630 } 1631 } 1632 1633 1634 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); 1635 AA->deleteValue(RemInst); 1636 DEBUG(verifyRemoved(RemInst)); 1637 } 1638 /// verifyRemoved - Verify that the specified instruction does not occur 1639 /// in our internal data structures. This function verifies by asserting in 1640 /// debug builds. 1641 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const { 1642 #ifndef NDEBUG 1643 for (LocalDepMapType::const_iterator I = LocalDeps.begin(), 1644 E = LocalDeps.end(); I != E; ++I) { 1645 assert(I->first != D && "Inst occurs in data structures"); 1646 assert(I->second.getInst() != D && 1647 "Inst occurs in data structures"); 1648 } 1649 1650 for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(), 1651 E = NonLocalPointerDeps.end(); I != E; ++I) { 1652 assert(I->first.getPointer() != D && "Inst occurs in NLPD map key"); 1653 const NonLocalDepInfo &Val = I->second.NonLocalDeps; 1654 for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end(); 1655 II != E; ++II) 1656 assert(II->getResult().getInst() != D && "Inst occurs as NLPD value"); 1657 } 1658 1659 for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(), 1660 E = NonLocalDeps.end(); I != E; ++I) { 1661 assert(I->first != D && "Inst occurs in data structures"); 1662 const PerInstNLInfo &INLD = I->second; 1663 for (NonLocalDepInfo::const_iterator II = INLD.first.begin(), 1664 EE = INLD.first.end(); II != EE; ++II) 1665 assert(II->getResult().getInst() != D && "Inst occurs in data structures"); 1666 } 1667 1668 for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(), 1669 E = ReverseLocalDeps.end(); I != E; ++I) { 1670 assert(I->first != D && "Inst occurs in data structures"); 1671 for (Instruction *Inst : I->second) 1672 assert(Inst != D && "Inst occurs in data structures"); 1673 } 1674 1675 for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(), 1676 E = ReverseNonLocalDeps.end(); 1677 I != E; ++I) { 1678 assert(I->first != D && "Inst occurs in data structures"); 1679 for (Instruction *Inst : I->second) 1680 assert(Inst != D && "Inst occurs in data structures"); 1681 } 1682 1683 for (ReverseNonLocalPtrDepTy::const_iterator 1684 I = ReverseNonLocalPtrDeps.begin(), 1685 E = ReverseNonLocalPtrDeps.end(); I != E; ++I) { 1686 assert(I->first != D && "Inst occurs in rev NLPD map"); 1687 1688 for (ValueIsLoadPair P : I->second) 1689 assert(P != ValueIsLoadPair(D, false) && 1690 P != ValueIsLoadPair(D, true) && 1691 "Inst occurs in ReverseNonLocalPtrDeps map"); 1692 } 1693 #endif 1694 } 1695