1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements an analysis that determines, for a given memory 11 // operation, what preceding memory operations it depends on. It builds on 12 // alias analysis information, and tries to provide a lazy, caching interface to 13 // a common kind of alias information query. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/MemoryLocation.h" 27 #include "llvm/Analysis/OrderedBasicBlock.h" 28 #include "llvm/Analysis/PHITransAddr.h" 29 #include "llvm/Analysis/PhiValues.h" 30 #include "llvm/Analysis/TargetLibraryInfo.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CallSite.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/InstrTypes.h" 41 #include "llvm/IR/Instruction.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/Metadata.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/PredIteratorCache.h" 48 #include "llvm/IR/Type.h" 49 #include "llvm/IR/Use.h" 50 #include "llvm/IR/User.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/AtomicOrdering.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Compiler.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/MathExtras.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <cstdint> 62 #include <iterator> 63 #include <utility> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "memdep" 68 69 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); 70 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); 71 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); 72 73 STATISTIC(NumCacheNonLocalPtr, 74 "Number of fully cached non-local ptr responses"); 75 STATISTIC(NumCacheDirtyNonLocalPtr, 76 "Number of cached, but dirty, non-local ptr responses"); 77 STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses"); 78 STATISTIC(NumCacheCompleteNonLocalPtr, 79 "Number of block queries that were completely cached"); 80 81 // Limit for the number of instructions to scan in a block. 82 83 static cl::opt<unsigned> BlockScanLimit( 84 "memdep-block-scan-limit", cl::Hidden, cl::init(100), 85 cl::desc("The number of instructions to scan in a block in memory " 86 "dependency analysis (default = 100)")); 87 88 static cl::opt<unsigned> 89 BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000), 90 cl::desc("The number of blocks to scan during memory " 91 "dependency analysis (default = 1000)")); 92 93 // Limit on the number of memdep results to process. 94 static const unsigned int NumResultsLimit = 100; 95 96 /// This is a helper function that removes Val from 'Inst's set in ReverseMap. 97 /// 98 /// If the set becomes empty, remove Inst's entry. 99 template <typename KeyTy> 100 static void 101 RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap, 102 Instruction *Inst, KeyTy Val) { 103 typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt = 104 ReverseMap.find(Inst); 105 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); 106 bool Found = InstIt->second.erase(Val); 107 assert(Found && "Invalid reverse map!"); 108 (void)Found; 109 if (InstIt->second.empty()) 110 ReverseMap.erase(InstIt); 111 } 112 113 /// If the given instruction references a specific memory location, fill in Loc 114 /// with the details, otherwise set Loc.Ptr to null. 115 /// 116 /// Returns a ModRefInfo value describing the general behavior of the 117 /// instruction. 118 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc, 119 const TargetLibraryInfo &TLI) { 120 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 121 if (LI->isUnordered()) { 122 Loc = MemoryLocation::get(LI); 123 return ModRefInfo::Ref; 124 } 125 if (LI->getOrdering() == AtomicOrdering::Monotonic) { 126 Loc = MemoryLocation::get(LI); 127 return ModRefInfo::ModRef; 128 } 129 Loc = MemoryLocation(); 130 return ModRefInfo::ModRef; 131 } 132 133 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 134 if (SI->isUnordered()) { 135 Loc = MemoryLocation::get(SI); 136 return ModRefInfo::Mod; 137 } 138 if (SI->getOrdering() == AtomicOrdering::Monotonic) { 139 Loc = MemoryLocation::get(SI); 140 return ModRefInfo::ModRef; 141 } 142 Loc = MemoryLocation(); 143 return ModRefInfo::ModRef; 144 } 145 146 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { 147 Loc = MemoryLocation::get(V); 148 return ModRefInfo::ModRef; 149 } 150 151 if (const CallInst *CI = isFreeCall(Inst, &TLI)) { 152 // calls to free() deallocate the entire structure 153 Loc = MemoryLocation(CI->getArgOperand(0)); 154 return ModRefInfo::Mod; 155 } 156 157 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 158 switch (II->getIntrinsicID()) { 159 case Intrinsic::lifetime_start: 160 case Intrinsic::lifetime_end: 161 case Intrinsic::invariant_start: 162 Loc = MemoryLocation::getForArgument(II, 1, TLI); 163 // These intrinsics don't really modify the memory, but returning Mod 164 // will allow them to be handled conservatively. 165 return ModRefInfo::Mod; 166 case Intrinsic::invariant_end: 167 Loc = MemoryLocation::getForArgument(II, 2, TLI); 168 // These intrinsics don't really modify the memory, but returning Mod 169 // will allow them to be handled conservatively. 170 return ModRefInfo::Mod; 171 default: 172 break; 173 } 174 } 175 176 // Otherwise, just do the coarse-grained thing that always works. 177 if (Inst->mayWriteToMemory()) 178 return ModRefInfo::ModRef; 179 if (Inst->mayReadFromMemory()) 180 return ModRefInfo::Ref; 181 return ModRefInfo::NoModRef; 182 } 183 184 /// Private helper for finding the local dependencies of a call site. 185 MemDepResult MemoryDependenceResults::getCallSiteDependencyFrom( 186 CallSite CS, bool isReadOnlyCall, BasicBlock::iterator ScanIt, 187 BasicBlock *BB) { 188 unsigned Limit = BlockScanLimit; 189 190 // Walk backwards through the block, looking for dependencies. 191 while (ScanIt != BB->begin()) { 192 Instruction *Inst = &*--ScanIt; 193 // Debug intrinsics don't cause dependences and should not affect Limit 194 if (isa<DbgInfoIntrinsic>(Inst)) 195 continue; 196 197 // Limit the amount of scanning we do so we don't end up with quadratic 198 // running time on extreme testcases. 199 --Limit; 200 if (!Limit) 201 return MemDepResult::getUnknown(); 202 203 // If this inst is a memory op, get the pointer it accessed 204 MemoryLocation Loc; 205 ModRefInfo MR = GetLocation(Inst, Loc, TLI); 206 if (Loc.Ptr) { 207 // A simple instruction. 208 if (isModOrRefSet(AA.getModRefInfo(CS, Loc))) 209 return MemDepResult::getClobber(Inst); 210 continue; 211 } 212 213 if (auto InstCS = CallSite(Inst)) { 214 // If these two calls do not interfere, look past it. 215 if (isNoModRef(AA.getModRefInfo(CS, InstCS))) { 216 // If the two calls are the same, return InstCS as a Def, so that 217 // CS can be found redundant and eliminated. 218 if (isReadOnlyCall && !isModSet(MR) && 219 CS.getInstruction()->isIdenticalToWhenDefined(Inst)) 220 return MemDepResult::getDef(Inst); 221 222 // Otherwise if the two calls don't interact (e.g. InstCS is readnone) 223 // keep scanning. 224 continue; 225 } else 226 return MemDepResult::getClobber(Inst); 227 } 228 229 // If we could not obtain a pointer for the instruction and the instruction 230 // touches memory then assume that this is a dependency. 231 if (isModOrRefSet(MR)) 232 return MemDepResult::getClobber(Inst); 233 } 234 235 // No dependence found. If this is the entry block of the function, it is 236 // unknown, otherwise it is non-local. 237 if (BB != &BB->getParent()->getEntryBlock()) 238 return MemDepResult::getNonLocal(); 239 return MemDepResult::getNonFuncLocal(); 240 } 241 242 unsigned MemoryDependenceResults::getLoadLoadClobberFullWidthSize( 243 const Value *MemLocBase, int64_t MemLocOffs, unsigned MemLocSize, 244 const LoadInst *LI) { 245 // We can only extend simple integer loads. 246 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) 247 return 0; 248 249 // Load widening is hostile to ThreadSanitizer: it may cause false positives 250 // or make the reports more cryptic (access sizes are wrong). 251 if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread)) 252 return 0; 253 254 const DataLayout &DL = LI->getModule()->getDataLayout(); 255 256 // Get the base of this load. 257 int64_t LIOffs = 0; 258 const Value *LIBase = 259 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL); 260 261 // If the two pointers are not based on the same pointer, we can't tell that 262 // they are related. 263 if (LIBase != MemLocBase) 264 return 0; 265 266 // Okay, the two values are based on the same pointer, but returned as 267 // no-alias. This happens when we have things like two byte loads at "P+1" 268 // and "P+3". Check to see if increasing the size of the "LI" load up to its 269 // alignment (or the largest native integer type) will allow us to load all 270 // the bits required by MemLoc. 271 272 // If MemLoc is before LI, then no widening of LI will help us out. 273 if (MemLocOffs < LIOffs) 274 return 0; 275 276 // Get the alignment of the load in bytes. We assume that it is safe to load 277 // any legal integer up to this size without a problem. For example, if we're 278 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can 279 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it 280 // to i16. 281 unsigned LoadAlign = LI->getAlignment(); 282 283 int64_t MemLocEnd = MemLocOffs + MemLocSize; 284 285 // If no amount of rounding up will let MemLoc fit into LI, then bail out. 286 if (LIOffs + LoadAlign < MemLocEnd) 287 return 0; 288 289 // This is the size of the load to try. Start with the next larger power of 290 // two. 291 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits() / 8U; 292 NewLoadByteSize = NextPowerOf2(NewLoadByteSize); 293 294 while (true) { 295 // If this load size is bigger than our known alignment or would not fit 296 // into a native integer register, then we fail. 297 if (NewLoadByteSize > LoadAlign || 298 !DL.fitsInLegalInteger(NewLoadByteSize * 8)) 299 return 0; 300 301 if (LIOffs + NewLoadByteSize > MemLocEnd && 302 (LI->getParent()->getParent()->hasFnAttribute( 303 Attribute::SanitizeAddress) || 304 LI->getParent()->getParent()->hasFnAttribute( 305 Attribute::SanitizeHWAddress))) 306 // We will be reading past the location accessed by the original program. 307 // While this is safe in a regular build, Address Safety analysis tools 308 // may start reporting false warnings. So, don't do widening. 309 return 0; 310 311 // If a load of this width would include all of MemLoc, then we succeed. 312 if (LIOffs + NewLoadByteSize >= MemLocEnd) 313 return NewLoadByteSize; 314 315 NewLoadByteSize <<= 1; 316 } 317 } 318 319 static bool isVolatile(Instruction *Inst) { 320 if (auto *LI = dyn_cast<LoadInst>(Inst)) 321 return LI->isVolatile(); 322 if (auto *SI = dyn_cast<StoreInst>(Inst)) 323 return SI->isVolatile(); 324 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(Inst)) 325 return AI->isVolatile(); 326 return false; 327 } 328 329 MemDepResult MemoryDependenceResults::getPointerDependencyFrom( 330 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 331 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) { 332 MemDepResult InvariantGroupDependency = MemDepResult::getUnknown(); 333 if (QueryInst != nullptr) { 334 if (auto *LI = dyn_cast<LoadInst>(QueryInst)) { 335 InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB); 336 337 if (InvariantGroupDependency.isDef()) 338 return InvariantGroupDependency; 339 } 340 } 341 MemDepResult SimpleDep = getSimplePointerDependencyFrom( 342 MemLoc, isLoad, ScanIt, BB, QueryInst, Limit); 343 if (SimpleDep.isDef()) 344 return SimpleDep; 345 // Non-local invariant group dependency indicates there is non local Def 346 // (it only returns nonLocal if it finds nonLocal def), which is better than 347 // local clobber and everything else. 348 if (InvariantGroupDependency.isNonLocal()) 349 return InvariantGroupDependency; 350 351 assert(InvariantGroupDependency.isUnknown() && 352 "InvariantGroupDependency should be only unknown at this point"); 353 return SimpleDep; 354 } 355 356 MemDepResult 357 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI, 358 BasicBlock *BB) { 359 360 if (!LI->getMetadata(LLVMContext::MD_invariant_group)) 361 return MemDepResult::getUnknown(); 362 363 // Take the ptr operand after all casts and geps 0. This way we can search 364 // cast graph down only. 365 Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts(); 366 367 // It's is not safe to walk the use list of global value, because function 368 // passes aren't allowed to look outside their functions. 369 // FIXME: this could be fixed by filtering instructions from outside 370 // of current function. 371 if (isa<GlobalValue>(LoadOperand)) 372 return MemDepResult::getUnknown(); 373 374 // Queue to process all pointers that are equivalent to load operand. 375 SmallVector<const Value *, 8> LoadOperandsQueue; 376 LoadOperandsQueue.push_back(LoadOperand); 377 378 Instruction *ClosestDependency = nullptr; 379 // Order of instructions in uses list is unpredictible. In order to always 380 // get the same result, we will look for the closest dominance. 381 auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) { 382 assert(Other && "Must call it with not null instruction"); 383 if (Best == nullptr || DT.dominates(Best, Other)) 384 return Other; 385 return Best; 386 }; 387 388 // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case 389 // we will see all the instructions. This should be fixed in MSSA. 390 while (!LoadOperandsQueue.empty()) { 391 const Value *Ptr = LoadOperandsQueue.pop_back_val(); 392 assert(Ptr && !isa<GlobalValue>(Ptr) && 393 "Null or GlobalValue should not be inserted"); 394 395 for (const Use &Us : Ptr->uses()) { 396 auto *U = dyn_cast<Instruction>(Us.getUser()); 397 if (!U || U == LI || !DT.dominates(U, LI)) 398 continue; 399 400 // Bitcast or gep with zeros are using Ptr. Add to queue to check it's 401 // users. U = bitcast Ptr 402 if (isa<BitCastInst>(U)) { 403 LoadOperandsQueue.push_back(U); 404 continue; 405 } 406 // Gep with zeros is equivalent to bitcast. 407 // FIXME: we are not sure if some bitcast should be canonicalized to gep 0 408 // or gep 0 to bitcast because of SROA, so there are 2 forms. When 409 // typeless pointers will be ready then both cases will be gone 410 // (and this BFS also won't be needed). 411 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) 412 if (GEP->hasAllZeroIndices()) { 413 LoadOperandsQueue.push_back(U); 414 continue; 415 } 416 417 // If we hit load/store with the same invariant.group metadata (and the 418 // same pointer operand) we can assume that value pointed by pointer 419 // operand didn't change. 420 if ((isa<LoadInst>(U) || isa<StoreInst>(U)) && 421 U->getMetadata(LLVMContext::MD_invariant_group) != nullptr) 422 ClosestDependency = GetClosestDependency(ClosestDependency, U); 423 } 424 } 425 426 if (!ClosestDependency) 427 return MemDepResult::getUnknown(); 428 if (ClosestDependency->getParent() == BB) 429 return MemDepResult::getDef(ClosestDependency); 430 // Def(U) can't be returned here because it is non-local. If local 431 // dependency won't be found then return nonLocal counting that the 432 // user will call getNonLocalPointerDependency, which will return cached 433 // result. 434 NonLocalDefsCache.try_emplace( 435 LI, NonLocalDepResult(ClosestDependency->getParent(), 436 MemDepResult::getDef(ClosestDependency), nullptr)); 437 ReverseNonLocalDefsCache[ClosestDependency].insert(LI); 438 return MemDepResult::getNonLocal(); 439 } 440 441 MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom( 442 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 443 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) { 444 bool isInvariantLoad = false; 445 446 if (!Limit) { 447 unsigned DefaultLimit = BlockScanLimit; 448 return getSimplePointerDependencyFrom(MemLoc, isLoad, ScanIt, BB, QueryInst, 449 &DefaultLimit); 450 } 451 452 // We must be careful with atomic accesses, as they may allow another thread 453 // to touch this location, clobbering it. We are conservative: if the 454 // QueryInst is not a simple (non-atomic) memory access, we automatically 455 // return getClobber. 456 // If it is simple, we know based on the results of 457 // "Compiler testing via a theory of sound optimisations in the C11/C++11 458 // memory model" in PLDI 2013, that a non-atomic location can only be 459 // clobbered between a pair of a release and an acquire action, with no 460 // access to the location in between. 461 // Here is an example for giving the general intuition behind this rule. 462 // In the following code: 463 // store x 0; 464 // release action; [1] 465 // acquire action; [4] 466 // %val = load x; 467 // It is unsafe to replace %val by 0 because another thread may be running: 468 // acquire action; [2] 469 // store x 42; 470 // release action; [3] 471 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val 472 // being 42. A key property of this program however is that if either 473 // 1 or 4 were missing, there would be a race between the store of 42 474 // either the store of 0 or the load (making the whole program racy). 475 // The paper mentioned above shows that the same property is respected 476 // by every program that can detect any optimization of that kind: either 477 // it is racy (undefined) or there is a release followed by an acquire 478 // between the pair of accesses under consideration. 479 480 // If the load is invariant, we "know" that it doesn't alias *any* write. We 481 // do want to respect mustalias results since defs are useful for value 482 // forwarding, but any mayalias write can be assumed to be noalias. 483 // Arguably, this logic should be pushed inside AliasAnalysis itself. 484 if (isLoad && QueryInst) { 485 LoadInst *LI = dyn_cast<LoadInst>(QueryInst); 486 if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr) 487 isInvariantLoad = true; 488 } 489 490 const DataLayout &DL = BB->getModule()->getDataLayout(); 491 492 // Create a numbered basic block to lazily compute and cache instruction 493 // positions inside a BB. This is used to provide fast queries for relative 494 // position between two instructions in a BB and can be used by 495 // AliasAnalysis::callCapturesBefore. 496 OrderedBasicBlock OBB(BB); 497 498 // Return "true" if and only if the instruction I is either a non-simple 499 // load or a non-simple store. 500 auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool { 501 if (auto *LI = dyn_cast<LoadInst>(I)) 502 return !LI->isSimple(); 503 if (auto *SI = dyn_cast<StoreInst>(I)) 504 return !SI->isSimple(); 505 return false; 506 }; 507 508 // Return "true" if I is not a load and not a store, but it does access 509 // memory. 510 auto isOtherMemAccess = [](Instruction *I) -> bool { 511 return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory(); 512 }; 513 514 // Walk backwards through the basic block, looking for dependencies. 515 while (ScanIt != BB->begin()) { 516 Instruction *Inst = &*--ScanIt; 517 518 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 519 // Debug intrinsics don't (and can't) cause dependencies. 520 if (isa<DbgInfoIntrinsic>(II)) 521 continue; 522 523 // Limit the amount of scanning we do so we don't end up with quadratic 524 // running time on extreme testcases. 525 --*Limit; 526 if (!*Limit) 527 return MemDepResult::getUnknown(); 528 529 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 530 // If we reach a lifetime begin or end marker, then the query ends here 531 // because the value is undefined. 532 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 533 // FIXME: This only considers queries directly on the invariant-tagged 534 // pointer, not on query pointers that are indexed off of them. It'd 535 // be nice to handle that at some point (the right approach is to use 536 // GetPointerBaseWithConstantOffset). 537 if (AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc)) 538 return MemDepResult::getDef(II); 539 continue; 540 } 541 } 542 543 // Values depend on loads if the pointers are must aliased. This means 544 // that a load depends on another must aliased load from the same value. 545 // One exception is atomic loads: a value can depend on an atomic load that 546 // it does not alias with when this atomic load indicates that another 547 // thread may be accessing the location. 548 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 549 // While volatile access cannot be eliminated, they do not have to clobber 550 // non-aliasing locations, as normal accesses, for example, can be safely 551 // reordered with volatile accesses. 552 if (LI->isVolatile()) { 553 if (!QueryInst) 554 // Original QueryInst *may* be volatile 555 return MemDepResult::getClobber(LI); 556 if (isVolatile(QueryInst)) 557 // Ordering required if QueryInst is itself volatile 558 return MemDepResult::getClobber(LI); 559 // Otherwise, volatile doesn't imply any special ordering 560 } 561 562 // Atomic loads have complications involved. 563 // A Monotonic (or higher) load is OK if the query inst is itself not 564 // atomic. 565 // FIXME: This is overly conservative. 566 if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) { 567 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 568 isOtherMemAccess(QueryInst)) 569 return MemDepResult::getClobber(LI); 570 if (LI->getOrdering() != AtomicOrdering::Monotonic) 571 return MemDepResult::getClobber(LI); 572 } 573 574 MemoryLocation LoadLoc = MemoryLocation::get(LI); 575 576 // If we found a pointer, check if it could be the same as our pointer. 577 AliasResult R = AA.alias(LoadLoc, MemLoc); 578 579 if (isLoad) { 580 if (R == NoAlias) 581 continue; 582 583 // Must aliased loads are defs of each other. 584 if (R == MustAlias) 585 return MemDepResult::getDef(Inst); 586 587 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads 588 // in terms of clobbering loads, but since it does this by looking 589 // at the clobbering load directly, it doesn't know about any 590 // phi translation that may have happened along the way. 591 592 // If we have a partial alias, then return this as a clobber for the 593 // client to handle. 594 if (R == PartialAlias) 595 return MemDepResult::getClobber(Inst); 596 #endif 597 598 // Random may-alias loads don't depend on each other without a 599 // dependence. 600 continue; 601 } 602 603 // Stores don't depend on other no-aliased accesses. 604 if (R == NoAlias) 605 continue; 606 607 // Stores don't alias loads from read-only memory. 608 if (AA.pointsToConstantMemory(LoadLoc)) 609 continue; 610 611 // Stores depend on may/must aliased loads. 612 return MemDepResult::getDef(Inst); 613 } 614 615 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 616 // Atomic stores have complications involved. 617 // A Monotonic store is OK if the query inst is itself not atomic. 618 // FIXME: This is overly conservative. 619 if (!SI->isUnordered() && SI->isAtomic()) { 620 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 621 isOtherMemAccess(QueryInst)) 622 return MemDepResult::getClobber(SI); 623 if (SI->getOrdering() != AtomicOrdering::Monotonic) 624 return MemDepResult::getClobber(SI); 625 } 626 627 // FIXME: this is overly conservative. 628 // While volatile access cannot be eliminated, they do not have to clobber 629 // non-aliasing locations, as normal accesses can for example be reordered 630 // with volatile accesses. 631 if (SI->isVolatile()) 632 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 633 isOtherMemAccess(QueryInst)) 634 return MemDepResult::getClobber(SI); 635 636 // If alias analysis can tell that this store is guaranteed to not modify 637 // the query pointer, ignore it. Use getModRefInfo to handle cases where 638 // the query pointer points to constant memory etc. 639 if (!isModOrRefSet(AA.getModRefInfo(SI, MemLoc))) 640 continue; 641 642 // Ok, this store might clobber the query pointer. Check to see if it is 643 // a must alias: in this case, we want to return this as a def. 644 // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above. 645 MemoryLocation StoreLoc = MemoryLocation::get(SI); 646 647 // If we found a pointer, check if it could be the same as our pointer. 648 AliasResult R = AA.alias(StoreLoc, MemLoc); 649 650 if (R == NoAlias) 651 continue; 652 if (R == MustAlias) 653 return MemDepResult::getDef(Inst); 654 if (isInvariantLoad) 655 continue; 656 return MemDepResult::getClobber(Inst); 657 } 658 659 // If this is an allocation, and if we know that the accessed pointer is to 660 // the allocation, return Def. This means that there is no dependence and 661 // the access can be optimized based on that. For example, a load could 662 // turn into undef. Note that we can bypass the allocation itself when 663 // looking for a clobber in many cases; that's an alias property and is 664 // handled by BasicAA. 665 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) { 666 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL); 667 if (AccessPtr == Inst || AA.isMustAlias(Inst, AccessPtr)) 668 return MemDepResult::getDef(Inst); 669 } 670 671 if (isInvariantLoad) 672 continue; 673 674 // A release fence requires that all stores complete before it, but does 675 // not prevent the reordering of following loads or stores 'before' the 676 // fence. As a result, we look past it when finding a dependency for 677 // loads. DSE uses this to find preceeding stores to delete and thus we 678 // can't bypass the fence if the query instruction is a store. 679 if (FenceInst *FI = dyn_cast<FenceInst>(Inst)) 680 if (isLoad && FI->getOrdering() == AtomicOrdering::Release) 681 continue; 682 683 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. 684 ModRefInfo MR = AA.getModRefInfo(Inst, MemLoc); 685 // If necessary, perform additional analysis. 686 if (isModAndRefSet(MR)) 687 MR = AA.callCapturesBefore(Inst, MemLoc, &DT, &OBB); 688 switch (clearMust(MR)) { 689 case ModRefInfo::NoModRef: 690 // If the call has no effect on the queried pointer, just ignore it. 691 continue; 692 case ModRefInfo::Mod: 693 return MemDepResult::getClobber(Inst); 694 case ModRefInfo::Ref: 695 // If the call is known to never store to the pointer, and if this is a 696 // load query, we can safely ignore it (scan past it). 697 if (isLoad) 698 continue; 699 LLVM_FALLTHROUGH; 700 default: 701 // Otherwise, there is a potential dependence. Return a clobber. 702 return MemDepResult::getClobber(Inst); 703 } 704 } 705 706 // No dependence found. If this is the entry block of the function, it is 707 // unknown, otherwise it is non-local. 708 if (BB != &BB->getParent()->getEntryBlock()) 709 return MemDepResult::getNonLocal(); 710 return MemDepResult::getNonFuncLocal(); 711 } 712 713 MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) { 714 Instruction *ScanPos = QueryInst; 715 716 // Check for a cached result 717 MemDepResult &LocalCache = LocalDeps[QueryInst]; 718 719 // If the cached entry is non-dirty, just return it. Note that this depends 720 // on MemDepResult's default constructing to 'dirty'. 721 if (!LocalCache.isDirty()) 722 return LocalCache; 723 724 // Otherwise, if we have a dirty entry, we know we can start the scan at that 725 // instruction, which may save us some work. 726 if (Instruction *Inst = LocalCache.getInst()) { 727 ScanPos = Inst; 728 729 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); 730 } 731 732 BasicBlock *QueryParent = QueryInst->getParent(); 733 734 // Do the scan. 735 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { 736 // No dependence found. If this is the entry block of the function, it is 737 // unknown, otherwise it is non-local. 738 if (QueryParent != &QueryParent->getParent()->getEntryBlock()) 739 LocalCache = MemDepResult::getNonLocal(); 740 else 741 LocalCache = MemDepResult::getNonFuncLocal(); 742 } else { 743 MemoryLocation MemLoc; 744 ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI); 745 if (MemLoc.Ptr) { 746 // If we can do a pointer scan, make it happen. 747 bool isLoad = !isModSet(MR); 748 if (auto *II = dyn_cast<IntrinsicInst>(QueryInst)) 749 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start; 750 751 LocalCache = getPointerDependencyFrom( 752 MemLoc, isLoad, ScanPos->getIterator(), QueryParent, QueryInst); 753 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) { 754 CallSite QueryCS(QueryInst); 755 bool isReadOnly = AA.onlyReadsMemory(QueryCS); 756 LocalCache = getCallSiteDependencyFrom( 757 QueryCS, isReadOnly, ScanPos->getIterator(), QueryParent); 758 } else 759 // Non-memory instruction. 760 LocalCache = MemDepResult::getUnknown(); 761 } 762 763 // Remember the result! 764 if (Instruction *I = LocalCache.getInst()) 765 ReverseLocalDeps[I].insert(QueryInst); 766 767 return LocalCache; 768 } 769 770 #ifndef NDEBUG 771 /// This method is used when -debug is specified to verify that cache arrays 772 /// are properly kept sorted. 773 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache, 774 int Count = -1) { 775 if (Count == -1) 776 Count = Cache.size(); 777 assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) && 778 "Cache isn't sorted!"); 779 } 780 #endif 781 782 const MemoryDependenceResults::NonLocalDepInfo & 783 MemoryDependenceResults::getNonLocalCallDependency(CallSite QueryCS) { 784 assert(getDependency(QueryCS.getInstruction()).isNonLocal() && 785 "getNonLocalCallDependency should only be used on calls with " 786 "non-local deps!"); 787 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()]; 788 NonLocalDepInfo &Cache = CacheP.first; 789 790 // This is the set of blocks that need to be recomputed. In the cached case, 791 // this can happen due to instructions being deleted etc. In the uncached 792 // case, this starts out as the set of predecessors we care about. 793 SmallVector<BasicBlock *, 32> DirtyBlocks; 794 795 if (!Cache.empty()) { 796 // Okay, we have a cache entry. If we know it is not dirty, just return it 797 // with no computation. 798 if (!CacheP.second) { 799 ++NumCacheNonLocal; 800 return Cache; 801 } 802 803 // If we already have a partially computed set of results, scan them to 804 // determine what is dirty, seeding our initial DirtyBlocks worklist. 805 for (auto &Entry : Cache) 806 if (Entry.getResult().isDirty()) 807 DirtyBlocks.push_back(Entry.getBB()); 808 809 // Sort the cache so that we can do fast binary search lookups below. 810 llvm::sort(Cache.begin(), Cache.end()); 811 812 ++NumCacheDirtyNonLocal; 813 // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " 814 // << Cache.size() << " cached: " << *QueryInst; 815 } else { 816 // Seed DirtyBlocks with each of the preds of QueryInst's block. 817 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent(); 818 for (BasicBlock *Pred : PredCache.get(QueryBB)) 819 DirtyBlocks.push_back(Pred); 820 ++NumUncacheNonLocal; 821 } 822 823 // isReadonlyCall - If this is a read-only call, we can be more aggressive. 824 bool isReadonlyCall = AA.onlyReadsMemory(QueryCS); 825 826 SmallPtrSet<BasicBlock *, 32> Visited; 827 828 unsigned NumSortedEntries = Cache.size(); 829 LLVM_DEBUG(AssertSorted(Cache)); 830 831 // Iterate while we still have blocks to update. 832 while (!DirtyBlocks.empty()) { 833 BasicBlock *DirtyBB = DirtyBlocks.back(); 834 DirtyBlocks.pop_back(); 835 836 // Already processed this block? 837 if (!Visited.insert(DirtyBB).second) 838 continue; 839 840 // Do a binary search to see if we already have an entry for this block in 841 // the cache set. If so, find it. 842 LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries)); 843 NonLocalDepInfo::iterator Entry = 844 std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries, 845 NonLocalDepEntry(DirtyBB)); 846 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB) 847 --Entry; 848 849 NonLocalDepEntry *ExistingResult = nullptr; 850 if (Entry != Cache.begin() + NumSortedEntries && 851 Entry->getBB() == DirtyBB) { 852 // If we already have an entry, and if it isn't already dirty, the block 853 // is done. 854 if (!Entry->getResult().isDirty()) 855 continue; 856 857 // Otherwise, remember this slot so we can update the value. 858 ExistingResult = &*Entry; 859 } 860 861 // If the dirty entry has a pointer, start scanning from it so we don't have 862 // to rescan the entire block. 863 BasicBlock::iterator ScanPos = DirtyBB->end(); 864 if (ExistingResult) { 865 if (Instruction *Inst = ExistingResult->getResult().getInst()) { 866 ScanPos = Inst->getIterator(); 867 // We're removing QueryInst's use of Inst. 868 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, 869 QueryCS.getInstruction()); 870 } 871 } 872 873 // Find out if this block has a local dependency for QueryInst. 874 MemDepResult Dep; 875 876 if (ScanPos != DirtyBB->begin()) { 877 Dep = 878 getCallSiteDependencyFrom(QueryCS, isReadonlyCall, ScanPos, DirtyBB); 879 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { 880 // No dependence found. If this is the entry block of the function, it is 881 // a clobber, otherwise it is unknown. 882 Dep = MemDepResult::getNonLocal(); 883 } else { 884 Dep = MemDepResult::getNonFuncLocal(); 885 } 886 887 // If we had a dirty entry for the block, update it. Otherwise, just add 888 // a new entry. 889 if (ExistingResult) 890 ExistingResult->setResult(Dep); 891 else 892 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); 893 894 // If the block has a dependency (i.e. it isn't completely transparent to 895 // the value), remember the association! 896 if (!Dep.isNonLocal()) { 897 // Keep the ReverseNonLocalDeps map up to date so we can efficiently 898 // update this when we remove instructions. 899 if (Instruction *Inst = Dep.getInst()) 900 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction()); 901 } else { 902 903 // If the block *is* completely transparent to the load, we need to check 904 // the predecessors of this block. Add them to our worklist. 905 for (BasicBlock *Pred : PredCache.get(DirtyBB)) 906 DirtyBlocks.push_back(Pred); 907 } 908 } 909 910 return Cache; 911 } 912 913 void MemoryDependenceResults::getNonLocalPointerDependency( 914 Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) { 915 const MemoryLocation Loc = MemoryLocation::get(QueryInst); 916 bool isLoad = isa<LoadInst>(QueryInst); 917 BasicBlock *FromBB = QueryInst->getParent(); 918 assert(FromBB); 919 920 assert(Loc.Ptr->getType()->isPointerTy() && 921 "Can't get pointer deps of a non-pointer!"); 922 Result.clear(); 923 { 924 // Check if there is cached Def with invariant.group. 925 auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst); 926 if (NonLocalDefIt != NonLocalDefsCache.end()) { 927 Result.push_back(NonLocalDefIt->second); 928 ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()] 929 .erase(QueryInst); 930 NonLocalDefsCache.erase(NonLocalDefIt); 931 return; 932 } 933 } 934 // This routine does not expect to deal with volatile instructions. 935 // Doing so would require piping through the QueryInst all the way through. 936 // TODO: volatiles can't be elided, but they can be reordered with other 937 // non-volatile accesses. 938 939 // We currently give up on any instruction which is ordered, but we do handle 940 // atomic instructions which are unordered. 941 // TODO: Handle ordered instructions 942 auto isOrdered = [](Instruction *Inst) { 943 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 944 return !LI->isUnordered(); 945 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 946 return !SI->isUnordered(); 947 } 948 return false; 949 }; 950 if (isVolatile(QueryInst) || isOrdered(QueryInst)) { 951 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(), 952 const_cast<Value *>(Loc.Ptr))); 953 return; 954 } 955 const DataLayout &DL = FromBB->getModule()->getDataLayout(); 956 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC); 957 958 // This is the set of blocks we've inspected, and the pointer we consider in 959 // each block. Because of critical edges, we currently bail out if querying 960 // a block with multiple different pointers. This can happen during PHI 961 // translation. 962 DenseMap<BasicBlock *, Value *> Visited; 963 if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB, 964 Result, Visited, true)) 965 return; 966 Result.clear(); 967 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(), 968 const_cast<Value *>(Loc.Ptr))); 969 } 970 971 /// Compute the memdep value for BB with Pointer/PointeeSize using either 972 /// cached information in Cache or by doing a lookup (which may use dirty cache 973 /// info if available). 974 /// 975 /// If we do a lookup, add the result to the cache. 976 MemDepResult MemoryDependenceResults::GetNonLocalInfoForBlock( 977 Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad, 978 BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) { 979 980 // Do a binary search to see if we already have an entry for this block in 981 // the cache set. If so, find it. 982 NonLocalDepInfo::iterator Entry = std::upper_bound( 983 Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB)); 984 if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB) 985 --Entry; 986 987 NonLocalDepEntry *ExistingResult = nullptr; 988 if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB) 989 ExistingResult = &*Entry; 990 991 // If we have a cached entry, and it is non-dirty, use it as the value for 992 // this dependency. 993 if (ExistingResult && !ExistingResult->getResult().isDirty()) { 994 ++NumCacheNonLocalPtr; 995 return ExistingResult->getResult(); 996 } 997 998 // Otherwise, we have to scan for the value. If we have a dirty cache 999 // entry, start scanning from its position, otherwise we scan from the end 1000 // of the block. 1001 BasicBlock::iterator ScanPos = BB->end(); 1002 if (ExistingResult && ExistingResult->getResult().getInst()) { 1003 assert(ExistingResult->getResult().getInst()->getParent() == BB && 1004 "Instruction invalidated?"); 1005 ++NumCacheDirtyNonLocalPtr; 1006 ScanPos = ExistingResult->getResult().getInst()->getIterator(); 1007 1008 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1009 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 1010 RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey); 1011 } else { 1012 ++NumUncacheNonLocalPtr; 1013 } 1014 1015 // Scan the block for the dependency. 1016 MemDepResult Dep = 1017 getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, QueryInst); 1018 1019 // If we had a dirty entry for the block, update it. Otherwise, just add 1020 // a new entry. 1021 if (ExistingResult) 1022 ExistingResult->setResult(Dep); 1023 else 1024 Cache->push_back(NonLocalDepEntry(BB, Dep)); 1025 1026 // If the block has a dependency (i.e. it isn't completely transparent to 1027 // the value), remember the reverse association because we just added it 1028 // to Cache! 1029 if (!Dep.isDef() && !Dep.isClobber()) 1030 return Dep; 1031 1032 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently 1033 // update MemDep when we remove instructions. 1034 Instruction *Inst = Dep.getInst(); 1035 assert(Inst && "Didn't depend on anything?"); 1036 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 1037 ReverseNonLocalPtrDeps[Inst].insert(CacheKey); 1038 return Dep; 1039 } 1040 1041 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the 1042 /// array that are already properly ordered. 1043 /// 1044 /// This is optimized for the case when only a few entries are added. 1045 static void 1046 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache, 1047 unsigned NumSortedEntries) { 1048 switch (Cache.size() - NumSortedEntries) { 1049 case 0: 1050 // done, no new entries. 1051 break; 1052 case 2: { 1053 // Two new entries, insert the last one into place. 1054 NonLocalDepEntry Val = Cache.back(); 1055 Cache.pop_back(); 1056 MemoryDependenceResults::NonLocalDepInfo::iterator Entry = 1057 std::upper_bound(Cache.begin(), Cache.end() - 1, Val); 1058 Cache.insert(Entry, Val); 1059 LLVM_FALLTHROUGH; 1060 } 1061 case 1: 1062 // One new entry, Just insert the new value at the appropriate position. 1063 if (Cache.size() != 1) { 1064 NonLocalDepEntry Val = Cache.back(); 1065 Cache.pop_back(); 1066 MemoryDependenceResults::NonLocalDepInfo::iterator Entry = 1067 std::upper_bound(Cache.begin(), Cache.end(), Val); 1068 Cache.insert(Entry, Val); 1069 } 1070 break; 1071 default: 1072 // Added many values, do a full scale sort. 1073 llvm::sort(Cache.begin(), Cache.end()); 1074 break; 1075 } 1076 } 1077 1078 /// Perform a dependency query based on pointer/pointeesize starting at the end 1079 /// of StartBB. 1080 /// 1081 /// Add any clobber/def results to the results vector and keep track of which 1082 /// blocks are visited in 'Visited'. 1083 /// 1084 /// This has special behavior for the first block queries (when SkipFirstBlock 1085 /// is true). In this special case, it ignores the contents of the specified 1086 /// block and starts returning dependence info for its predecessors. 1087 /// 1088 /// This function returns true on success, or false to indicate that it could 1089 /// not compute dependence information for some reason. This should be treated 1090 /// as a clobber dependence on the first instruction in the predecessor block. 1091 bool MemoryDependenceResults::getNonLocalPointerDepFromBB( 1092 Instruction *QueryInst, const PHITransAddr &Pointer, 1093 const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB, 1094 SmallVectorImpl<NonLocalDepResult> &Result, 1095 DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock) { 1096 // Look up the cached info for Pointer. 1097 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); 1098 1099 // Set up a temporary NLPI value. If the map doesn't yet have an entry for 1100 // CacheKey, this value will be inserted as the associated value. Otherwise, 1101 // it'll be ignored, and we'll have to check to see if the cached size and 1102 // aa tags are consistent with the current query. 1103 NonLocalPointerInfo InitialNLPI; 1104 InitialNLPI.Size = Loc.Size; 1105 InitialNLPI.AATags = Loc.AATags; 1106 1107 // Get the NLPI for CacheKey, inserting one into the map if it doesn't 1108 // already have one. 1109 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = 1110 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); 1111 NonLocalPointerInfo *CacheInfo = &Pair.first->second; 1112 1113 // If we already have a cache entry for this CacheKey, we may need to do some 1114 // work to reconcile the cache entry and the current query. 1115 if (!Pair.second) { 1116 if (CacheInfo->Size < Loc.Size) { 1117 // The query's Size is greater than the cached one. Throw out the 1118 // cached data and proceed with the query at the greater size. 1119 CacheInfo->Pair = BBSkipFirstBlockPair(); 1120 CacheInfo->Size = Loc.Size; 1121 for (auto &Entry : CacheInfo->NonLocalDeps) 1122 if (Instruction *Inst = Entry.getResult().getInst()) 1123 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1124 CacheInfo->NonLocalDeps.clear(); 1125 } else if (CacheInfo->Size > Loc.Size) { 1126 // This query's Size is less than the cached one. Conservatively restart 1127 // the query using the greater size. 1128 return getNonLocalPointerDepFromBB( 1129 QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad, 1130 StartBB, Result, Visited, SkipFirstBlock); 1131 } 1132 1133 // If the query's AATags are inconsistent with the cached one, 1134 // conservatively throw out the cached data and restart the query with 1135 // no tag if needed. 1136 if (CacheInfo->AATags != Loc.AATags) { 1137 if (CacheInfo->AATags) { 1138 CacheInfo->Pair = BBSkipFirstBlockPair(); 1139 CacheInfo->AATags = AAMDNodes(); 1140 for (auto &Entry : CacheInfo->NonLocalDeps) 1141 if (Instruction *Inst = Entry.getResult().getInst()) 1142 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1143 CacheInfo->NonLocalDeps.clear(); 1144 } 1145 if (Loc.AATags) 1146 return getNonLocalPointerDepFromBB( 1147 QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result, 1148 Visited, SkipFirstBlock); 1149 } 1150 } 1151 1152 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; 1153 1154 // If we have valid cached information for exactly the block we are 1155 // investigating, just return it with no recomputation. 1156 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { 1157 // We have a fully cached result for this query then we can just return the 1158 // cached results and populate the visited set. However, we have to verify 1159 // that we don't already have conflicting results for these blocks. Check 1160 // to ensure that if a block in the results set is in the visited set that 1161 // it was for the same pointer query. 1162 if (!Visited.empty()) { 1163 for (auto &Entry : *Cache) { 1164 DenseMap<BasicBlock *, Value *>::iterator VI = 1165 Visited.find(Entry.getBB()); 1166 if (VI == Visited.end() || VI->second == Pointer.getAddr()) 1167 continue; 1168 1169 // We have a pointer mismatch in a block. Just return false, saying 1170 // that something was clobbered in this result. We could also do a 1171 // non-fully cached query, but there is little point in doing this. 1172 return false; 1173 } 1174 } 1175 1176 Value *Addr = Pointer.getAddr(); 1177 for (auto &Entry : *Cache) { 1178 Visited.insert(std::make_pair(Entry.getBB(), Addr)); 1179 if (Entry.getResult().isNonLocal()) { 1180 continue; 1181 } 1182 1183 if (DT.isReachableFromEntry(Entry.getBB())) { 1184 Result.push_back( 1185 NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr)); 1186 } 1187 } 1188 ++NumCacheCompleteNonLocalPtr; 1189 return true; 1190 } 1191 1192 // Otherwise, either this is a new block, a block with an invalid cache 1193 // pointer or one that we're about to invalidate by putting more info into it 1194 // than its valid cache info. If empty, the result will be valid cache info, 1195 // otherwise it isn't. 1196 if (Cache->empty()) 1197 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); 1198 else 1199 CacheInfo->Pair = BBSkipFirstBlockPair(); 1200 1201 SmallVector<BasicBlock *, 32> Worklist; 1202 Worklist.push_back(StartBB); 1203 1204 // PredList used inside loop. 1205 SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList; 1206 1207 // Keep track of the entries that we know are sorted. Previously cached 1208 // entries will all be sorted. The entries we add we only sort on demand (we 1209 // don't insert every element into its sorted position). We know that we 1210 // won't get any reuse from currently inserted values, because we don't 1211 // revisit blocks after we insert info for them. 1212 unsigned NumSortedEntries = Cache->size(); 1213 unsigned WorklistEntries = BlockNumberLimit; 1214 bool GotWorklistLimit = false; 1215 LLVM_DEBUG(AssertSorted(*Cache)); 1216 1217 while (!Worklist.empty()) { 1218 BasicBlock *BB = Worklist.pop_back_val(); 1219 1220 // If we do process a large number of blocks it becomes very expensive and 1221 // likely it isn't worth worrying about 1222 if (Result.size() > NumResultsLimit) { 1223 Worklist.clear(); 1224 // Sort it now (if needed) so that recursive invocations of 1225 // getNonLocalPointerDepFromBB and other routines that could reuse the 1226 // cache value will only see properly sorted cache arrays. 1227 if (Cache && NumSortedEntries != Cache->size()) { 1228 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1229 } 1230 // Since we bail out, the "Cache" set won't contain all of the 1231 // results for the query. This is ok (we can still use it to accelerate 1232 // specific block queries) but we can't do the fastpath "return all 1233 // results from the set". Clear out the indicator for this. 1234 CacheInfo->Pair = BBSkipFirstBlockPair(); 1235 return false; 1236 } 1237 1238 // Skip the first block if we have it. 1239 if (!SkipFirstBlock) { 1240 // Analyze the dependency of *Pointer in FromBB. See if we already have 1241 // been here. 1242 assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); 1243 1244 // Get the dependency info for Pointer in BB. If we have cached 1245 // information, we will use it, otherwise we compute it. 1246 LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries)); 1247 MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, Loc, isLoad, BB, 1248 Cache, NumSortedEntries); 1249 1250 // If we got a Def or Clobber, add this to the list of results. 1251 if (!Dep.isNonLocal()) { 1252 if (DT.isReachableFromEntry(BB)) { 1253 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); 1254 continue; 1255 } 1256 } 1257 } 1258 1259 // If 'Pointer' is an instruction defined in this block, then we need to do 1260 // phi translation to change it into a value live in the predecessor block. 1261 // If not, we just add the predecessors to the worklist and scan them with 1262 // the same Pointer. 1263 if (!Pointer.NeedsPHITranslationFromBlock(BB)) { 1264 SkipFirstBlock = false; 1265 SmallVector<BasicBlock *, 16> NewBlocks; 1266 for (BasicBlock *Pred : PredCache.get(BB)) { 1267 // Verify that we haven't looked at this block yet. 1268 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = 1269 Visited.insert(std::make_pair(Pred, Pointer.getAddr())); 1270 if (InsertRes.second) { 1271 // First time we've looked at *PI. 1272 NewBlocks.push_back(Pred); 1273 continue; 1274 } 1275 1276 // If we have seen this block before, but it was with a different 1277 // pointer then we have a phi translation failure and we have to treat 1278 // this as a clobber. 1279 if (InsertRes.first->second != Pointer.getAddr()) { 1280 // Make sure to clean up the Visited map before continuing on to 1281 // PredTranslationFailure. 1282 for (unsigned i = 0; i < NewBlocks.size(); i++) 1283 Visited.erase(NewBlocks[i]); 1284 goto PredTranslationFailure; 1285 } 1286 } 1287 if (NewBlocks.size() > WorklistEntries) { 1288 // Make sure to clean up the Visited map before continuing on to 1289 // PredTranslationFailure. 1290 for (unsigned i = 0; i < NewBlocks.size(); i++) 1291 Visited.erase(NewBlocks[i]); 1292 GotWorklistLimit = true; 1293 goto PredTranslationFailure; 1294 } 1295 WorklistEntries -= NewBlocks.size(); 1296 Worklist.append(NewBlocks.begin(), NewBlocks.end()); 1297 continue; 1298 } 1299 1300 // We do need to do phi translation, if we know ahead of time we can't phi 1301 // translate this value, don't even try. 1302 if (!Pointer.IsPotentiallyPHITranslatable()) 1303 goto PredTranslationFailure; 1304 1305 // We may have added values to the cache list before this PHI translation. 1306 // If so, we haven't done anything to ensure that the cache remains sorted. 1307 // Sort it now (if needed) so that recursive invocations of 1308 // getNonLocalPointerDepFromBB and other routines that could reuse the cache 1309 // value will only see properly sorted cache arrays. 1310 if (Cache && NumSortedEntries != Cache->size()) { 1311 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1312 NumSortedEntries = Cache->size(); 1313 } 1314 Cache = nullptr; 1315 1316 PredList.clear(); 1317 for (BasicBlock *Pred : PredCache.get(BB)) { 1318 PredList.push_back(std::make_pair(Pred, Pointer)); 1319 1320 // Get the PHI translated pointer in this predecessor. This can fail if 1321 // not translatable, in which case the getAddr() returns null. 1322 PHITransAddr &PredPointer = PredList.back().second; 1323 PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false); 1324 Value *PredPtrVal = PredPointer.getAddr(); 1325 1326 // Check to see if we have already visited this pred block with another 1327 // pointer. If so, we can't do this lookup. This failure can occur 1328 // with PHI translation when a critical edge exists and the PHI node in 1329 // the successor translates to a pointer value different than the 1330 // pointer the block was first analyzed with. 1331 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = 1332 Visited.insert(std::make_pair(Pred, PredPtrVal)); 1333 1334 if (!InsertRes.second) { 1335 // We found the pred; take it off the list of preds to visit. 1336 PredList.pop_back(); 1337 1338 // If the predecessor was visited with PredPtr, then we already did 1339 // the analysis and can ignore it. 1340 if (InsertRes.first->second == PredPtrVal) 1341 continue; 1342 1343 // Otherwise, the block was previously analyzed with a different 1344 // pointer. We can't represent the result of this case, so we just 1345 // treat this as a phi translation failure. 1346 1347 // Make sure to clean up the Visited map before continuing on to 1348 // PredTranslationFailure. 1349 for (unsigned i = 0, n = PredList.size(); i < n; ++i) 1350 Visited.erase(PredList[i].first); 1351 1352 goto PredTranslationFailure; 1353 } 1354 } 1355 1356 // Actually process results here; this need to be a separate loop to avoid 1357 // calling getNonLocalPointerDepFromBB for blocks we don't want to return 1358 // any results for. (getNonLocalPointerDepFromBB will modify our 1359 // datastructures in ways the code after the PredTranslationFailure label 1360 // doesn't expect.) 1361 for (unsigned i = 0, n = PredList.size(); i < n; ++i) { 1362 BasicBlock *Pred = PredList[i].first; 1363 PHITransAddr &PredPointer = PredList[i].second; 1364 Value *PredPtrVal = PredPointer.getAddr(); 1365 1366 bool CanTranslate = true; 1367 // If PHI translation was unable to find an available pointer in this 1368 // predecessor, then we have to assume that the pointer is clobbered in 1369 // that predecessor. We can still do PRE of the load, which would insert 1370 // a computation of the pointer in this predecessor. 1371 if (!PredPtrVal) 1372 CanTranslate = false; 1373 1374 // FIXME: it is entirely possible that PHI translating will end up with 1375 // the same value. Consider PHI translating something like: 1376 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* 1377 // to recurse here, pedantically speaking. 1378 1379 // If getNonLocalPointerDepFromBB fails here, that means the cached 1380 // result conflicted with the Visited list; we have to conservatively 1381 // assume it is unknown, but this also does not block PRE of the load. 1382 if (!CanTranslate || 1383 !getNonLocalPointerDepFromBB(QueryInst, PredPointer, 1384 Loc.getWithNewPtr(PredPtrVal), isLoad, 1385 Pred, Result, Visited)) { 1386 // Add the entry to the Result list. 1387 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal); 1388 Result.push_back(Entry); 1389 1390 // Since we had a phi translation failure, the cache for CacheKey won't 1391 // include all of the entries that we need to immediately satisfy future 1392 // queries. Mark this in NonLocalPointerDeps by setting the 1393 // BBSkipFirstBlockPair pointer to null. This requires reuse of the 1394 // cached value to do more work but not miss the phi trans failure. 1395 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; 1396 NLPI.Pair = BBSkipFirstBlockPair(); 1397 continue; 1398 } 1399 } 1400 1401 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. 1402 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1403 Cache = &CacheInfo->NonLocalDeps; 1404 NumSortedEntries = Cache->size(); 1405 1406 // Since we did phi translation, the "Cache" set won't contain all of the 1407 // results for the query. This is ok (we can still use it to accelerate 1408 // specific block queries) but we can't do the fastpath "return all 1409 // results from the set" Clear out the indicator for this. 1410 CacheInfo->Pair = BBSkipFirstBlockPair(); 1411 SkipFirstBlock = false; 1412 continue; 1413 1414 PredTranslationFailure: 1415 // The following code is "failure"; we can't produce a sane translation 1416 // for the given block. It assumes that we haven't modified any of 1417 // our datastructures while processing the current block. 1418 1419 if (!Cache) { 1420 // Refresh the CacheInfo/Cache pointer if it got invalidated. 1421 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1422 Cache = &CacheInfo->NonLocalDeps; 1423 NumSortedEntries = Cache->size(); 1424 } 1425 1426 // Since we failed phi translation, the "Cache" set won't contain all of the 1427 // results for the query. This is ok (we can still use it to accelerate 1428 // specific block queries) but we can't do the fastpath "return all 1429 // results from the set". Clear out the indicator for this. 1430 CacheInfo->Pair = BBSkipFirstBlockPair(); 1431 1432 // If *nothing* works, mark the pointer as unknown. 1433 // 1434 // If this is the magic first block, return this as a clobber of the whole 1435 // incoming value. Since we can't phi translate to one of the predecessors, 1436 // we have to bail out. 1437 if (SkipFirstBlock) 1438 return false; 1439 1440 bool foundBlock = false; 1441 for (NonLocalDepEntry &I : llvm::reverse(*Cache)) { 1442 if (I.getBB() != BB) 1443 continue; 1444 1445 assert((GotWorklistLimit || I.getResult().isNonLocal() || 1446 !DT.isReachableFromEntry(BB)) && 1447 "Should only be here with transparent block"); 1448 foundBlock = true; 1449 I.setResult(MemDepResult::getUnknown()); 1450 Result.push_back( 1451 NonLocalDepResult(I.getBB(), I.getResult(), Pointer.getAddr())); 1452 break; 1453 } 1454 (void)foundBlock; (void)GotWorklistLimit; 1455 assert((foundBlock || GotWorklistLimit) && "Current block not in cache?"); 1456 } 1457 1458 // Okay, we're done now. If we added new values to the cache, re-sort it. 1459 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1460 LLVM_DEBUG(AssertSorted(*Cache)); 1461 return true; 1462 } 1463 1464 /// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it. 1465 void MemoryDependenceResults::RemoveCachedNonLocalPointerDependencies( 1466 ValueIsLoadPair P) { 1467 1468 // Most of the time this cache is empty. 1469 if (!NonLocalDefsCache.empty()) { 1470 auto it = NonLocalDefsCache.find(P.getPointer()); 1471 if (it != NonLocalDefsCache.end()) { 1472 RemoveFromReverseMap(ReverseNonLocalDefsCache, 1473 it->second.getResult().getInst(), P.getPointer()); 1474 NonLocalDefsCache.erase(it); 1475 } 1476 1477 if (auto *I = dyn_cast<Instruction>(P.getPointer())) { 1478 auto toRemoveIt = ReverseNonLocalDefsCache.find(I); 1479 if (toRemoveIt != ReverseNonLocalDefsCache.end()) { 1480 for (const auto &entry : toRemoveIt->second) 1481 NonLocalDefsCache.erase(entry); 1482 ReverseNonLocalDefsCache.erase(toRemoveIt); 1483 } 1484 } 1485 } 1486 1487 CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P); 1488 if (It == NonLocalPointerDeps.end()) 1489 return; 1490 1491 // Remove all of the entries in the BB->val map. This involves removing 1492 // instructions from the reverse map. 1493 NonLocalDepInfo &PInfo = It->second.NonLocalDeps; 1494 1495 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { 1496 Instruction *Target = PInfo[i].getResult().getInst(); 1497 if (!Target) 1498 continue; // Ignore non-local dep results. 1499 assert(Target->getParent() == PInfo[i].getBB()); 1500 1501 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1502 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); 1503 } 1504 1505 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). 1506 NonLocalPointerDeps.erase(It); 1507 } 1508 1509 void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) { 1510 // If Ptr isn't really a pointer, just ignore it. 1511 if (!Ptr->getType()->isPointerTy()) 1512 return; 1513 // Flush store info for the pointer. 1514 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); 1515 // Flush load info for the pointer. 1516 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); 1517 // Invalidate phis that use the pointer. 1518 PV.invalidateValue(Ptr); 1519 } 1520 1521 void MemoryDependenceResults::invalidateCachedPredecessors() { 1522 PredCache.clear(); 1523 } 1524 1525 void MemoryDependenceResults::removeInstruction(Instruction *RemInst) { 1526 // Walk through the Non-local dependencies, removing this one as the value 1527 // for any cached queries. 1528 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); 1529 if (NLDI != NonLocalDeps.end()) { 1530 NonLocalDepInfo &BlockMap = NLDI->second.first; 1531 for (auto &Entry : BlockMap) 1532 if (Instruction *Inst = Entry.getResult().getInst()) 1533 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); 1534 NonLocalDeps.erase(NLDI); 1535 } 1536 1537 // If we have a cached local dependence query for this instruction, remove it. 1538 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); 1539 if (LocalDepEntry != LocalDeps.end()) { 1540 // Remove us from DepInst's reverse set now that the local dep info is gone. 1541 if (Instruction *Inst = LocalDepEntry->second.getInst()) 1542 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); 1543 1544 // Remove this local dependency info. 1545 LocalDeps.erase(LocalDepEntry); 1546 } 1547 1548 // If we have any cached pointer dependencies on this instruction, remove 1549 // them. If the instruction has non-pointer type, then it can't be a pointer 1550 // base. 1551 1552 // Remove it from both the load info and the store info. The instruction 1553 // can't be in either of these maps if it is non-pointer. 1554 if (RemInst->getType()->isPointerTy()) { 1555 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); 1556 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); 1557 } 1558 1559 // Loop over all of the things that depend on the instruction we're removing. 1560 SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd; 1561 1562 // If we find RemInst as a clobber or Def in any of the maps for other values, 1563 // we need to replace its entry with a dirty version of the instruction after 1564 // it. If RemInst is a terminator, we use a null dirty value. 1565 // 1566 // Using a dirty version of the instruction after RemInst saves having to scan 1567 // the entire block to get to this point. 1568 MemDepResult NewDirtyVal; 1569 if (!RemInst->isTerminator()) 1570 NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator()); 1571 1572 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); 1573 if (ReverseDepIt != ReverseLocalDeps.end()) { 1574 // RemInst can't be the terminator if it has local stuff depending on it. 1575 assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() && 1576 "Nothing can locally depend on a terminator"); 1577 1578 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) { 1579 assert(InstDependingOnRemInst != RemInst && 1580 "Already removed our local dep info"); 1581 1582 LocalDeps[InstDependingOnRemInst] = NewDirtyVal; 1583 1584 // Make sure to remember that new things depend on NewDepInst. 1585 assert(NewDirtyVal.getInst() && 1586 "There is no way something else can have " 1587 "a local dep on this if it is a terminator!"); 1588 ReverseDepsToAdd.push_back( 1589 std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst)); 1590 } 1591 1592 ReverseLocalDeps.erase(ReverseDepIt); 1593 1594 // Add new reverse deps after scanning the set, to avoid invalidating the 1595 // 'ReverseDeps' reference. 1596 while (!ReverseDepsToAdd.empty()) { 1597 ReverseLocalDeps[ReverseDepsToAdd.back().first].insert( 1598 ReverseDepsToAdd.back().second); 1599 ReverseDepsToAdd.pop_back(); 1600 } 1601 } 1602 1603 ReverseDepIt = ReverseNonLocalDeps.find(RemInst); 1604 if (ReverseDepIt != ReverseNonLocalDeps.end()) { 1605 for (Instruction *I : ReverseDepIt->second) { 1606 assert(I != RemInst && "Already removed NonLocalDep info for RemInst"); 1607 1608 PerInstNLInfo &INLD = NonLocalDeps[I]; 1609 // The information is now dirty! 1610 INLD.second = true; 1611 1612 for (auto &Entry : INLD.first) { 1613 if (Entry.getResult().getInst() != RemInst) 1614 continue; 1615 1616 // Convert to a dirty entry for the subsequent instruction. 1617 Entry.setResult(NewDirtyVal); 1618 1619 if (Instruction *NextI = NewDirtyVal.getInst()) 1620 ReverseDepsToAdd.push_back(std::make_pair(NextI, I)); 1621 } 1622 } 1623 1624 ReverseNonLocalDeps.erase(ReverseDepIt); 1625 1626 // Add new reverse deps after scanning the set, to avoid invalidating 'Set' 1627 while (!ReverseDepsToAdd.empty()) { 1628 ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert( 1629 ReverseDepsToAdd.back().second); 1630 ReverseDepsToAdd.pop_back(); 1631 } 1632 } 1633 1634 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a 1635 // value in the NonLocalPointerDeps info. 1636 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = 1637 ReverseNonLocalPtrDeps.find(RemInst); 1638 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { 1639 SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8> 1640 ReversePtrDepsToAdd; 1641 1642 for (ValueIsLoadPair P : ReversePtrDepIt->second) { 1643 assert(P.getPointer() != RemInst && 1644 "Already removed NonLocalPointerDeps info for RemInst"); 1645 1646 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; 1647 1648 // The cache is not valid for any specific block anymore. 1649 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); 1650 1651 // Update any entries for RemInst to use the instruction after it. 1652 for (auto &Entry : NLPDI) { 1653 if (Entry.getResult().getInst() != RemInst) 1654 continue; 1655 1656 // Convert to a dirty entry for the subsequent instruction. 1657 Entry.setResult(NewDirtyVal); 1658 1659 if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) 1660 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); 1661 } 1662 1663 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its 1664 // subsequent value may invalidate the sortedness. 1665 llvm::sort(NLPDI.begin(), NLPDI.end()); 1666 } 1667 1668 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); 1669 1670 while (!ReversePtrDepsToAdd.empty()) { 1671 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert( 1672 ReversePtrDepsToAdd.back().second); 1673 ReversePtrDepsToAdd.pop_back(); 1674 } 1675 } 1676 1677 // Invalidate phis that use the removed instruction. 1678 PV.invalidateValue(RemInst); 1679 1680 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); 1681 LLVM_DEBUG(verifyRemoved(RemInst)); 1682 } 1683 1684 /// Verify that the specified instruction does not occur in our internal data 1685 /// structures. 1686 /// 1687 /// This function verifies by asserting in debug builds. 1688 void MemoryDependenceResults::verifyRemoved(Instruction *D) const { 1689 #ifndef NDEBUG 1690 for (const auto &DepKV : LocalDeps) { 1691 assert(DepKV.first != D && "Inst occurs in data structures"); 1692 assert(DepKV.second.getInst() != D && "Inst occurs in data structures"); 1693 } 1694 1695 for (const auto &DepKV : NonLocalPointerDeps) { 1696 assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key"); 1697 for (const auto &Entry : DepKV.second.NonLocalDeps) 1698 assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value"); 1699 } 1700 1701 for (const auto &DepKV : NonLocalDeps) { 1702 assert(DepKV.first != D && "Inst occurs in data structures"); 1703 const PerInstNLInfo &INLD = DepKV.second; 1704 for (const auto &Entry : INLD.first) 1705 assert(Entry.getResult().getInst() != D && 1706 "Inst occurs in data structures"); 1707 } 1708 1709 for (const auto &DepKV : ReverseLocalDeps) { 1710 assert(DepKV.first != D && "Inst occurs in data structures"); 1711 for (Instruction *Inst : DepKV.second) 1712 assert(Inst != D && "Inst occurs in data structures"); 1713 } 1714 1715 for (const auto &DepKV : ReverseNonLocalDeps) { 1716 assert(DepKV.first != D && "Inst occurs in data structures"); 1717 for (Instruction *Inst : DepKV.second) 1718 assert(Inst != D && "Inst occurs in data structures"); 1719 } 1720 1721 for (const auto &DepKV : ReverseNonLocalPtrDeps) { 1722 assert(DepKV.first != D && "Inst occurs in rev NLPD map"); 1723 1724 for (ValueIsLoadPair P : DepKV.second) 1725 assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) && 1726 "Inst occurs in ReverseNonLocalPtrDeps map"); 1727 } 1728 #endif 1729 } 1730 1731 AnalysisKey MemoryDependenceAnalysis::Key; 1732 1733 MemoryDependenceResults 1734 MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 1735 auto &AA = AM.getResult<AAManager>(F); 1736 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1737 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1738 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1739 auto &PV = AM.getResult<PhiValuesAnalysis>(F); 1740 return MemoryDependenceResults(AA, AC, TLI, DT, PV); 1741 } 1742 1743 char MemoryDependenceWrapperPass::ID = 0; 1744 1745 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep", 1746 "Memory Dependence Analysis", false, true) 1747 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1748 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1749 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1750 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1751 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass) 1752 INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep", 1753 "Memory Dependence Analysis", false, true) 1754 1755 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) { 1756 initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry()); 1757 } 1758 1759 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default; 1760 1761 void MemoryDependenceWrapperPass::releaseMemory() { 1762 MemDep.reset(); 1763 } 1764 1765 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1766 AU.setPreservesAll(); 1767 AU.addRequired<AssumptionCacheTracker>(); 1768 AU.addRequired<DominatorTreeWrapperPass>(); 1769 AU.addRequired<PhiValuesWrapperPass>(); 1770 AU.addRequiredTransitive<AAResultsWrapperPass>(); 1771 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 1772 } 1773 1774 bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA, 1775 FunctionAnalysisManager::Invalidator &Inv) { 1776 // Check whether our analysis is preserved. 1777 auto PAC = PA.getChecker<MemoryDependenceAnalysis>(); 1778 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>()) 1779 // If not, give up now. 1780 return true; 1781 1782 // Check whether the analyses we depend on became invalid for any reason. 1783 if (Inv.invalidate<AAManager>(F, PA) || 1784 Inv.invalidate<AssumptionAnalysis>(F, PA) || 1785 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 1786 Inv.invalidate<PhiValuesAnalysis>(F, PA)) 1787 return true; 1788 1789 // Otherwise this analysis result remains valid. 1790 return false; 1791 } 1792 1793 unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const { 1794 return BlockScanLimit; 1795 } 1796 1797 bool MemoryDependenceWrapperPass::runOnFunction(Function &F) { 1798 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1799 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1800 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1801 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1802 auto &PV = getAnalysis<PhiValuesWrapperPass>().getResult(); 1803 MemDep.emplace(AA, AC, TLI, DT, PV); 1804 return false; 1805 } 1806