1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements an analysis that determines, for a given memory 11 // operation, what preceding memory operations it depends on. It builds on 12 // alias analysis information, and tries to provide a lazy, caching interface to 13 // a common kind of alias information query. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/MemoryLocation.h" 27 #include "llvm/Analysis/OrderedBasicBlock.h" 28 #include "llvm/Analysis/PHITransAddr.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/InstrTypes.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/LLVMContext.h" 44 #include "llvm/IR/Metadata.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/IR/PredIteratorCache.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/IR/Use.h" 49 #include "llvm/IR/User.h" 50 #include "llvm/IR/Value.h" 51 #include "llvm/Pass.h" 52 #include "llvm/Support/AtomicOrdering.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Compiler.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/MathExtras.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <cstdint> 61 #include <iterator> 62 #include <utility> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "memdep" 67 68 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); 69 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); 70 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); 71 72 STATISTIC(NumCacheNonLocalPtr, 73 "Number of fully cached non-local ptr responses"); 74 STATISTIC(NumCacheDirtyNonLocalPtr, 75 "Number of cached, but dirty, non-local ptr responses"); 76 STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses"); 77 STATISTIC(NumCacheCompleteNonLocalPtr, 78 "Number of block queries that were completely cached"); 79 80 // Limit for the number of instructions to scan in a block. 81 82 static cl::opt<unsigned> BlockScanLimit( 83 "memdep-block-scan-limit", cl::Hidden, cl::init(100), 84 cl::desc("The number of instructions to scan in a block in memory " 85 "dependency analysis (default = 100)")); 86 87 static cl::opt<unsigned> 88 BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000), 89 cl::desc("The number of blocks to scan during memory " 90 "dependency analysis (default = 1000)")); 91 92 // Limit on the number of memdep results to process. 93 static const unsigned int NumResultsLimit = 100; 94 95 /// This is a helper function that removes Val from 'Inst's set in ReverseMap. 96 /// 97 /// If the set becomes empty, remove Inst's entry. 98 template <typename KeyTy> 99 static void 100 RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap, 101 Instruction *Inst, KeyTy Val) { 102 typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt = 103 ReverseMap.find(Inst); 104 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); 105 bool Found = InstIt->second.erase(Val); 106 assert(Found && "Invalid reverse map!"); 107 (void)Found; 108 if (InstIt->second.empty()) 109 ReverseMap.erase(InstIt); 110 } 111 112 /// If the given instruction references a specific memory location, fill in Loc 113 /// with the details, otherwise set Loc.Ptr to null. 114 /// 115 /// Returns a ModRefInfo value describing the general behavior of the 116 /// instruction. 117 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc, 118 const TargetLibraryInfo &TLI) { 119 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 120 if (LI->isUnordered()) { 121 Loc = MemoryLocation::get(LI); 122 return ModRefInfo::Ref; 123 } 124 if (LI->getOrdering() == AtomicOrdering::Monotonic) { 125 Loc = MemoryLocation::get(LI); 126 return ModRefInfo::ModRef; 127 } 128 Loc = MemoryLocation(); 129 return ModRefInfo::ModRef; 130 } 131 132 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 133 if (SI->isUnordered()) { 134 Loc = MemoryLocation::get(SI); 135 return ModRefInfo::Mod; 136 } 137 if (SI->getOrdering() == AtomicOrdering::Monotonic) { 138 Loc = MemoryLocation::get(SI); 139 return ModRefInfo::ModRef; 140 } 141 Loc = MemoryLocation(); 142 return ModRefInfo::ModRef; 143 } 144 145 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { 146 Loc = MemoryLocation::get(V); 147 return ModRefInfo::ModRef; 148 } 149 150 if (const CallInst *CI = isFreeCall(Inst, &TLI)) { 151 // calls to free() deallocate the entire structure 152 Loc = MemoryLocation(CI->getArgOperand(0)); 153 return ModRefInfo::Mod; 154 } 155 156 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 157 switch (II->getIntrinsicID()) { 158 case Intrinsic::lifetime_start: 159 case Intrinsic::lifetime_end: 160 case Intrinsic::invariant_start: 161 Loc = MemoryLocation::getForArgument(II, 1, TLI); 162 // These intrinsics don't really modify the memory, but returning Mod 163 // will allow them to be handled conservatively. 164 return ModRefInfo::Mod; 165 case Intrinsic::invariant_end: 166 Loc = MemoryLocation::getForArgument(II, 2, TLI); 167 // These intrinsics don't really modify the memory, but returning Mod 168 // will allow them to be handled conservatively. 169 return ModRefInfo::Mod; 170 default: 171 break; 172 } 173 } 174 175 // Otherwise, just do the coarse-grained thing that always works. 176 if (Inst->mayWriteToMemory()) 177 return ModRefInfo::ModRef; 178 if (Inst->mayReadFromMemory()) 179 return ModRefInfo::Ref; 180 return ModRefInfo::NoModRef; 181 } 182 183 /// Private helper for finding the local dependencies of a call site. 184 MemDepResult MemoryDependenceResults::getCallSiteDependencyFrom( 185 CallSite CS, bool isReadOnlyCall, BasicBlock::iterator ScanIt, 186 BasicBlock *BB) { 187 unsigned Limit = BlockScanLimit; 188 189 // Walk backwards through the block, looking for dependencies. 190 while (ScanIt != BB->begin()) { 191 Instruction *Inst = &*--ScanIt; 192 // Debug intrinsics don't cause dependences and should not affect Limit 193 if (isa<DbgInfoIntrinsic>(Inst)) 194 continue; 195 196 // Limit the amount of scanning we do so we don't end up with quadratic 197 // running time on extreme testcases. 198 --Limit; 199 if (!Limit) 200 return MemDepResult::getUnknown(); 201 202 // If this inst is a memory op, get the pointer it accessed 203 MemoryLocation Loc; 204 ModRefInfo MR = GetLocation(Inst, Loc, TLI); 205 if (Loc.Ptr) { 206 // A simple instruction. 207 if (isModOrRefSet(AA.getModRefInfo(CS, Loc))) 208 return MemDepResult::getClobber(Inst); 209 continue; 210 } 211 212 if (auto InstCS = CallSite(Inst)) { 213 // If these two calls do not interfere, look past it. 214 if (isNoModRef(AA.getModRefInfo(CS, InstCS))) { 215 // If the two calls are the same, return InstCS as a Def, so that 216 // CS can be found redundant and eliminated. 217 if (isReadOnlyCall && !isModSet(MR) && 218 CS.getInstruction()->isIdenticalToWhenDefined(Inst)) 219 return MemDepResult::getDef(Inst); 220 221 // Otherwise if the two calls don't interact (e.g. InstCS is readnone) 222 // keep scanning. 223 continue; 224 } else 225 return MemDepResult::getClobber(Inst); 226 } 227 228 // If we could not obtain a pointer for the instruction and the instruction 229 // touches memory then assume that this is a dependency. 230 if (isModOrRefSet(MR)) 231 return MemDepResult::getClobber(Inst); 232 } 233 234 // No dependence found. If this is the entry block of the function, it is 235 // unknown, otherwise it is non-local. 236 if (BB != &BB->getParent()->getEntryBlock()) 237 return MemDepResult::getNonLocal(); 238 return MemDepResult::getNonFuncLocal(); 239 } 240 241 unsigned MemoryDependenceResults::getLoadLoadClobberFullWidthSize( 242 const Value *MemLocBase, int64_t MemLocOffs, unsigned MemLocSize, 243 const LoadInst *LI) { 244 // We can only extend simple integer loads. 245 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) 246 return 0; 247 248 // Load widening is hostile to ThreadSanitizer: it may cause false positives 249 // or make the reports more cryptic (access sizes are wrong). 250 if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread)) 251 return 0; 252 253 const DataLayout &DL = LI->getModule()->getDataLayout(); 254 255 // Get the base of this load. 256 int64_t LIOffs = 0; 257 const Value *LIBase = 258 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL); 259 260 // If the two pointers are not based on the same pointer, we can't tell that 261 // they are related. 262 if (LIBase != MemLocBase) 263 return 0; 264 265 // Okay, the two values are based on the same pointer, but returned as 266 // no-alias. This happens when we have things like two byte loads at "P+1" 267 // and "P+3". Check to see if increasing the size of the "LI" load up to its 268 // alignment (or the largest native integer type) will allow us to load all 269 // the bits required by MemLoc. 270 271 // If MemLoc is before LI, then no widening of LI will help us out. 272 if (MemLocOffs < LIOffs) 273 return 0; 274 275 // Get the alignment of the load in bytes. We assume that it is safe to load 276 // any legal integer up to this size without a problem. For example, if we're 277 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can 278 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it 279 // to i16. 280 unsigned LoadAlign = LI->getAlignment(); 281 282 int64_t MemLocEnd = MemLocOffs + MemLocSize; 283 284 // If no amount of rounding up will let MemLoc fit into LI, then bail out. 285 if (LIOffs + LoadAlign < MemLocEnd) 286 return 0; 287 288 // This is the size of the load to try. Start with the next larger power of 289 // two. 290 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits() / 8U; 291 NewLoadByteSize = NextPowerOf2(NewLoadByteSize); 292 293 while (true) { 294 // If this load size is bigger than our known alignment or would not fit 295 // into a native integer register, then we fail. 296 if (NewLoadByteSize > LoadAlign || 297 !DL.fitsInLegalInteger(NewLoadByteSize * 8)) 298 return 0; 299 300 if (LIOffs + NewLoadByteSize > MemLocEnd && 301 (LI->getParent()->getParent()->hasFnAttribute( 302 Attribute::SanitizeAddress) || 303 LI->getParent()->getParent()->hasFnAttribute( 304 Attribute::SanitizeHWAddress))) 305 // We will be reading past the location accessed by the original program. 306 // While this is safe in a regular build, Address Safety analysis tools 307 // may start reporting false warnings. So, don't do widening. 308 return 0; 309 310 // If a load of this width would include all of MemLoc, then we succeed. 311 if (LIOffs + NewLoadByteSize >= MemLocEnd) 312 return NewLoadByteSize; 313 314 NewLoadByteSize <<= 1; 315 } 316 } 317 318 static bool isVolatile(Instruction *Inst) { 319 if (auto *LI = dyn_cast<LoadInst>(Inst)) 320 return LI->isVolatile(); 321 if (auto *SI = dyn_cast<StoreInst>(Inst)) 322 return SI->isVolatile(); 323 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(Inst)) 324 return AI->isVolatile(); 325 return false; 326 } 327 328 MemDepResult MemoryDependenceResults::getPointerDependencyFrom( 329 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 330 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) { 331 MemDepResult InvariantGroupDependency = MemDepResult::getUnknown(); 332 if (QueryInst != nullptr) { 333 if (auto *LI = dyn_cast<LoadInst>(QueryInst)) { 334 InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB); 335 336 if (InvariantGroupDependency.isDef()) 337 return InvariantGroupDependency; 338 } 339 } 340 MemDepResult SimpleDep = getSimplePointerDependencyFrom( 341 MemLoc, isLoad, ScanIt, BB, QueryInst, Limit); 342 if (SimpleDep.isDef()) 343 return SimpleDep; 344 // Non-local invariant group dependency indicates there is non local Def 345 // (it only returns nonLocal if it finds nonLocal def), which is better than 346 // local clobber and everything else. 347 if (InvariantGroupDependency.isNonLocal()) 348 return InvariantGroupDependency; 349 350 assert(InvariantGroupDependency.isUnknown() && 351 "InvariantGroupDependency should be only unknown at this point"); 352 return SimpleDep; 353 } 354 355 MemDepResult 356 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI, 357 BasicBlock *BB) { 358 auto *InvariantGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group); 359 if (!InvariantGroupMD) 360 return MemDepResult::getUnknown(); 361 362 // Take the ptr operand after all casts and geps 0. This way we can search 363 // cast graph down only. 364 Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts(); 365 366 // It's is not safe to walk the use list of global value, because function 367 // passes aren't allowed to look outside their functions. 368 // FIXME: this could be fixed by filtering instructions from outside 369 // of current function. 370 if (isa<GlobalValue>(LoadOperand)) 371 return MemDepResult::getUnknown(); 372 373 // Queue to process all pointers that are equivalent to load operand. 374 SmallVector<const Value *, 8> LoadOperandsQueue; 375 LoadOperandsQueue.push_back(LoadOperand); 376 377 Instruction *ClosestDependency = nullptr; 378 // Order of instructions in uses list is unpredictible. In order to always 379 // get the same result, we will look for the closest dominance. 380 auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) { 381 assert(Other && "Must call it with not null instruction"); 382 if (Best == nullptr || DT.dominates(Best, Other)) 383 return Other; 384 return Best; 385 }; 386 387 // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case 388 // we will see all the instructions. This should be fixed in MSSA. 389 while (!LoadOperandsQueue.empty()) { 390 const Value *Ptr = LoadOperandsQueue.pop_back_val(); 391 assert(Ptr && !isa<GlobalValue>(Ptr) && 392 "Null or GlobalValue should not be inserted"); 393 394 for (const Use &Us : Ptr->uses()) { 395 auto *U = dyn_cast<Instruction>(Us.getUser()); 396 if (!U || U == LI || !DT.dominates(U, LI)) 397 continue; 398 399 // Bitcast or gep with zeros are using Ptr. Add to queue to check it's 400 // users. U = bitcast Ptr 401 if (isa<BitCastInst>(U)) { 402 LoadOperandsQueue.push_back(U); 403 continue; 404 } 405 // Gep with zeros is equivalent to bitcast. 406 // FIXME: we are not sure if some bitcast should be canonicalized to gep 0 407 // or gep 0 to bitcast because of SROA, so there are 2 forms. When 408 // typeless pointers will be ready then both cases will be gone 409 // (and this BFS also won't be needed). 410 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) 411 if (GEP->hasAllZeroIndices()) { 412 LoadOperandsQueue.push_back(U); 413 continue; 414 } 415 416 // If we hit load/store with the same invariant.group metadata (and the 417 // same pointer operand) we can assume that value pointed by pointer 418 // operand didn't change. 419 if ((isa<LoadInst>(U) || isa<StoreInst>(U)) && 420 U->getMetadata(LLVMContext::MD_invariant_group) == InvariantGroupMD) 421 ClosestDependency = GetClosestDependency(ClosestDependency, U); 422 } 423 } 424 425 if (!ClosestDependency) 426 return MemDepResult::getUnknown(); 427 if (ClosestDependency->getParent() == BB) 428 return MemDepResult::getDef(ClosestDependency); 429 // Def(U) can't be returned here because it is non-local. If local 430 // dependency won't be found then return nonLocal counting that the 431 // user will call getNonLocalPointerDependency, which will return cached 432 // result. 433 NonLocalDefsCache.try_emplace( 434 LI, NonLocalDepResult(ClosestDependency->getParent(), 435 MemDepResult::getDef(ClosestDependency), nullptr)); 436 return MemDepResult::getNonLocal(); 437 } 438 439 MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom( 440 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 441 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) { 442 bool isInvariantLoad = false; 443 444 if (!Limit) { 445 unsigned DefaultLimit = BlockScanLimit; 446 return getSimplePointerDependencyFrom(MemLoc, isLoad, ScanIt, BB, QueryInst, 447 &DefaultLimit); 448 } 449 450 // We must be careful with atomic accesses, as they may allow another thread 451 // to touch this location, clobbering it. We are conservative: if the 452 // QueryInst is not a simple (non-atomic) memory access, we automatically 453 // return getClobber. 454 // If it is simple, we know based on the results of 455 // "Compiler testing via a theory of sound optimisations in the C11/C++11 456 // memory model" in PLDI 2013, that a non-atomic location can only be 457 // clobbered between a pair of a release and an acquire action, with no 458 // access to the location in between. 459 // Here is an example for giving the general intuition behind this rule. 460 // In the following code: 461 // store x 0; 462 // release action; [1] 463 // acquire action; [4] 464 // %val = load x; 465 // It is unsafe to replace %val by 0 because another thread may be running: 466 // acquire action; [2] 467 // store x 42; 468 // release action; [3] 469 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val 470 // being 42. A key property of this program however is that if either 471 // 1 or 4 were missing, there would be a race between the store of 42 472 // either the store of 0 or the load (making the whole program racy). 473 // The paper mentioned above shows that the same property is respected 474 // by every program that can detect any optimization of that kind: either 475 // it is racy (undefined) or there is a release followed by an acquire 476 // between the pair of accesses under consideration. 477 478 // If the load is invariant, we "know" that it doesn't alias *any* write. We 479 // do want to respect mustalias results since defs are useful for value 480 // forwarding, but any mayalias write can be assumed to be noalias. 481 // Arguably, this logic should be pushed inside AliasAnalysis itself. 482 if (isLoad && QueryInst) { 483 LoadInst *LI = dyn_cast<LoadInst>(QueryInst); 484 if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr) 485 isInvariantLoad = true; 486 } 487 488 const DataLayout &DL = BB->getModule()->getDataLayout(); 489 490 // Create a numbered basic block to lazily compute and cache instruction 491 // positions inside a BB. This is used to provide fast queries for relative 492 // position between two instructions in a BB and can be used by 493 // AliasAnalysis::callCapturesBefore. 494 OrderedBasicBlock OBB(BB); 495 496 // Return "true" if and only if the instruction I is either a non-simple 497 // load or a non-simple store. 498 auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool { 499 if (auto *LI = dyn_cast<LoadInst>(I)) 500 return !LI->isSimple(); 501 if (auto *SI = dyn_cast<StoreInst>(I)) 502 return !SI->isSimple(); 503 return false; 504 }; 505 506 // Return "true" if I is not a load and not a store, but it does access 507 // memory. 508 auto isOtherMemAccess = [](Instruction *I) -> bool { 509 return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory(); 510 }; 511 512 // Walk backwards through the basic block, looking for dependencies. 513 while (ScanIt != BB->begin()) { 514 Instruction *Inst = &*--ScanIt; 515 516 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 517 // Debug intrinsics don't (and can't) cause dependencies. 518 if (isa<DbgInfoIntrinsic>(II)) 519 continue; 520 521 // Limit the amount of scanning we do so we don't end up with quadratic 522 // running time on extreme testcases. 523 --*Limit; 524 if (!*Limit) 525 return MemDepResult::getUnknown(); 526 527 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 528 // If we reach a lifetime begin or end marker, then the query ends here 529 // because the value is undefined. 530 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 531 // FIXME: This only considers queries directly on the invariant-tagged 532 // pointer, not on query pointers that are indexed off of them. It'd 533 // be nice to handle that at some point (the right approach is to use 534 // GetPointerBaseWithConstantOffset). 535 if (AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc)) 536 return MemDepResult::getDef(II); 537 continue; 538 } 539 } 540 541 // Values depend on loads if the pointers are must aliased. This means 542 // that a load depends on another must aliased load from the same value. 543 // One exception is atomic loads: a value can depend on an atomic load that 544 // it does not alias with when this atomic load indicates that another 545 // thread may be accessing the location. 546 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 547 // While volatile access cannot be eliminated, they do not have to clobber 548 // non-aliasing locations, as normal accesses, for example, can be safely 549 // reordered with volatile accesses. 550 if (LI->isVolatile()) { 551 if (!QueryInst) 552 // Original QueryInst *may* be volatile 553 return MemDepResult::getClobber(LI); 554 if (isVolatile(QueryInst)) 555 // Ordering required if QueryInst is itself volatile 556 return MemDepResult::getClobber(LI); 557 // Otherwise, volatile doesn't imply any special ordering 558 } 559 560 // Atomic loads have complications involved. 561 // A Monotonic (or higher) load is OK if the query inst is itself not 562 // atomic. 563 // FIXME: This is overly conservative. 564 if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) { 565 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 566 isOtherMemAccess(QueryInst)) 567 return MemDepResult::getClobber(LI); 568 if (LI->getOrdering() != AtomicOrdering::Monotonic) 569 return MemDepResult::getClobber(LI); 570 } 571 572 MemoryLocation LoadLoc = MemoryLocation::get(LI); 573 574 // If we found a pointer, check if it could be the same as our pointer. 575 AliasResult R = AA.alias(LoadLoc, MemLoc); 576 577 if (isLoad) { 578 if (R == NoAlias) 579 continue; 580 581 // Must aliased loads are defs of each other. 582 if (R == MustAlias) 583 return MemDepResult::getDef(Inst); 584 585 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads 586 // in terms of clobbering loads, but since it does this by looking 587 // at the clobbering load directly, it doesn't know about any 588 // phi translation that may have happened along the way. 589 590 // If we have a partial alias, then return this as a clobber for the 591 // client to handle. 592 if (R == PartialAlias) 593 return MemDepResult::getClobber(Inst); 594 #endif 595 596 // Random may-alias loads don't depend on each other without a 597 // dependence. 598 continue; 599 } 600 601 // Stores don't depend on other no-aliased accesses. 602 if (R == NoAlias) 603 continue; 604 605 // Stores don't alias loads from read-only memory. 606 if (AA.pointsToConstantMemory(LoadLoc)) 607 continue; 608 609 // Stores depend on may/must aliased loads. 610 return MemDepResult::getDef(Inst); 611 } 612 613 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 614 // Atomic stores have complications involved. 615 // A Monotonic store is OK if the query inst is itself not atomic. 616 // FIXME: This is overly conservative. 617 if (!SI->isUnordered() && SI->isAtomic()) { 618 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 619 isOtherMemAccess(QueryInst)) 620 return MemDepResult::getClobber(SI); 621 if (SI->getOrdering() != AtomicOrdering::Monotonic) 622 return MemDepResult::getClobber(SI); 623 } 624 625 // FIXME: this is overly conservative. 626 // While volatile access cannot be eliminated, they do not have to clobber 627 // non-aliasing locations, as normal accesses can for example be reordered 628 // with volatile accesses. 629 if (SI->isVolatile()) 630 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 631 isOtherMemAccess(QueryInst)) 632 return MemDepResult::getClobber(SI); 633 634 // If alias analysis can tell that this store is guaranteed to not modify 635 // the query pointer, ignore it. Use getModRefInfo to handle cases where 636 // the query pointer points to constant memory etc. 637 if (!isModOrRefSet(AA.getModRefInfo(SI, MemLoc))) 638 continue; 639 640 // Ok, this store might clobber the query pointer. Check to see if it is 641 // a must alias: in this case, we want to return this as a def. 642 // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above. 643 MemoryLocation StoreLoc = MemoryLocation::get(SI); 644 645 // If we found a pointer, check if it could be the same as our pointer. 646 AliasResult R = AA.alias(StoreLoc, MemLoc); 647 648 if (R == NoAlias) 649 continue; 650 if (R == MustAlias) 651 return MemDepResult::getDef(Inst); 652 if (isInvariantLoad) 653 continue; 654 return MemDepResult::getClobber(Inst); 655 } 656 657 // If this is an allocation, and if we know that the accessed pointer is to 658 // the allocation, return Def. This means that there is no dependence and 659 // the access can be optimized based on that. For example, a load could 660 // turn into undef. Note that we can bypass the allocation itself when 661 // looking for a clobber in many cases; that's an alias property and is 662 // handled by BasicAA. 663 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) { 664 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL); 665 if (AccessPtr == Inst || AA.isMustAlias(Inst, AccessPtr)) 666 return MemDepResult::getDef(Inst); 667 } 668 669 if (isInvariantLoad) 670 continue; 671 672 // A release fence requires that all stores complete before it, but does 673 // not prevent the reordering of following loads or stores 'before' the 674 // fence. As a result, we look past it when finding a dependency for 675 // loads. DSE uses this to find preceeding stores to delete and thus we 676 // can't bypass the fence if the query instruction is a store. 677 if (FenceInst *FI = dyn_cast<FenceInst>(Inst)) 678 if (isLoad && FI->getOrdering() == AtomicOrdering::Release) 679 continue; 680 681 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. 682 ModRefInfo MR = AA.getModRefInfo(Inst, MemLoc); 683 // If necessary, perform additional analysis. 684 if (isModAndRefSet(MR)) 685 MR = AA.callCapturesBefore(Inst, MemLoc, &DT, &OBB); 686 switch (clearMust(MR)) { 687 case ModRefInfo::NoModRef: 688 // If the call has no effect on the queried pointer, just ignore it. 689 continue; 690 case ModRefInfo::Mod: 691 return MemDepResult::getClobber(Inst); 692 case ModRefInfo::Ref: 693 // If the call is known to never store to the pointer, and if this is a 694 // load query, we can safely ignore it (scan past it). 695 if (isLoad) 696 continue; 697 LLVM_FALLTHROUGH; 698 default: 699 // Otherwise, there is a potential dependence. Return a clobber. 700 return MemDepResult::getClobber(Inst); 701 } 702 } 703 704 // No dependence found. If this is the entry block of the function, it is 705 // unknown, otherwise it is non-local. 706 if (BB != &BB->getParent()->getEntryBlock()) 707 return MemDepResult::getNonLocal(); 708 return MemDepResult::getNonFuncLocal(); 709 } 710 711 MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) { 712 Instruction *ScanPos = QueryInst; 713 714 // Check for a cached result 715 MemDepResult &LocalCache = LocalDeps[QueryInst]; 716 717 // If the cached entry is non-dirty, just return it. Note that this depends 718 // on MemDepResult's default constructing to 'dirty'. 719 if (!LocalCache.isDirty()) 720 return LocalCache; 721 722 // Otherwise, if we have a dirty entry, we know we can start the scan at that 723 // instruction, which may save us some work. 724 if (Instruction *Inst = LocalCache.getInst()) { 725 ScanPos = Inst; 726 727 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); 728 } 729 730 BasicBlock *QueryParent = QueryInst->getParent(); 731 732 // Do the scan. 733 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { 734 // No dependence found. If this is the entry block of the function, it is 735 // unknown, otherwise it is non-local. 736 if (QueryParent != &QueryParent->getParent()->getEntryBlock()) 737 LocalCache = MemDepResult::getNonLocal(); 738 else 739 LocalCache = MemDepResult::getNonFuncLocal(); 740 } else { 741 MemoryLocation MemLoc; 742 ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI); 743 if (MemLoc.Ptr) { 744 // If we can do a pointer scan, make it happen. 745 bool isLoad = !isModSet(MR); 746 if (auto *II = dyn_cast<IntrinsicInst>(QueryInst)) 747 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start; 748 749 LocalCache = getPointerDependencyFrom( 750 MemLoc, isLoad, ScanPos->getIterator(), QueryParent, QueryInst); 751 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) { 752 CallSite QueryCS(QueryInst); 753 bool isReadOnly = AA.onlyReadsMemory(QueryCS); 754 LocalCache = getCallSiteDependencyFrom( 755 QueryCS, isReadOnly, ScanPos->getIterator(), QueryParent); 756 } else 757 // Non-memory instruction. 758 LocalCache = MemDepResult::getUnknown(); 759 } 760 761 // Remember the result! 762 if (Instruction *I = LocalCache.getInst()) 763 ReverseLocalDeps[I].insert(QueryInst); 764 765 return LocalCache; 766 } 767 768 #ifndef NDEBUG 769 /// This method is used when -debug is specified to verify that cache arrays 770 /// are properly kept sorted. 771 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache, 772 int Count = -1) { 773 if (Count == -1) 774 Count = Cache.size(); 775 assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) && 776 "Cache isn't sorted!"); 777 } 778 #endif 779 780 const MemoryDependenceResults::NonLocalDepInfo & 781 MemoryDependenceResults::getNonLocalCallDependency(CallSite QueryCS) { 782 assert(getDependency(QueryCS.getInstruction()).isNonLocal() && 783 "getNonLocalCallDependency should only be used on calls with " 784 "non-local deps!"); 785 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()]; 786 NonLocalDepInfo &Cache = CacheP.first; 787 788 // This is the set of blocks that need to be recomputed. In the cached case, 789 // this can happen due to instructions being deleted etc. In the uncached 790 // case, this starts out as the set of predecessors we care about. 791 SmallVector<BasicBlock *, 32> DirtyBlocks; 792 793 if (!Cache.empty()) { 794 // Okay, we have a cache entry. If we know it is not dirty, just return it 795 // with no computation. 796 if (!CacheP.second) { 797 ++NumCacheNonLocal; 798 return Cache; 799 } 800 801 // If we already have a partially computed set of results, scan them to 802 // determine what is dirty, seeding our initial DirtyBlocks worklist. 803 for (auto &Entry : Cache) 804 if (Entry.getResult().isDirty()) 805 DirtyBlocks.push_back(Entry.getBB()); 806 807 // Sort the cache so that we can do fast binary search lookups below. 808 std::sort(Cache.begin(), Cache.end()); 809 810 ++NumCacheDirtyNonLocal; 811 // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " 812 // << Cache.size() << " cached: " << *QueryInst; 813 } else { 814 // Seed DirtyBlocks with each of the preds of QueryInst's block. 815 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent(); 816 for (BasicBlock *Pred : PredCache.get(QueryBB)) 817 DirtyBlocks.push_back(Pred); 818 ++NumUncacheNonLocal; 819 } 820 821 // isReadonlyCall - If this is a read-only call, we can be more aggressive. 822 bool isReadonlyCall = AA.onlyReadsMemory(QueryCS); 823 824 SmallPtrSet<BasicBlock *, 32> Visited; 825 826 unsigned NumSortedEntries = Cache.size(); 827 DEBUG(AssertSorted(Cache)); 828 829 // Iterate while we still have blocks to update. 830 while (!DirtyBlocks.empty()) { 831 BasicBlock *DirtyBB = DirtyBlocks.back(); 832 DirtyBlocks.pop_back(); 833 834 // Already processed this block? 835 if (!Visited.insert(DirtyBB).second) 836 continue; 837 838 // Do a binary search to see if we already have an entry for this block in 839 // the cache set. If so, find it. 840 DEBUG(AssertSorted(Cache, NumSortedEntries)); 841 NonLocalDepInfo::iterator Entry = 842 std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries, 843 NonLocalDepEntry(DirtyBB)); 844 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB) 845 --Entry; 846 847 NonLocalDepEntry *ExistingResult = nullptr; 848 if (Entry != Cache.begin() + NumSortedEntries && 849 Entry->getBB() == DirtyBB) { 850 // If we already have an entry, and if it isn't already dirty, the block 851 // is done. 852 if (!Entry->getResult().isDirty()) 853 continue; 854 855 // Otherwise, remember this slot so we can update the value. 856 ExistingResult = &*Entry; 857 } 858 859 // If the dirty entry has a pointer, start scanning from it so we don't have 860 // to rescan the entire block. 861 BasicBlock::iterator ScanPos = DirtyBB->end(); 862 if (ExistingResult) { 863 if (Instruction *Inst = ExistingResult->getResult().getInst()) { 864 ScanPos = Inst->getIterator(); 865 // We're removing QueryInst's use of Inst. 866 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, 867 QueryCS.getInstruction()); 868 } 869 } 870 871 // Find out if this block has a local dependency for QueryInst. 872 MemDepResult Dep; 873 874 if (ScanPos != DirtyBB->begin()) { 875 Dep = 876 getCallSiteDependencyFrom(QueryCS, isReadonlyCall, ScanPos, DirtyBB); 877 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { 878 // No dependence found. If this is the entry block of the function, it is 879 // a clobber, otherwise it is unknown. 880 Dep = MemDepResult::getNonLocal(); 881 } else { 882 Dep = MemDepResult::getNonFuncLocal(); 883 } 884 885 // If we had a dirty entry for the block, update it. Otherwise, just add 886 // a new entry. 887 if (ExistingResult) 888 ExistingResult->setResult(Dep); 889 else 890 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); 891 892 // If the block has a dependency (i.e. it isn't completely transparent to 893 // the value), remember the association! 894 if (!Dep.isNonLocal()) { 895 // Keep the ReverseNonLocalDeps map up to date so we can efficiently 896 // update this when we remove instructions. 897 if (Instruction *Inst = Dep.getInst()) 898 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction()); 899 } else { 900 901 // If the block *is* completely transparent to the load, we need to check 902 // the predecessors of this block. Add them to our worklist. 903 for (BasicBlock *Pred : PredCache.get(DirtyBB)) 904 DirtyBlocks.push_back(Pred); 905 } 906 } 907 908 return Cache; 909 } 910 911 void MemoryDependenceResults::getNonLocalPointerDependency( 912 Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) { 913 const MemoryLocation Loc = MemoryLocation::get(QueryInst); 914 bool isLoad = isa<LoadInst>(QueryInst); 915 BasicBlock *FromBB = QueryInst->getParent(); 916 assert(FromBB); 917 918 assert(Loc.Ptr->getType()->isPointerTy() && 919 "Can't get pointer deps of a non-pointer!"); 920 Result.clear(); 921 { 922 // Check if there is cached Def with invariant.group. FIXME: cache might be 923 // invalid if cached instruction would be removed between call to 924 // getPointerDependencyFrom and this function. 925 auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst); 926 if (NonLocalDefIt != NonLocalDefsCache.end()) { 927 Result.push_back(std::move(NonLocalDefIt->second)); 928 NonLocalDefsCache.erase(NonLocalDefIt); 929 return; 930 } 931 } 932 // This routine does not expect to deal with volatile instructions. 933 // Doing so would require piping through the QueryInst all the way through. 934 // TODO: volatiles can't be elided, but they can be reordered with other 935 // non-volatile accesses. 936 937 // We currently give up on any instruction which is ordered, but we do handle 938 // atomic instructions which are unordered. 939 // TODO: Handle ordered instructions 940 auto isOrdered = [](Instruction *Inst) { 941 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 942 return !LI->isUnordered(); 943 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 944 return !SI->isUnordered(); 945 } 946 return false; 947 }; 948 if (isVolatile(QueryInst) || isOrdered(QueryInst)) { 949 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(), 950 const_cast<Value *>(Loc.Ptr))); 951 return; 952 } 953 const DataLayout &DL = FromBB->getModule()->getDataLayout(); 954 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC); 955 956 // This is the set of blocks we've inspected, and the pointer we consider in 957 // each block. Because of critical edges, we currently bail out if querying 958 // a block with multiple different pointers. This can happen during PHI 959 // translation. 960 DenseMap<BasicBlock *, Value *> Visited; 961 if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB, 962 Result, Visited, true)) 963 return; 964 Result.clear(); 965 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(), 966 const_cast<Value *>(Loc.Ptr))); 967 } 968 969 /// Compute the memdep value for BB with Pointer/PointeeSize using either 970 /// cached information in Cache or by doing a lookup (which may use dirty cache 971 /// info if available). 972 /// 973 /// If we do a lookup, add the result to the cache. 974 MemDepResult MemoryDependenceResults::GetNonLocalInfoForBlock( 975 Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad, 976 BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) { 977 978 // Do a binary search to see if we already have an entry for this block in 979 // the cache set. If so, find it. 980 NonLocalDepInfo::iterator Entry = std::upper_bound( 981 Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB)); 982 if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB) 983 --Entry; 984 985 NonLocalDepEntry *ExistingResult = nullptr; 986 if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB) 987 ExistingResult = &*Entry; 988 989 // If we have a cached entry, and it is non-dirty, use it as the value for 990 // this dependency. 991 if (ExistingResult && !ExistingResult->getResult().isDirty()) { 992 ++NumCacheNonLocalPtr; 993 return ExistingResult->getResult(); 994 } 995 996 // Otherwise, we have to scan for the value. If we have a dirty cache 997 // entry, start scanning from its position, otherwise we scan from the end 998 // of the block. 999 BasicBlock::iterator ScanPos = BB->end(); 1000 if (ExistingResult && ExistingResult->getResult().getInst()) { 1001 assert(ExistingResult->getResult().getInst()->getParent() == BB && 1002 "Instruction invalidated?"); 1003 ++NumCacheDirtyNonLocalPtr; 1004 ScanPos = ExistingResult->getResult().getInst()->getIterator(); 1005 1006 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1007 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 1008 RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey); 1009 } else { 1010 ++NumUncacheNonLocalPtr; 1011 } 1012 1013 // Scan the block for the dependency. 1014 MemDepResult Dep = 1015 getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, QueryInst); 1016 1017 // If we had a dirty entry for the block, update it. Otherwise, just add 1018 // a new entry. 1019 if (ExistingResult) 1020 ExistingResult->setResult(Dep); 1021 else 1022 Cache->push_back(NonLocalDepEntry(BB, Dep)); 1023 1024 // If the block has a dependency (i.e. it isn't completely transparent to 1025 // the value), remember the reverse association because we just added it 1026 // to Cache! 1027 if (!Dep.isDef() && !Dep.isClobber()) 1028 return Dep; 1029 1030 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently 1031 // update MemDep when we remove instructions. 1032 Instruction *Inst = Dep.getInst(); 1033 assert(Inst && "Didn't depend on anything?"); 1034 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 1035 ReverseNonLocalPtrDeps[Inst].insert(CacheKey); 1036 return Dep; 1037 } 1038 1039 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the 1040 /// array that are already properly ordered. 1041 /// 1042 /// This is optimized for the case when only a few entries are added. 1043 static void 1044 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache, 1045 unsigned NumSortedEntries) { 1046 switch (Cache.size() - NumSortedEntries) { 1047 case 0: 1048 // done, no new entries. 1049 break; 1050 case 2: { 1051 // Two new entries, insert the last one into place. 1052 NonLocalDepEntry Val = Cache.back(); 1053 Cache.pop_back(); 1054 MemoryDependenceResults::NonLocalDepInfo::iterator Entry = 1055 std::upper_bound(Cache.begin(), Cache.end() - 1, Val); 1056 Cache.insert(Entry, Val); 1057 LLVM_FALLTHROUGH; 1058 } 1059 case 1: 1060 // One new entry, Just insert the new value at the appropriate position. 1061 if (Cache.size() != 1) { 1062 NonLocalDepEntry Val = Cache.back(); 1063 Cache.pop_back(); 1064 MemoryDependenceResults::NonLocalDepInfo::iterator Entry = 1065 std::upper_bound(Cache.begin(), Cache.end(), Val); 1066 Cache.insert(Entry, Val); 1067 } 1068 break; 1069 default: 1070 // Added many values, do a full scale sort. 1071 std::sort(Cache.begin(), Cache.end()); 1072 break; 1073 } 1074 } 1075 1076 /// Perform a dependency query based on pointer/pointeesize starting at the end 1077 /// of StartBB. 1078 /// 1079 /// Add any clobber/def results to the results vector and keep track of which 1080 /// blocks are visited in 'Visited'. 1081 /// 1082 /// This has special behavior for the first block queries (when SkipFirstBlock 1083 /// is true). In this special case, it ignores the contents of the specified 1084 /// block and starts returning dependence info for its predecessors. 1085 /// 1086 /// This function returns true on success, or false to indicate that it could 1087 /// not compute dependence information for some reason. This should be treated 1088 /// as a clobber dependence on the first instruction in the predecessor block. 1089 bool MemoryDependenceResults::getNonLocalPointerDepFromBB( 1090 Instruction *QueryInst, const PHITransAddr &Pointer, 1091 const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB, 1092 SmallVectorImpl<NonLocalDepResult> &Result, 1093 DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock) { 1094 // Look up the cached info for Pointer. 1095 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); 1096 1097 // Set up a temporary NLPI value. If the map doesn't yet have an entry for 1098 // CacheKey, this value will be inserted as the associated value. Otherwise, 1099 // it'll be ignored, and we'll have to check to see if the cached size and 1100 // aa tags are consistent with the current query. 1101 NonLocalPointerInfo InitialNLPI; 1102 InitialNLPI.Size = Loc.Size; 1103 InitialNLPI.AATags = Loc.AATags; 1104 1105 // Get the NLPI for CacheKey, inserting one into the map if it doesn't 1106 // already have one. 1107 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = 1108 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); 1109 NonLocalPointerInfo *CacheInfo = &Pair.first->second; 1110 1111 // If we already have a cache entry for this CacheKey, we may need to do some 1112 // work to reconcile the cache entry and the current query. 1113 if (!Pair.second) { 1114 if (CacheInfo->Size < Loc.Size) { 1115 // The query's Size is greater than the cached one. Throw out the 1116 // cached data and proceed with the query at the greater size. 1117 CacheInfo->Pair = BBSkipFirstBlockPair(); 1118 CacheInfo->Size = Loc.Size; 1119 for (auto &Entry : CacheInfo->NonLocalDeps) 1120 if (Instruction *Inst = Entry.getResult().getInst()) 1121 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1122 CacheInfo->NonLocalDeps.clear(); 1123 } else if (CacheInfo->Size > Loc.Size) { 1124 // This query's Size is less than the cached one. Conservatively restart 1125 // the query using the greater size. 1126 return getNonLocalPointerDepFromBB( 1127 QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad, 1128 StartBB, Result, Visited, SkipFirstBlock); 1129 } 1130 1131 // If the query's AATags are inconsistent with the cached one, 1132 // conservatively throw out the cached data and restart the query with 1133 // no tag if needed. 1134 if (CacheInfo->AATags != Loc.AATags) { 1135 if (CacheInfo->AATags) { 1136 CacheInfo->Pair = BBSkipFirstBlockPair(); 1137 CacheInfo->AATags = AAMDNodes(); 1138 for (auto &Entry : CacheInfo->NonLocalDeps) 1139 if (Instruction *Inst = Entry.getResult().getInst()) 1140 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1141 CacheInfo->NonLocalDeps.clear(); 1142 } 1143 if (Loc.AATags) 1144 return getNonLocalPointerDepFromBB( 1145 QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result, 1146 Visited, SkipFirstBlock); 1147 } 1148 } 1149 1150 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; 1151 1152 // If we have valid cached information for exactly the block we are 1153 // investigating, just return it with no recomputation. 1154 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { 1155 // We have a fully cached result for this query then we can just return the 1156 // cached results and populate the visited set. However, we have to verify 1157 // that we don't already have conflicting results for these blocks. Check 1158 // to ensure that if a block in the results set is in the visited set that 1159 // it was for the same pointer query. 1160 if (!Visited.empty()) { 1161 for (auto &Entry : *Cache) { 1162 DenseMap<BasicBlock *, Value *>::iterator VI = 1163 Visited.find(Entry.getBB()); 1164 if (VI == Visited.end() || VI->second == Pointer.getAddr()) 1165 continue; 1166 1167 // We have a pointer mismatch in a block. Just return false, saying 1168 // that something was clobbered in this result. We could also do a 1169 // non-fully cached query, but there is little point in doing this. 1170 return false; 1171 } 1172 } 1173 1174 Value *Addr = Pointer.getAddr(); 1175 for (auto &Entry : *Cache) { 1176 Visited.insert(std::make_pair(Entry.getBB(), Addr)); 1177 if (Entry.getResult().isNonLocal()) { 1178 continue; 1179 } 1180 1181 if (DT.isReachableFromEntry(Entry.getBB())) { 1182 Result.push_back( 1183 NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr)); 1184 } 1185 } 1186 ++NumCacheCompleteNonLocalPtr; 1187 return true; 1188 } 1189 1190 // Otherwise, either this is a new block, a block with an invalid cache 1191 // pointer or one that we're about to invalidate by putting more info into it 1192 // than its valid cache info. If empty, the result will be valid cache info, 1193 // otherwise it isn't. 1194 if (Cache->empty()) 1195 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); 1196 else 1197 CacheInfo->Pair = BBSkipFirstBlockPair(); 1198 1199 SmallVector<BasicBlock *, 32> Worklist; 1200 Worklist.push_back(StartBB); 1201 1202 // PredList used inside loop. 1203 SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList; 1204 1205 // Keep track of the entries that we know are sorted. Previously cached 1206 // entries will all be sorted. The entries we add we only sort on demand (we 1207 // don't insert every element into its sorted position). We know that we 1208 // won't get any reuse from currently inserted values, because we don't 1209 // revisit blocks after we insert info for them. 1210 unsigned NumSortedEntries = Cache->size(); 1211 unsigned WorklistEntries = BlockNumberLimit; 1212 bool GotWorklistLimit = false; 1213 DEBUG(AssertSorted(*Cache)); 1214 1215 while (!Worklist.empty()) { 1216 BasicBlock *BB = Worklist.pop_back_val(); 1217 1218 // If we do process a large number of blocks it becomes very expensive and 1219 // likely it isn't worth worrying about 1220 if (Result.size() > NumResultsLimit) { 1221 Worklist.clear(); 1222 // Sort it now (if needed) so that recursive invocations of 1223 // getNonLocalPointerDepFromBB and other routines that could reuse the 1224 // cache value will only see properly sorted cache arrays. 1225 if (Cache && NumSortedEntries != Cache->size()) { 1226 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1227 } 1228 // Since we bail out, the "Cache" set won't contain all of the 1229 // results for the query. This is ok (we can still use it to accelerate 1230 // specific block queries) but we can't do the fastpath "return all 1231 // results from the set". Clear out the indicator for this. 1232 CacheInfo->Pair = BBSkipFirstBlockPair(); 1233 return false; 1234 } 1235 1236 // Skip the first block if we have it. 1237 if (!SkipFirstBlock) { 1238 // Analyze the dependency of *Pointer in FromBB. See if we already have 1239 // been here. 1240 assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); 1241 1242 // Get the dependency info for Pointer in BB. If we have cached 1243 // information, we will use it, otherwise we compute it. 1244 DEBUG(AssertSorted(*Cache, NumSortedEntries)); 1245 MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, Loc, isLoad, BB, 1246 Cache, NumSortedEntries); 1247 1248 // If we got a Def or Clobber, add this to the list of results. 1249 if (!Dep.isNonLocal()) { 1250 if (DT.isReachableFromEntry(BB)) { 1251 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); 1252 continue; 1253 } 1254 } 1255 } 1256 1257 // If 'Pointer' is an instruction defined in this block, then we need to do 1258 // phi translation to change it into a value live in the predecessor block. 1259 // If not, we just add the predecessors to the worklist and scan them with 1260 // the same Pointer. 1261 if (!Pointer.NeedsPHITranslationFromBlock(BB)) { 1262 SkipFirstBlock = false; 1263 SmallVector<BasicBlock *, 16> NewBlocks; 1264 for (BasicBlock *Pred : PredCache.get(BB)) { 1265 // Verify that we haven't looked at this block yet. 1266 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = 1267 Visited.insert(std::make_pair(Pred, Pointer.getAddr())); 1268 if (InsertRes.second) { 1269 // First time we've looked at *PI. 1270 NewBlocks.push_back(Pred); 1271 continue; 1272 } 1273 1274 // If we have seen this block before, but it was with a different 1275 // pointer then we have a phi translation failure and we have to treat 1276 // this as a clobber. 1277 if (InsertRes.first->second != Pointer.getAddr()) { 1278 // Make sure to clean up the Visited map before continuing on to 1279 // PredTranslationFailure. 1280 for (unsigned i = 0; i < NewBlocks.size(); i++) 1281 Visited.erase(NewBlocks[i]); 1282 goto PredTranslationFailure; 1283 } 1284 } 1285 if (NewBlocks.size() > WorklistEntries) { 1286 // Make sure to clean up the Visited map before continuing on to 1287 // PredTranslationFailure. 1288 for (unsigned i = 0; i < NewBlocks.size(); i++) 1289 Visited.erase(NewBlocks[i]); 1290 GotWorklistLimit = true; 1291 goto PredTranslationFailure; 1292 } 1293 WorklistEntries -= NewBlocks.size(); 1294 Worklist.append(NewBlocks.begin(), NewBlocks.end()); 1295 continue; 1296 } 1297 1298 // We do need to do phi translation, if we know ahead of time we can't phi 1299 // translate this value, don't even try. 1300 if (!Pointer.IsPotentiallyPHITranslatable()) 1301 goto PredTranslationFailure; 1302 1303 // We may have added values to the cache list before this PHI translation. 1304 // If so, we haven't done anything to ensure that the cache remains sorted. 1305 // Sort it now (if needed) so that recursive invocations of 1306 // getNonLocalPointerDepFromBB and other routines that could reuse the cache 1307 // value will only see properly sorted cache arrays. 1308 if (Cache && NumSortedEntries != Cache->size()) { 1309 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1310 NumSortedEntries = Cache->size(); 1311 } 1312 Cache = nullptr; 1313 1314 PredList.clear(); 1315 for (BasicBlock *Pred : PredCache.get(BB)) { 1316 PredList.push_back(std::make_pair(Pred, Pointer)); 1317 1318 // Get the PHI translated pointer in this predecessor. This can fail if 1319 // not translatable, in which case the getAddr() returns null. 1320 PHITransAddr &PredPointer = PredList.back().second; 1321 PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false); 1322 Value *PredPtrVal = PredPointer.getAddr(); 1323 1324 // Check to see if we have already visited this pred block with another 1325 // pointer. If so, we can't do this lookup. This failure can occur 1326 // with PHI translation when a critical edge exists and the PHI node in 1327 // the successor translates to a pointer value different than the 1328 // pointer the block was first analyzed with. 1329 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = 1330 Visited.insert(std::make_pair(Pred, PredPtrVal)); 1331 1332 if (!InsertRes.second) { 1333 // We found the pred; take it off the list of preds to visit. 1334 PredList.pop_back(); 1335 1336 // If the predecessor was visited with PredPtr, then we already did 1337 // the analysis and can ignore it. 1338 if (InsertRes.first->second == PredPtrVal) 1339 continue; 1340 1341 // Otherwise, the block was previously analyzed with a different 1342 // pointer. We can't represent the result of this case, so we just 1343 // treat this as a phi translation failure. 1344 1345 // Make sure to clean up the Visited map before continuing on to 1346 // PredTranslationFailure. 1347 for (unsigned i = 0, n = PredList.size(); i < n; ++i) 1348 Visited.erase(PredList[i].first); 1349 1350 goto PredTranslationFailure; 1351 } 1352 } 1353 1354 // Actually process results here; this need to be a separate loop to avoid 1355 // calling getNonLocalPointerDepFromBB for blocks we don't want to return 1356 // any results for. (getNonLocalPointerDepFromBB will modify our 1357 // datastructures in ways the code after the PredTranslationFailure label 1358 // doesn't expect.) 1359 for (unsigned i = 0, n = PredList.size(); i < n; ++i) { 1360 BasicBlock *Pred = PredList[i].first; 1361 PHITransAddr &PredPointer = PredList[i].second; 1362 Value *PredPtrVal = PredPointer.getAddr(); 1363 1364 bool CanTranslate = true; 1365 // If PHI translation was unable to find an available pointer in this 1366 // predecessor, then we have to assume that the pointer is clobbered in 1367 // that predecessor. We can still do PRE of the load, which would insert 1368 // a computation of the pointer in this predecessor. 1369 if (!PredPtrVal) 1370 CanTranslate = false; 1371 1372 // FIXME: it is entirely possible that PHI translating will end up with 1373 // the same value. Consider PHI translating something like: 1374 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* 1375 // to recurse here, pedantically speaking. 1376 1377 // If getNonLocalPointerDepFromBB fails here, that means the cached 1378 // result conflicted with the Visited list; we have to conservatively 1379 // assume it is unknown, but this also does not block PRE of the load. 1380 if (!CanTranslate || 1381 !getNonLocalPointerDepFromBB(QueryInst, PredPointer, 1382 Loc.getWithNewPtr(PredPtrVal), isLoad, 1383 Pred, Result, Visited)) { 1384 // Add the entry to the Result list. 1385 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal); 1386 Result.push_back(Entry); 1387 1388 // Since we had a phi translation failure, the cache for CacheKey won't 1389 // include all of the entries that we need to immediately satisfy future 1390 // queries. Mark this in NonLocalPointerDeps by setting the 1391 // BBSkipFirstBlockPair pointer to null. This requires reuse of the 1392 // cached value to do more work but not miss the phi trans failure. 1393 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; 1394 NLPI.Pair = BBSkipFirstBlockPair(); 1395 continue; 1396 } 1397 } 1398 1399 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. 1400 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1401 Cache = &CacheInfo->NonLocalDeps; 1402 NumSortedEntries = Cache->size(); 1403 1404 // Since we did phi translation, the "Cache" set won't contain all of the 1405 // results for the query. This is ok (we can still use it to accelerate 1406 // specific block queries) but we can't do the fastpath "return all 1407 // results from the set" Clear out the indicator for this. 1408 CacheInfo->Pair = BBSkipFirstBlockPair(); 1409 SkipFirstBlock = false; 1410 continue; 1411 1412 PredTranslationFailure: 1413 // The following code is "failure"; we can't produce a sane translation 1414 // for the given block. It assumes that we haven't modified any of 1415 // our datastructures while processing the current block. 1416 1417 if (!Cache) { 1418 // Refresh the CacheInfo/Cache pointer if it got invalidated. 1419 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1420 Cache = &CacheInfo->NonLocalDeps; 1421 NumSortedEntries = Cache->size(); 1422 } 1423 1424 // Since we failed phi translation, the "Cache" set won't contain all of the 1425 // results for the query. This is ok (we can still use it to accelerate 1426 // specific block queries) but we can't do the fastpath "return all 1427 // results from the set". Clear out the indicator for this. 1428 CacheInfo->Pair = BBSkipFirstBlockPair(); 1429 1430 // If *nothing* works, mark the pointer as unknown. 1431 // 1432 // If this is the magic first block, return this as a clobber of the whole 1433 // incoming value. Since we can't phi translate to one of the predecessors, 1434 // we have to bail out. 1435 if (SkipFirstBlock) 1436 return false; 1437 1438 bool foundBlock = false; 1439 for (NonLocalDepEntry &I : llvm::reverse(*Cache)) { 1440 if (I.getBB() != BB) 1441 continue; 1442 1443 assert((GotWorklistLimit || I.getResult().isNonLocal() || 1444 !DT.isReachableFromEntry(BB)) && 1445 "Should only be here with transparent block"); 1446 foundBlock = true; 1447 I.setResult(MemDepResult::getUnknown()); 1448 Result.push_back( 1449 NonLocalDepResult(I.getBB(), I.getResult(), Pointer.getAddr())); 1450 break; 1451 } 1452 (void)foundBlock; (void)GotWorklistLimit; 1453 assert((foundBlock || GotWorklistLimit) && "Current block not in cache?"); 1454 } 1455 1456 // Okay, we're done now. If we added new values to the cache, re-sort it. 1457 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1458 DEBUG(AssertSorted(*Cache)); 1459 return true; 1460 } 1461 1462 /// If P exists in CachedNonLocalPointerInfo, remove it. 1463 void MemoryDependenceResults::RemoveCachedNonLocalPointerDependencies( 1464 ValueIsLoadPair P) { 1465 CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P); 1466 if (It == NonLocalPointerDeps.end()) 1467 return; 1468 1469 // Remove all of the entries in the BB->val map. This involves removing 1470 // instructions from the reverse map. 1471 NonLocalDepInfo &PInfo = It->second.NonLocalDeps; 1472 1473 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { 1474 Instruction *Target = PInfo[i].getResult().getInst(); 1475 if (!Target) 1476 continue; // Ignore non-local dep results. 1477 assert(Target->getParent() == PInfo[i].getBB()); 1478 1479 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1480 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); 1481 } 1482 1483 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). 1484 NonLocalPointerDeps.erase(It); 1485 } 1486 1487 void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) { 1488 // If Ptr isn't really a pointer, just ignore it. 1489 if (!Ptr->getType()->isPointerTy()) 1490 return; 1491 // Flush store info for the pointer. 1492 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); 1493 // Flush load info for the pointer. 1494 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); 1495 } 1496 1497 void MemoryDependenceResults::invalidateCachedPredecessors() { 1498 PredCache.clear(); 1499 } 1500 1501 void MemoryDependenceResults::removeInstruction(Instruction *RemInst) { 1502 // Walk through the Non-local dependencies, removing this one as the value 1503 // for any cached queries. 1504 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); 1505 if (NLDI != NonLocalDeps.end()) { 1506 NonLocalDepInfo &BlockMap = NLDI->second.first; 1507 for (auto &Entry : BlockMap) 1508 if (Instruction *Inst = Entry.getResult().getInst()) 1509 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); 1510 NonLocalDeps.erase(NLDI); 1511 } 1512 1513 // If we have a cached local dependence query for this instruction, remove it. 1514 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); 1515 if (LocalDepEntry != LocalDeps.end()) { 1516 // Remove us from DepInst's reverse set now that the local dep info is gone. 1517 if (Instruction *Inst = LocalDepEntry->second.getInst()) 1518 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); 1519 1520 // Remove this local dependency info. 1521 LocalDeps.erase(LocalDepEntry); 1522 } 1523 1524 // If we have any cached pointer dependencies on this instruction, remove 1525 // them. If the instruction has non-pointer type, then it can't be a pointer 1526 // base. 1527 1528 // Remove it from both the load info and the store info. The instruction 1529 // can't be in either of these maps if it is non-pointer. 1530 if (RemInst->getType()->isPointerTy()) { 1531 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); 1532 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); 1533 } 1534 1535 // Loop over all of the things that depend on the instruction we're removing. 1536 SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd; 1537 1538 // If we find RemInst as a clobber or Def in any of the maps for other values, 1539 // we need to replace its entry with a dirty version of the instruction after 1540 // it. If RemInst is a terminator, we use a null dirty value. 1541 // 1542 // Using a dirty version of the instruction after RemInst saves having to scan 1543 // the entire block to get to this point. 1544 MemDepResult NewDirtyVal; 1545 if (!RemInst->isTerminator()) 1546 NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator()); 1547 1548 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); 1549 if (ReverseDepIt != ReverseLocalDeps.end()) { 1550 // RemInst can't be the terminator if it has local stuff depending on it. 1551 assert(!ReverseDepIt->second.empty() && !isa<TerminatorInst>(RemInst) && 1552 "Nothing can locally depend on a terminator"); 1553 1554 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) { 1555 assert(InstDependingOnRemInst != RemInst && 1556 "Already removed our local dep info"); 1557 1558 LocalDeps[InstDependingOnRemInst] = NewDirtyVal; 1559 1560 // Make sure to remember that new things depend on NewDepInst. 1561 assert(NewDirtyVal.getInst() && 1562 "There is no way something else can have " 1563 "a local dep on this if it is a terminator!"); 1564 ReverseDepsToAdd.push_back( 1565 std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst)); 1566 } 1567 1568 ReverseLocalDeps.erase(ReverseDepIt); 1569 1570 // Add new reverse deps after scanning the set, to avoid invalidating the 1571 // 'ReverseDeps' reference. 1572 while (!ReverseDepsToAdd.empty()) { 1573 ReverseLocalDeps[ReverseDepsToAdd.back().first].insert( 1574 ReverseDepsToAdd.back().second); 1575 ReverseDepsToAdd.pop_back(); 1576 } 1577 } 1578 1579 ReverseDepIt = ReverseNonLocalDeps.find(RemInst); 1580 if (ReverseDepIt != ReverseNonLocalDeps.end()) { 1581 for (Instruction *I : ReverseDepIt->second) { 1582 assert(I != RemInst && "Already removed NonLocalDep info for RemInst"); 1583 1584 PerInstNLInfo &INLD = NonLocalDeps[I]; 1585 // The information is now dirty! 1586 INLD.second = true; 1587 1588 for (auto &Entry : INLD.first) { 1589 if (Entry.getResult().getInst() != RemInst) 1590 continue; 1591 1592 // Convert to a dirty entry for the subsequent instruction. 1593 Entry.setResult(NewDirtyVal); 1594 1595 if (Instruction *NextI = NewDirtyVal.getInst()) 1596 ReverseDepsToAdd.push_back(std::make_pair(NextI, I)); 1597 } 1598 } 1599 1600 ReverseNonLocalDeps.erase(ReverseDepIt); 1601 1602 // Add new reverse deps after scanning the set, to avoid invalidating 'Set' 1603 while (!ReverseDepsToAdd.empty()) { 1604 ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert( 1605 ReverseDepsToAdd.back().second); 1606 ReverseDepsToAdd.pop_back(); 1607 } 1608 } 1609 1610 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a 1611 // value in the NonLocalPointerDeps info. 1612 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = 1613 ReverseNonLocalPtrDeps.find(RemInst); 1614 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { 1615 SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8> 1616 ReversePtrDepsToAdd; 1617 1618 for (ValueIsLoadPair P : ReversePtrDepIt->second) { 1619 assert(P.getPointer() != RemInst && 1620 "Already removed NonLocalPointerDeps info for RemInst"); 1621 1622 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; 1623 1624 // The cache is not valid for any specific block anymore. 1625 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); 1626 1627 // Update any entries for RemInst to use the instruction after it. 1628 for (auto &Entry : NLPDI) { 1629 if (Entry.getResult().getInst() != RemInst) 1630 continue; 1631 1632 // Convert to a dirty entry for the subsequent instruction. 1633 Entry.setResult(NewDirtyVal); 1634 1635 if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) 1636 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); 1637 } 1638 1639 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its 1640 // subsequent value may invalidate the sortedness. 1641 std::sort(NLPDI.begin(), NLPDI.end()); 1642 } 1643 1644 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); 1645 1646 while (!ReversePtrDepsToAdd.empty()) { 1647 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert( 1648 ReversePtrDepsToAdd.back().second); 1649 ReversePtrDepsToAdd.pop_back(); 1650 } 1651 } 1652 1653 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); 1654 DEBUG(verifyRemoved(RemInst)); 1655 } 1656 1657 /// Verify that the specified instruction does not occur in our internal data 1658 /// structures. 1659 /// 1660 /// This function verifies by asserting in debug builds. 1661 void MemoryDependenceResults::verifyRemoved(Instruction *D) const { 1662 #ifndef NDEBUG 1663 for (const auto &DepKV : LocalDeps) { 1664 assert(DepKV.first != D && "Inst occurs in data structures"); 1665 assert(DepKV.second.getInst() != D && "Inst occurs in data structures"); 1666 } 1667 1668 for (const auto &DepKV : NonLocalPointerDeps) { 1669 assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key"); 1670 for (const auto &Entry : DepKV.second.NonLocalDeps) 1671 assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value"); 1672 } 1673 1674 for (const auto &DepKV : NonLocalDeps) { 1675 assert(DepKV.first != D && "Inst occurs in data structures"); 1676 const PerInstNLInfo &INLD = DepKV.second; 1677 for (const auto &Entry : INLD.first) 1678 assert(Entry.getResult().getInst() != D && 1679 "Inst occurs in data structures"); 1680 } 1681 1682 for (const auto &DepKV : ReverseLocalDeps) { 1683 assert(DepKV.first != D && "Inst occurs in data structures"); 1684 for (Instruction *Inst : DepKV.second) 1685 assert(Inst != D && "Inst occurs in data structures"); 1686 } 1687 1688 for (const auto &DepKV : ReverseNonLocalDeps) { 1689 assert(DepKV.first != D && "Inst occurs in data structures"); 1690 for (Instruction *Inst : DepKV.second) 1691 assert(Inst != D && "Inst occurs in data structures"); 1692 } 1693 1694 for (const auto &DepKV : ReverseNonLocalPtrDeps) { 1695 assert(DepKV.first != D && "Inst occurs in rev NLPD map"); 1696 1697 for (ValueIsLoadPair P : DepKV.second) 1698 assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) && 1699 "Inst occurs in ReverseNonLocalPtrDeps map"); 1700 } 1701 #endif 1702 } 1703 1704 AnalysisKey MemoryDependenceAnalysis::Key; 1705 1706 MemoryDependenceResults 1707 MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 1708 auto &AA = AM.getResult<AAManager>(F); 1709 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1710 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1711 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1712 return MemoryDependenceResults(AA, AC, TLI, DT); 1713 } 1714 1715 char MemoryDependenceWrapperPass::ID = 0; 1716 1717 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep", 1718 "Memory Dependence Analysis", false, true) 1719 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1720 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1721 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1722 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1723 INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep", 1724 "Memory Dependence Analysis", false, true) 1725 1726 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) { 1727 initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry()); 1728 } 1729 1730 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default; 1731 1732 void MemoryDependenceWrapperPass::releaseMemory() { 1733 MemDep.reset(); 1734 } 1735 1736 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1737 AU.setPreservesAll(); 1738 AU.addRequired<AssumptionCacheTracker>(); 1739 AU.addRequired<DominatorTreeWrapperPass>(); 1740 AU.addRequiredTransitive<AAResultsWrapperPass>(); 1741 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 1742 } 1743 1744 bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA, 1745 FunctionAnalysisManager::Invalidator &Inv) { 1746 // Check whether our analysis is preserved. 1747 auto PAC = PA.getChecker<MemoryDependenceAnalysis>(); 1748 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>()) 1749 // If not, give up now. 1750 return true; 1751 1752 // Check whether the analyses we depend on became invalid for any reason. 1753 if (Inv.invalidate<AAManager>(F, PA) || 1754 Inv.invalidate<AssumptionAnalysis>(F, PA) || 1755 Inv.invalidate<DominatorTreeAnalysis>(F, PA)) 1756 return true; 1757 1758 // Otherwise this analysis result remains valid. 1759 return false; 1760 } 1761 1762 unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const { 1763 return BlockScanLimit; 1764 } 1765 1766 bool MemoryDependenceWrapperPass::runOnFunction(Function &F) { 1767 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1768 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1769 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1770 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1771 MemDep.emplace(AA, AC, TLI, DT); 1772 return false; 1773 } 1774