1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation --*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements an analysis that determines, for a given memory 11 // operation, what preceding memory operations it depends on. It builds on 12 // alias analysis information, and tries to provide a lazy, caching interface to 13 // a common kind of alias information query. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #define DEBUG_TYPE "memdep" 18 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/IntrinsicInst.h" 21 #include "llvm/Function.h" 22 #include "llvm/LLVMContext.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/Dominators.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/PHITransAddr.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/Support/PredIteratorCache.h" 31 #include "llvm/Support/Debug.h" 32 using namespace llvm; 33 34 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); 35 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); 36 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); 37 38 STATISTIC(NumCacheNonLocalPtr, 39 "Number of fully cached non-local ptr responses"); 40 STATISTIC(NumCacheDirtyNonLocalPtr, 41 "Number of cached, but dirty, non-local ptr responses"); 42 STATISTIC(NumUncacheNonLocalPtr, 43 "Number of uncached non-local ptr responses"); 44 STATISTIC(NumCacheCompleteNonLocalPtr, 45 "Number of block queries that were completely cached"); 46 47 char MemoryDependenceAnalysis::ID = 0; 48 49 // Register this pass... 50 INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep", 51 "Memory Dependence Analysis", false, true) 52 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 53 INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep", 54 "Memory Dependence Analysis", false, true) 55 56 MemoryDependenceAnalysis::MemoryDependenceAnalysis() 57 : FunctionPass(ID), PredCache(0) { 58 initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry()); 59 } 60 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() { 61 } 62 63 /// Clean up memory in between runs 64 void MemoryDependenceAnalysis::releaseMemory() { 65 LocalDeps.clear(); 66 NonLocalDeps.clear(); 67 NonLocalPointerDeps.clear(); 68 ReverseLocalDeps.clear(); 69 ReverseNonLocalDeps.clear(); 70 ReverseNonLocalPtrDeps.clear(); 71 PredCache->clear(); 72 } 73 74 75 76 /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis. 77 /// 78 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 79 AU.setPreservesAll(); 80 AU.addRequiredTransitive<AliasAnalysis>(); 81 } 82 83 bool MemoryDependenceAnalysis::runOnFunction(Function &) { 84 AA = &getAnalysis<AliasAnalysis>(); 85 if (PredCache == 0) 86 PredCache.reset(new PredIteratorCache()); 87 return false; 88 } 89 90 /// RemoveFromReverseMap - This is a helper function that removes Val from 91 /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry. 92 template <typename KeyTy> 93 static void RemoveFromReverseMap(DenseMap<Instruction*, 94 SmallPtrSet<KeyTy, 4> > &ReverseMap, 95 Instruction *Inst, KeyTy Val) { 96 typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator 97 InstIt = ReverseMap.find(Inst); 98 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); 99 bool Found = InstIt->second.erase(Val); 100 assert(Found && "Invalid reverse map!"); Found=Found; 101 if (InstIt->second.empty()) 102 ReverseMap.erase(InstIt); 103 } 104 105 106 /// getCallSiteDependencyFrom - Private helper for finding the local 107 /// dependencies of a call site. 108 MemDepResult MemoryDependenceAnalysis:: 109 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall, 110 BasicBlock::iterator ScanIt, BasicBlock *BB) { 111 // Walk backwards through the block, looking for dependencies 112 while (ScanIt != BB->begin()) { 113 Instruction *Inst = --ScanIt; 114 115 // If this inst is a memory op, get the pointer it accessed 116 AliasAnalysis::Location Loc; 117 if (StoreInst *S = dyn_cast<StoreInst>(Inst)) { 118 Loc = AliasAnalysis::Location(S->getPointerOperand(), 119 AA->getTypeStoreSize(S->getValueOperand() 120 ->getType()), 121 S->getMetadata(LLVMContext::MD_tbaa)); 122 } else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { 123 Loc = AliasAnalysis::Location(V->getPointerOperand(), 124 AA->getTypeStoreSize(V->getType()), 125 V->getMetadata(LLVMContext::MD_tbaa)); 126 } else if (const CallInst *CI = isFreeCall(Inst)) { 127 // calls to free() erase the entire structure 128 Loc = AliasAnalysis::Location(CI->getArgOperand(0)); 129 } else if (CallSite InstCS = cast<Value>(Inst)) { 130 // Debug intrinsics don't cause dependences. 131 if (isa<DbgInfoIntrinsic>(Inst)) continue; 132 // If these two calls do not interfere, look past it. 133 switch (AA->getModRefInfo(CS, InstCS)) { 134 case AliasAnalysis::NoModRef: 135 // If the two calls are the same, return InstCS as a Def, so that 136 // CS can be found redundant and eliminated. 137 if (isReadOnlyCall && InstCS.onlyReadsMemory() && 138 CS.getInstruction()->isIdenticalToWhenDefined(Inst)) 139 return MemDepResult::getDef(Inst); 140 141 // Otherwise if the two calls don't interact (e.g. InstCS is readnone) 142 // keep scanning. 143 continue; 144 default: 145 return MemDepResult::getClobber(Inst); 146 } 147 } else { 148 // Non-memory instruction. 149 continue; 150 } 151 152 if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef) 153 return MemDepResult::getClobber(Inst); 154 } 155 156 // No dependence found. If this is the entry block of the function, it is a 157 // clobber, otherwise it is non-local. 158 if (BB != &BB->getParent()->getEntryBlock()) 159 return MemDepResult::getNonLocal(); 160 return MemDepResult::getClobber(ScanIt); 161 } 162 163 /// getPointerDependencyFrom - Return the instruction on which a memory 164 /// location depends. If isLoad is true, this routine ignore may-aliases with 165 /// read-only operations. 166 MemDepResult MemoryDependenceAnalysis:: 167 getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, 168 BasicBlock::iterator ScanIt, BasicBlock *BB) { 169 170 Value *InvariantTag = 0; 171 172 // Walk backwards through the basic block, looking for dependencies. 173 while (ScanIt != BB->begin()) { 174 Instruction *Inst = --ScanIt; 175 176 // If we're in an invariant region, no dependencies can be found before 177 // we pass an invariant-begin marker. 178 if (InvariantTag == Inst) { 179 InvariantTag = 0; 180 continue; 181 } 182 183 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 184 // Debug intrinsics don't (and can't) cause dependences. 185 if (isa<DbgInfoIntrinsic>(II)) continue; 186 187 // If we pass an invariant-end marker, then we've just entered an 188 // invariant region and can start ignoring dependencies. 189 if (II->getIntrinsicID() == Intrinsic::invariant_end) { 190 // FIXME: This only considers queries directly on the invariant-tagged 191 // pointer, not on query pointers that are indexed off of them. It'd 192 // be nice to handle that at some point. 193 AliasAnalysis::AliasResult R = 194 AA->alias(AliasAnalysis::Location(II->getArgOperand(2)), MemLoc); 195 if (R == AliasAnalysis::MustAlias) 196 InvariantTag = II->getArgOperand(0); 197 198 continue; 199 } 200 201 // If we reach a lifetime begin or end marker, then the query ends here 202 // because the value is undefined. 203 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 204 // FIXME: This only considers queries directly on the invariant-tagged 205 // pointer, not on query pointers that are indexed off of them. It'd 206 // be nice to handle that at some point. 207 AliasAnalysis::AliasResult R = 208 AA->alias(AliasAnalysis::Location(II->getArgOperand(1)), MemLoc); 209 if (R == AliasAnalysis::MustAlias) 210 return MemDepResult::getDef(II); 211 continue; 212 } 213 } 214 215 // If we're querying on a load and we're in an invariant region, we're done 216 // at this point. Nothing a load depends on can live in an invariant region. 217 // 218 // FIXME: this will prevent us from returning load/load must-aliases, so GVN 219 // won't remove redundant loads. 220 if (isLoad && InvariantTag) continue; 221 222 // Values depend on loads if the pointers are must aliased. This means that 223 // a load depends on another must aliased load from the same value. 224 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 225 Value *Pointer = LI->getPointerOperand(); 226 uint64_t PointerSize = AA->getTypeStoreSize(LI->getType()); 227 MDNode *TBAATag = LI->getMetadata(LLVMContext::MD_tbaa); 228 229 // If we found a pointer, check if it could be the same as our pointer. 230 AliasAnalysis::AliasResult R = 231 AA->alias(AliasAnalysis::Location(Pointer, PointerSize, TBAATag), 232 MemLoc); 233 if (R == AliasAnalysis::NoAlias) 234 continue; 235 236 // May-alias loads don't depend on each other without a dependence. 237 if (isLoad && R == AliasAnalysis::MayAlias) 238 continue; 239 // Stores depend on may and must aliased loads, loads depend on must-alias 240 // loads. 241 return MemDepResult::getDef(Inst); 242 } 243 244 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 245 // There can't be stores to the value we care about inside an 246 // invariant region. 247 if (InvariantTag) continue; 248 249 // If alias analysis can tell that this store is guaranteed to not modify 250 // the query pointer, ignore it. Use getModRefInfo to handle cases where 251 // the query pointer points to constant memory etc. 252 if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef) 253 continue; 254 255 // Ok, this store might clobber the query pointer. Check to see if it is 256 // a must alias: in this case, we want to return this as a def. 257 Value *Pointer = SI->getPointerOperand(); 258 uint64_t PointerSize = AA->getTypeStoreSize(SI->getOperand(0)->getType()); 259 MDNode *TBAATag = SI->getMetadata(LLVMContext::MD_tbaa); 260 261 // If we found a pointer, check if it could be the same as our pointer. 262 AliasAnalysis::AliasResult R = 263 AA->alias(AliasAnalysis::Location(Pointer, PointerSize, TBAATag), 264 MemLoc); 265 266 if (R == AliasAnalysis::NoAlias) 267 continue; 268 if (R == AliasAnalysis::MayAlias) 269 return MemDepResult::getClobber(Inst); 270 return MemDepResult::getDef(Inst); 271 } 272 273 // If this is an allocation, and if we know that the accessed pointer is to 274 // the allocation, return Def. This means that there is no dependence and 275 // the access can be optimized based on that. For example, a load could 276 // turn into undef. 277 // Note: Only determine this to be a malloc if Inst is the malloc call, not 278 // a subsequent bitcast of the malloc call result. There can be stores to 279 // the malloced memory between the malloc call and its bitcast uses, and we 280 // need to continue scanning until the malloc call. 281 if (isa<AllocaInst>(Inst) || 282 (isa<CallInst>(Inst) && extractMallocCall(Inst))) { 283 const Value *AccessPtr = MemLoc.Ptr->getUnderlyingObject(); 284 285 if (AccessPtr == Inst || 286 AA->alias(Inst, 1, AccessPtr, 1) == AliasAnalysis::MustAlias) 287 return MemDepResult::getDef(Inst); 288 continue; 289 } 290 291 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. 292 switch (AA->getModRefInfo(Inst, MemLoc)) { 293 case AliasAnalysis::NoModRef: 294 // If the call has no effect on the queried pointer, just ignore it. 295 continue; 296 case AliasAnalysis::Mod: 297 // If we're in an invariant region, we can ignore calls that ONLY 298 // modify the pointer. 299 if (InvariantTag) continue; 300 return MemDepResult::getClobber(Inst); 301 case AliasAnalysis::Ref: 302 // If the call is known to never store to the pointer, and if this is a 303 // load query, we can safely ignore it (scan past it). 304 if (isLoad) 305 continue; 306 default: 307 // Otherwise, there is a potential dependence. Return a clobber. 308 return MemDepResult::getClobber(Inst); 309 } 310 } 311 312 // No dependence found. If this is the entry block of the function, it is a 313 // clobber, otherwise it is non-local. 314 if (BB != &BB->getParent()->getEntryBlock()) 315 return MemDepResult::getNonLocal(); 316 return MemDepResult::getClobber(ScanIt); 317 } 318 319 /// getDependency - Return the instruction on which a memory operation 320 /// depends. 321 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) { 322 Instruction *ScanPos = QueryInst; 323 324 // Check for a cached result 325 MemDepResult &LocalCache = LocalDeps[QueryInst]; 326 327 // If the cached entry is non-dirty, just return it. Note that this depends 328 // on MemDepResult's default constructing to 'dirty'. 329 if (!LocalCache.isDirty()) 330 return LocalCache; 331 332 // Otherwise, if we have a dirty entry, we know we can start the scan at that 333 // instruction, which may save us some work. 334 if (Instruction *Inst = LocalCache.getInst()) { 335 ScanPos = Inst; 336 337 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); 338 } 339 340 BasicBlock *QueryParent = QueryInst->getParent(); 341 342 AliasAnalysis::Location MemLoc; 343 344 // Do the scan. 345 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { 346 // No dependence found. If this is the entry block of the function, it is a 347 // clobber, otherwise it is non-local. 348 if (QueryParent != &QueryParent->getParent()->getEntryBlock()) 349 LocalCache = MemDepResult::getNonLocal(); 350 else 351 LocalCache = MemDepResult::getClobber(QueryInst); 352 } else if (StoreInst *SI = dyn_cast<StoreInst>(QueryInst)) { 353 // If this is a volatile store, don't mess around with it. Just return the 354 // previous instruction as a clobber. 355 if (SI->isVolatile()) 356 LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos)); 357 else 358 MemLoc = AliasAnalysis::Location(SI->getPointerOperand(), 359 AA->getTypeStoreSize(SI->getOperand(0) 360 ->getType()), 361 SI->getMetadata(LLVMContext::MD_tbaa)); 362 } else if (LoadInst *LI = dyn_cast<LoadInst>(QueryInst)) { 363 // If this is a volatile load, don't mess around with it. Just return the 364 // previous instruction as a clobber. 365 if (LI->isVolatile()) 366 LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos)); 367 else 368 MemLoc = AliasAnalysis::Location(LI->getPointerOperand(), 369 AA->getTypeStoreSize(LI->getType()), 370 LI->getMetadata(LLVMContext::MD_tbaa)); 371 } else if (const CallInst *CI = isFreeCall(QueryInst)) { 372 // calls to free() erase the entire structure, not just a field. 373 MemLoc = AliasAnalysis::Location(CI->getArgOperand(0)); 374 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) { 375 int IntrinsicID = 0; // Intrinsic IDs start at 1. 376 IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst); 377 if (II) 378 IntrinsicID = II->getIntrinsicID(); 379 380 switch (IntrinsicID) { 381 case Intrinsic::lifetime_start: 382 case Intrinsic::lifetime_end: 383 case Intrinsic::invariant_start: 384 MemLoc = AliasAnalysis::Location(II->getArgOperand(1), 385 cast<ConstantInt>(II->getArgOperand(0)) 386 ->getZExtValue(), 387 II->getMetadata(LLVMContext::MD_tbaa)); 388 break; 389 case Intrinsic::invariant_end: 390 MemLoc = AliasAnalysis::Location(II->getArgOperand(2), 391 cast<ConstantInt>(II->getArgOperand(1)) 392 ->getZExtValue(), 393 II->getMetadata(LLVMContext::MD_tbaa)); 394 break; 395 default: 396 CallSite QueryCS(QueryInst); 397 bool isReadOnly = AA->onlyReadsMemory(QueryCS); 398 LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos, 399 QueryParent); 400 break; 401 } 402 } else { 403 // Non-memory instruction. 404 LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos)); 405 } 406 407 // If we need to do a pointer scan, make it happen. 408 if (MemLoc.Ptr) { 409 bool isLoad = !QueryInst->mayWriteToMemory(); 410 if (IntrinsicInst *II = dyn_cast<MemoryUseIntrinsic>(QueryInst)) { 411 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_end; 412 } 413 LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos, 414 QueryParent); 415 } 416 417 // Remember the result! 418 if (Instruction *I = LocalCache.getInst()) 419 ReverseLocalDeps[I].insert(QueryInst); 420 421 return LocalCache; 422 } 423 424 #ifndef NDEBUG 425 /// AssertSorted - This method is used when -debug is specified to verify that 426 /// cache arrays are properly kept sorted. 427 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 428 int Count = -1) { 429 if (Count == -1) Count = Cache.size(); 430 if (Count == 0) return; 431 432 for (unsigned i = 1; i != unsigned(Count); ++i) 433 assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!"); 434 } 435 #endif 436 437 /// getNonLocalCallDependency - Perform a full dependency query for the 438 /// specified call, returning the set of blocks that the value is 439 /// potentially live across. The returned set of results will include a 440 /// "NonLocal" result for all blocks where the value is live across. 441 /// 442 /// This method assumes the instruction returns a "NonLocal" dependency 443 /// within its own block. 444 /// 445 /// This returns a reference to an internal data structure that may be 446 /// invalidated on the next non-local query or when an instruction is 447 /// removed. Clients must copy this data if they want it around longer than 448 /// that. 449 const MemoryDependenceAnalysis::NonLocalDepInfo & 450 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { 451 assert(getDependency(QueryCS.getInstruction()).isNonLocal() && 452 "getNonLocalCallDependency should only be used on calls with non-local deps!"); 453 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()]; 454 NonLocalDepInfo &Cache = CacheP.first; 455 456 /// DirtyBlocks - This is the set of blocks that need to be recomputed. In 457 /// the cached case, this can happen due to instructions being deleted etc. In 458 /// the uncached case, this starts out as the set of predecessors we care 459 /// about. 460 SmallVector<BasicBlock*, 32> DirtyBlocks; 461 462 if (!Cache.empty()) { 463 // Okay, we have a cache entry. If we know it is not dirty, just return it 464 // with no computation. 465 if (!CacheP.second) { 466 ++NumCacheNonLocal; 467 return Cache; 468 } 469 470 // If we already have a partially computed set of results, scan them to 471 // determine what is dirty, seeding our initial DirtyBlocks worklist. 472 for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end(); 473 I != E; ++I) 474 if (I->getResult().isDirty()) 475 DirtyBlocks.push_back(I->getBB()); 476 477 // Sort the cache so that we can do fast binary search lookups below. 478 std::sort(Cache.begin(), Cache.end()); 479 480 ++NumCacheDirtyNonLocal; 481 //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " 482 // << Cache.size() << " cached: " << *QueryInst; 483 } else { 484 // Seed DirtyBlocks with each of the preds of QueryInst's block. 485 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent(); 486 for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI) 487 DirtyBlocks.push_back(*PI); 488 ++NumUncacheNonLocal; 489 } 490 491 // isReadonlyCall - If this is a read-only call, we can be more aggressive. 492 bool isReadonlyCall = AA->onlyReadsMemory(QueryCS); 493 494 SmallPtrSet<BasicBlock*, 64> Visited; 495 496 unsigned NumSortedEntries = Cache.size(); 497 DEBUG(AssertSorted(Cache)); 498 499 // Iterate while we still have blocks to update. 500 while (!DirtyBlocks.empty()) { 501 BasicBlock *DirtyBB = DirtyBlocks.back(); 502 DirtyBlocks.pop_back(); 503 504 // Already processed this block? 505 if (!Visited.insert(DirtyBB)) 506 continue; 507 508 // Do a binary search to see if we already have an entry for this block in 509 // the cache set. If so, find it. 510 DEBUG(AssertSorted(Cache, NumSortedEntries)); 511 NonLocalDepInfo::iterator Entry = 512 std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries, 513 NonLocalDepEntry(DirtyBB)); 514 if (Entry != Cache.begin() && prior(Entry)->getBB() == DirtyBB) 515 --Entry; 516 517 NonLocalDepEntry *ExistingResult = 0; 518 if (Entry != Cache.begin()+NumSortedEntries && 519 Entry->getBB() == DirtyBB) { 520 // If we already have an entry, and if it isn't already dirty, the block 521 // is done. 522 if (!Entry->getResult().isDirty()) 523 continue; 524 525 // Otherwise, remember this slot so we can update the value. 526 ExistingResult = &*Entry; 527 } 528 529 // If the dirty entry has a pointer, start scanning from it so we don't have 530 // to rescan the entire block. 531 BasicBlock::iterator ScanPos = DirtyBB->end(); 532 if (ExistingResult) { 533 if (Instruction *Inst = ExistingResult->getResult().getInst()) { 534 ScanPos = Inst; 535 // We're removing QueryInst's use of Inst. 536 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, 537 QueryCS.getInstruction()); 538 } 539 } 540 541 // Find out if this block has a local dependency for QueryInst. 542 MemDepResult Dep; 543 544 if (ScanPos != DirtyBB->begin()) { 545 Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB); 546 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { 547 // No dependence found. If this is the entry block of the function, it is 548 // a clobber, otherwise it is non-local. 549 Dep = MemDepResult::getNonLocal(); 550 } else { 551 Dep = MemDepResult::getClobber(ScanPos); 552 } 553 554 // If we had a dirty entry for the block, update it. Otherwise, just add 555 // a new entry. 556 if (ExistingResult) 557 ExistingResult->setResult(Dep); 558 else 559 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); 560 561 // If the block has a dependency (i.e. it isn't completely transparent to 562 // the value), remember the association! 563 if (!Dep.isNonLocal()) { 564 // Keep the ReverseNonLocalDeps map up to date so we can efficiently 565 // update this when we remove instructions. 566 if (Instruction *Inst = Dep.getInst()) 567 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction()); 568 } else { 569 570 // If the block *is* completely transparent to the load, we need to check 571 // the predecessors of this block. Add them to our worklist. 572 for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI) 573 DirtyBlocks.push_back(*PI); 574 } 575 } 576 577 return Cache; 578 } 579 580 /// getNonLocalPointerDependency - Perform a full dependency query for an 581 /// access to the specified (non-volatile) memory location, returning the 582 /// set of instructions that either define or clobber the value. 583 /// 584 /// This method assumes the pointer has a "NonLocal" dependency within its 585 /// own block. 586 /// 587 void MemoryDependenceAnalysis:: 588 getNonLocalPointerDependency(const AliasAnalysis::Location &Loc, bool isLoad, 589 BasicBlock *FromBB, 590 SmallVectorImpl<NonLocalDepResult> &Result) { 591 assert(Loc.Ptr->getType()->isPointerTy() && 592 "Can't get pointer deps of a non-pointer!"); 593 Result.clear(); 594 595 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), TD); 596 597 // This is the set of blocks we've inspected, and the pointer we consider in 598 // each block. Because of critical edges, we currently bail out if querying 599 // a block with multiple different pointers. This can happen during PHI 600 // translation. 601 DenseMap<BasicBlock*, Value*> Visited; 602 if (!getNonLocalPointerDepFromBB(Address, Loc, isLoad, FromBB, 603 Result, Visited, true)) 604 return; 605 Result.clear(); 606 Result.push_back(NonLocalDepResult(FromBB, 607 MemDepResult::getClobber(FromBB->begin()), 608 const_cast<Value *>(Loc.Ptr))); 609 } 610 611 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with 612 /// Pointer/PointeeSize using either cached information in Cache or by doing a 613 /// lookup (which may use dirty cache info if available). If we do a lookup, 614 /// add the result to the cache. 615 MemDepResult MemoryDependenceAnalysis:: 616 GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc, 617 bool isLoad, BasicBlock *BB, 618 NonLocalDepInfo *Cache, unsigned NumSortedEntries) { 619 620 // Do a binary search to see if we already have an entry for this block in 621 // the cache set. If so, find it. 622 NonLocalDepInfo::iterator Entry = 623 std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries, 624 NonLocalDepEntry(BB)); 625 if (Entry != Cache->begin() && (Entry-1)->getBB() == BB) 626 --Entry; 627 628 NonLocalDepEntry *ExistingResult = 0; 629 if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB) 630 ExistingResult = &*Entry; 631 632 // If we have a cached entry, and it is non-dirty, use it as the value for 633 // this dependency. 634 if (ExistingResult && !ExistingResult->getResult().isDirty()) { 635 ++NumCacheNonLocalPtr; 636 return ExistingResult->getResult(); 637 } 638 639 // Otherwise, we have to scan for the value. If we have a dirty cache 640 // entry, start scanning from its position, otherwise we scan from the end 641 // of the block. 642 BasicBlock::iterator ScanPos = BB->end(); 643 if (ExistingResult && ExistingResult->getResult().getInst()) { 644 assert(ExistingResult->getResult().getInst()->getParent() == BB && 645 "Instruction invalidated?"); 646 ++NumCacheDirtyNonLocalPtr; 647 ScanPos = ExistingResult->getResult().getInst(); 648 649 // Eliminating the dirty entry from 'Cache', so update the reverse info. 650 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 651 RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey); 652 } else { 653 ++NumUncacheNonLocalPtr; 654 } 655 656 // Scan the block for the dependency. 657 MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB); 658 659 // If we had a dirty entry for the block, update it. Otherwise, just add 660 // a new entry. 661 if (ExistingResult) 662 ExistingResult->setResult(Dep); 663 else 664 Cache->push_back(NonLocalDepEntry(BB, Dep)); 665 666 // If the block has a dependency (i.e. it isn't completely transparent to 667 // the value), remember the reverse association because we just added it 668 // to Cache! 669 if (Dep.isNonLocal()) 670 return Dep; 671 672 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently 673 // update MemDep when we remove instructions. 674 Instruction *Inst = Dep.getInst(); 675 assert(Inst && "Didn't depend on anything?"); 676 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 677 ReverseNonLocalPtrDeps[Inst].insert(CacheKey); 678 return Dep; 679 } 680 681 /// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain 682 /// number of elements in the array that are already properly ordered. This is 683 /// optimized for the case when only a few entries are added. 684 static void 685 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 686 unsigned NumSortedEntries) { 687 switch (Cache.size() - NumSortedEntries) { 688 case 0: 689 // done, no new entries. 690 break; 691 case 2: { 692 // Two new entries, insert the last one into place. 693 NonLocalDepEntry Val = Cache.back(); 694 Cache.pop_back(); 695 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 696 std::upper_bound(Cache.begin(), Cache.end()-1, Val); 697 Cache.insert(Entry, Val); 698 // FALL THROUGH. 699 } 700 case 1: 701 // One new entry, Just insert the new value at the appropriate position. 702 if (Cache.size() != 1) { 703 NonLocalDepEntry Val = Cache.back(); 704 Cache.pop_back(); 705 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 706 std::upper_bound(Cache.begin(), Cache.end(), Val); 707 Cache.insert(Entry, Val); 708 } 709 break; 710 default: 711 // Added many values, do a full scale sort. 712 std::sort(Cache.begin(), Cache.end()); 713 break; 714 } 715 } 716 717 /// getNonLocalPointerDepFromBB - Perform a dependency query based on 718 /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def 719 /// results to the results vector and keep track of which blocks are visited in 720 /// 'Visited'. 721 /// 722 /// This has special behavior for the first block queries (when SkipFirstBlock 723 /// is true). In this special case, it ignores the contents of the specified 724 /// block and starts returning dependence info for its predecessors. 725 /// 726 /// This function returns false on success, or true to indicate that it could 727 /// not compute dependence information for some reason. This should be treated 728 /// as a clobber dependence on the first instruction in the predecessor block. 729 bool MemoryDependenceAnalysis:: 730 getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, 731 const AliasAnalysis::Location &Loc, 732 bool isLoad, BasicBlock *StartBB, 733 SmallVectorImpl<NonLocalDepResult> &Result, 734 DenseMap<BasicBlock*, Value*> &Visited, 735 bool SkipFirstBlock) { 736 737 // Look up the cached info for Pointer. 738 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); 739 NonLocalPointerInfo *CacheInfo = &NonLocalPointerDeps[CacheKey]; 740 741 // If this query's TBAATag is inconsistent with the cached one, discard the 742 // tag and restart the query. 743 if (CacheInfo->TBAATag != Loc.TBAATag) { 744 CacheInfo->TBAATag = 0; 745 NonLocalPointerDeps.erase(CacheKey); 746 return getNonLocalPointerDepFromBB(Pointer, Loc.getWithoutTBAATag(), 747 isLoad, StartBB, Result, Visited, 748 SkipFirstBlock); 749 } 750 751 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; 752 753 // If we have valid cached information for exactly the block we are 754 // investigating, just return it with no recomputation. 755 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { 756 // We have a fully cached result for this query then we can just return the 757 // cached results and populate the visited set. However, we have to verify 758 // that we don't already have conflicting results for these blocks. Check 759 // to ensure that if a block in the results set is in the visited set that 760 // it was for the same pointer query. 761 if (!Visited.empty()) { 762 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 763 I != E; ++I) { 764 DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB()); 765 if (VI == Visited.end() || VI->second == Pointer.getAddr()) 766 continue; 767 768 // We have a pointer mismatch in a block. Just return clobber, saying 769 // that something was clobbered in this result. We could also do a 770 // non-fully cached query, but there is little point in doing this. 771 return true; 772 } 773 } 774 775 Value *Addr = Pointer.getAddr(); 776 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 777 I != E; ++I) { 778 Visited.insert(std::make_pair(I->getBB(), Addr)); 779 if (!I->getResult().isNonLocal()) 780 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr)); 781 } 782 ++NumCacheCompleteNonLocalPtr; 783 return false; 784 } 785 786 // Otherwise, either this is a new block, a block with an invalid cache 787 // pointer or one that we're about to invalidate by putting more info into it 788 // than its valid cache info. If empty, the result will be valid cache info, 789 // otherwise it isn't. 790 if (Cache->empty()) 791 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); 792 else { 793 CacheInfo->Pair = BBSkipFirstBlockPair(); 794 CacheInfo->TBAATag = 0; 795 } 796 797 SmallVector<BasicBlock*, 32> Worklist; 798 Worklist.push_back(StartBB); 799 800 // Keep track of the entries that we know are sorted. Previously cached 801 // entries will all be sorted. The entries we add we only sort on demand (we 802 // don't insert every element into its sorted position). We know that we 803 // won't get any reuse from currently inserted values, because we don't 804 // revisit blocks after we insert info for them. 805 unsigned NumSortedEntries = Cache->size(); 806 DEBUG(AssertSorted(*Cache)); 807 808 while (!Worklist.empty()) { 809 BasicBlock *BB = Worklist.pop_back_val(); 810 811 // Skip the first block if we have it. 812 if (!SkipFirstBlock) { 813 // Analyze the dependency of *Pointer in FromBB. See if we already have 814 // been here. 815 assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); 816 817 // Get the dependency info for Pointer in BB. If we have cached 818 // information, we will use it, otherwise we compute it. 819 DEBUG(AssertSorted(*Cache, NumSortedEntries)); 820 MemDepResult Dep = GetNonLocalInfoForBlock(Loc, isLoad, BB, Cache, 821 NumSortedEntries); 822 823 // If we got a Def or Clobber, add this to the list of results. 824 if (!Dep.isNonLocal()) { 825 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); 826 continue; 827 } 828 } 829 830 // If 'Pointer' is an instruction defined in this block, then we need to do 831 // phi translation to change it into a value live in the predecessor block. 832 // If not, we just add the predecessors to the worklist and scan them with 833 // the same Pointer. 834 if (!Pointer.NeedsPHITranslationFromBlock(BB)) { 835 SkipFirstBlock = false; 836 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { 837 // Verify that we haven't looked at this block yet. 838 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 839 InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr())); 840 if (InsertRes.second) { 841 // First time we've looked at *PI. 842 Worklist.push_back(*PI); 843 continue; 844 } 845 846 // If we have seen this block before, but it was with a different 847 // pointer then we have a phi translation failure and we have to treat 848 // this as a clobber. 849 if (InsertRes.first->second != Pointer.getAddr()) 850 goto PredTranslationFailure; 851 } 852 continue; 853 } 854 855 // We do need to do phi translation, if we know ahead of time we can't phi 856 // translate this value, don't even try. 857 if (!Pointer.IsPotentiallyPHITranslatable()) 858 goto PredTranslationFailure; 859 860 // We may have added values to the cache list before this PHI translation. 861 // If so, we haven't done anything to ensure that the cache remains sorted. 862 // Sort it now (if needed) so that recursive invocations of 863 // getNonLocalPointerDepFromBB and other routines that could reuse the cache 864 // value will only see properly sorted cache arrays. 865 if (Cache && NumSortedEntries != Cache->size()) { 866 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 867 NumSortedEntries = Cache->size(); 868 } 869 Cache = 0; 870 871 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { 872 BasicBlock *Pred = *PI; 873 874 // Get the PHI translated pointer in this predecessor. This can fail if 875 // not translatable, in which case the getAddr() returns null. 876 PHITransAddr PredPointer(Pointer); 877 PredPointer.PHITranslateValue(BB, Pred, 0); 878 879 Value *PredPtrVal = PredPointer.getAddr(); 880 881 // Check to see if we have already visited this pred block with another 882 // pointer. If so, we can't do this lookup. This failure can occur 883 // with PHI translation when a critical edge exists and the PHI node in 884 // the successor translates to a pointer value different than the 885 // pointer the block was first analyzed with. 886 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 887 InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal)); 888 889 if (!InsertRes.second) { 890 // If the predecessor was visited with PredPtr, then we already did 891 // the analysis and can ignore it. 892 if (InsertRes.first->second == PredPtrVal) 893 continue; 894 895 // Otherwise, the block was previously analyzed with a different 896 // pointer. We can't represent the result of this case, so we just 897 // treat this as a phi translation failure. 898 goto PredTranslationFailure; 899 } 900 901 // If PHI translation was unable to find an available pointer in this 902 // predecessor, then we have to assume that the pointer is clobbered in 903 // that predecessor. We can still do PRE of the load, which would insert 904 // a computation of the pointer in this predecessor. 905 if (PredPtrVal == 0) { 906 // Add the entry to the Result list. 907 NonLocalDepResult Entry(Pred, 908 MemDepResult::getClobber(Pred->getTerminator()), 909 PredPtrVal); 910 Result.push_back(Entry); 911 912 // Since we had a phi translation failure, the cache for CacheKey won't 913 // include all of the entries that we need to immediately satisfy future 914 // queries. Mark this in NonLocalPointerDeps by setting the 915 // BBSkipFirstBlockPair pointer to null. This requires reuse of the 916 // cached value to do more work but not miss the phi trans failure. 917 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; 918 NLPI.Pair = BBSkipFirstBlockPair(); 919 NLPI.TBAATag = 0; 920 continue; 921 } 922 923 // FIXME: it is entirely possible that PHI translating will end up with 924 // the same value. Consider PHI translating something like: 925 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* 926 // to recurse here, pedantically speaking. 927 928 // If we have a problem phi translating, fall through to the code below 929 // to handle the failure condition. 930 if (getNonLocalPointerDepFromBB(PredPointer, 931 Loc.getWithNewPtr(PredPointer.getAddr()), 932 isLoad, Pred, 933 Result, Visited)) 934 goto PredTranslationFailure; 935 } 936 937 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. 938 CacheInfo = &NonLocalPointerDeps[CacheKey]; 939 Cache = &CacheInfo->NonLocalDeps; 940 NumSortedEntries = Cache->size(); 941 942 // Since we did phi translation, the "Cache" set won't contain all of the 943 // results for the query. This is ok (we can still use it to accelerate 944 // specific block queries) but we can't do the fastpath "return all 945 // results from the set" Clear out the indicator for this. 946 CacheInfo->Pair = BBSkipFirstBlockPair(); 947 CacheInfo->TBAATag = 0; 948 SkipFirstBlock = false; 949 continue; 950 951 PredTranslationFailure: 952 953 if (Cache == 0) { 954 // Refresh the CacheInfo/Cache pointer if it got invalidated. 955 CacheInfo = &NonLocalPointerDeps[CacheKey]; 956 Cache = &CacheInfo->NonLocalDeps; 957 NumSortedEntries = Cache->size(); 958 } 959 960 // Since we failed phi translation, the "Cache" set won't contain all of the 961 // results for the query. This is ok (we can still use it to accelerate 962 // specific block queries) but we can't do the fastpath "return all 963 // results from the set". Clear out the indicator for this. 964 CacheInfo->Pair = BBSkipFirstBlockPair(); 965 CacheInfo->TBAATag = 0; 966 967 // If *nothing* works, mark the pointer as being clobbered by the first 968 // instruction in this block. 969 // 970 // If this is the magic first block, return this as a clobber of the whole 971 // incoming value. Since we can't phi translate to one of the predecessors, 972 // we have to bail out. 973 if (SkipFirstBlock) 974 return true; 975 976 for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) { 977 assert(I != Cache->rend() && "Didn't find current block??"); 978 if (I->getBB() != BB) 979 continue; 980 981 assert(I->getResult().isNonLocal() && 982 "Should only be here with transparent block"); 983 I->setResult(MemDepResult::getClobber(BB->begin())); 984 ReverseNonLocalPtrDeps[BB->begin()].insert(CacheKey); 985 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), 986 Pointer.getAddr())); 987 break; 988 } 989 } 990 991 // Okay, we're done now. If we added new values to the cache, re-sort it. 992 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 993 DEBUG(AssertSorted(*Cache)); 994 return false; 995 } 996 997 /// RemoveCachedNonLocalPointerDependencies - If P exists in 998 /// CachedNonLocalPointerInfo, remove it. 999 void MemoryDependenceAnalysis:: 1000 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) { 1001 CachedNonLocalPointerInfo::iterator It = 1002 NonLocalPointerDeps.find(P); 1003 if (It == NonLocalPointerDeps.end()) return; 1004 1005 // Remove all of the entries in the BB->val map. This involves removing 1006 // instructions from the reverse map. 1007 NonLocalDepInfo &PInfo = It->second.NonLocalDeps; 1008 1009 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { 1010 Instruction *Target = PInfo[i].getResult().getInst(); 1011 if (Target == 0) continue; // Ignore non-local dep results. 1012 assert(Target->getParent() == PInfo[i].getBB()); 1013 1014 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1015 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); 1016 } 1017 1018 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). 1019 NonLocalPointerDeps.erase(It); 1020 } 1021 1022 1023 /// invalidateCachedPointerInfo - This method is used to invalidate cached 1024 /// information about the specified pointer, because it may be too 1025 /// conservative in memdep. This is an optional call that can be used when 1026 /// the client detects an equivalence between the pointer and some other 1027 /// value and replaces the other value with ptr. This can make Ptr available 1028 /// in more places that cached info does not necessarily keep. 1029 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) { 1030 // If Ptr isn't really a pointer, just ignore it. 1031 if (!Ptr->getType()->isPointerTy()) return; 1032 // Flush store info for the pointer. 1033 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); 1034 // Flush load info for the pointer. 1035 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); 1036 } 1037 1038 /// invalidateCachedPredecessors - Clear the PredIteratorCache info. 1039 /// This needs to be done when the CFG changes, e.g., due to splitting 1040 /// critical edges. 1041 void MemoryDependenceAnalysis::invalidateCachedPredecessors() { 1042 PredCache->clear(); 1043 } 1044 1045 /// removeInstruction - Remove an instruction from the dependence analysis, 1046 /// updating the dependence of instructions that previously depended on it. 1047 /// This method attempts to keep the cache coherent using the reverse map. 1048 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) { 1049 // Walk through the Non-local dependencies, removing this one as the value 1050 // for any cached queries. 1051 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); 1052 if (NLDI != NonLocalDeps.end()) { 1053 NonLocalDepInfo &BlockMap = NLDI->second.first; 1054 for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end(); 1055 DI != DE; ++DI) 1056 if (Instruction *Inst = DI->getResult().getInst()) 1057 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); 1058 NonLocalDeps.erase(NLDI); 1059 } 1060 1061 // If we have a cached local dependence query for this instruction, remove it. 1062 // 1063 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); 1064 if (LocalDepEntry != LocalDeps.end()) { 1065 // Remove us from DepInst's reverse set now that the local dep info is gone. 1066 if (Instruction *Inst = LocalDepEntry->second.getInst()) 1067 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); 1068 1069 // Remove this local dependency info. 1070 LocalDeps.erase(LocalDepEntry); 1071 } 1072 1073 // If we have any cached pointer dependencies on this instruction, remove 1074 // them. If the instruction has non-pointer type, then it can't be a pointer 1075 // base. 1076 1077 // Remove it from both the load info and the store info. The instruction 1078 // can't be in either of these maps if it is non-pointer. 1079 if (RemInst->getType()->isPointerTy()) { 1080 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); 1081 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); 1082 } 1083 1084 // Loop over all of the things that depend on the instruction we're removing. 1085 // 1086 SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd; 1087 1088 // If we find RemInst as a clobber or Def in any of the maps for other values, 1089 // we need to replace its entry with a dirty version of the instruction after 1090 // it. If RemInst is a terminator, we use a null dirty value. 1091 // 1092 // Using a dirty version of the instruction after RemInst saves having to scan 1093 // the entire block to get to this point. 1094 MemDepResult NewDirtyVal; 1095 if (!RemInst->isTerminator()) 1096 NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst)); 1097 1098 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); 1099 if (ReverseDepIt != ReverseLocalDeps.end()) { 1100 SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second; 1101 // RemInst can't be the terminator if it has local stuff depending on it. 1102 assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) && 1103 "Nothing can locally depend on a terminator"); 1104 1105 for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(), 1106 E = ReverseDeps.end(); I != E; ++I) { 1107 Instruction *InstDependingOnRemInst = *I; 1108 assert(InstDependingOnRemInst != RemInst && 1109 "Already removed our local dep info"); 1110 1111 LocalDeps[InstDependingOnRemInst] = NewDirtyVal; 1112 1113 // Make sure to remember that new things depend on NewDepInst. 1114 assert(NewDirtyVal.getInst() && "There is no way something else can have " 1115 "a local dep on this if it is a terminator!"); 1116 ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(), 1117 InstDependingOnRemInst)); 1118 } 1119 1120 ReverseLocalDeps.erase(ReverseDepIt); 1121 1122 // Add new reverse deps after scanning the set, to avoid invalidating the 1123 // 'ReverseDeps' reference. 1124 while (!ReverseDepsToAdd.empty()) { 1125 ReverseLocalDeps[ReverseDepsToAdd.back().first] 1126 .insert(ReverseDepsToAdd.back().second); 1127 ReverseDepsToAdd.pop_back(); 1128 } 1129 } 1130 1131 ReverseDepIt = ReverseNonLocalDeps.find(RemInst); 1132 if (ReverseDepIt != ReverseNonLocalDeps.end()) { 1133 SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second; 1134 for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end(); 1135 I != E; ++I) { 1136 assert(*I != RemInst && "Already removed NonLocalDep info for RemInst"); 1137 1138 PerInstNLInfo &INLD = NonLocalDeps[*I]; 1139 // The information is now dirty! 1140 INLD.second = true; 1141 1142 for (NonLocalDepInfo::iterator DI = INLD.first.begin(), 1143 DE = INLD.first.end(); DI != DE; ++DI) { 1144 if (DI->getResult().getInst() != RemInst) continue; 1145 1146 // Convert to a dirty entry for the subsequent instruction. 1147 DI->setResult(NewDirtyVal); 1148 1149 if (Instruction *NextI = NewDirtyVal.getInst()) 1150 ReverseDepsToAdd.push_back(std::make_pair(NextI, *I)); 1151 } 1152 } 1153 1154 ReverseNonLocalDeps.erase(ReverseDepIt); 1155 1156 // Add new reverse deps after scanning the set, to avoid invalidating 'Set' 1157 while (!ReverseDepsToAdd.empty()) { 1158 ReverseNonLocalDeps[ReverseDepsToAdd.back().first] 1159 .insert(ReverseDepsToAdd.back().second); 1160 ReverseDepsToAdd.pop_back(); 1161 } 1162 } 1163 1164 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a 1165 // value in the NonLocalPointerDeps info. 1166 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = 1167 ReverseNonLocalPtrDeps.find(RemInst); 1168 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { 1169 SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second; 1170 SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd; 1171 1172 for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(), 1173 E = Set.end(); I != E; ++I) { 1174 ValueIsLoadPair P = *I; 1175 assert(P.getPointer() != RemInst && 1176 "Already removed NonLocalPointerDeps info for RemInst"); 1177 1178 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; 1179 1180 // The cache is not valid for any specific block anymore. 1181 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); 1182 NonLocalPointerDeps[P].TBAATag = 0; 1183 1184 // Update any entries for RemInst to use the instruction after it. 1185 for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end(); 1186 DI != DE; ++DI) { 1187 if (DI->getResult().getInst() != RemInst) continue; 1188 1189 // Convert to a dirty entry for the subsequent instruction. 1190 DI->setResult(NewDirtyVal); 1191 1192 if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) 1193 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); 1194 } 1195 1196 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its 1197 // subsequent value may invalidate the sortedness. 1198 std::sort(NLPDI.begin(), NLPDI.end()); 1199 } 1200 1201 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); 1202 1203 while (!ReversePtrDepsToAdd.empty()) { 1204 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first] 1205 .insert(ReversePtrDepsToAdd.back().second); 1206 ReversePtrDepsToAdd.pop_back(); 1207 } 1208 } 1209 1210 1211 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); 1212 AA->deleteValue(RemInst); 1213 DEBUG(verifyRemoved(RemInst)); 1214 } 1215 /// verifyRemoved - Verify that the specified instruction does not occur 1216 /// in our internal data structures. 1217 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const { 1218 for (LocalDepMapType::const_iterator I = LocalDeps.begin(), 1219 E = LocalDeps.end(); I != E; ++I) { 1220 assert(I->first != D && "Inst occurs in data structures"); 1221 assert(I->second.getInst() != D && 1222 "Inst occurs in data structures"); 1223 } 1224 1225 for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(), 1226 E = NonLocalPointerDeps.end(); I != E; ++I) { 1227 assert(I->first.getPointer() != D && "Inst occurs in NLPD map key"); 1228 const NonLocalDepInfo &Val = I->second.NonLocalDeps; 1229 for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end(); 1230 II != E; ++II) 1231 assert(II->getResult().getInst() != D && "Inst occurs as NLPD value"); 1232 } 1233 1234 for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(), 1235 E = NonLocalDeps.end(); I != E; ++I) { 1236 assert(I->first != D && "Inst occurs in data structures"); 1237 const PerInstNLInfo &INLD = I->second; 1238 for (NonLocalDepInfo::const_iterator II = INLD.first.begin(), 1239 EE = INLD.first.end(); II != EE; ++II) 1240 assert(II->getResult().getInst() != D && "Inst occurs in data structures"); 1241 } 1242 1243 for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(), 1244 E = ReverseLocalDeps.end(); I != E; ++I) { 1245 assert(I->first != D && "Inst occurs in data structures"); 1246 for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(), 1247 EE = I->second.end(); II != EE; ++II) 1248 assert(*II != D && "Inst occurs in data structures"); 1249 } 1250 1251 for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(), 1252 E = ReverseNonLocalDeps.end(); 1253 I != E; ++I) { 1254 assert(I->first != D && "Inst occurs in data structures"); 1255 for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(), 1256 EE = I->second.end(); II != EE; ++II) 1257 assert(*II != D && "Inst occurs in data structures"); 1258 } 1259 1260 for (ReverseNonLocalPtrDepTy::const_iterator 1261 I = ReverseNonLocalPtrDeps.begin(), 1262 E = ReverseNonLocalPtrDeps.end(); I != E; ++I) { 1263 assert(I->first != D && "Inst occurs in rev NLPD map"); 1264 1265 for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(), 1266 E = I->second.end(); II != E; ++II) 1267 assert(*II != ValueIsLoadPair(D, false) && 1268 *II != ValueIsLoadPair(D, true) && 1269 "Inst occurs in ReverseNonLocalPtrDeps map"); 1270 } 1271 1272 } 1273