1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements an analysis that determines, for a given memory 10 // operation, what preceding memory operations it depends on. It builds on 11 // alias analysis information, and tries to provide a lazy, caching interface to 12 // a common kind of alias information query. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/MemoryLocation.h" 26 #include "llvm/Analysis/PHITransAddr.h" 27 #include "llvm/Analysis/PhiValues.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/Attributes.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/InstrTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/Metadata.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/PredIteratorCache.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/Use.h" 47 #include "llvm/IR/User.h" 48 #include "llvm/IR/Value.h" 49 #include "llvm/InitializePasses.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/AtomicOrdering.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Compiler.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/MathExtras.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <cstdint> 60 #include <iterator> 61 #include <utility> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "memdep" 66 67 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); 68 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); 69 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); 70 71 STATISTIC(NumCacheNonLocalPtr, 72 "Number of fully cached non-local ptr responses"); 73 STATISTIC(NumCacheDirtyNonLocalPtr, 74 "Number of cached, but dirty, non-local ptr responses"); 75 STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses"); 76 STATISTIC(NumCacheCompleteNonLocalPtr, 77 "Number of block queries that were completely cached"); 78 79 // Limit for the number of instructions to scan in a block. 80 81 static cl::opt<unsigned> BlockScanLimit( 82 "memdep-block-scan-limit", cl::Hidden, cl::init(100), 83 cl::desc("The number of instructions to scan in a block in memory " 84 "dependency analysis (default = 100)")); 85 86 static cl::opt<unsigned> 87 BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000), 88 cl::desc("The number of blocks to scan during memory " 89 "dependency analysis (default = 1000)")); 90 91 // Limit on the number of memdep results to process. 92 static const unsigned int NumResultsLimit = 100; 93 94 /// This is a helper function that removes Val from 'Inst's set in ReverseMap. 95 /// 96 /// If the set becomes empty, remove Inst's entry. 97 template <typename KeyTy> 98 static void 99 RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap, 100 Instruction *Inst, KeyTy Val) { 101 typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt = 102 ReverseMap.find(Inst); 103 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); 104 bool Found = InstIt->second.erase(Val); 105 assert(Found && "Invalid reverse map!"); 106 (void)Found; 107 if (InstIt->second.empty()) 108 ReverseMap.erase(InstIt); 109 } 110 111 /// If the given instruction references a specific memory location, fill in Loc 112 /// with the details, otherwise set Loc.Ptr to null. 113 /// 114 /// Returns a ModRefInfo value describing the general behavior of the 115 /// instruction. 116 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc, 117 const TargetLibraryInfo &TLI) { 118 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 119 if (LI->isUnordered()) { 120 Loc = MemoryLocation::get(LI); 121 return ModRefInfo::Ref; 122 } 123 if (LI->getOrdering() == AtomicOrdering::Monotonic) { 124 Loc = MemoryLocation::get(LI); 125 return ModRefInfo::ModRef; 126 } 127 Loc = MemoryLocation(); 128 return ModRefInfo::ModRef; 129 } 130 131 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 132 if (SI->isUnordered()) { 133 Loc = MemoryLocation::get(SI); 134 return ModRefInfo::Mod; 135 } 136 if (SI->getOrdering() == AtomicOrdering::Monotonic) { 137 Loc = MemoryLocation::get(SI); 138 return ModRefInfo::ModRef; 139 } 140 Loc = MemoryLocation(); 141 return ModRefInfo::ModRef; 142 } 143 144 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { 145 Loc = MemoryLocation::get(V); 146 return ModRefInfo::ModRef; 147 } 148 149 if (const CallInst *CI = isFreeCall(Inst, &TLI)) { 150 // calls to free() deallocate the entire structure 151 Loc = MemoryLocation::getAfter(CI->getArgOperand(0)); 152 return ModRefInfo::Mod; 153 } 154 155 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 156 switch (II->getIntrinsicID()) { 157 case Intrinsic::lifetime_start: 158 case Intrinsic::lifetime_end: 159 case Intrinsic::invariant_start: 160 Loc = MemoryLocation::getForArgument(II, 1, TLI); 161 // These intrinsics don't really modify the memory, but returning Mod 162 // will allow them to be handled conservatively. 163 return ModRefInfo::Mod; 164 case Intrinsic::invariant_end: 165 Loc = MemoryLocation::getForArgument(II, 2, TLI); 166 // These intrinsics don't really modify the memory, but returning Mod 167 // will allow them to be handled conservatively. 168 return ModRefInfo::Mod; 169 case Intrinsic::masked_load: 170 Loc = MemoryLocation::getForArgument(II, 0, TLI); 171 return ModRefInfo::Ref; 172 case Intrinsic::masked_store: 173 Loc = MemoryLocation::getForArgument(II, 1, TLI); 174 return ModRefInfo::Mod; 175 default: 176 break; 177 } 178 } 179 180 // Otherwise, just do the coarse-grained thing that always works. 181 if (Inst->mayWriteToMemory()) 182 return ModRefInfo::ModRef; 183 if (Inst->mayReadFromMemory()) 184 return ModRefInfo::Ref; 185 return ModRefInfo::NoModRef; 186 } 187 188 /// Private helper for finding the local dependencies of a call site. 189 MemDepResult MemoryDependenceResults::getCallDependencyFrom( 190 CallBase *Call, bool isReadOnlyCall, BasicBlock::iterator ScanIt, 191 BasicBlock *BB) { 192 unsigned Limit = getDefaultBlockScanLimit(); 193 194 // Walk backwards through the block, looking for dependencies. 195 while (ScanIt != BB->begin()) { 196 Instruction *Inst = &*--ScanIt; 197 // Debug intrinsics don't cause dependences and should not affect Limit 198 if (isa<DbgInfoIntrinsic>(Inst)) 199 continue; 200 201 // Limit the amount of scanning we do so we don't end up with quadratic 202 // running time on extreme testcases. 203 --Limit; 204 if (!Limit) 205 return MemDepResult::getUnknown(); 206 207 // If this inst is a memory op, get the pointer it accessed 208 MemoryLocation Loc; 209 ModRefInfo MR = GetLocation(Inst, Loc, TLI); 210 if (Loc.Ptr) { 211 // A simple instruction. 212 if (isModOrRefSet(AA.getModRefInfo(Call, Loc))) 213 return MemDepResult::getClobber(Inst); 214 continue; 215 } 216 217 if (auto *CallB = dyn_cast<CallBase>(Inst)) { 218 // If these two calls do not interfere, look past it. 219 if (isNoModRef(AA.getModRefInfo(Call, CallB))) { 220 // If the two calls are the same, return Inst as a Def, so that 221 // Call can be found redundant and eliminated. 222 if (isReadOnlyCall && !isModSet(MR) && 223 Call->isIdenticalToWhenDefined(CallB)) 224 return MemDepResult::getDef(Inst); 225 226 // Otherwise if the two calls don't interact (e.g. CallB is readnone) 227 // keep scanning. 228 continue; 229 } else 230 return MemDepResult::getClobber(Inst); 231 } 232 233 // If we could not obtain a pointer for the instruction and the instruction 234 // touches memory then assume that this is a dependency. 235 if (isModOrRefSet(MR)) 236 return MemDepResult::getClobber(Inst); 237 } 238 239 // No dependence found. If this is the entry block of the function, it is 240 // unknown, otherwise it is non-local. 241 if (BB != &BB->getParent()->getEntryBlock()) 242 return MemDepResult::getNonLocal(); 243 return MemDepResult::getNonFuncLocal(); 244 } 245 246 static bool isVolatile(Instruction *Inst) { 247 if (auto *LI = dyn_cast<LoadInst>(Inst)) 248 return LI->isVolatile(); 249 if (auto *SI = dyn_cast<StoreInst>(Inst)) 250 return SI->isVolatile(); 251 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(Inst)) 252 return AI->isVolatile(); 253 return false; 254 } 255 256 MemDepResult MemoryDependenceResults::getPointerDependencyFrom( 257 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 258 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) { 259 MemDepResult InvariantGroupDependency = MemDepResult::getUnknown(); 260 if (QueryInst != nullptr) { 261 if (auto *LI = dyn_cast<LoadInst>(QueryInst)) { 262 InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB); 263 264 if (InvariantGroupDependency.isDef()) 265 return InvariantGroupDependency; 266 } 267 } 268 MemDepResult SimpleDep = getSimplePointerDependencyFrom( 269 MemLoc, isLoad, ScanIt, BB, QueryInst, Limit); 270 if (SimpleDep.isDef()) 271 return SimpleDep; 272 // Non-local invariant group dependency indicates there is non local Def 273 // (it only returns nonLocal if it finds nonLocal def), which is better than 274 // local clobber and everything else. 275 if (InvariantGroupDependency.isNonLocal()) 276 return InvariantGroupDependency; 277 278 assert(InvariantGroupDependency.isUnknown() && 279 "InvariantGroupDependency should be only unknown at this point"); 280 return SimpleDep; 281 } 282 283 MemDepResult 284 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI, 285 BasicBlock *BB) { 286 287 if (!LI->hasMetadata(LLVMContext::MD_invariant_group)) 288 return MemDepResult::getUnknown(); 289 290 // Take the ptr operand after all casts and geps 0. This way we can search 291 // cast graph down only. 292 Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts(); 293 294 // It's is not safe to walk the use list of global value, because function 295 // passes aren't allowed to look outside their functions. 296 // FIXME: this could be fixed by filtering instructions from outside 297 // of current function. 298 if (isa<GlobalValue>(LoadOperand)) 299 return MemDepResult::getUnknown(); 300 301 // Queue to process all pointers that are equivalent to load operand. 302 SmallVector<const Value *, 8> LoadOperandsQueue; 303 LoadOperandsQueue.push_back(LoadOperand); 304 305 Instruction *ClosestDependency = nullptr; 306 // Order of instructions in uses list is unpredictible. In order to always 307 // get the same result, we will look for the closest dominance. 308 auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) { 309 assert(Other && "Must call it with not null instruction"); 310 if (Best == nullptr || DT.dominates(Best, Other)) 311 return Other; 312 return Best; 313 }; 314 315 // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case 316 // we will see all the instructions. This should be fixed in MSSA. 317 while (!LoadOperandsQueue.empty()) { 318 const Value *Ptr = LoadOperandsQueue.pop_back_val(); 319 assert(Ptr && !isa<GlobalValue>(Ptr) && 320 "Null or GlobalValue should not be inserted"); 321 322 for (const Use &Us : Ptr->uses()) { 323 auto *U = dyn_cast<Instruction>(Us.getUser()); 324 if (!U || U == LI || !DT.dominates(U, LI)) 325 continue; 326 327 // Bitcast or gep with zeros are using Ptr. Add to queue to check it's 328 // users. U = bitcast Ptr 329 if (isa<BitCastInst>(U)) { 330 LoadOperandsQueue.push_back(U); 331 continue; 332 } 333 // Gep with zeros is equivalent to bitcast. 334 // FIXME: we are not sure if some bitcast should be canonicalized to gep 0 335 // or gep 0 to bitcast because of SROA, so there are 2 forms. When 336 // typeless pointers will be ready then both cases will be gone 337 // (and this BFS also won't be needed). 338 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) 339 if (GEP->hasAllZeroIndices()) { 340 LoadOperandsQueue.push_back(U); 341 continue; 342 } 343 344 // If we hit load/store with the same invariant.group metadata (and the 345 // same pointer operand) we can assume that value pointed by pointer 346 // operand didn't change. 347 if ((isa<LoadInst>(U) || isa<StoreInst>(U)) && 348 U->hasMetadata(LLVMContext::MD_invariant_group)) 349 ClosestDependency = GetClosestDependency(ClosestDependency, U); 350 } 351 } 352 353 if (!ClosestDependency) 354 return MemDepResult::getUnknown(); 355 if (ClosestDependency->getParent() == BB) 356 return MemDepResult::getDef(ClosestDependency); 357 // Def(U) can't be returned here because it is non-local. If local 358 // dependency won't be found then return nonLocal counting that the 359 // user will call getNonLocalPointerDependency, which will return cached 360 // result. 361 NonLocalDefsCache.try_emplace( 362 LI, NonLocalDepResult(ClosestDependency->getParent(), 363 MemDepResult::getDef(ClosestDependency), nullptr)); 364 ReverseNonLocalDefsCache[ClosestDependency].insert(LI); 365 return MemDepResult::getNonLocal(); 366 } 367 368 MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom( 369 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 370 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) { 371 // We can batch AA queries, because IR does not change during a MemDep query. 372 BatchAAResults BatchAA(AA); 373 bool isInvariantLoad = false; 374 375 unsigned DefaultLimit = getDefaultBlockScanLimit(); 376 if (!Limit) 377 Limit = &DefaultLimit; 378 379 // We must be careful with atomic accesses, as they may allow another thread 380 // to touch this location, clobbering it. We are conservative: if the 381 // QueryInst is not a simple (non-atomic) memory access, we automatically 382 // return getClobber. 383 // If it is simple, we know based on the results of 384 // "Compiler testing via a theory of sound optimisations in the C11/C++11 385 // memory model" in PLDI 2013, that a non-atomic location can only be 386 // clobbered between a pair of a release and an acquire action, with no 387 // access to the location in between. 388 // Here is an example for giving the general intuition behind this rule. 389 // In the following code: 390 // store x 0; 391 // release action; [1] 392 // acquire action; [4] 393 // %val = load x; 394 // It is unsafe to replace %val by 0 because another thread may be running: 395 // acquire action; [2] 396 // store x 42; 397 // release action; [3] 398 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val 399 // being 42. A key property of this program however is that if either 400 // 1 or 4 were missing, there would be a race between the store of 42 401 // either the store of 0 or the load (making the whole program racy). 402 // The paper mentioned above shows that the same property is respected 403 // by every program that can detect any optimization of that kind: either 404 // it is racy (undefined) or there is a release followed by an acquire 405 // between the pair of accesses under consideration. 406 407 // If the load is invariant, we "know" that it doesn't alias *any* write. We 408 // do want to respect mustalias results since defs are useful for value 409 // forwarding, but any mayalias write can be assumed to be noalias. 410 // Arguably, this logic should be pushed inside AliasAnalysis itself. 411 if (isLoad && QueryInst) { 412 LoadInst *LI = dyn_cast<LoadInst>(QueryInst); 413 if (LI && LI->hasMetadata(LLVMContext::MD_invariant_load)) 414 isInvariantLoad = true; 415 } 416 417 // Return "true" if and only if the instruction I is either a non-simple 418 // load or a non-simple store. 419 auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool { 420 if (auto *LI = dyn_cast<LoadInst>(I)) 421 return !LI->isSimple(); 422 if (auto *SI = dyn_cast<StoreInst>(I)) 423 return !SI->isSimple(); 424 return false; 425 }; 426 427 // Return "true" if I is not a load and not a store, but it does access 428 // memory. 429 auto isOtherMemAccess = [](Instruction *I) -> bool { 430 return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory(); 431 }; 432 433 // Walk backwards through the basic block, looking for dependencies. 434 while (ScanIt != BB->begin()) { 435 Instruction *Inst = &*--ScanIt; 436 437 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 438 // Debug intrinsics don't (and can't) cause dependencies. 439 if (isa<DbgInfoIntrinsic>(II)) 440 continue; 441 442 // Limit the amount of scanning we do so we don't end up with quadratic 443 // running time on extreme testcases. 444 --*Limit; 445 if (!*Limit) 446 return MemDepResult::getUnknown(); 447 448 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 449 // If we reach a lifetime begin or end marker, then the query ends here 450 // because the value is undefined. 451 Intrinsic::ID ID = II->getIntrinsicID(); 452 switch (ID) { 453 case Intrinsic::lifetime_start: { 454 // FIXME: This only considers queries directly on the invariant-tagged 455 // pointer, not on query pointers that are indexed off of them. It'd 456 // be nice to handle that at some point (the right approach is to use 457 // GetPointerBaseWithConstantOffset). 458 MemoryLocation ArgLoc = MemoryLocation::getAfter(II->getArgOperand(1)); 459 if (BatchAA.isMustAlias(ArgLoc, MemLoc)) 460 return MemDepResult::getDef(II); 461 continue; 462 } 463 case Intrinsic::masked_load: 464 case Intrinsic::masked_store: { 465 MemoryLocation Loc; 466 /*ModRefInfo MR =*/ GetLocation(II, Loc, TLI); 467 AliasResult R = BatchAA.alias(Loc, MemLoc); 468 if (R == NoAlias) 469 continue; 470 if (R == MustAlias) 471 return MemDepResult::getDef(II); 472 if (ID == Intrinsic::masked_load) 473 continue; 474 return MemDepResult::getClobber(II); 475 } 476 } 477 } 478 479 // Values depend on loads if the pointers are must aliased. This means 480 // that a load depends on another must aliased load from the same value. 481 // One exception is atomic loads: a value can depend on an atomic load that 482 // it does not alias with when this atomic load indicates that another 483 // thread may be accessing the location. 484 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 485 // While volatile access cannot be eliminated, they do not have to clobber 486 // non-aliasing locations, as normal accesses, for example, can be safely 487 // reordered with volatile accesses. 488 if (LI->isVolatile()) { 489 if (!QueryInst) 490 // Original QueryInst *may* be volatile 491 return MemDepResult::getClobber(LI); 492 if (isVolatile(QueryInst)) 493 // Ordering required if QueryInst is itself volatile 494 return MemDepResult::getClobber(LI); 495 // Otherwise, volatile doesn't imply any special ordering 496 } 497 498 // Atomic loads have complications involved. 499 // A Monotonic (or higher) load is OK if the query inst is itself not 500 // atomic. 501 // FIXME: This is overly conservative. 502 if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) { 503 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 504 isOtherMemAccess(QueryInst)) 505 return MemDepResult::getClobber(LI); 506 if (LI->getOrdering() != AtomicOrdering::Monotonic) 507 return MemDepResult::getClobber(LI); 508 } 509 510 MemoryLocation LoadLoc = MemoryLocation::get(LI); 511 512 // If we found a pointer, check if it could be the same as our pointer. 513 AliasResult R = BatchAA.alias(LoadLoc, MemLoc); 514 515 if (isLoad) { 516 if (R == NoAlias) 517 continue; 518 519 // Must aliased loads are defs of each other. 520 if (R == MustAlias) 521 return MemDepResult::getDef(Inst); 522 523 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads 524 // in terms of clobbering loads, but since it does this by looking 525 // at the clobbering load directly, it doesn't know about any 526 // phi translation that may have happened along the way. 527 528 // If we have a partial alias, then return this as a clobber for the 529 // client to handle. 530 if (R == PartialAlias) 531 return MemDepResult::getClobber(Inst); 532 #endif 533 534 // Random may-alias loads don't depend on each other without a 535 // dependence. 536 continue; 537 } 538 539 // Stores don't depend on other no-aliased accesses. 540 if (R == NoAlias) 541 continue; 542 543 // Stores don't alias loads from read-only memory. 544 if (BatchAA.pointsToConstantMemory(LoadLoc)) 545 continue; 546 547 // Stores depend on may/must aliased loads. 548 return MemDepResult::getDef(Inst); 549 } 550 551 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 552 // Atomic stores have complications involved. 553 // A Monotonic store is OK if the query inst is itself not atomic. 554 // FIXME: This is overly conservative. 555 if (!SI->isUnordered() && SI->isAtomic()) { 556 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 557 isOtherMemAccess(QueryInst)) 558 return MemDepResult::getClobber(SI); 559 if (SI->getOrdering() != AtomicOrdering::Monotonic) 560 return MemDepResult::getClobber(SI); 561 } 562 563 // FIXME: this is overly conservative. 564 // While volatile access cannot be eliminated, they do not have to clobber 565 // non-aliasing locations, as normal accesses can for example be reordered 566 // with volatile accesses. 567 if (SI->isVolatile()) 568 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 569 isOtherMemAccess(QueryInst)) 570 return MemDepResult::getClobber(SI); 571 572 // If alias analysis can tell that this store is guaranteed to not modify 573 // the query pointer, ignore it. Use getModRefInfo to handle cases where 574 // the query pointer points to constant memory etc. 575 if (!isModOrRefSet(BatchAA.getModRefInfo(SI, MemLoc))) 576 continue; 577 578 // Ok, this store might clobber the query pointer. Check to see if it is 579 // a must alias: in this case, we want to return this as a def. 580 // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above. 581 MemoryLocation StoreLoc = MemoryLocation::get(SI); 582 583 // If we found a pointer, check if it could be the same as our pointer. 584 AliasResult R = BatchAA.alias(StoreLoc, MemLoc); 585 586 if (R == NoAlias) 587 continue; 588 if (R == MustAlias) 589 return MemDepResult::getDef(Inst); 590 if (isInvariantLoad) 591 continue; 592 return MemDepResult::getClobber(Inst); 593 } 594 595 // If this is an allocation, and if we know that the accessed pointer is to 596 // the allocation, return Def. This means that there is no dependence and 597 // the access can be optimized based on that. For example, a load could 598 // turn into undef. Note that we can bypass the allocation itself when 599 // looking for a clobber in many cases; that's an alias property and is 600 // handled by BasicAA. 601 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) { 602 const Value *AccessPtr = getUnderlyingObject(MemLoc.Ptr); 603 if (AccessPtr == Inst || BatchAA.isMustAlias(Inst, AccessPtr)) 604 return MemDepResult::getDef(Inst); 605 } 606 607 if (isInvariantLoad) 608 continue; 609 610 // A release fence requires that all stores complete before it, but does 611 // not prevent the reordering of following loads or stores 'before' the 612 // fence. As a result, we look past it when finding a dependency for 613 // loads. DSE uses this to find preceding stores to delete and thus we 614 // can't bypass the fence if the query instruction is a store. 615 if (FenceInst *FI = dyn_cast<FenceInst>(Inst)) 616 if (isLoad && FI->getOrdering() == AtomicOrdering::Release) 617 continue; 618 619 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. 620 ModRefInfo MR = BatchAA.getModRefInfo(Inst, MemLoc); 621 // If necessary, perform additional analysis. 622 if (isModAndRefSet(MR)) 623 // TODO: Support callCapturesBefore() on BatchAAResults. 624 MR = AA.callCapturesBefore(Inst, MemLoc, &DT); 625 switch (clearMust(MR)) { 626 case ModRefInfo::NoModRef: 627 // If the call has no effect on the queried pointer, just ignore it. 628 continue; 629 case ModRefInfo::Mod: 630 return MemDepResult::getClobber(Inst); 631 case ModRefInfo::Ref: 632 // If the call is known to never store to the pointer, and if this is a 633 // load query, we can safely ignore it (scan past it). 634 if (isLoad) 635 continue; 636 LLVM_FALLTHROUGH; 637 default: 638 // Otherwise, there is a potential dependence. Return a clobber. 639 return MemDepResult::getClobber(Inst); 640 } 641 } 642 643 // No dependence found. If this is the entry block of the function, it is 644 // unknown, otherwise it is non-local. 645 if (BB != &BB->getParent()->getEntryBlock()) 646 return MemDepResult::getNonLocal(); 647 return MemDepResult::getNonFuncLocal(); 648 } 649 650 MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) { 651 Instruction *ScanPos = QueryInst; 652 653 // Check for a cached result 654 MemDepResult &LocalCache = LocalDeps[QueryInst]; 655 656 // If the cached entry is non-dirty, just return it. Note that this depends 657 // on MemDepResult's default constructing to 'dirty'. 658 if (!LocalCache.isDirty()) 659 return LocalCache; 660 661 // Otherwise, if we have a dirty entry, we know we can start the scan at that 662 // instruction, which may save us some work. 663 if (Instruction *Inst = LocalCache.getInst()) { 664 ScanPos = Inst; 665 666 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); 667 } 668 669 BasicBlock *QueryParent = QueryInst->getParent(); 670 671 // Do the scan. 672 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { 673 // No dependence found. If this is the entry block of the function, it is 674 // unknown, otherwise it is non-local. 675 if (QueryParent != &QueryParent->getParent()->getEntryBlock()) 676 LocalCache = MemDepResult::getNonLocal(); 677 else 678 LocalCache = MemDepResult::getNonFuncLocal(); 679 } else { 680 MemoryLocation MemLoc; 681 ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI); 682 if (MemLoc.Ptr) { 683 // If we can do a pointer scan, make it happen. 684 bool isLoad = !isModSet(MR); 685 if (auto *II = dyn_cast<IntrinsicInst>(QueryInst)) 686 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start; 687 688 LocalCache = 689 getPointerDependencyFrom(MemLoc, isLoad, ScanPos->getIterator(), 690 QueryParent, QueryInst, nullptr); 691 } else if (auto *QueryCall = dyn_cast<CallBase>(QueryInst)) { 692 bool isReadOnly = AA.onlyReadsMemory(QueryCall); 693 LocalCache = getCallDependencyFrom(QueryCall, isReadOnly, 694 ScanPos->getIterator(), QueryParent); 695 } else 696 // Non-memory instruction. 697 LocalCache = MemDepResult::getUnknown(); 698 } 699 700 // Remember the result! 701 if (Instruction *I = LocalCache.getInst()) 702 ReverseLocalDeps[I].insert(QueryInst); 703 704 return LocalCache; 705 } 706 707 #ifndef NDEBUG 708 /// This method is used when -debug is specified to verify that cache arrays 709 /// are properly kept sorted. 710 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache, 711 int Count = -1) { 712 if (Count == -1) 713 Count = Cache.size(); 714 assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) && 715 "Cache isn't sorted!"); 716 } 717 #endif 718 719 const MemoryDependenceResults::NonLocalDepInfo & 720 MemoryDependenceResults::getNonLocalCallDependency(CallBase *QueryCall) { 721 assert(getDependency(QueryCall).isNonLocal() && 722 "getNonLocalCallDependency should only be used on calls with " 723 "non-local deps!"); 724 PerInstNLInfo &CacheP = NonLocalDeps[QueryCall]; 725 NonLocalDepInfo &Cache = CacheP.first; 726 727 // This is the set of blocks that need to be recomputed. In the cached case, 728 // this can happen due to instructions being deleted etc. In the uncached 729 // case, this starts out as the set of predecessors we care about. 730 SmallVector<BasicBlock *, 32> DirtyBlocks; 731 732 if (!Cache.empty()) { 733 // Okay, we have a cache entry. If we know it is not dirty, just return it 734 // with no computation. 735 if (!CacheP.second) { 736 ++NumCacheNonLocal; 737 return Cache; 738 } 739 740 // If we already have a partially computed set of results, scan them to 741 // determine what is dirty, seeding our initial DirtyBlocks worklist. 742 for (auto &Entry : Cache) 743 if (Entry.getResult().isDirty()) 744 DirtyBlocks.push_back(Entry.getBB()); 745 746 // Sort the cache so that we can do fast binary search lookups below. 747 llvm::sort(Cache); 748 749 ++NumCacheDirtyNonLocal; 750 // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " 751 // << Cache.size() << " cached: " << *QueryInst; 752 } else { 753 // Seed DirtyBlocks with each of the preds of QueryInst's block. 754 BasicBlock *QueryBB = QueryCall->getParent(); 755 for (BasicBlock *Pred : PredCache.get(QueryBB)) 756 DirtyBlocks.push_back(Pred); 757 ++NumUncacheNonLocal; 758 } 759 760 // isReadonlyCall - If this is a read-only call, we can be more aggressive. 761 bool isReadonlyCall = AA.onlyReadsMemory(QueryCall); 762 763 SmallPtrSet<BasicBlock *, 32> Visited; 764 765 unsigned NumSortedEntries = Cache.size(); 766 LLVM_DEBUG(AssertSorted(Cache)); 767 768 // Iterate while we still have blocks to update. 769 while (!DirtyBlocks.empty()) { 770 BasicBlock *DirtyBB = DirtyBlocks.back(); 771 DirtyBlocks.pop_back(); 772 773 // Already processed this block? 774 if (!Visited.insert(DirtyBB).second) 775 continue; 776 777 // Do a binary search to see if we already have an entry for this block in 778 // the cache set. If so, find it. 779 LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries)); 780 NonLocalDepInfo::iterator Entry = 781 std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries, 782 NonLocalDepEntry(DirtyBB)); 783 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB) 784 --Entry; 785 786 NonLocalDepEntry *ExistingResult = nullptr; 787 if (Entry != Cache.begin() + NumSortedEntries && 788 Entry->getBB() == DirtyBB) { 789 // If we already have an entry, and if it isn't already dirty, the block 790 // is done. 791 if (!Entry->getResult().isDirty()) 792 continue; 793 794 // Otherwise, remember this slot so we can update the value. 795 ExistingResult = &*Entry; 796 } 797 798 // If the dirty entry has a pointer, start scanning from it so we don't have 799 // to rescan the entire block. 800 BasicBlock::iterator ScanPos = DirtyBB->end(); 801 if (ExistingResult) { 802 if (Instruction *Inst = ExistingResult->getResult().getInst()) { 803 ScanPos = Inst->getIterator(); 804 // We're removing QueryInst's use of Inst. 805 RemoveFromReverseMap<Instruction *>(ReverseNonLocalDeps, Inst, 806 QueryCall); 807 } 808 } 809 810 // Find out if this block has a local dependency for QueryInst. 811 MemDepResult Dep; 812 813 if (ScanPos != DirtyBB->begin()) { 814 Dep = getCallDependencyFrom(QueryCall, isReadonlyCall, ScanPos, DirtyBB); 815 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { 816 // No dependence found. If this is the entry block of the function, it is 817 // a clobber, otherwise it is unknown. 818 Dep = MemDepResult::getNonLocal(); 819 } else { 820 Dep = MemDepResult::getNonFuncLocal(); 821 } 822 823 // If we had a dirty entry for the block, update it. Otherwise, just add 824 // a new entry. 825 if (ExistingResult) 826 ExistingResult->setResult(Dep); 827 else 828 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); 829 830 // If the block has a dependency (i.e. it isn't completely transparent to 831 // the value), remember the association! 832 if (!Dep.isNonLocal()) { 833 // Keep the ReverseNonLocalDeps map up to date so we can efficiently 834 // update this when we remove instructions. 835 if (Instruction *Inst = Dep.getInst()) 836 ReverseNonLocalDeps[Inst].insert(QueryCall); 837 } else { 838 839 // If the block *is* completely transparent to the load, we need to check 840 // the predecessors of this block. Add them to our worklist. 841 for (BasicBlock *Pred : PredCache.get(DirtyBB)) 842 DirtyBlocks.push_back(Pred); 843 } 844 } 845 846 return Cache; 847 } 848 849 void MemoryDependenceResults::getNonLocalPointerDependency( 850 Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) { 851 const MemoryLocation Loc = MemoryLocation::get(QueryInst); 852 bool isLoad = isa<LoadInst>(QueryInst); 853 BasicBlock *FromBB = QueryInst->getParent(); 854 assert(FromBB); 855 856 assert(Loc.Ptr->getType()->isPointerTy() && 857 "Can't get pointer deps of a non-pointer!"); 858 Result.clear(); 859 { 860 // Check if there is cached Def with invariant.group. 861 auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst); 862 if (NonLocalDefIt != NonLocalDefsCache.end()) { 863 Result.push_back(NonLocalDefIt->second); 864 ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()] 865 .erase(QueryInst); 866 NonLocalDefsCache.erase(NonLocalDefIt); 867 return; 868 } 869 } 870 // This routine does not expect to deal with volatile instructions. 871 // Doing so would require piping through the QueryInst all the way through. 872 // TODO: volatiles can't be elided, but they can be reordered with other 873 // non-volatile accesses. 874 875 // We currently give up on any instruction which is ordered, but we do handle 876 // atomic instructions which are unordered. 877 // TODO: Handle ordered instructions 878 auto isOrdered = [](Instruction *Inst) { 879 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 880 return !LI->isUnordered(); 881 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 882 return !SI->isUnordered(); 883 } 884 return false; 885 }; 886 if (isVolatile(QueryInst) || isOrdered(QueryInst)) { 887 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(), 888 const_cast<Value *>(Loc.Ptr))); 889 return; 890 } 891 const DataLayout &DL = FromBB->getModule()->getDataLayout(); 892 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC); 893 894 // This is the set of blocks we've inspected, and the pointer we consider in 895 // each block. Because of critical edges, we currently bail out if querying 896 // a block with multiple different pointers. This can happen during PHI 897 // translation. 898 DenseMap<BasicBlock *, Value *> Visited; 899 if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB, 900 Result, Visited, true)) 901 return; 902 Result.clear(); 903 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(), 904 const_cast<Value *>(Loc.Ptr))); 905 } 906 907 /// Compute the memdep value for BB with Pointer/PointeeSize using either 908 /// cached information in Cache or by doing a lookup (which may use dirty cache 909 /// info if available). 910 /// 911 /// If we do a lookup, add the result to the cache. 912 MemDepResult MemoryDependenceResults::GetNonLocalInfoForBlock( 913 Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad, 914 BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) { 915 916 bool isInvariantLoad = false; 917 918 if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst)) 919 isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load); 920 921 // Do a binary search to see if we already have an entry for this block in 922 // the cache set. If so, find it. 923 NonLocalDepInfo::iterator Entry = std::upper_bound( 924 Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB)); 925 if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB) 926 --Entry; 927 928 NonLocalDepEntry *ExistingResult = nullptr; 929 if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB) 930 ExistingResult = &*Entry; 931 932 // Use cached result for invariant load only if there is no dependency for non 933 // invariant load. In this case invariant load can not have any dependency as 934 // well. 935 if (ExistingResult && isInvariantLoad && 936 !ExistingResult->getResult().isNonFuncLocal()) 937 ExistingResult = nullptr; 938 939 // If we have a cached entry, and it is non-dirty, use it as the value for 940 // this dependency. 941 if (ExistingResult && !ExistingResult->getResult().isDirty()) { 942 ++NumCacheNonLocalPtr; 943 return ExistingResult->getResult(); 944 } 945 946 // Otherwise, we have to scan for the value. If we have a dirty cache 947 // entry, start scanning from its position, otherwise we scan from the end 948 // of the block. 949 BasicBlock::iterator ScanPos = BB->end(); 950 if (ExistingResult && ExistingResult->getResult().getInst()) { 951 assert(ExistingResult->getResult().getInst()->getParent() == BB && 952 "Instruction invalidated?"); 953 ++NumCacheDirtyNonLocalPtr; 954 ScanPos = ExistingResult->getResult().getInst()->getIterator(); 955 956 // Eliminating the dirty entry from 'Cache', so update the reverse info. 957 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 958 RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey); 959 } else { 960 ++NumUncacheNonLocalPtr; 961 } 962 963 // Scan the block for the dependency. 964 MemDepResult Dep = 965 getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, QueryInst); 966 967 // Don't cache results for invariant load. 968 if (isInvariantLoad) 969 return Dep; 970 971 // If we had a dirty entry for the block, update it. Otherwise, just add 972 // a new entry. 973 if (ExistingResult) 974 ExistingResult->setResult(Dep); 975 else 976 Cache->push_back(NonLocalDepEntry(BB, Dep)); 977 978 // If the block has a dependency (i.e. it isn't completely transparent to 979 // the value), remember the reverse association because we just added it 980 // to Cache! 981 if (!Dep.isDef() && !Dep.isClobber()) 982 return Dep; 983 984 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently 985 // update MemDep when we remove instructions. 986 Instruction *Inst = Dep.getInst(); 987 assert(Inst && "Didn't depend on anything?"); 988 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 989 ReverseNonLocalPtrDeps[Inst].insert(CacheKey); 990 return Dep; 991 } 992 993 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the 994 /// array that are already properly ordered. 995 /// 996 /// This is optimized for the case when only a few entries are added. 997 static void 998 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache, 999 unsigned NumSortedEntries) { 1000 switch (Cache.size() - NumSortedEntries) { 1001 case 0: 1002 // done, no new entries. 1003 break; 1004 case 2: { 1005 // Two new entries, insert the last one into place. 1006 NonLocalDepEntry Val = Cache.back(); 1007 Cache.pop_back(); 1008 MemoryDependenceResults::NonLocalDepInfo::iterator Entry = 1009 std::upper_bound(Cache.begin(), Cache.end() - 1, Val); 1010 Cache.insert(Entry, Val); 1011 LLVM_FALLTHROUGH; 1012 } 1013 case 1: 1014 // One new entry, Just insert the new value at the appropriate position. 1015 if (Cache.size() != 1) { 1016 NonLocalDepEntry Val = Cache.back(); 1017 Cache.pop_back(); 1018 MemoryDependenceResults::NonLocalDepInfo::iterator Entry = 1019 std::upper_bound(Cache.begin(), Cache.end(), Val); 1020 Cache.insert(Entry, Val); 1021 } 1022 break; 1023 default: 1024 // Added many values, do a full scale sort. 1025 llvm::sort(Cache); 1026 break; 1027 } 1028 } 1029 1030 /// Perform a dependency query based on pointer/pointeesize starting at the end 1031 /// of StartBB. 1032 /// 1033 /// Add any clobber/def results to the results vector and keep track of which 1034 /// blocks are visited in 'Visited'. 1035 /// 1036 /// This has special behavior for the first block queries (when SkipFirstBlock 1037 /// is true). In this special case, it ignores the contents of the specified 1038 /// block and starts returning dependence info for its predecessors. 1039 /// 1040 /// This function returns true on success, or false to indicate that it could 1041 /// not compute dependence information for some reason. This should be treated 1042 /// as a clobber dependence on the first instruction in the predecessor block. 1043 bool MemoryDependenceResults::getNonLocalPointerDepFromBB( 1044 Instruction *QueryInst, const PHITransAddr &Pointer, 1045 const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB, 1046 SmallVectorImpl<NonLocalDepResult> &Result, 1047 DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock, 1048 bool IsIncomplete) { 1049 // Look up the cached info for Pointer. 1050 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); 1051 1052 // Set up a temporary NLPI value. If the map doesn't yet have an entry for 1053 // CacheKey, this value will be inserted as the associated value. Otherwise, 1054 // it'll be ignored, and we'll have to check to see if the cached size and 1055 // aa tags are consistent with the current query. 1056 NonLocalPointerInfo InitialNLPI; 1057 InitialNLPI.Size = Loc.Size; 1058 InitialNLPI.AATags = Loc.AATags; 1059 1060 bool isInvariantLoad = false; 1061 if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst)) 1062 isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load); 1063 1064 // Get the NLPI for CacheKey, inserting one into the map if it doesn't 1065 // already have one. 1066 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = 1067 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); 1068 NonLocalPointerInfo *CacheInfo = &Pair.first->second; 1069 1070 // If we already have a cache entry for this CacheKey, we may need to do some 1071 // work to reconcile the cache entry and the current query. 1072 // Invariant loads don't participate in caching. Thus no need to reconcile. 1073 if (!isInvariantLoad && !Pair.second) { 1074 if (CacheInfo->Size != Loc.Size) { 1075 bool ThrowOutEverything; 1076 if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) { 1077 // FIXME: We may be able to do better in the face of results with mixed 1078 // precision. We don't appear to get them in practice, though, so just 1079 // be conservative. 1080 ThrowOutEverything = 1081 CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() || 1082 CacheInfo->Size.getValue() < Loc.Size.getValue(); 1083 } else { 1084 // For our purposes, unknown size > all others. 1085 ThrowOutEverything = !Loc.Size.hasValue(); 1086 } 1087 1088 if (ThrowOutEverything) { 1089 // The query's Size is greater than the cached one. Throw out the 1090 // cached data and proceed with the query at the greater size. 1091 CacheInfo->Pair = BBSkipFirstBlockPair(); 1092 CacheInfo->Size = Loc.Size; 1093 for (auto &Entry : CacheInfo->NonLocalDeps) 1094 if (Instruction *Inst = Entry.getResult().getInst()) 1095 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1096 CacheInfo->NonLocalDeps.clear(); 1097 // The cache is cleared (in the above line) so we will have lost 1098 // information about blocks we have already visited. We therefore must 1099 // assume that the cache information is incomplete. 1100 IsIncomplete = true; 1101 } else { 1102 // This query's Size is less than the cached one. Conservatively restart 1103 // the query using the greater size. 1104 return getNonLocalPointerDepFromBB( 1105 QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad, 1106 StartBB, Result, Visited, SkipFirstBlock, IsIncomplete); 1107 } 1108 } 1109 1110 // If the query's AATags are inconsistent with the cached one, 1111 // conservatively throw out the cached data and restart the query with 1112 // no tag if needed. 1113 if (CacheInfo->AATags != Loc.AATags) { 1114 if (CacheInfo->AATags) { 1115 CacheInfo->Pair = BBSkipFirstBlockPair(); 1116 CacheInfo->AATags = AAMDNodes(); 1117 for (auto &Entry : CacheInfo->NonLocalDeps) 1118 if (Instruction *Inst = Entry.getResult().getInst()) 1119 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1120 CacheInfo->NonLocalDeps.clear(); 1121 // The cache is cleared (in the above line) so we will have lost 1122 // information about blocks we have already visited. We therefore must 1123 // assume that the cache information is incomplete. 1124 IsIncomplete = true; 1125 } 1126 if (Loc.AATags) 1127 return getNonLocalPointerDepFromBB( 1128 QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result, 1129 Visited, SkipFirstBlock, IsIncomplete); 1130 } 1131 } 1132 1133 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; 1134 1135 // If we have valid cached information for exactly the block we are 1136 // investigating, just return it with no recomputation. 1137 // Don't use cached information for invariant loads since it is valid for 1138 // non-invariant loads only. 1139 // 1140 // Don't use cached information for invariant loads since it is valid for 1141 // non-invariant loads only. 1142 if (!IsIncomplete && !isInvariantLoad && 1143 CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { 1144 // We have a fully cached result for this query then we can just return the 1145 // cached results and populate the visited set. However, we have to verify 1146 // that we don't already have conflicting results for these blocks. Check 1147 // to ensure that if a block in the results set is in the visited set that 1148 // it was for the same pointer query. 1149 if (!Visited.empty()) { 1150 for (auto &Entry : *Cache) { 1151 DenseMap<BasicBlock *, Value *>::iterator VI = 1152 Visited.find(Entry.getBB()); 1153 if (VI == Visited.end() || VI->second == Pointer.getAddr()) 1154 continue; 1155 1156 // We have a pointer mismatch in a block. Just return false, saying 1157 // that something was clobbered in this result. We could also do a 1158 // non-fully cached query, but there is little point in doing this. 1159 return false; 1160 } 1161 } 1162 1163 Value *Addr = Pointer.getAddr(); 1164 for (auto &Entry : *Cache) { 1165 Visited.insert(std::make_pair(Entry.getBB(), Addr)); 1166 if (Entry.getResult().isNonLocal()) { 1167 continue; 1168 } 1169 1170 if (DT.isReachableFromEntry(Entry.getBB())) { 1171 Result.push_back( 1172 NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr)); 1173 } 1174 } 1175 ++NumCacheCompleteNonLocalPtr; 1176 return true; 1177 } 1178 1179 // Otherwise, either this is a new block, a block with an invalid cache 1180 // pointer or one that we're about to invalidate by putting more info into 1181 // it than its valid cache info. If empty and not explicitly indicated as 1182 // incomplete, the result will be valid cache info, otherwise it isn't. 1183 // 1184 // Invariant loads don't affect cache in any way thus no need to update 1185 // CacheInfo as well. 1186 if (!isInvariantLoad) { 1187 if (!IsIncomplete && Cache->empty()) 1188 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); 1189 else 1190 CacheInfo->Pair = BBSkipFirstBlockPair(); 1191 } 1192 1193 SmallVector<BasicBlock *, 32> Worklist; 1194 Worklist.push_back(StartBB); 1195 1196 // PredList used inside loop. 1197 SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList; 1198 1199 // Keep track of the entries that we know are sorted. Previously cached 1200 // entries will all be sorted. The entries we add we only sort on demand (we 1201 // don't insert every element into its sorted position). We know that we 1202 // won't get any reuse from currently inserted values, because we don't 1203 // revisit blocks after we insert info for them. 1204 unsigned NumSortedEntries = Cache->size(); 1205 unsigned WorklistEntries = BlockNumberLimit; 1206 bool GotWorklistLimit = false; 1207 LLVM_DEBUG(AssertSorted(*Cache)); 1208 1209 while (!Worklist.empty()) { 1210 BasicBlock *BB = Worklist.pop_back_val(); 1211 1212 // If we do process a large number of blocks it becomes very expensive and 1213 // likely it isn't worth worrying about 1214 if (Result.size() > NumResultsLimit) { 1215 Worklist.clear(); 1216 // Sort it now (if needed) so that recursive invocations of 1217 // getNonLocalPointerDepFromBB and other routines that could reuse the 1218 // cache value will only see properly sorted cache arrays. 1219 if (Cache && NumSortedEntries != Cache->size()) { 1220 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1221 } 1222 // Since we bail out, the "Cache" set won't contain all of the 1223 // results for the query. This is ok (we can still use it to accelerate 1224 // specific block queries) but we can't do the fastpath "return all 1225 // results from the set". Clear out the indicator for this. 1226 CacheInfo->Pair = BBSkipFirstBlockPair(); 1227 return false; 1228 } 1229 1230 // Skip the first block if we have it. 1231 if (!SkipFirstBlock) { 1232 // Analyze the dependency of *Pointer in FromBB. See if we already have 1233 // been here. 1234 assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); 1235 1236 // Get the dependency info for Pointer in BB. If we have cached 1237 // information, we will use it, otherwise we compute it. 1238 LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries)); 1239 MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, Loc, isLoad, BB, 1240 Cache, NumSortedEntries); 1241 1242 // If we got a Def or Clobber, add this to the list of results. 1243 if (!Dep.isNonLocal()) { 1244 if (DT.isReachableFromEntry(BB)) { 1245 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); 1246 continue; 1247 } 1248 } 1249 } 1250 1251 // If 'Pointer' is an instruction defined in this block, then we need to do 1252 // phi translation to change it into a value live in the predecessor block. 1253 // If not, we just add the predecessors to the worklist and scan them with 1254 // the same Pointer. 1255 if (!Pointer.NeedsPHITranslationFromBlock(BB)) { 1256 SkipFirstBlock = false; 1257 SmallVector<BasicBlock *, 16> NewBlocks; 1258 for (BasicBlock *Pred : PredCache.get(BB)) { 1259 // Verify that we haven't looked at this block yet. 1260 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = 1261 Visited.insert(std::make_pair(Pred, Pointer.getAddr())); 1262 if (InsertRes.second) { 1263 // First time we've looked at *PI. 1264 NewBlocks.push_back(Pred); 1265 continue; 1266 } 1267 1268 // If we have seen this block before, but it was with a different 1269 // pointer then we have a phi translation failure and we have to treat 1270 // this as a clobber. 1271 if (InsertRes.first->second != Pointer.getAddr()) { 1272 // Make sure to clean up the Visited map before continuing on to 1273 // PredTranslationFailure. 1274 for (unsigned i = 0; i < NewBlocks.size(); i++) 1275 Visited.erase(NewBlocks[i]); 1276 goto PredTranslationFailure; 1277 } 1278 } 1279 if (NewBlocks.size() > WorklistEntries) { 1280 // Make sure to clean up the Visited map before continuing on to 1281 // PredTranslationFailure. 1282 for (unsigned i = 0; i < NewBlocks.size(); i++) 1283 Visited.erase(NewBlocks[i]); 1284 GotWorklistLimit = true; 1285 goto PredTranslationFailure; 1286 } 1287 WorklistEntries -= NewBlocks.size(); 1288 Worklist.append(NewBlocks.begin(), NewBlocks.end()); 1289 continue; 1290 } 1291 1292 // We do need to do phi translation, if we know ahead of time we can't phi 1293 // translate this value, don't even try. 1294 if (!Pointer.IsPotentiallyPHITranslatable()) 1295 goto PredTranslationFailure; 1296 1297 // We may have added values to the cache list before this PHI translation. 1298 // If so, we haven't done anything to ensure that the cache remains sorted. 1299 // Sort it now (if needed) so that recursive invocations of 1300 // getNonLocalPointerDepFromBB and other routines that could reuse the cache 1301 // value will only see properly sorted cache arrays. 1302 if (Cache && NumSortedEntries != Cache->size()) { 1303 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1304 NumSortedEntries = Cache->size(); 1305 } 1306 Cache = nullptr; 1307 1308 PredList.clear(); 1309 for (BasicBlock *Pred : PredCache.get(BB)) { 1310 PredList.push_back(std::make_pair(Pred, Pointer)); 1311 1312 // Get the PHI translated pointer in this predecessor. This can fail if 1313 // not translatable, in which case the getAddr() returns null. 1314 PHITransAddr &PredPointer = PredList.back().second; 1315 PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false); 1316 Value *PredPtrVal = PredPointer.getAddr(); 1317 1318 // Check to see if we have already visited this pred block with another 1319 // pointer. If so, we can't do this lookup. This failure can occur 1320 // with PHI translation when a critical edge exists and the PHI node in 1321 // the successor translates to a pointer value different than the 1322 // pointer the block was first analyzed with. 1323 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = 1324 Visited.insert(std::make_pair(Pred, PredPtrVal)); 1325 1326 if (!InsertRes.second) { 1327 // We found the pred; take it off the list of preds to visit. 1328 PredList.pop_back(); 1329 1330 // If the predecessor was visited with PredPtr, then we already did 1331 // the analysis and can ignore it. 1332 if (InsertRes.first->second == PredPtrVal) 1333 continue; 1334 1335 // Otherwise, the block was previously analyzed with a different 1336 // pointer. We can't represent the result of this case, so we just 1337 // treat this as a phi translation failure. 1338 1339 // Make sure to clean up the Visited map before continuing on to 1340 // PredTranslationFailure. 1341 for (unsigned i = 0, n = PredList.size(); i < n; ++i) 1342 Visited.erase(PredList[i].first); 1343 1344 goto PredTranslationFailure; 1345 } 1346 } 1347 1348 // Actually process results here; this need to be a separate loop to avoid 1349 // calling getNonLocalPointerDepFromBB for blocks we don't want to return 1350 // any results for. (getNonLocalPointerDepFromBB will modify our 1351 // datastructures in ways the code after the PredTranslationFailure label 1352 // doesn't expect.) 1353 for (unsigned i = 0, n = PredList.size(); i < n; ++i) { 1354 BasicBlock *Pred = PredList[i].first; 1355 PHITransAddr &PredPointer = PredList[i].second; 1356 Value *PredPtrVal = PredPointer.getAddr(); 1357 1358 bool CanTranslate = true; 1359 // If PHI translation was unable to find an available pointer in this 1360 // predecessor, then we have to assume that the pointer is clobbered in 1361 // that predecessor. We can still do PRE of the load, which would insert 1362 // a computation of the pointer in this predecessor. 1363 if (!PredPtrVal) 1364 CanTranslate = false; 1365 1366 // FIXME: it is entirely possible that PHI translating will end up with 1367 // the same value. Consider PHI translating something like: 1368 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* 1369 // to recurse here, pedantically speaking. 1370 1371 // If getNonLocalPointerDepFromBB fails here, that means the cached 1372 // result conflicted with the Visited list; we have to conservatively 1373 // assume it is unknown, but this also does not block PRE of the load. 1374 if (!CanTranslate || 1375 !getNonLocalPointerDepFromBB(QueryInst, PredPointer, 1376 Loc.getWithNewPtr(PredPtrVal), isLoad, 1377 Pred, Result, Visited)) { 1378 // Add the entry to the Result list. 1379 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal); 1380 Result.push_back(Entry); 1381 1382 // Since we had a phi translation failure, the cache for CacheKey won't 1383 // include all of the entries that we need to immediately satisfy future 1384 // queries. Mark this in NonLocalPointerDeps by setting the 1385 // BBSkipFirstBlockPair pointer to null. This requires reuse of the 1386 // cached value to do more work but not miss the phi trans failure. 1387 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; 1388 NLPI.Pair = BBSkipFirstBlockPair(); 1389 continue; 1390 } 1391 } 1392 1393 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. 1394 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1395 Cache = &CacheInfo->NonLocalDeps; 1396 NumSortedEntries = Cache->size(); 1397 1398 // Since we did phi translation, the "Cache" set won't contain all of the 1399 // results for the query. This is ok (we can still use it to accelerate 1400 // specific block queries) but we can't do the fastpath "return all 1401 // results from the set" Clear out the indicator for this. 1402 CacheInfo->Pair = BBSkipFirstBlockPair(); 1403 SkipFirstBlock = false; 1404 continue; 1405 1406 PredTranslationFailure: 1407 // The following code is "failure"; we can't produce a sane translation 1408 // for the given block. It assumes that we haven't modified any of 1409 // our datastructures while processing the current block. 1410 1411 if (!Cache) { 1412 // Refresh the CacheInfo/Cache pointer if it got invalidated. 1413 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1414 Cache = &CacheInfo->NonLocalDeps; 1415 NumSortedEntries = Cache->size(); 1416 } 1417 1418 // Since we failed phi translation, the "Cache" set won't contain all of the 1419 // results for the query. This is ok (we can still use it to accelerate 1420 // specific block queries) but we can't do the fastpath "return all 1421 // results from the set". Clear out the indicator for this. 1422 CacheInfo->Pair = BBSkipFirstBlockPair(); 1423 1424 // If *nothing* works, mark the pointer as unknown. 1425 // 1426 // If this is the magic first block, return this as a clobber of the whole 1427 // incoming value. Since we can't phi translate to one of the predecessors, 1428 // we have to bail out. 1429 if (SkipFirstBlock) 1430 return false; 1431 1432 // Results of invariant loads are not cached thus no need to update cached 1433 // information. 1434 if (!isInvariantLoad) { 1435 for (NonLocalDepEntry &I : llvm::reverse(*Cache)) { 1436 if (I.getBB() != BB) 1437 continue; 1438 1439 assert((GotWorklistLimit || I.getResult().isNonLocal() || 1440 !DT.isReachableFromEntry(BB)) && 1441 "Should only be here with transparent block"); 1442 1443 I.setResult(MemDepResult::getUnknown()); 1444 1445 1446 break; 1447 } 1448 } 1449 (void)GotWorklistLimit; 1450 // Go ahead and report unknown dependence. 1451 Result.push_back( 1452 NonLocalDepResult(BB, MemDepResult::getUnknown(), Pointer.getAddr())); 1453 } 1454 1455 // Okay, we're done now. If we added new values to the cache, re-sort it. 1456 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1457 LLVM_DEBUG(AssertSorted(*Cache)); 1458 return true; 1459 } 1460 1461 /// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it. 1462 void MemoryDependenceResults::RemoveCachedNonLocalPointerDependencies( 1463 ValueIsLoadPair P) { 1464 1465 // Most of the time this cache is empty. 1466 if (!NonLocalDefsCache.empty()) { 1467 auto it = NonLocalDefsCache.find(P.getPointer()); 1468 if (it != NonLocalDefsCache.end()) { 1469 RemoveFromReverseMap(ReverseNonLocalDefsCache, 1470 it->second.getResult().getInst(), P.getPointer()); 1471 NonLocalDefsCache.erase(it); 1472 } 1473 1474 if (auto *I = dyn_cast<Instruction>(P.getPointer())) { 1475 auto toRemoveIt = ReverseNonLocalDefsCache.find(I); 1476 if (toRemoveIt != ReverseNonLocalDefsCache.end()) { 1477 for (const auto *entry : toRemoveIt->second) 1478 NonLocalDefsCache.erase(entry); 1479 ReverseNonLocalDefsCache.erase(toRemoveIt); 1480 } 1481 } 1482 } 1483 1484 CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P); 1485 if (It == NonLocalPointerDeps.end()) 1486 return; 1487 1488 // Remove all of the entries in the BB->val map. This involves removing 1489 // instructions from the reverse map. 1490 NonLocalDepInfo &PInfo = It->second.NonLocalDeps; 1491 1492 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { 1493 Instruction *Target = PInfo[i].getResult().getInst(); 1494 if (!Target) 1495 continue; // Ignore non-local dep results. 1496 assert(Target->getParent() == PInfo[i].getBB()); 1497 1498 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1499 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); 1500 } 1501 1502 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). 1503 NonLocalPointerDeps.erase(It); 1504 } 1505 1506 void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) { 1507 // If Ptr isn't really a pointer, just ignore it. 1508 if (!Ptr->getType()->isPointerTy()) 1509 return; 1510 // Flush store info for the pointer. 1511 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); 1512 // Flush load info for the pointer. 1513 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); 1514 // Invalidate phis that use the pointer. 1515 PV.invalidateValue(Ptr); 1516 } 1517 1518 void MemoryDependenceResults::invalidateCachedPredecessors() { 1519 PredCache.clear(); 1520 } 1521 1522 void MemoryDependenceResults::removeInstruction(Instruction *RemInst) { 1523 // Walk through the Non-local dependencies, removing this one as the value 1524 // for any cached queries. 1525 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); 1526 if (NLDI != NonLocalDeps.end()) { 1527 NonLocalDepInfo &BlockMap = NLDI->second.first; 1528 for (auto &Entry : BlockMap) 1529 if (Instruction *Inst = Entry.getResult().getInst()) 1530 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); 1531 NonLocalDeps.erase(NLDI); 1532 } 1533 1534 // If we have a cached local dependence query for this instruction, remove it. 1535 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); 1536 if (LocalDepEntry != LocalDeps.end()) { 1537 // Remove us from DepInst's reverse set now that the local dep info is gone. 1538 if (Instruction *Inst = LocalDepEntry->second.getInst()) 1539 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); 1540 1541 // Remove this local dependency info. 1542 LocalDeps.erase(LocalDepEntry); 1543 } 1544 1545 // If we have any cached dependencies on this instruction, remove 1546 // them. 1547 1548 // If the instruction is a pointer, remove it from both the load info and the 1549 // store info. 1550 if (RemInst->getType()->isPointerTy()) { 1551 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); 1552 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); 1553 } else { 1554 // Otherwise, if the instructions is in the map directly, it must be a load. 1555 // Remove it. 1556 auto toRemoveIt = NonLocalDefsCache.find(RemInst); 1557 if (toRemoveIt != NonLocalDefsCache.end()) { 1558 assert(isa<LoadInst>(RemInst) && 1559 "only load instructions should be added directly"); 1560 const Instruction *DepV = toRemoveIt->second.getResult().getInst(); 1561 ReverseNonLocalDefsCache.find(DepV)->second.erase(RemInst); 1562 NonLocalDefsCache.erase(toRemoveIt); 1563 } 1564 } 1565 1566 // Loop over all of the things that depend on the instruction we're removing. 1567 SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd; 1568 1569 // If we find RemInst as a clobber or Def in any of the maps for other values, 1570 // we need to replace its entry with a dirty version of the instruction after 1571 // it. If RemInst is a terminator, we use a null dirty value. 1572 // 1573 // Using a dirty version of the instruction after RemInst saves having to scan 1574 // the entire block to get to this point. 1575 MemDepResult NewDirtyVal; 1576 if (!RemInst->isTerminator()) 1577 NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator()); 1578 1579 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); 1580 if (ReverseDepIt != ReverseLocalDeps.end()) { 1581 // RemInst can't be the terminator if it has local stuff depending on it. 1582 assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() && 1583 "Nothing can locally depend on a terminator"); 1584 1585 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) { 1586 assert(InstDependingOnRemInst != RemInst && 1587 "Already removed our local dep info"); 1588 1589 LocalDeps[InstDependingOnRemInst] = NewDirtyVal; 1590 1591 // Make sure to remember that new things depend on NewDepInst. 1592 assert(NewDirtyVal.getInst() && 1593 "There is no way something else can have " 1594 "a local dep on this if it is a terminator!"); 1595 ReverseDepsToAdd.push_back( 1596 std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst)); 1597 } 1598 1599 ReverseLocalDeps.erase(ReverseDepIt); 1600 1601 // Add new reverse deps after scanning the set, to avoid invalidating the 1602 // 'ReverseDeps' reference. 1603 while (!ReverseDepsToAdd.empty()) { 1604 ReverseLocalDeps[ReverseDepsToAdd.back().first].insert( 1605 ReverseDepsToAdd.back().second); 1606 ReverseDepsToAdd.pop_back(); 1607 } 1608 } 1609 1610 ReverseDepIt = ReverseNonLocalDeps.find(RemInst); 1611 if (ReverseDepIt != ReverseNonLocalDeps.end()) { 1612 for (Instruction *I : ReverseDepIt->second) { 1613 assert(I != RemInst && "Already removed NonLocalDep info for RemInst"); 1614 1615 PerInstNLInfo &INLD = NonLocalDeps[I]; 1616 // The information is now dirty! 1617 INLD.second = true; 1618 1619 for (auto &Entry : INLD.first) { 1620 if (Entry.getResult().getInst() != RemInst) 1621 continue; 1622 1623 // Convert to a dirty entry for the subsequent instruction. 1624 Entry.setResult(NewDirtyVal); 1625 1626 if (Instruction *NextI = NewDirtyVal.getInst()) 1627 ReverseDepsToAdd.push_back(std::make_pair(NextI, I)); 1628 } 1629 } 1630 1631 ReverseNonLocalDeps.erase(ReverseDepIt); 1632 1633 // Add new reverse deps after scanning the set, to avoid invalidating 'Set' 1634 while (!ReverseDepsToAdd.empty()) { 1635 ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert( 1636 ReverseDepsToAdd.back().second); 1637 ReverseDepsToAdd.pop_back(); 1638 } 1639 } 1640 1641 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a 1642 // value in the NonLocalPointerDeps info. 1643 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = 1644 ReverseNonLocalPtrDeps.find(RemInst); 1645 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { 1646 SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8> 1647 ReversePtrDepsToAdd; 1648 1649 for (ValueIsLoadPair P : ReversePtrDepIt->second) { 1650 assert(P.getPointer() != RemInst && 1651 "Already removed NonLocalPointerDeps info for RemInst"); 1652 1653 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; 1654 1655 // The cache is not valid for any specific block anymore. 1656 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); 1657 1658 // Update any entries for RemInst to use the instruction after it. 1659 for (auto &Entry : NLPDI) { 1660 if (Entry.getResult().getInst() != RemInst) 1661 continue; 1662 1663 // Convert to a dirty entry for the subsequent instruction. 1664 Entry.setResult(NewDirtyVal); 1665 1666 if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) 1667 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); 1668 } 1669 1670 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its 1671 // subsequent value may invalidate the sortedness. 1672 llvm::sort(NLPDI); 1673 } 1674 1675 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); 1676 1677 while (!ReversePtrDepsToAdd.empty()) { 1678 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert( 1679 ReversePtrDepsToAdd.back().second); 1680 ReversePtrDepsToAdd.pop_back(); 1681 } 1682 } 1683 1684 // Invalidate phis that use the removed instruction. 1685 PV.invalidateValue(RemInst); 1686 1687 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); 1688 LLVM_DEBUG(verifyRemoved(RemInst)); 1689 } 1690 1691 /// Verify that the specified instruction does not occur in our internal data 1692 /// structures. 1693 /// 1694 /// This function verifies by asserting in debug builds. 1695 void MemoryDependenceResults::verifyRemoved(Instruction *D) const { 1696 #ifndef NDEBUG 1697 for (const auto &DepKV : LocalDeps) { 1698 assert(DepKV.first != D && "Inst occurs in data structures"); 1699 assert(DepKV.second.getInst() != D && "Inst occurs in data structures"); 1700 } 1701 1702 for (const auto &DepKV : NonLocalPointerDeps) { 1703 assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key"); 1704 for (const auto &Entry : DepKV.second.NonLocalDeps) 1705 assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value"); 1706 } 1707 1708 for (const auto &DepKV : NonLocalDeps) { 1709 assert(DepKV.first != D && "Inst occurs in data structures"); 1710 const PerInstNLInfo &INLD = DepKV.second; 1711 for (const auto &Entry : INLD.first) 1712 assert(Entry.getResult().getInst() != D && 1713 "Inst occurs in data structures"); 1714 } 1715 1716 for (const auto &DepKV : ReverseLocalDeps) { 1717 assert(DepKV.first != D && "Inst occurs in data structures"); 1718 for (Instruction *Inst : DepKV.second) 1719 assert(Inst != D && "Inst occurs in data structures"); 1720 } 1721 1722 for (const auto &DepKV : ReverseNonLocalDeps) { 1723 assert(DepKV.first != D && "Inst occurs in data structures"); 1724 for (Instruction *Inst : DepKV.second) 1725 assert(Inst != D && "Inst occurs in data structures"); 1726 } 1727 1728 for (const auto &DepKV : ReverseNonLocalPtrDeps) { 1729 assert(DepKV.first != D && "Inst occurs in rev NLPD map"); 1730 1731 for (ValueIsLoadPair P : DepKV.second) 1732 assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) && 1733 "Inst occurs in ReverseNonLocalPtrDeps map"); 1734 } 1735 #endif 1736 } 1737 1738 AnalysisKey MemoryDependenceAnalysis::Key; 1739 1740 MemoryDependenceAnalysis::MemoryDependenceAnalysis() 1741 : DefaultBlockScanLimit(BlockScanLimit) {} 1742 1743 MemoryDependenceResults 1744 MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 1745 auto &AA = AM.getResult<AAManager>(F); 1746 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1747 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1748 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1749 auto &PV = AM.getResult<PhiValuesAnalysis>(F); 1750 return MemoryDependenceResults(AA, AC, TLI, DT, PV, DefaultBlockScanLimit); 1751 } 1752 1753 char MemoryDependenceWrapperPass::ID = 0; 1754 1755 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep", 1756 "Memory Dependence Analysis", false, true) 1757 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1758 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1759 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1760 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1761 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass) 1762 INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep", 1763 "Memory Dependence Analysis", false, true) 1764 1765 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) { 1766 initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry()); 1767 } 1768 1769 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default; 1770 1771 void MemoryDependenceWrapperPass::releaseMemory() { 1772 MemDep.reset(); 1773 } 1774 1775 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1776 AU.setPreservesAll(); 1777 AU.addRequired<AssumptionCacheTracker>(); 1778 AU.addRequired<DominatorTreeWrapperPass>(); 1779 AU.addRequired<PhiValuesWrapperPass>(); 1780 AU.addRequiredTransitive<AAResultsWrapperPass>(); 1781 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 1782 } 1783 1784 bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA, 1785 FunctionAnalysisManager::Invalidator &Inv) { 1786 // Check whether our analysis is preserved. 1787 auto PAC = PA.getChecker<MemoryDependenceAnalysis>(); 1788 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>()) 1789 // If not, give up now. 1790 return true; 1791 1792 // Check whether the analyses we depend on became invalid for any reason. 1793 if (Inv.invalidate<AAManager>(F, PA) || 1794 Inv.invalidate<AssumptionAnalysis>(F, PA) || 1795 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 1796 Inv.invalidate<PhiValuesAnalysis>(F, PA)) 1797 return true; 1798 1799 // Otherwise this analysis result remains valid. 1800 return false; 1801 } 1802 1803 unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const { 1804 return DefaultBlockScanLimit; 1805 } 1806 1807 bool MemoryDependenceWrapperPass::runOnFunction(Function &F) { 1808 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1809 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1810 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1811 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1812 auto &PV = getAnalysis<PhiValuesWrapperPass>().getResult(); 1813 MemDep.emplace(AA, AC, TLI, DT, PV, BlockScanLimit); 1814 return false; 1815 } 1816