1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an analysis that determines, for a given memory
10 // operation, what preceding memory operations it depends on.  It builds on
11 // alias analysis information, and tries to provide a lazy, caching interface to
12 // a common kind of alias information query.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/Analysis/PHITransAddr.h"
27 #include "llvm/Analysis/PhiValues.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/PredIteratorCache.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Use.h"
47 #include "llvm/IR/User.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/AtomicOrdering.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/MathExtras.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <iterator>
61 #include <utility>
62 
63 using namespace llvm;
64 
65 #define DEBUG_TYPE "memdep"
66 
67 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
68 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
69 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
70 
71 STATISTIC(NumCacheNonLocalPtr,
72           "Number of fully cached non-local ptr responses");
73 STATISTIC(NumCacheDirtyNonLocalPtr,
74           "Number of cached, but dirty, non-local ptr responses");
75 STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses");
76 STATISTIC(NumCacheCompleteNonLocalPtr,
77           "Number of block queries that were completely cached");
78 
79 // Limit for the number of instructions to scan in a block.
80 
81 static cl::opt<unsigned> BlockScanLimit(
82     "memdep-block-scan-limit", cl::Hidden, cl::init(100),
83     cl::desc("The number of instructions to scan in a block in memory "
84              "dependency analysis (default = 100)"));
85 
86 static cl::opt<unsigned>
87     BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000),
88                      cl::desc("The number of blocks to scan during memory "
89                               "dependency analysis (default = 1000)"));
90 
91 // Limit on the number of memdep results to process.
92 static const unsigned int NumResultsLimit = 100;
93 
94 /// This is a helper function that removes Val from 'Inst's set in ReverseMap.
95 ///
96 /// If the set becomes empty, remove Inst's entry.
97 template <typename KeyTy>
98 static void
99 RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap,
100                      Instruction *Inst, KeyTy Val) {
101   typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt =
102       ReverseMap.find(Inst);
103   assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
104   bool Found = InstIt->second.erase(Val);
105   assert(Found && "Invalid reverse map!");
106   (void)Found;
107   if (InstIt->second.empty())
108     ReverseMap.erase(InstIt);
109 }
110 
111 /// If the given instruction references a specific memory location, fill in Loc
112 /// with the details, otherwise set Loc.Ptr to null.
113 ///
114 /// Returns a ModRefInfo value describing the general behavior of the
115 /// instruction.
116 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc,
117                               const TargetLibraryInfo &TLI) {
118   if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
119     if (LI->isUnordered()) {
120       Loc = MemoryLocation::get(LI);
121       return ModRefInfo::Ref;
122     }
123     if (LI->getOrdering() == AtomicOrdering::Monotonic) {
124       Loc = MemoryLocation::get(LI);
125       return ModRefInfo::ModRef;
126     }
127     Loc = MemoryLocation();
128     return ModRefInfo::ModRef;
129   }
130 
131   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
132     if (SI->isUnordered()) {
133       Loc = MemoryLocation::get(SI);
134       return ModRefInfo::Mod;
135     }
136     if (SI->getOrdering() == AtomicOrdering::Monotonic) {
137       Loc = MemoryLocation::get(SI);
138       return ModRefInfo::ModRef;
139     }
140     Loc = MemoryLocation();
141     return ModRefInfo::ModRef;
142   }
143 
144   if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
145     Loc = MemoryLocation::get(V);
146     return ModRefInfo::ModRef;
147   }
148 
149   if (const CallInst *CI = isFreeCall(Inst, &TLI)) {
150     // calls to free() deallocate the entire structure
151     Loc = MemoryLocation::getAfter(CI->getArgOperand(0));
152     return ModRefInfo::Mod;
153   }
154 
155   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
156     switch (II->getIntrinsicID()) {
157     case Intrinsic::lifetime_start:
158     case Intrinsic::lifetime_end:
159     case Intrinsic::invariant_start:
160       Loc = MemoryLocation::getForArgument(II, 1, TLI);
161       // These intrinsics don't really modify the memory, but returning Mod
162       // will allow them to be handled conservatively.
163       return ModRefInfo::Mod;
164     case Intrinsic::invariant_end:
165       Loc = MemoryLocation::getForArgument(II, 2, TLI);
166       // These intrinsics don't really modify the memory, but returning Mod
167       // will allow them to be handled conservatively.
168       return ModRefInfo::Mod;
169     case Intrinsic::masked_load:
170       Loc = MemoryLocation::getForArgument(II, 0, TLI);
171       return ModRefInfo::Ref;
172     case Intrinsic::masked_store:
173       Loc = MemoryLocation::getForArgument(II, 1, TLI);
174       return ModRefInfo::Mod;
175     default:
176       break;
177     }
178   }
179 
180   // Otherwise, just do the coarse-grained thing that always works.
181   if (Inst->mayWriteToMemory())
182     return ModRefInfo::ModRef;
183   if (Inst->mayReadFromMemory())
184     return ModRefInfo::Ref;
185   return ModRefInfo::NoModRef;
186 }
187 
188 /// Private helper for finding the local dependencies of a call site.
189 MemDepResult MemoryDependenceResults::getCallDependencyFrom(
190     CallBase *Call, bool isReadOnlyCall, BasicBlock::iterator ScanIt,
191     BasicBlock *BB) {
192   unsigned Limit = getDefaultBlockScanLimit();
193 
194   // Walk backwards through the block, looking for dependencies.
195   while (ScanIt != BB->begin()) {
196     Instruction *Inst = &*--ScanIt;
197     // Debug intrinsics don't cause dependences and should not affect Limit
198     if (isa<DbgInfoIntrinsic>(Inst))
199       continue;
200 
201     // Limit the amount of scanning we do so we don't end up with quadratic
202     // running time on extreme testcases.
203     --Limit;
204     if (!Limit)
205       return MemDepResult::getUnknown();
206 
207     // If this inst is a memory op, get the pointer it accessed
208     MemoryLocation Loc;
209     ModRefInfo MR = GetLocation(Inst, Loc, TLI);
210     if (Loc.Ptr) {
211       // A simple instruction.
212       if (isModOrRefSet(AA.getModRefInfo(Call, Loc)))
213         return MemDepResult::getClobber(Inst);
214       continue;
215     }
216 
217     if (auto *CallB = dyn_cast<CallBase>(Inst)) {
218       // If these two calls do not interfere, look past it.
219       if (isNoModRef(AA.getModRefInfo(Call, CallB))) {
220         // If the two calls are the same, return Inst as a Def, so that
221         // Call can be found redundant and eliminated.
222         if (isReadOnlyCall && !isModSet(MR) &&
223             Call->isIdenticalToWhenDefined(CallB))
224           return MemDepResult::getDef(Inst);
225 
226         // Otherwise if the two calls don't interact (e.g. CallB is readnone)
227         // keep scanning.
228         continue;
229       } else
230         return MemDepResult::getClobber(Inst);
231     }
232 
233     // If we could not obtain a pointer for the instruction and the instruction
234     // touches memory then assume that this is a dependency.
235     if (isModOrRefSet(MR))
236       return MemDepResult::getClobber(Inst);
237   }
238 
239   // No dependence found.  If this is the entry block of the function, it is
240   // unknown, otherwise it is non-local.
241   if (BB != &BB->getParent()->getEntryBlock())
242     return MemDepResult::getNonLocal();
243   return MemDepResult::getNonFuncLocal();
244 }
245 
246 static bool isVolatile(Instruction *Inst) {
247   if (auto *LI = dyn_cast<LoadInst>(Inst))
248     return LI->isVolatile();
249   if (auto *SI = dyn_cast<StoreInst>(Inst))
250     return SI->isVolatile();
251   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(Inst))
252     return AI->isVolatile();
253   return false;
254 }
255 
256 MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
257     const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
258     BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
259   MemDepResult InvariantGroupDependency = MemDepResult::getUnknown();
260   if (QueryInst != nullptr) {
261     if (auto *LI = dyn_cast<LoadInst>(QueryInst)) {
262       InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB);
263 
264       if (InvariantGroupDependency.isDef())
265         return InvariantGroupDependency;
266     }
267   }
268   MemDepResult SimpleDep = getSimplePointerDependencyFrom(
269       MemLoc, isLoad, ScanIt, BB, QueryInst, Limit);
270   if (SimpleDep.isDef())
271     return SimpleDep;
272   // Non-local invariant group dependency indicates there is non local Def
273   // (it only returns nonLocal if it finds nonLocal def), which is better than
274   // local clobber and everything else.
275   if (InvariantGroupDependency.isNonLocal())
276     return InvariantGroupDependency;
277 
278   assert(InvariantGroupDependency.isUnknown() &&
279          "InvariantGroupDependency should be only unknown at this point");
280   return SimpleDep;
281 }
282 
283 MemDepResult
284 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI,
285                                                             BasicBlock *BB) {
286 
287   if (!LI->hasMetadata(LLVMContext::MD_invariant_group))
288     return MemDepResult::getUnknown();
289 
290   // Take the ptr operand after all casts and geps 0. This way we can search
291   // cast graph down only.
292   Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts();
293 
294   // It's is not safe to walk the use list of global value, because function
295   // passes aren't allowed to look outside their functions.
296   // FIXME: this could be fixed by filtering instructions from outside
297   // of current function.
298   if (isa<GlobalValue>(LoadOperand))
299     return MemDepResult::getUnknown();
300 
301   // Queue to process all pointers that are equivalent to load operand.
302   SmallVector<const Value *, 8> LoadOperandsQueue;
303   LoadOperandsQueue.push_back(LoadOperand);
304 
305   Instruction *ClosestDependency = nullptr;
306   // Order of instructions in uses list is unpredictible. In order to always
307   // get the same result, we will look for the closest dominance.
308   auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) {
309     assert(Other && "Must call it with not null instruction");
310     if (Best == nullptr || DT.dominates(Best, Other))
311       return Other;
312     return Best;
313   };
314 
315   // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case
316   // we will see all the instructions. This should be fixed in MSSA.
317   while (!LoadOperandsQueue.empty()) {
318     const Value *Ptr = LoadOperandsQueue.pop_back_val();
319     assert(Ptr && !isa<GlobalValue>(Ptr) &&
320            "Null or GlobalValue should not be inserted");
321 
322     for (const Use &Us : Ptr->uses()) {
323       auto *U = dyn_cast<Instruction>(Us.getUser());
324       if (!U || U == LI || !DT.dominates(U, LI))
325         continue;
326 
327       // Bitcast or gep with zeros are using Ptr. Add to queue to check it's
328       // users.      U = bitcast Ptr
329       if (isa<BitCastInst>(U)) {
330         LoadOperandsQueue.push_back(U);
331         continue;
332       }
333       // Gep with zeros is equivalent to bitcast.
334       // FIXME: we are not sure if some bitcast should be canonicalized to gep 0
335       // or gep 0 to bitcast because of SROA, so there are 2 forms. When
336       // typeless pointers will be ready then both cases will be gone
337       // (and this BFS also won't be needed).
338       if (auto *GEP = dyn_cast<GetElementPtrInst>(U))
339         if (GEP->hasAllZeroIndices()) {
340           LoadOperandsQueue.push_back(U);
341           continue;
342         }
343 
344       // If we hit load/store with the same invariant.group metadata (and the
345       // same pointer operand) we can assume that value pointed by pointer
346       // operand didn't change.
347       if ((isa<LoadInst>(U) || isa<StoreInst>(U)) &&
348           U->hasMetadata(LLVMContext::MD_invariant_group))
349         ClosestDependency = GetClosestDependency(ClosestDependency, U);
350     }
351   }
352 
353   if (!ClosestDependency)
354     return MemDepResult::getUnknown();
355   if (ClosestDependency->getParent() == BB)
356     return MemDepResult::getDef(ClosestDependency);
357   // Def(U) can't be returned here because it is non-local. If local
358   // dependency won't be found then return nonLocal counting that the
359   // user will call getNonLocalPointerDependency, which will return cached
360   // result.
361   NonLocalDefsCache.try_emplace(
362       LI, NonLocalDepResult(ClosestDependency->getParent(),
363                             MemDepResult::getDef(ClosestDependency), nullptr));
364   ReverseNonLocalDefsCache[ClosestDependency].insert(LI);
365   return MemDepResult::getNonLocal();
366 }
367 
368 MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom(
369     const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
370     BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
371   // We can batch AA queries, because IR does not change during a MemDep query.
372   BatchAAResults BatchAA(AA);
373   bool isInvariantLoad = false;
374 
375   unsigned DefaultLimit = getDefaultBlockScanLimit();
376   if (!Limit)
377     Limit = &DefaultLimit;
378 
379   // We must be careful with atomic accesses, as they may allow another thread
380   //   to touch this location, clobbering it. We are conservative: if the
381   //   QueryInst is not a simple (non-atomic) memory access, we automatically
382   //   return getClobber.
383   // If it is simple, we know based on the results of
384   // "Compiler testing via a theory of sound optimisations in the C11/C++11
385   //   memory model" in PLDI 2013, that a non-atomic location can only be
386   //   clobbered between a pair of a release and an acquire action, with no
387   //   access to the location in between.
388   // Here is an example for giving the general intuition behind this rule.
389   // In the following code:
390   //   store x 0;
391   //   release action; [1]
392   //   acquire action; [4]
393   //   %val = load x;
394   // It is unsafe to replace %val by 0 because another thread may be running:
395   //   acquire action; [2]
396   //   store x 42;
397   //   release action; [3]
398   // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
399   // being 42. A key property of this program however is that if either
400   // 1 or 4 were missing, there would be a race between the store of 42
401   // either the store of 0 or the load (making the whole program racy).
402   // The paper mentioned above shows that the same property is respected
403   // by every program that can detect any optimization of that kind: either
404   // it is racy (undefined) or there is a release followed by an acquire
405   // between the pair of accesses under consideration.
406 
407   // If the load is invariant, we "know" that it doesn't alias *any* write. We
408   // do want to respect mustalias results since defs are useful for value
409   // forwarding, but any mayalias write can be assumed to be noalias.
410   // Arguably, this logic should be pushed inside AliasAnalysis itself.
411   if (isLoad && QueryInst) {
412     LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
413     if (LI && LI->hasMetadata(LLVMContext::MD_invariant_load))
414       isInvariantLoad = true;
415   }
416 
417   // Return "true" if and only if the instruction I is either a non-simple
418   // load or a non-simple store.
419   auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool {
420     if (auto *LI = dyn_cast<LoadInst>(I))
421       return !LI->isSimple();
422     if (auto *SI = dyn_cast<StoreInst>(I))
423       return !SI->isSimple();
424     return false;
425   };
426 
427   // Return "true" if I is not a load and not a store, but it does access
428   // memory.
429   auto isOtherMemAccess = [](Instruction *I) -> bool {
430     return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory();
431   };
432 
433   // Walk backwards through the basic block, looking for dependencies.
434   while (ScanIt != BB->begin()) {
435     Instruction *Inst = &*--ScanIt;
436 
437     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
438       // Debug intrinsics don't (and can't) cause dependencies.
439       if (isa<DbgInfoIntrinsic>(II))
440         continue;
441 
442     // Limit the amount of scanning we do so we don't end up with quadratic
443     // running time on extreme testcases.
444     --*Limit;
445     if (!*Limit)
446       return MemDepResult::getUnknown();
447 
448     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
449       // If we reach a lifetime begin or end marker, then the query ends here
450       // because the value is undefined.
451       Intrinsic::ID ID = II->getIntrinsicID();
452       switch (ID) {
453       case Intrinsic::lifetime_start: {
454         // FIXME: This only considers queries directly on the invariant-tagged
455         // pointer, not on query pointers that are indexed off of them.  It'd
456         // be nice to handle that at some point (the right approach is to use
457         // GetPointerBaseWithConstantOffset).
458         MemoryLocation ArgLoc = MemoryLocation::getAfter(II->getArgOperand(1));
459         if (BatchAA.isMustAlias(ArgLoc, MemLoc))
460           return MemDepResult::getDef(II);
461         continue;
462       }
463       case Intrinsic::masked_load:
464       case Intrinsic::masked_store: {
465         MemoryLocation Loc;
466         /*ModRefInfo MR =*/ GetLocation(II, Loc, TLI);
467         AliasResult R = BatchAA.alias(Loc, MemLoc);
468         if (R == NoAlias)
469           continue;
470         if (R == MustAlias)
471           return MemDepResult::getDef(II);
472         if (ID == Intrinsic::masked_load)
473           continue;
474         return MemDepResult::getClobber(II);
475       }
476       }
477     }
478 
479     // Values depend on loads if the pointers are must aliased.  This means
480     // that a load depends on another must aliased load from the same value.
481     // One exception is atomic loads: a value can depend on an atomic load that
482     // it does not alias with when this atomic load indicates that another
483     // thread may be accessing the location.
484     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
485       // While volatile access cannot be eliminated, they do not have to clobber
486       // non-aliasing locations, as normal accesses, for example, can be safely
487       // reordered with volatile accesses.
488       if (LI->isVolatile()) {
489         if (!QueryInst)
490           // Original QueryInst *may* be volatile
491           return MemDepResult::getClobber(LI);
492         if (isVolatile(QueryInst))
493           // Ordering required if QueryInst is itself volatile
494           return MemDepResult::getClobber(LI);
495         // Otherwise, volatile doesn't imply any special ordering
496       }
497 
498       // Atomic loads have complications involved.
499       // A Monotonic (or higher) load is OK if the query inst is itself not
500       // atomic.
501       // FIXME: This is overly conservative.
502       if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) {
503         if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
504             isOtherMemAccess(QueryInst))
505           return MemDepResult::getClobber(LI);
506         if (LI->getOrdering() != AtomicOrdering::Monotonic)
507           return MemDepResult::getClobber(LI);
508       }
509 
510       MemoryLocation LoadLoc = MemoryLocation::get(LI);
511 
512       // If we found a pointer, check if it could be the same as our pointer.
513       AliasResult R = BatchAA.alias(LoadLoc, MemLoc);
514 
515       if (isLoad) {
516         if (R == NoAlias)
517           continue;
518 
519         // Must aliased loads are defs of each other.
520         if (R == MustAlias)
521           return MemDepResult::getDef(Inst);
522 
523 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
524       // in terms of clobbering loads, but since it does this by looking
525       // at the clobbering load directly, it doesn't know about any
526       // phi translation that may have happened along the way.
527 
528         // If we have a partial alias, then return this as a clobber for the
529         // client to handle.
530         if (R == PartialAlias)
531           return MemDepResult::getClobber(Inst);
532 #endif
533 
534         // Random may-alias loads don't depend on each other without a
535         // dependence.
536         continue;
537       }
538 
539       // Stores don't depend on other no-aliased accesses.
540       if (R == NoAlias)
541         continue;
542 
543       // Stores don't alias loads from read-only memory.
544       if (BatchAA.pointsToConstantMemory(LoadLoc))
545         continue;
546 
547       // Stores depend on may/must aliased loads.
548       return MemDepResult::getDef(Inst);
549     }
550 
551     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
552       // Atomic stores have complications involved.
553       // A Monotonic store is OK if the query inst is itself not atomic.
554       // FIXME: This is overly conservative.
555       if (!SI->isUnordered() && SI->isAtomic()) {
556         if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
557             isOtherMemAccess(QueryInst))
558           return MemDepResult::getClobber(SI);
559         if (SI->getOrdering() != AtomicOrdering::Monotonic)
560           return MemDepResult::getClobber(SI);
561       }
562 
563       // FIXME: this is overly conservative.
564       // While volatile access cannot be eliminated, they do not have to clobber
565       // non-aliasing locations, as normal accesses can for example be reordered
566       // with volatile accesses.
567       if (SI->isVolatile())
568         if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
569             isOtherMemAccess(QueryInst))
570           return MemDepResult::getClobber(SI);
571 
572       // If alias analysis can tell that this store is guaranteed to not modify
573       // the query pointer, ignore it.  Use getModRefInfo to handle cases where
574       // the query pointer points to constant memory etc.
575       if (!isModOrRefSet(BatchAA.getModRefInfo(SI, MemLoc)))
576         continue;
577 
578       // Ok, this store might clobber the query pointer.  Check to see if it is
579       // a must alias: in this case, we want to return this as a def.
580       // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above.
581       MemoryLocation StoreLoc = MemoryLocation::get(SI);
582 
583       // If we found a pointer, check if it could be the same as our pointer.
584       AliasResult R = BatchAA.alias(StoreLoc, MemLoc);
585 
586       if (R == NoAlias)
587         continue;
588       if (R == MustAlias)
589         return MemDepResult::getDef(Inst);
590       if (isInvariantLoad)
591         continue;
592       return MemDepResult::getClobber(Inst);
593     }
594 
595     // If this is an allocation, and if we know that the accessed pointer is to
596     // the allocation, return Def.  This means that there is no dependence and
597     // the access can be optimized based on that.  For example, a load could
598     // turn into undef.  Note that we can bypass the allocation itself when
599     // looking for a clobber in many cases; that's an alias property and is
600     // handled by BasicAA.
601     if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) {
602       const Value *AccessPtr = getUnderlyingObject(MemLoc.Ptr);
603       if (AccessPtr == Inst || BatchAA.isMustAlias(Inst, AccessPtr))
604         return MemDepResult::getDef(Inst);
605     }
606 
607     if (isInvariantLoad)
608       continue;
609 
610     // A release fence requires that all stores complete before it, but does
611     // not prevent the reordering of following loads or stores 'before' the
612     // fence.  As a result, we look past it when finding a dependency for
613     // loads.  DSE uses this to find preceding stores to delete and thus we
614     // can't bypass the fence if the query instruction is a store.
615     if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
616       if (isLoad && FI->getOrdering() == AtomicOrdering::Release)
617         continue;
618 
619     // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
620     ModRefInfo MR = BatchAA.getModRefInfo(Inst, MemLoc);
621     // If necessary, perform additional analysis.
622     if (isModAndRefSet(MR))
623       // TODO: Support callCapturesBefore() on BatchAAResults.
624       MR = AA.callCapturesBefore(Inst, MemLoc, &DT);
625     switch (clearMust(MR)) {
626     case ModRefInfo::NoModRef:
627       // If the call has no effect on the queried pointer, just ignore it.
628       continue;
629     case ModRefInfo::Mod:
630       return MemDepResult::getClobber(Inst);
631     case ModRefInfo::Ref:
632       // If the call is known to never store to the pointer, and if this is a
633       // load query, we can safely ignore it (scan past it).
634       if (isLoad)
635         continue;
636       LLVM_FALLTHROUGH;
637     default:
638       // Otherwise, there is a potential dependence.  Return a clobber.
639       return MemDepResult::getClobber(Inst);
640     }
641   }
642 
643   // No dependence found.  If this is the entry block of the function, it is
644   // unknown, otherwise it is non-local.
645   if (BB != &BB->getParent()->getEntryBlock())
646     return MemDepResult::getNonLocal();
647   return MemDepResult::getNonFuncLocal();
648 }
649 
650 MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) {
651   Instruction *ScanPos = QueryInst;
652 
653   // Check for a cached result
654   MemDepResult &LocalCache = LocalDeps[QueryInst];
655 
656   // If the cached entry is non-dirty, just return it.  Note that this depends
657   // on MemDepResult's default constructing to 'dirty'.
658   if (!LocalCache.isDirty())
659     return LocalCache;
660 
661   // Otherwise, if we have a dirty entry, we know we can start the scan at that
662   // instruction, which may save us some work.
663   if (Instruction *Inst = LocalCache.getInst()) {
664     ScanPos = Inst;
665 
666     RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
667   }
668 
669   BasicBlock *QueryParent = QueryInst->getParent();
670 
671   // Do the scan.
672   if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
673     // No dependence found. If this is the entry block of the function, it is
674     // unknown, otherwise it is non-local.
675     if (QueryParent != &QueryParent->getParent()->getEntryBlock())
676       LocalCache = MemDepResult::getNonLocal();
677     else
678       LocalCache = MemDepResult::getNonFuncLocal();
679   } else {
680     MemoryLocation MemLoc;
681     ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI);
682     if (MemLoc.Ptr) {
683       // If we can do a pointer scan, make it happen.
684       bool isLoad = !isModSet(MR);
685       if (auto *II = dyn_cast<IntrinsicInst>(QueryInst))
686         isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
687 
688       LocalCache =
689           getPointerDependencyFrom(MemLoc, isLoad, ScanPos->getIterator(),
690                                    QueryParent, QueryInst, nullptr);
691     } else if (auto *QueryCall = dyn_cast<CallBase>(QueryInst)) {
692       bool isReadOnly = AA.onlyReadsMemory(QueryCall);
693       LocalCache = getCallDependencyFrom(QueryCall, isReadOnly,
694                                          ScanPos->getIterator(), QueryParent);
695     } else
696       // Non-memory instruction.
697       LocalCache = MemDepResult::getUnknown();
698   }
699 
700   // Remember the result!
701   if (Instruction *I = LocalCache.getInst())
702     ReverseLocalDeps[I].insert(QueryInst);
703 
704   return LocalCache;
705 }
706 
707 #ifndef NDEBUG
708 /// This method is used when -debug is specified to verify that cache arrays
709 /// are properly kept sorted.
710 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache,
711                          int Count = -1) {
712   if (Count == -1)
713     Count = Cache.size();
714   assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) &&
715          "Cache isn't sorted!");
716 }
717 #endif
718 
719 const MemoryDependenceResults::NonLocalDepInfo &
720 MemoryDependenceResults::getNonLocalCallDependency(CallBase *QueryCall) {
721   assert(getDependency(QueryCall).isNonLocal() &&
722          "getNonLocalCallDependency should only be used on calls with "
723          "non-local deps!");
724   PerInstNLInfo &CacheP = NonLocalDeps[QueryCall];
725   NonLocalDepInfo &Cache = CacheP.first;
726 
727   // This is the set of blocks that need to be recomputed.  In the cached case,
728   // this can happen due to instructions being deleted etc. In the uncached
729   // case, this starts out as the set of predecessors we care about.
730   SmallVector<BasicBlock *, 32> DirtyBlocks;
731 
732   if (!Cache.empty()) {
733     // Okay, we have a cache entry.  If we know it is not dirty, just return it
734     // with no computation.
735     if (!CacheP.second) {
736       ++NumCacheNonLocal;
737       return Cache;
738     }
739 
740     // If we already have a partially computed set of results, scan them to
741     // determine what is dirty, seeding our initial DirtyBlocks worklist.
742     for (auto &Entry : Cache)
743       if (Entry.getResult().isDirty())
744         DirtyBlocks.push_back(Entry.getBB());
745 
746     // Sort the cache so that we can do fast binary search lookups below.
747     llvm::sort(Cache);
748 
749     ++NumCacheDirtyNonLocal;
750     // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
751     //     << Cache.size() << " cached: " << *QueryInst;
752   } else {
753     // Seed DirtyBlocks with each of the preds of QueryInst's block.
754     BasicBlock *QueryBB = QueryCall->getParent();
755     for (BasicBlock *Pred : PredCache.get(QueryBB))
756       DirtyBlocks.push_back(Pred);
757     ++NumUncacheNonLocal;
758   }
759 
760   // isReadonlyCall - If this is a read-only call, we can be more aggressive.
761   bool isReadonlyCall = AA.onlyReadsMemory(QueryCall);
762 
763   SmallPtrSet<BasicBlock *, 32> Visited;
764 
765   unsigned NumSortedEntries = Cache.size();
766   LLVM_DEBUG(AssertSorted(Cache));
767 
768   // Iterate while we still have blocks to update.
769   while (!DirtyBlocks.empty()) {
770     BasicBlock *DirtyBB = DirtyBlocks.back();
771     DirtyBlocks.pop_back();
772 
773     // Already processed this block?
774     if (!Visited.insert(DirtyBB).second)
775       continue;
776 
777     // Do a binary search to see if we already have an entry for this block in
778     // the cache set.  If so, find it.
779     LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries));
780     NonLocalDepInfo::iterator Entry =
781         std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries,
782                          NonLocalDepEntry(DirtyBB));
783     if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
784       --Entry;
785 
786     NonLocalDepEntry *ExistingResult = nullptr;
787     if (Entry != Cache.begin() + NumSortedEntries &&
788         Entry->getBB() == DirtyBB) {
789       // If we already have an entry, and if it isn't already dirty, the block
790       // is done.
791       if (!Entry->getResult().isDirty())
792         continue;
793 
794       // Otherwise, remember this slot so we can update the value.
795       ExistingResult = &*Entry;
796     }
797 
798     // If the dirty entry has a pointer, start scanning from it so we don't have
799     // to rescan the entire block.
800     BasicBlock::iterator ScanPos = DirtyBB->end();
801     if (ExistingResult) {
802       if (Instruction *Inst = ExistingResult->getResult().getInst()) {
803         ScanPos = Inst->getIterator();
804         // We're removing QueryInst's use of Inst.
805         RemoveFromReverseMap<Instruction *>(ReverseNonLocalDeps, Inst,
806                                             QueryCall);
807       }
808     }
809 
810     // Find out if this block has a local dependency for QueryInst.
811     MemDepResult Dep;
812 
813     if (ScanPos != DirtyBB->begin()) {
814       Dep = getCallDependencyFrom(QueryCall, isReadonlyCall, ScanPos, DirtyBB);
815     } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
816       // No dependence found.  If this is the entry block of the function, it is
817       // a clobber, otherwise it is unknown.
818       Dep = MemDepResult::getNonLocal();
819     } else {
820       Dep = MemDepResult::getNonFuncLocal();
821     }
822 
823     // If we had a dirty entry for the block, update it.  Otherwise, just add
824     // a new entry.
825     if (ExistingResult)
826       ExistingResult->setResult(Dep);
827     else
828       Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
829 
830     // If the block has a dependency (i.e. it isn't completely transparent to
831     // the value), remember the association!
832     if (!Dep.isNonLocal()) {
833       // Keep the ReverseNonLocalDeps map up to date so we can efficiently
834       // update this when we remove instructions.
835       if (Instruction *Inst = Dep.getInst())
836         ReverseNonLocalDeps[Inst].insert(QueryCall);
837     } else {
838 
839       // If the block *is* completely transparent to the load, we need to check
840       // the predecessors of this block.  Add them to our worklist.
841       for (BasicBlock *Pred : PredCache.get(DirtyBB))
842         DirtyBlocks.push_back(Pred);
843     }
844   }
845 
846   return Cache;
847 }
848 
849 void MemoryDependenceResults::getNonLocalPointerDependency(
850     Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) {
851   const MemoryLocation Loc = MemoryLocation::get(QueryInst);
852   bool isLoad = isa<LoadInst>(QueryInst);
853   BasicBlock *FromBB = QueryInst->getParent();
854   assert(FromBB);
855 
856   assert(Loc.Ptr->getType()->isPointerTy() &&
857          "Can't get pointer deps of a non-pointer!");
858   Result.clear();
859   {
860     // Check if there is cached Def with invariant.group.
861     auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst);
862     if (NonLocalDefIt != NonLocalDefsCache.end()) {
863       Result.push_back(NonLocalDefIt->second);
864       ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()]
865           .erase(QueryInst);
866       NonLocalDefsCache.erase(NonLocalDefIt);
867       return;
868     }
869   }
870   // This routine does not expect to deal with volatile instructions.
871   // Doing so would require piping through the QueryInst all the way through.
872   // TODO: volatiles can't be elided, but they can be reordered with other
873   // non-volatile accesses.
874 
875   // We currently give up on any instruction which is ordered, but we do handle
876   // atomic instructions which are unordered.
877   // TODO: Handle ordered instructions
878   auto isOrdered = [](Instruction *Inst) {
879     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
880       return !LI->isUnordered();
881     } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
882       return !SI->isUnordered();
883     }
884     return false;
885   };
886   if (isVolatile(QueryInst) || isOrdered(QueryInst)) {
887     Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
888                                        const_cast<Value *>(Loc.Ptr)));
889     return;
890   }
891   const DataLayout &DL = FromBB->getModule()->getDataLayout();
892   PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC);
893 
894   // This is the set of blocks we've inspected, and the pointer we consider in
895   // each block.  Because of critical edges, we currently bail out if querying
896   // a block with multiple different pointers.  This can happen during PHI
897   // translation.
898   DenseMap<BasicBlock *, Value *> Visited;
899   if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB,
900                                    Result, Visited, true))
901     return;
902   Result.clear();
903   Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
904                                      const_cast<Value *>(Loc.Ptr)));
905 }
906 
907 /// Compute the memdep value for BB with Pointer/PointeeSize using either
908 /// cached information in Cache or by doing a lookup (which may use dirty cache
909 /// info if available).
910 ///
911 /// If we do a lookup, add the result to the cache.
912 MemDepResult MemoryDependenceResults::GetNonLocalInfoForBlock(
913     Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad,
914     BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
915 
916   bool isInvariantLoad = false;
917 
918   if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst))
919     isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load);
920 
921   // Do a binary search to see if we already have an entry for this block in
922   // the cache set.  If so, find it.
923   NonLocalDepInfo::iterator Entry = std::upper_bound(
924       Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB));
925   if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB)
926     --Entry;
927 
928   NonLocalDepEntry *ExistingResult = nullptr;
929   if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB)
930     ExistingResult = &*Entry;
931 
932   // Use cached result for invariant load only if there is no dependency for non
933   // invariant load. In this case invariant load can not have any dependency as
934   // well.
935   if (ExistingResult && isInvariantLoad &&
936       !ExistingResult->getResult().isNonFuncLocal())
937     ExistingResult = nullptr;
938 
939   // If we have a cached entry, and it is non-dirty, use it as the value for
940   // this dependency.
941   if (ExistingResult && !ExistingResult->getResult().isDirty()) {
942     ++NumCacheNonLocalPtr;
943     return ExistingResult->getResult();
944   }
945 
946   // Otherwise, we have to scan for the value.  If we have a dirty cache
947   // entry, start scanning from its position, otherwise we scan from the end
948   // of the block.
949   BasicBlock::iterator ScanPos = BB->end();
950   if (ExistingResult && ExistingResult->getResult().getInst()) {
951     assert(ExistingResult->getResult().getInst()->getParent() == BB &&
952            "Instruction invalidated?");
953     ++NumCacheDirtyNonLocalPtr;
954     ScanPos = ExistingResult->getResult().getInst()->getIterator();
955 
956     // Eliminating the dirty entry from 'Cache', so update the reverse info.
957     ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
958     RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey);
959   } else {
960     ++NumUncacheNonLocalPtr;
961   }
962 
963   // Scan the block for the dependency.
964   MemDepResult Dep =
965       getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, QueryInst);
966 
967   // Don't cache results for invariant load.
968   if (isInvariantLoad)
969     return Dep;
970 
971   // If we had a dirty entry for the block, update it.  Otherwise, just add
972   // a new entry.
973   if (ExistingResult)
974     ExistingResult->setResult(Dep);
975   else
976     Cache->push_back(NonLocalDepEntry(BB, Dep));
977 
978   // If the block has a dependency (i.e. it isn't completely transparent to
979   // the value), remember the reverse association because we just added it
980   // to Cache!
981   if (!Dep.isDef() && !Dep.isClobber())
982     return Dep;
983 
984   // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
985   // update MemDep when we remove instructions.
986   Instruction *Inst = Dep.getInst();
987   assert(Inst && "Didn't depend on anything?");
988   ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
989   ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
990   return Dep;
991 }
992 
993 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the
994 /// array that are already properly ordered.
995 ///
996 /// This is optimized for the case when only a few entries are added.
997 static void
998 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache,
999                          unsigned NumSortedEntries) {
1000   switch (Cache.size() - NumSortedEntries) {
1001   case 0:
1002     // done, no new entries.
1003     break;
1004   case 2: {
1005     // Two new entries, insert the last one into place.
1006     NonLocalDepEntry Val = Cache.back();
1007     Cache.pop_back();
1008     MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
1009         std::upper_bound(Cache.begin(), Cache.end() - 1, Val);
1010     Cache.insert(Entry, Val);
1011     LLVM_FALLTHROUGH;
1012   }
1013   case 1:
1014     // One new entry, Just insert the new value at the appropriate position.
1015     if (Cache.size() != 1) {
1016       NonLocalDepEntry Val = Cache.back();
1017       Cache.pop_back();
1018       MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
1019           std::upper_bound(Cache.begin(), Cache.end(), Val);
1020       Cache.insert(Entry, Val);
1021     }
1022     break;
1023   default:
1024     // Added many values, do a full scale sort.
1025     llvm::sort(Cache);
1026     break;
1027   }
1028 }
1029 
1030 /// Perform a dependency query based on pointer/pointeesize starting at the end
1031 /// of StartBB.
1032 ///
1033 /// Add any clobber/def results to the results vector and keep track of which
1034 /// blocks are visited in 'Visited'.
1035 ///
1036 /// This has special behavior for the first block queries (when SkipFirstBlock
1037 /// is true).  In this special case, it ignores the contents of the specified
1038 /// block and starts returning dependence info for its predecessors.
1039 ///
1040 /// This function returns true on success, or false to indicate that it could
1041 /// not compute dependence information for some reason.  This should be treated
1042 /// as a clobber dependence on the first instruction in the predecessor block.
1043 bool MemoryDependenceResults::getNonLocalPointerDepFromBB(
1044     Instruction *QueryInst, const PHITransAddr &Pointer,
1045     const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB,
1046     SmallVectorImpl<NonLocalDepResult> &Result,
1047     DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock,
1048     bool IsIncomplete) {
1049   // Look up the cached info for Pointer.
1050   ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
1051 
1052   // Set up a temporary NLPI value. If the map doesn't yet have an entry for
1053   // CacheKey, this value will be inserted as the associated value. Otherwise,
1054   // it'll be ignored, and we'll have to check to see if the cached size and
1055   // aa tags are consistent with the current query.
1056   NonLocalPointerInfo InitialNLPI;
1057   InitialNLPI.Size = Loc.Size;
1058   InitialNLPI.AATags = Loc.AATags;
1059 
1060   bool isInvariantLoad = false;
1061   if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst))
1062     isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load);
1063 
1064   // Get the NLPI for CacheKey, inserting one into the map if it doesn't
1065   // already have one.
1066   std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
1067       NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
1068   NonLocalPointerInfo *CacheInfo = &Pair.first->second;
1069 
1070   // If we already have a cache entry for this CacheKey, we may need to do some
1071   // work to reconcile the cache entry and the current query.
1072   // Invariant loads don't participate in caching. Thus no need to reconcile.
1073   if (!isInvariantLoad && !Pair.second) {
1074     if (CacheInfo->Size != Loc.Size) {
1075       bool ThrowOutEverything;
1076       if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) {
1077         // FIXME: We may be able to do better in the face of results with mixed
1078         // precision. We don't appear to get them in practice, though, so just
1079         // be conservative.
1080         ThrowOutEverything =
1081             CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() ||
1082             CacheInfo->Size.getValue() < Loc.Size.getValue();
1083       } else {
1084         // For our purposes, unknown size > all others.
1085         ThrowOutEverything = !Loc.Size.hasValue();
1086       }
1087 
1088       if (ThrowOutEverything) {
1089         // The query's Size is greater than the cached one. Throw out the
1090         // cached data and proceed with the query at the greater size.
1091         CacheInfo->Pair = BBSkipFirstBlockPair();
1092         CacheInfo->Size = Loc.Size;
1093         for (auto &Entry : CacheInfo->NonLocalDeps)
1094           if (Instruction *Inst = Entry.getResult().getInst())
1095             RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1096         CacheInfo->NonLocalDeps.clear();
1097         // The cache is cleared (in the above line) so we will have lost
1098         // information about blocks we have already visited. We therefore must
1099         // assume that the cache information is incomplete.
1100         IsIncomplete = true;
1101       } else {
1102         // This query's Size is less than the cached one. Conservatively restart
1103         // the query using the greater size.
1104         return getNonLocalPointerDepFromBB(
1105             QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad,
1106             StartBB, Result, Visited, SkipFirstBlock, IsIncomplete);
1107       }
1108     }
1109 
1110     // If the query's AATags are inconsistent with the cached one,
1111     // conservatively throw out the cached data and restart the query with
1112     // no tag if needed.
1113     if (CacheInfo->AATags != Loc.AATags) {
1114       if (CacheInfo->AATags) {
1115         CacheInfo->Pair = BBSkipFirstBlockPair();
1116         CacheInfo->AATags = AAMDNodes();
1117         for (auto &Entry : CacheInfo->NonLocalDeps)
1118           if (Instruction *Inst = Entry.getResult().getInst())
1119             RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1120         CacheInfo->NonLocalDeps.clear();
1121         // The cache is cleared (in the above line) so we will have lost
1122         // information about blocks we have already visited. We therefore must
1123         // assume that the cache information is incomplete.
1124         IsIncomplete = true;
1125       }
1126       if (Loc.AATags)
1127         return getNonLocalPointerDepFromBB(
1128             QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result,
1129             Visited, SkipFirstBlock, IsIncomplete);
1130     }
1131   }
1132 
1133   NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
1134 
1135   // If we have valid cached information for exactly the block we are
1136   // investigating, just return it with no recomputation.
1137   // Don't use cached information for invariant loads since it is valid for
1138   // non-invariant loads only.
1139   //
1140   // Don't use cached information for invariant loads since it is valid for
1141   // non-invariant loads only.
1142   if (!IsIncomplete && !isInvariantLoad &&
1143       CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
1144     // We have a fully cached result for this query then we can just return the
1145     // cached results and populate the visited set.  However, we have to verify
1146     // that we don't already have conflicting results for these blocks.  Check
1147     // to ensure that if a block in the results set is in the visited set that
1148     // it was for the same pointer query.
1149     if (!Visited.empty()) {
1150       for (auto &Entry : *Cache) {
1151         DenseMap<BasicBlock *, Value *>::iterator VI =
1152             Visited.find(Entry.getBB());
1153         if (VI == Visited.end() || VI->second == Pointer.getAddr())
1154           continue;
1155 
1156         // We have a pointer mismatch in a block.  Just return false, saying
1157         // that something was clobbered in this result.  We could also do a
1158         // non-fully cached query, but there is little point in doing this.
1159         return false;
1160       }
1161     }
1162 
1163     Value *Addr = Pointer.getAddr();
1164     for (auto &Entry : *Cache) {
1165       Visited.insert(std::make_pair(Entry.getBB(), Addr));
1166       if (Entry.getResult().isNonLocal()) {
1167         continue;
1168       }
1169 
1170       if (DT.isReachableFromEntry(Entry.getBB())) {
1171         Result.push_back(
1172             NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr));
1173       }
1174     }
1175     ++NumCacheCompleteNonLocalPtr;
1176     return true;
1177   }
1178 
1179   // Otherwise, either this is a new block, a block with an invalid cache
1180   // pointer or one that we're about to invalidate by putting more info into
1181   // it than its valid cache info.  If empty and not explicitly indicated as
1182   // incomplete, the result will be valid cache info, otherwise it isn't.
1183   //
1184   // Invariant loads don't affect cache in any way thus no need to update
1185   // CacheInfo as well.
1186   if (!isInvariantLoad) {
1187     if (!IsIncomplete && Cache->empty())
1188       CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1189     else
1190       CacheInfo->Pair = BBSkipFirstBlockPair();
1191   }
1192 
1193   SmallVector<BasicBlock *, 32> Worklist;
1194   Worklist.push_back(StartBB);
1195 
1196   // PredList used inside loop.
1197   SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList;
1198 
1199   // Keep track of the entries that we know are sorted.  Previously cached
1200   // entries will all be sorted.  The entries we add we only sort on demand (we
1201   // don't insert every element into its sorted position).  We know that we
1202   // won't get any reuse from currently inserted values, because we don't
1203   // revisit blocks after we insert info for them.
1204   unsigned NumSortedEntries = Cache->size();
1205   unsigned WorklistEntries = BlockNumberLimit;
1206   bool GotWorklistLimit = false;
1207   LLVM_DEBUG(AssertSorted(*Cache));
1208 
1209   while (!Worklist.empty()) {
1210     BasicBlock *BB = Worklist.pop_back_val();
1211 
1212     // If we do process a large number of blocks it becomes very expensive and
1213     // likely it isn't worth worrying about
1214     if (Result.size() > NumResultsLimit) {
1215       Worklist.clear();
1216       // Sort it now (if needed) so that recursive invocations of
1217       // getNonLocalPointerDepFromBB and other routines that could reuse the
1218       // cache value will only see properly sorted cache arrays.
1219       if (Cache && NumSortedEntries != Cache->size()) {
1220         SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1221       }
1222       // Since we bail out, the "Cache" set won't contain all of the
1223       // results for the query.  This is ok (we can still use it to accelerate
1224       // specific block queries) but we can't do the fastpath "return all
1225       // results from the set".  Clear out the indicator for this.
1226       CacheInfo->Pair = BBSkipFirstBlockPair();
1227       return false;
1228     }
1229 
1230     // Skip the first block if we have it.
1231     if (!SkipFirstBlock) {
1232       // Analyze the dependency of *Pointer in FromBB.  See if we already have
1233       // been here.
1234       assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1235 
1236       // Get the dependency info for Pointer in BB.  If we have cached
1237       // information, we will use it, otherwise we compute it.
1238       LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries));
1239       MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, Loc, isLoad, BB,
1240                                                  Cache, NumSortedEntries);
1241 
1242       // If we got a Def or Clobber, add this to the list of results.
1243       if (!Dep.isNonLocal()) {
1244         if (DT.isReachableFromEntry(BB)) {
1245           Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1246           continue;
1247         }
1248       }
1249     }
1250 
1251     // If 'Pointer' is an instruction defined in this block, then we need to do
1252     // phi translation to change it into a value live in the predecessor block.
1253     // If not, we just add the predecessors to the worklist and scan them with
1254     // the same Pointer.
1255     if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1256       SkipFirstBlock = false;
1257       SmallVector<BasicBlock *, 16> NewBlocks;
1258       for (BasicBlock *Pred : PredCache.get(BB)) {
1259         // Verify that we haven't looked at this block yet.
1260         std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1261             Visited.insert(std::make_pair(Pred, Pointer.getAddr()));
1262         if (InsertRes.second) {
1263           // First time we've looked at *PI.
1264           NewBlocks.push_back(Pred);
1265           continue;
1266         }
1267 
1268         // If we have seen this block before, but it was with a different
1269         // pointer then we have a phi translation failure and we have to treat
1270         // this as a clobber.
1271         if (InsertRes.first->second != Pointer.getAddr()) {
1272           // Make sure to clean up the Visited map before continuing on to
1273           // PredTranslationFailure.
1274           for (unsigned i = 0; i < NewBlocks.size(); i++)
1275             Visited.erase(NewBlocks[i]);
1276           goto PredTranslationFailure;
1277         }
1278       }
1279       if (NewBlocks.size() > WorklistEntries) {
1280         // Make sure to clean up the Visited map before continuing on to
1281         // PredTranslationFailure.
1282         for (unsigned i = 0; i < NewBlocks.size(); i++)
1283           Visited.erase(NewBlocks[i]);
1284         GotWorklistLimit = true;
1285         goto PredTranslationFailure;
1286       }
1287       WorklistEntries -= NewBlocks.size();
1288       Worklist.append(NewBlocks.begin(), NewBlocks.end());
1289       continue;
1290     }
1291 
1292     // We do need to do phi translation, if we know ahead of time we can't phi
1293     // translate this value, don't even try.
1294     if (!Pointer.IsPotentiallyPHITranslatable())
1295       goto PredTranslationFailure;
1296 
1297     // We may have added values to the cache list before this PHI translation.
1298     // If so, we haven't done anything to ensure that the cache remains sorted.
1299     // Sort it now (if needed) so that recursive invocations of
1300     // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1301     // value will only see properly sorted cache arrays.
1302     if (Cache && NumSortedEntries != Cache->size()) {
1303       SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1304       NumSortedEntries = Cache->size();
1305     }
1306     Cache = nullptr;
1307 
1308     PredList.clear();
1309     for (BasicBlock *Pred : PredCache.get(BB)) {
1310       PredList.push_back(std::make_pair(Pred, Pointer));
1311 
1312       // Get the PHI translated pointer in this predecessor.  This can fail if
1313       // not translatable, in which case the getAddr() returns null.
1314       PHITransAddr &PredPointer = PredList.back().second;
1315       PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false);
1316       Value *PredPtrVal = PredPointer.getAddr();
1317 
1318       // Check to see if we have already visited this pred block with another
1319       // pointer.  If so, we can't do this lookup.  This failure can occur
1320       // with PHI translation when a critical edge exists and the PHI node in
1321       // the successor translates to a pointer value different than the
1322       // pointer the block was first analyzed with.
1323       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1324           Visited.insert(std::make_pair(Pred, PredPtrVal));
1325 
1326       if (!InsertRes.second) {
1327         // We found the pred; take it off the list of preds to visit.
1328         PredList.pop_back();
1329 
1330         // If the predecessor was visited with PredPtr, then we already did
1331         // the analysis and can ignore it.
1332         if (InsertRes.first->second == PredPtrVal)
1333           continue;
1334 
1335         // Otherwise, the block was previously analyzed with a different
1336         // pointer.  We can't represent the result of this case, so we just
1337         // treat this as a phi translation failure.
1338 
1339         // Make sure to clean up the Visited map before continuing on to
1340         // PredTranslationFailure.
1341         for (unsigned i = 0, n = PredList.size(); i < n; ++i)
1342           Visited.erase(PredList[i].first);
1343 
1344         goto PredTranslationFailure;
1345       }
1346     }
1347 
1348     // Actually process results here; this need to be a separate loop to avoid
1349     // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1350     // any results for.  (getNonLocalPointerDepFromBB will modify our
1351     // datastructures in ways the code after the PredTranslationFailure label
1352     // doesn't expect.)
1353     for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
1354       BasicBlock *Pred = PredList[i].first;
1355       PHITransAddr &PredPointer = PredList[i].second;
1356       Value *PredPtrVal = PredPointer.getAddr();
1357 
1358       bool CanTranslate = true;
1359       // If PHI translation was unable to find an available pointer in this
1360       // predecessor, then we have to assume that the pointer is clobbered in
1361       // that predecessor.  We can still do PRE of the load, which would insert
1362       // a computation of the pointer in this predecessor.
1363       if (!PredPtrVal)
1364         CanTranslate = false;
1365 
1366       // FIXME: it is entirely possible that PHI translating will end up with
1367       // the same value.  Consider PHI translating something like:
1368       // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
1369       // to recurse here, pedantically speaking.
1370 
1371       // If getNonLocalPointerDepFromBB fails here, that means the cached
1372       // result conflicted with the Visited list; we have to conservatively
1373       // assume it is unknown, but this also does not block PRE of the load.
1374       if (!CanTranslate ||
1375           !getNonLocalPointerDepFromBB(QueryInst, PredPointer,
1376                                       Loc.getWithNewPtr(PredPtrVal), isLoad,
1377                                       Pred, Result, Visited)) {
1378         // Add the entry to the Result list.
1379         NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1380         Result.push_back(Entry);
1381 
1382         // Since we had a phi translation failure, the cache for CacheKey won't
1383         // include all of the entries that we need to immediately satisfy future
1384         // queries.  Mark this in NonLocalPointerDeps by setting the
1385         // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
1386         // cached value to do more work but not miss the phi trans failure.
1387         NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1388         NLPI.Pair = BBSkipFirstBlockPair();
1389         continue;
1390       }
1391     }
1392 
1393     // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1394     CacheInfo = &NonLocalPointerDeps[CacheKey];
1395     Cache = &CacheInfo->NonLocalDeps;
1396     NumSortedEntries = Cache->size();
1397 
1398     // Since we did phi translation, the "Cache" set won't contain all of the
1399     // results for the query.  This is ok (we can still use it to accelerate
1400     // specific block queries) but we can't do the fastpath "return all
1401     // results from the set"  Clear out the indicator for this.
1402     CacheInfo->Pair = BBSkipFirstBlockPair();
1403     SkipFirstBlock = false;
1404     continue;
1405 
1406   PredTranslationFailure:
1407     // The following code is "failure"; we can't produce a sane translation
1408     // for the given block.  It assumes that we haven't modified any of
1409     // our datastructures while processing the current block.
1410 
1411     if (!Cache) {
1412       // Refresh the CacheInfo/Cache pointer if it got invalidated.
1413       CacheInfo = &NonLocalPointerDeps[CacheKey];
1414       Cache = &CacheInfo->NonLocalDeps;
1415       NumSortedEntries = Cache->size();
1416     }
1417 
1418     // Since we failed phi translation, the "Cache" set won't contain all of the
1419     // results for the query.  This is ok (we can still use it to accelerate
1420     // specific block queries) but we can't do the fastpath "return all
1421     // results from the set".  Clear out the indicator for this.
1422     CacheInfo->Pair = BBSkipFirstBlockPair();
1423 
1424     // If *nothing* works, mark the pointer as unknown.
1425     //
1426     // If this is the magic first block, return this as a clobber of the whole
1427     // incoming value.  Since we can't phi translate to one of the predecessors,
1428     // we have to bail out.
1429     if (SkipFirstBlock)
1430       return false;
1431 
1432     // Results of invariant loads are not cached thus no need to update cached
1433     // information.
1434     if (!isInvariantLoad) {
1435       for (NonLocalDepEntry &I : llvm::reverse(*Cache)) {
1436         if (I.getBB() != BB)
1437           continue;
1438 
1439         assert((GotWorklistLimit || I.getResult().isNonLocal() ||
1440                 !DT.isReachableFromEntry(BB)) &&
1441                "Should only be here with transparent block");
1442 
1443         I.setResult(MemDepResult::getUnknown());
1444 
1445 
1446         break;
1447       }
1448     }
1449     (void)GotWorklistLimit;
1450     // Go ahead and report unknown dependence.
1451     Result.push_back(
1452         NonLocalDepResult(BB, MemDepResult::getUnknown(), Pointer.getAddr()));
1453   }
1454 
1455   // Okay, we're done now.  If we added new values to the cache, re-sort it.
1456   SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1457   LLVM_DEBUG(AssertSorted(*Cache));
1458   return true;
1459 }
1460 
1461 /// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it.
1462 void MemoryDependenceResults::RemoveCachedNonLocalPointerDependencies(
1463     ValueIsLoadPair P) {
1464 
1465   // Most of the time this cache is empty.
1466   if (!NonLocalDefsCache.empty()) {
1467     auto it = NonLocalDefsCache.find(P.getPointer());
1468     if (it != NonLocalDefsCache.end()) {
1469       RemoveFromReverseMap(ReverseNonLocalDefsCache,
1470                            it->second.getResult().getInst(), P.getPointer());
1471       NonLocalDefsCache.erase(it);
1472     }
1473 
1474     if (auto *I = dyn_cast<Instruction>(P.getPointer())) {
1475       auto toRemoveIt = ReverseNonLocalDefsCache.find(I);
1476       if (toRemoveIt != ReverseNonLocalDefsCache.end()) {
1477         for (const auto *entry : toRemoveIt->second)
1478           NonLocalDefsCache.erase(entry);
1479         ReverseNonLocalDefsCache.erase(toRemoveIt);
1480       }
1481     }
1482   }
1483 
1484   CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P);
1485   if (It == NonLocalPointerDeps.end())
1486     return;
1487 
1488   // Remove all of the entries in the BB->val map.  This involves removing
1489   // instructions from the reverse map.
1490   NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1491 
1492   for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1493     Instruction *Target = PInfo[i].getResult().getInst();
1494     if (!Target)
1495       continue; // Ignore non-local dep results.
1496     assert(Target->getParent() == PInfo[i].getBB());
1497 
1498     // Eliminating the dirty entry from 'Cache', so update the reverse info.
1499     RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1500   }
1501 
1502   // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1503   NonLocalPointerDeps.erase(It);
1504 }
1505 
1506 void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) {
1507   // If Ptr isn't really a pointer, just ignore it.
1508   if (!Ptr->getType()->isPointerTy())
1509     return;
1510   // Flush store info for the pointer.
1511   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1512   // Flush load info for the pointer.
1513   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1514   // Invalidate phis that use the pointer.
1515   PV.invalidateValue(Ptr);
1516 }
1517 
1518 void MemoryDependenceResults::invalidateCachedPredecessors() {
1519   PredCache.clear();
1520 }
1521 
1522 void MemoryDependenceResults::removeInstruction(Instruction *RemInst) {
1523   // Walk through the Non-local dependencies, removing this one as the value
1524   // for any cached queries.
1525   NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1526   if (NLDI != NonLocalDeps.end()) {
1527     NonLocalDepInfo &BlockMap = NLDI->second.first;
1528     for (auto &Entry : BlockMap)
1529       if (Instruction *Inst = Entry.getResult().getInst())
1530         RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1531     NonLocalDeps.erase(NLDI);
1532   }
1533 
1534   // If we have a cached local dependence query for this instruction, remove it.
1535   LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1536   if (LocalDepEntry != LocalDeps.end()) {
1537     // Remove us from DepInst's reverse set now that the local dep info is gone.
1538     if (Instruction *Inst = LocalDepEntry->second.getInst())
1539       RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1540 
1541     // Remove this local dependency info.
1542     LocalDeps.erase(LocalDepEntry);
1543   }
1544 
1545   // If we have any cached dependencies on this instruction, remove
1546   // them.
1547 
1548   // If the instruction is a pointer, remove it from both the load info and the
1549   // store info.
1550   if (RemInst->getType()->isPointerTy()) {
1551     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1552     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1553   } else {
1554     // Otherwise, if the instructions is in the map directly, it must be a load.
1555     // Remove it.
1556     auto toRemoveIt = NonLocalDefsCache.find(RemInst);
1557     if (toRemoveIt != NonLocalDefsCache.end()) {
1558       assert(isa<LoadInst>(RemInst) &&
1559              "only load instructions should be added directly");
1560       const Instruction *DepV = toRemoveIt->second.getResult().getInst();
1561       ReverseNonLocalDefsCache.find(DepV)->second.erase(RemInst);
1562       NonLocalDefsCache.erase(toRemoveIt);
1563     }
1564   }
1565 
1566   // Loop over all of the things that depend on the instruction we're removing.
1567   SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd;
1568 
1569   // If we find RemInst as a clobber or Def in any of the maps for other values,
1570   // we need to replace its entry with a dirty version of the instruction after
1571   // it.  If RemInst is a terminator, we use a null dirty value.
1572   //
1573   // Using a dirty version of the instruction after RemInst saves having to scan
1574   // the entire block to get to this point.
1575   MemDepResult NewDirtyVal;
1576   if (!RemInst->isTerminator())
1577     NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator());
1578 
1579   ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1580   if (ReverseDepIt != ReverseLocalDeps.end()) {
1581     // RemInst can't be the terminator if it has local stuff depending on it.
1582     assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() &&
1583            "Nothing can locally depend on a terminator");
1584 
1585     for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
1586       assert(InstDependingOnRemInst != RemInst &&
1587              "Already removed our local dep info");
1588 
1589       LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1590 
1591       // Make sure to remember that new things depend on NewDepInst.
1592       assert(NewDirtyVal.getInst() &&
1593              "There is no way something else can have "
1594              "a local dep on this if it is a terminator!");
1595       ReverseDepsToAdd.push_back(
1596           std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst));
1597     }
1598 
1599     ReverseLocalDeps.erase(ReverseDepIt);
1600 
1601     // Add new reverse deps after scanning the set, to avoid invalidating the
1602     // 'ReverseDeps' reference.
1603     while (!ReverseDepsToAdd.empty()) {
1604       ReverseLocalDeps[ReverseDepsToAdd.back().first].insert(
1605           ReverseDepsToAdd.back().second);
1606       ReverseDepsToAdd.pop_back();
1607     }
1608   }
1609 
1610   ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1611   if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1612     for (Instruction *I : ReverseDepIt->second) {
1613       assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
1614 
1615       PerInstNLInfo &INLD = NonLocalDeps[I];
1616       // The information is now dirty!
1617       INLD.second = true;
1618 
1619       for (auto &Entry : INLD.first) {
1620         if (Entry.getResult().getInst() != RemInst)
1621           continue;
1622 
1623         // Convert to a dirty entry for the subsequent instruction.
1624         Entry.setResult(NewDirtyVal);
1625 
1626         if (Instruction *NextI = NewDirtyVal.getInst())
1627           ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
1628       }
1629     }
1630 
1631     ReverseNonLocalDeps.erase(ReverseDepIt);
1632 
1633     // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1634     while (!ReverseDepsToAdd.empty()) {
1635       ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert(
1636           ReverseDepsToAdd.back().second);
1637       ReverseDepsToAdd.pop_back();
1638     }
1639   }
1640 
1641   // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1642   // value in the NonLocalPointerDeps info.
1643   ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1644       ReverseNonLocalPtrDeps.find(RemInst);
1645   if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1646     SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8>
1647         ReversePtrDepsToAdd;
1648 
1649     for (ValueIsLoadPair P : ReversePtrDepIt->second) {
1650       assert(P.getPointer() != RemInst &&
1651              "Already removed NonLocalPointerDeps info for RemInst");
1652 
1653       NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1654 
1655       // The cache is not valid for any specific block anymore.
1656       NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1657 
1658       // Update any entries for RemInst to use the instruction after it.
1659       for (auto &Entry : NLPDI) {
1660         if (Entry.getResult().getInst() != RemInst)
1661           continue;
1662 
1663         // Convert to a dirty entry for the subsequent instruction.
1664         Entry.setResult(NewDirtyVal);
1665 
1666         if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1667           ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1668       }
1669 
1670       // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1671       // subsequent value may invalidate the sortedness.
1672       llvm::sort(NLPDI);
1673     }
1674 
1675     ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1676 
1677     while (!ReversePtrDepsToAdd.empty()) {
1678       ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert(
1679           ReversePtrDepsToAdd.back().second);
1680       ReversePtrDepsToAdd.pop_back();
1681     }
1682   }
1683 
1684   // Invalidate phis that use the removed instruction.
1685   PV.invalidateValue(RemInst);
1686 
1687   assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1688   LLVM_DEBUG(verifyRemoved(RemInst));
1689 }
1690 
1691 /// Verify that the specified instruction does not occur in our internal data
1692 /// structures.
1693 ///
1694 /// This function verifies by asserting in debug builds.
1695 void MemoryDependenceResults::verifyRemoved(Instruction *D) const {
1696 #ifndef NDEBUG
1697   for (const auto &DepKV : LocalDeps) {
1698     assert(DepKV.first != D && "Inst occurs in data structures");
1699     assert(DepKV.second.getInst() != D && "Inst occurs in data structures");
1700   }
1701 
1702   for (const auto &DepKV : NonLocalPointerDeps) {
1703     assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key");
1704     for (const auto &Entry : DepKV.second.NonLocalDeps)
1705       assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value");
1706   }
1707 
1708   for (const auto &DepKV : NonLocalDeps) {
1709     assert(DepKV.first != D && "Inst occurs in data structures");
1710     const PerInstNLInfo &INLD = DepKV.second;
1711     for (const auto &Entry : INLD.first)
1712       assert(Entry.getResult().getInst() != D &&
1713              "Inst occurs in data structures");
1714   }
1715 
1716   for (const auto &DepKV : ReverseLocalDeps) {
1717     assert(DepKV.first != D && "Inst occurs in data structures");
1718     for (Instruction *Inst : DepKV.second)
1719       assert(Inst != D && "Inst occurs in data structures");
1720   }
1721 
1722   for (const auto &DepKV : ReverseNonLocalDeps) {
1723     assert(DepKV.first != D && "Inst occurs in data structures");
1724     for (Instruction *Inst : DepKV.second)
1725       assert(Inst != D && "Inst occurs in data structures");
1726   }
1727 
1728   for (const auto &DepKV : ReverseNonLocalPtrDeps) {
1729     assert(DepKV.first != D && "Inst occurs in rev NLPD map");
1730 
1731     for (ValueIsLoadPair P : DepKV.second)
1732       assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) &&
1733              "Inst occurs in ReverseNonLocalPtrDeps map");
1734   }
1735 #endif
1736 }
1737 
1738 AnalysisKey MemoryDependenceAnalysis::Key;
1739 
1740 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
1741     : DefaultBlockScanLimit(BlockScanLimit) {}
1742 
1743 MemoryDependenceResults
1744 MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
1745   auto &AA = AM.getResult<AAManager>(F);
1746   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1747   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1748   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1749   auto &PV = AM.getResult<PhiValuesAnalysis>(F);
1750   return MemoryDependenceResults(AA, AC, TLI, DT, PV, DefaultBlockScanLimit);
1751 }
1752 
1753 char MemoryDependenceWrapperPass::ID = 0;
1754 
1755 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep",
1756                       "Memory Dependence Analysis", false, true)
1757 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1758 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1759 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1760 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1761 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
1762 INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep",
1763                     "Memory Dependence Analysis", false, true)
1764 
1765 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) {
1766   initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry());
1767 }
1768 
1769 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default;
1770 
1771 void MemoryDependenceWrapperPass::releaseMemory() {
1772   MemDep.reset();
1773 }
1774 
1775 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1776   AU.setPreservesAll();
1777   AU.addRequired<AssumptionCacheTracker>();
1778   AU.addRequired<DominatorTreeWrapperPass>();
1779   AU.addRequired<PhiValuesWrapperPass>();
1780   AU.addRequiredTransitive<AAResultsWrapperPass>();
1781   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1782 }
1783 
1784 bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA,
1785                                FunctionAnalysisManager::Invalidator &Inv) {
1786   // Check whether our analysis is preserved.
1787   auto PAC = PA.getChecker<MemoryDependenceAnalysis>();
1788   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
1789     // If not, give up now.
1790     return true;
1791 
1792   // Check whether the analyses we depend on became invalid for any reason.
1793   if (Inv.invalidate<AAManager>(F, PA) ||
1794       Inv.invalidate<AssumptionAnalysis>(F, PA) ||
1795       Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
1796       Inv.invalidate<PhiValuesAnalysis>(F, PA))
1797     return true;
1798 
1799   // Otherwise this analysis result remains valid.
1800   return false;
1801 }
1802 
1803 unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const {
1804   return DefaultBlockScanLimit;
1805 }
1806 
1807 bool MemoryDependenceWrapperPass::runOnFunction(Function &F) {
1808   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1809   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1810   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1811   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1812   auto &PV = getAnalysis<PhiValuesWrapperPass>().getResult();
1813   MemDep.emplace(AA, AC, TLI, DT, PV, BlockScanLimit);
1814   return false;
1815 }
1816