1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation --*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements an analysis that determines, for a given memory 11 // operation, what preceding memory operations it depends on. It builds on 12 // alias analysis information, and tries to provide a lazy, caching interface to 13 // a common kind of alias information query. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #define DEBUG_TYPE "memdep" 18 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/Instructions.h" 21 #include "llvm/IntrinsicInst.h" 22 #include "llvm/Function.h" 23 #include "llvm/LLVMContext.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/CaptureTracking.h" 26 #include "llvm/Analysis/Dominators.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/PHITransAddr.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/ADT/STLExtras.h" 33 #include "llvm/Support/PredIteratorCache.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Target/TargetData.h" 36 using namespace llvm; 37 38 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); 39 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); 40 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); 41 42 STATISTIC(NumCacheNonLocalPtr, 43 "Number of fully cached non-local ptr responses"); 44 STATISTIC(NumCacheDirtyNonLocalPtr, 45 "Number of cached, but dirty, non-local ptr responses"); 46 STATISTIC(NumUncacheNonLocalPtr, 47 "Number of uncached non-local ptr responses"); 48 STATISTIC(NumCacheCompleteNonLocalPtr, 49 "Number of block queries that were completely cached"); 50 51 // Limit for the number of instructions to scan in a block. 52 // FIXME: Figure out what a sane value is for this. 53 // (500 is relatively insane.) 54 static const int BlockScanLimit = 500; 55 56 char MemoryDependenceAnalysis::ID = 0; 57 58 // Register this pass... 59 INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep", 60 "Memory Dependence Analysis", false, true) 61 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 62 INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep", 63 "Memory Dependence Analysis", false, true) 64 65 MemoryDependenceAnalysis::MemoryDependenceAnalysis() 66 : FunctionPass(ID), PredCache(0) { 67 initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry()); 68 } 69 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() { 70 } 71 72 /// Clean up memory in between runs 73 void MemoryDependenceAnalysis::releaseMemory() { 74 LocalDeps.clear(); 75 NonLocalDeps.clear(); 76 NonLocalPointerDeps.clear(); 77 ReverseLocalDeps.clear(); 78 ReverseNonLocalDeps.clear(); 79 ReverseNonLocalPtrDeps.clear(); 80 PredCache->clear(); 81 } 82 83 84 85 /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis. 86 /// 87 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 88 AU.setPreservesAll(); 89 AU.addRequiredTransitive<AliasAnalysis>(); 90 } 91 92 bool MemoryDependenceAnalysis::runOnFunction(Function &) { 93 AA = &getAnalysis<AliasAnalysis>(); 94 TD = getAnalysisIfAvailable<TargetData>(); 95 DT = getAnalysisIfAvailable<DominatorTree>(); 96 if (PredCache == 0) 97 PredCache.reset(new PredIteratorCache()); 98 return false; 99 } 100 101 /// RemoveFromReverseMap - This is a helper function that removes Val from 102 /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry. 103 template <typename KeyTy> 104 static void RemoveFromReverseMap(DenseMap<Instruction*, 105 SmallPtrSet<KeyTy, 4> > &ReverseMap, 106 Instruction *Inst, KeyTy Val) { 107 typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator 108 InstIt = ReverseMap.find(Inst); 109 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); 110 bool Found = InstIt->second.erase(Val); 111 assert(Found && "Invalid reverse map!"); (void)Found; 112 if (InstIt->second.empty()) 113 ReverseMap.erase(InstIt); 114 } 115 116 /// GetLocation - If the given instruction references a specific memory 117 /// location, fill in Loc with the details, otherwise set Loc.Ptr to null. 118 /// Return a ModRefInfo value describing the general behavior of the 119 /// instruction. 120 static 121 AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst, 122 AliasAnalysis::Location &Loc, 123 AliasAnalysis *AA) { 124 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 125 if (LI->isUnordered()) { 126 Loc = AA->getLocation(LI); 127 return AliasAnalysis::Ref; 128 } else if (LI->getOrdering() == Monotonic) { 129 Loc = AA->getLocation(LI); 130 return AliasAnalysis::ModRef; 131 } 132 Loc = AliasAnalysis::Location(); 133 return AliasAnalysis::ModRef; 134 } 135 136 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 137 if (SI->isUnordered()) { 138 Loc = AA->getLocation(SI); 139 return AliasAnalysis::Mod; 140 } else if (SI->getOrdering() == Monotonic) { 141 Loc = AA->getLocation(SI); 142 return AliasAnalysis::ModRef; 143 } 144 Loc = AliasAnalysis::Location(); 145 return AliasAnalysis::ModRef; 146 } 147 148 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { 149 Loc = AA->getLocation(V); 150 return AliasAnalysis::ModRef; 151 } 152 153 if (const CallInst *CI = isFreeCall(Inst)) { 154 // calls to free() deallocate the entire structure 155 Loc = AliasAnalysis::Location(CI->getArgOperand(0)); 156 return AliasAnalysis::Mod; 157 } 158 159 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 160 switch (II->getIntrinsicID()) { 161 case Intrinsic::lifetime_start: 162 case Intrinsic::lifetime_end: 163 case Intrinsic::invariant_start: 164 Loc = AliasAnalysis::Location(II->getArgOperand(1), 165 cast<ConstantInt>(II->getArgOperand(0)) 166 ->getZExtValue(), 167 II->getMetadata(LLVMContext::MD_tbaa)); 168 // These intrinsics don't really modify the memory, but returning Mod 169 // will allow them to be handled conservatively. 170 return AliasAnalysis::Mod; 171 case Intrinsic::invariant_end: 172 Loc = AliasAnalysis::Location(II->getArgOperand(2), 173 cast<ConstantInt>(II->getArgOperand(1)) 174 ->getZExtValue(), 175 II->getMetadata(LLVMContext::MD_tbaa)); 176 // These intrinsics don't really modify the memory, but returning Mod 177 // will allow them to be handled conservatively. 178 return AliasAnalysis::Mod; 179 default: 180 break; 181 } 182 183 // Otherwise, just do the coarse-grained thing that always works. 184 if (Inst->mayWriteToMemory()) 185 return AliasAnalysis::ModRef; 186 if (Inst->mayReadFromMemory()) 187 return AliasAnalysis::Ref; 188 return AliasAnalysis::NoModRef; 189 } 190 191 /// getCallSiteDependencyFrom - Private helper for finding the local 192 /// dependencies of a call site. 193 MemDepResult MemoryDependenceAnalysis:: 194 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall, 195 BasicBlock::iterator ScanIt, BasicBlock *BB) { 196 unsigned Limit = BlockScanLimit; 197 198 // Walk backwards through the block, looking for dependencies 199 while (ScanIt != BB->begin()) { 200 // Limit the amount of scanning we do so we don't end up with quadratic 201 // running time on extreme testcases. 202 --Limit; 203 if (!Limit) 204 return MemDepResult::getUnknown(); 205 206 Instruction *Inst = --ScanIt; 207 208 // If this inst is a memory op, get the pointer it accessed 209 AliasAnalysis::Location Loc; 210 AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA); 211 if (Loc.Ptr) { 212 // A simple instruction. 213 if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef) 214 return MemDepResult::getClobber(Inst); 215 continue; 216 } 217 218 if (CallSite InstCS = cast<Value>(Inst)) { 219 // Debug intrinsics don't cause dependences. 220 if (isa<DbgInfoIntrinsic>(Inst)) continue; 221 // If these two calls do not interfere, look past it. 222 switch (AA->getModRefInfo(CS, InstCS)) { 223 case AliasAnalysis::NoModRef: 224 // If the two calls are the same, return InstCS as a Def, so that 225 // CS can be found redundant and eliminated. 226 if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) && 227 CS.getInstruction()->isIdenticalToWhenDefined(Inst)) 228 return MemDepResult::getDef(Inst); 229 230 // Otherwise if the two calls don't interact (e.g. InstCS is readnone) 231 // keep scanning. 232 break; 233 default: 234 return MemDepResult::getClobber(Inst); 235 } 236 } 237 } 238 239 // No dependence found. If this is the entry block of the function, it is 240 // unknown, otherwise it is non-local. 241 if (BB != &BB->getParent()->getEntryBlock()) 242 return MemDepResult::getNonLocal(); 243 return MemDepResult::getNonFuncLocal(); 244 } 245 246 /// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that 247 /// would fully overlap MemLoc if done as a wider legal integer load. 248 /// 249 /// MemLocBase, MemLocOffset are lazily computed here the first time the 250 /// base/offs of memloc is needed. 251 static bool 252 isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc, 253 const Value *&MemLocBase, 254 int64_t &MemLocOffs, 255 const LoadInst *LI, 256 const TargetData *TD) { 257 // If we have no target data, we can't do this. 258 if (TD == 0) return false; 259 260 // If we haven't already computed the base/offset of MemLoc, do so now. 261 if (MemLocBase == 0) 262 MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, *TD); 263 264 unsigned Size = MemoryDependenceAnalysis:: 265 getLoadLoadClobberFullWidthSize(MemLocBase, MemLocOffs, MemLoc.Size, 266 LI, *TD); 267 return Size != 0; 268 } 269 270 /// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that 271 /// looks at a memory location for a load (specified by MemLocBase, Offs, 272 /// and Size) and compares it against a load. If the specified load could 273 /// be safely widened to a larger integer load that is 1) still efficient, 274 /// 2) safe for the target, and 3) would provide the specified memory 275 /// location value, then this function returns the size in bytes of the 276 /// load width to use. If not, this returns zero. 277 unsigned MemoryDependenceAnalysis:: 278 getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs, 279 unsigned MemLocSize, const LoadInst *LI, 280 const TargetData &TD) { 281 // We can only extend simple integer loads. 282 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0; 283 284 // Get the base of this load. 285 int64_t LIOffs = 0; 286 const Value *LIBase = 287 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, TD); 288 289 // If the two pointers are not based on the same pointer, we can't tell that 290 // they are related. 291 if (LIBase != MemLocBase) return 0; 292 293 // Okay, the two values are based on the same pointer, but returned as 294 // no-alias. This happens when we have things like two byte loads at "P+1" 295 // and "P+3". Check to see if increasing the size of the "LI" load up to its 296 // alignment (or the largest native integer type) will allow us to load all 297 // the bits required by MemLoc. 298 299 // If MemLoc is before LI, then no widening of LI will help us out. 300 if (MemLocOffs < LIOffs) return 0; 301 302 // Get the alignment of the load in bytes. We assume that it is safe to load 303 // any legal integer up to this size without a problem. For example, if we're 304 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can 305 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it 306 // to i16. 307 unsigned LoadAlign = LI->getAlignment(); 308 309 int64_t MemLocEnd = MemLocOffs+MemLocSize; 310 311 // If no amount of rounding up will let MemLoc fit into LI, then bail out. 312 if (LIOffs+LoadAlign < MemLocEnd) return 0; 313 314 // This is the size of the load to try. Start with the next larger power of 315 // two. 316 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U; 317 NewLoadByteSize = NextPowerOf2(NewLoadByteSize); 318 319 while (1) { 320 // If this load size is bigger than our known alignment or would not fit 321 // into a native integer register, then we fail. 322 if (NewLoadByteSize > LoadAlign || 323 !TD.fitsInLegalInteger(NewLoadByteSize*8)) 324 return 0; 325 326 // If a load of this width would include all of MemLoc, then we succeed. 327 if (LIOffs+NewLoadByteSize >= MemLocEnd) 328 return NewLoadByteSize; 329 330 NewLoadByteSize <<= 1; 331 } 332 333 return 0; 334 } 335 336 namespace { 337 /// Only find pointer captures which happen before the given instruction. Uses 338 /// the dominator tree to determine whether one instruction is before another. 339 struct CapturesBefore : public CaptureTracker { 340 CapturesBefore(const Instruction *I, DominatorTree *DT) 341 : BeforeHere(I), DT(DT), Captured(false) {} 342 343 void tooManyUses() { Captured = true; } 344 345 bool shouldExplore(Use *U) { 346 Instruction *I = cast<Instruction>(U->getUser()); 347 if (BeforeHere != I && DT->dominates(BeforeHere, I)) 348 return false; 349 return true; 350 } 351 352 bool captured(Use *U) { 353 Instruction *I = cast<Instruction>(U->getUser()); 354 if (BeforeHere != I && DT->dominates(BeforeHere, I)) 355 return false; 356 Captured = true; 357 return true; 358 } 359 360 const Instruction *BeforeHere; 361 DominatorTree *DT; 362 363 bool Captured; 364 }; 365 } 366 367 AliasAnalysis::ModRefResult 368 MemoryDependenceAnalysis::getModRefInfo(const Instruction *Inst, 369 const AliasAnalysis::Location &MemLoc) { 370 AliasAnalysis::ModRefResult MR = AA->getModRefInfo(Inst, MemLoc); 371 if (MR != AliasAnalysis::ModRef) return MR; 372 373 // FIXME: this is really just shoring-up a deficiency in alias analysis. 374 // BasicAA isn't willing to spend linear time determining whether an alloca 375 // was captured before or after this particular call, while we are. However, 376 // with a smarter AA in place, this test is just wasting compile time. 377 if (!DT) return AliasAnalysis::ModRef; 378 const Value *Object = GetUnderlyingObject(MemLoc.Ptr, TD); 379 if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object)) 380 return AliasAnalysis::ModRef; 381 ImmutableCallSite CS(Inst); 382 if (!CS.getInstruction()) return AliasAnalysis::ModRef; 383 384 CapturesBefore CB(Inst, DT); 385 llvm::PointerMayBeCaptured(Object, &CB); 386 387 if (isa<Constant>(Object) || CS.getInstruction() == Object || CB.Captured) 388 return AliasAnalysis::ModRef; 389 390 unsigned ArgNo = 0; 391 for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end(); 392 CI != CE; ++CI, ++ArgNo) { 393 // Only look at the no-capture or byval pointer arguments. If this 394 // pointer were passed to arguments that were neither of these, then it 395 // couldn't be no-capture. 396 if (!(*CI)->getType()->isPointerTy() || 397 (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo))) 398 continue; 399 400 // If this is a no-capture pointer argument, see if we can tell that it 401 // is impossible to alias the pointer we're checking. If not, we have to 402 // assume that the call could touch the pointer, even though it doesn't 403 // escape. 404 if (!AA->isNoAlias(AliasAnalysis::Location(*CI), 405 AliasAnalysis::Location(Object))) { 406 return AliasAnalysis::ModRef; 407 } 408 } 409 return AliasAnalysis::NoModRef; 410 } 411 412 /// getPointerDependencyFrom - Return the instruction on which a memory 413 /// location depends. If isLoad is true, this routine ignores may-aliases with 414 /// read-only operations. If isLoad is false, this routine ignores may-aliases 415 /// with reads from read-only locations. 416 MemDepResult MemoryDependenceAnalysis:: 417 getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, 418 BasicBlock::iterator ScanIt, BasicBlock *BB) { 419 420 const Value *MemLocBase = 0; 421 int64_t MemLocOffset = 0; 422 423 unsigned Limit = BlockScanLimit; 424 425 // Walk backwards through the basic block, looking for dependencies. 426 while (ScanIt != BB->begin()) { 427 // Limit the amount of scanning we do so we don't end up with quadratic 428 // running time on extreme testcases. 429 --Limit; 430 if (!Limit) 431 return MemDepResult::getUnknown(); 432 433 Instruction *Inst = --ScanIt; 434 435 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 436 // Debug intrinsics don't (and can't) cause dependences. 437 if (isa<DbgInfoIntrinsic>(II)) continue; 438 439 // If we reach a lifetime begin or end marker, then the query ends here 440 // because the value is undefined. 441 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 442 // FIXME: This only considers queries directly on the invariant-tagged 443 // pointer, not on query pointers that are indexed off of them. It'd 444 // be nice to handle that at some point (the right approach is to use 445 // GetPointerBaseWithConstantOffset). 446 if (AA->isMustAlias(AliasAnalysis::Location(II->getArgOperand(1)), 447 MemLoc)) 448 return MemDepResult::getDef(II); 449 continue; 450 } 451 } 452 453 // Values depend on loads if the pointers are must aliased. This means that 454 // a load depends on another must aliased load from the same value. 455 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 456 // Atomic loads have complications involved. 457 // FIXME: This is overly conservative. 458 if (!LI->isUnordered()) 459 return MemDepResult::getClobber(LI); 460 461 AliasAnalysis::Location LoadLoc = AA->getLocation(LI); 462 463 // If we found a pointer, check if it could be the same as our pointer. 464 AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc); 465 466 if (isLoad) { 467 if (R == AliasAnalysis::NoAlias) { 468 // If this is an over-aligned integer load (for example, 469 // "load i8* %P, align 4") see if it would obviously overlap with the 470 // queried location if widened to a larger load (e.g. if the queried 471 // location is 1 byte at P+1). If so, return it as a load/load 472 // clobber result, allowing the client to decide to widen the load if 473 // it wants to. 474 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) 475 if (LI->getAlignment()*8 > ITy->getPrimitiveSizeInBits() && 476 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase, 477 MemLocOffset, LI, TD)) 478 return MemDepResult::getClobber(Inst); 479 480 continue; 481 } 482 483 // Must aliased loads are defs of each other. 484 if (R == AliasAnalysis::MustAlias) 485 return MemDepResult::getDef(Inst); 486 487 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads 488 // in terms of clobbering loads, but since it does this by looking 489 // at the clobbering load directly, it doesn't know about any 490 // phi translation that may have happened along the way. 491 492 // If we have a partial alias, then return this as a clobber for the 493 // client to handle. 494 if (R == AliasAnalysis::PartialAlias) 495 return MemDepResult::getClobber(Inst); 496 #endif 497 498 // Random may-alias loads don't depend on each other without a 499 // dependence. 500 continue; 501 } 502 503 // Stores don't depend on other no-aliased accesses. 504 if (R == AliasAnalysis::NoAlias) 505 continue; 506 507 // Stores don't alias loads from read-only memory. 508 if (AA->pointsToConstantMemory(LoadLoc)) 509 continue; 510 511 // Stores depend on may/must aliased loads. 512 return MemDepResult::getDef(Inst); 513 } 514 515 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 516 // Atomic stores have complications involved. 517 // FIXME: This is overly conservative. 518 if (!SI->isUnordered()) 519 return MemDepResult::getClobber(SI); 520 521 // If alias analysis can tell that this store is guaranteed to not modify 522 // the query pointer, ignore it. Use getModRefInfo to handle cases where 523 // the query pointer points to constant memory etc. 524 if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef) 525 continue; 526 527 // Ok, this store might clobber the query pointer. Check to see if it is 528 // a must alias: in this case, we want to return this as a def. 529 AliasAnalysis::Location StoreLoc = AA->getLocation(SI); 530 531 // If we found a pointer, check if it could be the same as our pointer. 532 AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc); 533 534 if (R == AliasAnalysis::NoAlias) 535 continue; 536 if (R == AliasAnalysis::MustAlias) 537 return MemDepResult::getDef(Inst); 538 return MemDepResult::getClobber(Inst); 539 } 540 541 // If this is an allocation, and if we know that the accessed pointer is to 542 // the allocation, return Def. This means that there is no dependence and 543 // the access can be optimized based on that. For example, a load could 544 // turn into undef. 545 // Note: Only determine this to be a malloc if Inst is the malloc call, not 546 // a subsequent bitcast of the malloc call result. There can be stores to 547 // the malloced memory between the malloc call and its bitcast uses, and we 548 // need to continue scanning until the malloc call. 549 if (isa<AllocaInst>(Inst) || 550 (isa<CallInst>(Inst) && extractMallocCall(Inst))) { 551 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, TD); 552 553 if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr)) 554 return MemDepResult::getDef(Inst); 555 continue; 556 } 557 558 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. 559 switch (getModRefInfo(Inst, MemLoc)) { 560 case AliasAnalysis::NoModRef: 561 // If the call has no effect on the queried pointer, just ignore it. 562 continue; 563 case AliasAnalysis::Mod: 564 return MemDepResult::getClobber(Inst); 565 case AliasAnalysis::Ref: 566 // If the call is known to never store to the pointer, and if this is a 567 // load query, we can safely ignore it (scan past it). 568 if (isLoad) 569 continue; 570 default: 571 // Otherwise, there is a potential dependence. Return a clobber. 572 return MemDepResult::getClobber(Inst); 573 } 574 } 575 576 // No dependence found. If this is the entry block of the function, it is 577 // unknown, otherwise it is non-local. 578 if (BB != &BB->getParent()->getEntryBlock()) 579 return MemDepResult::getNonLocal(); 580 return MemDepResult::getNonFuncLocal(); 581 } 582 583 /// getDependency - Return the instruction on which a memory operation 584 /// depends. 585 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) { 586 Instruction *ScanPos = QueryInst; 587 588 // Check for a cached result 589 MemDepResult &LocalCache = LocalDeps[QueryInst]; 590 591 // If the cached entry is non-dirty, just return it. Note that this depends 592 // on MemDepResult's default constructing to 'dirty'. 593 if (!LocalCache.isDirty()) 594 return LocalCache; 595 596 // Otherwise, if we have a dirty entry, we know we can start the scan at that 597 // instruction, which may save us some work. 598 if (Instruction *Inst = LocalCache.getInst()) { 599 ScanPos = Inst; 600 601 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); 602 } 603 604 BasicBlock *QueryParent = QueryInst->getParent(); 605 606 // Do the scan. 607 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { 608 // No dependence found. If this is the entry block of the function, it is 609 // unknown, otherwise it is non-local. 610 if (QueryParent != &QueryParent->getParent()->getEntryBlock()) 611 LocalCache = MemDepResult::getNonLocal(); 612 else 613 LocalCache = MemDepResult::getNonFuncLocal(); 614 } else { 615 AliasAnalysis::Location MemLoc; 616 AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA); 617 if (MemLoc.Ptr) { 618 // If we can do a pointer scan, make it happen. 619 bool isLoad = !(MR & AliasAnalysis::Mod); 620 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst)) 621 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start; 622 623 LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos, 624 QueryParent); 625 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) { 626 CallSite QueryCS(QueryInst); 627 bool isReadOnly = AA->onlyReadsMemory(QueryCS); 628 LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos, 629 QueryParent); 630 } else 631 // Non-memory instruction. 632 LocalCache = MemDepResult::getUnknown(); 633 } 634 635 // Remember the result! 636 if (Instruction *I = LocalCache.getInst()) 637 ReverseLocalDeps[I].insert(QueryInst); 638 639 return LocalCache; 640 } 641 642 #ifndef NDEBUG 643 /// AssertSorted - This method is used when -debug is specified to verify that 644 /// cache arrays are properly kept sorted. 645 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 646 int Count = -1) { 647 if (Count == -1) Count = Cache.size(); 648 if (Count == 0) return; 649 650 for (unsigned i = 1; i != unsigned(Count); ++i) 651 assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!"); 652 } 653 #endif 654 655 /// getNonLocalCallDependency - Perform a full dependency query for the 656 /// specified call, returning the set of blocks that the value is 657 /// potentially live across. The returned set of results will include a 658 /// "NonLocal" result for all blocks where the value is live across. 659 /// 660 /// This method assumes the instruction returns a "NonLocal" dependency 661 /// within its own block. 662 /// 663 /// This returns a reference to an internal data structure that may be 664 /// invalidated on the next non-local query or when an instruction is 665 /// removed. Clients must copy this data if they want it around longer than 666 /// that. 667 const MemoryDependenceAnalysis::NonLocalDepInfo & 668 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { 669 assert(getDependency(QueryCS.getInstruction()).isNonLocal() && 670 "getNonLocalCallDependency should only be used on calls with non-local deps!"); 671 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()]; 672 NonLocalDepInfo &Cache = CacheP.first; 673 674 /// DirtyBlocks - This is the set of blocks that need to be recomputed. In 675 /// the cached case, this can happen due to instructions being deleted etc. In 676 /// the uncached case, this starts out as the set of predecessors we care 677 /// about. 678 SmallVector<BasicBlock*, 32> DirtyBlocks; 679 680 if (!Cache.empty()) { 681 // Okay, we have a cache entry. If we know it is not dirty, just return it 682 // with no computation. 683 if (!CacheP.second) { 684 ++NumCacheNonLocal; 685 return Cache; 686 } 687 688 // If we already have a partially computed set of results, scan them to 689 // determine what is dirty, seeding our initial DirtyBlocks worklist. 690 for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end(); 691 I != E; ++I) 692 if (I->getResult().isDirty()) 693 DirtyBlocks.push_back(I->getBB()); 694 695 // Sort the cache so that we can do fast binary search lookups below. 696 std::sort(Cache.begin(), Cache.end()); 697 698 ++NumCacheDirtyNonLocal; 699 //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " 700 // << Cache.size() << " cached: " << *QueryInst; 701 } else { 702 // Seed DirtyBlocks with each of the preds of QueryInst's block. 703 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent(); 704 for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI) 705 DirtyBlocks.push_back(*PI); 706 ++NumUncacheNonLocal; 707 } 708 709 // isReadonlyCall - If this is a read-only call, we can be more aggressive. 710 bool isReadonlyCall = AA->onlyReadsMemory(QueryCS); 711 712 SmallPtrSet<BasicBlock*, 64> Visited; 713 714 unsigned NumSortedEntries = Cache.size(); 715 DEBUG(AssertSorted(Cache)); 716 717 // Iterate while we still have blocks to update. 718 while (!DirtyBlocks.empty()) { 719 BasicBlock *DirtyBB = DirtyBlocks.back(); 720 DirtyBlocks.pop_back(); 721 722 // Already processed this block? 723 if (!Visited.insert(DirtyBB)) 724 continue; 725 726 // Do a binary search to see if we already have an entry for this block in 727 // the cache set. If so, find it. 728 DEBUG(AssertSorted(Cache, NumSortedEntries)); 729 NonLocalDepInfo::iterator Entry = 730 std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries, 731 NonLocalDepEntry(DirtyBB)); 732 if (Entry != Cache.begin() && prior(Entry)->getBB() == DirtyBB) 733 --Entry; 734 735 NonLocalDepEntry *ExistingResult = 0; 736 if (Entry != Cache.begin()+NumSortedEntries && 737 Entry->getBB() == DirtyBB) { 738 // If we already have an entry, and if it isn't already dirty, the block 739 // is done. 740 if (!Entry->getResult().isDirty()) 741 continue; 742 743 // Otherwise, remember this slot so we can update the value. 744 ExistingResult = &*Entry; 745 } 746 747 // If the dirty entry has a pointer, start scanning from it so we don't have 748 // to rescan the entire block. 749 BasicBlock::iterator ScanPos = DirtyBB->end(); 750 if (ExistingResult) { 751 if (Instruction *Inst = ExistingResult->getResult().getInst()) { 752 ScanPos = Inst; 753 // We're removing QueryInst's use of Inst. 754 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, 755 QueryCS.getInstruction()); 756 } 757 } 758 759 // Find out if this block has a local dependency for QueryInst. 760 MemDepResult Dep; 761 762 if (ScanPos != DirtyBB->begin()) { 763 Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB); 764 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { 765 // No dependence found. If this is the entry block of the function, it is 766 // a clobber, otherwise it is unknown. 767 Dep = MemDepResult::getNonLocal(); 768 } else { 769 Dep = MemDepResult::getNonFuncLocal(); 770 } 771 772 // If we had a dirty entry for the block, update it. Otherwise, just add 773 // a new entry. 774 if (ExistingResult) 775 ExistingResult->setResult(Dep); 776 else 777 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); 778 779 // If the block has a dependency (i.e. it isn't completely transparent to 780 // the value), remember the association! 781 if (!Dep.isNonLocal()) { 782 // Keep the ReverseNonLocalDeps map up to date so we can efficiently 783 // update this when we remove instructions. 784 if (Instruction *Inst = Dep.getInst()) 785 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction()); 786 } else { 787 788 // If the block *is* completely transparent to the load, we need to check 789 // the predecessors of this block. Add them to our worklist. 790 for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI) 791 DirtyBlocks.push_back(*PI); 792 } 793 } 794 795 return Cache; 796 } 797 798 /// getNonLocalPointerDependency - Perform a full dependency query for an 799 /// access to the specified (non-volatile) memory location, returning the 800 /// set of instructions that either define or clobber the value. 801 /// 802 /// This method assumes the pointer has a "NonLocal" dependency within its 803 /// own block. 804 /// 805 void MemoryDependenceAnalysis:: 806 getNonLocalPointerDependency(const AliasAnalysis::Location &Loc, bool isLoad, 807 BasicBlock *FromBB, 808 SmallVectorImpl<NonLocalDepResult> &Result) { 809 assert(Loc.Ptr->getType()->isPointerTy() && 810 "Can't get pointer deps of a non-pointer!"); 811 Result.clear(); 812 813 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), TD); 814 815 // This is the set of blocks we've inspected, and the pointer we consider in 816 // each block. Because of critical edges, we currently bail out if querying 817 // a block with multiple different pointers. This can happen during PHI 818 // translation. 819 DenseMap<BasicBlock*, Value*> Visited; 820 if (!getNonLocalPointerDepFromBB(Address, Loc, isLoad, FromBB, 821 Result, Visited, true)) 822 return; 823 Result.clear(); 824 Result.push_back(NonLocalDepResult(FromBB, 825 MemDepResult::getUnknown(), 826 const_cast<Value *>(Loc.Ptr))); 827 } 828 829 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with 830 /// Pointer/PointeeSize using either cached information in Cache or by doing a 831 /// lookup (which may use dirty cache info if available). If we do a lookup, 832 /// add the result to the cache. 833 MemDepResult MemoryDependenceAnalysis:: 834 GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc, 835 bool isLoad, BasicBlock *BB, 836 NonLocalDepInfo *Cache, unsigned NumSortedEntries) { 837 838 // Do a binary search to see if we already have an entry for this block in 839 // the cache set. If so, find it. 840 NonLocalDepInfo::iterator Entry = 841 std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries, 842 NonLocalDepEntry(BB)); 843 if (Entry != Cache->begin() && (Entry-1)->getBB() == BB) 844 --Entry; 845 846 NonLocalDepEntry *ExistingResult = 0; 847 if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB) 848 ExistingResult = &*Entry; 849 850 // If we have a cached entry, and it is non-dirty, use it as the value for 851 // this dependency. 852 if (ExistingResult && !ExistingResult->getResult().isDirty()) { 853 ++NumCacheNonLocalPtr; 854 return ExistingResult->getResult(); 855 } 856 857 // Otherwise, we have to scan for the value. If we have a dirty cache 858 // entry, start scanning from its position, otherwise we scan from the end 859 // of the block. 860 BasicBlock::iterator ScanPos = BB->end(); 861 if (ExistingResult && ExistingResult->getResult().getInst()) { 862 assert(ExistingResult->getResult().getInst()->getParent() == BB && 863 "Instruction invalidated?"); 864 ++NumCacheDirtyNonLocalPtr; 865 ScanPos = ExistingResult->getResult().getInst(); 866 867 // Eliminating the dirty entry from 'Cache', so update the reverse info. 868 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 869 RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey); 870 } else { 871 ++NumUncacheNonLocalPtr; 872 } 873 874 // Scan the block for the dependency. 875 MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB); 876 877 // If we had a dirty entry for the block, update it. Otherwise, just add 878 // a new entry. 879 if (ExistingResult) 880 ExistingResult->setResult(Dep); 881 else 882 Cache->push_back(NonLocalDepEntry(BB, Dep)); 883 884 // If the block has a dependency (i.e. it isn't completely transparent to 885 // the value), remember the reverse association because we just added it 886 // to Cache! 887 if (!Dep.isDef() && !Dep.isClobber()) 888 return Dep; 889 890 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently 891 // update MemDep when we remove instructions. 892 Instruction *Inst = Dep.getInst(); 893 assert(Inst && "Didn't depend on anything?"); 894 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 895 ReverseNonLocalPtrDeps[Inst].insert(CacheKey); 896 return Dep; 897 } 898 899 /// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain 900 /// number of elements in the array that are already properly ordered. This is 901 /// optimized for the case when only a few entries are added. 902 static void 903 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 904 unsigned NumSortedEntries) { 905 switch (Cache.size() - NumSortedEntries) { 906 case 0: 907 // done, no new entries. 908 break; 909 case 2: { 910 // Two new entries, insert the last one into place. 911 NonLocalDepEntry Val = Cache.back(); 912 Cache.pop_back(); 913 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 914 std::upper_bound(Cache.begin(), Cache.end()-1, Val); 915 Cache.insert(Entry, Val); 916 // FALL THROUGH. 917 } 918 case 1: 919 // One new entry, Just insert the new value at the appropriate position. 920 if (Cache.size() != 1) { 921 NonLocalDepEntry Val = Cache.back(); 922 Cache.pop_back(); 923 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 924 std::upper_bound(Cache.begin(), Cache.end(), Val); 925 Cache.insert(Entry, Val); 926 } 927 break; 928 default: 929 // Added many values, do a full scale sort. 930 std::sort(Cache.begin(), Cache.end()); 931 break; 932 } 933 } 934 935 /// getNonLocalPointerDepFromBB - Perform a dependency query based on 936 /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def 937 /// results to the results vector and keep track of which blocks are visited in 938 /// 'Visited'. 939 /// 940 /// This has special behavior for the first block queries (when SkipFirstBlock 941 /// is true). In this special case, it ignores the contents of the specified 942 /// block and starts returning dependence info for its predecessors. 943 /// 944 /// This function returns false on success, or true to indicate that it could 945 /// not compute dependence information for some reason. This should be treated 946 /// as a clobber dependence on the first instruction in the predecessor block. 947 bool MemoryDependenceAnalysis:: 948 getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, 949 const AliasAnalysis::Location &Loc, 950 bool isLoad, BasicBlock *StartBB, 951 SmallVectorImpl<NonLocalDepResult> &Result, 952 DenseMap<BasicBlock*, Value*> &Visited, 953 bool SkipFirstBlock) { 954 955 // Look up the cached info for Pointer. 956 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); 957 958 // Set up a temporary NLPI value. If the map doesn't yet have an entry for 959 // CacheKey, this value will be inserted as the associated value. Otherwise, 960 // it'll be ignored, and we'll have to check to see if the cached size and 961 // tbaa tag are consistent with the current query. 962 NonLocalPointerInfo InitialNLPI; 963 InitialNLPI.Size = Loc.Size; 964 InitialNLPI.TBAATag = Loc.TBAATag; 965 966 // Get the NLPI for CacheKey, inserting one into the map if it doesn't 967 // already have one. 968 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = 969 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); 970 NonLocalPointerInfo *CacheInfo = &Pair.first->second; 971 972 // If we already have a cache entry for this CacheKey, we may need to do some 973 // work to reconcile the cache entry and the current query. 974 if (!Pair.second) { 975 if (CacheInfo->Size < Loc.Size) { 976 // The query's Size is greater than the cached one. Throw out the 977 // cached data and procede with the query at the greater size. 978 CacheInfo->Pair = BBSkipFirstBlockPair(); 979 CacheInfo->Size = Loc.Size; 980 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(), 981 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI) 982 if (Instruction *Inst = DI->getResult().getInst()) 983 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 984 CacheInfo->NonLocalDeps.clear(); 985 } else if (CacheInfo->Size > Loc.Size) { 986 // This query's Size is less than the cached one. Conservatively restart 987 // the query using the greater size. 988 return getNonLocalPointerDepFromBB(Pointer, 989 Loc.getWithNewSize(CacheInfo->Size), 990 isLoad, StartBB, Result, Visited, 991 SkipFirstBlock); 992 } 993 994 // If the query's TBAATag is inconsistent with the cached one, 995 // conservatively throw out the cached data and restart the query with 996 // no tag if needed. 997 if (CacheInfo->TBAATag != Loc.TBAATag) { 998 if (CacheInfo->TBAATag) { 999 CacheInfo->Pair = BBSkipFirstBlockPair(); 1000 CacheInfo->TBAATag = 0; 1001 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(), 1002 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI) 1003 if (Instruction *Inst = DI->getResult().getInst()) 1004 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1005 CacheInfo->NonLocalDeps.clear(); 1006 } 1007 if (Loc.TBAATag) 1008 return getNonLocalPointerDepFromBB(Pointer, Loc.getWithoutTBAATag(), 1009 isLoad, StartBB, Result, Visited, 1010 SkipFirstBlock); 1011 } 1012 } 1013 1014 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; 1015 1016 // If we have valid cached information for exactly the block we are 1017 // investigating, just return it with no recomputation. 1018 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { 1019 // We have a fully cached result for this query then we can just return the 1020 // cached results and populate the visited set. However, we have to verify 1021 // that we don't already have conflicting results for these blocks. Check 1022 // to ensure that if a block in the results set is in the visited set that 1023 // it was for the same pointer query. 1024 if (!Visited.empty()) { 1025 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 1026 I != E; ++I) { 1027 DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB()); 1028 if (VI == Visited.end() || VI->second == Pointer.getAddr()) 1029 continue; 1030 1031 // We have a pointer mismatch in a block. Just return clobber, saying 1032 // that something was clobbered in this result. We could also do a 1033 // non-fully cached query, but there is little point in doing this. 1034 return true; 1035 } 1036 } 1037 1038 Value *Addr = Pointer.getAddr(); 1039 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 1040 I != E; ++I) { 1041 Visited.insert(std::make_pair(I->getBB(), Addr)); 1042 if (!I->getResult().isNonLocal()) 1043 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr)); 1044 } 1045 ++NumCacheCompleteNonLocalPtr; 1046 return false; 1047 } 1048 1049 // Otherwise, either this is a new block, a block with an invalid cache 1050 // pointer or one that we're about to invalidate by putting more info into it 1051 // than its valid cache info. If empty, the result will be valid cache info, 1052 // otherwise it isn't. 1053 if (Cache->empty()) 1054 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); 1055 else 1056 CacheInfo->Pair = BBSkipFirstBlockPair(); 1057 1058 SmallVector<BasicBlock*, 32> Worklist; 1059 Worklist.push_back(StartBB); 1060 1061 // PredList used inside loop. 1062 SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList; 1063 1064 // Keep track of the entries that we know are sorted. Previously cached 1065 // entries will all be sorted. The entries we add we only sort on demand (we 1066 // don't insert every element into its sorted position). We know that we 1067 // won't get any reuse from currently inserted values, because we don't 1068 // revisit blocks after we insert info for them. 1069 unsigned NumSortedEntries = Cache->size(); 1070 DEBUG(AssertSorted(*Cache)); 1071 1072 while (!Worklist.empty()) { 1073 BasicBlock *BB = Worklist.pop_back_val(); 1074 1075 // Skip the first block if we have it. 1076 if (!SkipFirstBlock) { 1077 // Analyze the dependency of *Pointer in FromBB. See if we already have 1078 // been here. 1079 assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); 1080 1081 // Get the dependency info for Pointer in BB. If we have cached 1082 // information, we will use it, otherwise we compute it. 1083 DEBUG(AssertSorted(*Cache, NumSortedEntries)); 1084 MemDepResult Dep = GetNonLocalInfoForBlock(Loc, isLoad, BB, Cache, 1085 NumSortedEntries); 1086 1087 // If we got a Def or Clobber, add this to the list of results. 1088 if (!Dep.isNonLocal()) { 1089 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); 1090 continue; 1091 } 1092 } 1093 1094 // If 'Pointer' is an instruction defined in this block, then we need to do 1095 // phi translation to change it into a value live in the predecessor block. 1096 // If not, we just add the predecessors to the worklist and scan them with 1097 // the same Pointer. 1098 if (!Pointer.NeedsPHITranslationFromBlock(BB)) { 1099 SkipFirstBlock = false; 1100 SmallVector<BasicBlock*, 16> NewBlocks; 1101 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { 1102 // Verify that we haven't looked at this block yet. 1103 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 1104 InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr())); 1105 if (InsertRes.second) { 1106 // First time we've looked at *PI. 1107 NewBlocks.push_back(*PI); 1108 continue; 1109 } 1110 1111 // If we have seen this block before, but it was with a different 1112 // pointer then we have a phi translation failure and we have to treat 1113 // this as a clobber. 1114 if (InsertRes.first->second != Pointer.getAddr()) { 1115 // Make sure to clean up the Visited map before continuing on to 1116 // PredTranslationFailure. 1117 for (unsigned i = 0; i < NewBlocks.size(); i++) 1118 Visited.erase(NewBlocks[i]); 1119 goto PredTranslationFailure; 1120 } 1121 } 1122 Worklist.append(NewBlocks.begin(), NewBlocks.end()); 1123 continue; 1124 } 1125 1126 // We do need to do phi translation, if we know ahead of time we can't phi 1127 // translate this value, don't even try. 1128 if (!Pointer.IsPotentiallyPHITranslatable()) 1129 goto PredTranslationFailure; 1130 1131 // We may have added values to the cache list before this PHI translation. 1132 // If so, we haven't done anything to ensure that the cache remains sorted. 1133 // Sort it now (if needed) so that recursive invocations of 1134 // getNonLocalPointerDepFromBB and other routines that could reuse the cache 1135 // value will only see properly sorted cache arrays. 1136 if (Cache && NumSortedEntries != Cache->size()) { 1137 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1138 NumSortedEntries = Cache->size(); 1139 } 1140 Cache = 0; 1141 1142 PredList.clear(); 1143 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { 1144 BasicBlock *Pred = *PI; 1145 PredList.push_back(std::make_pair(Pred, Pointer)); 1146 1147 // Get the PHI translated pointer in this predecessor. This can fail if 1148 // not translatable, in which case the getAddr() returns null. 1149 PHITransAddr &PredPointer = PredList.back().second; 1150 PredPointer.PHITranslateValue(BB, Pred, 0); 1151 1152 Value *PredPtrVal = PredPointer.getAddr(); 1153 1154 // Check to see if we have already visited this pred block with another 1155 // pointer. If so, we can't do this lookup. This failure can occur 1156 // with PHI translation when a critical edge exists and the PHI node in 1157 // the successor translates to a pointer value different than the 1158 // pointer the block was first analyzed with. 1159 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 1160 InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal)); 1161 1162 if (!InsertRes.second) { 1163 // We found the pred; take it off the list of preds to visit. 1164 PredList.pop_back(); 1165 1166 // If the predecessor was visited with PredPtr, then we already did 1167 // the analysis and can ignore it. 1168 if (InsertRes.first->second == PredPtrVal) 1169 continue; 1170 1171 // Otherwise, the block was previously analyzed with a different 1172 // pointer. We can't represent the result of this case, so we just 1173 // treat this as a phi translation failure. 1174 1175 // Make sure to clean up the Visited map before continuing on to 1176 // PredTranslationFailure. 1177 for (unsigned i = 0; i < PredList.size(); i++) 1178 Visited.erase(PredList[i].first); 1179 1180 goto PredTranslationFailure; 1181 } 1182 } 1183 1184 // Actually process results here; this need to be a separate loop to avoid 1185 // calling getNonLocalPointerDepFromBB for blocks we don't want to return 1186 // any results for. (getNonLocalPointerDepFromBB will modify our 1187 // datastructures in ways the code after the PredTranslationFailure label 1188 // doesn't expect.) 1189 for (unsigned i = 0; i < PredList.size(); i++) { 1190 BasicBlock *Pred = PredList[i].first; 1191 PHITransAddr &PredPointer = PredList[i].second; 1192 Value *PredPtrVal = PredPointer.getAddr(); 1193 1194 bool CanTranslate = true; 1195 // If PHI translation was unable to find an available pointer in this 1196 // predecessor, then we have to assume that the pointer is clobbered in 1197 // that predecessor. We can still do PRE of the load, which would insert 1198 // a computation of the pointer in this predecessor. 1199 if (PredPtrVal == 0) 1200 CanTranslate = false; 1201 1202 // FIXME: it is entirely possible that PHI translating will end up with 1203 // the same value. Consider PHI translating something like: 1204 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* 1205 // to recurse here, pedantically speaking. 1206 1207 // If getNonLocalPointerDepFromBB fails here, that means the cached 1208 // result conflicted with the Visited list; we have to conservatively 1209 // assume it is unknown, but this also does not block PRE of the load. 1210 if (!CanTranslate || 1211 getNonLocalPointerDepFromBB(PredPointer, 1212 Loc.getWithNewPtr(PredPtrVal), 1213 isLoad, Pred, 1214 Result, Visited)) { 1215 // Add the entry to the Result list. 1216 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal); 1217 Result.push_back(Entry); 1218 1219 // Since we had a phi translation failure, the cache for CacheKey won't 1220 // include all of the entries that we need to immediately satisfy future 1221 // queries. Mark this in NonLocalPointerDeps by setting the 1222 // BBSkipFirstBlockPair pointer to null. This requires reuse of the 1223 // cached value to do more work but not miss the phi trans failure. 1224 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; 1225 NLPI.Pair = BBSkipFirstBlockPair(); 1226 continue; 1227 } 1228 } 1229 1230 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. 1231 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1232 Cache = &CacheInfo->NonLocalDeps; 1233 NumSortedEntries = Cache->size(); 1234 1235 // Since we did phi translation, the "Cache" set won't contain all of the 1236 // results for the query. This is ok (we can still use it to accelerate 1237 // specific block queries) but we can't do the fastpath "return all 1238 // results from the set" Clear out the indicator for this. 1239 CacheInfo->Pair = BBSkipFirstBlockPair(); 1240 SkipFirstBlock = false; 1241 continue; 1242 1243 PredTranslationFailure: 1244 // The following code is "failure"; we can't produce a sane translation 1245 // for the given block. It assumes that we haven't modified any of 1246 // our datastructures while processing the current block. 1247 1248 if (Cache == 0) { 1249 // Refresh the CacheInfo/Cache pointer if it got invalidated. 1250 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1251 Cache = &CacheInfo->NonLocalDeps; 1252 NumSortedEntries = Cache->size(); 1253 } 1254 1255 // Since we failed phi translation, the "Cache" set won't contain all of the 1256 // results for the query. This is ok (we can still use it to accelerate 1257 // specific block queries) but we can't do the fastpath "return all 1258 // results from the set". Clear out the indicator for this. 1259 CacheInfo->Pair = BBSkipFirstBlockPair(); 1260 1261 // If *nothing* works, mark the pointer as unknown. 1262 // 1263 // If this is the magic first block, return this as a clobber of the whole 1264 // incoming value. Since we can't phi translate to one of the predecessors, 1265 // we have to bail out. 1266 if (SkipFirstBlock) 1267 return true; 1268 1269 for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) { 1270 assert(I != Cache->rend() && "Didn't find current block??"); 1271 if (I->getBB() != BB) 1272 continue; 1273 1274 assert(I->getResult().isNonLocal() && 1275 "Should only be here with transparent block"); 1276 I->setResult(MemDepResult::getUnknown()); 1277 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), 1278 Pointer.getAddr())); 1279 break; 1280 } 1281 } 1282 1283 // Okay, we're done now. If we added new values to the cache, re-sort it. 1284 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1285 DEBUG(AssertSorted(*Cache)); 1286 return false; 1287 } 1288 1289 /// RemoveCachedNonLocalPointerDependencies - If P exists in 1290 /// CachedNonLocalPointerInfo, remove it. 1291 void MemoryDependenceAnalysis:: 1292 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) { 1293 CachedNonLocalPointerInfo::iterator It = 1294 NonLocalPointerDeps.find(P); 1295 if (It == NonLocalPointerDeps.end()) return; 1296 1297 // Remove all of the entries in the BB->val map. This involves removing 1298 // instructions from the reverse map. 1299 NonLocalDepInfo &PInfo = It->second.NonLocalDeps; 1300 1301 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { 1302 Instruction *Target = PInfo[i].getResult().getInst(); 1303 if (Target == 0) continue; // Ignore non-local dep results. 1304 assert(Target->getParent() == PInfo[i].getBB()); 1305 1306 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1307 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); 1308 } 1309 1310 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). 1311 NonLocalPointerDeps.erase(It); 1312 } 1313 1314 1315 /// invalidateCachedPointerInfo - This method is used to invalidate cached 1316 /// information about the specified pointer, because it may be too 1317 /// conservative in memdep. This is an optional call that can be used when 1318 /// the client detects an equivalence between the pointer and some other 1319 /// value and replaces the other value with ptr. This can make Ptr available 1320 /// in more places that cached info does not necessarily keep. 1321 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) { 1322 // If Ptr isn't really a pointer, just ignore it. 1323 if (!Ptr->getType()->isPointerTy()) return; 1324 // Flush store info for the pointer. 1325 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); 1326 // Flush load info for the pointer. 1327 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); 1328 } 1329 1330 /// invalidateCachedPredecessors - Clear the PredIteratorCache info. 1331 /// This needs to be done when the CFG changes, e.g., due to splitting 1332 /// critical edges. 1333 void MemoryDependenceAnalysis::invalidateCachedPredecessors() { 1334 PredCache->clear(); 1335 } 1336 1337 /// removeInstruction - Remove an instruction from the dependence analysis, 1338 /// updating the dependence of instructions that previously depended on it. 1339 /// This method attempts to keep the cache coherent using the reverse map. 1340 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) { 1341 // Walk through the Non-local dependencies, removing this one as the value 1342 // for any cached queries. 1343 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); 1344 if (NLDI != NonLocalDeps.end()) { 1345 NonLocalDepInfo &BlockMap = NLDI->second.first; 1346 for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end(); 1347 DI != DE; ++DI) 1348 if (Instruction *Inst = DI->getResult().getInst()) 1349 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); 1350 NonLocalDeps.erase(NLDI); 1351 } 1352 1353 // If we have a cached local dependence query for this instruction, remove it. 1354 // 1355 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); 1356 if (LocalDepEntry != LocalDeps.end()) { 1357 // Remove us from DepInst's reverse set now that the local dep info is gone. 1358 if (Instruction *Inst = LocalDepEntry->second.getInst()) 1359 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); 1360 1361 // Remove this local dependency info. 1362 LocalDeps.erase(LocalDepEntry); 1363 } 1364 1365 // If we have any cached pointer dependencies on this instruction, remove 1366 // them. If the instruction has non-pointer type, then it can't be a pointer 1367 // base. 1368 1369 // Remove it from both the load info and the store info. The instruction 1370 // can't be in either of these maps if it is non-pointer. 1371 if (RemInst->getType()->isPointerTy()) { 1372 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); 1373 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); 1374 } 1375 1376 // Loop over all of the things that depend on the instruction we're removing. 1377 // 1378 SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd; 1379 1380 // If we find RemInst as a clobber or Def in any of the maps for other values, 1381 // we need to replace its entry with a dirty version of the instruction after 1382 // it. If RemInst is a terminator, we use a null dirty value. 1383 // 1384 // Using a dirty version of the instruction after RemInst saves having to scan 1385 // the entire block to get to this point. 1386 MemDepResult NewDirtyVal; 1387 if (!RemInst->isTerminator()) 1388 NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst)); 1389 1390 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); 1391 if (ReverseDepIt != ReverseLocalDeps.end()) { 1392 SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second; 1393 // RemInst can't be the terminator if it has local stuff depending on it. 1394 assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) && 1395 "Nothing can locally depend on a terminator"); 1396 1397 for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(), 1398 E = ReverseDeps.end(); I != E; ++I) { 1399 Instruction *InstDependingOnRemInst = *I; 1400 assert(InstDependingOnRemInst != RemInst && 1401 "Already removed our local dep info"); 1402 1403 LocalDeps[InstDependingOnRemInst] = NewDirtyVal; 1404 1405 // Make sure to remember that new things depend on NewDepInst. 1406 assert(NewDirtyVal.getInst() && "There is no way something else can have " 1407 "a local dep on this if it is a terminator!"); 1408 ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(), 1409 InstDependingOnRemInst)); 1410 } 1411 1412 ReverseLocalDeps.erase(ReverseDepIt); 1413 1414 // Add new reverse deps after scanning the set, to avoid invalidating the 1415 // 'ReverseDeps' reference. 1416 while (!ReverseDepsToAdd.empty()) { 1417 ReverseLocalDeps[ReverseDepsToAdd.back().first] 1418 .insert(ReverseDepsToAdd.back().second); 1419 ReverseDepsToAdd.pop_back(); 1420 } 1421 } 1422 1423 ReverseDepIt = ReverseNonLocalDeps.find(RemInst); 1424 if (ReverseDepIt != ReverseNonLocalDeps.end()) { 1425 SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second; 1426 for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end(); 1427 I != E; ++I) { 1428 assert(*I != RemInst && "Already removed NonLocalDep info for RemInst"); 1429 1430 PerInstNLInfo &INLD = NonLocalDeps[*I]; 1431 // The information is now dirty! 1432 INLD.second = true; 1433 1434 for (NonLocalDepInfo::iterator DI = INLD.first.begin(), 1435 DE = INLD.first.end(); DI != DE; ++DI) { 1436 if (DI->getResult().getInst() != RemInst) continue; 1437 1438 // Convert to a dirty entry for the subsequent instruction. 1439 DI->setResult(NewDirtyVal); 1440 1441 if (Instruction *NextI = NewDirtyVal.getInst()) 1442 ReverseDepsToAdd.push_back(std::make_pair(NextI, *I)); 1443 } 1444 } 1445 1446 ReverseNonLocalDeps.erase(ReverseDepIt); 1447 1448 // Add new reverse deps after scanning the set, to avoid invalidating 'Set' 1449 while (!ReverseDepsToAdd.empty()) { 1450 ReverseNonLocalDeps[ReverseDepsToAdd.back().first] 1451 .insert(ReverseDepsToAdd.back().second); 1452 ReverseDepsToAdd.pop_back(); 1453 } 1454 } 1455 1456 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a 1457 // value in the NonLocalPointerDeps info. 1458 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = 1459 ReverseNonLocalPtrDeps.find(RemInst); 1460 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { 1461 SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second; 1462 SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd; 1463 1464 for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(), 1465 E = Set.end(); I != E; ++I) { 1466 ValueIsLoadPair P = *I; 1467 assert(P.getPointer() != RemInst && 1468 "Already removed NonLocalPointerDeps info for RemInst"); 1469 1470 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; 1471 1472 // The cache is not valid for any specific block anymore. 1473 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); 1474 1475 // Update any entries for RemInst to use the instruction after it. 1476 for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end(); 1477 DI != DE; ++DI) { 1478 if (DI->getResult().getInst() != RemInst) continue; 1479 1480 // Convert to a dirty entry for the subsequent instruction. 1481 DI->setResult(NewDirtyVal); 1482 1483 if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) 1484 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); 1485 } 1486 1487 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its 1488 // subsequent value may invalidate the sortedness. 1489 std::sort(NLPDI.begin(), NLPDI.end()); 1490 } 1491 1492 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); 1493 1494 while (!ReversePtrDepsToAdd.empty()) { 1495 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first] 1496 .insert(ReversePtrDepsToAdd.back().second); 1497 ReversePtrDepsToAdd.pop_back(); 1498 } 1499 } 1500 1501 1502 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); 1503 AA->deleteValue(RemInst); 1504 DEBUG(verifyRemoved(RemInst)); 1505 } 1506 /// verifyRemoved - Verify that the specified instruction does not occur 1507 /// in our internal data structures. 1508 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const { 1509 for (LocalDepMapType::const_iterator I = LocalDeps.begin(), 1510 E = LocalDeps.end(); I != E; ++I) { 1511 assert(I->first != D && "Inst occurs in data structures"); 1512 assert(I->second.getInst() != D && 1513 "Inst occurs in data structures"); 1514 } 1515 1516 for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(), 1517 E = NonLocalPointerDeps.end(); I != E; ++I) { 1518 assert(I->first.getPointer() != D && "Inst occurs in NLPD map key"); 1519 const NonLocalDepInfo &Val = I->second.NonLocalDeps; 1520 for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end(); 1521 II != E; ++II) 1522 assert(II->getResult().getInst() != D && "Inst occurs as NLPD value"); 1523 } 1524 1525 for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(), 1526 E = NonLocalDeps.end(); I != E; ++I) { 1527 assert(I->first != D && "Inst occurs in data structures"); 1528 const PerInstNLInfo &INLD = I->second; 1529 for (NonLocalDepInfo::const_iterator II = INLD.first.begin(), 1530 EE = INLD.first.end(); II != EE; ++II) 1531 assert(II->getResult().getInst() != D && "Inst occurs in data structures"); 1532 } 1533 1534 for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(), 1535 E = ReverseLocalDeps.end(); I != E; ++I) { 1536 assert(I->first != D && "Inst occurs in data structures"); 1537 for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(), 1538 EE = I->second.end(); II != EE; ++II) 1539 assert(*II != D && "Inst occurs in data structures"); 1540 } 1541 1542 for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(), 1543 E = ReverseNonLocalDeps.end(); 1544 I != E; ++I) { 1545 assert(I->first != D && "Inst occurs in data structures"); 1546 for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(), 1547 EE = I->second.end(); II != EE; ++II) 1548 assert(*II != D && "Inst occurs in data structures"); 1549 } 1550 1551 for (ReverseNonLocalPtrDepTy::const_iterator 1552 I = ReverseNonLocalPtrDeps.begin(), 1553 E = ReverseNonLocalPtrDeps.end(); I != E; ++I) { 1554 assert(I->first != D && "Inst occurs in rev NLPD map"); 1555 1556 for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(), 1557 E = I->second.end(); II != E; ++II) 1558 assert(*II != ValueIsLoadPair(D, false) && 1559 *II != ValueIsLoadPair(D, true) && 1560 "Inst occurs in ReverseNonLocalPtrDeps map"); 1561 } 1562 1563 } 1564