1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements an analysis that determines, for a given memory 11 // operation, what preceding memory operations it depends on. It builds on 12 // alias analysis information, and tries to provide a lazy, caching interface to 13 // a common kind of alias information query. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/MemoryBuiltins.h" 24 #include "llvm/Analysis/PHITransAddr.h" 25 #include "llvm/Analysis/OrderedBasicBlock.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/PredIteratorCache.h" 35 #include "llvm/Support/Debug.h" 36 using namespace llvm; 37 38 #define DEBUG_TYPE "memdep" 39 40 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); 41 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); 42 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); 43 44 STATISTIC(NumCacheNonLocalPtr, 45 "Number of fully cached non-local ptr responses"); 46 STATISTIC(NumCacheDirtyNonLocalPtr, 47 "Number of cached, but dirty, non-local ptr responses"); 48 STATISTIC(NumUncacheNonLocalPtr, 49 "Number of uncached non-local ptr responses"); 50 STATISTIC(NumCacheCompleteNonLocalPtr, 51 "Number of block queries that were completely cached"); 52 53 // Limit for the number of instructions to scan in a block. 54 55 static cl::opt<unsigned> BlockScanLimit( 56 "memdep-block-scan-limit", cl::Hidden, cl::init(100), 57 cl::desc("The number of instructions to scan in a block in memory " 58 "dependency analysis (default = 100)")); 59 60 static cl::opt<unsigned> BlockNumberLimit( 61 "memdep-block-number-limit", cl::Hidden, cl::init(1000), 62 cl::desc("The number of blocks to scan during memory " 63 "dependency analysis (default = 1000)")); 64 65 // Limit on the number of memdep results to process. 66 static const unsigned int NumResultsLimit = 100; 67 68 char MemoryDependenceAnalysis::ID = 0; 69 70 // Register this pass... 71 INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep", 72 "Memory Dependence Analysis", false, true) 73 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 74 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 75 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 76 INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep", 77 "Memory Dependence Analysis", false, true) 78 79 MemoryDependenceAnalysis::MemoryDependenceAnalysis() 80 : FunctionPass(ID) { 81 initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry()); 82 } 83 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() { 84 } 85 86 /// Clean up memory in between runs 87 void MemoryDependenceAnalysis::releaseMemory() { 88 LocalDeps.clear(); 89 NonLocalDeps.clear(); 90 NonLocalPointerDeps.clear(); 91 ReverseLocalDeps.clear(); 92 ReverseNonLocalDeps.clear(); 93 ReverseNonLocalPtrDeps.clear(); 94 PredCache.clear(); 95 } 96 97 /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis. 98 /// 99 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 100 AU.setPreservesAll(); 101 AU.addRequired<AssumptionCacheTracker>(); 102 AU.addRequiredTransitive<AAResultsWrapperPass>(); 103 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 104 } 105 106 bool MemoryDependenceAnalysis::runOnFunction(Function &F) { 107 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 108 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 109 DominatorTreeWrapperPass *DTWP = 110 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 111 DT = DTWP ? &DTWP->getDomTree() : nullptr; 112 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 113 return false; 114 } 115 116 /// RemoveFromReverseMap - This is a helper function that removes Val from 117 /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry. 118 template <typename KeyTy> 119 static void RemoveFromReverseMap(DenseMap<Instruction*, 120 SmallPtrSet<KeyTy, 4> > &ReverseMap, 121 Instruction *Inst, KeyTy Val) { 122 typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator 123 InstIt = ReverseMap.find(Inst); 124 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); 125 bool Found = InstIt->second.erase(Val); 126 assert(Found && "Invalid reverse map!"); (void)Found; 127 if (InstIt->second.empty()) 128 ReverseMap.erase(InstIt); 129 } 130 131 /// GetLocation - If the given instruction references a specific memory 132 /// location, fill in Loc with the details, otherwise set Loc.Ptr to null. 133 /// Return a ModRefInfo value describing the general behavior of the 134 /// instruction. 135 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc, 136 const TargetLibraryInfo &TLI) { 137 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 138 if (LI->isUnordered()) { 139 Loc = MemoryLocation::get(LI); 140 return MRI_Ref; 141 } 142 if (LI->getOrdering() == Monotonic) { 143 Loc = MemoryLocation::get(LI); 144 return MRI_ModRef; 145 } 146 Loc = MemoryLocation(); 147 return MRI_ModRef; 148 } 149 150 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 151 if (SI->isUnordered()) { 152 Loc = MemoryLocation::get(SI); 153 return MRI_Mod; 154 } 155 if (SI->getOrdering() == Monotonic) { 156 Loc = MemoryLocation::get(SI); 157 return MRI_ModRef; 158 } 159 Loc = MemoryLocation(); 160 return MRI_ModRef; 161 } 162 163 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { 164 Loc = MemoryLocation::get(V); 165 return MRI_ModRef; 166 } 167 168 if (const CallInst *CI = isFreeCall(Inst, &TLI)) { 169 // calls to free() deallocate the entire structure 170 Loc = MemoryLocation(CI->getArgOperand(0)); 171 return MRI_Mod; 172 } 173 174 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 175 AAMDNodes AAInfo; 176 177 switch (II->getIntrinsicID()) { 178 case Intrinsic::lifetime_start: 179 case Intrinsic::lifetime_end: 180 case Intrinsic::invariant_start: 181 II->getAAMetadata(AAInfo); 182 Loc = MemoryLocation( 183 II->getArgOperand(1), 184 cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(), AAInfo); 185 // These intrinsics don't really modify the memory, but returning Mod 186 // will allow them to be handled conservatively. 187 return MRI_Mod; 188 case Intrinsic::invariant_end: 189 II->getAAMetadata(AAInfo); 190 Loc = MemoryLocation( 191 II->getArgOperand(2), 192 cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(), AAInfo); 193 // These intrinsics don't really modify the memory, but returning Mod 194 // will allow them to be handled conservatively. 195 return MRI_Mod; 196 default: 197 break; 198 } 199 } 200 201 // Otherwise, just do the coarse-grained thing that always works. 202 if (Inst->mayWriteToMemory()) 203 return MRI_ModRef; 204 if (Inst->mayReadFromMemory()) 205 return MRI_Ref; 206 return MRI_NoModRef; 207 } 208 209 /// getCallSiteDependencyFrom - Private helper for finding the local 210 /// dependencies of a call site. 211 MemDepResult MemoryDependenceAnalysis:: 212 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall, 213 BasicBlock::iterator ScanIt, BasicBlock *BB) { 214 unsigned Limit = BlockScanLimit; 215 216 // Walk backwards through the block, looking for dependencies 217 while (ScanIt != BB->begin()) { 218 // Limit the amount of scanning we do so we don't end up with quadratic 219 // running time on extreme testcases. 220 --Limit; 221 if (!Limit) 222 return MemDepResult::getUnknown(); 223 224 Instruction *Inst = &*--ScanIt; 225 226 // If this inst is a memory op, get the pointer it accessed 227 MemoryLocation Loc; 228 ModRefInfo MR = GetLocation(Inst, Loc, *TLI); 229 if (Loc.Ptr) { 230 // A simple instruction. 231 if (AA->getModRefInfo(CS, Loc) != MRI_NoModRef) 232 return MemDepResult::getClobber(Inst); 233 continue; 234 } 235 236 if (auto InstCS = CallSite(Inst)) { 237 // Debug intrinsics don't cause dependences. 238 if (isa<DbgInfoIntrinsic>(Inst)) continue; 239 // If these two calls do not interfere, look past it. 240 switch (AA->getModRefInfo(CS, InstCS)) { 241 case MRI_NoModRef: 242 // If the two calls are the same, return InstCS as a Def, so that 243 // CS can be found redundant and eliminated. 244 if (isReadOnlyCall && !(MR & MRI_Mod) && 245 CS.getInstruction()->isIdenticalToWhenDefined(Inst)) 246 return MemDepResult::getDef(Inst); 247 248 // Otherwise if the two calls don't interact (e.g. InstCS is readnone) 249 // keep scanning. 250 continue; 251 default: 252 return MemDepResult::getClobber(Inst); 253 } 254 } 255 256 // If we could not obtain a pointer for the instruction and the instruction 257 // touches memory then assume that this is a dependency. 258 if (MR != MRI_NoModRef) 259 return MemDepResult::getClobber(Inst); 260 } 261 262 // No dependence found. If this is the entry block of the function, it is 263 // unknown, otherwise it is non-local. 264 if (BB != &BB->getParent()->getEntryBlock()) 265 return MemDepResult::getNonLocal(); 266 return MemDepResult::getNonFuncLocal(); 267 } 268 269 /// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that 270 /// would fully overlap MemLoc if done as a wider legal integer load. 271 /// 272 /// MemLocBase, MemLocOffset are lazily computed here the first time the 273 /// base/offs of memloc is needed. 274 static bool isLoadLoadClobberIfExtendedToFullWidth(const MemoryLocation &MemLoc, 275 const Value *&MemLocBase, 276 int64_t &MemLocOffs, 277 const LoadInst *LI) { 278 const DataLayout &DL = LI->getModule()->getDataLayout(); 279 280 // If we haven't already computed the base/offset of MemLoc, do so now. 281 if (!MemLocBase) 282 MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, DL); 283 284 unsigned Size = MemoryDependenceAnalysis::getLoadLoadClobberFullWidthSize( 285 MemLocBase, MemLocOffs, MemLoc.Size, LI); 286 return Size != 0; 287 } 288 289 /// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that 290 /// looks at a memory location for a load (specified by MemLocBase, Offs, 291 /// and Size) and compares it against a load. If the specified load could 292 /// be safely widened to a larger integer load that is 1) still efficient, 293 /// 2) safe for the target, and 3) would provide the specified memory 294 /// location value, then this function returns the size in bytes of the 295 /// load width to use. If not, this returns zero. 296 unsigned MemoryDependenceAnalysis::getLoadLoadClobberFullWidthSize( 297 const Value *MemLocBase, int64_t MemLocOffs, unsigned MemLocSize, 298 const LoadInst *LI) { 299 // We can only extend simple integer loads. 300 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0; 301 302 // Load widening is hostile to ThreadSanitizer: it may cause false positives 303 // or make the reports more cryptic (access sizes are wrong). 304 if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread)) 305 return 0; 306 307 const DataLayout &DL = LI->getModule()->getDataLayout(); 308 309 // Get the base of this load. 310 int64_t LIOffs = 0; 311 const Value *LIBase = 312 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL); 313 314 // If the two pointers are not based on the same pointer, we can't tell that 315 // they are related. 316 if (LIBase != MemLocBase) return 0; 317 318 // Okay, the two values are based on the same pointer, but returned as 319 // no-alias. This happens when we have things like two byte loads at "P+1" 320 // and "P+3". Check to see if increasing the size of the "LI" load up to its 321 // alignment (or the largest native integer type) will allow us to load all 322 // the bits required by MemLoc. 323 324 // If MemLoc is before LI, then no widening of LI will help us out. 325 if (MemLocOffs < LIOffs) return 0; 326 327 // Get the alignment of the load in bytes. We assume that it is safe to load 328 // any legal integer up to this size without a problem. For example, if we're 329 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can 330 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it 331 // to i16. 332 unsigned LoadAlign = LI->getAlignment(); 333 334 int64_t MemLocEnd = MemLocOffs+MemLocSize; 335 336 // If no amount of rounding up will let MemLoc fit into LI, then bail out. 337 if (LIOffs+LoadAlign < MemLocEnd) return 0; 338 339 // This is the size of the load to try. Start with the next larger power of 340 // two. 341 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U; 342 NewLoadByteSize = NextPowerOf2(NewLoadByteSize); 343 344 while (1) { 345 // If this load size is bigger than our known alignment or would not fit 346 // into a native integer register, then we fail. 347 if (NewLoadByteSize > LoadAlign || 348 !DL.fitsInLegalInteger(NewLoadByteSize*8)) 349 return 0; 350 351 if (LIOffs + NewLoadByteSize > MemLocEnd && 352 LI->getParent()->getParent()->hasFnAttribute( 353 Attribute::SanitizeAddress)) 354 // We will be reading past the location accessed by the original program. 355 // While this is safe in a regular build, Address Safety analysis tools 356 // may start reporting false warnings. So, don't do widening. 357 return 0; 358 359 // If a load of this width would include all of MemLoc, then we succeed. 360 if (LIOffs+NewLoadByteSize >= MemLocEnd) 361 return NewLoadByteSize; 362 363 NewLoadByteSize <<= 1; 364 } 365 } 366 367 static bool isVolatile(Instruction *Inst) { 368 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 369 return LI->isVolatile(); 370 else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) 371 return SI->isVolatile(); 372 else if (AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(Inst)) 373 return AI->isVolatile(); 374 return false; 375 } 376 377 378 /// getPointerDependencyFrom - Return the instruction on which a memory 379 /// location depends. If isLoad is true, this routine ignores may-aliases with 380 /// read-only operations. If isLoad is false, this routine ignores may-aliases 381 /// with reads from read-only locations. If possible, pass the query 382 /// instruction as well; this function may take advantage of the metadata 383 /// annotated to the query instruction to refine the result. 384 MemDepResult MemoryDependenceAnalysis::getPointerDependencyFrom( 385 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 386 BasicBlock *BB, Instruction *QueryInst) { 387 388 if (QueryInst != nullptr) { 389 if (auto *LI = dyn_cast<LoadInst>(QueryInst)) { 390 MemDepResult invariantGroupDependency = 391 getInvariantGroupPointerDependency(LI, BB); 392 393 if (invariantGroupDependency.isDef()) 394 return invariantGroupDependency; 395 } 396 } 397 return getSimplePointerDependencyFrom(MemLoc, isLoad, ScanIt, BB, QueryInst); 398 } 399 400 MemDepResult 401 MemoryDependenceAnalysis::getInvariantGroupPointerDependency(LoadInst *LI, 402 BasicBlock *BB) { 403 Value *LoadOperand = LI->getPointerOperand(); 404 // It's is not safe to walk the use list of global value, because function 405 // passes aren't allowed to look outside their functions. 406 if (isa<GlobalValue>(LoadOperand)) 407 return MemDepResult::getUnknown(); 408 409 auto *InvariantGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group); 410 if (!InvariantGroupMD) 411 return MemDepResult::getUnknown(); 412 413 MemDepResult Result = MemDepResult::getUnknown(); 414 llvm::SmallSet<Value *, 14> Seen; 415 // Queue to process all pointers that are equivalent to load operand. 416 llvm::SmallVector<Value *, 8> LoadOperandsQueue; 417 LoadOperandsQueue.push_back(LoadOperand); 418 while (!LoadOperandsQueue.empty()) { 419 Value *Ptr = LoadOperandsQueue.pop_back_val(); 420 if (isa<GlobalValue>(Ptr)) 421 continue; 422 423 if (auto *BCI = dyn_cast<BitCastInst>(Ptr)) { 424 if (!Seen.count(BCI->getOperand(0))) { 425 LoadOperandsQueue.push_back(BCI->getOperand(0)); 426 Seen.insert(BCI->getOperand(0)); 427 } 428 } 429 430 for (Use &Us : Ptr->uses()) { 431 auto *U = dyn_cast<Instruction>(Us.getUser()); 432 if (!U || U == LI || !DT->dominates(U, LI)) 433 continue; 434 435 if (auto *BCI = dyn_cast<BitCastInst>(U)) { 436 if (!Seen.count(BCI)) { 437 LoadOperandsQueue.push_back(BCI); 438 Seen.insert(BCI); 439 } 440 continue; 441 } 442 // If we hit load/store with the same invariant.group metadata (and the 443 // same pointer operand) we can assume that value pointed by pointer 444 // operand didn't change. 445 if ((isa<LoadInst>(U) || isa<StoreInst>(U)) && U->getParent() == BB && 446 U->getMetadata(LLVMContext::MD_invariant_group) == InvariantGroupMD) 447 return MemDepResult::getDef(U); 448 } 449 } 450 return Result; 451 } 452 453 MemDepResult MemoryDependenceAnalysis::getSimplePointerDependencyFrom( 454 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 455 BasicBlock *BB, Instruction *QueryInst) { 456 457 const Value *MemLocBase = nullptr; 458 int64_t MemLocOffset = 0; 459 unsigned Limit = BlockScanLimit; 460 bool isInvariantLoad = false; 461 462 // We must be careful with atomic accesses, as they may allow another thread 463 // to touch this location, cloberring it. We are conservative: if the 464 // QueryInst is not a simple (non-atomic) memory access, we automatically 465 // return getClobber. 466 // If it is simple, we know based on the results of 467 // "Compiler testing via a theory of sound optimisations in the C11/C++11 468 // memory model" in PLDI 2013, that a non-atomic location can only be 469 // clobbered between a pair of a release and an acquire action, with no 470 // access to the location in between. 471 // Here is an example for giving the general intuition behind this rule. 472 // In the following code: 473 // store x 0; 474 // release action; [1] 475 // acquire action; [4] 476 // %val = load x; 477 // It is unsafe to replace %val by 0 because another thread may be running: 478 // acquire action; [2] 479 // store x 42; 480 // release action; [3] 481 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val 482 // being 42. A key property of this program however is that if either 483 // 1 or 4 were missing, there would be a race between the store of 42 484 // either the store of 0 or the load (making the whole progam racy). 485 // The paper mentioned above shows that the same property is respected 486 // by every program that can detect any optimisation of that kind: either 487 // it is racy (undefined) or there is a release followed by an acquire 488 // between the pair of accesses under consideration. 489 490 // If the load is invariant, we "know" that it doesn't alias *any* write. We 491 // do want to respect mustalias results since defs are useful for value 492 // forwarding, but any mayalias write can be assumed to be noalias. 493 // Arguably, this logic should be pushed inside AliasAnalysis itself. 494 if (isLoad && QueryInst) { 495 LoadInst *LI = dyn_cast<LoadInst>(QueryInst); 496 if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr) 497 isInvariantLoad = true; 498 } 499 500 const DataLayout &DL = BB->getModule()->getDataLayout(); 501 502 // Create a numbered basic block to lazily compute and cache instruction 503 // positions inside a BB. This is used to provide fast queries for relative 504 // position between two instructions in a BB and can be used by 505 // AliasAnalysis::callCapturesBefore. 506 OrderedBasicBlock OBB(BB); 507 508 // Return "true" if and only if the instruction I is either a non-simple 509 // load or a non-simple store. 510 auto isNonSimpleLoadOrStore = [] (Instruction *I) -> bool { 511 if (auto *LI = dyn_cast<LoadInst>(I)) 512 return !LI->isSimple(); 513 if (auto *SI = dyn_cast<StoreInst>(I)) 514 return !SI->isSimple(); 515 return false; 516 }; 517 518 // Return "true" if I is not a load and not a store, but it does access 519 // memory. 520 auto isOtherMemAccess = [] (Instruction *I) -> bool { 521 return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory(); 522 }; 523 524 // Walk backwards through the basic block, looking for dependencies. 525 while (ScanIt != BB->begin()) { 526 Instruction *Inst = &*--ScanIt; 527 528 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 529 // Debug intrinsics don't (and can't) cause dependencies. 530 if (isa<DbgInfoIntrinsic>(II)) continue; 531 532 // Limit the amount of scanning we do so we don't end up with quadratic 533 // running time on extreme testcases. 534 --Limit; 535 if (!Limit) 536 return MemDepResult::getUnknown(); 537 538 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 539 // If we reach a lifetime begin or end marker, then the query ends here 540 // because the value is undefined. 541 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 542 // FIXME: This only considers queries directly on the invariant-tagged 543 // pointer, not on query pointers that are indexed off of them. It'd 544 // be nice to handle that at some point (the right approach is to use 545 // GetPointerBaseWithConstantOffset). 546 if (AA->isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc)) 547 return MemDepResult::getDef(II); 548 continue; 549 } 550 } 551 552 // Values depend on loads if the pointers are must aliased. This means that 553 // a load depends on another must aliased load from the same value. 554 // One exception is atomic loads: a value can depend on an atomic load that it 555 // does not alias with when this atomic load indicates that another thread may 556 // be accessing the location. 557 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 558 559 // While volatile access cannot be eliminated, they do not have to clobber 560 // non-aliasing locations, as normal accesses, for example, can be safely 561 // reordered with volatile accesses. 562 if (LI->isVolatile()) { 563 if (!QueryInst) 564 // Original QueryInst *may* be volatile 565 return MemDepResult::getClobber(LI); 566 if (isVolatile(QueryInst)) 567 // Ordering required if QueryInst is itself volatile 568 return MemDepResult::getClobber(LI); 569 // Otherwise, volatile doesn't imply any special ordering 570 } 571 572 // Atomic loads have complications involved. 573 // A Monotonic (or higher) load is OK if the query inst is itself not atomic. 574 // FIXME: This is overly conservative. 575 if (LI->isAtomic() && LI->getOrdering() > Unordered) { 576 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 577 isOtherMemAccess(QueryInst)) 578 return MemDepResult::getClobber(LI); 579 if (LI->getOrdering() != Monotonic) 580 return MemDepResult::getClobber(LI); 581 } 582 583 MemoryLocation LoadLoc = MemoryLocation::get(LI); 584 585 // If we found a pointer, check if it could be the same as our pointer. 586 AliasResult R = AA->alias(LoadLoc, MemLoc); 587 588 if (isLoad) { 589 if (R == NoAlias) { 590 // If this is an over-aligned integer load (for example, 591 // "load i8* %P, align 4") see if it would obviously overlap with the 592 // queried location if widened to a larger load (e.g. if the queried 593 // location is 1 byte at P+1). If so, return it as a load/load 594 // clobber result, allowing the client to decide to widen the load if 595 // it wants to. 596 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) { 597 if (LI->getAlignment() * 8 > ITy->getPrimitiveSizeInBits() && 598 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase, 599 MemLocOffset, LI)) 600 return MemDepResult::getClobber(Inst); 601 } 602 continue; 603 } 604 605 // Must aliased loads are defs of each other. 606 if (R == MustAlias) 607 return MemDepResult::getDef(Inst); 608 609 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads 610 // in terms of clobbering loads, but since it does this by looking 611 // at the clobbering load directly, it doesn't know about any 612 // phi translation that may have happened along the way. 613 614 // If we have a partial alias, then return this as a clobber for the 615 // client to handle. 616 if (R == PartialAlias) 617 return MemDepResult::getClobber(Inst); 618 #endif 619 620 // Random may-alias loads don't depend on each other without a 621 // dependence. 622 continue; 623 } 624 625 // Stores don't depend on other no-aliased accesses. 626 if (R == NoAlias) 627 continue; 628 629 // Stores don't alias loads from read-only memory. 630 if (AA->pointsToConstantMemory(LoadLoc)) 631 continue; 632 633 // Stores depend on may/must aliased loads. 634 return MemDepResult::getDef(Inst); 635 } 636 637 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 638 // Atomic stores have complications involved. 639 // A Monotonic store is OK if the query inst is itself not atomic. 640 // FIXME: This is overly conservative. 641 if (!SI->isUnordered() && SI->isAtomic()) { 642 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 643 isOtherMemAccess(QueryInst)) 644 return MemDepResult::getClobber(SI); 645 if (SI->getOrdering() != Monotonic) 646 return MemDepResult::getClobber(SI); 647 } 648 649 // FIXME: this is overly conservative. 650 // While volatile access cannot be eliminated, they do not have to clobber 651 // non-aliasing locations, as normal accesses can for example be reordered 652 // with volatile accesses. 653 if (SI->isVolatile()) 654 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 655 isOtherMemAccess(QueryInst)) 656 return MemDepResult::getClobber(SI); 657 658 // If alias analysis can tell that this store is guaranteed to not modify 659 // the query pointer, ignore it. Use getModRefInfo to handle cases where 660 // the query pointer points to constant memory etc. 661 if (AA->getModRefInfo(SI, MemLoc) == MRI_NoModRef) 662 continue; 663 664 // Ok, this store might clobber the query pointer. Check to see if it is 665 // a must alias: in this case, we want to return this as a def. 666 MemoryLocation StoreLoc = MemoryLocation::get(SI); 667 668 // If we found a pointer, check if it could be the same as our pointer. 669 AliasResult R = AA->alias(StoreLoc, MemLoc); 670 671 if (R == NoAlias) 672 continue; 673 if (R == MustAlias) 674 return MemDepResult::getDef(Inst); 675 if (isInvariantLoad) 676 continue; 677 return MemDepResult::getClobber(Inst); 678 } 679 680 // If this is an allocation, and if we know that the accessed pointer is to 681 // the allocation, return Def. This means that there is no dependence and 682 // the access can be optimized based on that. For example, a load could 683 // turn into undef. 684 // Note: Only determine this to be a malloc if Inst is the malloc call, not 685 // a subsequent bitcast of the malloc call result. There can be stores to 686 // the malloced memory between the malloc call and its bitcast uses, and we 687 // need to continue scanning until the malloc call. 688 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, TLI)) { 689 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL); 690 691 if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr)) 692 return MemDepResult::getDef(Inst); 693 if (isInvariantLoad) 694 continue; 695 // Be conservative if the accessed pointer may alias the allocation - 696 // fallback to the generic handling below. 697 if ((AA->alias(Inst, AccessPtr) == NoAlias) && 698 // If the allocation is not aliased and does not read memory (like 699 // strdup), it is safe to ignore. 700 (isa<AllocaInst>(Inst) || isMallocLikeFn(Inst, TLI) || 701 isCallocLikeFn(Inst, TLI))) 702 continue; 703 } 704 705 if (isInvariantLoad) 706 continue; 707 708 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. 709 ModRefInfo MR = AA->getModRefInfo(Inst, MemLoc); 710 // If necessary, perform additional analysis. 711 if (MR == MRI_ModRef) 712 MR = AA->callCapturesBefore(Inst, MemLoc, DT, &OBB); 713 switch (MR) { 714 case MRI_NoModRef: 715 // If the call has no effect on the queried pointer, just ignore it. 716 continue; 717 case MRI_Mod: 718 return MemDepResult::getClobber(Inst); 719 case MRI_Ref: 720 // If the call is known to never store to the pointer, and if this is a 721 // load query, we can safely ignore it (scan past it). 722 if (isLoad) 723 continue; 724 default: 725 // Otherwise, there is a potential dependence. Return a clobber. 726 return MemDepResult::getClobber(Inst); 727 } 728 } 729 730 // No dependence found. If this is the entry block of the function, it is 731 // unknown, otherwise it is non-local. 732 if (BB != &BB->getParent()->getEntryBlock()) 733 return MemDepResult::getNonLocal(); 734 return MemDepResult::getNonFuncLocal(); 735 } 736 737 /// getDependency - Return the instruction on which a memory operation 738 /// depends. 739 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) { 740 Instruction *ScanPos = QueryInst; 741 742 // Check for a cached result 743 MemDepResult &LocalCache = LocalDeps[QueryInst]; 744 745 // If the cached entry is non-dirty, just return it. Note that this depends 746 // on MemDepResult's default constructing to 'dirty'. 747 if (!LocalCache.isDirty()) 748 return LocalCache; 749 750 // Otherwise, if we have a dirty entry, we know we can start the scan at that 751 // instruction, which may save us some work. 752 if (Instruction *Inst = LocalCache.getInst()) { 753 ScanPos = Inst; 754 755 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); 756 } 757 758 BasicBlock *QueryParent = QueryInst->getParent(); 759 760 // Do the scan. 761 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { 762 // No dependence found. If this is the entry block of the function, it is 763 // unknown, otherwise it is non-local. 764 if (QueryParent != &QueryParent->getParent()->getEntryBlock()) 765 LocalCache = MemDepResult::getNonLocal(); 766 else 767 LocalCache = MemDepResult::getNonFuncLocal(); 768 } else { 769 MemoryLocation MemLoc; 770 ModRefInfo MR = GetLocation(QueryInst, MemLoc, *TLI); 771 if (MemLoc.Ptr) { 772 // If we can do a pointer scan, make it happen. 773 bool isLoad = !(MR & MRI_Mod); 774 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst)) 775 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start; 776 777 LocalCache = getPointerDependencyFrom( 778 MemLoc, isLoad, ScanPos->getIterator(), QueryParent, QueryInst); 779 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) { 780 CallSite QueryCS(QueryInst); 781 bool isReadOnly = AA->onlyReadsMemory(QueryCS); 782 LocalCache = getCallSiteDependencyFrom( 783 QueryCS, isReadOnly, ScanPos->getIterator(), QueryParent); 784 } else 785 // Non-memory instruction. 786 LocalCache = MemDepResult::getUnknown(); 787 } 788 789 // Remember the result! 790 if (Instruction *I = LocalCache.getInst()) 791 ReverseLocalDeps[I].insert(QueryInst); 792 793 return LocalCache; 794 } 795 796 #ifndef NDEBUG 797 /// AssertSorted - This method is used when -debug is specified to verify that 798 /// cache arrays are properly kept sorted. 799 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 800 int Count = -1) { 801 if (Count == -1) Count = Cache.size(); 802 assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) && 803 "Cache isn't sorted!"); 804 } 805 #endif 806 807 /// getNonLocalCallDependency - Perform a full dependency query for the 808 /// specified call, returning the set of blocks that the value is 809 /// potentially live across. The returned set of results will include a 810 /// "NonLocal" result for all blocks where the value is live across. 811 /// 812 /// This method assumes the instruction returns a "NonLocal" dependency 813 /// within its own block. 814 /// 815 /// This returns a reference to an internal data structure that may be 816 /// invalidated on the next non-local query or when an instruction is 817 /// removed. Clients must copy this data if they want it around longer than 818 /// that. 819 const MemoryDependenceAnalysis::NonLocalDepInfo & 820 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { 821 assert(getDependency(QueryCS.getInstruction()).isNonLocal() && 822 "getNonLocalCallDependency should only be used on calls with non-local deps!"); 823 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()]; 824 NonLocalDepInfo &Cache = CacheP.first; 825 826 /// DirtyBlocks - This is the set of blocks that need to be recomputed. In 827 /// the cached case, this can happen due to instructions being deleted etc. In 828 /// the uncached case, this starts out as the set of predecessors we care 829 /// about. 830 SmallVector<BasicBlock*, 32> DirtyBlocks; 831 832 if (!Cache.empty()) { 833 // Okay, we have a cache entry. If we know it is not dirty, just return it 834 // with no computation. 835 if (!CacheP.second) { 836 ++NumCacheNonLocal; 837 return Cache; 838 } 839 840 // If we already have a partially computed set of results, scan them to 841 // determine what is dirty, seeding our initial DirtyBlocks worklist. 842 for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end(); 843 I != E; ++I) 844 if (I->getResult().isDirty()) 845 DirtyBlocks.push_back(I->getBB()); 846 847 // Sort the cache so that we can do fast binary search lookups below. 848 std::sort(Cache.begin(), Cache.end()); 849 850 ++NumCacheDirtyNonLocal; 851 //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " 852 // << Cache.size() << " cached: " << *QueryInst; 853 } else { 854 // Seed DirtyBlocks with each of the preds of QueryInst's block. 855 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent(); 856 for (BasicBlock *Pred : PredCache.get(QueryBB)) 857 DirtyBlocks.push_back(Pred); 858 ++NumUncacheNonLocal; 859 } 860 861 // isReadonlyCall - If this is a read-only call, we can be more aggressive. 862 bool isReadonlyCall = AA->onlyReadsMemory(QueryCS); 863 864 SmallPtrSet<BasicBlock*, 32> Visited; 865 866 unsigned NumSortedEntries = Cache.size(); 867 DEBUG(AssertSorted(Cache)); 868 869 // Iterate while we still have blocks to update. 870 while (!DirtyBlocks.empty()) { 871 BasicBlock *DirtyBB = DirtyBlocks.back(); 872 DirtyBlocks.pop_back(); 873 874 // Already processed this block? 875 if (!Visited.insert(DirtyBB).second) 876 continue; 877 878 // Do a binary search to see if we already have an entry for this block in 879 // the cache set. If so, find it. 880 DEBUG(AssertSorted(Cache, NumSortedEntries)); 881 NonLocalDepInfo::iterator Entry = 882 std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries, 883 NonLocalDepEntry(DirtyBB)); 884 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB) 885 --Entry; 886 887 NonLocalDepEntry *ExistingResult = nullptr; 888 if (Entry != Cache.begin()+NumSortedEntries && 889 Entry->getBB() == DirtyBB) { 890 // If we already have an entry, and if it isn't already dirty, the block 891 // is done. 892 if (!Entry->getResult().isDirty()) 893 continue; 894 895 // Otherwise, remember this slot so we can update the value. 896 ExistingResult = &*Entry; 897 } 898 899 // If the dirty entry has a pointer, start scanning from it so we don't have 900 // to rescan the entire block. 901 BasicBlock::iterator ScanPos = DirtyBB->end(); 902 if (ExistingResult) { 903 if (Instruction *Inst = ExistingResult->getResult().getInst()) { 904 ScanPos = Inst->getIterator(); 905 // We're removing QueryInst's use of Inst. 906 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, 907 QueryCS.getInstruction()); 908 } 909 } 910 911 // Find out if this block has a local dependency for QueryInst. 912 MemDepResult Dep; 913 914 if (ScanPos != DirtyBB->begin()) { 915 Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB); 916 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { 917 // No dependence found. If this is the entry block of the function, it is 918 // a clobber, otherwise it is unknown. 919 Dep = MemDepResult::getNonLocal(); 920 } else { 921 Dep = MemDepResult::getNonFuncLocal(); 922 } 923 924 // If we had a dirty entry for the block, update it. Otherwise, just add 925 // a new entry. 926 if (ExistingResult) 927 ExistingResult->setResult(Dep); 928 else 929 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); 930 931 // If the block has a dependency (i.e. it isn't completely transparent to 932 // the value), remember the association! 933 if (!Dep.isNonLocal()) { 934 // Keep the ReverseNonLocalDeps map up to date so we can efficiently 935 // update this when we remove instructions. 936 if (Instruction *Inst = Dep.getInst()) 937 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction()); 938 } else { 939 940 // If the block *is* completely transparent to the load, we need to check 941 // the predecessors of this block. Add them to our worklist. 942 for (BasicBlock *Pred : PredCache.get(DirtyBB)) 943 DirtyBlocks.push_back(Pred); 944 } 945 } 946 947 return Cache; 948 } 949 950 /// getNonLocalPointerDependency - Perform a full dependency query for an 951 /// access to the specified (non-volatile) memory location, returning the 952 /// set of instructions that either define or clobber the value. 953 /// 954 /// This method assumes the pointer has a "NonLocal" dependency within its 955 /// own block. 956 /// 957 void MemoryDependenceAnalysis:: 958 getNonLocalPointerDependency(Instruction *QueryInst, 959 SmallVectorImpl<NonLocalDepResult> &Result) { 960 const MemoryLocation Loc = MemoryLocation::get(QueryInst); 961 bool isLoad = isa<LoadInst>(QueryInst); 962 BasicBlock *FromBB = QueryInst->getParent(); 963 assert(FromBB); 964 965 assert(Loc.Ptr->getType()->isPointerTy() && 966 "Can't get pointer deps of a non-pointer!"); 967 Result.clear(); 968 969 // This routine does not expect to deal with volatile instructions. 970 // Doing so would require piping through the QueryInst all the way through. 971 // TODO: volatiles can't be elided, but they can be reordered with other 972 // non-volatile accesses. 973 974 // We currently give up on any instruction which is ordered, but we do handle 975 // atomic instructions which are unordered. 976 // TODO: Handle ordered instructions 977 auto isOrdered = [](Instruction *Inst) { 978 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 979 return !LI->isUnordered(); 980 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 981 return !SI->isUnordered(); 982 } 983 return false; 984 }; 985 if (isVolatile(QueryInst) || isOrdered(QueryInst)) { 986 Result.push_back(NonLocalDepResult(FromBB, 987 MemDepResult::getUnknown(), 988 const_cast<Value *>(Loc.Ptr))); 989 return; 990 } 991 const DataLayout &DL = FromBB->getModule()->getDataLayout(); 992 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, AC); 993 994 // This is the set of blocks we've inspected, and the pointer we consider in 995 // each block. Because of critical edges, we currently bail out if querying 996 // a block with multiple different pointers. This can happen during PHI 997 // translation. 998 DenseMap<BasicBlock*, Value*> Visited; 999 if (!getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB, 1000 Result, Visited, true)) 1001 return; 1002 Result.clear(); 1003 Result.push_back(NonLocalDepResult(FromBB, 1004 MemDepResult::getUnknown(), 1005 const_cast<Value *>(Loc.Ptr))); 1006 } 1007 1008 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with 1009 /// Pointer/PointeeSize using either cached information in Cache or by doing a 1010 /// lookup (which may use dirty cache info if available). If we do a lookup, 1011 /// add the result to the cache. 1012 MemDepResult MemoryDependenceAnalysis::GetNonLocalInfoForBlock( 1013 Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad, 1014 BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) { 1015 1016 // Do a binary search to see if we already have an entry for this block in 1017 // the cache set. If so, find it. 1018 NonLocalDepInfo::iterator Entry = 1019 std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries, 1020 NonLocalDepEntry(BB)); 1021 if (Entry != Cache->begin() && (Entry-1)->getBB() == BB) 1022 --Entry; 1023 1024 NonLocalDepEntry *ExistingResult = nullptr; 1025 if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB) 1026 ExistingResult = &*Entry; 1027 1028 // If we have a cached entry, and it is non-dirty, use it as the value for 1029 // this dependency. 1030 if (ExistingResult && !ExistingResult->getResult().isDirty()) { 1031 ++NumCacheNonLocalPtr; 1032 return ExistingResult->getResult(); 1033 } 1034 1035 // Otherwise, we have to scan for the value. If we have a dirty cache 1036 // entry, start scanning from its position, otherwise we scan from the end 1037 // of the block. 1038 BasicBlock::iterator ScanPos = BB->end(); 1039 if (ExistingResult && ExistingResult->getResult().getInst()) { 1040 assert(ExistingResult->getResult().getInst()->getParent() == BB && 1041 "Instruction invalidated?"); 1042 ++NumCacheDirtyNonLocalPtr; 1043 ScanPos = ExistingResult->getResult().getInst()->getIterator(); 1044 1045 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1046 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 1047 RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey); 1048 } else { 1049 ++NumUncacheNonLocalPtr; 1050 } 1051 1052 // Scan the block for the dependency. 1053 MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, 1054 QueryInst); 1055 1056 // If we had a dirty entry for the block, update it. Otherwise, just add 1057 // a new entry. 1058 if (ExistingResult) 1059 ExistingResult->setResult(Dep); 1060 else 1061 Cache->push_back(NonLocalDepEntry(BB, Dep)); 1062 1063 // If the block has a dependency (i.e. it isn't completely transparent to 1064 // the value), remember the reverse association because we just added it 1065 // to Cache! 1066 if (!Dep.isDef() && !Dep.isClobber()) 1067 return Dep; 1068 1069 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently 1070 // update MemDep when we remove instructions. 1071 Instruction *Inst = Dep.getInst(); 1072 assert(Inst && "Didn't depend on anything?"); 1073 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 1074 ReverseNonLocalPtrDeps[Inst].insert(CacheKey); 1075 return Dep; 1076 } 1077 1078 /// SortNonLocalDepInfoCache - Sort the NonLocalDepInfo cache, given a certain 1079 /// number of elements in the array that are already properly ordered. This is 1080 /// optimized for the case when only a few entries are added. 1081 static void 1082 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 1083 unsigned NumSortedEntries) { 1084 switch (Cache.size() - NumSortedEntries) { 1085 case 0: 1086 // done, no new entries. 1087 break; 1088 case 2: { 1089 // Two new entries, insert the last one into place. 1090 NonLocalDepEntry Val = Cache.back(); 1091 Cache.pop_back(); 1092 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 1093 std::upper_bound(Cache.begin(), Cache.end()-1, Val); 1094 Cache.insert(Entry, Val); 1095 // FALL THROUGH. 1096 } 1097 case 1: 1098 // One new entry, Just insert the new value at the appropriate position. 1099 if (Cache.size() != 1) { 1100 NonLocalDepEntry Val = Cache.back(); 1101 Cache.pop_back(); 1102 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 1103 std::upper_bound(Cache.begin(), Cache.end(), Val); 1104 Cache.insert(Entry, Val); 1105 } 1106 break; 1107 default: 1108 // Added many values, do a full scale sort. 1109 std::sort(Cache.begin(), Cache.end()); 1110 break; 1111 } 1112 } 1113 1114 /// getNonLocalPointerDepFromBB - Perform a dependency query based on 1115 /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def 1116 /// results to the results vector and keep track of which blocks are visited in 1117 /// 'Visited'. 1118 /// 1119 /// This has special behavior for the first block queries (when SkipFirstBlock 1120 /// is true). In this special case, it ignores the contents of the specified 1121 /// block and starts returning dependence info for its predecessors. 1122 /// 1123 /// This function returns false on success, or true to indicate that it could 1124 /// not compute dependence information for some reason. This should be treated 1125 /// as a clobber dependence on the first instruction in the predecessor block. 1126 bool MemoryDependenceAnalysis::getNonLocalPointerDepFromBB( 1127 Instruction *QueryInst, const PHITransAddr &Pointer, 1128 const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB, 1129 SmallVectorImpl<NonLocalDepResult> &Result, 1130 DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock) { 1131 // Look up the cached info for Pointer. 1132 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); 1133 1134 // Set up a temporary NLPI value. If the map doesn't yet have an entry for 1135 // CacheKey, this value will be inserted as the associated value. Otherwise, 1136 // it'll be ignored, and we'll have to check to see if the cached size and 1137 // aa tags are consistent with the current query. 1138 NonLocalPointerInfo InitialNLPI; 1139 InitialNLPI.Size = Loc.Size; 1140 InitialNLPI.AATags = Loc.AATags; 1141 1142 // Get the NLPI for CacheKey, inserting one into the map if it doesn't 1143 // already have one. 1144 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = 1145 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); 1146 NonLocalPointerInfo *CacheInfo = &Pair.first->second; 1147 1148 // If we already have a cache entry for this CacheKey, we may need to do some 1149 // work to reconcile the cache entry and the current query. 1150 if (!Pair.second) { 1151 if (CacheInfo->Size < Loc.Size) { 1152 // The query's Size is greater than the cached one. Throw out the 1153 // cached data and proceed with the query at the greater size. 1154 CacheInfo->Pair = BBSkipFirstBlockPair(); 1155 CacheInfo->Size = Loc.Size; 1156 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(), 1157 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI) 1158 if (Instruction *Inst = DI->getResult().getInst()) 1159 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1160 CacheInfo->NonLocalDeps.clear(); 1161 } else if (CacheInfo->Size > Loc.Size) { 1162 // This query's Size is less than the cached one. Conservatively restart 1163 // the query using the greater size. 1164 return getNonLocalPointerDepFromBB(QueryInst, Pointer, 1165 Loc.getWithNewSize(CacheInfo->Size), 1166 isLoad, StartBB, Result, Visited, 1167 SkipFirstBlock); 1168 } 1169 1170 // If the query's AATags are inconsistent with the cached one, 1171 // conservatively throw out the cached data and restart the query with 1172 // no tag if needed. 1173 if (CacheInfo->AATags != Loc.AATags) { 1174 if (CacheInfo->AATags) { 1175 CacheInfo->Pair = BBSkipFirstBlockPair(); 1176 CacheInfo->AATags = AAMDNodes(); 1177 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(), 1178 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI) 1179 if (Instruction *Inst = DI->getResult().getInst()) 1180 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1181 CacheInfo->NonLocalDeps.clear(); 1182 } 1183 if (Loc.AATags) 1184 return getNonLocalPointerDepFromBB(QueryInst, 1185 Pointer, Loc.getWithoutAATags(), 1186 isLoad, StartBB, Result, Visited, 1187 SkipFirstBlock); 1188 } 1189 } 1190 1191 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; 1192 1193 // If we have valid cached information for exactly the block we are 1194 // investigating, just return it with no recomputation. 1195 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { 1196 // We have a fully cached result for this query then we can just return the 1197 // cached results and populate the visited set. However, we have to verify 1198 // that we don't already have conflicting results for these blocks. Check 1199 // to ensure that if a block in the results set is in the visited set that 1200 // it was for the same pointer query. 1201 if (!Visited.empty()) { 1202 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 1203 I != E; ++I) { 1204 DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB()); 1205 if (VI == Visited.end() || VI->second == Pointer.getAddr()) 1206 continue; 1207 1208 // We have a pointer mismatch in a block. Just return clobber, saying 1209 // that something was clobbered in this result. We could also do a 1210 // non-fully cached query, but there is little point in doing this. 1211 return true; 1212 } 1213 } 1214 1215 Value *Addr = Pointer.getAddr(); 1216 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 1217 I != E; ++I) { 1218 Visited.insert(std::make_pair(I->getBB(), Addr)); 1219 if (I->getResult().isNonLocal()) { 1220 continue; 1221 } 1222 1223 if (!DT) { 1224 Result.push_back(NonLocalDepResult(I->getBB(), 1225 MemDepResult::getUnknown(), 1226 Addr)); 1227 } else if (DT->isReachableFromEntry(I->getBB())) { 1228 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr)); 1229 } 1230 } 1231 ++NumCacheCompleteNonLocalPtr; 1232 return false; 1233 } 1234 1235 // Otherwise, either this is a new block, a block with an invalid cache 1236 // pointer or one that we're about to invalidate by putting more info into it 1237 // than its valid cache info. If empty, the result will be valid cache info, 1238 // otherwise it isn't. 1239 if (Cache->empty()) 1240 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); 1241 else 1242 CacheInfo->Pair = BBSkipFirstBlockPair(); 1243 1244 SmallVector<BasicBlock*, 32> Worklist; 1245 Worklist.push_back(StartBB); 1246 1247 // PredList used inside loop. 1248 SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList; 1249 1250 // Keep track of the entries that we know are sorted. Previously cached 1251 // entries will all be sorted. The entries we add we only sort on demand (we 1252 // don't insert every element into its sorted position). We know that we 1253 // won't get any reuse from currently inserted values, because we don't 1254 // revisit blocks after we insert info for them. 1255 unsigned NumSortedEntries = Cache->size(); 1256 unsigned WorklistEntries = BlockNumberLimit; 1257 bool GotWorklistLimit = false; 1258 DEBUG(AssertSorted(*Cache)); 1259 1260 while (!Worklist.empty()) { 1261 BasicBlock *BB = Worklist.pop_back_val(); 1262 1263 // If we do process a large number of blocks it becomes very expensive and 1264 // likely it isn't worth worrying about 1265 if (Result.size() > NumResultsLimit) { 1266 Worklist.clear(); 1267 // Sort it now (if needed) so that recursive invocations of 1268 // getNonLocalPointerDepFromBB and other routines that could reuse the 1269 // cache value will only see properly sorted cache arrays. 1270 if (Cache && NumSortedEntries != Cache->size()) { 1271 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1272 } 1273 // Since we bail out, the "Cache" set won't contain all of the 1274 // results for the query. This is ok (we can still use it to accelerate 1275 // specific block queries) but we can't do the fastpath "return all 1276 // results from the set". Clear out the indicator for this. 1277 CacheInfo->Pair = BBSkipFirstBlockPair(); 1278 return true; 1279 } 1280 1281 // Skip the first block if we have it. 1282 if (!SkipFirstBlock) { 1283 // Analyze the dependency of *Pointer in FromBB. See if we already have 1284 // been here. 1285 assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); 1286 1287 // Get the dependency info for Pointer in BB. If we have cached 1288 // information, we will use it, otherwise we compute it. 1289 DEBUG(AssertSorted(*Cache, NumSortedEntries)); 1290 MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, 1291 Loc, isLoad, BB, Cache, 1292 NumSortedEntries); 1293 1294 // If we got a Def or Clobber, add this to the list of results. 1295 if (!Dep.isNonLocal()) { 1296 if (!DT) { 1297 Result.push_back(NonLocalDepResult(BB, 1298 MemDepResult::getUnknown(), 1299 Pointer.getAddr())); 1300 continue; 1301 } else if (DT->isReachableFromEntry(BB)) { 1302 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); 1303 continue; 1304 } 1305 } 1306 } 1307 1308 // If 'Pointer' is an instruction defined in this block, then we need to do 1309 // phi translation to change it into a value live in the predecessor block. 1310 // If not, we just add the predecessors to the worklist and scan them with 1311 // the same Pointer. 1312 if (!Pointer.NeedsPHITranslationFromBlock(BB)) { 1313 SkipFirstBlock = false; 1314 SmallVector<BasicBlock*, 16> NewBlocks; 1315 for (BasicBlock *Pred : PredCache.get(BB)) { 1316 // Verify that we haven't looked at this block yet. 1317 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 1318 InsertRes = Visited.insert(std::make_pair(Pred, Pointer.getAddr())); 1319 if (InsertRes.second) { 1320 // First time we've looked at *PI. 1321 NewBlocks.push_back(Pred); 1322 continue; 1323 } 1324 1325 // If we have seen this block before, but it was with a different 1326 // pointer then we have a phi translation failure and we have to treat 1327 // this as a clobber. 1328 if (InsertRes.first->second != Pointer.getAddr()) { 1329 // Make sure to clean up the Visited map before continuing on to 1330 // PredTranslationFailure. 1331 for (unsigned i = 0; i < NewBlocks.size(); i++) 1332 Visited.erase(NewBlocks[i]); 1333 goto PredTranslationFailure; 1334 } 1335 } 1336 if (NewBlocks.size() > WorklistEntries) { 1337 // Make sure to clean up the Visited map before continuing on to 1338 // PredTranslationFailure. 1339 for (unsigned i = 0; i < NewBlocks.size(); i++) 1340 Visited.erase(NewBlocks[i]); 1341 GotWorklistLimit = true; 1342 goto PredTranslationFailure; 1343 } 1344 WorklistEntries -= NewBlocks.size(); 1345 Worklist.append(NewBlocks.begin(), NewBlocks.end()); 1346 continue; 1347 } 1348 1349 // We do need to do phi translation, if we know ahead of time we can't phi 1350 // translate this value, don't even try. 1351 if (!Pointer.IsPotentiallyPHITranslatable()) 1352 goto PredTranslationFailure; 1353 1354 // We may have added values to the cache list before this PHI translation. 1355 // If so, we haven't done anything to ensure that the cache remains sorted. 1356 // Sort it now (if needed) so that recursive invocations of 1357 // getNonLocalPointerDepFromBB and other routines that could reuse the cache 1358 // value will only see properly sorted cache arrays. 1359 if (Cache && NumSortedEntries != Cache->size()) { 1360 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1361 NumSortedEntries = Cache->size(); 1362 } 1363 Cache = nullptr; 1364 1365 PredList.clear(); 1366 for (BasicBlock *Pred : PredCache.get(BB)) { 1367 PredList.push_back(std::make_pair(Pred, Pointer)); 1368 1369 // Get the PHI translated pointer in this predecessor. This can fail if 1370 // not translatable, in which case the getAddr() returns null. 1371 PHITransAddr &PredPointer = PredList.back().second; 1372 PredPointer.PHITranslateValue(BB, Pred, DT, /*MustDominate=*/false); 1373 Value *PredPtrVal = PredPointer.getAddr(); 1374 1375 // Check to see if we have already visited this pred block with another 1376 // pointer. If so, we can't do this lookup. This failure can occur 1377 // with PHI translation when a critical edge exists and the PHI node in 1378 // the successor translates to a pointer value different than the 1379 // pointer the block was first analyzed with. 1380 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 1381 InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal)); 1382 1383 if (!InsertRes.second) { 1384 // We found the pred; take it off the list of preds to visit. 1385 PredList.pop_back(); 1386 1387 // If the predecessor was visited with PredPtr, then we already did 1388 // the analysis and can ignore it. 1389 if (InsertRes.first->second == PredPtrVal) 1390 continue; 1391 1392 // Otherwise, the block was previously analyzed with a different 1393 // pointer. We can't represent the result of this case, so we just 1394 // treat this as a phi translation failure. 1395 1396 // Make sure to clean up the Visited map before continuing on to 1397 // PredTranslationFailure. 1398 for (unsigned i = 0, n = PredList.size(); i < n; ++i) 1399 Visited.erase(PredList[i].first); 1400 1401 goto PredTranslationFailure; 1402 } 1403 } 1404 1405 // Actually process results here; this need to be a separate loop to avoid 1406 // calling getNonLocalPointerDepFromBB for blocks we don't want to return 1407 // any results for. (getNonLocalPointerDepFromBB will modify our 1408 // datastructures in ways the code after the PredTranslationFailure label 1409 // doesn't expect.) 1410 for (unsigned i = 0, n = PredList.size(); i < n; ++i) { 1411 BasicBlock *Pred = PredList[i].first; 1412 PHITransAddr &PredPointer = PredList[i].second; 1413 Value *PredPtrVal = PredPointer.getAddr(); 1414 1415 bool CanTranslate = true; 1416 // If PHI translation was unable to find an available pointer in this 1417 // predecessor, then we have to assume that the pointer is clobbered in 1418 // that predecessor. We can still do PRE of the load, which would insert 1419 // a computation of the pointer in this predecessor. 1420 if (!PredPtrVal) 1421 CanTranslate = false; 1422 1423 // FIXME: it is entirely possible that PHI translating will end up with 1424 // the same value. Consider PHI translating something like: 1425 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* 1426 // to recurse here, pedantically speaking. 1427 1428 // If getNonLocalPointerDepFromBB fails here, that means the cached 1429 // result conflicted with the Visited list; we have to conservatively 1430 // assume it is unknown, but this also does not block PRE of the load. 1431 if (!CanTranslate || 1432 getNonLocalPointerDepFromBB(QueryInst, PredPointer, 1433 Loc.getWithNewPtr(PredPtrVal), 1434 isLoad, Pred, 1435 Result, Visited)) { 1436 // Add the entry to the Result list. 1437 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal); 1438 Result.push_back(Entry); 1439 1440 // Since we had a phi translation failure, the cache for CacheKey won't 1441 // include all of the entries that we need to immediately satisfy future 1442 // queries. Mark this in NonLocalPointerDeps by setting the 1443 // BBSkipFirstBlockPair pointer to null. This requires reuse of the 1444 // cached value to do more work but not miss the phi trans failure. 1445 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; 1446 NLPI.Pair = BBSkipFirstBlockPair(); 1447 continue; 1448 } 1449 } 1450 1451 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. 1452 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1453 Cache = &CacheInfo->NonLocalDeps; 1454 NumSortedEntries = Cache->size(); 1455 1456 // Since we did phi translation, the "Cache" set won't contain all of the 1457 // results for the query. This is ok (we can still use it to accelerate 1458 // specific block queries) but we can't do the fastpath "return all 1459 // results from the set" Clear out the indicator for this. 1460 CacheInfo->Pair = BBSkipFirstBlockPair(); 1461 SkipFirstBlock = false; 1462 continue; 1463 1464 PredTranslationFailure: 1465 // The following code is "failure"; we can't produce a sane translation 1466 // for the given block. It assumes that we haven't modified any of 1467 // our datastructures while processing the current block. 1468 1469 if (!Cache) { 1470 // Refresh the CacheInfo/Cache pointer if it got invalidated. 1471 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1472 Cache = &CacheInfo->NonLocalDeps; 1473 NumSortedEntries = Cache->size(); 1474 } 1475 1476 // Since we failed phi translation, the "Cache" set won't contain all of the 1477 // results for the query. This is ok (we can still use it to accelerate 1478 // specific block queries) but we can't do the fastpath "return all 1479 // results from the set". Clear out the indicator for this. 1480 CacheInfo->Pair = BBSkipFirstBlockPair(); 1481 1482 // If *nothing* works, mark the pointer as unknown. 1483 // 1484 // If this is the magic first block, return this as a clobber of the whole 1485 // incoming value. Since we can't phi translate to one of the predecessors, 1486 // we have to bail out. 1487 if (SkipFirstBlock) 1488 return true; 1489 1490 bool foundBlock = false; 1491 for (NonLocalDepEntry &I: llvm::reverse(*Cache)) { 1492 if (I.getBB() != BB) 1493 continue; 1494 1495 assert((GotWorklistLimit || I.getResult().isNonLocal() || \ 1496 !DT->isReachableFromEntry(BB)) && 1497 "Should only be here with transparent block"); 1498 foundBlock = true; 1499 I.setResult(MemDepResult::getUnknown()); 1500 Result.push_back(NonLocalDepResult(I.getBB(), I.getResult(), 1501 Pointer.getAddr())); 1502 break; 1503 } 1504 (void)foundBlock; 1505 assert((foundBlock || GotWorklistLimit) && "Current block not in cache?"); 1506 } 1507 1508 // Okay, we're done now. If we added new values to the cache, re-sort it. 1509 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1510 DEBUG(AssertSorted(*Cache)); 1511 return false; 1512 } 1513 1514 /// RemoveCachedNonLocalPointerDependencies - If P exists in 1515 /// CachedNonLocalPointerInfo, remove it. 1516 void MemoryDependenceAnalysis:: 1517 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) { 1518 CachedNonLocalPointerInfo::iterator It = 1519 NonLocalPointerDeps.find(P); 1520 if (It == NonLocalPointerDeps.end()) return; 1521 1522 // Remove all of the entries in the BB->val map. This involves removing 1523 // instructions from the reverse map. 1524 NonLocalDepInfo &PInfo = It->second.NonLocalDeps; 1525 1526 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { 1527 Instruction *Target = PInfo[i].getResult().getInst(); 1528 if (!Target) continue; // Ignore non-local dep results. 1529 assert(Target->getParent() == PInfo[i].getBB()); 1530 1531 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1532 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); 1533 } 1534 1535 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). 1536 NonLocalPointerDeps.erase(It); 1537 } 1538 1539 1540 /// invalidateCachedPointerInfo - This method is used to invalidate cached 1541 /// information about the specified pointer, because it may be too 1542 /// conservative in memdep. This is an optional call that can be used when 1543 /// the client detects an equivalence between the pointer and some other 1544 /// value and replaces the other value with ptr. This can make Ptr available 1545 /// in more places that cached info does not necessarily keep. 1546 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) { 1547 // If Ptr isn't really a pointer, just ignore it. 1548 if (!Ptr->getType()->isPointerTy()) return; 1549 // Flush store info for the pointer. 1550 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); 1551 // Flush load info for the pointer. 1552 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); 1553 } 1554 1555 /// invalidateCachedPredecessors - Clear the PredIteratorCache info. 1556 /// This needs to be done when the CFG changes, e.g., due to splitting 1557 /// critical edges. 1558 void MemoryDependenceAnalysis::invalidateCachedPredecessors() { 1559 PredCache.clear(); 1560 } 1561 1562 /// removeInstruction - Remove an instruction from the dependence analysis, 1563 /// updating the dependence of instructions that previously depended on it. 1564 /// This method attempts to keep the cache coherent using the reverse map. 1565 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) { 1566 // Walk through the Non-local dependencies, removing this one as the value 1567 // for any cached queries. 1568 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); 1569 if (NLDI != NonLocalDeps.end()) { 1570 NonLocalDepInfo &BlockMap = NLDI->second.first; 1571 for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end(); 1572 DI != DE; ++DI) 1573 if (Instruction *Inst = DI->getResult().getInst()) 1574 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); 1575 NonLocalDeps.erase(NLDI); 1576 } 1577 1578 // If we have a cached local dependence query for this instruction, remove it. 1579 // 1580 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); 1581 if (LocalDepEntry != LocalDeps.end()) { 1582 // Remove us from DepInst's reverse set now that the local dep info is gone. 1583 if (Instruction *Inst = LocalDepEntry->second.getInst()) 1584 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); 1585 1586 // Remove this local dependency info. 1587 LocalDeps.erase(LocalDepEntry); 1588 } 1589 1590 // If we have any cached pointer dependencies on this instruction, remove 1591 // them. If the instruction has non-pointer type, then it can't be a pointer 1592 // base. 1593 1594 // Remove it from both the load info and the store info. The instruction 1595 // can't be in either of these maps if it is non-pointer. 1596 if (RemInst->getType()->isPointerTy()) { 1597 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); 1598 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); 1599 } 1600 1601 // Loop over all of the things that depend on the instruction we're removing. 1602 // 1603 SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd; 1604 1605 // If we find RemInst as a clobber or Def in any of the maps for other values, 1606 // we need to replace its entry with a dirty version of the instruction after 1607 // it. If RemInst is a terminator, we use a null dirty value. 1608 // 1609 // Using a dirty version of the instruction after RemInst saves having to scan 1610 // the entire block to get to this point. 1611 MemDepResult NewDirtyVal; 1612 if (!RemInst->isTerminator()) 1613 NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator()); 1614 1615 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); 1616 if (ReverseDepIt != ReverseLocalDeps.end()) { 1617 // RemInst can't be the terminator if it has local stuff depending on it. 1618 assert(!ReverseDepIt->second.empty() && !isa<TerminatorInst>(RemInst) && 1619 "Nothing can locally depend on a terminator"); 1620 1621 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) { 1622 assert(InstDependingOnRemInst != RemInst && 1623 "Already removed our local dep info"); 1624 1625 LocalDeps[InstDependingOnRemInst] = NewDirtyVal; 1626 1627 // Make sure to remember that new things depend on NewDepInst. 1628 assert(NewDirtyVal.getInst() && "There is no way something else can have " 1629 "a local dep on this if it is a terminator!"); 1630 ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(), 1631 InstDependingOnRemInst)); 1632 } 1633 1634 ReverseLocalDeps.erase(ReverseDepIt); 1635 1636 // Add new reverse deps after scanning the set, to avoid invalidating the 1637 // 'ReverseDeps' reference. 1638 while (!ReverseDepsToAdd.empty()) { 1639 ReverseLocalDeps[ReverseDepsToAdd.back().first] 1640 .insert(ReverseDepsToAdd.back().second); 1641 ReverseDepsToAdd.pop_back(); 1642 } 1643 } 1644 1645 ReverseDepIt = ReverseNonLocalDeps.find(RemInst); 1646 if (ReverseDepIt != ReverseNonLocalDeps.end()) { 1647 for (Instruction *I : ReverseDepIt->second) { 1648 assert(I != RemInst && "Already removed NonLocalDep info for RemInst"); 1649 1650 PerInstNLInfo &INLD = NonLocalDeps[I]; 1651 // The information is now dirty! 1652 INLD.second = true; 1653 1654 for (NonLocalDepInfo::iterator DI = INLD.first.begin(), 1655 DE = INLD.first.end(); DI != DE; ++DI) { 1656 if (DI->getResult().getInst() != RemInst) continue; 1657 1658 // Convert to a dirty entry for the subsequent instruction. 1659 DI->setResult(NewDirtyVal); 1660 1661 if (Instruction *NextI = NewDirtyVal.getInst()) 1662 ReverseDepsToAdd.push_back(std::make_pair(NextI, I)); 1663 } 1664 } 1665 1666 ReverseNonLocalDeps.erase(ReverseDepIt); 1667 1668 // Add new reverse deps after scanning the set, to avoid invalidating 'Set' 1669 while (!ReverseDepsToAdd.empty()) { 1670 ReverseNonLocalDeps[ReverseDepsToAdd.back().first] 1671 .insert(ReverseDepsToAdd.back().second); 1672 ReverseDepsToAdd.pop_back(); 1673 } 1674 } 1675 1676 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a 1677 // value in the NonLocalPointerDeps info. 1678 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = 1679 ReverseNonLocalPtrDeps.find(RemInst); 1680 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { 1681 SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd; 1682 1683 for (ValueIsLoadPair P : ReversePtrDepIt->second) { 1684 assert(P.getPointer() != RemInst && 1685 "Already removed NonLocalPointerDeps info for RemInst"); 1686 1687 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; 1688 1689 // The cache is not valid for any specific block anymore. 1690 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); 1691 1692 // Update any entries for RemInst to use the instruction after it. 1693 for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end(); 1694 DI != DE; ++DI) { 1695 if (DI->getResult().getInst() != RemInst) continue; 1696 1697 // Convert to a dirty entry for the subsequent instruction. 1698 DI->setResult(NewDirtyVal); 1699 1700 if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) 1701 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); 1702 } 1703 1704 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its 1705 // subsequent value may invalidate the sortedness. 1706 std::sort(NLPDI.begin(), NLPDI.end()); 1707 } 1708 1709 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); 1710 1711 while (!ReversePtrDepsToAdd.empty()) { 1712 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first] 1713 .insert(ReversePtrDepsToAdd.back().second); 1714 ReversePtrDepsToAdd.pop_back(); 1715 } 1716 } 1717 1718 1719 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); 1720 DEBUG(verifyRemoved(RemInst)); 1721 } 1722 /// verifyRemoved - Verify that the specified instruction does not occur 1723 /// in our internal data structures. This function verifies by asserting in 1724 /// debug builds. 1725 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const { 1726 #ifndef NDEBUG 1727 for (LocalDepMapType::const_iterator I = LocalDeps.begin(), 1728 E = LocalDeps.end(); I != E; ++I) { 1729 assert(I->first != D && "Inst occurs in data structures"); 1730 assert(I->second.getInst() != D && 1731 "Inst occurs in data structures"); 1732 } 1733 1734 for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(), 1735 E = NonLocalPointerDeps.end(); I != E; ++I) { 1736 assert(I->first.getPointer() != D && "Inst occurs in NLPD map key"); 1737 const NonLocalDepInfo &Val = I->second.NonLocalDeps; 1738 for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end(); 1739 II != E; ++II) 1740 assert(II->getResult().getInst() != D && "Inst occurs as NLPD value"); 1741 } 1742 1743 for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(), 1744 E = NonLocalDeps.end(); I != E; ++I) { 1745 assert(I->first != D && "Inst occurs in data structures"); 1746 const PerInstNLInfo &INLD = I->second; 1747 for (NonLocalDepInfo::const_iterator II = INLD.first.begin(), 1748 EE = INLD.first.end(); II != EE; ++II) 1749 assert(II->getResult().getInst() != D && "Inst occurs in data structures"); 1750 } 1751 1752 for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(), 1753 E = ReverseLocalDeps.end(); I != E; ++I) { 1754 assert(I->first != D && "Inst occurs in data structures"); 1755 for (Instruction *Inst : I->second) 1756 assert(Inst != D && "Inst occurs in data structures"); 1757 } 1758 1759 for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(), 1760 E = ReverseNonLocalDeps.end(); 1761 I != E; ++I) { 1762 assert(I->first != D && "Inst occurs in data structures"); 1763 for (Instruction *Inst : I->second) 1764 assert(Inst != D && "Inst occurs in data structures"); 1765 } 1766 1767 for (ReverseNonLocalPtrDepTy::const_iterator 1768 I = ReverseNonLocalPtrDeps.begin(), 1769 E = ReverseNonLocalPtrDeps.end(); I != E; ++I) { 1770 assert(I->first != D && "Inst occurs in rev NLPD map"); 1771 1772 for (ValueIsLoadPair P : I->second) 1773 assert(P != ValueIsLoadPair(D, false) && 1774 P != ValueIsLoadPair(D, true) && 1775 "Inst occurs in ReverseNonLocalPtrDeps map"); 1776 } 1777 #endif 1778 } 1779