1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements an analysis that determines, for a given memory
11 // operation, what preceding memory operations it depends on.  It builds on
12 // alias analysis information, and tries to provide a lazy, caching interface to
13 // a common kind of alias information query.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/MemoryBuiltins.h"
24 #include "llvm/Analysis/PHITransAddr.h"
25 #include "llvm/Analysis/OrderedBasicBlock.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/PredIteratorCache.h"
35 #include "llvm/Support/Debug.h"
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "memdep"
39 
40 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
41 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
42 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
43 
44 STATISTIC(NumCacheNonLocalPtr,
45           "Number of fully cached non-local ptr responses");
46 STATISTIC(NumCacheDirtyNonLocalPtr,
47           "Number of cached, but dirty, non-local ptr responses");
48 STATISTIC(NumUncacheNonLocalPtr,
49           "Number of uncached non-local ptr responses");
50 STATISTIC(NumCacheCompleteNonLocalPtr,
51           "Number of block queries that were completely cached");
52 
53 // Limit for the number of instructions to scan in a block.
54 
55 static cl::opt<unsigned> BlockScanLimit(
56     "memdep-block-scan-limit", cl::Hidden, cl::init(100),
57     cl::desc("The number of instructions to scan in a block in memory "
58              "dependency analysis (default = 100)"));
59 
60 static cl::opt<unsigned> BlockNumberLimit(
61     "memdep-block-number-limit", cl::Hidden, cl::init(1000),
62     cl::desc("The number of blocks to scan during memory "
63              "dependency analysis (default = 1000)"));
64 
65 // Limit on the number of memdep results to process.
66 static const unsigned int NumResultsLimit = 100;
67 
68 char MemoryDependenceAnalysis::ID = 0;
69 
70 // Register this pass...
71 INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep",
72                 "Memory Dependence Analysis", false, true)
73 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
74 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
75 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
76 INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep",
77                       "Memory Dependence Analysis", false, true)
78 
79 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
80     : FunctionPass(ID) {
81   initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry());
82 }
83 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
84 }
85 
86 /// Clean up memory in between runs
87 void MemoryDependenceAnalysis::releaseMemory() {
88   LocalDeps.clear();
89   NonLocalDeps.clear();
90   NonLocalPointerDeps.clear();
91   ReverseLocalDeps.clear();
92   ReverseNonLocalDeps.clear();
93   ReverseNonLocalPtrDeps.clear();
94   PredCache.clear();
95 }
96 
97 /// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
98 ///
99 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
100   AU.setPreservesAll();
101   AU.addRequired<AssumptionCacheTracker>();
102   AU.addRequiredTransitive<AAResultsWrapperPass>();
103   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
104 }
105 
106 bool MemoryDependenceAnalysis::runOnFunction(Function &F) {
107   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
108   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
109   DominatorTreeWrapperPass *DTWP =
110       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
111   DT = DTWP ? &DTWP->getDomTree() : nullptr;
112   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
113   return false;
114 }
115 
116 /// RemoveFromReverseMap - This is a helper function that removes Val from
117 /// 'Inst's set in ReverseMap.  If the set becomes empty, remove Inst's entry.
118 template <typename KeyTy>
119 static void RemoveFromReverseMap(DenseMap<Instruction*,
120                                  SmallPtrSet<KeyTy, 4> > &ReverseMap,
121                                  Instruction *Inst, KeyTy Val) {
122   typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
123   InstIt = ReverseMap.find(Inst);
124   assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
125   bool Found = InstIt->second.erase(Val);
126   assert(Found && "Invalid reverse map!"); (void)Found;
127   if (InstIt->second.empty())
128     ReverseMap.erase(InstIt);
129 }
130 
131 /// GetLocation - If the given instruction references a specific memory
132 /// location, fill in Loc with the details, otherwise set Loc.Ptr to null.
133 /// Return a ModRefInfo value describing the general behavior of the
134 /// instruction.
135 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc,
136                               const TargetLibraryInfo &TLI) {
137   if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
138     if (LI->isUnordered()) {
139       Loc = MemoryLocation::get(LI);
140       return MRI_Ref;
141     }
142     if (LI->getOrdering() == Monotonic) {
143       Loc = MemoryLocation::get(LI);
144       return MRI_ModRef;
145     }
146     Loc = MemoryLocation();
147     return MRI_ModRef;
148   }
149 
150   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
151     if (SI->isUnordered()) {
152       Loc = MemoryLocation::get(SI);
153       return MRI_Mod;
154     }
155     if (SI->getOrdering() == Monotonic) {
156       Loc = MemoryLocation::get(SI);
157       return MRI_ModRef;
158     }
159     Loc = MemoryLocation();
160     return MRI_ModRef;
161   }
162 
163   if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
164     Loc = MemoryLocation::get(V);
165     return MRI_ModRef;
166   }
167 
168   if (const CallInst *CI = isFreeCall(Inst, &TLI)) {
169     // calls to free() deallocate the entire structure
170     Loc = MemoryLocation(CI->getArgOperand(0));
171     return MRI_Mod;
172   }
173 
174   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
175     AAMDNodes AAInfo;
176 
177     switch (II->getIntrinsicID()) {
178     case Intrinsic::lifetime_start:
179     case Intrinsic::lifetime_end:
180     case Intrinsic::invariant_start:
181       II->getAAMetadata(AAInfo);
182       Loc = MemoryLocation(
183           II->getArgOperand(1),
184           cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(), AAInfo);
185       // These intrinsics don't really modify the memory, but returning Mod
186       // will allow them to be handled conservatively.
187       return MRI_Mod;
188     case Intrinsic::invariant_end:
189       II->getAAMetadata(AAInfo);
190       Loc = MemoryLocation(
191           II->getArgOperand(2),
192           cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(), AAInfo);
193       // These intrinsics don't really modify the memory, but returning Mod
194       // will allow them to be handled conservatively.
195       return MRI_Mod;
196     default:
197       break;
198     }
199   }
200 
201   // Otherwise, just do the coarse-grained thing that always works.
202   if (Inst->mayWriteToMemory())
203     return MRI_ModRef;
204   if (Inst->mayReadFromMemory())
205     return MRI_Ref;
206   return MRI_NoModRef;
207 }
208 
209 /// getCallSiteDependencyFrom - Private helper for finding the local
210 /// dependencies of a call site.
211 MemDepResult MemoryDependenceAnalysis::
212 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
213                           BasicBlock::iterator ScanIt, BasicBlock *BB) {
214   unsigned Limit = BlockScanLimit;
215 
216   // Walk backwards through the block, looking for dependencies
217   while (ScanIt != BB->begin()) {
218     // Limit the amount of scanning we do so we don't end up with quadratic
219     // running time on extreme testcases.
220     --Limit;
221     if (!Limit)
222       return MemDepResult::getUnknown();
223 
224     Instruction *Inst = &*--ScanIt;
225 
226     // If this inst is a memory op, get the pointer it accessed
227     MemoryLocation Loc;
228     ModRefInfo MR = GetLocation(Inst, Loc, *TLI);
229     if (Loc.Ptr) {
230       // A simple instruction.
231       if (AA->getModRefInfo(CS, Loc) != MRI_NoModRef)
232         return MemDepResult::getClobber(Inst);
233       continue;
234     }
235 
236     if (auto InstCS = CallSite(Inst)) {
237       // Debug intrinsics don't cause dependences.
238       if (isa<DbgInfoIntrinsic>(Inst)) continue;
239       // If these two calls do not interfere, look past it.
240       switch (AA->getModRefInfo(CS, InstCS)) {
241       case MRI_NoModRef:
242         // If the two calls are the same, return InstCS as a Def, so that
243         // CS can be found redundant and eliminated.
244         if (isReadOnlyCall && !(MR & MRI_Mod) &&
245             CS.getInstruction()->isIdenticalToWhenDefined(Inst))
246           return MemDepResult::getDef(Inst);
247 
248         // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
249         // keep scanning.
250         continue;
251       default:
252         return MemDepResult::getClobber(Inst);
253       }
254     }
255 
256     // If we could not obtain a pointer for the instruction and the instruction
257     // touches memory then assume that this is a dependency.
258     if (MR != MRI_NoModRef)
259       return MemDepResult::getClobber(Inst);
260   }
261 
262   // No dependence found.  If this is the entry block of the function, it is
263   // unknown, otherwise it is non-local.
264   if (BB != &BB->getParent()->getEntryBlock())
265     return MemDepResult::getNonLocal();
266   return MemDepResult::getNonFuncLocal();
267 }
268 
269 /// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that
270 /// would fully overlap MemLoc if done as a wider legal integer load.
271 ///
272 /// MemLocBase, MemLocOffset are lazily computed here the first time the
273 /// base/offs of memloc is needed.
274 static bool isLoadLoadClobberIfExtendedToFullWidth(const MemoryLocation &MemLoc,
275                                                    const Value *&MemLocBase,
276                                                    int64_t &MemLocOffs,
277                                                    const LoadInst *LI) {
278   const DataLayout &DL = LI->getModule()->getDataLayout();
279 
280   // If we haven't already computed the base/offset of MemLoc, do so now.
281   if (!MemLocBase)
282     MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, DL);
283 
284   unsigned Size = MemoryDependenceAnalysis::getLoadLoadClobberFullWidthSize(
285       MemLocBase, MemLocOffs, MemLoc.Size, LI);
286   return Size != 0;
287 }
288 
289 /// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that
290 /// looks at a memory location for a load (specified by MemLocBase, Offs,
291 /// and Size) and compares it against a load.  If the specified load could
292 /// be safely widened to a larger integer load that is 1) still efficient,
293 /// 2) safe for the target, and 3) would provide the specified memory
294 /// location value, then this function returns the size in bytes of the
295 /// load width to use.  If not, this returns zero.
296 unsigned MemoryDependenceAnalysis::getLoadLoadClobberFullWidthSize(
297     const Value *MemLocBase, int64_t MemLocOffs, unsigned MemLocSize,
298     const LoadInst *LI) {
299   // We can only extend simple integer loads.
300   if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0;
301 
302   // Load widening is hostile to ThreadSanitizer: it may cause false positives
303   // or make the reports more cryptic (access sizes are wrong).
304   if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
305     return 0;
306 
307   const DataLayout &DL = LI->getModule()->getDataLayout();
308 
309   // Get the base of this load.
310   int64_t LIOffs = 0;
311   const Value *LIBase =
312       GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL);
313 
314   // If the two pointers are not based on the same pointer, we can't tell that
315   // they are related.
316   if (LIBase != MemLocBase) return 0;
317 
318   // Okay, the two values are based on the same pointer, but returned as
319   // no-alias.  This happens when we have things like two byte loads at "P+1"
320   // and "P+3".  Check to see if increasing the size of the "LI" load up to its
321   // alignment (or the largest native integer type) will allow us to load all
322   // the bits required by MemLoc.
323 
324   // If MemLoc is before LI, then no widening of LI will help us out.
325   if (MemLocOffs < LIOffs) return 0;
326 
327   // Get the alignment of the load in bytes.  We assume that it is safe to load
328   // any legal integer up to this size without a problem.  For example, if we're
329   // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
330   // widen it up to an i32 load.  If it is known 2-byte aligned, we can widen it
331   // to i16.
332   unsigned LoadAlign = LI->getAlignment();
333 
334   int64_t MemLocEnd = MemLocOffs+MemLocSize;
335 
336   // If no amount of rounding up will let MemLoc fit into LI, then bail out.
337   if (LIOffs+LoadAlign < MemLocEnd) return 0;
338 
339   // This is the size of the load to try.  Start with the next larger power of
340   // two.
341   unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U;
342   NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
343 
344   while (1) {
345     // If this load size is bigger than our known alignment or would not fit
346     // into a native integer register, then we fail.
347     if (NewLoadByteSize > LoadAlign ||
348         !DL.fitsInLegalInteger(NewLoadByteSize*8))
349       return 0;
350 
351     if (LIOffs + NewLoadByteSize > MemLocEnd &&
352         LI->getParent()->getParent()->hasFnAttribute(
353             Attribute::SanitizeAddress))
354       // We will be reading past the location accessed by the original program.
355       // While this is safe in a regular build, Address Safety analysis tools
356       // may start reporting false warnings. So, don't do widening.
357       return 0;
358 
359     // If a load of this width would include all of MemLoc, then we succeed.
360     if (LIOffs+NewLoadByteSize >= MemLocEnd)
361       return NewLoadByteSize;
362 
363     NewLoadByteSize <<= 1;
364   }
365 }
366 
367 static bool isVolatile(Instruction *Inst) {
368   if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
369     return LI->isVolatile();
370   else if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
371     return SI->isVolatile();
372   else if (AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(Inst))
373     return AI->isVolatile();
374   return false;
375 }
376 
377 
378 /// getPointerDependencyFrom - Return the instruction on which a memory
379 /// location depends.  If isLoad is true, this routine ignores may-aliases with
380 /// read-only operations.  If isLoad is false, this routine ignores may-aliases
381 /// with reads from read-only locations.  If possible, pass the query
382 /// instruction as well; this function may take advantage of the metadata
383 /// annotated to the query instruction to refine the result.
384 MemDepResult MemoryDependenceAnalysis::getPointerDependencyFrom(
385     const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
386     BasicBlock *BB, Instruction *QueryInst) {
387 
388   if (QueryInst != nullptr) {
389     if (auto *LI = dyn_cast<LoadInst>(QueryInst)) {
390       MemDepResult invariantGroupDependency =
391           getInvariantGroupPointerDependency(LI, BB);
392 
393       if (invariantGroupDependency.isDef())
394         return invariantGroupDependency;
395     }
396   }
397   return getSimplePointerDependencyFrom(MemLoc, isLoad, ScanIt, BB, QueryInst);
398 }
399 
400 MemDepResult
401 MemoryDependenceAnalysis::getInvariantGroupPointerDependency(LoadInst *LI,
402                                                              BasicBlock *BB) {
403   Value *LoadOperand = LI->getPointerOperand();
404   // It's is not safe to walk the use list of global value, because function
405   // passes aren't allowed to look outside their functions.
406   if (isa<GlobalValue>(LoadOperand))
407     return MemDepResult::getUnknown();
408 
409   auto *InvariantGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group);
410   if (!InvariantGroupMD)
411     return MemDepResult::getUnknown();
412 
413   MemDepResult Result = MemDepResult::getUnknown();
414   llvm::SmallSet<Value *, 14> Seen;
415   // Queue to process all pointers that are equivalent to load operand.
416   llvm::SmallVector<Value *, 8> LoadOperandsQueue;
417   LoadOperandsQueue.push_back(LoadOperand);
418   while (!LoadOperandsQueue.empty()) {
419     Value *Ptr = LoadOperandsQueue.pop_back_val();
420     if (isa<GlobalValue>(Ptr))
421       continue;
422 
423     if (auto *BCI = dyn_cast<BitCastInst>(Ptr)) {
424       if (!Seen.count(BCI->getOperand(0))) {
425         LoadOperandsQueue.push_back(BCI->getOperand(0));
426         Seen.insert(BCI->getOperand(0));
427       }
428     }
429 
430     for (Use &Us : Ptr->uses()) {
431       auto *U = dyn_cast<Instruction>(Us.getUser());
432       if (!U || U == LI || !DT->dominates(U, LI))
433         continue;
434 
435       if (auto *BCI = dyn_cast<BitCastInst>(U)) {
436         if (!Seen.count(BCI)) {
437           LoadOperandsQueue.push_back(BCI);
438           Seen.insert(BCI);
439         }
440         continue;
441       }
442       // If we hit load/store with the same invariant.group metadata (and the
443       // same pointer operand) we can assume that value pointed by pointer
444       // operand didn't change.
445       if ((isa<LoadInst>(U) || isa<StoreInst>(U)) && U->getParent() == BB &&
446           U->getMetadata(LLVMContext::MD_invariant_group) == InvariantGroupMD)
447         return MemDepResult::getDef(U);
448     }
449   }
450   return Result;
451 }
452 
453 MemDepResult MemoryDependenceAnalysis::getSimplePointerDependencyFrom(
454     const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
455     BasicBlock *BB, Instruction *QueryInst) {
456 
457   const Value *MemLocBase = nullptr;
458   int64_t MemLocOffset = 0;
459   unsigned Limit = BlockScanLimit;
460   bool isInvariantLoad = false;
461 
462   // We must be careful with atomic accesses, as they may allow another thread
463   //   to touch this location, cloberring it. We are conservative: if the
464   //   QueryInst is not a simple (non-atomic) memory access, we automatically
465   //   return getClobber.
466   // If it is simple, we know based on the results of
467   // "Compiler testing via a theory of sound optimisations in the C11/C++11
468   //   memory model" in PLDI 2013, that a non-atomic location can only be
469   //   clobbered between a pair of a release and an acquire action, with no
470   //   access to the location in between.
471   // Here is an example for giving the general intuition behind this rule.
472   // In the following code:
473   //   store x 0;
474   //   release action; [1]
475   //   acquire action; [4]
476   //   %val = load x;
477   // It is unsafe to replace %val by 0 because another thread may be running:
478   //   acquire action; [2]
479   //   store x 42;
480   //   release action; [3]
481   // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
482   // being 42. A key property of this program however is that if either
483   // 1 or 4 were missing, there would be a race between the store of 42
484   // either the store of 0 or the load (making the whole progam racy).
485   // The paper mentioned above shows that the same property is respected
486   // by every program that can detect any optimisation of that kind: either
487   // it is racy (undefined) or there is a release followed by an acquire
488   // between the pair of accesses under consideration.
489 
490   // If the load is invariant, we "know" that it doesn't alias *any* write. We
491   // do want to respect mustalias results since defs are useful for value
492   // forwarding, but any mayalias write can be assumed to be noalias.
493   // Arguably, this logic should be pushed inside AliasAnalysis itself.
494   if (isLoad && QueryInst) {
495     LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
496     if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr)
497       isInvariantLoad = true;
498   }
499 
500   const DataLayout &DL = BB->getModule()->getDataLayout();
501 
502   // Create a numbered basic block to lazily compute and cache instruction
503   // positions inside a BB. This is used to provide fast queries for relative
504   // position between two instructions in a BB and can be used by
505   // AliasAnalysis::callCapturesBefore.
506   OrderedBasicBlock OBB(BB);
507 
508   // Return "true" if and only if the instruction I is either a non-simple
509   // load or a non-simple store.
510   auto isNonSimpleLoadOrStore = [] (Instruction *I) -> bool {
511     if (auto *LI = dyn_cast<LoadInst>(I))
512       return !LI->isSimple();
513     if (auto *SI = dyn_cast<StoreInst>(I))
514       return !SI->isSimple();
515     return false;
516   };
517 
518   // Return "true" if I is not a load and not a store, but it does access
519   // memory.
520   auto isOtherMemAccess = [] (Instruction *I) -> bool {
521     return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory();
522   };
523 
524   // Walk backwards through the basic block, looking for dependencies.
525   while (ScanIt != BB->begin()) {
526     Instruction *Inst = &*--ScanIt;
527 
528     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
529       // Debug intrinsics don't (and can't) cause dependencies.
530       if (isa<DbgInfoIntrinsic>(II)) continue;
531 
532     // Limit the amount of scanning we do so we don't end up with quadratic
533     // running time on extreme testcases.
534     --Limit;
535     if (!Limit)
536       return MemDepResult::getUnknown();
537 
538     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
539       // If we reach a lifetime begin or end marker, then the query ends here
540       // because the value is undefined.
541       if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
542         // FIXME: This only considers queries directly on the invariant-tagged
543         // pointer, not on query pointers that are indexed off of them.  It'd
544         // be nice to handle that at some point (the right approach is to use
545         // GetPointerBaseWithConstantOffset).
546         if (AA->isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc))
547           return MemDepResult::getDef(II);
548         continue;
549       }
550     }
551 
552     // Values depend on loads if the pointers are must aliased.  This means that
553     // a load depends on another must aliased load from the same value.
554     // One exception is atomic loads: a value can depend on an atomic load that it
555     // does not alias with when this atomic load indicates that another thread may
556     // be accessing the location.
557     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
558 
559       // While volatile access cannot be eliminated, they do not have to clobber
560       // non-aliasing locations, as normal accesses, for example, can be safely
561       // reordered with volatile accesses.
562       if (LI->isVolatile()) {
563         if (!QueryInst)
564           // Original QueryInst *may* be volatile
565           return MemDepResult::getClobber(LI);
566         if (isVolatile(QueryInst))
567           // Ordering required if QueryInst is itself volatile
568           return MemDepResult::getClobber(LI);
569         // Otherwise, volatile doesn't imply any special ordering
570       }
571 
572       // Atomic loads have complications involved.
573       // A Monotonic (or higher) load is OK if the query inst is itself not atomic.
574       // FIXME: This is overly conservative.
575       if (LI->isAtomic() && LI->getOrdering() > Unordered) {
576         if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
577             isOtherMemAccess(QueryInst))
578           return MemDepResult::getClobber(LI);
579         if (LI->getOrdering() != Monotonic)
580           return MemDepResult::getClobber(LI);
581       }
582 
583       MemoryLocation LoadLoc = MemoryLocation::get(LI);
584 
585       // If we found a pointer, check if it could be the same as our pointer.
586       AliasResult R = AA->alias(LoadLoc, MemLoc);
587 
588       if (isLoad) {
589         if (R == NoAlias) {
590           // If this is an over-aligned integer load (for example,
591           // "load i8* %P, align 4") see if it would obviously overlap with the
592           // queried location if widened to a larger load (e.g. if the queried
593           // location is 1 byte at P+1).  If so, return it as a load/load
594           // clobber result, allowing the client to decide to widen the load if
595           // it wants to.
596           if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
597             if (LI->getAlignment() * 8 > ITy->getPrimitiveSizeInBits() &&
598                 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase,
599                                                        MemLocOffset, LI))
600               return MemDepResult::getClobber(Inst);
601           }
602           continue;
603         }
604 
605         // Must aliased loads are defs of each other.
606         if (R == MustAlias)
607           return MemDepResult::getDef(Inst);
608 
609 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
610       // in terms of clobbering loads, but since it does this by looking
611       // at the clobbering load directly, it doesn't know about any
612       // phi translation that may have happened along the way.
613 
614         // If we have a partial alias, then return this as a clobber for the
615         // client to handle.
616         if (R == PartialAlias)
617           return MemDepResult::getClobber(Inst);
618 #endif
619 
620         // Random may-alias loads don't depend on each other without a
621         // dependence.
622         continue;
623       }
624 
625       // Stores don't depend on other no-aliased accesses.
626       if (R == NoAlias)
627         continue;
628 
629       // Stores don't alias loads from read-only memory.
630       if (AA->pointsToConstantMemory(LoadLoc))
631         continue;
632 
633       // Stores depend on may/must aliased loads.
634       return MemDepResult::getDef(Inst);
635     }
636 
637     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
638       // Atomic stores have complications involved.
639       // A Monotonic store is OK if the query inst is itself not atomic.
640       // FIXME: This is overly conservative.
641       if (!SI->isUnordered() && SI->isAtomic()) {
642         if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
643             isOtherMemAccess(QueryInst))
644           return MemDepResult::getClobber(SI);
645         if (SI->getOrdering() != Monotonic)
646           return MemDepResult::getClobber(SI);
647       }
648 
649       // FIXME: this is overly conservative.
650       // While volatile access cannot be eliminated, they do not have to clobber
651       // non-aliasing locations, as normal accesses can for example be reordered
652       // with volatile accesses.
653       if (SI->isVolatile())
654         if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
655             isOtherMemAccess(QueryInst))
656           return MemDepResult::getClobber(SI);
657 
658       // If alias analysis can tell that this store is guaranteed to not modify
659       // the query pointer, ignore it.  Use getModRefInfo to handle cases where
660       // the query pointer points to constant memory etc.
661       if (AA->getModRefInfo(SI, MemLoc) == MRI_NoModRef)
662         continue;
663 
664       // Ok, this store might clobber the query pointer.  Check to see if it is
665       // a must alias: in this case, we want to return this as a def.
666       MemoryLocation StoreLoc = MemoryLocation::get(SI);
667 
668       // If we found a pointer, check if it could be the same as our pointer.
669       AliasResult R = AA->alias(StoreLoc, MemLoc);
670 
671       if (R == NoAlias)
672         continue;
673       if (R == MustAlias)
674         return MemDepResult::getDef(Inst);
675       if (isInvariantLoad)
676        continue;
677       return MemDepResult::getClobber(Inst);
678     }
679 
680     // If this is an allocation, and if we know that the accessed pointer is to
681     // the allocation, return Def.  This means that there is no dependence and
682     // the access can be optimized based on that.  For example, a load could
683     // turn into undef.
684     // Note: Only determine this to be a malloc if Inst is the malloc call, not
685     // a subsequent bitcast of the malloc call result.  There can be stores to
686     // the malloced memory between the malloc call and its bitcast uses, and we
687     // need to continue scanning until the malloc call.
688     if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, TLI)) {
689       const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL);
690 
691       if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr))
692         return MemDepResult::getDef(Inst);
693       if (isInvariantLoad)
694         continue;
695       // Be conservative if the accessed pointer may alias the allocation -
696       // fallback to the generic handling below.
697       if ((AA->alias(Inst, AccessPtr) == NoAlias) &&
698           // If the allocation is not aliased and does not read memory (like
699           // strdup), it is safe to ignore.
700           (isa<AllocaInst>(Inst) || isMallocLikeFn(Inst, TLI) ||
701            isCallocLikeFn(Inst, TLI)))
702         continue;
703     }
704 
705     if (isInvariantLoad)
706        continue;
707 
708     // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
709     ModRefInfo MR = AA->getModRefInfo(Inst, MemLoc);
710     // If necessary, perform additional analysis.
711     if (MR == MRI_ModRef)
712       MR = AA->callCapturesBefore(Inst, MemLoc, DT, &OBB);
713     switch (MR) {
714     case MRI_NoModRef:
715       // If the call has no effect on the queried pointer, just ignore it.
716       continue;
717     case MRI_Mod:
718       return MemDepResult::getClobber(Inst);
719     case MRI_Ref:
720       // If the call is known to never store to the pointer, and if this is a
721       // load query, we can safely ignore it (scan past it).
722       if (isLoad)
723         continue;
724     default:
725       // Otherwise, there is a potential dependence.  Return a clobber.
726       return MemDepResult::getClobber(Inst);
727     }
728   }
729 
730   // No dependence found.  If this is the entry block of the function, it is
731   // unknown, otherwise it is non-local.
732   if (BB != &BB->getParent()->getEntryBlock())
733     return MemDepResult::getNonLocal();
734   return MemDepResult::getNonFuncLocal();
735 }
736 
737 /// getDependency - Return the instruction on which a memory operation
738 /// depends.
739 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
740   Instruction *ScanPos = QueryInst;
741 
742   // Check for a cached result
743   MemDepResult &LocalCache = LocalDeps[QueryInst];
744 
745   // If the cached entry is non-dirty, just return it.  Note that this depends
746   // on MemDepResult's default constructing to 'dirty'.
747   if (!LocalCache.isDirty())
748     return LocalCache;
749 
750   // Otherwise, if we have a dirty entry, we know we can start the scan at that
751   // instruction, which may save us some work.
752   if (Instruction *Inst = LocalCache.getInst()) {
753     ScanPos = Inst;
754 
755     RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
756   }
757 
758   BasicBlock *QueryParent = QueryInst->getParent();
759 
760   // Do the scan.
761   if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
762     // No dependence found.  If this is the entry block of the function, it is
763     // unknown, otherwise it is non-local.
764     if (QueryParent != &QueryParent->getParent()->getEntryBlock())
765       LocalCache = MemDepResult::getNonLocal();
766     else
767       LocalCache = MemDepResult::getNonFuncLocal();
768   } else {
769     MemoryLocation MemLoc;
770     ModRefInfo MR = GetLocation(QueryInst, MemLoc, *TLI);
771     if (MemLoc.Ptr) {
772       // If we can do a pointer scan, make it happen.
773       bool isLoad = !(MR & MRI_Mod);
774       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst))
775         isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
776 
777       LocalCache = getPointerDependencyFrom(
778           MemLoc, isLoad, ScanPos->getIterator(), QueryParent, QueryInst);
779     } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
780       CallSite QueryCS(QueryInst);
781       bool isReadOnly = AA->onlyReadsMemory(QueryCS);
782       LocalCache = getCallSiteDependencyFrom(
783           QueryCS, isReadOnly, ScanPos->getIterator(), QueryParent);
784     } else
785       // Non-memory instruction.
786       LocalCache = MemDepResult::getUnknown();
787   }
788 
789   // Remember the result!
790   if (Instruction *I = LocalCache.getInst())
791     ReverseLocalDeps[I].insert(QueryInst);
792 
793   return LocalCache;
794 }
795 
796 #ifndef NDEBUG
797 /// AssertSorted - This method is used when -debug is specified to verify that
798 /// cache arrays are properly kept sorted.
799 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
800                          int Count = -1) {
801   if (Count == -1) Count = Cache.size();
802   assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) &&
803          "Cache isn't sorted!");
804 }
805 #endif
806 
807 /// getNonLocalCallDependency - Perform a full dependency query for the
808 /// specified call, returning the set of blocks that the value is
809 /// potentially live across.  The returned set of results will include a
810 /// "NonLocal" result for all blocks where the value is live across.
811 ///
812 /// This method assumes the instruction returns a "NonLocal" dependency
813 /// within its own block.
814 ///
815 /// This returns a reference to an internal data structure that may be
816 /// invalidated on the next non-local query or when an instruction is
817 /// removed.  Clients must copy this data if they want it around longer than
818 /// that.
819 const MemoryDependenceAnalysis::NonLocalDepInfo &
820 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
821   assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
822  "getNonLocalCallDependency should only be used on calls with non-local deps!");
823   PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
824   NonLocalDepInfo &Cache = CacheP.first;
825 
826   /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
827   /// the cached case, this can happen due to instructions being deleted etc. In
828   /// the uncached case, this starts out as the set of predecessors we care
829   /// about.
830   SmallVector<BasicBlock*, 32> DirtyBlocks;
831 
832   if (!Cache.empty()) {
833     // Okay, we have a cache entry.  If we know it is not dirty, just return it
834     // with no computation.
835     if (!CacheP.second) {
836       ++NumCacheNonLocal;
837       return Cache;
838     }
839 
840     // If we already have a partially computed set of results, scan them to
841     // determine what is dirty, seeding our initial DirtyBlocks worklist.
842     for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
843        I != E; ++I)
844       if (I->getResult().isDirty())
845         DirtyBlocks.push_back(I->getBB());
846 
847     // Sort the cache so that we can do fast binary search lookups below.
848     std::sort(Cache.begin(), Cache.end());
849 
850     ++NumCacheDirtyNonLocal;
851     //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
852     //     << Cache.size() << " cached: " << *QueryInst;
853   } else {
854     // Seed DirtyBlocks with each of the preds of QueryInst's block.
855     BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
856     for (BasicBlock *Pred : PredCache.get(QueryBB))
857       DirtyBlocks.push_back(Pred);
858     ++NumUncacheNonLocal;
859   }
860 
861   // isReadonlyCall - If this is a read-only call, we can be more aggressive.
862   bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
863 
864   SmallPtrSet<BasicBlock*, 32> Visited;
865 
866   unsigned NumSortedEntries = Cache.size();
867   DEBUG(AssertSorted(Cache));
868 
869   // Iterate while we still have blocks to update.
870   while (!DirtyBlocks.empty()) {
871     BasicBlock *DirtyBB = DirtyBlocks.back();
872     DirtyBlocks.pop_back();
873 
874     // Already processed this block?
875     if (!Visited.insert(DirtyBB).second)
876       continue;
877 
878     // Do a binary search to see if we already have an entry for this block in
879     // the cache set.  If so, find it.
880     DEBUG(AssertSorted(Cache, NumSortedEntries));
881     NonLocalDepInfo::iterator Entry =
882       std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
883                        NonLocalDepEntry(DirtyBB));
884     if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
885       --Entry;
886 
887     NonLocalDepEntry *ExistingResult = nullptr;
888     if (Entry != Cache.begin()+NumSortedEntries &&
889         Entry->getBB() == DirtyBB) {
890       // If we already have an entry, and if it isn't already dirty, the block
891       // is done.
892       if (!Entry->getResult().isDirty())
893         continue;
894 
895       // Otherwise, remember this slot so we can update the value.
896       ExistingResult = &*Entry;
897     }
898 
899     // If the dirty entry has a pointer, start scanning from it so we don't have
900     // to rescan the entire block.
901     BasicBlock::iterator ScanPos = DirtyBB->end();
902     if (ExistingResult) {
903       if (Instruction *Inst = ExistingResult->getResult().getInst()) {
904         ScanPos = Inst->getIterator();
905         // We're removing QueryInst's use of Inst.
906         RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
907                              QueryCS.getInstruction());
908       }
909     }
910 
911     // Find out if this block has a local dependency for QueryInst.
912     MemDepResult Dep;
913 
914     if (ScanPos != DirtyBB->begin()) {
915       Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
916     } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
917       // No dependence found.  If this is the entry block of the function, it is
918       // a clobber, otherwise it is unknown.
919       Dep = MemDepResult::getNonLocal();
920     } else {
921       Dep = MemDepResult::getNonFuncLocal();
922     }
923 
924     // If we had a dirty entry for the block, update it.  Otherwise, just add
925     // a new entry.
926     if (ExistingResult)
927       ExistingResult->setResult(Dep);
928     else
929       Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
930 
931     // If the block has a dependency (i.e. it isn't completely transparent to
932     // the value), remember the association!
933     if (!Dep.isNonLocal()) {
934       // Keep the ReverseNonLocalDeps map up to date so we can efficiently
935       // update this when we remove instructions.
936       if (Instruction *Inst = Dep.getInst())
937         ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
938     } else {
939 
940       // If the block *is* completely transparent to the load, we need to check
941       // the predecessors of this block.  Add them to our worklist.
942       for (BasicBlock *Pred : PredCache.get(DirtyBB))
943         DirtyBlocks.push_back(Pred);
944     }
945   }
946 
947   return Cache;
948 }
949 
950 /// getNonLocalPointerDependency - Perform a full dependency query for an
951 /// access to the specified (non-volatile) memory location, returning the
952 /// set of instructions that either define or clobber the value.
953 ///
954 /// This method assumes the pointer has a "NonLocal" dependency within its
955 /// own block.
956 ///
957 void MemoryDependenceAnalysis::
958 getNonLocalPointerDependency(Instruction *QueryInst,
959                              SmallVectorImpl<NonLocalDepResult> &Result) {
960   const MemoryLocation Loc = MemoryLocation::get(QueryInst);
961   bool isLoad = isa<LoadInst>(QueryInst);
962   BasicBlock *FromBB = QueryInst->getParent();
963   assert(FromBB);
964 
965   assert(Loc.Ptr->getType()->isPointerTy() &&
966          "Can't get pointer deps of a non-pointer!");
967   Result.clear();
968 
969   // This routine does not expect to deal with volatile instructions.
970   // Doing so would require piping through the QueryInst all the way through.
971   // TODO: volatiles can't be elided, but they can be reordered with other
972   // non-volatile accesses.
973 
974   // We currently give up on any instruction which is ordered, but we do handle
975   // atomic instructions which are unordered.
976   // TODO: Handle ordered instructions
977   auto isOrdered = [](Instruction *Inst) {
978     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
979       return !LI->isUnordered();
980     } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
981       return !SI->isUnordered();
982     }
983     return false;
984   };
985   if (isVolatile(QueryInst) || isOrdered(QueryInst)) {
986     Result.push_back(NonLocalDepResult(FromBB,
987                                        MemDepResult::getUnknown(),
988                                        const_cast<Value *>(Loc.Ptr)));
989     return;
990   }
991   const DataLayout &DL = FromBB->getModule()->getDataLayout();
992   PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, AC);
993 
994   // This is the set of blocks we've inspected, and the pointer we consider in
995   // each block.  Because of critical edges, we currently bail out if querying
996   // a block with multiple different pointers.  This can happen during PHI
997   // translation.
998   DenseMap<BasicBlock*, Value*> Visited;
999   if (!getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB,
1000                                    Result, Visited, true))
1001     return;
1002   Result.clear();
1003   Result.push_back(NonLocalDepResult(FromBB,
1004                                      MemDepResult::getUnknown(),
1005                                      const_cast<Value *>(Loc.Ptr)));
1006 }
1007 
1008 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with
1009 /// Pointer/PointeeSize using either cached information in Cache or by doing a
1010 /// lookup (which may use dirty cache info if available).  If we do a lookup,
1011 /// add the result to the cache.
1012 MemDepResult MemoryDependenceAnalysis::GetNonLocalInfoForBlock(
1013     Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad,
1014     BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
1015 
1016   // Do a binary search to see if we already have an entry for this block in
1017   // the cache set.  If so, find it.
1018   NonLocalDepInfo::iterator Entry =
1019     std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
1020                      NonLocalDepEntry(BB));
1021   if (Entry != Cache->begin() && (Entry-1)->getBB() == BB)
1022     --Entry;
1023 
1024   NonLocalDepEntry *ExistingResult = nullptr;
1025   if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB)
1026     ExistingResult = &*Entry;
1027 
1028   // If we have a cached entry, and it is non-dirty, use it as the value for
1029   // this dependency.
1030   if (ExistingResult && !ExistingResult->getResult().isDirty()) {
1031     ++NumCacheNonLocalPtr;
1032     return ExistingResult->getResult();
1033   }
1034 
1035   // Otherwise, we have to scan for the value.  If we have a dirty cache
1036   // entry, start scanning from its position, otherwise we scan from the end
1037   // of the block.
1038   BasicBlock::iterator ScanPos = BB->end();
1039   if (ExistingResult && ExistingResult->getResult().getInst()) {
1040     assert(ExistingResult->getResult().getInst()->getParent() == BB &&
1041            "Instruction invalidated?");
1042     ++NumCacheDirtyNonLocalPtr;
1043     ScanPos = ExistingResult->getResult().getInst()->getIterator();
1044 
1045     // Eliminating the dirty entry from 'Cache', so update the reverse info.
1046     ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
1047     RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey);
1048   } else {
1049     ++NumUncacheNonLocalPtr;
1050   }
1051 
1052   // Scan the block for the dependency.
1053   MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB,
1054                                               QueryInst);
1055 
1056   // If we had a dirty entry for the block, update it.  Otherwise, just add
1057   // a new entry.
1058   if (ExistingResult)
1059     ExistingResult->setResult(Dep);
1060   else
1061     Cache->push_back(NonLocalDepEntry(BB, Dep));
1062 
1063   // If the block has a dependency (i.e. it isn't completely transparent to
1064   // the value), remember the reverse association because we just added it
1065   // to Cache!
1066   if (!Dep.isDef() && !Dep.isClobber())
1067     return Dep;
1068 
1069   // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
1070   // update MemDep when we remove instructions.
1071   Instruction *Inst = Dep.getInst();
1072   assert(Inst && "Didn't depend on anything?");
1073   ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
1074   ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
1075   return Dep;
1076 }
1077 
1078 /// SortNonLocalDepInfoCache - Sort the NonLocalDepInfo cache, given a certain
1079 /// number of elements in the array that are already properly ordered.  This is
1080 /// optimized for the case when only a few entries are added.
1081 static void
1082 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
1083                          unsigned NumSortedEntries) {
1084   switch (Cache.size() - NumSortedEntries) {
1085   case 0:
1086     // done, no new entries.
1087     break;
1088   case 2: {
1089     // Two new entries, insert the last one into place.
1090     NonLocalDepEntry Val = Cache.back();
1091     Cache.pop_back();
1092     MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
1093       std::upper_bound(Cache.begin(), Cache.end()-1, Val);
1094     Cache.insert(Entry, Val);
1095     // FALL THROUGH.
1096   }
1097   case 1:
1098     // One new entry, Just insert the new value at the appropriate position.
1099     if (Cache.size() != 1) {
1100       NonLocalDepEntry Val = Cache.back();
1101       Cache.pop_back();
1102       MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
1103         std::upper_bound(Cache.begin(), Cache.end(), Val);
1104       Cache.insert(Entry, Val);
1105     }
1106     break;
1107   default:
1108     // Added many values, do a full scale sort.
1109     std::sort(Cache.begin(), Cache.end());
1110     break;
1111   }
1112 }
1113 
1114 /// getNonLocalPointerDepFromBB - Perform a dependency query based on
1115 /// pointer/pointeesize starting at the end of StartBB.  Add any clobber/def
1116 /// results to the results vector and keep track of which blocks are visited in
1117 /// 'Visited'.
1118 ///
1119 /// This has special behavior for the first block queries (when SkipFirstBlock
1120 /// is true).  In this special case, it ignores the contents of the specified
1121 /// block and starts returning dependence info for its predecessors.
1122 ///
1123 /// This function returns false on success, or true to indicate that it could
1124 /// not compute dependence information for some reason.  This should be treated
1125 /// as a clobber dependence on the first instruction in the predecessor block.
1126 bool MemoryDependenceAnalysis::getNonLocalPointerDepFromBB(
1127     Instruction *QueryInst, const PHITransAddr &Pointer,
1128     const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB,
1129     SmallVectorImpl<NonLocalDepResult> &Result,
1130     DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock) {
1131   // Look up the cached info for Pointer.
1132   ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
1133 
1134   // Set up a temporary NLPI value. If the map doesn't yet have an entry for
1135   // CacheKey, this value will be inserted as the associated value. Otherwise,
1136   // it'll be ignored, and we'll have to check to see if the cached size and
1137   // aa tags are consistent with the current query.
1138   NonLocalPointerInfo InitialNLPI;
1139   InitialNLPI.Size = Loc.Size;
1140   InitialNLPI.AATags = Loc.AATags;
1141 
1142   // Get the NLPI for CacheKey, inserting one into the map if it doesn't
1143   // already have one.
1144   std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
1145     NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
1146   NonLocalPointerInfo *CacheInfo = &Pair.first->second;
1147 
1148   // If we already have a cache entry for this CacheKey, we may need to do some
1149   // work to reconcile the cache entry and the current query.
1150   if (!Pair.second) {
1151     if (CacheInfo->Size < Loc.Size) {
1152       // The query's Size is greater than the cached one. Throw out the
1153       // cached data and proceed with the query at the greater size.
1154       CacheInfo->Pair = BBSkipFirstBlockPair();
1155       CacheInfo->Size = Loc.Size;
1156       for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
1157            DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
1158         if (Instruction *Inst = DI->getResult().getInst())
1159           RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1160       CacheInfo->NonLocalDeps.clear();
1161     } else if (CacheInfo->Size > Loc.Size) {
1162       // This query's Size is less than the cached one. Conservatively restart
1163       // the query using the greater size.
1164       return getNonLocalPointerDepFromBB(QueryInst, Pointer,
1165                                          Loc.getWithNewSize(CacheInfo->Size),
1166                                          isLoad, StartBB, Result, Visited,
1167                                          SkipFirstBlock);
1168     }
1169 
1170     // If the query's AATags are inconsistent with the cached one,
1171     // conservatively throw out the cached data and restart the query with
1172     // no tag if needed.
1173     if (CacheInfo->AATags != Loc.AATags) {
1174       if (CacheInfo->AATags) {
1175         CacheInfo->Pair = BBSkipFirstBlockPair();
1176         CacheInfo->AATags = AAMDNodes();
1177         for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
1178              DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
1179           if (Instruction *Inst = DI->getResult().getInst())
1180             RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1181         CacheInfo->NonLocalDeps.clear();
1182       }
1183       if (Loc.AATags)
1184         return getNonLocalPointerDepFromBB(QueryInst,
1185                                            Pointer, Loc.getWithoutAATags(),
1186                                            isLoad, StartBB, Result, Visited,
1187                                            SkipFirstBlock);
1188     }
1189   }
1190 
1191   NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
1192 
1193   // If we have valid cached information for exactly the block we are
1194   // investigating, just return it with no recomputation.
1195   if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
1196     // We have a fully cached result for this query then we can just return the
1197     // cached results and populate the visited set.  However, we have to verify
1198     // that we don't already have conflicting results for these blocks.  Check
1199     // to ensure that if a block in the results set is in the visited set that
1200     // it was for the same pointer query.
1201     if (!Visited.empty()) {
1202       for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
1203            I != E; ++I) {
1204         DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB());
1205         if (VI == Visited.end() || VI->second == Pointer.getAddr())
1206           continue;
1207 
1208         // We have a pointer mismatch in a block.  Just return clobber, saying
1209         // that something was clobbered in this result.  We could also do a
1210         // non-fully cached query, but there is little point in doing this.
1211         return true;
1212       }
1213     }
1214 
1215     Value *Addr = Pointer.getAddr();
1216     for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
1217          I != E; ++I) {
1218       Visited.insert(std::make_pair(I->getBB(), Addr));
1219       if (I->getResult().isNonLocal()) {
1220         continue;
1221       }
1222 
1223       if (!DT) {
1224         Result.push_back(NonLocalDepResult(I->getBB(),
1225                                            MemDepResult::getUnknown(),
1226                                            Addr));
1227       } else if (DT->isReachableFromEntry(I->getBB())) {
1228         Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr));
1229       }
1230     }
1231     ++NumCacheCompleteNonLocalPtr;
1232     return false;
1233   }
1234 
1235   // Otherwise, either this is a new block, a block with an invalid cache
1236   // pointer or one that we're about to invalidate by putting more info into it
1237   // than its valid cache info.  If empty, the result will be valid cache info,
1238   // otherwise it isn't.
1239   if (Cache->empty())
1240     CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1241   else
1242     CacheInfo->Pair = BBSkipFirstBlockPair();
1243 
1244   SmallVector<BasicBlock*, 32> Worklist;
1245   Worklist.push_back(StartBB);
1246 
1247   // PredList used inside loop.
1248   SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList;
1249 
1250   // Keep track of the entries that we know are sorted.  Previously cached
1251   // entries will all be sorted.  The entries we add we only sort on demand (we
1252   // don't insert every element into its sorted position).  We know that we
1253   // won't get any reuse from currently inserted values, because we don't
1254   // revisit blocks after we insert info for them.
1255   unsigned NumSortedEntries = Cache->size();
1256   unsigned WorklistEntries = BlockNumberLimit;
1257   bool GotWorklistLimit = false;
1258   DEBUG(AssertSorted(*Cache));
1259 
1260   while (!Worklist.empty()) {
1261     BasicBlock *BB = Worklist.pop_back_val();
1262 
1263     // If we do process a large number of blocks it becomes very expensive and
1264     // likely it isn't worth worrying about
1265     if (Result.size() > NumResultsLimit) {
1266       Worklist.clear();
1267       // Sort it now (if needed) so that recursive invocations of
1268       // getNonLocalPointerDepFromBB and other routines that could reuse the
1269       // cache value will only see properly sorted cache arrays.
1270       if (Cache && NumSortedEntries != Cache->size()) {
1271         SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1272       }
1273       // Since we bail out, the "Cache" set won't contain all of the
1274       // results for the query.  This is ok (we can still use it to accelerate
1275       // specific block queries) but we can't do the fastpath "return all
1276       // results from the set".  Clear out the indicator for this.
1277       CacheInfo->Pair = BBSkipFirstBlockPair();
1278       return true;
1279     }
1280 
1281     // Skip the first block if we have it.
1282     if (!SkipFirstBlock) {
1283       // Analyze the dependency of *Pointer in FromBB.  See if we already have
1284       // been here.
1285       assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1286 
1287       // Get the dependency info for Pointer in BB.  If we have cached
1288       // information, we will use it, otherwise we compute it.
1289       DEBUG(AssertSorted(*Cache, NumSortedEntries));
1290       MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst,
1291                                                  Loc, isLoad, BB, Cache,
1292                                                  NumSortedEntries);
1293 
1294       // If we got a Def or Clobber, add this to the list of results.
1295       if (!Dep.isNonLocal()) {
1296         if (!DT) {
1297           Result.push_back(NonLocalDepResult(BB,
1298                                              MemDepResult::getUnknown(),
1299                                              Pointer.getAddr()));
1300           continue;
1301         } else if (DT->isReachableFromEntry(BB)) {
1302           Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1303           continue;
1304         }
1305       }
1306     }
1307 
1308     // If 'Pointer' is an instruction defined in this block, then we need to do
1309     // phi translation to change it into a value live in the predecessor block.
1310     // If not, we just add the predecessors to the worklist and scan them with
1311     // the same Pointer.
1312     if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1313       SkipFirstBlock = false;
1314       SmallVector<BasicBlock*, 16> NewBlocks;
1315       for (BasicBlock *Pred : PredCache.get(BB)) {
1316         // Verify that we haven't looked at this block yet.
1317         std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1318           InsertRes = Visited.insert(std::make_pair(Pred, Pointer.getAddr()));
1319         if (InsertRes.second) {
1320           // First time we've looked at *PI.
1321           NewBlocks.push_back(Pred);
1322           continue;
1323         }
1324 
1325         // If we have seen this block before, but it was with a different
1326         // pointer then we have a phi translation failure and we have to treat
1327         // this as a clobber.
1328         if (InsertRes.first->second != Pointer.getAddr()) {
1329           // Make sure to clean up the Visited map before continuing on to
1330           // PredTranslationFailure.
1331           for (unsigned i = 0; i < NewBlocks.size(); i++)
1332             Visited.erase(NewBlocks[i]);
1333           goto PredTranslationFailure;
1334         }
1335       }
1336       if (NewBlocks.size() > WorklistEntries) {
1337         // Make sure to clean up the Visited map before continuing on to
1338         // PredTranslationFailure.
1339         for (unsigned i = 0; i < NewBlocks.size(); i++)
1340           Visited.erase(NewBlocks[i]);
1341         GotWorklistLimit = true;
1342         goto PredTranslationFailure;
1343       }
1344       WorklistEntries -= NewBlocks.size();
1345       Worklist.append(NewBlocks.begin(), NewBlocks.end());
1346       continue;
1347     }
1348 
1349     // We do need to do phi translation, if we know ahead of time we can't phi
1350     // translate this value, don't even try.
1351     if (!Pointer.IsPotentiallyPHITranslatable())
1352       goto PredTranslationFailure;
1353 
1354     // We may have added values to the cache list before this PHI translation.
1355     // If so, we haven't done anything to ensure that the cache remains sorted.
1356     // Sort it now (if needed) so that recursive invocations of
1357     // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1358     // value will only see properly sorted cache arrays.
1359     if (Cache && NumSortedEntries != Cache->size()) {
1360       SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1361       NumSortedEntries = Cache->size();
1362     }
1363     Cache = nullptr;
1364 
1365     PredList.clear();
1366     for (BasicBlock *Pred : PredCache.get(BB)) {
1367       PredList.push_back(std::make_pair(Pred, Pointer));
1368 
1369       // Get the PHI translated pointer in this predecessor.  This can fail if
1370       // not translatable, in which case the getAddr() returns null.
1371       PHITransAddr &PredPointer = PredList.back().second;
1372       PredPointer.PHITranslateValue(BB, Pred, DT, /*MustDominate=*/false);
1373       Value *PredPtrVal = PredPointer.getAddr();
1374 
1375       // Check to see if we have already visited this pred block with another
1376       // pointer.  If so, we can't do this lookup.  This failure can occur
1377       // with PHI translation when a critical edge exists and the PHI node in
1378       // the successor translates to a pointer value different than the
1379       // pointer the block was first analyzed with.
1380       std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1381         InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal));
1382 
1383       if (!InsertRes.second) {
1384         // We found the pred; take it off the list of preds to visit.
1385         PredList.pop_back();
1386 
1387         // If the predecessor was visited with PredPtr, then we already did
1388         // the analysis and can ignore it.
1389         if (InsertRes.first->second == PredPtrVal)
1390           continue;
1391 
1392         // Otherwise, the block was previously analyzed with a different
1393         // pointer.  We can't represent the result of this case, so we just
1394         // treat this as a phi translation failure.
1395 
1396         // Make sure to clean up the Visited map before continuing on to
1397         // PredTranslationFailure.
1398         for (unsigned i = 0, n = PredList.size(); i < n; ++i)
1399           Visited.erase(PredList[i].first);
1400 
1401         goto PredTranslationFailure;
1402       }
1403     }
1404 
1405     // Actually process results here; this need to be a separate loop to avoid
1406     // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1407     // any results for.  (getNonLocalPointerDepFromBB will modify our
1408     // datastructures in ways the code after the PredTranslationFailure label
1409     // doesn't expect.)
1410     for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
1411       BasicBlock *Pred = PredList[i].first;
1412       PHITransAddr &PredPointer = PredList[i].second;
1413       Value *PredPtrVal = PredPointer.getAddr();
1414 
1415       bool CanTranslate = true;
1416       // If PHI translation was unable to find an available pointer in this
1417       // predecessor, then we have to assume that the pointer is clobbered in
1418       // that predecessor.  We can still do PRE of the load, which would insert
1419       // a computation of the pointer in this predecessor.
1420       if (!PredPtrVal)
1421         CanTranslate = false;
1422 
1423       // FIXME: it is entirely possible that PHI translating will end up with
1424       // the same value.  Consider PHI translating something like:
1425       // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
1426       // to recurse here, pedantically speaking.
1427 
1428       // If getNonLocalPointerDepFromBB fails here, that means the cached
1429       // result conflicted with the Visited list; we have to conservatively
1430       // assume it is unknown, but this also does not block PRE of the load.
1431       if (!CanTranslate ||
1432           getNonLocalPointerDepFromBB(QueryInst, PredPointer,
1433                                       Loc.getWithNewPtr(PredPtrVal),
1434                                       isLoad, Pred,
1435                                       Result, Visited)) {
1436         // Add the entry to the Result list.
1437         NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1438         Result.push_back(Entry);
1439 
1440         // Since we had a phi translation failure, the cache for CacheKey won't
1441         // include all of the entries that we need to immediately satisfy future
1442         // queries.  Mark this in NonLocalPointerDeps by setting the
1443         // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
1444         // cached value to do more work but not miss the phi trans failure.
1445         NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1446         NLPI.Pair = BBSkipFirstBlockPair();
1447         continue;
1448       }
1449     }
1450 
1451     // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1452     CacheInfo = &NonLocalPointerDeps[CacheKey];
1453     Cache = &CacheInfo->NonLocalDeps;
1454     NumSortedEntries = Cache->size();
1455 
1456     // Since we did phi translation, the "Cache" set won't contain all of the
1457     // results for the query.  This is ok (we can still use it to accelerate
1458     // specific block queries) but we can't do the fastpath "return all
1459     // results from the set"  Clear out the indicator for this.
1460     CacheInfo->Pair = BBSkipFirstBlockPair();
1461     SkipFirstBlock = false;
1462     continue;
1463 
1464   PredTranslationFailure:
1465     // The following code is "failure"; we can't produce a sane translation
1466     // for the given block.  It assumes that we haven't modified any of
1467     // our datastructures while processing the current block.
1468 
1469     if (!Cache) {
1470       // Refresh the CacheInfo/Cache pointer if it got invalidated.
1471       CacheInfo = &NonLocalPointerDeps[CacheKey];
1472       Cache = &CacheInfo->NonLocalDeps;
1473       NumSortedEntries = Cache->size();
1474     }
1475 
1476     // Since we failed phi translation, the "Cache" set won't contain all of the
1477     // results for the query.  This is ok (we can still use it to accelerate
1478     // specific block queries) but we can't do the fastpath "return all
1479     // results from the set".  Clear out the indicator for this.
1480     CacheInfo->Pair = BBSkipFirstBlockPair();
1481 
1482     // If *nothing* works, mark the pointer as unknown.
1483     //
1484     // If this is the magic first block, return this as a clobber of the whole
1485     // incoming value.  Since we can't phi translate to one of the predecessors,
1486     // we have to bail out.
1487     if (SkipFirstBlock)
1488       return true;
1489 
1490     bool foundBlock = false;
1491     for (NonLocalDepEntry &I: llvm::reverse(*Cache)) {
1492       if (I.getBB() != BB)
1493         continue;
1494 
1495       assert((GotWorklistLimit || I.getResult().isNonLocal() || \
1496               !DT->isReachableFromEntry(BB)) &&
1497              "Should only be here with transparent block");
1498       foundBlock = true;
1499       I.setResult(MemDepResult::getUnknown());
1500       Result.push_back(NonLocalDepResult(I.getBB(), I.getResult(),
1501                                          Pointer.getAddr()));
1502       break;
1503     }
1504     (void)foundBlock;
1505     assert((foundBlock || GotWorklistLimit) && "Current block not in cache?");
1506   }
1507 
1508   // Okay, we're done now.  If we added new values to the cache, re-sort it.
1509   SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1510   DEBUG(AssertSorted(*Cache));
1511   return false;
1512 }
1513 
1514 /// RemoveCachedNonLocalPointerDependencies - If P exists in
1515 /// CachedNonLocalPointerInfo, remove it.
1516 void MemoryDependenceAnalysis::
1517 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
1518   CachedNonLocalPointerInfo::iterator It =
1519     NonLocalPointerDeps.find(P);
1520   if (It == NonLocalPointerDeps.end()) return;
1521 
1522   // Remove all of the entries in the BB->val map.  This involves removing
1523   // instructions from the reverse map.
1524   NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1525 
1526   for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1527     Instruction *Target = PInfo[i].getResult().getInst();
1528     if (!Target) continue;  // Ignore non-local dep results.
1529     assert(Target->getParent() == PInfo[i].getBB());
1530 
1531     // Eliminating the dirty entry from 'Cache', so update the reverse info.
1532     RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1533   }
1534 
1535   // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1536   NonLocalPointerDeps.erase(It);
1537 }
1538 
1539 
1540 /// invalidateCachedPointerInfo - This method is used to invalidate cached
1541 /// information about the specified pointer, because it may be too
1542 /// conservative in memdep.  This is an optional call that can be used when
1543 /// the client detects an equivalence between the pointer and some other
1544 /// value and replaces the other value with ptr. This can make Ptr available
1545 /// in more places that cached info does not necessarily keep.
1546 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
1547   // If Ptr isn't really a pointer, just ignore it.
1548   if (!Ptr->getType()->isPointerTy()) return;
1549   // Flush store info for the pointer.
1550   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1551   // Flush load info for the pointer.
1552   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1553 }
1554 
1555 /// invalidateCachedPredecessors - Clear the PredIteratorCache info.
1556 /// This needs to be done when the CFG changes, e.g., due to splitting
1557 /// critical edges.
1558 void MemoryDependenceAnalysis::invalidateCachedPredecessors() {
1559   PredCache.clear();
1560 }
1561 
1562 /// removeInstruction - Remove an instruction from the dependence analysis,
1563 /// updating the dependence of instructions that previously depended on it.
1564 /// This method attempts to keep the cache coherent using the reverse map.
1565 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
1566   // Walk through the Non-local dependencies, removing this one as the value
1567   // for any cached queries.
1568   NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1569   if (NLDI != NonLocalDeps.end()) {
1570     NonLocalDepInfo &BlockMap = NLDI->second.first;
1571     for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
1572          DI != DE; ++DI)
1573       if (Instruction *Inst = DI->getResult().getInst())
1574         RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1575     NonLocalDeps.erase(NLDI);
1576   }
1577 
1578   // If we have a cached local dependence query for this instruction, remove it.
1579   //
1580   LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1581   if (LocalDepEntry != LocalDeps.end()) {
1582     // Remove us from DepInst's reverse set now that the local dep info is gone.
1583     if (Instruction *Inst = LocalDepEntry->second.getInst())
1584       RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1585 
1586     // Remove this local dependency info.
1587     LocalDeps.erase(LocalDepEntry);
1588   }
1589 
1590   // If we have any cached pointer dependencies on this instruction, remove
1591   // them.  If the instruction has non-pointer type, then it can't be a pointer
1592   // base.
1593 
1594   // Remove it from both the load info and the store info.  The instruction
1595   // can't be in either of these maps if it is non-pointer.
1596   if (RemInst->getType()->isPointerTy()) {
1597     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1598     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1599   }
1600 
1601   // Loop over all of the things that depend on the instruction we're removing.
1602   //
1603   SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
1604 
1605   // If we find RemInst as a clobber or Def in any of the maps for other values,
1606   // we need to replace its entry with a dirty version of the instruction after
1607   // it.  If RemInst is a terminator, we use a null dirty value.
1608   //
1609   // Using a dirty version of the instruction after RemInst saves having to scan
1610   // the entire block to get to this point.
1611   MemDepResult NewDirtyVal;
1612   if (!RemInst->isTerminator())
1613     NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator());
1614 
1615   ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1616   if (ReverseDepIt != ReverseLocalDeps.end()) {
1617     // RemInst can't be the terminator if it has local stuff depending on it.
1618     assert(!ReverseDepIt->second.empty() && !isa<TerminatorInst>(RemInst) &&
1619            "Nothing can locally depend on a terminator");
1620 
1621     for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
1622       assert(InstDependingOnRemInst != RemInst &&
1623              "Already removed our local dep info");
1624 
1625       LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1626 
1627       // Make sure to remember that new things depend on NewDepInst.
1628       assert(NewDirtyVal.getInst() && "There is no way something else can have "
1629              "a local dep on this if it is a terminator!");
1630       ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
1631                                                 InstDependingOnRemInst));
1632     }
1633 
1634     ReverseLocalDeps.erase(ReverseDepIt);
1635 
1636     // Add new reverse deps after scanning the set, to avoid invalidating the
1637     // 'ReverseDeps' reference.
1638     while (!ReverseDepsToAdd.empty()) {
1639       ReverseLocalDeps[ReverseDepsToAdd.back().first]
1640         .insert(ReverseDepsToAdd.back().second);
1641       ReverseDepsToAdd.pop_back();
1642     }
1643   }
1644 
1645   ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1646   if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1647     for (Instruction *I : ReverseDepIt->second) {
1648       assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
1649 
1650       PerInstNLInfo &INLD = NonLocalDeps[I];
1651       // The information is now dirty!
1652       INLD.second = true;
1653 
1654       for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
1655            DE = INLD.first.end(); DI != DE; ++DI) {
1656         if (DI->getResult().getInst() != RemInst) continue;
1657 
1658         // Convert to a dirty entry for the subsequent instruction.
1659         DI->setResult(NewDirtyVal);
1660 
1661         if (Instruction *NextI = NewDirtyVal.getInst())
1662           ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
1663       }
1664     }
1665 
1666     ReverseNonLocalDeps.erase(ReverseDepIt);
1667 
1668     // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1669     while (!ReverseDepsToAdd.empty()) {
1670       ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
1671         .insert(ReverseDepsToAdd.back().second);
1672       ReverseDepsToAdd.pop_back();
1673     }
1674   }
1675 
1676   // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1677   // value in the NonLocalPointerDeps info.
1678   ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1679     ReverseNonLocalPtrDeps.find(RemInst);
1680   if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1681     SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
1682 
1683     for (ValueIsLoadPair P : ReversePtrDepIt->second) {
1684       assert(P.getPointer() != RemInst &&
1685              "Already removed NonLocalPointerDeps info for RemInst");
1686 
1687       NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1688 
1689       // The cache is not valid for any specific block anymore.
1690       NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1691 
1692       // Update any entries for RemInst to use the instruction after it.
1693       for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
1694            DI != DE; ++DI) {
1695         if (DI->getResult().getInst() != RemInst) continue;
1696 
1697         // Convert to a dirty entry for the subsequent instruction.
1698         DI->setResult(NewDirtyVal);
1699 
1700         if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1701           ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1702       }
1703 
1704       // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1705       // subsequent value may invalidate the sortedness.
1706       std::sort(NLPDI.begin(), NLPDI.end());
1707     }
1708 
1709     ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1710 
1711     while (!ReversePtrDepsToAdd.empty()) {
1712       ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
1713         .insert(ReversePtrDepsToAdd.back().second);
1714       ReversePtrDepsToAdd.pop_back();
1715     }
1716   }
1717 
1718 
1719   assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1720   DEBUG(verifyRemoved(RemInst));
1721 }
1722 /// verifyRemoved - Verify that the specified instruction does not occur
1723 /// in our internal data structures. This function verifies by asserting in
1724 /// debug builds.
1725 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
1726 #ifndef NDEBUG
1727   for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
1728        E = LocalDeps.end(); I != E; ++I) {
1729     assert(I->first != D && "Inst occurs in data structures");
1730     assert(I->second.getInst() != D &&
1731            "Inst occurs in data structures");
1732   }
1733 
1734   for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
1735        E = NonLocalPointerDeps.end(); I != E; ++I) {
1736     assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
1737     const NonLocalDepInfo &Val = I->second.NonLocalDeps;
1738     for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
1739          II != E; ++II)
1740       assert(II->getResult().getInst() != D && "Inst occurs as NLPD value");
1741   }
1742 
1743   for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
1744        E = NonLocalDeps.end(); I != E; ++I) {
1745     assert(I->first != D && "Inst occurs in data structures");
1746     const PerInstNLInfo &INLD = I->second;
1747     for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
1748          EE = INLD.first.end(); II  != EE; ++II)
1749       assert(II->getResult().getInst() != D && "Inst occurs in data structures");
1750   }
1751 
1752   for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
1753        E = ReverseLocalDeps.end(); I != E; ++I) {
1754     assert(I->first != D && "Inst occurs in data structures");
1755     for (Instruction *Inst : I->second)
1756       assert(Inst != D && "Inst occurs in data structures");
1757   }
1758 
1759   for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
1760        E = ReverseNonLocalDeps.end();
1761        I != E; ++I) {
1762     assert(I->first != D && "Inst occurs in data structures");
1763     for (Instruction *Inst : I->second)
1764       assert(Inst != D && "Inst occurs in data structures");
1765   }
1766 
1767   for (ReverseNonLocalPtrDepTy::const_iterator
1768        I = ReverseNonLocalPtrDeps.begin(),
1769        E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
1770     assert(I->first != D && "Inst occurs in rev NLPD map");
1771 
1772     for (ValueIsLoadPair P : I->second)
1773       assert(P != ValueIsLoadPair(D, false) &&
1774              P != ValueIsLoadPair(D, true) &&
1775              "Inst occurs in ReverseNonLocalPtrDeps map");
1776   }
1777 #endif
1778 }
1779