1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements an analysis that determines, for a given memory 11 // operation, what preceding memory operations it depends on. It builds on 12 // alias analysis information, and tries to provide a lazy, caching interface to 13 // a common kind of alias information query. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/MemoryBuiltins.h" 24 #include "llvm/Analysis/PHITransAddr.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/IR/PredIteratorCache.h" 33 #include "llvm/Support/Debug.h" 34 using namespace llvm; 35 36 #define DEBUG_TYPE "memdep" 37 38 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); 39 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); 40 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); 41 42 STATISTIC(NumCacheNonLocalPtr, 43 "Number of fully cached non-local ptr responses"); 44 STATISTIC(NumCacheDirtyNonLocalPtr, 45 "Number of cached, but dirty, non-local ptr responses"); 46 STATISTIC(NumUncacheNonLocalPtr, 47 "Number of uncached non-local ptr responses"); 48 STATISTIC(NumCacheCompleteNonLocalPtr, 49 "Number of block queries that were completely cached"); 50 51 // Limit for the number of instructions to scan in a block. 52 static const unsigned int BlockScanLimit = 100; 53 54 // Limit on the number of memdep results to process. 55 static const unsigned int NumResultsLimit = 100; 56 57 char MemoryDependenceAnalysis::ID = 0; 58 59 // Register this pass... 60 INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep", 61 "Memory Dependence Analysis", false, true) 62 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 63 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 64 INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep", 65 "Memory Dependence Analysis", false, true) 66 67 MemoryDependenceAnalysis::MemoryDependenceAnalysis() 68 : FunctionPass(ID), PredCache() { 69 initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry()); 70 } 71 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() { 72 } 73 74 /// Clean up memory in between runs 75 void MemoryDependenceAnalysis::releaseMemory() { 76 LocalDeps.clear(); 77 NonLocalDeps.clear(); 78 NonLocalPointerDeps.clear(); 79 ReverseLocalDeps.clear(); 80 ReverseNonLocalDeps.clear(); 81 ReverseNonLocalPtrDeps.clear(); 82 PredCache->clear(); 83 } 84 85 /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis. 86 /// 87 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 88 AU.setPreservesAll(); 89 AU.addRequired<AssumptionCacheTracker>(); 90 AU.addRequiredTransitive<AliasAnalysis>(); 91 } 92 93 bool MemoryDependenceAnalysis::runOnFunction(Function &F) { 94 AA = &getAnalysis<AliasAnalysis>(); 95 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 96 DL = &F.getParent()->getDataLayout(); 97 DominatorTreeWrapperPass *DTWP = 98 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 99 DT = DTWP ? &DTWP->getDomTree() : nullptr; 100 if (!PredCache) 101 PredCache.reset(new PredIteratorCache()); 102 return false; 103 } 104 105 /// RemoveFromReverseMap - This is a helper function that removes Val from 106 /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry. 107 template <typename KeyTy> 108 static void RemoveFromReverseMap(DenseMap<Instruction*, 109 SmallPtrSet<KeyTy, 4> > &ReverseMap, 110 Instruction *Inst, KeyTy Val) { 111 typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator 112 InstIt = ReverseMap.find(Inst); 113 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); 114 bool Found = InstIt->second.erase(Val); 115 assert(Found && "Invalid reverse map!"); (void)Found; 116 if (InstIt->second.empty()) 117 ReverseMap.erase(InstIt); 118 } 119 120 /// GetLocation - If the given instruction references a specific memory 121 /// location, fill in Loc with the details, otherwise set Loc.Ptr to null. 122 /// Return a ModRefInfo value describing the general behavior of the 123 /// instruction. 124 static 125 AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst, 126 AliasAnalysis::Location &Loc, 127 AliasAnalysis *AA) { 128 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 129 if (LI->isUnordered()) { 130 Loc = AA->getLocation(LI); 131 return AliasAnalysis::Ref; 132 } 133 if (LI->getOrdering() == Monotonic) { 134 Loc = AA->getLocation(LI); 135 return AliasAnalysis::ModRef; 136 } 137 Loc = AliasAnalysis::Location(); 138 return AliasAnalysis::ModRef; 139 } 140 141 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 142 if (SI->isUnordered()) { 143 Loc = AA->getLocation(SI); 144 return AliasAnalysis::Mod; 145 } 146 if (SI->getOrdering() == Monotonic) { 147 Loc = AA->getLocation(SI); 148 return AliasAnalysis::ModRef; 149 } 150 Loc = AliasAnalysis::Location(); 151 return AliasAnalysis::ModRef; 152 } 153 154 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { 155 Loc = AA->getLocation(V); 156 return AliasAnalysis::ModRef; 157 } 158 159 if (const CallInst *CI = isFreeCall(Inst, AA->getTargetLibraryInfo())) { 160 // calls to free() deallocate the entire structure 161 Loc = AliasAnalysis::Location(CI->getArgOperand(0)); 162 return AliasAnalysis::Mod; 163 } 164 165 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 166 AAMDNodes AAInfo; 167 168 switch (II->getIntrinsicID()) { 169 case Intrinsic::lifetime_start: 170 case Intrinsic::lifetime_end: 171 case Intrinsic::invariant_start: 172 II->getAAMetadata(AAInfo); 173 Loc = AliasAnalysis::Location(II->getArgOperand(1), 174 cast<ConstantInt>(II->getArgOperand(0)) 175 ->getZExtValue(), AAInfo); 176 // These intrinsics don't really modify the memory, but returning Mod 177 // will allow them to be handled conservatively. 178 return AliasAnalysis::Mod; 179 case Intrinsic::invariant_end: 180 II->getAAMetadata(AAInfo); 181 Loc = AliasAnalysis::Location(II->getArgOperand(2), 182 cast<ConstantInt>(II->getArgOperand(1)) 183 ->getZExtValue(), AAInfo); 184 // These intrinsics don't really modify the memory, but returning Mod 185 // will allow them to be handled conservatively. 186 return AliasAnalysis::Mod; 187 default: 188 break; 189 } 190 } 191 192 // Otherwise, just do the coarse-grained thing that always works. 193 if (Inst->mayWriteToMemory()) 194 return AliasAnalysis::ModRef; 195 if (Inst->mayReadFromMemory()) 196 return AliasAnalysis::Ref; 197 return AliasAnalysis::NoModRef; 198 } 199 200 /// getCallSiteDependencyFrom - Private helper for finding the local 201 /// dependencies of a call site. 202 MemDepResult MemoryDependenceAnalysis:: 203 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall, 204 BasicBlock::iterator ScanIt, BasicBlock *BB) { 205 unsigned Limit = BlockScanLimit; 206 207 // Walk backwards through the block, looking for dependencies 208 while (ScanIt != BB->begin()) { 209 // Limit the amount of scanning we do so we don't end up with quadratic 210 // running time on extreme testcases. 211 --Limit; 212 if (!Limit) 213 return MemDepResult::getUnknown(); 214 215 Instruction *Inst = --ScanIt; 216 217 // If this inst is a memory op, get the pointer it accessed 218 AliasAnalysis::Location Loc; 219 AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA); 220 if (Loc.Ptr) { 221 // A simple instruction. 222 if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef) 223 return MemDepResult::getClobber(Inst); 224 continue; 225 } 226 227 if (CallSite InstCS = cast<Value>(Inst)) { 228 // Debug intrinsics don't cause dependences. 229 if (isa<DbgInfoIntrinsic>(Inst)) continue; 230 // If these two calls do not interfere, look past it. 231 switch (AA->getModRefInfo(CS, InstCS)) { 232 case AliasAnalysis::NoModRef: 233 // If the two calls are the same, return InstCS as a Def, so that 234 // CS can be found redundant and eliminated. 235 if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) && 236 CS.getInstruction()->isIdenticalToWhenDefined(Inst)) 237 return MemDepResult::getDef(Inst); 238 239 // Otherwise if the two calls don't interact (e.g. InstCS is readnone) 240 // keep scanning. 241 continue; 242 default: 243 return MemDepResult::getClobber(Inst); 244 } 245 } 246 247 // If we could not obtain a pointer for the instruction and the instruction 248 // touches memory then assume that this is a dependency. 249 if (MR != AliasAnalysis::NoModRef) 250 return MemDepResult::getClobber(Inst); 251 } 252 253 // No dependence found. If this is the entry block of the function, it is 254 // unknown, otherwise it is non-local. 255 if (BB != &BB->getParent()->getEntryBlock()) 256 return MemDepResult::getNonLocal(); 257 return MemDepResult::getNonFuncLocal(); 258 } 259 260 /// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that 261 /// would fully overlap MemLoc if done as a wider legal integer load. 262 /// 263 /// MemLocBase, MemLocOffset are lazily computed here the first time the 264 /// base/offs of memloc is needed. 265 static bool 266 isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc, 267 const Value *&MemLocBase, 268 int64_t &MemLocOffs, 269 const LoadInst *LI, 270 const DataLayout *DL) { 271 // If we have no target data, we can't do this. 272 if (!DL) return false; 273 274 // If we haven't already computed the base/offset of MemLoc, do so now. 275 if (!MemLocBase) 276 MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, DL); 277 278 unsigned Size = MemoryDependenceAnalysis:: 279 getLoadLoadClobberFullWidthSize(MemLocBase, MemLocOffs, MemLoc.Size, 280 LI, *DL); 281 return Size != 0; 282 } 283 284 /// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that 285 /// looks at a memory location for a load (specified by MemLocBase, Offs, 286 /// and Size) and compares it against a load. If the specified load could 287 /// be safely widened to a larger integer load that is 1) still efficient, 288 /// 2) safe for the target, and 3) would provide the specified memory 289 /// location value, then this function returns the size in bytes of the 290 /// load width to use. If not, this returns zero. 291 unsigned MemoryDependenceAnalysis:: 292 getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs, 293 unsigned MemLocSize, const LoadInst *LI, 294 const DataLayout &DL) { 295 // We can only extend simple integer loads. 296 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0; 297 298 // Load widening is hostile to ThreadSanitizer: it may cause false positives 299 // or make the reports more cryptic (access sizes are wrong). 300 if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread)) 301 return 0; 302 303 // Get the base of this load. 304 int64_t LIOffs = 0; 305 const Value *LIBase = 306 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, &DL); 307 308 // If the two pointers are not based on the same pointer, we can't tell that 309 // they are related. 310 if (LIBase != MemLocBase) return 0; 311 312 // Okay, the two values are based on the same pointer, but returned as 313 // no-alias. This happens when we have things like two byte loads at "P+1" 314 // and "P+3". Check to see if increasing the size of the "LI" load up to its 315 // alignment (or the largest native integer type) will allow us to load all 316 // the bits required by MemLoc. 317 318 // If MemLoc is before LI, then no widening of LI will help us out. 319 if (MemLocOffs < LIOffs) return 0; 320 321 // Get the alignment of the load in bytes. We assume that it is safe to load 322 // any legal integer up to this size without a problem. For example, if we're 323 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can 324 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it 325 // to i16. 326 unsigned LoadAlign = LI->getAlignment(); 327 328 int64_t MemLocEnd = MemLocOffs+MemLocSize; 329 330 // If no amount of rounding up will let MemLoc fit into LI, then bail out. 331 if (LIOffs+LoadAlign < MemLocEnd) return 0; 332 333 // This is the size of the load to try. Start with the next larger power of 334 // two. 335 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U; 336 NewLoadByteSize = NextPowerOf2(NewLoadByteSize); 337 338 while (1) { 339 // If this load size is bigger than our known alignment or would not fit 340 // into a native integer register, then we fail. 341 if (NewLoadByteSize > LoadAlign || 342 !DL.fitsInLegalInteger(NewLoadByteSize*8)) 343 return 0; 344 345 if (LIOffs + NewLoadByteSize > MemLocEnd && 346 LI->getParent()->getParent()->hasFnAttribute( 347 Attribute::SanitizeAddress)) 348 // We will be reading past the location accessed by the original program. 349 // While this is safe in a regular build, Address Safety analysis tools 350 // may start reporting false warnings. So, don't do widening. 351 return 0; 352 353 // If a load of this width would include all of MemLoc, then we succeed. 354 if (LIOffs+NewLoadByteSize >= MemLocEnd) 355 return NewLoadByteSize; 356 357 NewLoadByteSize <<= 1; 358 } 359 } 360 361 static bool isVolatile(Instruction *Inst) { 362 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 363 return LI->isVolatile(); 364 else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) 365 return SI->isVolatile(); 366 else if (AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(Inst)) 367 return AI->isVolatile(); 368 return false; 369 } 370 371 372 /// getPointerDependencyFrom - Return the instruction on which a memory 373 /// location depends. If isLoad is true, this routine ignores may-aliases with 374 /// read-only operations. If isLoad is false, this routine ignores may-aliases 375 /// with reads from read-only locations. If possible, pass the query 376 /// instruction as well; this function may take advantage of the metadata 377 /// annotated to the query instruction to refine the result. 378 MemDepResult MemoryDependenceAnalysis:: 379 getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, 380 BasicBlock::iterator ScanIt, BasicBlock *BB, 381 Instruction *QueryInst) { 382 383 const Value *MemLocBase = nullptr; 384 int64_t MemLocOffset = 0; 385 unsigned Limit = BlockScanLimit; 386 bool isInvariantLoad = false; 387 388 // We must be careful with atomic accesses, as they may allow another thread 389 // to touch this location, cloberring it. We are conservative: if the 390 // QueryInst is not a simple (non-atomic) memory access, we automatically 391 // return getClobber. 392 // If it is simple, we know based on the results of 393 // "Compiler testing via a theory of sound optimisations in the C11/C++11 394 // memory model" in PLDI 2013, that a non-atomic location can only be 395 // clobbered between a pair of a release and an acquire action, with no 396 // access to the location in between. 397 // Here is an example for giving the general intuition behind this rule. 398 // In the following code: 399 // store x 0; 400 // release action; [1] 401 // acquire action; [4] 402 // %val = load x; 403 // It is unsafe to replace %val by 0 because another thread may be running: 404 // acquire action; [2] 405 // store x 42; 406 // release action; [3] 407 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val 408 // being 42. A key property of this program however is that if either 409 // 1 or 4 were missing, there would be a race between the store of 42 410 // either the store of 0 or the load (making the whole progam racy). 411 // The paper mentionned above shows that the same property is respected 412 // by every program that can detect any optimisation of that kind: either 413 // it is racy (undefined) or there is a release followed by an acquire 414 // between the pair of accesses under consideration. 415 bool HasSeenAcquire = false; 416 417 if (isLoad && QueryInst) { 418 LoadInst *LI = dyn_cast<LoadInst>(QueryInst); 419 if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr) 420 isInvariantLoad = true; 421 } 422 423 // Walk backwards through the basic block, looking for dependencies. 424 while (ScanIt != BB->begin()) { 425 Instruction *Inst = --ScanIt; 426 427 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 428 // Debug intrinsics don't (and can't) cause dependencies. 429 if (isa<DbgInfoIntrinsic>(II)) continue; 430 431 // Limit the amount of scanning we do so we don't end up with quadratic 432 // running time on extreme testcases. 433 --Limit; 434 if (!Limit) 435 return MemDepResult::getUnknown(); 436 437 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 438 // If we reach a lifetime begin or end marker, then the query ends here 439 // because the value is undefined. 440 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 441 // FIXME: This only considers queries directly on the invariant-tagged 442 // pointer, not on query pointers that are indexed off of them. It'd 443 // be nice to handle that at some point (the right approach is to use 444 // GetPointerBaseWithConstantOffset). 445 if (AA->isMustAlias(AliasAnalysis::Location(II->getArgOperand(1)), 446 MemLoc)) 447 return MemDepResult::getDef(II); 448 continue; 449 } 450 } 451 452 // Values depend on loads if the pointers are must aliased. This means that 453 // a load depends on another must aliased load from the same value. 454 // One exception is atomic loads: a value can depend on an atomic load that it 455 // does not alias with when this atomic load indicates that another thread may 456 // be accessing the location. 457 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 458 459 // While volatile access cannot be eliminated, they do not have to clobber 460 // non-aliasing locations, as normal accesses, for example, can be safely 461 // reordered with volatile accesses. 462 if (LI->isVolatile()) { 463 if (!QueryInst) 464 // Original QueryInst *may* be volatile 465 return MemDepResult::getClobber(LI); 466 if (isVolatile(QueryInst)) 467 // Ordering required if QueryInst is itself volatile 468 return MemDepResult::getClobber(LI); 469 // Otherwise, volatile doesn't imply any special ordering 470 } 471 472 // Atomic loads have complications involved. 473 // A Monotonic (or higher) load is OK if the query inst is itself not atomic. 474 // An Acquire (or higher) load sets the HasSeenAcquire flag, so that any 475 // release store will know to return getClobber. 476 // FIXME: This is overly conservative. 477 if (LI->isAtomic() && LI->getOrdering() > Unordered) { 478 if (!QueryInst) 479 return MemDepResult::getClobber(LI); 480 if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) { 481 if (!QueryLI->isSimple()) 482 return MemDepResult::getClobber(LI); 483 } else if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) { 484 if (!QuerySI->isSimple()) 485 return MemDepResult::getClobber(LI); 486 } else if (QueryInst->mayReadOrWriteMemory()) { 487 return MemDepResult::getClobber(LI); 488 } 489 490 if (isAtLeastAcquire(LI->getOrdering())) 491 HasSeenAcquire = true; 492 } 493 494 AliasAnalysis::Location LoadLoc = AA->getLocation(LI); 495 496 // If we found a pointer, check if it could be the same as our pointer. 497 AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc); 498 499 if (isLoad) { 500 if (R == AliasAnalysis::NoAlias) { 501 // If this is an over-aligned integer load (for example, 502 // "load i8* %P, align 4") see if it would obviously overlap with the 503 // queried location if widened to a larger load (e.g. if the queried 504 // location is 1 byte at P+1). If so, return it as a load/load 505 // clobber result, allowing the client to decide to widen the load if 506 // it wants to. 507 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) 508 if (LI->getAlignment()*8 > ITy->getPrimitiveSizeInBits() && 509 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase, 510 MemLocOffset, LI, DL)) 511 return MemDepResult::getClobber(Inst); 512 513 continue; 514 } 515 516 // Must aliased loads are defs of each other. 517 if (R == AliasAnalysis::MustAlias) 518 return MemDepResult::getDef(Inst); 519 520 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads 521 // in terms of clobbering loads, but since it does this by looking 522 // at the clobbering load directly, it doesn't know about any 523 // phi translation that may have happened along the way. 524 525 // If we have a partial alias, then return this as a clobber for the 526 // client to handle. 527 if (R == AliasAnalysis::PartialAlias) 528 return MemDepResult::getClobber(Inst); 529 #endif 530 531 // Random may-alias loads don't depend on each other without a 532 // dependence. 533 continue; 534 } 535 536 // Stores don't depend on other no-aliased accesses. 537 if (R == AliasAnalysis::NoAlias) 538 continue; 539 540 // Stores don't alias loads from read-only memory. 541 if (AA->pointsToConstantMemory(LoadLoc)) 542 continue; 543 544 // Stores depend on may/must aliased loads. 545 return MemDepResult::getDef(Inst); 546 } 547 548 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 549 // Atomic stores have complications involved. 550 // A Monotonic store is OK if the query inst is itself not atomic. 551 // A Release (or higher) store further requires that no acquire load 552 // has been seen. 553 // FIXME: This is overly conservative. 554 if (!SI->isUnordered()) { 555 if (!QueryInst) 556 return MemDepResult::getClobber(SI); 557 if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) { 558 if (!QueryLI->isSimple()) 559 return MemDepResult::getClobber(SI); 560 } else if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) { 561 if (!QuerySI->isSimple()) 562 return MemDepResult::getClobber(SI); 563 } else if (QueryInst->mayReadOrWriteMemory()) { 564 return MemDepResult::getClobber(SI); 565 } 566 567 if (HasSeenAcquire && isAtLeastRelease(SI->getOrdering())) 568 return MemDepResult::getClobber(SI); 569 } 570 571 // FIXME: this is overly conservative. 572 // While volatile access cannot be eliminated, they do not have to clobber 573 // non-aliasing locations, as normal accesses can for example be reordered 574 // with volatile accesses. 575 if (SI->isVolatile()) 576 return MemDepResult::getClobber(SI); 577 578 // If alias analysis can tell that this store is guaranteed to not modify 579 // the query pointer, ignore it. Use getModRefInfo to handle cases where 580 // the query pointer points to constant memory etc. 581 if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef) 582 continue; 583 584 // Ok, this store might clobber the query pointer. Check to see if it is 585 // a must alias: in this case, we want to return this as a def. 586 AliasAnalysis::Location StoreLoc = AA->getLocation(SI); 587 588 // If we found a pointer, check if it could be the same as our pointer. 589 AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc); 590 591 if (R == AliasAnalysis::NoAlias) 592 continue; 593 if (R == AliasAnalysis::MustAlias) 594 return MemDepResult::getDef(Inst); 595 if (isInvariantLoad) 596 continue; 597 return MemDepResult::getClobber(Inst); 598 } 599 600 // If this is an allocation, and if we know that the accessed pointer is to 601 // the allocation, return Def. This means that there is no dependence and 602 // the access can be optimized based on that. For example, a load could 603 // turn into undef. 604 // Note: Only determine this to be a malloc if Inst is the malloc call, not 605 // a subsequent bitcast of the malloc call result. There can be stores to 606 // the malloced memory between the malloc call and its bitcast uses, and we 607 // need to continue scanning until the malloc call. 608 const TargetLibraryInfo *TLI = AA->getTargetLibraryInfo(); 609 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, TLI)) { 610 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL); 611 612 if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr)) 613 return MemDepResult::getDef(Inst); 614 // Be conservative if the accessed pointer may alias the allocation. 615 if (AA->alias(Inst, AccessPtr) != AliasAnalysis::NoAlias) 616 return MemDepResult::getClobber(Inst); 617 // If the allocation is not aliased and does not read memory (like 618 // strdup), it is safe to ignore. 619 if (isa<AllocaInst>(Inst) || 620 isMallocLikeFn(Inst, TLI) || isCallocLikeFn(Inst, TLI)) 621 continue; 622 } 623 624 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. 625 AliasAnalysis::ModRefResult MR = AA->getModRefInfo(Inst, MemLoc); 626 // If necessary, perform additional analysis. 627 if (MR == AliasAnalysis::ModRef) 628 MR = AA->callCapturesBefore(Inst, MemLoc, DT); 629 switch (MR) { 630 case AliasAnalysis::NoModRef: 631 // If the call has no effect on the queried pointer, just ignore it. 632 continue; 633 case AliasAnalysis::Mod: 634 return MemDepResult::getClobber(Inst); 635 case AliasAnalysis::Ref: 636 // If the call is known to never store to the pointer, and if this is a 637 // load query, we can safely ignore it (scan past it). 638 if (isLoad) 639 continue; 640 default: 641 // Otherwise, there is a potential dependence. Return a clobber. 642 return MemDepResult::getClobber(Inst); 643 } 644 } 645 646 // No dependence found. If this is the entry block of the function, it is 647 // unknown, otherwise it is non-local. 648 if (BB != &BB->getParent()->getEntryBlock()) 649 return MemDepResult::getNonLocal(); 650 return MemDepResult::getNonFuncLocal(); 651 } 652 653 /// getDependency - Return the instruction on which a memory operation 654 /// depends. 655 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) { 656 Instruction *ScanPos = QueryInst; 657 658 // Check for a cached result 659 MemDepResult &LocalCache = LocalDeps[QueryInst]; 660 661 // If the cached entry is non-dirty, just return it. Note that this depends 662 // on MemDepResult's default constructing to 'dirty'. 663 if (!LocalCache.isDirty()) 664 return LocalCache; 665 666 // Otherwise, if we have a dirty entry, we know we can start the scan at that 667 // instruction, which may save us some work. 668 if (Instruction *Inst = LocalCache.getInst()) { 669 ScanPos = Inst; 670 671 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); 672 } 673 674 BasicBlock *QueryParent = QueryInst->getParent(); 675 676 // Do the scan. 677 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { 678 // No dependence found. If this is the entry block of the function, it is 679 // unknown, otherwise it is non-local. 680 if (QueryParent != &QueryParent->getParent()->getEntryBlock()) 681 LocalCache = MemDepResult::getNonLocal(); 682 else 683 LocalCache = MemDepResult::getNonFuncLocal(); 684 } else { 685 AliasAnalysis::Location MemLoc; 686 AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA); 687 if (MemLoc.Ptr) { 688 // If we can do a pointer scan, make it happen. 689 bool isLoad = !(MR & AliasAnalysis::Mod); 690 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst)) 691 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start; 692 693 LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos, 694 QueryParent, QueryInst); 695 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) { 696 CallSite QueryCS(QueryInst); 697 bool isReadOnly = AA->onlyReadsMemory(QueryCS); 698 LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos, 699 QueryParent); 700 } else 701 // Non-memory instruction. 702 LocalCache = MemDepResult::getUnknown(); 703 } 704 705 // Remember the result! 706 if (Instruction *I = LocalCache.getInst()) 707 ReverseLocalDeps[I].insert(QueryInst); 708 709 return LocalCache; 710 } 711 712 #ifndef NDEBUG 713 /// AssertSorted - This method is used when -debug is specified to verify that 714 /// cache arrays are properly kept sorted. 715 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 716 int Count = -1) { 717 if (Count == -1) Count = Cache.size(); 718 if (Count == 0) return; 719 720 for (unsigned i = 1; i != unsigned(Count); ++i) 721 assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!"); 722 } 723 #endif 724 725 /// getNonLocalCallDependency - Perform a full dependency query for the 726 /// specified call, returning the set of blocks that the value is 727 /// potentially live across. The returned set of results will include a 728 /// "NonLocal" result for all blocks where the value is live across. 729 /// 730 /// This method assumes the instruction returns a "NonLocal" dependency 731 /// within its own block. 732 /// 733 /// This returns a reference to an internal data structure that may be 734 /// invalidated on the next non-local query or when an instruction is 735 /// removed. Clients must copy this data if they want it around longer than 736 /// that. 737 const MemoryDependenceAnalysis::NonLocalDepInfo & 738 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { 739 assert(getDependency(QueryCS.getInstruction()).isNonLocal() && 740 "getNonLocalCallDependency should only be used on calls with non-local deps!"); 741 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()]; 742 NonLocalDepInfo &Cache = CacheP.first; 743 744 /// DirtyBlocks - This is the set of blocks that need to be recomputed. In 745 /// the cached case, this can happen due to instructions being deleted etc. In 746 /// the uncached case, this starts out as the set of predecessors we care 747 /// about. 748 SmallVector<BasicBlock*, 32> DirtyBlocks; 749 750 if (!Cache.empty()) { 751 // Okay, we have a cache entry. If we know it is not dirty, just return it 752 // with no computation. 753 if (!CacheP.second) { 754 ++NumCacheNonLocal; 755 return Cache; 756 } 757 758 // If we already have a partially computed set of results, scan them to 759 // determine what is dirty, seeding our initial DirtyBlocks worklist. 760 for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end(); 761 I != E; ++I) 762 if (I->getResult().isDirty()) 763 DirtyBlocks.push_back(I->getBB()); 764 765 // Sort the cache so that we can do fast binary search lookups below. 766 std::sort(Cache.begin(), Cache.end()); 767 768 ++NumCacheDirtyNonLocal; 769 //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " 770 // << Cache.size() << " cached: " << *QueryInst; 771 } else { 772 // Seed DirtyBlocks with each of the preds of QueryInst's block. 773 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent(); 774 for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI) 775 DirtyBlocks.push_back(*PI); 776 ++NumUncacheNonLocal; 777 } 778 779 // isReadonlyCall - If this is a read-only call, we can be more aggressive. 780 bool isReadonlyCall = AA->onlyReadsMemory(QueryCS); 781 782 SmallPtrSet<BasicBlock*, 64> Visited; 783 784 unsigned NumSortedEntries = Cache.size(); 785 DEBUG(AssertSorted(Cache)); 786 787 // Iterate while we still have blocks to update. 788 while (!DirtyBlocks.empty()) { 789 BasicBlock *DirtyBB = DirtyBlocks.back(); 790 DirtyBlocks.pop_back(); 791 792 // Already processed this block? 793 if (!Visited.insert(DirtyBB).second) 794 continue; 795 796 // Do a binary search to see if we already have an entry for this block in 797 // the cache set. If so, find it. 798 DEBUG(AssertSorted(Cache, NumSortedEntries)); 799 NonLocalDepInfo::iterator Entry = 800 std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries, 801 NonLocalDepEntry(DirtyBB)); 802 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB) 803 --Entry; 804 805 NonLocalDepEntry *ExistingResult = nullptr; 806 if (Entry != Cache.begin()+NumSortedEntries && 807 Entry->getBB() == DirtyBB) { 808 // If we already have an entry, and if it isn't already dirty, the block 809 // is done. 810 if (!Entry->getResult().isDirty()) 811 continue; 812 813 // Otherwise, remember this slot so we can update the value. 814 ExistingResult = &*Entry; 815 } 816 817 // If the dirty entry has a pointer, start scanning from it so we don't have 818 // to rescan the entire block. 819 BasicBlock::iterator ScanPos = DirtyBB->end(); 820 if (ExistingResult) { 821 if (Instruction *Inst = ExistingResult->getResult().getInst()) { 822 ScanPos = Inst; 823 // We're removing QueryInst's use of Inst. 824 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, 825 QueryCS.getInstruction()); 826 } 827 } 828 829 // Find out if this block has a local dependency for QueryInst. 830 MemDepResult Dep; 831 832 if (ScanPos != DirtyBB->begin()) { 833 Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB); 834 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { 835 // No dependence found. If this is the entry block of the function, it is 836 // a clobber, otherwise it is unknown. 837 Dep = MemDepResult::getNonLocal(); 838 } else { 839 Dep = MemDepResult::getNonFuncLocal(); 840 } 841 842 // If we had a dirty entry for the block, update it. Otherwise, just add 843 // a new entry. 844 if (ExistingResult) 845 ExistingResult->setResult(Dep); 846 else 847 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); 848 849 // If the block has a dependency (i.e. it isn't completely transparent to 850 // the value), remember the association! 851 if (!Dep.isNonLocal()) { 852 // Keep the ReverseNonLocalDeps map up to date so we can efficiently 853 // update this when we remove instructions. 854 if (Instruction *Inst = Dep.getInst()) 855 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction()); 856 } else { 857 858 // If the block *is* completely transparent to the load, we need to check 859 // the predecessors of this block. Add them to our worklist. 860 for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI) 861 DirtyBlocks.push_back(*PI); 862 } 863 } 864 865 return Cache; 866 } 867 868 /// getNonLocalPointerDependency - Perform a full dependency query for an 869 /// access to the specified (non-volatile) memory location, returning the 870 /// set of instructions that either define or clobber the value. 871 /// 872 /// This method assumes the pointer has a "NonLocal" dependency within its 873 /// own block. 874 /// 875 void MemoryDependenceAnalysis:: 876 getNonLocalPointerDependency(Instruction *QueryInst, 877 SmallVectorImpl<NonLocalDepResult> &Result) { 878 879 auto getLocation = [](AliasAnalysis *AA, Instruction *Inst) { 880 if (auto *I = dyn_cast<LoadInst>(Inst)) 881 return AA->getLocation(I); 882 else if (auto *I = dyn_cast<StoreInst>(Inst)) 883 return AA->getLocation(I); 884 else if (auto *I = dyn_cast<VAArgInst>(Inst)) 885 return AA->getLocation(I); 886 else if (auto *I = dyn_cast<AtomicCmpXchgInst>(Inst)) 887 return AA->getLocation(I); 888 else if (auto *I = dyn_cast<AtomicRMWInst>(Inst)) 889 return AA->getLocation(I); 890 else 891 llvm_unreachable("unsupported memory instruction"); 892 }; 893 894 const AliasAnalysis::Location Loc = getLocation(AA, QueryInst); 895 bool isLoad = isa<LoadInst>(QueryInst); 896 BasicBlock *FromBB = QueryInst->getParent(); 897 assert(FromBB); 898 899 assert(Loc.Ptr->getType()->isPointerTy() && 900 "Can't get pointer deps of a non-pointer!"); 901 Result.clear(); 902 903 // This routine does not expect to deal with volatile instructions. 904 // Doing so would require piping through the QueryInst all the way through. 905 // TODO: volatiles can't be elided, but they can be reordered with other 906 // non-volatile accesses. 907 908 // We currently give up on any instruction which is ordered, but we do handle 909 // atomic instructions which are unordered. 910 // TODO: Handle ordered instructions 911 auto isOrdered = [](Instruction *Inst) { 912 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 913 return !LI->isUnordered(); 914 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 915 return !SI->isUnordered(); 916 } 917 return false; 918 }; 919 if (isVolatile(QueryInst) || isOrdered(QueryInst)) { 920 Result.push_back(NonLocalDepResult(FromBB, 921 MemDepResult::getUnknown(), 922 const_cast<Value *>(Loc.Ptr))); 923 return; 924 } 925 926 927 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, AC); 928 929 // This is the set of blocks we've inspected, and the pointer we consider in 930 // each block. Because of critical edges, we currently bail out if querying 931 // a block with multiple different pointers. This can happen during PHI 932 // translation. 933 DenseMap<BasicBlock*, Value*> Visited; 934 if (!getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB, 935 Result, Visited, true)) 936 return; 937 Result.clear(); 938 Result.push_back(NonLocalDepResult(FromBB, 939 MemDepResult::getUnknown(), 940 const_cast<Value *>(Loc.Ptr))); 941 } 942 943 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with 944 /// Pointer/PointeeSize using either cached information in Cache or by doing a 945 /// lookup (which may use dirty cache info if available). If we do a lookup, 946 /// add the result to the cache. 947 MemDepResult MemoryDependenceAnalysis:: 948 GetNonLocalInfoForBlock(Instruction *QueryInst, 949 const AliasAnalysis::Location &Loc, 950 bool isLoad, BasicBlock *BB, 951 NonLocalDepInfo *Cache, unsigned NumSortedEntries) { 952 953 // Do a binary search to see if we already have an entry for this block in 954 // the cache set. If so, find it. 955 NonLocalDepInfo::iterator Entry = 956 std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries, 957 NonLocalDepEntry(BB)); 958 if (Entry != Cache->begin() && (Entry-1)->getBB() == BB) 959 --Entry; 960 961 NonLocalDepEntry *ExistingResult = nullptr; 962 if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB) 963 ExistingResult = &*Entry; 964 965 // If we have a cached entry, and it is non-dirty, use it as the value for 966 // this dependency. 967 if (ExistingResult && !ExistingResult->getResult().isDirty()) { 968 ++NumCacheNonLocalPtr; 969 return ExistingResult->getResult(); 970 } 971 972 // Otherwise, we have to scan for the value. If we have a dirty cache 973 // entry, start scanning from its position, otherwise we scan from the end 974 // of the block. 975 BasicBlock::iterator ScanPos = BB->end(); 976 if (ExistingResult && ExistingResult->getResult().getInst()) { 977 assert(ExistingResult->getResult().getInst()->getParent() == BB && 978 "Instruction invalidated?"); 979 ++NumCacheDirtyNonLocalPtr; 980 ScanPos = ExistingResult->getResult().getInst(); 981 982 // Eliminating the dirty entry from 'Cache', so update the reverse info. 983 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 984 RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey); 985 } else { 986 ++NumUncacheNonLocalPtr; 987 } 988 989 // Scan the block for the dependency. 990 MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, 991 QueryInst); 992 993 // If we had a dirty entry for the block, update it. Otherwise, just add 994 // a new entry. 995 if (ExistingResult) 996 ExistingResult->setResult(Dep); 997 else 998 Cache->push_back(NonLocalDepEntry(BB, Dep)); 999 1000 // If the block has a dependency (i.e. it isn't completely transparent to 1001 // the value), remember the reverse association because we just added it 1002 // to Cache! 1003 if (!Dep.isDef() && !Dep.isClobber()) 1004 return Dep; 1005 1006 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently 1007 // update MemDep when we remove instructions. 1008 Instruction *Inst = Dep.getInst(); 1009 assert(Inst && "Didn't depend on anything?"); 1010 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 1011 ReverseNonLocalPtrDeps[Inst].insert(CacheKey); 1012 return Dep; 1013 } 1014 1015 /// SortNonLocalDepInfoCache - Sort the NonLocalDepInfo cache, given a certain 1016 /// number of elements in the array that are already properly ordered. This is 1017 /// optimized for the case when only a few entries are added. 1018 static void 1019 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 1020 unsigned NumSortedEntries) { 1021 switch (Cache.size() - NumSortedEntries) { 1022 case 0: 1023 // done, no new entries. 1024 break; 1025 case 2: { 1026 // Two new entries, insert the last one into place. 1027 NonLocalDepEntry Val = Cache.back(); 1028 Cache.pop_back(); 1029 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 1030 std::upper_bound(Cache.begin(), Cache.end()-1, Val); 1031 Cache.insert(Entry, Val); 1032 // FALL THROUGH. 1033 } 1034 case 1: 1035 // One new entry, Just insert the new value at the appropriate position. 1036 if (Cache.size() != 1) { 1037 NonLocalDepEntry Val = Cache.back(); 1038 Cache.pop_back(); 1039 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 1040 std::upper_bound(Cache.begin(), Cache.end(), Val); 1041 Cache.insert(Entry, Val); 1042 } 1043 break; 1044 default: 1045 // Added many values, do a full scale sort. 1046 std::sort(Cache.begin(), Cache.end()); 1047 break; 1048 } 1049 } 1050 1051 /// getNonLocalPointerDepFromBB - Perform a dependency query based on 1052 /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def 1053 /// results to the results vector and keep track of which blocks are visited in 1054 /// 'Visited'. 1055 /// 1056 /// This has special behavior for the first block queries (when SkipFirstBlock 1057 /// is true). In this special case, it ignores the contents of the specified 1058 /// block and starts returning dependence info for its predecessors. 1059 /// 1060 /// This function returns false on success, or true to indicate that it could 1061 /// not compute dependence information for some reason. This should be treated 1062 /// as a clobber dependence on the first instruction in the predecessor block. 1063 bool MemoryDependenceAnalysis:: 1064 getNonLocalPointerDepFromBB(Instruction *QueryInst, 1065 const PHITransAddr &Pointer, 1066 const AliasAnalysis::Location &Loc, 1067 bool isLoad, BasicBlock *StartBB, 1068 SmallVectorImpl<NonLocalDepResult> &Result, 1069 DenseMap<BasicBlock*, Value*> &Visited, 1070 bool SkipFirstBlock) { 1071 // Look up the cached info for Pointer. 1072 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); 1073 1074 // Set up a temporary NLPI value. If the map doesn't yet have an entry for 1075 // CacheKey, this value will be inserted as the associated value. Otherwise, 1076 // it'll be ignored, and we'll have to check to see if the cached size and 1077 // aa tags are consistent with the current query. 1078 NonLocalPointerInfo InitialNLPI; 1079 InitialNLPI.Size = Loc.Size; 1080 InitialNLPI.AATags = Loc.AATags; 1081 1082 // Get the NLPI for CacheKey, inserting one into the map if it doesn't 1083 // already have one. 1084 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = 1085 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); 1086 NonLocalPointerInfo *CacheInfo = &Pair.first->second; 1087 1088 // If we already have a cache entry for this CacheKey, we may need to do some 1089 // work to reconcile the cache entry and the current query. 1090 if (!Pair.second) { 1091 if (CacheInfo->Size < Loc.Size) { 1092 // The query's Size is greater than the cached one. Throw out the 1093 // cached data and proceed with the query at the greater size. 1094 CacheInfo->Pair = BBSkipFirstBlockPair(); 1095 CacheInfo->Size = Loc.Size; 1096 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(), 1097 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI) 1098 if (Instruction *Inst = DI->getResult().getInst()) 1099 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1100 CacheInfo->NonLocalDeps.clear(); 1101 } else if (CacheInfo->Size > Loc.Size) { 1102 // This query's Size is less than the cached one. Conservatively restart 1103 // the query using the greater size. 1104 return getNonLocalPointerDepFromBB(QueryInst, Pointer, 1105 Loc.getWithNewSize(CacheInfo->Size), 1106 isLoad, StartBB, Result, Visited, 1107 SkipFirstBlock); 1108 } 1109 1110 // If the query's AATags are inconsistent with the cached one, 1111 // conservatively throw out the cached data and restart the query with 1112 // no tag if needed. 1113 if (CacheInfo->AATags != Loc.AATags) { 1114 if (CacheInfo->AATags) { 1115 CacheInfo->Pair = BBSkipFirstBlockPair(); 1116 CacheInfo->AATags = AAMDNodes(); 1117 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(), 1118 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI) 1119 if (Instruction *Inst = DI->getResult().getInst()) 1120 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1121 CacheInfo->NonLocalDeps.clear(); 1122 } 1123 if (Loc.AATags) 1124 return getNonLocalPointerDepFromBB(QueryInst, 1125 Pointer, Loc.getWithoutAATags(), 1126 isLoad, StartBB, Result, Visited, 1127 SkipFirstBlock); 1128 } 1129 } 1130 1131 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; 1132 1133 // If we have valid cached information for exactly the block we are 1134 // investigating, just return it with no recomputation. 1135 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { 1136 // We have a fully cached result for this query then we can just return the 1137 // cached results and populate the visited set. However, we have to verify 1138 // that we don't already have conflicting results for these blocks. Check 1139 // to ensure that if a block in the results set is in the visited set that 1140 // it was for the same pointer query. 1141 if (!Visited.empty()) { 1142 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 1143 I != E; ++I) { 1144 DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB()); 1145 if (VI == Visited.end() || VI->second == Pointer.getAddr()) 1146 continue; 1147 1148 // We have a pointer mismatch in a block. Just return clobber, saying 1149 // that something was clobbered in this result. We could also do a 1150 // non-fully cached query, but there is little point in doing this. 1151 return true; 1152 } 1153 } 1154 1155 Value *Addr = Pointer.getAddr(); 1156 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 1157 I != E; ++I) { 1158 Visited.insert(std::make_pair(I->getBB(), Addr)); 1159 if (I->getResult().isNonLocal()) { 1160 continue; 1161 } 1162 1163 if (!DT) { 1164 Result.push_back(NonLocalDepResult(I->getBB(), 1165 MemDepResult::getUnknown(), 1166 Addr)); 1167 } else if (DT->isReachableFromEntry(I->getBB())) { 1168 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr)); 1169 } 1170 } 1171 ++NumCacheCompleteNonLocalPtr; 1172 return false; 1173 } 1174 1175 // Otherwise, either this is a new block, a block with an invalid cache 1176 // pointer or one that we're about to invalidate by putting more info into it 1177 // than its valid cache info. If empty, the result will be valid cache info, 1178 // otherwise it isn't. 1179 if (Cache->empty()) 1180 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); 1181 else 1182 CacheInfo->Pair = BBSkipFirstBlockPair(); 1183 1184 SmallVector<BasicBlock*, 32> Worklist; 1185 Worklist.push_back(StartBB); 1186 1187 // PredList used inside loop. 1188 SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList; 1189 1190 // Keep track of the entries that we know are sorted. Previously cached 1191 // entries will all be sorted. The entries we add we only sort on demand (we 1192 // don't insert every element into its sorted position). We know that we 1193 // won't get any reuse from currently inserted values, because we don't 1194 // revisit blocks after we insert info for them. 1195 unsigned NumSortedEntries = Cache->size(); 1196 DEBUG(AssertSorted(*Cache)); 1197 1198 while (!Worklist.empty()) { 1199 BasicBlock *BB = Worklist.pop_back_val(); 1200 1201 // If we do process a large number of blocks it becomes very expensive and 1202 // likely it isn't worth worrying about 1203 if (Result.size() > NumResultsLimit) { 1204 Worklist.clear(); 1205 // Sort it now (if needed) so that recursive invocations of 1206 // getNonLocalPointerDepFromBB and other routines that could reuse the 1207 // cache value will only see properly sorted cache arrays. 1208 if (Cache && NumSortedEntries != Cache->size()) { 1209 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1210 } 1211 // Since we bail out, the "Cache" set won't contain all of the 1212 // results for the query. This is ok (we can still use it to accelerate 1213 // specific block queries) but we can't do the fastpath "return all 1214 // results from the set". Clear out the indicator for this. 1215 CacheInfo->Pair = BBSkipFirstBlockPair(); 1216 return true; 1217 } 1218 1219 // Skip the first block if we have it. 1220 if (!SkipFirstBlock) { 1221 // Analyze the dependency of *Pointer in FromBB. See if we already have 1222 // been here. 1223 assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); 1224 1225 // Get the dependency info for Pointer in BB. If we have cached 1226 // information, we will use it, otherwise we compute it. 1227 DEBUG(AssertSorted(*Cache, NumSortedEntries)); 1228 MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, 1229 Loc, isLoad, BB, Cache, 1230 NumSortedEntries); 1231 1232 // If we got a Def or Clobber, add this to the list of results. 1233 if (!Dep.isNonLocal()) { 1234 if (!DT) { 1235 Result.push_back(NonLocalDepResult(BB, 1236 MemDepResult::getUnknown(), 1237 Pointer.getAddr())); 1238 continue; 1239 } else if (DT->isReachableFromEntry(BB)) { 1240 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); 1241 continue; 1242 } 1243 } 1244 } 1245 1246 // If 'Pointer' is an instruction defined in this block, then we need to do 1247 // phi translation to change it into a value live in the predecessor block. 1248 // If not, we just add the predecessors to the worklist and scan them with 1249 // the same Pointer. 1250 if (!Pointer.NeedsPHITranslationFromBlock(BB)) { 1251 SkipFirstBlock = false; 1252 SmallVector<BasicBlock*, 16> NewBlocks; 1253 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { 1254 // Verify that we haven't looked at this block yet. 1255 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 1256 InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr())); 1257 if (InsertRes.second) { 1258 // First time we've looked at *PI. 1259 NewBlocks.push_back(*PI); 1260 continue; 1261 } 1262 1263 // If we have seen this block before, but it was with a different 1264 // pointer then we have a phi translation failure and we have to treat 1265 // this as a clobber. 1266 if (InsertRes.first->second != Pointer.getAddr()) { 1267 // Make sure to clean up the Visited map before continuing on to 1268 // PredTranslationFailure. 1269 for (unsigned i = 0; i < NewBlocks.size(); i++) 1270 Visited.erase(NewBlocks[i]); 1271 goto PredTranslationFailure; 1272 } 1273 } 1274 Worklist.append(NewBlocks.begin(), NewBlocks.end()); 1275 continue; 1276 } 1277 1278 // We do need to do phi translation, if we know ahead of time we can't phi 1279 // translate this value, don't even try. 1280 if (!Pointer.IsPotentiallyPHITranslatable()) 1281 goto PredTranslationFailure; 1282 1283 // We may have added values to the cache list before this PHI translation. 1284 // If so, we haven't done anything to ensure that the cache remains sorted. 1285 // Sort it now (if needed) so that recursive invocations of 1286 // getNonLocalPointerDepFromBB and other routines that could reuse the cache 1287 // value will only see properly sorted cache arrays. 1288 if (Cache && NumSortedEntries != Cache->size()) { 1289 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1290 NumSortedEntries = Cache->size(); 1291 } 1292 Cache = nullptr; 1293 1294 PredList.clear(); 1295 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { 1296 BasicBlock *Pred = *PI; 1297 PredList.push_back(std::make_pair(Pred, Pointer)); 1298 1299 // Get the PHI translated pointer in this predecessor. This can fail if 1300 // not translatable, in which case the getAddr() returns null. 1301 PHITransAddr &PredPointer = PredList.back().second; 1302 PredPointer.PHITranslateValue(BB, Pred, nullptr); 1303 1304 Value *PredPtrVal = PredPointer.getAddr(); 1305 1306 // Check to see if we have already visited this pred block with another 1307 // pointer. If so, we can't do this lookup. This failure can occur 1308 // with PHI translation when a critical edge exists and the PHI node in 1309 // the successor translates to a pointer value different than the 1310 // pointer the block was first analyzed with. 1311 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 1312 InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal)); 1313 1314 if (!InsertRes.second) { 1315 // We found the pred; take it off the list of preds to visit. 1316 PredList.pop_back(); 1317 1318 // If the predecessor was visited with PredPtr, then we already did 1319 // the analysis and can ignore it. 1320 if (InsertRes.first->second == PredPtrVal) 1321 continue; 1322 1323 // Otherwise, the block was previously analyzed with a different 1324 // pointer. We can't represent the result of this case, so we just 1325 // treat this as a phi translation failure. 1326 1327 // Make sure to clean up the Visited map before continuing on to 1328 // PredTranslationFailure. 1329 for (unsigned i = 0, n = PredList.size(); i < n; ++i) 1330 Visited.erase(PredList[i].first); 1331 1332 goto PredTranslationFailure; 1333 } 1334 } 1335 1336 // Actually process results here; this need to be a separate loop to avoid 1337 // calling getNonLocalPointerDepFromBB for blocks we don't want to return 1338 // any results for. (getNonLocalPointerDepFromBB will modify our 1339 // datastructures in ways the code after the PredTranslationFailure label 1340 // doesn't expect.) 1341 for (unsigned i = 0, n = PredList.size(); i < n; ++i) { 1342 BasicBlock *Pred = PredList[i].first; 1343 PHITransAddr &PredPointer = PredList[i].second; 1344 Value *PredPtrVal = PredPointer.getAddr(); 1345 1346 bool CanTranslate = true; 1347 // If PHI translation was unable to find an available pointer in this 1348 // predecessor, then we have to assume that the pointer is clobbered in 1349 // that predecessor. We can still do PRE of the load, which would insert 1350 // a computation of the pointer in this predecessor. 1351 if (!PredPtrVal) 1352 CanTranslate = false; 1353 1354 // FIXME: it is entirely possible that PHI translating will end up with 1355 // the same value. Consider PHI translating something like: 1356 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* 1357 // to recurse here, pedantically speaking. 1358 1359 // If getNonLocalPointerDepFromBB fails here, that means the cached 1360 // result conflicted with the Visited list; we have to conservatively 1361 // assume it is unknown, but this also does not block PRE of the load. 1362 if (!CanTranslate || 1363 getNonLocalPointerDepFromBB(QueryInst, PredPointer, 1364 Loc.getWithNewPtr(PredPtrVal), 1365 isLoad, Pred, 1366 Result, Visited)) { 1367 // Add the entry to the Result list. 1368 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal); 1369 Result.push_back(Entry); 1370 1371 // Since we had a phi translation failure, the cache for CacheKey won't 1372 // include all of the entries that we need to immediately satisfy future 1373 // queries. Mark this in NonLocalPointerDeps by setting the 1374 // BBSkipFirstBlockPair pointer to null. This requires reuse of the 1375 // cached value to do more work but not miss the phi trans failure. 1376 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; 1377 NLPI.Pair = BBSkipFirstBlockPair(); 1378 continue; 1379 } 1380 } 1381 1382 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. 1383 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1384 Cache = &CacheInfo->NonLocalDeps; 1385 NumSortedEntries = Cache->size(); 1386 1387 // Since we did phi translation, the "Cache" set won't contain all of the 1388 // results for the query. This is ok (we can still use it to accelerate 1389 // specific block queries) but we can't do the fastpath "return all 1390 // results from the set" Clear out the indicator for this. 1391 CacheInfo->Pair = BBSkipFirstBlockPair(); 1392 SkipFirstBlock = false; 1393 continue; 1394 1395 PredTranslationFailure: 1396 // The following code is "failure"; we can't produce a sane translation 1397 // for the given block. It assumes that we haven't modified any of 1398 // our datastructures while processing the current block. 1399 1400 if (!Cache) { 1401 // Refresh the CacheInfo/Cache pointer if it got invalidated. 1402 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1403 Cache = &CacheInfo->NonLocalDeps; 1404 NumSortedEntries = Cache->size(); 1405 } 1406 1407 // Since we failed phi translation, the "Cache" set won't contain all of the 1408 // results for the query. This is ok (we can still use it to accelerate 1409 // specific block queries) but we can't do the fastpath "return all 1410 // results from the set". Clear out the indicator for this. 1411 CacheInfo->Pair = BBSkipFirstBlockPair(); 1412 1413 // If *nothing* works, mark the pointer as unknown. 1414 // 1415 // If this is the magic first block, return this as a clobber of the whole 1416 // incoming value. Since we can't phi translate to one of the predecessors, 1417 // we have to bail out. 1418 if (SkipFirstBlock) 1419 return true; 1420 1421 for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) { 1422 assert(I != Cache->rend() && "Didn't find current block??"); 1423 if (I->getBB() != BB) 1424 continue; 1425 1426 assert((I->getResult().isNonLocal() || !DT->isReachableFromEntry(BB)) && 1427 "Should only be here with transparent block"); 1428 I->setResult(MemDepResult::getUnknown()); 1429 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), 1430 Pointer.getAddr())); 1431 break; 1432 } 1433 } 1434 1435 // Okay, we're done now. If we added new values to the cache, re-sort it. 1436 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1437 DEBUG(AssertSorted(*Cache)); 1438 return false; 1439 } 1440 1441 /// RemoveCachedNonLocalPointerDependencies - If P exists in 1442 /// CachedNonLocalPointerInfo, remove it. 1443 void MemoryDependenceAnalysis:: 1444 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) { 1445 CachedNonLocalPointerInfo::iterator It = 1446 NonLocalPointerDeps.find(P); 1447 if (It == NonLocalPointerDeps.end()) return; 1448 1449 // Remove all of the entries in the BB->val map. This involves removing 1450 // instructions from the reverse map. 1451 NonLocalDepInfo &PInfo = It->second.NonLocalDeps; 1452 1453 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { 1454 Instruction *Target = PInfo[i].getResult().getInst(); 1455 if (!Target) continue; // Ignore non-local dep results. 1456 assert(Target->getParent() == PInfo[i].getBB()); 1457 1458 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1459 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); 1460 } 1461 1462 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). 1463 NonLocalPointerDeps.erase(It); 1464 } 1465 1466 1467 /// invalidateCachedPointerInfo - This method is used to invalidate cached 1468 /// information about the specified pointer, because it may be too 1469 /// conservative in memdep. This is an optional call that can be used when 1470 /// the client detects an equivalence between the pointer and some other 1471 /// value and replaces the other value with ptr. This can make Ptr available 1472 /// in more places that cached info does not necessarily keep. 1473 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) { 1474 // If Ptr isn't really a pointer, just ignore it. 1475 if (!Ptr->getType()->isPointerTy()) return; 1476 // Flush store info for the pointer. 1477 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); 1478 // Flush load info for the pointer. 1479 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); 1480 } 1481 1482 /// invalidateCachedPredecessors - Clear the PredIteratorCache info. 1483 /// This needs to be done when the CFG changes, e.g., due to splitting 1484 /// critical edges. 1485 void MemoryDependenceAnalysis::invalidateCachedPredecessors() { 1486 PredCache->clear(); 1487 } 1488 1489 /// removeInstruction - Remove an instruction from the dependence analysis, 1490 /// updating the dependence of instructions that previously depended on it. 1491 /// This method attempts to keep the cache coherent using the reverse map. 1492 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) { 1493 // Walk through the Non-local dependencies, removing this one as the value 1494 // for any cached queries. 1495 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); 1496 if (NLDI != NonLocalDeps.end()) { 1497 NonLocalDepInfo &BlockMap = NLDI->second.first; 1498 for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end(); 1499 DI != DE; ++DI) 1500 if (Instruction *Inst = DI->getResult().getInst()) 1501 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); 1502 NonLocalDeps.erase(NLDI); 1503 } 1504 1505 // If we have a cached local dependence query for this instruction, remove it. 1506 // 1507 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); 1508 if (LocalDepEntry != LocalDeps.end()) { 1509 // Remove us from DepInst's reverse set now that the local dep info is gone. 1510 if (Instruction *Inst = LocalDepEntry->second.getInst()) 1511 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); 1512 1513 // Remove this local dependency info. 1514 LocalDeps.erase(LocalDepEntry); 1515 } 1516 1517 // If we have any cached pointer dependencies on this instruction, remove 1518 // them. If the instruction has non-pointer type, then it can't be a pointer 1519 // base. 1520 1521 // Remove it from both the load info and the store info. The instruction 1522 // can't be in either of these maps if it is non-pointer. 1523 if (RemInst->getType()->isPointerTy()) { 1524 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); 1525 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); 1526 } 1527 1528 // Loop over all of the things that depend on the instruction we're removing. 1529 // 1530 SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd; 1531 1532 // If we find RemInst as a clobber or Def in any of the maps for other values, 1533 // we need to replace its entry with a dirty version of the instruction after 1534 // it. If RemInst is a terminator, we use a null dirty value. 1535 // 1536 // Using a dirty version of the instruction after RemInst saves having to scan 1537 // the entire block to get to this point. 1538 MemDepResult NewDirtyVal; 1539 if (!RemInst->isTerminator()) 1540 NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst)); 1541 1542 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); 1543 if (ReverseDepIt != ReverseLocalDeps.end()) { 1544 // RemInst can't be the terminator if it has local stuff depending on it. 1545 assert(!ReverseDepIt->second.empty() && !isa<TerminatorInst>(RemInst) && 1546 "Nothing can locally depend on a terminator"); 1547 1548 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) { 1549 assert(InstDependingOnRemInst != RemInst && 1550 "Already removed our local dep info"); 1551 1552 LocalDeps[InstDependingOnRemInst] = NewDirtyVal; 1553 1554 // Make sure to remember that new things depend on NewDepInst. 1555 assert(NewDirtyVal.getInst() && "There is no way something else can have " 1556 "a local dep on this if it is a terminator!"); 1557 ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(), 1558 InstDependingOnRemInst)); 1559 } 1560 1561 ReverseLocalDeps.erase(ReverseDepIt); 1562 1563 // Add new reverse deps after scanning the set, to avoid invalidating the 1564 // 'ReverseDeps' reference. 1565 while (!ReverseDepsToAdd.empty()) { 1566 ReverseLocalDeps[ReverseDepsToAdd.back().first] 1567 .insert(ReverseDepsToAdd.back().second); 1568 ReverseDepsToAdd.pop_back(); 1569 } 1570 } 1571 1572 ReverseDepIt = ReverseNonLocalDeps.find(RemInst); 1573 if (ReverseDepIt != ReverseNonLocalDeps.end()) { 1574 for (Instruction *I : ReverseDepIt->second) { 1575 assert(I != RemInst && "Already removed NonLocalDep info for RemInst"); 1576 1577 PerInstNLInfo &INLD = NonLocalDeps[I]; 1578 // The information is now dirty! 1579 INLD.second = true; 1580 1581 for (NonLocalDepInfo::iterator DI = INLD.first.begin(), 1582 DE = INLD.first.end(); DI != DE; ++DI) { 1583 if (DI->getResult().getInst() != RemInst) continue; 1584 1585 // Convert to a dirty entry for the subsequent instruction. 1586 DI->setResult(NewDirtyVal); 1587 1588 if (Instruction *NextI = NewDirtyVal.getInst()) 1589 ReverseDepsToAdd.push_back(std::make_pair(NextI, I)); 1590 } 1591 } 1592 1593 ReverseNonLocalDeps.erase(ReverseDepIt); 1594 1595 // Add new reverse deps after scanning the set, to avoid invalidating 'Set' 1596 while (!ReverseDepsToAdd.empty()) { 1597 ReverseNonLocalDeps[ReverseDepsToAdd.back().first] 1598 .insert(ReverseDepsToAdd.back().second); 1599 ReverseDepsToAdd.pop_back(); 1600 } 1601 } 1602 1603 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a 1604 // value in the NonLocalPointerDeps info. 1605 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = 1606 ReverseNonLocalPtrDeps.find(RemInst); 1607 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { 1608 SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd; 1609 1610 for (ValueIsLoadPair P : ReversePtrDepIt->second) { 1611 assert(P.getPointer() != RemInst && 1612 "Already removed NonLocalPointerDeps info for RemInst"); 1613 1614 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; 1615 1616 // The cache is not valid for any specific block anymore. 1617 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); 1618 1619 // Update any entries for RemInst to use the instruction after it. 1620 for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end(); 1621 DI != DE; ++DI) { 1622 if (DI->getResult().getInst() != RemInst) continue; 1623 1624 // Convert to a dirty entry for the subsequent instruction. 1625 DI->setResult(NewDirtyVal); 1626 1627 if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) 1628 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); 1629 } 1630 1631 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its 1632 // subsequent value may invalidate the sortedness. 1633 std::sort(NLPDI.begin(), NLPDI.end()); 1634 } 1635 1636 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); 1637 1638 while (!ReversePtrDepsToAdd.empty()) { 1639 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first] 1640 .insert(ReversePtrDepsToAdd.back().second); 1641 ReversePtrDepsToAdd.pop_back(); 1642 } 1643 } 1644 1645 1646 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); 1647 AA->deleteValue(RemInst); 1648 DEBUG(verifyRemoved(RemInst)); 1649 } 1650 /// verifyRemoved - Verify that the specified instruction does not occur 1651 /// in our internal data structures. This function verifies by asserting in 1652 /// debug builds. 1653 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const { 1654 #ifndef NDEBUG 1655 for (LocalDepMapType::const_iterator I = LocalDeps.begin(), 1656 E = LocalDeps.end(); I != E; ++I) { 1657 assert(I->first != D && "Inst occurs in data structures"); 1658 assert(I->second.getInst() != D && 1659 "Inst occurs in data structures"); 1660 } 1661 1662 for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(), 1663 E = NonLocalPointerDeps.end(); I != E; ++I) { 1664 assert(I->first.getPointer() != D && "Inst occurs in NLPD map key"); 1665 const NonLocalDepInfo &Val = I->second.NonLocalDeps; 1666 for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end(); 1667 II != E; ++II) 1668 assert(II->getResult().getInst() != D && "Inst occurs as NLPD value"); 1669 } 1670 1671 for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(), 1672 E = NonLocalDeps.end(); I != E; ++I) { 1673 assert(I->first != D && "Inst occurs in data structures"); 1674 const PerInstNLInfo &INLD = I->second; 1675 for (NonLocalDepInfo::const_iterator II = INLD.first.begin(), 1676 EE = INLD.first.end(); II != EE; ++II) 1677 assert(II->getResult().getInst() != D && "Inst occurs in data structures"); 1678 } 1679 1680 for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(), 1681 E = ReverseLocalDeps.end(); I != E; ++I) { 1682 assert(I->first != D && "Inst occurs in data structures"); 1683 for (Instruction *Inst : I->second) 1684 assert(Inst != D && "Inst occurs in data structures"); 1685 } 1686 1687 for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(), 1688 E = ReverseNonLocalDeps.end(); 1689 I != E; ++I) { 1690 assert(I->first != D && "Inst occurs in data structures"); 1691 for (Instruction *Inst : I->second) 1692 assert(Inst != D && "Inst occurs in data structures"); 1693 } 1694 1695 for (ReverseNonLocalPtrDepTy::const_iterator 1696 I = ReverseNonLocalPtrDeps.begin(), 1697 E = ReverseNonLocalPtrDeps.end(); I != E; ++I) { 1698 assert(I->first != D && "Inst occurs in rev NLPD map"); 1699 1700 for (ValueIsLoadPair P : I->second) 1701 assert(P != ValueIsLoadPair(D, false) && 1702 P != ValueIsLoadPair(D, true) && 1703 "Inst occurs in ReverseNonLocalPtrDeps map"); 1704 } 1705 #endif 1706 } 1707