1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an analysis that determines, for a given memory
10 // operation, what preceding memory operations it depends on.  It builds on
11 // alias analysis information, and tries to provide a lazy, caching interface to
12 // a common kind of alias information query.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/Analysis/PHITransAddr.h"
27 #include "llvm/Analysis/PhiValues.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/PredIteratorCache.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Use.h"
47 #include "llvm/IR/User.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/AtomicOrdering.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/MathExtras.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <iterator>
61 #include <utility>
62 
63 using namespace llvm;
64 
65 #define DEBUG_TYPE "memdep"
66 
67 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
68 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
69 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
70 
71 STATISTIC(NumCacheNonLocalPtr,
72           "Number of fully cached non-local ptr responses");
73 STATISTIC(NumCacheDirtyNonLocalPtr,
74           "Number of cached, but dirty, non-local ptr responses");
75 STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses");
76 STATISTIC(NumCacheCompleteNonLocalPtr,
77           "Number of block queries that were completely cached");
78 
79 // Limit for the number of instructions to scan in a block.
80 
81 static cl::opt<unsigned> BlockScanLimit(
82     "memdep-block-scan-limit", cl::Hidden, cl::init(100),
83     cl::desc("The number of instructions to scan in a block in memory "
84              "dependency analysis (default = 100)"));
85 
86 static cl::opt<unsigned>
87     BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000),
88                      cl::desc("The number of blocks to scan during memory "
89                               "dependency analysis (default = 1000)"));
90 
91 // Limit on the number of memdep results to process.
92 static const unsigned int NumResultsLimit = 100;
93 
94 /// This is a helper function that removes Val from 'Inst's set in ReverseMap.
95 ///
96 /// If the set becomes empty, remove Inst's entry.
97 template <typename KeyTy>
98 static void
99 RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap,
100                      Instruction *Inst, KeyTy Val) {
101   typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt =
102       ReverseMap.find(Inst);
103   assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
104   bool Found = InstIt->second.erase(Val);
105   assert(Found && "Invalid reverse map!");
106   (void)Found;
107   if (InstIt->second.empty())
108     ReverseMap.erase(InstIt);
109 }
110 
111 /// If the given instruction references a specific memory location, fill in Loc
112 /// with the details, otherwise set Loc.Ptr to null.
113 ///
114 /// Returns a ModRefInfo value describing the general behavior of the
115 /// instruction.
116 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc,
117                               const TargetLibraryInfo &TLI) {
118   if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
119     if (LI->isUnordered()) {
120       Loc = MemoryLocation::get(LI);
121       return ModRefInfo::Ref;
122     }
123     if (LI->getOrdering() == AtomicOrdering::Monotonic) {
124       Loc = MemoryLocation::get(LI);
125       return ModRefInfo::ModRef;
126     }
127     Loc = MemoryLocation();
128     return ModRefInfo::ModRef;
129   }
130 
131   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
132     if (SI->isUnordered()) {
133       Loc = MemoryLocation::get(SI);
134       return ModRefInfo::Mod;
135     }
136     if (SI->getOrdering() == AtomicOrdering::Monotonic) {
137       Loc = MemoryLocation::get(SI);
138       return ModRefInfo::ModRef;
139     }
140     Loc = MemoryLocation();
141     return ModRefInfo::ModRef;
142   }
143 
144   if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
145     Loc = MemoryLocation::get(V);
146     return ModRefInfo::ModRef;
147   }
148 
149   if (const CallInst *CI = isFreeCall(Inst, &TLI)) {
150     // calls to free() deallocate the entire structure
151     Loc = MemoryLocation(CI->getArgOperand(0));
152     return ModRefInfo::Mod;
153   }
154 
155   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
156     switch (II->getIntrinsicID()) {
157     case Intrinsic::lifetime_start:
158     case Intrinsic::lifetime_end:
159     case Intrinsic::invariant_start:
160       Loc = MemoryLocation::getForArgument(II, 1, TLI);
161       // These intrinsics don't really modify the memory, but returning Mod
162       // will allow them to be handled conservatively.
163       return ModRefInfo::Mod;
164     case Intrinsic::invariant_end:
165       Loc = MemoryLocation::getForArgument(II, 2, TLI);
166       // These intrinsics don't really modify the memory, but returning Mod
167       // will allow them to be handled conservatively.
168       return ModRefInfo::Mod;
169     case Intrinsic::masked_load:
170       Loc = MemoryLocation::getForArgument(II, 0, TLI);
171       return ModRefInfo::Ref;
172     case Intrinsic::masked_store:
173       Loc = MemoryLocation::getForArgument(II, 1, TLI);
174       return ModRefInfo::Mod;
175     default:
176       break;
177     }
178   }
179 
180   // Otherwise, just do the coarse-grained thing that always works.
181   if (Inst->mayWriteToMemory())
182     return ModRefInfo::ModRef;
183   if (Inst->mayReadFromMemory())
184     return ModRefInfo::Ref;
185   return ModRefInfo::NoModRef;
186 }
187 
188 /// Private helper for finding the local dependencies of a call site.
189 MemDepResult MemoryDependenceResults::getCallDependencyFrom(
190     CallBase *Call, bool isReadOnlyCall, BasicBlock::iterator ScanIt,
191     BasicBlock *BB) {
192   unsigned Limit = getDefaultBlockScanLimit();
193 
194   // Walk backwards through the block, looking for dependencies.
195   while (ScanIt != BB->begin()) {
196     Instruction *Inst = &*--ScanIt;
197     // Debug intrinsics don't cause dependences and should not affect Limit
198     if (isa<DbgInfoIntrinsic>(Inst))
199       continue;
200 
201     // Limit the amount of scanning we do so we don't end up with quadratic
202     // running time on extreme testcases.
203     --Limit;
204     if (!Limit)
205       return MemDepResult::getUnknown();
206 
207     // If this inst is a memory op, get the pointer it accessed
208     MemoryLocation Loc;
209     ModRefInfo MR = GetLocation(Inst, Loc, TLI);
210     if (Loc.Ptr) {
211       // A simple instruction.
212       if (isModOrRefSet(AA.getModRefInfo(Call, Loc)))
213         return MemDepResult::getClobber(Inst);
214       continue;
215     }
216 
217     if (auto *CallB = dyn_cast<CallBase>(Inst)) {
218       // If these two calls do not interfere, look past it.
219       if (isNoModRef(AA.getModRefInfo(Call, CallB))) {
220         // If the two calls are the same, return Inst as a Def, so that
221         // Call can be found redundant and eliminated.
222         if (isReadOnlyCall && !isModSet(MR) &&
223             Call->isIdenticalToWhenDefined(CallB))
224           return MemDepResult::getDef(Inst);
225 
226         // Otherwise if the two calls don't interact (e.g. CallB is readnone)
227         // keep scanning.
228         continue;
229       } else
230         return MemDepResult::getClobber(Inst);
231     }
232 
233     // If we could not obtain a pointer for the instruction and the instruction
234     // touches memory then assume that this is a dependency.
235     if (isModOrRefSet(MR))
236       return MemDepResult::getClobber(Inst);
237   }
238 
239   // No dependence found.  If this is the entry block of the function, it is
240   // unknown, otherwise it is non-local.
241   if (BB != &BB->getParent()->getEntryBlock())
242     return MemDepResult::getNonLocal();
243   return MemDepResult::getNonFuncLocal();
244 }
245 
246 static bool isVolatile(Instruction *Inst) {
247   if (auto *LI = dyn_cast<LoadInst>(Inst))
248     return LI->isVolatile();
249   if (auto *SI = dyn_cast<StoreInst>(Inst))
250     return SI->isVolatile();
251   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(Inst))
252     return AI->isVolatile();
253   return false;
254 }
255 
256 MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
257     const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
258     BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
259   MemDepResult InvariantGroupDependency = MemDepResult::getUnknown();
260   if (QueryInst != nullptr) {
261     if (auto *LI = dyn_cast<LoadInst>(QueryInst)) {
262       InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB);
263 
264       if (InvariantGroupDependency.isDef())
265         return InvariantGroupDependency;
266     }
267   }
268   MemDepResult SimpleDep = getSimplePointerDependencyFrom(
269       MemLoc, isLoad, ScanIt, BB, QueryInst, Limit);
270   if (SimpleDep.isDef())
271     return SimpleDep;
272   // Non-local invariant group dependency indicates there is non local Def
273   // (it only returns nonLocal if it finds nonLocal def), which is better than
274   // local clobber and everything else.
275   if (InvariantGroupDependency.isNonLocal())
276     return InvariantGroupDependency;
277 
278   assert(InvariantGroupDependency.isUnknown() &&
279          "InvariantGroupDependency should be only unknown at this point");
280   return SimpleDep;
281 }
282 
283 MemDepResult
284 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI,
285                                                             BasicBlock *BB) {
286 
287   if (!LI->hasMetadata(LLVMContext::MD_invariant_group))
288     return MemDepResult::getUnknown();
289 
290   // Take the ptr operand after all casts and geps 0. This way we can search
291   // cast graph down only.
292   Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts();
293 
294   // It's is not safe to walk the use list of global value, because function
295   // passes aren't allowed to look outside their functions.
296   // FIXME: this could be fixed by filtering instructions from outside
297   // of current function.
298   if (isa<GlobalValue>(LoadOperand))
299     return MemDepResult::getUnknown();
300 
301   // Queue to process all pointers that are equivalent to load operand.
302   SmallVector<const Value *, 8> LoadOperandsQueue;
303   LoadOperandsQueue.push_back(LoadOperand);
304 
305   Instruction *ClosestDependency = nullptr;
306   // Order of instructions in uses list is unpredictible. In order to always
307   // get the same result, we will look for the closest dominance.
308   auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) {
309     assert(Other && "Must call it with not null instruction");
310     if (Best == nullptr || DT.dominates(Best, Other))
311       return Other;
312     return Best;
313   };
314 
315   // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case
316   // we will see all the instructions. This should be fixed in MSSA.
317   while (!LoadOperandsQueue.empty()) {
318     const Value *Ptr = LoadOperandsQueue.pop_back_val();
319     assert(Ptr && !isa<GlobalValue>(Ptr) &&
320            "Null or GlobalValue should not be inserted");
321 
322     for (const Use &Us : Ptr->uses()) {
323       auto *U = dyn_cast<Instruction>(Us.getUser());
324       if (!U || U == LI || !DT.dominates(U, LI))
325         continue;
326 
327       // Bitcast or gep with zeros are using Ptr. Add to queue to check it's
328       // users.      U = bitcast Ptr
329       if (isa<BitCastInst>(U)) {
330         LoadOperandsQueue.push_back(U);
331         continue;
332       }
333       // Gep with zeros is equivalent to bitcast.
334       // FIXME: we are not sure if some bitcast should be canonicalized to gep 0
335       // or gep 0 to bitcast because of SROA, so there are 2 forms. When
336       // typeless pointers will be ready then both cases will be gone
337       // (and this BFS also won't be needed).
338       if (auto *GEP = dyn_cast<GetElementPtrInst>(U))
339         if (GEP->hasAllZeroIndices()) {
340           LoadOperandsQueue.push_back(U);
341           continue;
342         }
343 
344       // If we hit load/store with the same invariant.group metadata (and the
345       // same pointer operand) we can assume that value pointed by pointer
346       // operand didn't change.
347       if ((isa<LoadInst>(U) || isa<StoreInst>(U)) &&
348           U->hasMetadata(LLVMContext::MD_invariant_group))
349         ClosestDependency = GetClosestDependency(ClosestDependency, U);
350     }
351   }
352 
353   if (!ClosestDependency)
354     return MemDepResult::getUnknown();
355   if (ClosestDependency->getParent() == BB)
356     return MemDepResult::getDef(ClosestDependency);
357   // Def(U) can't be returned here because it is non-local. If local
358   // dependency won't be found then return nonLocal counting that the
359   // user will call getNonLocalPointerDependency, which will return cached
360   // result.
361   NonLocalDefsCache.try_emplace(
362       LI, NonLocalDepResult(ClosestDependency->getParent(),
363                             MemDepResult::getDef(ClosestDependency), nullptr));
364   ReverseNonLocalDefsCache[ClosestDependency].insert(LI);
365   return MemDepResult::getNonLocal();
366 }
367 
368 MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom(
369     const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
370     BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
371   // We can batch AA queries, because IR does not change during a MemDep query.
372   BatchAAResults BatchAA(AA);
373   bool isInvariantLoad = false;
374 
375   unsigned DefaultLimit = getDefaultBlockScanLimit();
376   if (!Limit)
377     Limit = &DefaultLimit;
378 
379   // We must be careful with atomic accesses, as they may allow another thread
380   //   to touch this location, clobbering it. We are conservative: if the
381   //   QueryInst is not a simple (non-atomic) memory access, we automatically
382   //   return getClobber.
383   // If it is simple, we know based on the results of
384   // "Compiler testing via a theory of sound optimisations in the C11/C++11
385   //   memory model" in PLDI 2013, that a non-atomic location can only be
386   //   clobbered between a pair of a release and an acquire action, with no
387   //   access to the location in between.
388   // Here is an example for giving the general intuition behind this rule.
389   // In the following code:
390   //   store x 0;
391   //   release action; [1]
392   //   acquire action; [4]
393   //   %val = load x;
394   // It is unsafe to replace %val by 0 because another thread may be running:
395   //   acquire action; [2]
396   //   store x 42;
397   //   release action; [3]
398   // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
399   // being 42. A key property of this program however is that if either
400   // 1 or 4 were missing, there would be a race between the store of 42
401   // either the store of 0 or the load (making the whole program racy).
402   // The paper mentioned above shows that the same property is respected
403   // by every program that can detect any optimization of that kind: either
404   // it is racy (undefined) or there is a release followed by an acquire
405   // between the pair of accesses under consideration.
406 
407   // If the load is invariant, we "know" that it doesn't alias *any* write. We
408   // do want to respect mustalias results since defs are useful for value
409   // forwarding, but any mayalias write can be assumed to be noalias.
410   // Arguably, this logic should be pushed inside AliasAnalysis itself.
411   if (isLoad && QueryInst) {
412     LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
413     if (LI && LI->hasMetadata(LLVMContext::MD_invariant_load))
414       isInvariantLoad = true;
415   }
416 
417   // Return "true" if and only if the instruction I is either a non-simple
418   // load or a non-simple store.
419   auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool {
420     if (auto *LI = dyn_cast<LoadInst>(I))
421       return !LI->isSimple();
422     if (auto *SI = dyn_cast<StoreInst>(I))
423       return !SI->isSimple();
424     return false;
425   };
426 
427   // Return "true" if I is not a load and not a store, but it does access
428   // memory.
429   auto isOtherMemAccess = [](Instruction *I) -> bool {
430     return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory();
431   };
432 
433   // Walk backwards through the basic block, looking for dependencies.
434   while (ScanIt != BB->begin()) {
435     Instruction *Inst = &*--ScanIt;
436 
437     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
438       // Debug intrinsics don't (and can't) cause dependencies.
439       if (isa<DbgInfoIntrinsic>(II))
440         continue;
441 
442     // Limit the amount of scanning we do so we don't end up with quadratic
443     // running time on extreme testcases.
444     --*Limit;
445     if (!*Limit)
446       return MemDepResult::getUnknown();
447 
448     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
449       // If we reach a lifetime begin or end marker, then the query ends here
450       // because the value is undefined.
451       Intrinsic::ID ID = II->getIntrinsicID();
452       switch (ID) {
453       case Intrinsic::lifetime_start:
454         // FIXME: This only considers queries directly on the invariant-tagged
455         // pointer, not on query pointers that are indexed off of them.  It'd
456         // be nice to handle that at some point (the right approach is to use
457         // GetPointerBaseWithConstantOffset).
458         if (BatchAA.isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc))
459           return MemDepResult::getDef(II);
460         continue;
461       case Intrinsic::masked_load:
462       case Intrinsic::masked_store: {
463         MemoryLocation Loc;
464         /*ModRefInfo MR =*/ GetLocation(II, Loc, TLI);
465         AliasResult R = BatchAA.alias(Loc, MemLoc);
466         if (R == NoAlias)
467           continue;
468         if (R == MustAlias)
469           return MemDepResult::getDef(II);
470         if (ID == Intrinsic::masked_load)
471           continue;
472         return MemDepResult::getClobber(II);
473       }
474       }
475     }
476 
477     // Values depend on loads if the pointers are must aliased.  This means
478     // that a load depends on another must aliased load from the same value.
479     // One exception is atomic loads: a value can depend on an atomic load that
480     // it does not alias with when this atomic load indicates that another
481     // thread may be accessing the location.
482     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
483       // While volatile access cannot be eliminated, they do not have to clobber
484       // non-aliasing locations, as normal accesses, for example, can be safely
485       // reordered with volatile accesses.
486       if (LI->isVolatile()) {
487         if (!QueryInst)
488           // Original QueryInst *may* be volatile
489           return MemDepResult::getClobber(LI);
490         if (isVolatile(QueryInst))
491           // Ordering required if QueryInst is itself volatile
492           return MemDepResult::getClobber(LI);
493         // Otherwise, volatile doesn't imply any special ordering
494       }
495 
496       // Atomic loads have complications involved.
497       // A Monotonic (or higher) load is OK if the query inst is itself not
498       // atomic.
499       // FIXME: This is overly conservative.
500       if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) {
501         if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
502             isOtherMemAccess(QueryInst))
503           return MemDepResult::getClobber(LI);
504         if (LI->getOrdering() != AtomicOrdering::Monotonic)
505           return MemDepResult::getClobber(LI);
506       }
507 
508       MemoryLocation LoadLoc = MemoryLocation::get(LI);
509 
510       // If we found a pointer, check if it could be the same as our pointer.
511       AliasResult R = BatchAA.alias(LoadLoc, MemLoc);
512 
513       if (isLoad) {
514         if (R == NoAlias)
515           continue;
516 
517         // Must aliased loads are defs of each other.
518         if (R == MustAlias)
519           return MemDepResult::getDef(Inst);
520 
521 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
522       // in terms of clobbering loads, but since it does this by looking
523       // at the clobbering load directly, it doesn't know about any
524       // phi translation that may have happened along the way.
525 
526         // If we have a partial alias, then return this as a clobber for the
527         // client to handle.
528         if (R == PartialAlias)
529           return MemDepResult::getClobber(Inst);
530 #endif
531 
532         // Random may-alias loads don't depend on each other without a
533         // dependence.
534         continue;
535       }
536 
537       // Stores don't depend on other no-aliased accesses.
538       if (R == NoAlias)
539         continue;
540 
541       // Stores don't alias loads from read-only memory.
542       if (BatchAA.pointsToConstantMemory(LoadLoc))
543         continue;
544 
545       // Stores depend on may/must aliased loads.
546       return MemDepResult::getDef(Inst);
547     }
548 
549     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
550       // Atomic stores have complications involved.
551       // A Monotonic store is OK if the query inst is itself not atomic.
552       // FIXME: This is overly conservative.
553       if (!SI->isUnordered() && SI->isAtomic()) {
554         if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
555             isOtherMemAccess(QueryInst))
556           return MemDepResult::getClobber(SI);
557         if (SI->getOrdering() != AtomicOrdering::Monotonic)
558           return MemDepResult::getClobber(SI);
559       }
560 
561       // FIXME: this is overly conservative.
562       // While volatile access cannot be eliminated, they do not have to clobber
563       // non-aliasing locations, as normal accesses can for example be reordered
564       // with volatile accesses.
565       if (SI->isVolatile())
566         if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
567             isOtherMemAccess(QueryInst))
568           return MemDepResult::getClobber(SI);
569 
570       // If alias analysis can tell that this store is guaranteed to not modify
571       // the query pointer, ignore it.  Use getModRefInfo to handle cases where
572       // the query pointer points to constant memory etc.
573       if (!isModOrRefSet(BatchAA.getModRefInfo(SI, MemLoc)))
574         continue;
575 
576       // Ok, this store might clobber the query pointer.  Check to see if it is
577       // a must alias: in this case, we want to return this as a def.
578       // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above.
579       MemoryLocation StoreLoc = MemoryLocation::get(SI);
580 
581       // If we found a pointer, check if it could be the same as our pointer.
582       AliasResult R = BatchAA.alias(StoreLoc, MemLoc);
583 
584       if (R == NoAlias)
585         continue;
586       if (R == MustAlias)
587         return MemDepResult::getDef(Inst);
588       if (isInvariantLoad)
589         continue;
590       return MemDepResult::getClobber(Inst);
591     }
592 
593     // If this is an allocation, and if we know that the accessed pointer is to
594     // the allocation, return Def.  This means that there is no dependence and
595     // the access can be optimized based on that.  For example, a load could
596     // turn into undef.  Note that we can bypass the allocation itself when
597     // looking for a clobber in many cases; that's an alias property and is
598     // handled by BasicAA.
599     if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) {
600       const Value *AccessPtr = getUnderlyingObject(MemLoc.Ptr);
601       if (AccessPtr == Inst || BatchAA.isMustAlias(Inst, AccessPtr))
602         return MemDepResult::getDef(Inst);
603     }
604 
605     if (isInvariantLoad)
606       continue;
607 
608     // A release fence requires that all stores complete before it, but does
609     // not prevent the reordering of following loads or stores 'before' the
610     // fence.  As a result, we look past it when finding a dependency for
611     // loads.  DSE uses this to find preceding stores to delete and thus we
612     // can't bypass the fence if the query instruction is a store.
613     if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
614       if (isLoad && FI->getOrdering() == AtomicOrdering::Release)
615         continue;
616 
617     // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
618     ModRefInfo MR = BatchAA.getModRefInfo(Inst, MemLoc);
619     // If necessary, perform additional analysis.
620     if (isModAndRefSet(MR))
621       // TODO: Support callCapturesBefore() on BatchAAResults.
622       MR = AA.callCapturesBefore(Inst, MemLoc, &DT);
623     switch (clearMust(MR)) {
624     case ModRefInfo::NoModRef:
625       // If the call has no effect on the queried pointer, just ignore it.
626       continue;
627     case ModRefInfo::Mod:
628       return MemDepResult::getClobber(Inst);
629     case ModRefInfo::Ref:
630       // If the call is known to never store to the pointer, and if this is a
631       // load query, we can safely ignore it (scan past it).
632       if (isLoad)
633         continue;
634       LLVM_FALLTHROUGH;
635     default:
636       // Otherwise, there is a potential dependence.  Return a clobber.
637       return MemDepResult::getClobber(Inst);
638     }
639   }
640 
641   // No dependence found.  If this is the entry block of the function, it is
642   // unknown, otherwise it is non-local.
643   if (BB != &BB->getParent()->getEntryBlock())
644     return MemDepResult::getNonLocal();
645   return MemDepResult::getNonFuncLocal();
646 }
647 
648 MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) {
649   Instruction *ScanPos = QueryInst;
650 
651   // Check for a cached result
652   MemDepResult &LocalCache = LocalDeps[QueryInst];
653 
654   // If the cached entry is non-dirty, just return it.  Note that this depends
655   // on MemDepResult's default constructing to 'dirty'.
656   if (!LocalCache.isDirty())
657     return LocalCache;
658 
659   // Otherwise, if we have a dirty entry, we know we can start the scan at that
660   // instruction, which may save us some work.
661   if (Instruction *Inst = LocalCache.getInst()) {
662     ScanPos = Inst;
663 
664     RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
665   }
666 
667   BasicBlock *QueryParent = QueryInst->getParent();
668 
669   // Do the scan.
670   if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
671     // No dependence found. If this is the entry block of the function, it is
672     // unknown, otherwise it is non-local.
673     if (QueryParent != &QueryParent->getParent()->getEntryBlock())
674       LocalCache = MemDepResult::getNonLocal();
675     else
676       LocalCache = MemDepResult::getNonFuncLocal();
677   } else {
678     MemoryLocation MemLoc;
679     ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI);
680     if (MemLoc.Ptr) {
681       // If we can do a pointer scan, make it happen.
682       bool isLoad = !isModSet(MR);
683       if (auto *II = dyn_cast<IntrinsicInst>(QueryInst))
684         isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
685 
686       LocalCache =
687           getPointerDependencyFrom(MemLoc, isLoad, ScanPos->getIterator(),
688                                    QueryParent, QueryInst, nullptr);
689     } else if (auto *QueryCall = dyn_cast<CallBase>(QueryInst)) {
690       bool isReadOnly = AA.onlyReadsMemory(QueryCall);
691       LocalCache = getCallDependencyFrom(QueryCall, isReadOnly,
692                                          ScanPos->getIterator(), QueryParent);
693     } else
694       // Non-memory instruction.
695       LocalCache = MemDepResult::getUnknown();
696   }
697 
698   // Remember the result!
699   if (Instruction *I = LocalCache.getInst())
700     ReverseLocalDeps[I].insert(QueryInst);
701 
702   return LocalCache;
703 }
704 
705 #ifndef NDEBUG
706 /// This method is used when -debug is specified to verify that cache arrays
707 /// are properly kept sorted.
708 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache,
709                          int Count = -1) {
710   if (Count == -1)
711     Count = Cache.size();
712   assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) &&
713          "Cache isn't sorted!");
714 }
715 #endif
716 
717 const MemoryDependenceResults::NonLocalDepInfo &
718 MemoryDependenceResults::getNonLocalCallDependency(CallBase *QueryCall) {
719   assert(getDependency(QueryCall).isNonLocal() &&
720          "getNonLocalCallDependency should only be used on calls with "
721          "non-local deps!");
722   PerInstNLInfo &CacheP = NonLocalDeps[QueryCall];
723   NonLocalDepInfo &Cache = CacheP.first;
724 
725   // This is the set of blocks that need to be recomputed.  In the cached case,
726   // this can happen due to instructions being deleted etc. In the uncached
727   // case, this starts out as the set of predecessors we care about.
728   SmallVector<BasicBlock *, 32> DirtyBlocks;
729 
730   if (!Cache.empty()) {
731     // Okay, we have a cache entry.  If we know it is not dirty, just return it
732     // with no computation.
733     if (!CacheP.second) {
734       ++NumCacheNonLocal;
735       return Cache;
736     }
737 
738     // If we already have a partially computed set of results, scan them to
739     // determine what is dirty, seeding our initial DirtyBlocks worklist.
740     for (auto &Entry : Cache)
741       if (Entry.getResult().isDirty())
742         DirtyBlocks.push_back(Entry.getBB());
743 
744     // Sort the cache so that we can do fast binary search lookups below.
745     llvm::sort(Cache);
746 
747     ++NumCacheDirtyNonLocal;
748     // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
749     //     << Cache.size() << " cached: " << *QueryInst;
750   } else {
751     // Seed DirtyBlocks with each of the preds of QueryInst's block.
752     BasicBlock *QueryBB = QueryCall->getParent();
753     for (BasicBlock *Pred : PredCache.get(QueryBB))
754       DirtyBlocks.push_back(Pred);
755     ++NumUncacheNonLocal;
756   }
757 
758   // isReadonlyCall - If this is a read-only call, we can be more aggressive.
759   bool isReadonlyCall = AA.onlyReadsMemory(QueryCall);
760 
761   SmallPtrSet<BasicBlock *, 32> Visited;
762 
763   unsigned NumSortedEntries = Cache.size();
764   LLVM_DEBUG(AssertSorted(Cache));
765 
766   // Iterate while we still have blocks to update.
767   while (!DirtyBlocks.empty()) {
768     BasicBlock *DirtyBB = DirtyBlocks.back();
769     DirtyBlocks.pop_back();
770 
771     // Already processed this block?
772     if (!Visited.insert(DirtyBB).second)
773       continue;
774 
775     // Do a binary search to see if we already have an entry for this block in
776     // the cache set.  If so, find it.
777     LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries));
778     NonLocalDepInfo::iterator Entry =
779         std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries,
780                          NonLocalDepEntry(DirtyBB));
781     if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
782       --Entry;
783 
784     NonLocalDepEntry *ExistingResult = nullptr;
785     if (Entry != Cache.begin() + NumSortedEntries &&
786         Entry->getBB() == DirtyBB) {
787       // If we already have an entry, and if it isn't already dirty, the block
788       // is done.
789       if (!Entry->getResult().isDirty())
790         continue;
791 
792       // Otherwise, remember this slot so we can update the value.
793       ExistingResult = &*Entry;
794     }
795 
796     // If the dirty entry has a pointer, start scanning from it so we don't have
797     // to rescan the entire block.
798     BasicBlock::iterator ScanPos = DirtyBB->end();
799     if (ExistingResult) {
800       if (Instruction *Inst = ExistingResult->getResult().getInst()) {
801         ScanPos = Inst->getIterator();
802         // We're removing QueryInst's use of Inst.
803         RemoveFromReverseMap<Instruction *>(ReverseNonLocalDeps, Inst,
804                                             QueryCall);
805       }
806     }
807 
808     // Find out if this block has a local dependency for QueryInst.
809     MemDepResult Dep;
810 
811     if (ScanPos != DirtyBB->begin()) {
812       Dep = getCallDependencyFrom(QueryCall, isReadonlyCall, ScanPos, DirtyBB);
813     } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
814       // No dependence found.  If this is the entry block of the function, it is
815       // a clobber, otherwise it is unknown.
816       Dep = MemDepResult::getNonLocal();
817     } else {
818       Dep = MemDepResult::getNonFuncLocal();
819     }
820 
821     // If we had a dirty entry for the block, update it.  Otherwise, just add
822     // a new entry.
823     if (ExistingResult)
824       ExistingResult->setResult(Dep);
825     else
826       Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
827 
828     // If the block has a dependency (i.e. it isn't completely transparent to
829     // the value), remember the association!
830     if (!Dep.isNonLocal()) {
831       // Keep the ReverseNonLocalDeps map up to date so we can efficiently
832       // update this when we remove instructions.
833       if (Instruction *Inst = Dep.getInst())
834         ReverseNonLocalDeps[Inst].insert(QueryCall);
835     } else {
836 
837       // If the block *is* completely transparent to the load, we need to check
838       // the predecessors of this block.  Add them to our worklist.
839       for (BasicBlock *Pred : PredCache.get(DirtyBB))
840         DirtyBlocks.push_back(Pred);
841     }
842   }
843 
844   return Cache;
845 }
846 
847 void MemoryDependenceResults::getNonLocalPointerDependency(
848     Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) {
849   const MemoryLocation Loc = MemoryLocation::get(QueryInst);
850   bool isLoad = isa<LoadInst>(QueryInst);
851   BasicBlock *FromBB = QueryInst->getParent();
852   assert(FromBB);
853 
854   assert(Loc.Ptr->getType()->isPointerTy() &&
855          "Can't get pointer deps of a non-pointer!");
856   Result.clear();
857   {
858     // Check if there is cached Def with invariant.group.
859     auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst);
860     if (NonLocalDefIt != NonLocalDefsCache.end()) {
861       Result.push_back(NonLocalDefIt->second);
862       ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()]
863           .erase(QueryInst);
864       NonLocalDefsCache.erase(NonLocalDefIt);
865       return;
866     }
867   }
868   // This routine does not expect to deal with volatile instructions.
869   // Doing so would require piping through the QueryInst all the way through.
870   // TODO: volatiles can't be elided, but they can be reordered with other
871   // non-volatile accesses.
872 
873   // We currently give up on any instruction which is ordered, but we do handle
874   // atomic instructions which are unordered.
875   // TODO: Handle ordered instructions
876   auto isOrdered = [](Instruction *Inst) {
877     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
878       return !LI->isUnordered();
879     } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
880       return !SI->isUnordered();
881     }
882     return false;
883   };
884   if (isVolatile(QueryInst) || isOrdered(QueryInst)) {
885     Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
886                                        const_cast<Value *>(Loc.Ptr)));
887     return;
888   }
889   const DataLayout &DL = FromBB->getModule()->getDataLayout();
890   PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC);
891 
892   // This is the set of blocks we've inspected, and the pointer we consider in
893   // each block.  Because of critical edges, we currently bail out if querying
894   // a block with multiple different pointers.  This can happen during PHI
895   // translation.
896   DenseMap<BasicBlock *, Value *> Visited;
897   if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB,
898                                    Result, Visited, true))
899     return;
900   Result.clear();
901   Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
902                                      const_cast<Value *>(Loc.Ptr)));
903 }
904 
905 /// Compute the memdep value for BB with Pointer/PointeeSize using either
906 /// cached information in Cache or by doing a lookup (which may use dirty cache
907 /// info if available).
908 ///
909 /// If we do a lookup, add the result to the cache.
910 MemDepResult MemoryDependenceResults::GetNonLocalInfoForBlock(
911     Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad,
912     BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
913 
914   bool isInvariantLoad = false;
915 
916   if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst))
917     isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load);
918 
919   // Do a binary search to see if we already have an entry for this block in
920   // the cache set.  If so, find it.
921   NonLocalDepInfo::iterator Entry = std::upper_bound(
922       Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB));
923   if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB)
924     --Entry;
925 
926   NonLocalDepEntry *ExistingResult = nullptr;
927   if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB)
928     ExistingResult = &*Entry;
929 
930   // Use cached result for invariant load only if there is no dependency for non
931   // invariant load. In this case invariant load can not have any dependency as
932   // well.
933   if (ExistingResult && isInvariantLoad &&
934       !ExistingResult->getResult().isNonFuncLocal())
935     ExistingResult = nullptr;
936 
937   // If we have a cached entry, and it is non-dirty, use it as the value for
938   // this dependency.
939   if (ExistingResult && !ExistingResult->getResult().isDirty()) {
940     ++NumCacheNonLocalPtr;
941     return ExistingResult->getResult();
942   }
943 
944   // Otherwise, we have to scan for the value.  If we have a dirty cache
945   // entry, start scanning from its position, otherwise we scan from the end
946   // of the block.
947   BasicBlock::iterator ScanPos = BB->end();
948   if (ExistingResult && ExistingResult->getResult().getInst()) {
949     assert(ExistingResult->getResult().getInst()->getParent() == BB &&
950            "Instruction invalidated?");
951     ++NumCacheDirtyNonLocalPtr;
952     ScanPos = ExistingResult->getResult().getInst()->getIterator();
953 
954     // Eliminating the dirty entry from 'Cache', so update the reverse info.
955     ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
956     RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey);
957   } else {
958     ++NumUncacheNonLocalPtr;
959   }
960 
961   // Scan the block for the dependency.
962   MemDepResult Dep =
963       getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, QueryInst);
964 
965   // Don't cache results for invariant load.
966   if (isInvariantLoad)
967     return Dep;
968 
969   // If we had a dirty entry for the block, update it.  Otherwise, just add
970   // a new entry.
971   if (ExistingResult)
972     ExistingResult->setResult(Dep);
973   else
974     Cache->push_back(NonLocalDepEntry(BB, Dep));
975 
976   // If the block has a dependency (i.e. it isn't completely transparent to
977   // the value), remember the reverse association because we just added it
978   // to Cache!
979   if (!Dep.isDef() && !Dep.isClobber())
980     return Dep;
981 
982   // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
983   // update MemDep when we remove instructions.
984   Instruction *Inst = Dep.getInst();
985   assert(Inst && "Didn't depend on anything?");
986   ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
987   ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
988   return Dep;
989 }
990 
991 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the
992 /// array that are already properly ordered.
993 ///
994 /// This is optimized for the case when only a few entries are added.
995 static void
996 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache,
997                          unsigned NumSortedEntries) {
998   switch (Cache.size() - NumSortedEntries) {
999   case 0:
1000     // done, no new entries.
1001     break;
1002   case 2: {
1003     // Two new entries, insert the last one into place.
1004     NonLocalDepEntry Val = Cache.back();
1005     Cache.pop_back();
1006     MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
1007         std::upper_bound(Cache.begin(), Cache.end() - 1, Val);
1008     Cache.insert(Entry, Val);
1009     LLVM_FALLTHROUGH;
1010   }
1011   case 1:
1012     // One new entry, Just insert the new value at the appropriate position.
1013     if (Cache.size() != 1) {
1014       NonLocalDepEntry Val = Cache.back();
1015       Cache.pop_back();
1016       MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
1017           std::upper_bound(Cache.begin(), Cache.end(), Val);
1018       Cache.insert(Entry, Val);
1019     }
1020     break;
1021   default:
1022     // Added many values, do a full scale sort.
1023     llvm::sort(Cache);
1024     break;
1025   }
1026 }
1027 
1028 /// Perform a dependency query based on pointer/pointeesize starting at the end
1029 /// of StartBB.
1030 ///
1031 /// Add any clobber/def results to the results vector and keep track of which
1032 /// blocks are visited in 'Visited'.
1033 ///
1034 /// This has special behavior for the first block queries (when SkipFirstBlock
1035 /// is true).  In this special case, it ignores the contents of the specified
1036 /// block and starts returning dependence info for its predecessors.
1037 ///
1038 /// This function returns true on success, or false to indicate that it could
1039 /// not compute dependence information for some reason.  This should be treated
1040 /// as a clobber dependence on the first instruction in the predecessor block.
1041 bool MemoryDependenceResults::getNonLocalPointerDepFromBB(
1042     Instruction *QueryInst, const PHITransAddr &Pointer,
1043     const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB,
1044     SmallVectorImpl<NonLocalDepResult> &Result,
1045     DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock,
1046     bool IsIncomplete) {
1047   // Look up the cached info for Pointer.
1048   ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
1049 
1050   // Set up a temporary NLPI value. If the map doesn't yet have an entry for
1051   // CacheKey, this value will be inserted as the associated value. Otherwise,
1052   // it'll be ignored, and we'll have to check to see if the cached size and
1053   // aa tags are consistent with the current query.
1054   NonLocalPointerInfo InitialNLPI;
1055   InitialNLPI.Size = Loc.Size;
1056   InitialNLPI.AATags = Loc.AATags;
1057 
1058   bool isInvariantLoad = false;
1059   if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst))
1060     isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load);
1061 
1062   // Get the NLPI for CacheKey, inserting one into the map if it doesn't
1063   // already have one.
1064   std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
1065       NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
1066   NonLocalPointerInfo *CacheInfo = &Pair.first->second;
1067 
1068   // If we already have a cache entry for this CacheKey, we may need to do some
1069   // work to reconcile the cache entry and the current query.
1070   // Invariant loads don't participate in caching. Thus no need to reconcile.
1071   if (!isInvariantLoad && !Pair.second) {
1072     if (CacheInfo->Size != Loc.Size) {
1073       bool ThrowOutEverything;
1074       if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) {
1075         // FIXME: We may be able to do better in the face of results with mixed
1076         // precision. We don't appear to get them in practice, though, so just
1077         // be conservative.
1078         ThrowOutEverything =
1079             CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() ||
1080             CacheInfo->Size.getValue() < Loc.Size.getValue();
1081       } else {
1082         // For our purposes, unknown size > all others.
1083         ThrowOutEverything = !Loc.Size.hasValue();
1084       }
1085 
1086       if (ThrowOutEverything) {
1087         // The query's Size is greater than the cached one. Throw out the
1088         // cached data and proceed with the query at the greater size.
1089         CacheInfo->Pair = BBSkipFirstBlockPair();
1090         CacheInfo->Size = Loc.Size;
1091         for (auto &Entry : CacheInfo->NonLocalDeps)
1092           if (Instruction *Inst = Entry.getResult().getInst())
1093             RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1094         CacheInfo->NonLocalDeps.clear();
1095         // The cache is cleared (in the above line) so we will have lost
1096         // information about blocks we have already visited. We therefore must
1097         // assume that the cache information is incomplete.
1098         IsIncomplete = true;
1099       } else {
1100         // This query's Size is less than the cached one. Conservatively restart
1101         // the query using the greater size.
1102         return getNonLocalPointerDepFromBB(
1103             QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad,
1104             StartBB, Result, Visited, SkipFirstBlock, IsIncomplete);
1105       }
1106     }
1107 
1108     // If the query's AATags are inconsistent with the cached one,
1109     // conservatively throw out the cached data and restart the query with
1110     // no tag if needed.
1111     if (CacheInfo->AATags != Loc.AATags) {
1112       if (CacheInfo->AATags) {
1113         CacheInfo->Pair = BBSkipFirstBlockPair();
1114         CacheInfo->AATags = AAMDNodes();
1115         for (auto &Entry : CacheInfo->NonLocalDeps)
1116           if (Instruction *Inst = Entry.getResult().getInst())
1117             RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1118         CacheInfo->NonLocalDeps.clear();
1119         // The cache is cleared (in the above line) so we will have lost
1120         // information about blocks we have already visited. We therefore must
1121         // assume that the cache information is incomplete.
1122         IsIncomplete = true;
1123       }
1124       if (Loc.AATags)
1125         return getNonLocalPointerDepFromBB(
1126             QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result,
1127             Visited, SkipFirstBlock, IsIncomplete);
1128     }
1129   }
1130 
1131   NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
1132 
1133   // If we have valid cached information for exactly the block we are
1134   // investigating, just return it with no recomputation.
1135   // Don't use cached information for invariant loads since it is valid for
1136   // non-invariant loads only.
1137   //
1138   // Don't use cached information for invariant loads since it is valid for
1139   // non-invariant loads only.
1140   if (!IsIncomplete && !isInvariantLoad &&
1141       CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
1142     // We have a fully cached result for this query then we can just return the
1143     // cached results and populate the visited set.  However, we have to verify
1144     // that we don't already have conflicting results for these blocks.  Check
1145     // to ensure that if a block in the results set is in the visited set that
1146     // it was for the same pointer query.
1147     if (!Visited.empty()) {
1148       for (auto &Entry : *Cache) {
1149         DenseMap<BasicBlock *, Value *>::iterator VI =
1150             Visited.find(Entry.getBB());
1151         if (VI == Visited.end() || VI->second == Pointer.getAddr())
1152           continue;
1153 
1154         // We have a pointer mismatch in a block.  Just return false, saying
1155         // that something was clobbered in this result.  We could also do a
1156         // non-fully cached query, but there is little point in doing this.
1157         return false;
1158       }
1159     }
1160 
1161     Value *Addr = Pointer.getAddr();
1162     for (auto &Entry : *Cache) {
1163       Visited.insert(std::make_pair(Entry.getBB(), Addr));
1164       if (Entry.getResult().isNonLocal()) {
1165         continue;
1166       }
1167 
1168       if (DT.isReachableFromEntry(Entry.getBB())) {
1169         Result.push_back(
1170             NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr));
1171       }
1172     }
1173     ++NumCacheCompleteNonLocalPtr;
1174     return true;
1175   }
1176 
1177   // Otherwise, either this is a new block, a block with an invalid cache
1178   // pointer or one that we're about to invalidate by putting more info into
1179   // it than its valid cache info.  If empty and not explicitly indicated as
1180   // incomplete, the result will be valid cache info, otherwise it isn't.
1181   //
1182   // Invariant loads don't affect cache in any way thus no need to update
1183   // CacheInfo as well.
1184   if (!isInvariantLoad) {
1185     if (!IsIncomplete && Cache->empty())
1186       CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1187     else
1188       CacheInfo->Pair = BBSkipFirstBlockPair();
1189   }
1190 
1191   SmallVector<BasicBlock *, 32> Worklist;
1192   Worklist.push_back(StartBB);
1193 
1194   // PredList used inside loop.
1195   SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList;
1196 
1197   // Keep track of the entries that we know are sorted.  Previously cached
1198   // entries will all be sorted.  The entries we add we only sort on demand (we
1199   // don't insert every element into its sorted position).  We know that we
1200   // won't get any reuse from currently inserted values, because we don't
1201   // revisit blocks after we insert info for them.
1202   unsigned NumSortedEntries = Cache->size();
1203   unsigned WorklistEntries = BlockNumberLimit;
1204   bool GotWorklistLimit = false;
1205   LLVM_DEBUG(AssertSorted(*Cache));
1206 
1207   while (!Worklist.empty()) {
1208     BasicBlock *BB = Worklist.pop_back_val();
1209 
1210     // If we do process a large number of blocks it becomes very expensive and
1211     // likely it isn't worth worrying about
1212     if (Result.size() > NumResultsLimit) {
1213       Worklist.clear();
1214       // Sort it now (if needed) so that recursive invocations of
1215       // getNonLocalPointerDepFromBB and other routines that could reuse the
1216       // cache value will only see properly sorted cache arrays.
1217       if (Cache && NumSortedEntries != Cache->size()) {
1218         SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1219       }
1220       // Since we bail out, the "Cache" set won't contain all of the
1221       // results for the query.  This is ok (we can still use it to accelerate
1222       // specific block queries) but we can't do the fastpath "return all
1223       // results from the set".  Clear out the indicator for this.
1224       CacheInfo->Pair = BBSkipFirstBlockPair();
1225       return false;
1226     }
1227 
1228     // Skip the first block if we have it.
1229     if (!SkipFirstBlock) {
1230       // Analyze the dependency of *Pointer in FromBB.  See if we already have
1231       // been here.
1232       assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1233 
1234       // Get the dependency info for Pointer in BB.  If we have cached
1235       // information, we will use it, otherwise we compute it.
1236       LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries));
1237       MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, Loc, isLoad, BB,
1238                                                  Cache, NumSortedEntries);
1239 
1240       // If we got a Def or Clobber, add this to the list of results.
1241       if (!Dep.isNonLocal()) {
1242         if (DT.isReachableFromEntry(BB)) {
1243           Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1244           continue;
1245         }
1246       }
1247     }
1248 
1249     // If 'Pointer' is an instruction defined in this block, then we need to do
1250     // phi translation to change it into a value live in the predecessor block.
1251     // If not, we just add the predecessors to the worklist and scan them with
1252     // the same Pointer.
1253     if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1254       SkipFirstBlock = false;
1255       SmallVector<BasicBlock *, 16> NewBlocks;
1256       for (BasicBlock *Pred : PredCache.get(BB)) {
1257         // Verify that we haven't looked at this block yet.
1258         std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1259             Visited.insert(std::make_pair(Pred, Pointer.getAddr()));
1260         if (InsertRes.second) {
1261           // First time we've looked at *PI.
1262           NewBlocks.push_back(Pred);
1263           continue;
1264         }
1265 
1266         // If we have seen this block before, but it was with a different
1267         // pointer then we have a phi translation failure and we have to treat
1268         // this as a clobber.
1269         if (InsertRes.first->second != Pointer.getAddr()) {
1270           // Make sure to clean up the Visited map before continuing on to
1271           // PredTranslationFailure.
1272           for (unsigned i = 0; i < NewBlocks.size(); i++)
1273             Visited.erase(NewBlocks[i]);
1274           goto PredTranslationFailure;
1275         }
1276       }
1277       if (NewBlocks.size() > WorklistEntries) {
1278         // Make sure to clean up the Visited map before continuing on to
1279         // PredTranslationFailure.
1280         for (unsigned i = 0; i < NewBlocks.size(); i++)
1281           Visited.erase(NewBlocks[i]);
1282         GotWorklistLimit = true;
1283         goto PredTranslationFailure;
1284       }
1285       WorklistEntries -= NewBlocks.size();
1286       Worklist.append(NewBlocks.begin(), NewBlocks.end());
1287       continue;
1288     }
1289 
1290     // We do need to do phi translation, if we know ahead of time we can't phi
1291     // translate this value, don't even try.
1292     if (!Pointer.IsPotentiallyPHITranslatable())
1293       goto PredTranslationFailure;
1294 
1295     // We may have added values to the cache list before this PHI translation.
1296     // If so, we haven't done anything to ensure that the cache remains sorted.
1297     // Sort it now (if needed) so that recursive invocations of
1298     // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1299     // value will only see properly sorted cache arrays.
1300     if (Cache && NumSortedEntries != Cache->size()) {
1301       SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1302       NumSortedEntries = Cache->size();
1303     }
1304     Cache = nullptr;
1305 
1306     PredList.clear();
1307     for (BasicBlock *Pred : PredCache.get(BB)) {
1308       PredList.push_back(std::make_pair(Pred, Pointer));
1309 
1310       // Get the PHI translated pointer in this predecessor.  This can fail if
1311       // not translatable, in which case the getAddr() returns null.
1312       PHITransAddr &PredPointer = PredList.back().second;
1313       PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false);
1314       Value *PredPtrVal = PredPointer.getAddr();
1315 
1316       // Check to see if we have already visited this pred block with another
1317       // pointer.  If so, we can't do this lookup.  This failure can occur
1318       // with PHI translation when a critical edge exists and the PHI node in
1319       // the successor translates to a pointer value different than the
1320       // pointer the block was first analyzed with.
1321       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1322           Visited.insert(std::make_pair(Pred, PredPtrVal));
1323 
1324       if (!InsertRes.second) {
1325         // We found the pred; take it off the list of preds to visit.
1326         PredList.pop_back();
1327 
1328         // If the predecessor was visited with PredPtr, then we already did
1329         // the analysis and can ignore it.
1330         if (InsertRes.first->second == PredPtrVal)
1331           continue;
1332 
1333         // Otherwise, the block was previously analyzed with a different
1334         // pointer.  We can't represent the result of this case, so we just
1335         // treat this as a phi translation failure.
1336 
1337         // Make sure to clean up the Visited map before continuing on to
1338         // PredTranslationFailure.
1339         for (unsigned i = 0, n = PredList.size(); i < n; ++i)
1340           Visited.erase(PredList[i].first);
1341 
1342         goto PredTranslationFailure;
1343       }
1344     }
1345 
1346     // Actually process results here; this need to be a separate loop to avoid
1347     // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1348     // any results for.  (getNonLocalPointerDepFromBB will modify our
1349     // datastructures in ways the code after the PredTranslationFailure label
1350     // doesn't expect.)
1351     for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
1352       BasicBlock *Pred = PredList[i].first;
1353       PHITransAddr &PredPointer = PredList[i].second;
1354       Value *PredPtrVal = PredPointer.getAddr();
1355 
1356       bool CanTranslate = true;
1357       // If PHI translation was unable to find an available pointer in this
1358       // predecessor, then we have to assume that the pointer is clobbered in
1359       // that predecessor.  We can still do PRE of the load, which would insert
1360       // a computation of the pointer in this predecessor.
1361       if (!PredPtrVal)
1362         CanTranslate = false;
1363 
1364       // FIXME: it is entirely possible that PHI translating will end up with
1365       // the same value.  Consider PHI translating something like:
1366       // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
1367       // to recurse here, pedantically speaking.
1368 
1369       // If getNonLocalPointerDepFromBB fails here, that means the cached
1370       // result conflicted with the Visited list; we have to conservatively
1371       // assume it is unknown, but this also does not block PRE of the load.
1372       if (!CanTranslate ||
1373           !getNonLocalPointerDepFromBB(QueryInst, PredPointer,
1374                                       Loc.getWithNewPtr(PredPtrVal), isLoad,
1375                                       Pred, Result, Visited)) {
1376         // Add the entry to the Result list.
1377         NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1378         Result.push_back(Entry);
1379 
1380         // Since we had a phi translation failure, the cache for CacheKey won't
1381         // include all of the entries that we need to immediately satisfy future
1382         // queries.  Mark this in NonLocalPointerDeps by setting the
1383         // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
1384         // cached value to do more work but not miss the phi trans failure.
1385         NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1386         NLPI.Pair = BBSkipFirstBlockPair();
1387         continue;
1388       }
1389     }
1390 
1391     // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1392     CacheInfo = &NonLocalPointerDeps[CacheKey];
1393     Cache = &CacheInfo->NonLocalDeps;
1394     NumSortedEntries = Cache->size();
1395 
1396     // Since we did phi translation, the "Cache" set won't contain all of the
1397     // results for the query.  This is ok (we can still use it to accelerate
1398     // specific block queries) but we can't do the fastpath "return all
1399     // results from the set"  Clear out the indicator for this.
1400     CacheInfo->Pair = BBSkipFirstBlockPair();
1401     SkipFirstBlock = false;
1402     continue;
1403 
1404   PredTranslationFailure:
1405     // The following code is "failure"; we can't produce a sane translation
1406     // for the given block.  It assumes that we haven't modified any of
1407     // our datastructures while processing the current block.
1408 
1409     if (!Cache) {
1410       // Refresh the CacheInfo/Cache pointer if it got invalidated.
1411       CacheInfo = &NonLocalPointerDeps[CacheKey];
1412       Cache = &CacheInfo->NonLocalDeps;
1413       NumSortedEntries = Cache->size();
1414     }
1415 
1416     // Since we failed phi translation, the "Cache" set won't contain all of the
1417     // results for the query.  This is ok (we can still use it to accelerate
1418     // specific block queries) but we can't do the fastpath "return all
1419     // results from the set".  Clear out the indicator for this.
1420     CacheInfo->Pair = BBSkipFirstBlockPair();
1421 
1422     // If *nothing* works, mark the pointer as unknown.
1423     //
1424     // If this is the magic first block, return this as a clobber of the whole
1425     // incoming value.  Since we can't phi translate to one of the predecessors,
1426     // we have to bail out.
1427     if (SkipFirstBlock)
1428       return false;
1429 
1430     // Results of invariant loads are not cached thus no need to update cached
1431     // information.
1432     if (!isInvariantLoad) {
1433       for (NonLocalDepEntry &I : llvm::reverse(*Cache)) {
1434         if (I.getBB() != BB)
1435           continue;
1436 
1437         assert((GotWorklistLimit || I.getResult().isNonLocal() ||
1438                 !DT.isReachableFromEntry(BB)) &&
1439                "Should only be here with transparent block");
1440 
1441         I.setResult(MemDepResult::getUnknown());
1442 
1443 
1444         break;
1445       }
1446     }
1447     (void)GotWorklistLimit;
1448     // Go ahead and report unknown dependence.
1449     Result.push_back(
1450         NonLocalDepResult(BB, MemDepResult::getUnknown(), Pointer.getAddr()));
1451   }
1452 
1453   // Okay, we're done now.  If we added new values to the cache, re-sort it.
1454   SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1455   LLVM_DEBUG(AssertSorted(*Cache));
1456   return true;
1457 }
1458 
1459 /// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it.
1460 void MemoryDependenceResults::RemoveCachedNonLocalPointerDependencies(
1461     ValueIsLoadPair P) {
1462 
1463   // Most of the time this cache is empty.
1464   if (!NonLocalDefsCache.empty()) {
1465     auto it = NonLocalDefsCache.find(P.getPointer());
1466     if (it != NonLocalDefsCache.end()) {
1467       RemoveFromReverseMap(ReverseNonLocalDefsCache,
1468                            it->second.getResult().getInst(), P.getPointer());
1469       NonLocalDefsCache.erase(it);
1470     }
1471 
1472     if (auto *I = dyn_cast<Instruction>(P.getPointer())) {
1473       auto toRemoveIt = ReverseNonLocalDefsCache.find(I);
1474       if (toRemoveIt != ReverseNonLocalDefsCache.end()) {
1475         for (const auto *entry : toRemoveIt->second)
1476           NonLocalDefsCache.erase(entry);
1477         ReverseNonLocalDefsCache.erase(toRemoveIt);
1478       }
1479     }
1480   }
1481 
1482   CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P);
1483   if (It == NonLocalPointerDeps.end())
1484     return;
1485 
1486   // Remove all of the entries in the BB->val map.  This involves removing
1487   // instructions from the reverse map.
1488   NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1489 
1490   for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1491     Instruction *Target = PInfo[i].getResult().getInst();
1492     if (!Target)
1493       continue; // Ignore non-local dep results.
1494     assert(Target->getParent() == PInfo[i].getBB());
1495 
1496     // Eliminating the dirty entry from 'Cache', so update the reverse info.
1497     RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1498   }
1499 
1500   // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1501   NonLocalPointerDeps.erase(It);
1502 }
1503 
1504 void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) {
1505   // If Ptr isn't really a pointer, just ignore it.
1506   if (!Ptr->getType()->isPointerTy())
1507     return;
1508   // Flush store info for the pointer.
1509   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1510   // Flush load info for the pointer.
1511   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1512   // Invalidate phis that use the pointer.
1513   PV.invalidateValue(Ptr);
1514 }
1515 
1516 void MemoryDependenceResults::invalidateCachedPredecessors() {
1517   PredCache.clear();
1518 }
1519 
1520 void MemoryDependenceResults::removeInstruction(Instruction *RemInst) {
1521   // Walk through the Non-local dependencies, removing this one as the value
1522   // for any cached queries.
1523   NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1524   if (NLDI != NonLocalDeps.end()) {
1525     NonLocalDepInfo &BlockMap = NLDI->second.first;
1526     for (auto &Entry : BlockMap)
1527       if (Instruction *Inst = Entry.getResult().getInst())
1528         RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1529     NonLocalDeps.erase(NLDI);
1530   }
1531 
1532   // If we have a cached local dependence query for this instruction, remove it.
1533   LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1534   if (LocalDepEntry != LocalDeps.end()) {
1535     // Remove us from DepInst's reverse set now that the local dep info is gone.
1536     if (Instruction *Inst = LocalDepEntry->second.getInst())
1537       RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1538 
1539     // Remove this local dependency info.
1540     LocalDeps.erase(LocalDepEntry);
1541   }
1542 
1543   // If we have any cached dependencies on this instruction, remove
1544   // them.
1545 
1546   // If the instruction is a pointer, remove it from both the load info and the
1547   // store info.
1548   if (RemInst->getType()->isPointerTy()) {
1549     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1550     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1551   } else {
1552     // Otherwise, if the instructions is in the map directly, it must be a load.
1553     // Remove it.
1554     auto toRemoveIt = NonLocalDefsCache.find(RemInst);
1555     if (toRemoveIt != NonLocalDefsCache.end()) {
1556       assert(isa<LoadInst>(RemInst) &&
1557              "only load instructions should be added directly");
1558       const Instruction *DepV = toRemoveIt->second.getResult().getInst();
1559       ReverseNonLocalDefsCache.find(DepV)->second.erase(RemInst);
1560       NonLocalDefsCache.erase(toRemoveIt);
1561     }
1562   }
1563 
1564   // Loop over all of the things that depend on the instruction we're removing.
1565   SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd;
1566 
1567   // If we find RemInst as a clobber or Def in any of the maps for other values,
1568   // we need to replace its entry with a dirty version of the instruction after
1569   // it.  If RemInst is a terminator, we use a null dirty value.
1570   //
1571   // Using a dirty version of the instruction after RemInst saves having to scan
1572   // the entire block to get to this point.
1573   MemDepResult NewDirtyVal;
1574   if (!RemInst->isTerminator())
1575     NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator());
1576 
1577   ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1578   if (ReverseDepIt != ReverseLocalDeps.end()) {
1579     // RemInst can't be the terminator if it has local stuff depending on it.
1580     assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() &&
1581            "Nothing can locally depend on a terminator");
1582 
1583     for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
1584       assert(InstDependingOnRemInst != RemInst &&
1585              "Already removed our local dep info");
1586 
1587       LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1588 
1589       // Make sure to remember that new things depend on NewDepInst.
1590       assert(NewDirtyVal.getInst() &&
1591              "There is no way something else can have "
1592              "a local dep on this if it is a terminator!");
1593       ReverseDepsToAdd.push_back(
1594           std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst));
1595     }
1596 
1597     ReverseLocalDeps.erase(ReverseDepIt);
1598 
1599     // Add new reverse deps after scanning the set, to avoid invalidating the
1600     // 'ReverseDeps' reference.
1601     while (!ReverseDepsToAdd.empty()) {
1602       ReverseLocalDeps[ReverseDepsToAdd.back().first].insert(
1603           ReverseDepsToAdd.back().second);
1604       ReverseDepsToAdd.pop_back();
1605     }
1606   }
1607 
1608   ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1609   if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1610     for (Instruction *I : ReverseDepIt->second) {
1611       assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
1612 
1613       PerInstNLInfo &INLD = NonLocalDeps[I];
1614       // The information is now dirty!
1615       INLD.second = true;
1616 
1617       for (auto &Entry : INLD.first) {
1618         if (Entry.getResult().getInst() != RemInst)
1619           continue;
1620 
1621         // Convert to a dirty entry for the subsequent instruction.
1622         Entry.setResult(NewDirtyVal);
1623 
1624         if (Instruction *NextI = NewDirtyVal.getInst())
1625           ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
1626       }
1627     }
1628 
1629     ReverseNonLocalDeps.erase(ReverseDepIt);
1630 
1631     // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1632     while (!ReverseDepsToAdd.empty()) {
1633       ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert(
1634           ReverseDepsToAdd.back().second);
1635       ReverseDepsToAdd.pop_back();
1636     }
1637   }
1638 
1639   // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1640   // value in the NonLocalPointerDeps info.
1641   ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1642       ReverseNonLocalPtrDeps.find(RemInst);
1643   if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1644     SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8>
1645         ReversePtrDepsToAdd;
1646 
1647     for (ValueIsLoadPair P : ReversePtrDepIt->second) {
1648       assert(P.getPointer() != RemInst &&
1649              "Already removed NonLocalPointerDeps info for RemInst");
1650 
1651       NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1652 
1653       // The cache is not valid for any specific block anymore.
1654       NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1655 
1656       // Update any entries for RemInst to use the instruction after it.
1657       for (auto &Entry : NLPDI) {
1658         if (Entry.getResult().getInst() != RemInst)
1659           continue;
1660 
1661         // Convert to a dirty entry for the subsequent instruction.
1662         Entry.setResult(NewDirtyVal);
1663 
1664         if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1665           ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1666       }
1667 
1668       // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1669       // subsequent value may invalidate the sortedness.
1670       llvm::sort(NLPDI);
1671     }
1672 
1673     ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1674 
1675     while (!ReversePtrDepsToAdd.empty()) {
1676       ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert(
1677           ReversePtrDepsToAdd.back().second);
1678       ReversePtrDepsToAdd.pop_back();
1679     }
1680   }
1681 
1682   // Invalidate phis that use the removed instruction.
1683   PV.invalidateValue(RemInst);
1684 
1685   assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1686   LLVM_DEBUG(verifyRemoved(RemInst));
1687 }
1688 
1689 /// Verify that the specified instruction does not occur in our internal data
1690 /// structures.
1691 ///
1692 /// This function verifies by asserting in debug builds.
1693 void MemoryDependenceResults::verifyRemoved(Instruction *D) const {
1694 #ifndef NDEBUG
1695   for (const auto &DepKV : LocalDeps) {
1696     assert(DepKV.first != D && "Inst occurs in data structures");
1697     assert(DepKV.second.getInst() != D && "Inst occurs in data structures");
1698   }
1699 
1700   for (const auto &DepKV : NonLocalPointerDeps) {
1701     assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key");
1702     for (const auto &Entry : DepKV.second.NonLocalDeps)
1703       assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value");
1704   }
1705 
1706   for (const auto &DepKV : NonLocalDeps) {
1707     assert(DepKV.first != D && "Inst occurs in data structures");
1708     const PerInstNLInfo &INLD = DepKV.second;
1709     for (const auto &Entry : INLD.first)
1710       assert(Entry.getResult().getInst() != D &&
1711              "Inst occurs in data structures");
1712   }
1713 
1714   for (const auto &DepKV : ReverseLocalDeps) {
1715     assert(DepKV.first != D && "Inst occurs in data structures");
1716     for (Instruction *Inst : DepKV.second)
1717       assert(Inst != D && "Inst occurs in data structures");
1718   }
1719 
1720   for (const auto &DepKV : ReverseNonLocalDeps) {
1721     assert(DepKV.first != D && "Inst occurs in data structures");
1722     for (Instruction *Inst : DepKV.second)
1723       assert(Inst != D && "Inst occurs in data structures");
1724   }
1725 
1726   for (const auto &DepKV : ReverseNonLocalPtrDeps) {
1727     assert(DepKV.first != D && "Inst occurs in rev NLPD map");
1728 
1729     for (ValueIsLoadPair P : DepKV.second)
1730       assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) &&
1731              "Inst occurs in ReverseNonLocalPtrDeps map");
1732   }
1733 #endif
1734 }
1735 
1736 AnalysisKey MemoryDependenceAnalysis::Key;
1737 
1738 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
1739     : DefaultBlockScanLimit(BlockScanLimit) {}
1740 
1741 MemoryDependenceResults
1742 MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
1743   auto &AA = AM.getResult<AAManager>(F);
1744   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1745   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1746   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1747   auto &PV = AM.getResult<PhiValuesAnalysis>(F);
1748   return MemoryDependenceResults(AA, AC, TLI, DT, PV, DefaultBlockScanLimit);
1749 }
1750 
1751 char MemoryDependenceWrapperPass::ID = 0;
1752 
1753 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep",
1754                       "Memory Dependence Analysis", false, true)
1755 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1756 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1757 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1758 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1759 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
1760 INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep",
1761                     "Memory Dependence Analysis", false, true)
1762 
1763 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) {
1764   initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry());
1765 }
1766 
1767 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default;
1768 
1769 void MemoryDependenceWrapperPass::releaseMemory() {
1770   MemDep.reset();
1771 }
1772 
1773 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1774   AU.setPreservesAll();
1775   AU.addRequired<AssumptionCacheTracker>();
1776   AU.addRequired<DominatorTreeWrapperPass>();
1777   AU.addRequired<PhiValuesWrapperPass>();
1778   AU.addRequiredTransitive<AAResultsWrapperPass>();
1779   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1780 }
1781 
1782 bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA,
1783                                FunctionAnalysisManager::Invalidator &Inv) {
1784   // Check whether our analysis is preserved.
1785   auto PAC = PA.getChecker<MemoryDependenceAnalysis>();
1786   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
1787     // If not, give up now.
1788     return true;
1789 
1790   // Check whether the analyses we depend on became invalid for any reason.
1791   if (Inv.invalidate<AAManager>(F, PA) ||
1792       Inv.invalidate<AssumptionAnalysis>(F, PA) ||
1793       Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
1794       Inv.invalidate<PhiValuesAnalysis>(F, PA))
1795     return true;
1796 
1797   // Otherwise this analysis result remains valid.
1798   return false;
1799 }
1800 
1801 unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const {
1802   return DefaultBlockScanLimit;
1803 }
1804 
1805 bool MemoryDependenceWrapperPass::runOnFunction(Function &F) {
1806   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1807   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1808   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1809   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1810   auto &PV = getAnalysis<PhiValuesWrapperPass>().getResult();
1811   MemDep.emplace(AA, AC, TLI, DT, PV, BlockScanLimit);
1812   return false;
1813 }
1814