1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an analysis that determines, for a given memory
10 // operation, what preceding memory operations it depends on.  It builds on
11 // alias analysis information, and tries to provide a lazy, caching interface to
12 // a common kind of alias information query.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/Analysis/PHITransAddr.h"
27 #include "llvm/Analysis/PhiValues.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/InstrTypes.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/PredIteratorCache.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/IR/Use.h"
43 #include "llvm/IR/Value.h"
44 #include "llvm/InitializePasses.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/AtomicOrdering.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/Debug.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <iterator>
54 #include <utility>
55 
56 using namespace llvm;
57 
58 #define DEBUG_TYPE "memdep"
59 
60 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
61 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
62 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
63 
64 STATISTIC(NumCacheNonLocalPtr,
65           "Number of fully cached non-local ptr responses");
66 STATISTIC(NumCacheDirtyNonLocalPtr,
67           "Number of cached, but dirty, non-local ptr responses");
68 STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses");
69 STATISTIC(NumCacheCompleteNonLocalPtr,
70           "Number of block queries that were completely cached");
71 
72 // Limit for the number of instructions to scan in a block.
73 
74 static cl::opt<unsigned> BlockScanLimit(
75     "memdep-block-scan-limit", cl::Hidden, cl::init(100),
76     cl::desc("The number of instructions to scan in a block in memory "
77              "dependency analysis (default = 100)"));
78 
79 static cl::opt<unsigned>
80     BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000),
81                      cl::desc("The number of blocks to scan during memory "
82                               "dependency analysis (default = 1000)"));
83 
84 // Limit on the number of memdep results to process.
85 static const unsigned int NumResultsLimit = 100;
86 
87 /// This is a helper function that removes Val from 'Inst's set in ReverseMap.
88 ///
89 /// If the set becomes empty, remove Inst's entry.
90 template <typename KeyTy>
91 static void
92 RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap,
93                      Instruction *Inst, KeyTy Val) {
94   typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt =
95       ReverseMap.find(Inst);
96   assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
97   bool Found = InstIt->second.erase(Val);
98   assert(Found && "Invalid reverse map!");
99   (void)Found;
100   if (InstIt->second.empty())
101     ReverseMap.erase(InstIt);
102 }
103 
104 /// If the given instruction references a specific memory location, fill in Loc
105 /// with the details, otherwise set Loc.Ptr to null.
106 ///
107 /// Returns a ModRefInfo value describing the general behavior of the
108 /// instruction.
109 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc,
110                               const TargetLibraryInfo &TLI) {
111   if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
112     if (LI->isUnordered()) {
113       Loc = MemoryLocation::get(LI);
114       return ModRefInfo::Ref;
115     }
116     if (LI->getOrdering() == AtomicOrdering::Monotonic) {
117       Loc = MemoryLocation::get(LI);
118       return ModRefInfo::ModRef;
119     }
120     Loc = MemoryLocation();
121     return ModRefInfo::ModRef;
122   }
123 
124   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
125     if (SI->isUnordered()) {
126       Loc = MemoryLocation::get(SI);
127       return ModRefInfo::Mod;
128     }
129     if (SI->getOrdering() == AtomicOrdering::Monotonic) {
130       Loc = MemoryLocation::get(SI);
131       return ModRefInfo::ModRef;
132     }
133     Loc = MemoryLocation();
134     return ModRefInfo::ModRef;
135   }
136 
137   if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
138     Loc = MemoryLocation::get(V);
139     return ModRefInfo::ModRef;
140   }
141 
142   if (const CallInst *CI = isFreeCall(Inst, &TLI)) {
143     // calls to free() deallocate the entire structure
144     Loc = MemoryLocation::getAfter(CI->getArgOperand(0));
145     return ModRefInfo::Mod;
146   }
147 
148   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
149     switch (II->getIntrinsicID()) {
150     case Intrinsic::lifetime_start:
151     case Intrinsic::lifetime_end:
152     case Intrinsic::invariant_start:
153       Loc = MemoryLocation::getForArgument(II, 1, TLI);
154       // These intrinsics don't really modify the memory, but returning Mod
155       // will allow them to be handled conservatively.
156       return ModRefInfo::Mod;
157     case Intrinsic::invariant_end:
158       Loc = MemoryLocation::getForArgument(II, 2, TLI);
159       // These intrinsics don't really modify the memory, but returning Mod
160       // will allow them to be handled conservatively.
161       return ModRefInfo::Mod;
162     case Intrinsic::masked_load:
163       Loc = MemoryLocation::getForArgument(II, 0, TLI);
164       return ModRefInfo::Ref;
165     case Intrinsic::masked_store:
166       Loc = MemoryLocation::getForArgument(II, 1, TLI);
167       return ModRefInfo::Mod;
168     default:
169       break;
170     }
171   }
172 
173   // Otherwise, just do the coarse-grained thing that always works.
174   if (Inst->mayWriteToMemory())
175     return ModRefInfo::ModRef;
176   if (Inst->mayReadFromMemory())
177     return ModRefInfo::Ref;
178   return ModRefInfo::NoModRef;
179 }
180 
181 /// Private helper for finding the local dependencies of a call site.
182 MemDepResult MemoryDependenceResults::getCallDependencyFrom(
183     CallBase *Call, bool isReadOnlyCall, BasicBlock::iterator ScanIt,
184     BasicBlock *BB) {
185   unsigned Limit = getDefaultBlockScanLimit();
186 
187   // Walk backwards through the block, looking for dependencies.
188   while (ScanIt != BB->begin()) {
189     Instruction *Inst = &*--ScanIt;
190     // Debug intrinsics don't cause dependences and should not affect Limit
191     if (isa<DbgInfoIntrinsic>(Inst))
192       continue;
193 
194     // Limit the amount of scanning we do so we don't end up with quadratic
195     // running time on extreme testcases.
196     --Limit;
197     if (!Limit)
198       return MemDepResult::getUnknown();
199 
200     // If this inst is a memory op, get the pointer it accessed
201     MemoryLocation Loc;
202     ModRefInfo MR = GetLocation(Inst, Loc, TLI);
203     if (Loc.Ptr) {
204       // A simple instruction.
205       if (isModOrRefSet(AA.getModRefInfo(Call, Loc)))
206         return MemDepResult::getClobber(Inst);
207       continue;
208     }
209 
210     if (auto *CallB = dyn_cast<CallBase>(Inst)) {
211       // If these two calls do not interfere, look past it.
212       if (isNoModRef(AA.getModRefInfo(Call, CallB))) {
213         // If the two calls are the same, return Inst as a Def, so that
214         // Call can be found redundant and eliminated.
215         if (isReadOnlyCall && !isModSet(MR) &&
216             Call->isIdenticalToWhenDefined(CallB))
217           return MemDepResult::getDef(Inst);
218 
219         // Otherwise if the two calls don't interact (e.g. CallB is readnone)
220         // keep scanning.
221         continue;
222       } else
223         return MemDepResult::getClobber(Inst);
224     }
225 
226     // If we could not obtain a pointer for the instruction and the instruction
227     // touches memory then assume that this is a dependency.
228     if (isModOrRefSet(MR))
229       return MemDepResult::getClobber(Inst);
230   }
231 
232   // No dependence found.  If this is the entry block of the function, it is
233   // unknown, otherwise it is non-local.
234   if (BB != &BB->getParent()->getEntryBlock())
235     return MemDepResult::getNonLocal();
236   return MemDepResult::getNonFuncLocal();
237 }
238 
239 MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
240     const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
241     BasicBlock *BB, Instruction *QueryInst, unsigned *Limit,
242     BatchAAResults &BatchAA) {
243   MemDepResult InvariantGroupDependency = MemDepResult::getUnknown();
244   if (QueryInst != nullptr) {
245     if (auto *LI = dyn_cast<LoadInst>(QueryInst)) {
246       InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB);
247 
248       if (InvariantGroupDependency.isDef())
249         return InvariantGroupDependency;
250     }
251   }
252   MemDepResult SimpleDep = getSimplePointerDependencyFrom(
253       MemLoc, isLoad, ScanIt, BB, QueryInst, Limit, BatchAA);
254   if (SimpleDep.isDef())
255     return SimpleDep;
256   // Non-local invariant group dependency indicates there is non local Def
257   // (it only returns nonLocal if it finds nonLocal def), which is better than
258   // local clobber and everything else.
259   if (InvariantGroupDependency.isNonLocal())
260     return InvariantGroupDependency;
261 
262   assert(InvariantGroupDependency.isUnknown() &&
263          "InvariantGroupDependency should be only unknown at this point");
264   return SimpleDep;
265 }
266 
267 MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
268     const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
269     BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
270   BatchAAResults BatchAA(AA);
271   return getPointerDependencyFrom(MemLoc, isLoad, ScanIt, BB, QueryInst, Limit,
272                                   BatchAA);
273 }
274 
275 MemDepResult
276 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI,
277                                                             BasicBlock *BB) {
278 
279   if (!LI->hasMetadata(LLVMContext::MD_invariant_group))
280     return MemDepResult::getUnknown();
281 
282   // Take the ptr operand after all casts and geps 0. This way we can search
283   // cast graph down only.
284   Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts();
285 
286   // It's is not safe to walk the use list of global value, because function
287   // passes aren't allowed to look outside their functions.
288   // FIXME: this could be fixed by filtering instructions from outside
289   // of current function.
290   if (isa<GlobalValue>(LoadOperand))
291     return MemDepResult::getUnknown();
292 
293   // Queue to process all pointers that are equivalent to load operand.
294   SmallVector<const Value *, 8> LoadOperandsQueue;
295   LoadOperandsQueue.push_back(LoadOperand);
296 
297   Instruction *ClosestDependency = nullptr;
298   // Order of instructions in uses list is unpredictible. In order to always
299   // get the same result, we will look for the closest dominance.
300   auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) {
301     assert(Other && "Must call it with not null instruction");
302     if (Best == nullptr || DT.dominates(Best, Other))
303       return Other;
304     return Best;
305   };
306 
307   // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case
308   // we will see all the instructions. This should be fixed in MSSA.
309   while (!LoadOperandsQueue.empty()) {
310     const Value *Ptr = LoadOperandsQueue.pop_back_val();
311     assert(Ptr && !isa<GlobalValue>(Ptr) &&
312            "Null or GlobalValue should not be inserted");
313 
314     for (const Use &Us : Ptr->uses()) {
315       auto *U = dyn_cast<Instruction>(Us.getUser());
316       if (!U || U == LI || !DT.dominates(U, LI))
317         continue;
318 
319       // Bitcast or gep with zeros are using Ptr. Add to queue to check it's
320       // users.      U = bitcast Ptr
321       if (isa<BitCastInst>(U)) {
322         LoadOperandsQueue.push_back(U);
323         continue;
324       }
325       // Gep with zeros is equivalent to bitcast.
326       // FIXME: we are not sure if some bitcast should be canonicalized to gep 0
327       // or gep 0 to bitcast because of SROA, so there are 2 forms. When
328       // typeless pointers will be ready then both cases will be gone
329       // (and this BFS also won't be needed).
330       if (auto *GEP = dyn_cast<GetElementPtrInst>(U))
331         if (GEP->hasAllZeroIndices()) {
332           LoadOperandsQueue.push_back(U);
333           continue;
334         }
335 
336       // If we hit load/store with the same invariant.group metadata (and the
337       // same pointer operand) we can assume that value pointed by pointer
338       // operand didn't change.
339       if ((isa<LoadInst>(U) ||
340            (isa<StoreInst>(U) &&
341             cast<StoreInst>(U)->getPointerOperand() == Ptr)) &&
342           U->hasMetadata(LLVMContext::MD_invariant_group))
343         ClosestDependency = GetClosestDependency(ClosestDependency, U);
344     }
345   }
346 
347   if (!ClosestDependency)
348     return MemDepResult::getUnknown();
349   if (ClosestDependency->getParent() == BB)
350     return MemDepResult::getDef(ClosestDependency);
351   // Def(U) can't be returned here because it is non-local. If local
352   // dependency won't be found then return nonLocal counting that the
353   // user will call getNonLocalPointerDependency, which will return cached
354   // result.
355   NonLocalDefsCache.try_emplace(
356       LI, NonLocalDepResult(ClosestDependency->getParent(),
357                             MemDepResult::getDef(ClosestDependency), nullptr));
358   ReverseNonLocalDefsCache[ClosestDependency].insert(LI);
359   return MemDepResult::getNonLocal();
360 }
361 
362 MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom(
363     const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
364     BasicBlock *BB, Instruction *QueryInst, unsigned *Limit,
365     BatchAAResults &BatchAA) {
366   bool isInvariantLoad = false;
367 
368   unsigned DefaultLimit = getDefaultBlockScanLimit();
369   if (!Limit)
370     Limit = &DefaultLimit;
371 
372   // We must be careful with atomic accesses, as they may allow another thread
373   //   to touch this location, clobbering it. We are conservative: if the
374   //   QueryInst is not a simple (non-atomic) memory access, we automatically
375   //   return getClobber.
376   // If it is simple, we know based on the results of
377   // "Compiler testing via a theory of sound optimisations in the C11/C++11
378   //   memory model" in PLDI 2013, that a non-atomic location can only be
379   //   clobbered between a pair of a release and an acquire action, with no
380   //   access to the location in between.
381   // Here is an example for giving the general intuition behind this rule.
382   // In the following code:
383   //   store x 0;
384   //   release action; [1]
385   //   acquire action; [4]
386   //   %val = load x;
387   // It is unsafe to replace %val by 0 because another thread may be running:
388   //   acquire action; [2]
389   //   store x 42;
390   //   release action; [3]
391   // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
392   // being 42. A key property of this program however is that if either
393   // 1 or 4 were missing, there would be a race between the store of 42
394   // either the store of 0 or the load (making the whole program racy).
395   // The paper mentioned above shows that the same property is respected
396   // by every program that can detect any optimization of that kind: either
397   // it is racy (undefined) or there is a release followed by an acquire
398   // between the pair of accesses under consideration.
399 
400   // If the load is invariant, we "know" that it doesn't alias *any* write. We
401   // do want to respect mustalias results since defs are useful for value
402   // forwarding, but any mayalias write can be assumed to be noalias.
403   // Arguably, this logic should be pushed inside AliasAnalysis itself.
404   if (isLoad && QueryInst) {
405     LoadInst *LI = cast<LoadInst>(QueryInst);
406     if (LI->hasMetadata(LLVMContext::MD_invariant_load))
407       isInvariantLoad = true;
408   }
409 
410   // True for volatile instruction.
411   // For Load/Store return true if atomic ordering is stronger than AO,
412   // for other instruction just true if it can read or write to memory.
413   auto isComplexForReordering = [](Instruction * I, AtomicOrdering AO)->bool {
414     if (I->isVolatile())
415       return true;
416     if (auto *LI = dyn_cast<LoadInst>(I))
417       return isStrongerThan(LI->getOrdering(), AO);
418     if (auto *SI = dyn_cast<StoreInst>(I))
419       return isStrongerThan(SI->getOrdering(), AO);
420     return I->mayReadOrWriteMemory();
421   };
422 
423   // Walk backwards through the basic block, looking for dependencies.
424   while (ScanIt != BB->begin()) {
425     Instruction *Inst = &*--ScanIt;
426 
427     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
428       // Debug intrinsics don't (and can't) cause dependencies.
429       if (isa<DbgInfoIntrinsic>(II))
430         continue;
431 
432     // Limit the amount of scanning we do so we don't end up with quadratic
433     // running time on extreme testcases.
434     --*Limit;
435     if (!*Limit)
436       return MemDepResult::getUnknown();
437 
438     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
439       // If we reach a lifetime begin or end marker, then the query ends here
440       // because the value is undefined.
441       Intrinsic::ID ID = II->getIntrinsicID();
442       switch (ID) {
443       case Intrinsic::lifetime_start: {
444         // FIXME: This only considers queries directly on the invariant-tagged
445         // pointer, not on query pointers that are indexed off of them.  It'd
446         // be nice to handle that at some point (the right approach is to use
447         // GetPointerBaseWithConstantOffset).
448         MemoryLocation ArgLoc = MemoryLocation::getAfter(II->getArgOperand(1));
449         if (BatchAA.isMustAlias(ArgLoc, MemLoc))
450           return MemDepResult::getDef(II);
451         continue;
452       }
453       case Intrinsic::masked_load:
454       case Intrinsic::masked_store: {
455         MemoryLocation Loc;
456         /*ModRefInfo MR =*/ GetLocation(II, Loc, TLI);
457         AliasResult R = BatchAA.alias(Loc, MemLoc);
458         if (R == AliasResult::NoAlias)
459           continue;
460         if (R == AliasResult::MustAlias)
461           return MemDepResult::getDef(II);
462         if (ID == Intrinsic::masked_load)
463           continue;
464         return MemDepResult::getClobber(II);
465       }
466       }
467     }
468 
469     // Values depend on loads if the pointers are must aliased.  This means
470     // that a load depends on another must aliased load from the same value.
471     // One exception is atomic loads: a value can depend on an atomic load that
472     // it does not alias with when this atomic load indicates that another
473     // thread may be accessing the location.
474     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
475       // While volatile access cannot be eliminated, they do not have to clobber
476       // non-aliasing locations, as normal accesses, for example, can be safely
477       // reordered with volatile accesses.
478       if (LI->isVolatile()) {
479         if (!QueryInst)
480           // Original QueryInst *may* be volatile
481           return MemDepResult::getClobber(LI);
482         if (QueryInst->isVolatile())
483           // Ordering required if QueryInst is itself volatile
484           return MemDepResult::getClobber(LI);
485         // Otherwise, volatile doesn't imply any special ordering
486       }
487 
488       // Atomic loads have complications involved.
489       // A Monotonic (or higher) load is OK if the query inst is itself not
490       // atomic.
491       // FIXME: This is overly conservative.
492       if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) {
493         if (!QueryInst ||
494             isComplexForReordering(QueryInst, AtomicOrdering::NotAtomic))
495           return MemDepResult::getClobber(LI);
496         if (LI->getOrdering() != AtomicOrdering::Monotonic)
497           return MemDepResult::getClobber(LI);
498       }
499 
500       MemoryLocation LoadLoc = MemoryLocation::get(LI);
501 
502       // If we found a pointer, check if it could be the same as our pointer.
503       AliasResult R = BatchAA.alias(LoadLoc, MemLoc);
504 
505       if (R == AliasResult::NoAlias)
506         continue;
507 
508       if (isLoad) {
509         // Must aliased loads are defs of each other.
510         if (R == AliasResult::MustAlias)
511           return MemDepResult::getDef(Inst);
512 
513         // If we have a partial alias, then return this as a clobber for the
514         // client to handle.
515         if (R == AliasResult::PartialAlias && R.hasOffset()) {
516           ClobberOffsets[LI] = R.getOffset();
517           return MemDepResult::getClobber(Inst);
518         }
519 
520         // Random may-alias loads don't depend on each other without a
521         // dependence.
522         continue;
523       }
524 
525       // Stores don't alias loads from read-only memory.
526       if (BatchAA.pointsToConstantMemory(LoadLoc))
527         continue;
528 
529       // Stores depend on may/must aliased loads.
530       return MemDepResult::getDef(Inst);
531     }
532 
533     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
534       // Atomic stores have complications involved.
535       // A Monotonic store is OK if the query inst is itself not atomic.
536       // FIXME: This is overly conservative.
537       if (!SI->isUnordered() && SI->isAtomic()) {
538         if (!QueryInst ||
539             isComplexForReordering(QueryInst, AtomicOrdering::Unordered))
540           return MemDepResult::getClobber(SI);
541         // Ok, if we are here the guard above guarantee us that
542         // QueryInst is a non-atomic or unordered load/store.
543         // SI is atomic with monotonic or release semantic (seq_cst for store
544         // is actually a release semantic plus total order over other seq_cst
545         // instructions, as soon as QueryInst is not seq_cst we can consider it
546         // as simple release semantic).
547         // Monotonic and Release semantic allows re-ordering before store
548         // so we are safe to go further and check the aliasing. It will prohibit
549         // re-ordering in case locations are may or must alias.
550       }
551 
552       // While volatile access cannot be eliminated, they do not have to clobber
553       // non-aliasing locations, as normal accesses can for example be reordered
554       // with volatile accesses.
555       if (SI->isVolatile())
556         if (!QueryInst || QueryInst->isVolatile())
557           return MemDepResult::getClobber(SI);
558 
559       // If alias analysis can tell that this store is guaranteed to not modify
560       // the query pointer, ignore it.  Use getModRefInfo to handle cases where
561       // the query pointer points to constant memory etc.
562       if (!isModOrRefSet(BatchAA.getModRefInfo(SI, MemLoc)))
563         continue;
564 
565       // Ok, this store might clobber the query pointer.  Check to see if it is
566       // a must alias: in this case, we want to return this as a def.
567       // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above.
568       MemoryLocation StoreLoc = MemoryLocation::get(SI);
569 
570       // If we found a pointer, check if it could be the same as our pointer.
571       AliasResult R = BatchAA.alias(StoreLoc, MemLoc);
572 
573       if (R == AliasResult::NoAlias)
574         continue;
575       if (R == AliasResult::MustAlias)
576         return MemDepResult::getDef(Inst);
577       if (isInvariantLoad)
578         continue;
579       return MemDepResult::getClobber(Inst);
580     }
581 
582     // If this is an allocation, and if we know that the accessed pointer is to
583     // the allocation, return Def.  This means that there is no dependence and
584     // the access can be optimized based on that.  For example, a load could
585     // turn into undef.  Note that we can bypass the allocation itself when
586     // looking for a clobber in many cases; that's an alias property and is
587     // handled by BasicAA.
588     if (isa<AllocaInst>(Inst) || isNoAliasCall(Inst)) {
589       const Value *AccessPtr = getUnderlyingObject(MemLoc.Ptr);
590       if (AccessPtr == Inst || BatchAA.isMustAlias(Inst, AccessPtr))
591         return MemDepResult::getDef(Inst);
592     }
593 
594     if (isInvariantLoad)
595       continue;
596 
597     // A release fence requires that all stores complete before it, but does
598     // not prevent the reordering of following loads or stores 'before' the
599     // fence.  As a result, we look past it when finding a dependency for
600     // loads.  DSE uses this to find preceding stores to delete and thus we
601     // can't bypass the fence if the query instruction is a store.
602     if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
603       if (isLoad && FI->getOrdering() == AtomicOrdering::Release)
604         continue;
605 
606     // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
607     ModRefInfo MR = BatchAA.getModRefInfo(Inst, MemLoc);
608     // If necessary, perform additional analysis.
609     if (isModAndRefSet(MR))
610       MR = BatchAA.callCapturesBefore(Inst, MemLoc, &DT);
611     switch (clearMust(MR)) {
612     case ModRefInfo::NoModRef:
613       // If the call has no effect on the queried pointer, just ignore it.
614       continue;
615     case ModRefInfo::Mod:
616       return MemDepResult::getClobber(Inst);
617     case ModRefInfo::Ref:
618       // If the call is known to never store to the pointer, and if this is a
619       // load query, we can safely ignore it (scan past it).
620       if (isLoad)
621         continue;
622       LLVM_FALLTHROUGH;
623     default:
624       // Otherwise, there is a potential dependence.  Return a clobber.
625       return MemDepResult::getClobber(Inst);
626     }
627   }
628 
629   // No dependence found.  If this is the entry block of the function, it is
630   // unknown, otherwise it is non-local.
631   if (BB != &BB->getParent()->getEntryBlock())
632     return MemDepResult::getNonLocal();
633   return MemDepResult::getNonFuncLocal();
634 }
635 
636 MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) {
637   ClobberOffsets.clear();
638   Instruction *ScanPos = QueryInst;
639 
640   // Check for a cached result
641   MemDepResult &LocalCache = LocalDeps[QueryInst];
642 
643   // If the cached entry is non-dirty, just return it.  Note that this depends
644   // on MemDepResult's default constructing to 'dirty'.
645   if (!LocalCache.isDirty())
646     return LocalCache;
647 
648   // Otherwise, if we have a dirty entry, we know we can start the scan at that
649   // instruction, which may save us some work.
650   if (Instruction *Inst = LocalCache.getInst()) {
651     ScanPos = Inst;
652 
653     RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
654   }
655 
656   BasicBlock *QueryParent = QueryInst->getParent();
657 
658   // Do the scan.
659   if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
660     // No dependence found. If this is the entry block of the function, it is
661     // unknown, otherwise it is non-local.
662     if (QueryParent != &QueryParent->getParent()->getEntryBlock())
663       LocalCache = MemDepResult::getNonLocal();
664     else
665       LocalCache = MemDepResult::getNonFuncLocal();
666   } else {
667     MemoryLocation MemLoc;
668     ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI);
669     if (MemLoc.Ptr) {
670       // If we can do a pointer scan, make it happen.
671       bool isLoad = !isModSet(MR);
672       if (auto *II = dyn_cast<IntrinsicInst>(QueryInst))
673         isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
674 
675       LocalCache =
676           getPointerDependencyFrom(MemLoc, isLoad, ScanPos->getIterator(),
677                                    QueryParent, QueryInst, nullptr);
678     } else if (auto *QueryCall = dyn_cast<CallBase>(QueryInst)) {
679       bool isReadOnly = AA.onlyReadsMemory(QueryCall);
680       LocalCache = getCallDependencyFrom(QueryCall, isReadOnly,
681                                          ScanPos->getIterator(), QueryParent);
682     } else
683       // Non-memory instruction.
684       LocalCache = MemDepResult::getUnknown();
685   }
686 
687   // Remember the result!
688   if (Instruction *I = LocalCache.getInst())
689     ReverseLocalDeps[I].insert(QueryInst);
690 
691   return LocalCache;
692 }
693 
694 #ifndef NDEBUG
695 /// This method is used when -debug is specified to verify that cache arrays
696 /// are properly kept sorted.
697 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache,
698                          int Count = -1) {
699   if (Count == -1)
700     Count = Cache.size();
701   assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) &&
702          "Cache isn't sorted!");
703 }
704 #endif
705 
706 const MemoryDependenceResults::NonLocalDepInfo &
707 MemoryDependenceResults::getNonLocalCallDependency(CallBase *QueryCall) {
708   assert(getDependency(QueryCall).isNonLocal() &&
709          "getNonLocalCallDependency should only be used on calls with "
710          "non-local deps!");
711   PerInstNLInfo &CacheP = NonLocalDepsMap[QueryCall];
712   NonLocalDepInfo &Cache = CacheP.first;
713 
714   // This is the set of blocks that need to be recomputed.  In the cached case,
715   // this can happen due to instructions being deleted etc. In the uncached
716   // case, this starts out as the set of predecessors we care about.
717   SmallVector<BasicBlock *, 32> DirtyBlocks;
718 
719   if (!Cache.empty()) {
720     // Okay, we have a cache entry.  If we know it is not dirty, just return it
721     // with no computation.
722     if (!CacheP.second) {
723       ++NumCacheNonLocal;
724       return Cache;
725     }
726 
727     // If we already have a partially computed set of results, scan them to
728     // determine what is dirty, seeding our initial DirtyBlocks worklist.
729     for (auto &Entry : Cache)
730       if (Entry.getResult().isDirty())
731         DirtyBlocks.push_back(Entry.getBB());
732 
733     // Sort the cache so that we can do fast binary search lookups below.
734     llvm::sort(Cache);
735 
736     ++NumCacheDirtyNonLocal;
737     // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
738     //     << Cache.size() << " cached: " << *QueryInst;
739   } else {
740     // Seed DirtyBlocks with each of the preds of QueryInst's block.
741     BasicBlock *QueryBB = QueryCall->getParent();
742     append_range(DirtyBlocks, PredCache.get(QueryBB));
743     ++NumUncacheNonLocal;
744   }
745 
746   // isReadonlyCall - If this is a read-only call, we can be more aggressive.
747   bool isReadonlyCall = AA.onlyReadsMemory(QueryCall);
748 
749   SmallPtrSet<BasicBlock *, 32> Visited;
750 
751   unsigned NumSortedEntries = Cache.size();
752   LLVM_DEBUG(AssertSorted(Cache));
753 
754   // Iterate while we still have blocks to update.
755   while (!DirtyBlocks.empty()) {
756     BasicBlock *DirtyBB = DirtyBlocks.pop_back_val();
757 
758     // Already processed this block?
759     if (!Visited.insert(DirtyBB).second)
760       continue;
761 
762     // Do a binary search to see if we already have an entry for this block in
763     // the cache set.  If so, find it.
764     LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries));
765     NonLocalDepInfo::iterator Entry =
766         std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries,
767                          NonLocalDepEntry(DirtyBB));
768     if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
769       --Entry;
770 
771     NonLocalDepEntry *ExistingResult = nullptr;
772     if (Entry != Cache.begin() + NumSortedEntries &&
773         Entry->getBB() == DirtyBB) {
774       // If we already have an entry, and if it isn't already dirty, the block
775       // is done.
776       if (!Entry->getResult().isDirty())
777         continue;
778 
779       // Otherwise, remember this slot so we can update the value.
780       ExistingResult = &*Entry;
781     }
782 
783     // If the dirty entry has a pointer, start scanning from it so we don't have
784     // to rescan the entire block.
785     BasicBlock::iterator ScanPos = DirtyBB->end();
786     if (ExistingResult) {
787       if (Instruction *Inst = ExistingResult->getResult().getInst()) {
788         ScanPos = Inst->getIterator();
789         // We're removing QueryInst's use of Inst.
790         RemoveFromReverseMap<Instruction *>(ReverseNonLocalDeps, Inst,
791                                             QueryCall);
792       }
793     }
794 
795     // Find out if this block has a local dependency for QueryInst.
796     MemDepResult Dep;
797 
798     if (ScanPos != DirtyBB->begin()) {
799       Dep = getCallDependencyFrom(QueryCall, isReadonlyCall, ScanPos, DirtyBB);
800     } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
801       // No dependence found.  If this is the entry block of the function, it is
802       // a clobber, otherwise it is unknown.
803       Dep = MemDepResult::getNonLocal();
804     } else {
805       Dep = MemDepResult::getNonFuncLocal();
806     }
807 
808     // If we had a dirty entry for the block, update it.  Otherwise, just add
809     // a new entry.
810     if (ExistingResult)
811       ExistingResult->setResult(Dep);
812     else
813       Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
814 
815     // If the block has a dependency (i.e. it isn't completely transparent to
816     // the value), remember the association!
817     if (!Dep.isNonLocal()) {
818       // Keep the ReverseNonLocalDeps map up to date so we can efficiently
819       // update this when we remove instructions.
820       if (Instruction *Inst = Dep.getInst())
821         ReverseNonLocalDeps[Inst].insert(QueryCall);
822     } else {
823 
824       // If the block *is* completely transparent to the load, we need to check
825       // the predecessors of this block.  Add them to our worklist.
826       append_range(DirtyBlocks, PredCache.get(DirtyBB));
827     }
828   }
829 
830   return Cache;
831 }
832 
833 void MemoryDependenceResults::getNonLocalPointerDependency(
834     Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) {
835   const MemoryLocation Loc = MemoryLocation::get(QueryInst);
836   bool isLoad = isa<LoadInst>(QueryInst);
837   BasicBlock *FromBB = QueryInst->getParent();
838   assert(FromBB);
839 
840   assert(Loc.Ptr->getType()->isPointerTy() &&
841          "Can't get pointer deps of a non-pointer!");
842   Result.clear();
843   {
844     // Check if there is cached Def with invariant.group.
845     auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst);
846     if (NonLocalDefIt != NonLocalDefsCache.end()) {
847       Result.push_back(NonLocalDefIt->second);
848       ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()]
849           .erase(QueryInst);
850       NonLocalDefsCache.erase(NonLocalDefIt);
851       return;
852     }
853   }
854   // This routine does not expect to deal with volatile instructions.
855   // Doing so would require piping through the QueryInst all the way through.
856   // TODO: volatiles can't be elided, but they can be reordered with other
857   // non-volatile accesses.
858 
859   // We currently give up on any instruction which is ordered, but we do handle
860   // atomic instructions which are unordered.
861   // TODO: Handle ordered instructions
862   auto isOrdered = [](Instruction *Inst) {
863     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
864       return !LI->isUnordered();
865     } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
866       return !SI->isUnordered();
867     }
868     return false;
869   };
870   if (QueryInst->isVolatile() || isOrdered(QueryInst)) {
871     Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
872                                        const_cast<Value *>(Loc.Ptr)));
873     return;
874   }
875   const DataLayout &DL = FromBB->getModule()->getDataLayout();
876   PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC);
877 
878   // This is the set of blocks we've inspected, and the pointer we consider in
879   // each block.  Because of critical edges, we currently bail out if querying
880   // a block with multiple different pointers.  This can happen during PHI
881   // translation.
882   DenseMap<BasicBlock *, Value *> Visited;
883   if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB,
884                                    Result, Visited, true))
885     return;
886   Result.clear();
887   Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
888                                      const_cast<Value *>(Loc.Ptr)));
889 }
890 
891 /// Compute the memdep value for BB with Pointer/PointeeSize using either
892 /// cached information in Cache or by doing a lookup (which may use dirty cache
893 /// info if available).
894 ///
895 /// If we do a lookup, add the result to the cache.
896 MemDepResult MemoryDependenceResults::getNonLocalInfoForBlock(
897     Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad,
898     BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries,
899     BatchAAResults &BatchAA) {
900 
901   bool isInvariantLoad = false;
902 
903   if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst))
904     isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load);
905 
906   // Do a binary search to see if we already have an entry for this block in
907   // the cache set.  If so, find it.
908   NonLocalDepInfo::iterator Entry = std::upper_bound(
909       Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB));
910   if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB)
911     --Entry;
912 
913   NonLocalDepEntry *ExistingResult = nullptr;
914   if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB)
915     ExistingResult = &*Entry;
916 
917   // Use cached result for invariant load only if there is no dependency for non
918   // invariant load. In this case invariant load can not have any dependency as
919   // well.
920   if (ExistingResult && isInvariantLoad &&
921       !ExistingResult->getResult().isNonFuncLocal())
922     ExistingResult = nullptr;
923 
924   // If we have a cached entry, and it is non-dirty, use it as the value for
925   // this dependency.
926   if (ExistingResult && !ExistingResult->getResult().isDirty()) {
927     ++NumCacheNonLocalPtr;
928     return ExistingResult->getResult();
929   }
930 
931   // Otherwise, we have to scan for the value.  If we have a dirty cache
932   // entry, start scanning from its position, otherwise we scan from the end
933   // of the block.
934   BasicBlock::iterator ScanPos = BB->end();
935   if (ExistingResult && ExistingResult->getResult().getInst()) {
936     assert(ExistingResult->getResult().getInst()->getParent() == BB &&
937            "Instruction invalidated?");
938     ++NumCacheDirtyNonLocalPtr;
939     ScanPos = ExistingResult->getResult().getInst()->getIterator();
940 
941     // Eliminating the dirty entry from 'Cache', so update the reverse info.
942     ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
943     RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey);
944   } else {
945     ++NumUncacheNonLocalPtr;
946   }
947 
948   // Scan the block for the dependency.
949   MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB,
950                                               QueryInst, nullptr, BatchAA);
951 
952   // Don't cache results for invariant load.
953   if (isInvariantLoad)
954     return Dep;
955 
956   // If we had a dirty entry for the block, update it.  Otherwise, just add
957   // a new entry.
958   if (ExistingResult)
959     ExistingResult->setResult(Dep);
960   else
961     Cache->push_back(NonLocalDepEntry(BB, Dep));
962 
963   // If the block has a dependency (i.e. it isn't completely transparent to
964   // the value), remember the reverse association because we just added it
965   // to Cache!
966   if (!Dep.isDef() && !Dep.isClobber())
967     return Dep;
968 
969   // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
970   // update MemDep when we remove instructions.
971   Instruction *Inst = Dep.getInst();
972   assert(Inst && "Didn't depend on anything?");
973   ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
974   ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
975   return Dep;
976 }
977 
978 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the
979 /// array that are already properly ordered.
980 ///
981 /// This is optimized for the case when only a few entries are added.
982 static void
983 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache,
984                          unsigned NumSortedEntries) {
985   switch (Cache.size() - NumSortedEntries) {
986   case 0:
987     // done, no new entries.
988     break;
989   case 2: {
990     // Two new entries, insert the last one into place.
991     NonLocalDepEntry Val = Cache.back();
992     Cache.pop_back();
993     MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
994         std::upper_bound(Cache.begin(), Cache.end() - 1, Val);
995     Cache.insert(Entry, Val);
996     LLVM_FALLTHROUGH;
997   }
998   case 1:
999     // One new entry, Just insert the new value at the appropriate position.
1000     if (Cache.size() != 1) {
1001       NonLocalDepEntry Val = Cache.back();
1002       Cache.pop_back();
1003       MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
1004           llvm::upper_bound(Cache, Val);
1005       Cache.insert(Entry, Val);
1006     }
1007     break;
1008   default:
1009     // Added many values, do a full scale sort.
1010     llvm::sort(Cache);
1011     break;
1012   }
1013 }
1014 
1015 /// Perform a dependency query based on pointer/pointeesize starting at the end
1016 /// of StartBB.
1017 ///
1018 /// Add any clobber/def results to the results vector and keep track of which
1019 /// blocks are visited in 'Visited'.
1020 ///
1021 /// This has special behavior for the first block queries (when SkipFirstBlock
1022 /// is true).  In this special case, it ignores the contents of the specified
1023 /// block and starts returning dependence info for its predecessors.
1024 ///
1025 /// This function returns true on success, or false to indicate that it could
1026 /// not compute dependence information for some reason.  This should be treated
1027 /// as a clobber dependence on the first instruction in the predecessor block.
1028 bool MemoryDependenceResults::getNonLocalPointerDepFromBB(
1029     Instruction *QueryInst, const PHITransAddr &Pointer,
1030     const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB,
1031     SmallVectorImpl<NonLocalDepResult> &Result,
1032     DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock,
1033     bool IsIncomplete) {
1034   // Look up the cached info for Pointer.
1035   ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
1036 
1037   // Set up a temporary NLPI value. If the map doesn't yet have an entry for
1038   // CacheKey, this value will be inserted as the associated value. Otherwise,
1039   // it'll be ignored, and we'll have to check to see if the cached size and
1040   // aa tags are consistent with the current query.
1041   NonLocalPointerInfo InitialNLPI;
1042   InitialNLPI.Size = Loc.Size;
1043   InitialNLPI.AATags = Loc.AATags;
1044 
1045   bool isInvariantLoad = false;
1046   if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst))
1047     isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load);
1048 
1049   // Get the NLPI for CacheKey, inserting one into the map if it doesn't
1050   // already have one.
1051   std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
1052       NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
1053   NonLocalPointerInfo *CacheInfo = &Pair.first->second;
1054 
1055   // If we already have a cache entry for this CacheKey, we may need to do some
1056   // work to reconcile the cache entry and the current query.
1057   // Invariant loads don't participate in caching. Thus no need to reconcile.
1058   if (!isInvariantLoad && !Pair.second) {
1059     if (CacheInfo->Size != Loc.Size) {
1060       bool ThrowOutEverything;
1061       if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) {
1062         // FIXME: We may be able to do better in the face of results with mixed
1063         // precision. We don't appear to get them in practice, though, so just
1064         // be conservative.
1065         ThrowOutEverything =
1066             CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() ||
1067             CacheInfo->Size.getValue() < Loc.Size.getValue();
1068       } else {
1069         // For our purposes, unknown size > all others.
1070         ThrowOutEverything = !Loc.Size.hasValue();
1071       }
1072 
1073       if (ThrowOutEverything) {
1074         // The query's Size is greater than the cached one. Throw out the
1075         // cached data and proceed with the query at the greater size.
1076         CacheInfo->Pair = BBSkipFirstBlockPair();
1077         CacheInfo->Size = Loc.Size;
1078         for (auto &Entry : CacheInfo->NonLocalDeps)
1079           if (Instruction *Inst = Entry.getResult().getInst())
1080             RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1081         CacheInfo->NonLocalDeps.clear();
1082         // The cache is cleared (in the above line) so we will have lost
1083         // information about blocks we have already visited. We therefore must
1084         // assume that the cache information is incomplete.
1085         IsIncomplete = true;
1086       } else {
1087         // This query's Size is less than the cached one. Conservatively restart
1088         // the query using the greater size.
1089         return getNonLocalPointerDepFromBB(
1090             QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad,
1091             StartBB, Result, Visited, SkipFirstBlock, IsIncomplete);
1092       }
1093     }
1094 
1095     // If the query's AATags are inconsistent with the cached one,
1096     // conservatively throw out the cached data and restart the query with
1097     // no tag if needed.
1098     if (CacheInfo->AATags != Loc.AATags) {
1099       if (CacheInfo->AATags) {
1100         CacheInfo->Pair = BBSkipFirstBlockPair();
1101         CacheInfo->AATags = AAMDNodes();
1102         for (auto &Entry : CacheInfo->NonLocalDeps)
1103           if (Instruction *Inst = Entry.getResult().getInst())
1104             RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1105         CacheInfo->NonLocalDeps.clear();
1106         // The cache is cleared (in the above line) so we will have lost
1107         // information about blocks we have already visited. We therefore must
1108         // assume that the cache information is incomplete.
1109         IsIncomplete = true;
1110       }
1111       if (Loc.AATags)
1112         return getNonLocalPointerDepFromBB(
1113             QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result,
1114             Visited, SkipFirstBlock, IsIncomplete);
1115     }
1116   }
1117 
1118   NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
1119 
1120   // If we have valid cached information for exactly the block we are
1121   // investigating, just return it with no recomputation.
1122   // Don't use cached information for invariant loads since it is valid for
1123   // non-invariant loads only.
1124   if (!IsIncomplete && !isInvariantLoad &&
1125       CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
1126     // We have a fully cached result for this query then we can just return the
1127     // cached results and populate the visited set.  However, we have to verify
1128     // that we don't already have conflicting results for these blocks.  Check
1129     // to ensure that if a block in the results set is in the visited set that
1130     // it was for the same pointer query.
1131     if (!Visited.empty()) {
1132       for (auto &Entry : *Cache) {
1133         DenseMap<BasicBlock *, Value *>::iterator VI =
1134             Visited.find(Entry.getBB());
1135         if (VI == Visited.end() || VI->second == Pointer.getAddr())
1136           continue;
1137 
1138         // We have a pointer mismatch in a block.  Just return false, saying
1139         // that something was clobbered in this result.  We could also do a
1140         // non-fully cached query, but there is little point in doing this.
1141         return false;
1142       }
1143     }
1144 
1145     Value *Addr = Pointer.getAddr();
1146     for (auto &Entry : *Cache) {
1147       Visited.insert(std::make_pair(Entry.getBB(), Addr));
1148       if (Entry.getResult().isNonLocal()) {
1149         continue;
1150       }
1151 
1152       if (DT.isReachableFromEntry(Entry.getBB())) {
1153         Result.push_back(
1154             NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr));
1155       }
1156     }
1157     ++NumCacheCompleteNonLocalPtr;
1158     return true;
1159   }
1160 
1161   // Otherwise, either this is a new block, a block with an invalid cache
1162   // pointer or one that we're about to invalidate by putting more info into
1163   // it than its valid cache info.  If empty and not explicitly indicated as
1164   // incomplete, the result will be valid cache info, otherwise it isn't.
1165   //
1166   // Invariant loads don't affect cache in any way thus no need to update
1167   // CacheInfo as well.
1168   if (!isInvariantLoad) {
1169     if (!IsIncomplete && Cache->empty())
1170       CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1171     else
1172       CacheInfo->Pair = BBSkipFirstBlockPair();
1173   }
1174 
1175   SmallVector<BasicBlock *, 32> Worklist;
1176   Worklist.push_back(StartBB);
1177 
1178   // PredList used inside loop.
1179   SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList;
1180 
1181   // Keep track of the entries that we know are sorted.  Previously cached
1182   // entries will all be sorted.  The entries we add we only sort on demand (we
1183   // don't insert every element into its sorted position).  We know that we
1184   // won't get any reuse from currently inserted values, because we don't
1185   // revisit blocks after we insert info for them.
1186   unsigned NumSortedEntries = Cache->size();
1187   unsigned WorklistEntries = BlockNumberLimit;
1188   bool GotWorklistLimit = false;
1189   LLVM_DEBUG(AssertSorted(*Cache));
1190 
1191   BatchAAResults BatchAA(AA);
1192   while (!Worklist.empty()) {
1193     BasicBlock *BB = Worklist.pop_back_val();
1194 
1195     // If we do process a large number of blocks it becomes very expensive and
1196     // likely it isn't worth worrying about
1197     if (Result.size() > NumResultsLimit) {
1198       Worklist.clear();
1199       // Sort it now (if needed) so that recursive invocations of
1200       // getNonLocalPointerDepFromBB and other routines that could reuse the
1201       // cache value will only see properly sorted cache arrays.
1202       if (Cache && NumSortedEntries != Cache->size()) {
1203         SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1204       }
1205       // Since we bail out, the "Cache" set won't contain all of the
1206       // results for the query.  This is ok (we can still use it to accelerate
1207       // specific block queries) but we can't do the fastpath "return all
1208       // results from the set".  Clear out the indicator for this.
1209       CacheInfo->Pair = BBSkipFirstBlockPair();
1210       return false;
1211     }
1212 
1213     // Skip the first block if we have it.
1214     if (!SkipFirstBlock) {
1215       // Analyze the dependency of *Pointer in FromBB.  See if we already have
1216       // been here.
1217       assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1218 
1219       // Get the dependency info for Pointer in BB.  If we have cached
1220       // information, we will use it, otherwise we compute it.
1221       LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries));
1222       MemDepResult Dep = getNonLocalInfoForBlock(
1223           QueryInst, Loc, isLoad, BB, Cache, NumSortedEntries, BatchAA);
1224 
1225       // If we got a Def or Clobber, add this to the list of results.
1226       if (!Dep.isNonLocal()) {
1227         if (DT.isReachableFromEntry(BB)) {
1228           Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1229           continue;
1230         }
1231       }
1232     }
1233 
1234     // If 'Pointer' is an instruction defined in this block, then we need to do
1235     // phi translation to change it into a value live in the predecessor block.
1236     // If not, we just add the predecessors to the worklist and scan them with
1237     // the same Pointer.
1238     if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1239       SkipFirstBlock = false;
1240       SmallVector<BasicBlock *, 16> NewBlocks;
1241       for (BasicBlock *Pred : PredCache.get(BB)) {
1242         // Verify that we haven't looked at this block yet.
1243         std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1244             Visited.insert(std::make_pair(Pred, Pointer.getAddr()));
1245         if (InsertRes.second) {
1246           // First time we've looked at *PI.
1247           NewBlocks.push_back(Pred);
1248           continue;
1249         }
1250 
1251         // If we have seen this block before, but it was with a different
1252         // pointer then we have a phi translation failure and we have to treat
1253         // this as a clobber.
1254         if (InsertRes.first->second != Pointer.getAddr()) {
1255           // Make sure to clean up the Visited map before continuing on to
1256           // PredTranslationFailure.
1257           for (unsigned i = 0; i < NewBlocks.size(); i++)
1258             Visited.erase(NewBlocks[i]);
1259           goto PredTranslationFailure;
1260         }
1261       }
1262       if (NewBlocks.size() > WorklistEntries) {
1263         // Make sure to clean up the Visited map before continuing on to
1264         // PredTranslationFailure.
1265         for (unsigned i = 0; i < NewBlocks.size(); i++)
1266           Visited.erase(NewBlocks[i]);
1267         GotWorklistLimit = true;
1268         goto PredTranslationFailure;
1269       }
1270       WorklistEntries -= NewBlocks.size();
1271       Worklist.append(NewBlocks.begin(), NewBlocks.end());
1272       continue;
1273     }
1274 
1275     // We do need to do phi translation, if we know ahead of time we can't phi
1276     // translate this value, don't even try.
1277     if (!Pointer.IsPotentiallyPHITranslatable())
1278       goto PredTranslationFailure;
1279 
1280     // We may have added values to the cache list before this PHI translation.
1281     // If so, we haven't done anything to ensure that the cache remains sorted.
1282     // Sort it now (if needed) so that recursive invocations of
1283     // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1284     // value will only see properly sorted cache arrays.
1285     if (Cache && NumSortedEntries != Cache->size()) {
1286       SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1287       NumSortedEntries = Cache->size();
1288     }
1289     Cache = nullptr;
1290 
1291     PredList.clear();
1292     for (BasicBlock *Pred : PredCache.get(BB)) {
1293       PredList.push_back(std::make_pair(Pred, Pointer));
1294 
1295       // Get the PHI translated pointer in this predecessor.  This can fail if
1296       // not translatable, in which case the getAddr() returns null.
1297       PHITransAddr &PredPointer = PredList.back().second;
1298       PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false);
1299       Value *PredPtrVal = PredPointer.getAddr();
1300 
1301       // Check to see if we have already visited this pred block with another
1302       // pointer.  If so, we can't do this lookup.  This failure can occur
1303       // with PHI translation when a critical edge exists and the PHI node in
1304       // the successor translates to a pointer value different than the
1305       // pointer the block was first analyzed with.
1306       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1307           Visited.insert(std::make_pair(Pred, PredPtrVal));
1308 
1309       if (!InsertRes.second) {
1310         // We found the pred; take it off the list of preds to visit.
1311         PredList.pop_back();
1312 
1313         // If the predecessor was visited with PredPtr, then we already did
1314         // the analysis and can ignore it.
1315         if (InsertRes.first->second == PredPtrVal)
1316           continue;
1317 
1318         // Otherwise, the block was previously analyzed with a different
1319         // pointer.  We can't represent the result of this case, so we just
1320         // treat this as a phi translation failure.
1321 
1322         // Make sure to clean up the Visited map before continuing on to
1323         // PredTranslationFailure.
1324         for (unsigned i = 0, n = PredList.size(); i < n; ++i)
1325           Visited.erase(PredList[i].first);
1326 
1327         goto PredTranslationFailure;
1328       }
1329     }
1330 
1331     // Actually process results here; this need to be a separate loop to avoid
1332     // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1333     // any results for.  (getNonLocalPointerDepFromBB will modify our
1334     // datastructures in ways the code after the PredTranslationFailure label
1335     // doesn't expect.)
1336     for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
1337       BasicBlock *Pred = PredList[i].first;
1338       PHITransAddr &PredPointer = PredList[i].second;
1339       Value *PredPtrVal = PredPointer.getAddr();
1340 
1341       bool CanTranslate = true;
1342       // If PHI translation was unable to find an available pointer in this
1343       // predecessor, then we have to assume that the pointer is clobbered in
1344       // that predecessor.  We can still do PRE of the load, which would insert
1345       // a computation of the pointer in this predecessor.
1346       if (!PredPtrVal)
1347         CanTranslate = false;
1348 
1349       // FIXME: it is entirely possible that PHI translating will end up with
1350       // the same value.  Consider PHI translating something like:
1351       // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
1352       // to recurse here, pedantically speaking.
1353 
1354       // If getNonLocalPointerDepFromBB fails here, that means the cached
1355       // result conflicted with the Visited list; we have to conservatively
1356       // assume it is unknown, but this also does not block PRE of the load.
1357       if (!CanTranslate ||
1358           !getNonLocalPointerDepFromBB(QueryInst, PredPointer,
1359                                       Loc.getWithNewPtr(PredPtrVal), isLoad,
1360                                       Pred, Result, Visited)) {
1361         // Add the entry to the Result list.
1362         NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1363         Result.push_back(Entry);
1364 
1365         // Since we had a phi translation failure, the cache for CacheKey won't
1366         // include all of the entries that we need to immediately satisfy future
1367         // queries.  Mark this in NonLocalPointerDeps by setting the
1368         // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
1369         // cached value to do more work but not miss the phi trans failure.
1370         NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1371         NLPI.Pair = BBSkipFirstBlockPair();
1372         continue;
1373       }
1374     }
1375 
1376     // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1377     CacheInfo = &NonLocalPointerDeps[CacheKey];
1378     Cache = &CacheInfo->NonLocalDeps;
1379     NumSortedEntries = Cache->size();
1380 
1381     // Since we did phi translation, the "Cache" set won't contain all of the
1382     // results for the query.  This is ok (we can still use it to accelerate
1383     // specific block queries) but we can't do the fastpath "return all
1384     // results from the set"  Clear out the indicator for this.
1385     CacheInfo->Pair = BBSkipFirstBlockPair();
1386     SkipFirstBlock = false;
1387     continue;
1388 
1389   PredTranslationFailure:
1390     // The following code is "failure"; we can't produce a sane translation
1391     // for the given block.  It assumes that we haven't modified any of
1392     // our datastructures while processing the current block.
1393 
1394     if (!Cache) {
1395       // Refresh the CacheInfo/Cache pointer if it got invalidated.
1396       CacheInfo = &NonLocalPointerDeps[CacheKey];
1397       Cache = &CacheInfo->NonLocalDeps;
1398       NumSortedEntries = Cache->size();
1399     }
1400 
1401     // Since we failed phi translation, the "Cache" set won't contain all of the
1402     // results for the query.  This is ok (we can still use it to accelerate
1403     // specific block queries) but we can't do the fastpath "return all
1404     // results from the set".  Clear out the indicator for this.
1405     CacheInfo->Pair = BBSkipFirstBlockPair();
1406 
1407     // If *nothing* works, mark the pointer as unknown.
1408     //
1409     // If this is the magic first block, return this as a clobber of the whole
1410     // incoming value.  Since we can't phi translate to one of the predecessors,
1411     // we have to bail out.
1412     if (SkipFirstBlock)
1413       return false;
1414 
1415     // Results of invariant loads are not cached thus no need to update cached
1416     // information.
1417     if (!isInvariantLoad) {
1418       for (NonLocalDepEntry &I : llvm::reverse(*Cache)) {
1419         if (I.getBB() != BB)
1420           continue;
1421 
1422         assert((GotWorklistLimit || I.getResult().isNonLocal() ||
1423                 !DT.isReachableFromEntry(BB)) &&
1424                "Should only be here with transparent block");
1425 
1426         I.setResult(MemDepResult::getUnknown());
1427 
1428 
1429         break;
1430       }
1431     }
1432     (void)GotWorklistLimit;
1433     // Go ahead and report unknown dependence.
1434     Result.push_back(
1435         NonLocalDepResult(BB, MemDepResult::getUnknown(), Pointer.getAddr()));
1436   }
1437 
1438   // Okay, we're done now.  If we added new values to the cache, re-sort it.
1439   SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1440   LLVM_DEBUG(AssertSorted(*Cache));
1441   return true;
1442 }
1443 
1444 /// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it.
1445 void MemoryDependenceResults::removeCachedNonLocalPointerDependencies(
1446     ValueIsLoadPair P) {
1447 
1448   // Most of the time this cache is empty.
1449   if (!NonLocalDefsCache.empty()) {
1450     auto it = NonLocalDefsCache.find(P.getPointer());
1451     if (it != NonLocalDefsCache.end()) {
1452       RemoveFromReverseMap(ReverseNonLocalDefsCache,
1453                            it->second.getResult().getInst(), P.getPointer());
1454       NonLocalDefsCache.erase(it);
1455     }
1456 
1457     if (auto *I = dyn_cast<Instruction>(P.getPointer())) {
1458       auto toRemoveIt = ReverseNonLocalDefsCache.find(I);
1459       if (toRemoveIt != ReverseNonLocalDefsCache.end()) {
1460         for (const auto *entry : toRemoveIt->second)
1461           NonLocalDefsCache.erase(entry);
1462         ReverseNonLocalDefsCache.erase(toRemoveIt);
1463       }
1464     }
1465   }
1466 
1467   CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P);
1468   if (It == NonLocalPointerDeps.end())
1469     return;
1470 
1471   // Remove all of the entries in the BB->val map.  This involves removing
1472   // instructions from the reverse map.
1473   NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1474 
1475   for (const NonLocalDepEntry &DE : PInfo) {
1476     Instruction *Target = DE.getResult().getInst();
1477     if (!Target)
1478       continue; // Ignore non-local dep results.
1479     assert(Target->getParent() == DE.getBB());
1480 
1481     // Eliminating the dirty entry from 'Cache', so update the reverse info.
1482     RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1483   }
1484 
1485   // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1486   NonLocalPointerDeps.erase(It);
1487 }
1488 
1489 void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) {
1490   // If Ptr isn't really a pointer, just ignore it.
1491   if (!Ptr->getType()->isPointerTy())
1492     return;
1493   // Flush store info for the pointer.
1494   removeCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1495   // Flush load info for the pointer.
1496   removeCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1497   // Invalidate phis that use the pointer.
1498   PV.invalidateValue(Ptr);
1499 }
1500 
1501 void MemoryDependenceResults::invalidateCachedPredecessors() {
1502   PredCache.clear();
1503 }
1504 
1505 void MemoryDependenceResults::removeInstruction(Instruction *RemInst) {
1506   // Walk through the Non-local dependencies, removing this one as the value
1507   // for any cached queries.
1508   NonLocalDepMapType::iterator NLDI = NonLocalDepsMap.find(RemInst);
1509   if (NLDI != NonLocalDepsMap.end()) {
1510     NonLocalDepInfo &BlockMap = NLDI->second.first;
1511     for (auto &Entry : BlockMap)
1512       if (Instruction *Inst = Entry.getResult().getInst())
1513         RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1514     NonLocalDepsMap.erase(NLDI);
1515   }
1516 
1517   // If we have a cached local dependence query for this instruction, remove it.
1518   LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1519   if (LocalDepEntry != LocalDeps.end()) {
1520     // Remove us from DepInst's reverse set now that the local dep info is gone.
1521     if (Instruction *Inst = LocalDepEntry->second.getInst())
1522       RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1523 
1524     // Remove this local dependency info.
1525     LocalDeps.erase(LocalDepEntry);
1526   }
1527 
1528   // If we have any cached dependencies on this instruction, remove
1529   // them.
1530 
1531   // If the instruction is a pointer, remove it from both the load info and the
1532   // store info.
1533   if (RemInst->getType()->isPointerTy()) {
1534     removeCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1535     removeCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1536   } else {
1537     // Otherwise, if the instructions is in the map directly, it must be a load.
1538     // Remove it.
1539     auto toRemoveIt = NonLocalDefsCache.find(RemInst);
1540     if (toRemoveIt != NonLocalDefsCache.end()) {
1541       assert(isa<LoadInst>(RemInst) &&
1542              "only load instructions should be added directly");
1543       const Instruction *DepV = toRemoveIt->second.getResult().getInst();
1544       ReverseNonLocalDefsCache.find(DepV)->second.erase(RemInst);
1545       NonLocalDefsCache.erase(toRemoveIt);
1546     }
1547   }
1548 
1549   // Loop over all of the things that depend on the instruction we're removing.
1550   SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd;
1551 
1552   // If we find RemInst as a clobber or Def in any of the maps for other values,
1553   // we need to replace its entry with a dirty version of the instruction after
1554   // it.  If RemInst is a terminator, we use a null dirty value.
1555   //
1556   // Using a dirty version of the instruction after RemInst saves having to scan
1557   // the entire block to get to this point.
1558   MemDepResult NewDirtyVal;
1559   if (!RemInst->isTerminator())
1560     NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator());
1561 
1562   ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1563   if (ReverseDepIt != ReverseLocalDeps.end()) {
1564     // RemInst can't be the terminator if it has local stuff depending on it.
1565     assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() &&
1566            "Nothing can locally depend on a terminator");
1567 
1568     for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
1569       assert(InstDependingOnRemInst != RemInst &&
1570              "Already removed our local dep info");
1571 
1572       LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1573 
1574       // Make sure to remember that new things depend on NewDepInst.
1575       assert(NewDirtyVal.getInst() &&
1576              "There is no way something else can have "
1577              "a local dep on this if it is a terminator!");
1578       ReverseDepsToAdd.push_back(
1579           std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst));
1580     }
1581 
1582     ReverseLocalDeps.erase(ReverseDepIt);
1583 
1584     // Add new reverse deps after scanning the set, to avoid invalidating the
1585     // 'ReverseDeps' reference.
1586     while (!ReverseDepsToAdd.empty()) {
1587       ReverseLocalDeps[ReverseDepsToAdd.back().first].insert(
1588           ReverseDepsToAdd.back().second);
1589       ReverseDepsToAdd.pop_back();
1590     }
1591   }
1592 
1593   ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1594   if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1595     for (Instruction *I : ReverseDepIt->second) {
1596       assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
1597 
1598       PerInstNLInfo &INLD = NonLocalDepsMap[I];
1599       // The information is now dirty!
1600       INLD.second = true;
1601 
1602       for (auto &Entry : INLD.first) {
1603         if (Entry.getResult().getInst() != RemInst)
1604           continue;
1605 
1606         // Convert to a dirty entry for the subsequent instruction.
1607         Entry.setResult(NewDirtyVal);
1608 
1609         if (Instruction *NextI = NewDirtyVal.getInst())
1610           ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
1611       }
1612     }
1613 
1614     ReverseNonLocalDeps.erase(ReverseDepIt);
1615 
1616     // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1617     while (!ReverseDepsToAdd.empty()) {
1618       ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert(
1619           ReverseDepsToAdd.back().second);
1620       ReverseDepsToAdd.pop_back();
1621     }
1622   }
1623 
1624   // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1625   // value in the NonLocalPointerDeps info.
1626   ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1627       ReverseNonLocalPtrDeps.find(RemInst);
1628   if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1629     SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8>
1630         ReversePtrDepsToAdd;
1631 
1632     for (ValueIsLoadPair P : ReversePtrDepIt->second) {
1633       assert(P.getPointer() != RemInst &&
1634              "Already removed NonLocalPointerDeps info for RemInst");
1635 
1636       NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1637 
1638       // The cache is not valid for any specific block anymore.
1639       NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1640 
1641       // Update any entries for RemInst to use the instruction after it.
1642       for (auto &Entry : NLPDI) {
1643         if (Entry.getResult().getInst() != RemInst)
1644           continue;
1645 
1646         // Convert to a dirty entry for the subsequent instruction.
1647         Entry.setResult(NewDirtyVal);
1648 
1649         if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1650           ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1651       }
1652 
1653       // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1654       // subsequent value may invalidate the sortedness.
1655       llvm::sort(NLPDI);
1656     }
1657 
1658     ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1659 
1660     while (!ReversePtrDepsToAdd.empty()) {
1661       ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert(
1662           ReversePtrDepsToAdd.back().second);
1663       ReversePtrDepsToAdd.pop_back();
1664     }
1665   }
1666 
1667   // Invalidate phis that use the removed instruction.
1668   PV.invalidateValue(RemInst);
1669 
1670   assert(!NonLocalDepsMap.count(RemInst) && "RemInst got reinserted?");
1671   LLVM_DEBUG(verifyRemoved(RemInst));
1672 }
1673 
1674 /// Verify that the specified instruction does not occur in our internal data
1675 /// structures.
1676 ///
1677 /// This function verifies by asserting in debug builds.
1678 void MemoryDependenceResults::verifyRemoved(Instruction *D) const {
1679 #ifndef NDEBUG
1680   for (const auto &DepKV : LocalDeps) {
1681     assert(DepKV.first != D && "Inst occurs in data structures");
1682     assert(DepKV.second.getInst() != D && "Inst occurs in data structures");
1683   }
1684 
1685   for (const auto &DepKV : NonLocalPointerDeps) {
1686     assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key");
1687     for (const auto &Entry : DepKV.second.NonLocalDeps)
1688       assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value");
1689   }
1690 
1691   for (const auto &DepKV : NonLocalDepsMap) {
1692     assert(DepKV.first != D && "Inst occurs in data structures");
1693     const PerInstNLInfo &INLD = DepKV.second;
1694     for (const auto &Entry : INLD.first)
1695       assert(Entry.getResult().getInst() != D &&
1696              "Inst occurs in data structures");
1697   }
1698 
1699   for (const auto &DepKV : ReverseLocalDeps) {
1700     assert(DepKV.first != D && "Inst occurs in data structures");
1701     for (Instruction *Inst : DepKV.second)
1702       assert(Inst != D && "Inst occurs in data structures");
1703   }
1704 
1705   for (const auto &DepKV : ReverseNonLocalDeps) {
1706     assert(DepKV.first != D && "Inst occurs in data structures");
1707     for (Instruction *Inst : DepKV.second)
1708       assert(Inst != D && "Inst occurs in data structures");
1709   }
1710 
1711   for (const auto &DepKV : ReverseNonLocalPtrDeps) {
1712     assert(DepKV.first != D && "Inst occurs in rev NLPD map");
1713 
1714     for (ValueIsLoadPair P : DepKV.second)
1715       assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) &&
1716              "Inst occurs in ReverseNonLocalPtrDeps map");
1717   }
1718 #endif
1719 }
1720 
1721 AnalysisKey MemoryDependenceAnalysis::Key;
1722 
1723 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
1724     : DefaultBlockScanLimit(BlockScanLimit) {}
1725 
1726 MemoryDependenceResults
1727 MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
1728   auto &AA = AM.getResult<AAManager>(F);
1729   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1730   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1731   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1732   auto &PV = AM.getResult<PhiValuesAnalysis>(F);
1733   return MemoryDependenceResults(AA, AC, TLI, DT, PV, DefaultBlockScanLimit);
1734 }
1735 
1736 char MemoryDependenceWrapperPass::ID = 0;
1737 
1738 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep",
1739                       "Memory Dependence Analysis", false, true)
1740 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1741 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1742 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1743 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1744 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
1745 INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep",
1746                     "Memory Dependence Analysis", false, true)
1747 
1748 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) {
1749   initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry());
1750 }
1751 
1752 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default;
1753 
1754 void MemoryDependenceWrapperPass::releaseMemory() {
1755   MemDep.reset();
1756 }
1757 
1758 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1759   AU.setPreservesAll();
1760   AU.addRequired<AssumptionCacheTracker>();
1761   AU.addRequired<DominatorTreeWrapperPass>();
1762   AU.addRequired<PhiValuesWrapperPass>();
1763   AU.addRequiredTransitive<AAResultsWrapperPass>();
1764   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1765 }
1766 
1767 bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA,
1768                                FunctionAnalysisManager::Invalidator &Inv) {
1769   // Check whether our analysis is preserved.
1770   auto PAC = PA.getChecker<MemoryDependenceAnalysis>();
1771   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
1772     // If not, give up now.
1773     return true;
1774 
1775   // Check whether the analyses we depend on became invalid for any reason.
1776   if (Inv.invalidate<AAManager>(F, PA) ||
1777       Inv.invalidate<AssumptionAnalysis>(F, PA) ||
1778       Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
1779       Inv.invalidate<PhiValuesAnalysis>(F, PA))
1780     return true;
1781 
1782   // Otherwise this analysis result remains valid.
1783   return false;
1784 }
1785 
1786 unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const {
1787   return DefaultBlockScanLimit;
1788 }
1789 
1790 bool MemoryDependenceWrapperPass::runOnFunction(Function &F) {
1791   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1792   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1793   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1794   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1795   auto &PV = getAnalysis<PhiValuesWrapperPass>().getResult();
1796   MemDep.emplace(AA, AC, TLI, DT, PV, BlockScanLimit);
1797   return false;
1798 }
1799