1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements an analysis that determines, for a given memory 11 // operation, what preceding memory operations it depends on. It builds on 12 // alias analysis information, and tries to provide a lazy, caching interface to 13 // a common kind of alias information query. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/MemoryBuiltins.h" 24 #include "llvm/Analysis/PHITransAddr.h" 25 #include "llvm/Analysis/OrderedBasicBlock.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/PredIteratorCache.h" 35 #include "llvm/Support/Debug.h" 36 using namespace llvm; 37 38 #define DEBUG_TYPE "memdep" 39 40 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); 41 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); 42 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); 43 44 STATISTIC(NumCacheNonLocalPtr, 45 "Number of fully cached non-local ptr responses"); 46 STATISTIC(NumCacheDirtyNonLocalPtr, 47 "Number of cached, but dirty, non-local ptr responses"); 48 STATISTIC(NumUncacheNonLocalPtr, 49 "Number of uncached non-local ptr responses"); 50 STATISTIC(NumCacheCompleteNonLocalPtr, 51 "Number of block queries that were completely cached"); 52 53 // Limit for the number of instructions to scan in a block. 54 55 static cl::opt<unsigned> BlockScanLimit( 56 "memdep-block-scan-limit", cl::Hidden, cl::init(100), 57 cl::desc("The number of instructions to scan in a block in memory " 58 "dependency analysis (default = 100)")); 59 60 // Limit on the number of memdep results to process. 61 static const unsigned int NumResultsLimit = 100; 62 63 char MemoryDependenceAnalysis::ID = 0; 64 65 // Register this pass... 66 INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep", 67 "Memory Dependence Analysis", false, true) 68 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 69 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 70 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 71 INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep", 72 "Memory Dependence Analysis", false, true) 73 74 MemoryDependenceAnalysis::MemoryDependenceAnalysis() 75 : FunctionPass(ID) { 76 initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry()); 77 } 78 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() { 79 } 80 81 /// Clean up memory in between runs 82 void MemoryDependenceAnalysis::releaseMemory() { 83 LocalDeps.clear(); 84 NonLocalDeps.clear(); 85 NonLocalPointerDeps.clear(); 86 ReverseLocalDeps.clear(); 87 ReverseNonLocalDeps.clear(); 88 ReverseNonLocalPtrDeps.clear(); 89 PredCache.clear(); 90 } 91 92 /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis. 93 /// 94 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 95 AU.setPreservesAll(); 96 AU.addRequired<AssumptionCacheTracker>(); 97 AU.addRequiredTransitive<AAResultsWrapperPass>(); 98 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 99 } 100 101 bool MemoryDependenceAnalysis::runOnFunction(Function &F) { 102 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 103 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 104 DominatorTreeWrapperPass *DTWP = 105 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 106 DT = DTWP ? &DTWP->getDomTree() : nullptr; 107 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 108 return false; 109 } 110 111 /// RemoveFromReverseMap - This is a helper function that removes Val from 112 /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry. 113 template <typename KeyTy> 114 static void RemoveFromReverseMap(DenseMap<Instruction*, 115 SmallPtrSet<KeyTy, 4> > &ReverseMap, 116 Instruction *Inst, KeyTy Val) { 117 typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator 118 InstIt = ReverseMap.find(Inst); 119 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); 120 bool Found = InstIt->second.erase(Val); 121 assert(Found && "Invalid reverse map!"); (void)Found; 122 if (InstIt->second.empty()) 123 ReverseMap.erase(InstIt); 124 } 125 126 /// GetLocation - If the given instruction references a specific memory 127 /// location, fill in Loc with the details, otherwise set Loc.Ptr to null. 128 /// Return a ModRefInfo value describing the general behavior of the 129 /// instruction. 130 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc, 131 const TargetLibraryInfo &TLI) { 132 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 133 if (LI->isUnordered()) { 134 Loc = MemoryLocation::get(LI); 135 return MRI_Ref; 136 } 137 if (LI->getOrdering() == Monotonic) { 138 Loc = MemoryLocation::get(LI); 139 return MRI_ModRef; 140 } 141 Loc = MemoryLocation(); 142 return MRI_ModRef; 143 } 144 145 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 146 if (SI->isUnordered()) { 147 Loc = MemoryLocation::get(SI); 148 return MRI_Mod; 149 } 150 if (SI->getOrdering() == Monotonic) { 151 Loc = MemoryLocation::get(SI); 152 return MRI_ModRef; 153 } 154 Loc = MemoryLocation(); 155 return MRI_ModRef; 156 } 157 158 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { 159 Loc = MemoryLocation::get(V); 160 return MRI_ModRef; 161 } 162 163 if (const CallInst *CI = isFreeCall(Inst, &TLI)) { 164 // calls to free() deallocate the entire structure 165 Loc = MemoryLocation(CI->getArgOperand(0)); 166 return MRI_Mod; 167 } 168 169 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 170 AAMDNodes AAInfo; 171 172 switch (II->getIntrinsicID()) { 173 case Intrinsic::lifetime_start: 174 case Intrinsic::lifetime_end: 175 case Intrinsic::invariant_start: 176 II->getAAMetadata(AAInfo); 177 Loc = MemoryLocation( 178 II->getArgOperand(1), 179 cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(), AAInfo); 180 // These intrinsics don't really modify the memory, but returning Mod 181 // will allow them to be handled conservatively. 182 return MRI_Mod; 183 case Intrinsic::invariant_end: 184 II->getAAMetadata(AAInfo); 185 Loc = MemoryLocation( 186 II->getArgOperand(2), 187 cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(), AAInfo); 188 // These intrinsics don't really modify the memory, but returning Mod 189 // will allow them to be handled conservatively. 190 return MRI_Mod; 191 default: 192 break; 193 } 194 } 195 196 // Otherwise, just do the coarse-grained thing that always works. 197 if (Inst->mayWriteToMemory()) 198 return MRI_ModRef; 199 if (Inst->mayReadFromMemory()) 200 return MRI_Ref; 201 return MRI_NoModRef; 202 } 203 204 /// getCallSiteDependencyFrom - Private helper for finding the local 205 /// dependencies of a call site. 206 MemDepResult MemoryDependenceAnalysis:: 207 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall, 208 BasicBlock::iterator ScanIt, BasicBlock *BB) { 209 unsigned Limit = BlockScanLimit; 210 211 // Walk backwards through the block, looking for dependencies 212 while (ScanIt != BB->begin()) { 213 // Limit the amount of scanning we do so we don't end up with quadratic 214 // running time on extreme testcases. 215 --Limit; 216 if (!Limit) 217 return MemDepResult::getUnknown(); 218 219 Instruction *Inst = &*--ScanIt; 220 221 // If this inst is a memory op, get the pointer it accessed 222 MemoryLocation Loc; 223 ModRefInfo MR = GetLocation(Inst, Loc, *TLI); 224 if (Loc.Ptr) { 225 // A simple instruction. 226 if (AA->getModRefInfo(CS, Loc) != MRI_NoModRef) 227 return MemDepResult::getClobber(Inst); 228 continue; 229 } 230 231 if (auto InstCS = CallSite(Inst)) { 232 // Debug intrinsics don't cause dependences. 233 if (isa<DbgInfoIntrinsic>(Inst)) continue; 234 // If these two calls do not interfere, look past it. 235 switch (AA->getModRefInfo(CS, InstCS)) { 236 case MRI_NoModRef: 237 // If the two calls are the same, return InstCS as a Def, so that 238 // CS can be found redundant and eliminated. 239 if (isReadOnlyCall && !(MR & MRI_Mod) && 240 CS.getInstruction()->isIdenticalToWhenDefined(Inst)) 241 return MemDepResult::getDef(Inst); 242 243 // Otherwise if the two calls don't interact (e.g. InstCS is readnone) 244 // keep scanning. 245 continue; 246 default: 247 return MemDepResult::getClobber(Inst); 248 } 249 } 250 251 // If we could not obtain a pointer for the instruction and the instruction 252 // touches memory then assume that this is a dependency. 253 if (MR != MRI_NoModRef) 254 return MemDepResult::getClobber(Inst); 255 } 256 257 // No dependence found. If this is the entry block of the function, it is 258 // unknown, otherwise it is non-local. 259 if (BB != &BB->getParent()->getEntryBlock()) 260 return MemDepResult::getNonLocal(); 261 return MemDepResult::getNonFuncLocal(); 262 } 263 264 /// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that 265 /// would fully overlap MemLoc if done as a wider legal integer load. 266 /// 267 /// MemLocBase, MemLocOffset are lazily computed here the first time the 268 /// base/offs of memloc is needed. 269 static bool isLoadLoadClobberIfExtendedToFullWidth(const MemoryLocation &MemLoc, 270 const Value *&MemLocBase, 271 int64_t &MemLocOffs, 272 const LoadInst *LI) { 273 const DataLayout &DL = LI->getModule()->getDataLayout(); 274 275 // If we haven't already computed the base/offset of MemLoc, do so now. 276 if (!MemLocBase) 277 MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, DL); 278 279 unsigned Size = MemoryDependenceAnalysis::getLoadLoadClobberFullWidthSize( 280 MemLocBase, MemLocOffs, MemLoc.Size, LI); 281 return Size != 0; 282 } 283 284 /// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that 285 /// looks at a memory location for a load (specified by MemLocBase, Offs, 286 /// and Size) and compares it against a load. If the specified load could 287 /// be safely widened to a larger integer load that is 1) still efficient, 288 /// 2) safe for the target, and 3) would provide the specified memory 289 /// location value, then this function returns the size in bytes of the 290 /// load width to use. If not, this returns zero. 291 unsigned MemoryDependenceAnalysis::getLoadLoadClobberFullWidthSize( 292 const Value *MemLocBase, int64_t MemLocOffs, unsigned MemLocSize, 293 const LoadInst *LI) { 294 // We can only extend simple integer loads. 295 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0; 296 297 // Load widening is hostile to ThreadSanitizer: it may cause false positives 298 // or make the reports more cryptic (access sizes are wrong). 299 if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread)) 300 return 0; 301 302 const DataLayout &DL = LI->getModule()->getDataLayout(); 303 304 // Get the base of this load. 305 int64_t LIOffs = 0; 306 const Value *LIBase = 307 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL); 308 309 // If the two pointers are not based on the same pointer, we can't tell that 310 // they are related. 311 if (LIBase != MemLocBase) return 0; 312 313 // Okay, the two values are based on the same pointer, but returned as 314 // no-alias. This happens when we have things like two byte loads at "P+1" 315 // and "P+3". Check to see if increasing the size of the "LI" load up to its 316 // alignment (or the largest native integer type) will allow us to load all 317 // the bits required by MemLoc. 318 319 // If MemLoc is before LI, then no widening of LI will help us out. 320 if (MemLocOffs < LIOffs) return 0; 321 322 // Get the alignment of the load in bytes. We assume that it is safe to load 323 // any legal integer up to this size without a problem. For example, if we're 324 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can 325 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it 326 // to i16. 327 unsigned LoadAlign = LI->getAlignment(); 328 329 int64_t MemLocEnd = MemLocOffs+MemLocSize; 330 331 // If no amount of rounding up will let MemLoc fit into LI, then bail out. 332 if (LIOffs+LoadAlign < MemLocEnd) return 0; 333 334 // This is the size of the load to try. Start with the next larger power of 335 // two. 336 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U; 337 NewLoadByteSize = NextPowerOf2(NewLoadByteSize); 338 339 while (1) { 340 // If this load size is bigger than our known alignment or would not fit 341 // into a native integer register, then we fail. 342 if (NewLoadByteSize > LoadAlign || 343 !DL.fitsInLegalInteger(NewLoadByteSize*8)) 344 return 0; 345 346 if (LIOffs + NewLoadByteSize > MemLocEnd && 347 LI->getParent()->getParent()->hasFnAttribute( 348 Attribute::SanitizeAddress)) 349 // We will be reading past the location accessed by the original program. 350 // While this is safe in a regular build, Address Safety analysis tools 351 // may start reporting false warnings. So, don't do widening. 352 return 0; 353 354 // If a load of this width would include all of MemLoc, then we succeed. 355 if (LIOffs+NewLoadByteSize >= MemLocEnd) 356 return NewLoadByteSize; 357 358 NewLoadByteSize <<= 1; 359 } 360 } 361 362 static bool isVolatile(Instruction *Inst) { 363 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 364 return LI->isVolatile(); 365 else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) 366 return SI->isVolatile(); 367 else if (AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(Inst)) 368 return AI->isVolatile(); 369 return false; 370 } 371 372 373 /// getPointerDependencyFrom - Return the instruction on which a memory 374 /// location depends. If isLoad is true, this routine ignores may-aliases with 375 /// read-only operations. If isLoad is false, this routine ignores may-aliases 376 /// with reads from read-only locations. If possible, pass the query 377 /// instruction as well; this function may take advantage of the metadata 378 /// annotated to the query instruction to refine the result. 379 MemDepResult MemoryDependenceAnalysis::getPointerDependencyFrom( 380 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 381 BasicBlock *BB, Instruction *QueryInst) { 382 383 if (QueryInst != nullptr) { 384 if (auto *LI = dyn_cast<LoadInst>(QueryInst)) { 385 MemDepResult invariantGroupDependency = 386 getInvariantGroupPointerDependency(LI, BB); 387 388 if (invariantGroupDependency.isDef()) 389 return invariantGroupDependency; 390 } 391 } 392 return getSimplePointerDependencyFrom(MemLoc, isLoad, ScanIt, BB, QueryInst); 393 } 394 395 MemDepResult 396 MemoryDependenceAnalysis::getInvariantGroupPointerDependency(LoadInst *LI, 397 BasicBlock *BB) { 398 Value *LoadOperand = LI->getPointerOperand(); 399 // It's is not safe to walk the use list of global value, because function 400 // passes aren't allowed to look outside their functions. 401 if (isa<GlobalValue>(LoadOperand)) 402 return MemDepResult::getUnknown(); 403 404 auto *InvariantGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group); 405 if (!InvariantGroupMD) 406 return MemDepResult::getUnknown(); 407 408 MemDepResult Result = MemDepResult::getUnknown(); 409 llvm::SmallSet<Value *, 14> Seen; 410 // Queue to process all pointers that are equivalent to load operand. 411 llvm::SmallVector<Value *, 8> LoadOperandsQueue; 412 LoadOperandsQueue.push_back(LoadOperand); 413 while (!LoadOperandsQueue.empty()) { 414 Value *Ptr = LoadOperandsQueue.pop_back_val(); 415 if (isa<GlobalValue>(Ptr)) 416 continue; 417 418 if (auto *BCI = dyn_cast<BitCastInst>(Ptr)) { 419 if (!Seen.count(BCI->getOperand(0))) { 420 LoadOperandsQueue.push_back(BCI->getOperand(0)); 421 Seen.insert(BCI->getOperand(0)); 422 } 423 } 424 425 for (Use &Us : Ptr->uses()) { 426 auto *U = dyn_cast<Instruction>(Us.getUser()); 427 if (!U || U == LI || !DT->dominates(U, LI)) 428 continue; 429 430 if (auto *BCI = dyn_cast<BitCastInst>(U)) { 431 if (!Seen.count(BCI)) { 432 LoadOperandsQueue.push_back(BCI); 433 Seen.insert(BCI); 434 } 435 continue; 436 } 437 // If we hit load/store with the same invariant.group metadata (and the 438 // same pointer operand) we can assume that value pointed by pointer 439 // operand didn't change. 440 if ((isa<LoadInst>(U) || isa<StoreInst>(U)) && U->getParent() == BB && 441 U->getMetadata(LLVMContext::MD_invariant_group) == InvariantGroupMD) 442 return MemDepResult::getDef(U); 443 } 444 } 445 return Result; 446 } 447 448 MemDepResult MemoryDependenceAnalysis::getSimplePointerDependencyFrom( 449 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 450 BasicBlock *BB, Instruction *QueryInst) { 451 452 const Value *MemLocBase = nullptr; 453 int64_t MemLocOffset = 0; 454 unsigned Limit = BlockScanLimit; 455 bool isInvariantLoad = false; 456 457 // We must be careful with atomic accesses, as they may allow another thread 458 // to touch this location, cloberring it. We are conservative: if the 459 // QueryInst is not a simple (non-atomic) memory access, we automatically 460 // return getClobber. 461 // If it is simple, we know based on the results of 462 // "Compiler testing via a theory of sound optimisations in the C11/C++11 463 // memory model" in PLDI 2013, that a non-atomic location can only be 464 // clobbered between a pair of a release and an acquire action, with no 465 // access to the location in between. 466 // Here is an example for giving the general intuition behind this rule. 467 // In the following code: 468 // store x 0; 469 // release action; [1] 470 // acquire action; [4] 471 // %val = load x; 472 // It is unsafe to replace %val by 0 because another thread may be running: 473 // acquire action; [2] 474 // store x 42; 475 // release action; [3] 476 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val 477 // being 42. A key property of this program however is that if either 478 // 1 or 4 were missing, there would be a race between the store of 42 479 // either the store of 0 or the load (making the whole progam racy). 480 // The paper mentioned above shows that the same property is respected 481 // by every program that can detect any optimisation of that kind: either 482 // it is racy (undefined) or there is a release followed by an acquire 483 // between the pair of accesses under consideration. 484 485 // If the load is invariant, we "know" that it doesn't alias *any* write. We 486 // do want to respect mustalias results since defs are useful for value 487 // forwarding, but any mayalias write can be assumed to be noalias. 488 // Arguably, this logic should be pushed inside AliasAnalysis itself. 489 if (isLoad && QueryInst) { 490 LoadInst *LI = dyn_cast<LoadInst>(QueryInst); 491 if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr) 492 isInvariantLoad = true; 493 } 494 495 const DataLayout &DL = BB->getModule()->getDataLayout(); 496 497 // Create a numbered basic block to lazily compute and cache instruction 498 // positions inside a BB. This is used to provide fast queries for relative 499 // position between two instructions in a BB and can be used by 500 // AliasAnalysis::callCapturesBefore. 501 OrderedBasicBlock OBB(BB); 502 503 // Walk backwards through the basic block, looking for dependencies. 504 while (ScanIt != BB->begin()) { 505 Instruction *Inst = &*--ScanIt; 506 507 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 508 // Debug intrinsics don't (and can't) cause dependencies. 509 if (isa<DbgInfoIntrinsic>(II)) continue; 510 511 // Limit the amount of scanning we do so we don't end up with quadratic 512 // running time on extreme testcases. 513 --Limit; 514 if (!Limit) 515 return MemDepResult::getUnknown(); 516 517 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 518 // If we reach a lifetime begin or end marker, then the query ends here 519 // because the value is undefined. 520 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 521 // FIXME: This only considers queries directly on the invariant-tagged 522 // pointer, not on query pointers that are indexed off of them. It'd 523 // be nice to handle that at some point (the right approach is to use 524 // GetPointerBaseWithConstantOffset). 525 if (AA->isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc)) 526 return MemDepResult::getDef(II); 527 continue; 528 } 529 } 530 531 // Values depend on loads if the pointers are must aliased. This means that 532 // a load depends on another must aliased load from the same value. 533 // One exception is atomic loads: a value can depend on an atomic load that it 534 // does not alias with when this atomic load indicates that another thread may 535 // be accessing the location. 536 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 537 538 // While volatile access cannot be eliminated, they do not have to clobber 539 // non-aliasing locations, as normal accesses, for example, can be safely 540 // reordered with volatile accesses. 541 if (LI->isVolatile()) { 542 if (!QueryInst) 543 // Original QueryInst *may* be volatile 544 return MemDepResult::getClobber(LI); 545 if (isVolatile(QueryInst)) 546 // Ordering required if QueryInst is itself volatile 547 return MemDepResult::getClobber(LI); 548 // Otherwise, volatile doesn't imply any special ordering 549 } 550 551 // Atomic loads have complications involved. 552 // A Monotonic (or higher) load is OK if the query inst is itself not atomic. 553 // FIXME: This is overly conservative. 554 if (LI->isAtomic() && LI->getOrdering() > Unordered) { 555 if (!QueryInst) 556 return MemDepResult::getClobber(LI); 557 if (LI->getOrdering() != Monotonic) 558 return MemDepResult::getClobber(LI); 559 if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) { 560 if (!QueryLI->isSimple()) 561 return MemDepResult::getClobber(LI); 562 } else if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) { 563 if (!QuerySI->isSimple()) 564 return MemDepResult::getClobber(LI); 565 } else if (QueryInst->mayReadOrWriteMemory()) { 566 return MemDepResult::getClobber(LI); 567 } 568 } 569 570 MemoryLocation LoadLoc = MemoryLocation::get(LI); 571 572 // If we found a pointer, check if it could be the same as our pointer. 573 AliasResult R = AA->alias(LoadLoc, MemLoc); 574 575 if (isLoad) { 576 if (R == NoAlias) { 577 // If this is an over-aligned integer load (for example, 578 // "load i8* %P, align 4") see if it would obviously overlap with the 579 // queried location if widened to a larger load (e.g. if the queried 580 // location is 1 byte at P+1). If so, return it as a load/load 581 // clobber result, allowing the client to decide to widen the load if 582 // it wants to. 583 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) { 584 if (LI->getAlignment() * 8 > ITy->getPrimitiveSizeInBits() && 585 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase, 586 MemLocOffset, LI)) 587 return MemDepResult::getClobber(Inst); 588 } 589 continue; 590 } 591 592 // Must aliased loads are defs of each other. 593 if (R == MustAlias) 594 return MemDepResult::getDef(Inst); 595 596 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads 597 // in terms of clobbering loads, but since it does this by looking 598 // at the clobbering load directly, it doesn't know about any 599 // phi translation that may have happened along the way. 600 601 // If we have a partial alias, then return this as a clobber for the 602 // client to handle. 603 if (R == PartialAlias) 604 return MemDepResult::getClobber(Inst); 605 #endif 606 607 // Random may-alias loads don't depend on each other without a 608 // dependence. 609 continue; 610 } 611 612 // Stores don't depend on other no-aliased accesses. 613 if (R == NoAlias) 614 continue; 615 616 // Stores don't alias loads from read-only memory. 617 if (AA->pointsToConstantMemory(LoadLoc)) 618 continue; 619 620 // Stores depend on may/must aliased loads. 621 return MemDepResult::getDef(Inst); 622 } 623 624 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 625 // Atomic stores have complications involved. 626 // A Monotonic store is OK if the query inst is itself not atomic. 627 // FIXME: This is overly conservative. 628 if (!SI->isUnordered()) { 629 if (!QueryInst) 630 return MemDepResult::getClobber(SI); 631 if (SI->getOrdering() != Monotonic) 632 return MemDepResult::getClobber(SI); 633 if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) { 634 if (!QueryLI->isSimple()) 635 return MemDepResult::getClobber(SI); 636 } else if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) { 637 if (!QuerySI->isSimple()) 638 return MemDepResult::getClobber(SI); 639 } else if (QueryInst->mayReadOrWriteMemory()) { 640 return MemDepResult::getClobber(SI); 641 } 642 } 643 644 // FIXME: this is overly conservative. 645 // While volatile access cannot be eliminated, they do not have to clobber 646 // non-aliasing locations, as normal accesses can for example be reordered 647 // with volatile accesses. 648 if (SI->isVolatile()) 649 return MemDepResult::getClobber(SI); 650 651 // If alias analysis can tell that this store is guaranteed to not modify 652 // the query pointer, ignore it. Use getModRefInfo to handle cases where 653 // the query pointer points to constant memory etc. 654 if (AA->getModRefInfo(SI, MemLoc) == MRI_NoModRef) 655 continue; 656 657 // Ok, this store might clobber the query pointer. Check to see if it is 658 // a must alias: in this case, we want to return this as a def. 659 MemoryLocation StoreLoc = MemoryLocation::get(SI); 660 661 // If we found a pointer, check if it could be the same as our pointer. 662 AliasResult R = AA->alias(StoreLoc, MemLoc); 663 664 if (R == NoAlias) 665 continue; 666 if (R == MustAlias) 667 return MemDepResult::getDef(Inst); 668 if (isInvariantLoad) 669 continue; 670 return MemDepResult::getClobber(Inst); 671 } 672 673 // If this is an allocation, and if we know that the accessed pointer is to 674 // the allocation, return Def. This means that there is no dependence and 675 // the access can be optimized based on that. For example, a load could 676 // turn into undef. 677 // Note: Only determine this to be a malloc if Inst is the malloc call, not 678 // a subsequent bitcast of the malloc call result. There can be stores to 679 // the malloced memory between the malloc call and its bitcast uses, and we 680 // need to continue scanning until the malloc call. 681 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, TLI)) { 682 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL); 683 684 if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr)) 685 return MemDepResult::getDef(Inst); 686 if (isInvariantLoad) 687 continue; 688 // Be conservative if the accessed pointer may alias the allocation - 689 // fallback to the generic handling below. 690 if ((AA->alias(Inst, AccessPtr) == NoAlias) && 691 // If the allocation is not aliased and does not read memory (like 692 // strdup), it is safe to ignore. 693 (isa<AllocaInst>(Inst) || isMallocLikeFn(Inst, TLI) || 694 isCallocLikeFn(Inst, TLI))) 695 continue; 696 } 697 698 if (isInvariantLoad) 699 continue; 700 701 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. 702 ModRefInfo MR = AA->getModRefInfo(Inst, MemLoc); 703 // If necessary, perform additional analysis. 704 if (MR == MRI_ModRef) 705 MR = AA->callCapturesBefore(Inst, MemLoc, DT, &OBB); 706 switch (MR) { 707 case MRI_NoModRef: 708 // If the call has no effect on the queried pointer, just ignore it. 709 continue; 710 case MRI_Mod: 711 return MemDepResult::getClobber(Inst); 712 case MRI_Ref: 713 // If the call is known to never store to the pointer, and if this is a 714 // load query, we can safely ignore it (scan past it). 715 if (isLoad) 716 continue; 717 default: 718 // Otherwise, there is a potential dependence. Return a clobber. 719 return MemDepResult::getClobber(Inst); 720 } 721 } 722 723 // No dependence found. If this is the entry block of the function, it is 724 // unknown, otherwise it is non-local. 725 if (BB != &BB->getParent()->getEntryBlock()) 726 return MemDepResult::getNonLocal(); 727 return MemDepResult::getNonFuncLocal(); 728 } 729 730 /// getDependency - Return the instruction on which a memory operation 731 /// depends. 732 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) { 733 Instruction *ScanPos = QueryInst; 734 735 // Check for a cached result 736 MemDepResult &LocalCache = LocalDeps[QueryInst]; 737 738 // If the cached entry is non-dirty, just return it. Note that this depends 739 // on MemDepResult's default constructing to 'dirty'. 740 if (!LocalCache.isDirty()) 741 return LocalCache; 742 743 // Otherwise, if we have a dirty entry, we know we can start the scan at that 744 // instruction, which may save us some work. 745 if (Instruction *Inst = LocalCache.getInst()) { 746 ScanPos = Inst; 747 748 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); 749 } 750 751 BasicBlock *QueryParent = QueryInst->getParent(); 752 753 // Do the scan. 754 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { 755 // No dependence found. If this is the entry block of the function, it is 756 // unknown, otherwise it is non-local. 757 if (QueryParent != &QueryParent->getParent()->getEntryBlock()) 758 LocalCache = MemDepResult::getNonLocal(); 759 else 760 LocalCache = MemDepResult::getNonFuncLocal(); 761 } else { 762 MemoryLocation MemLoc; 763 ModRefInfo MR = GetLocation(QueryInst, MemLoc, *TLI); 764 if (MemLoc.Ptr) { 765 // If we can do a pointer scan, make it happen. 766 bool isLoad = !(MR & MRI_Mod); 767 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst)) 768 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start; 769 770 LocalCache = getPointerDependencyFrom( 771 MemLoc, isLoad, ScanPos->getIterator(), QueryParent, QueryInst); 772 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) { 773 CallSite QueryCS(QueryInst); 774 bool isReadOnly = AA->onlyReadsMemory(QueryCS); 775 LocalCache = getCallSiteDependencyFrom( 776 QueryCS, isReadOnly, ScanPos->getIterator(), QueryParent); 777 } else 778 // Non-memory instruction. 779 LocalCache = MemDepResult::getUnknown(); 780 } 781 782 // Remember the result! 783 if (Instruction *I = LocalCache.getInst()) 784 ReverseLocalDeps[I].insert(QueryInst); 785 786 return LocalCache; 787 } 788 789 #ifndef NDEBUG 790 /// AssertSorted - This method is used when -debug is specified to verify that 791 /// cache arrays are properly kept sorted. 792 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 793 int Count = -1) { 794 if (Count == -1) Count = Cache.size(); 795 assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) && 796 "Cache isn't sorted!"); 797 } 798 #endif 799 800 /// getNonLocalCallDependency - Perform a full dependency query for the 801 /// specified call, returning the set of blocks that the value is 802 /// potentially live across. The returned set of results will include a 803 /// "NonLocal" result for all blocks where the value is live across. 804 /// 805 /// This method assumes the instruction returns a "NonLocal" dependency 806 /// within its own block. 807 /// 808 /// This returns a reference to an internal data structure that may be 809 /// invalidated on the next non-local query or when an instruction is 810 /// removed. Clients must copy this data if they want it around longer than 811 /// that. 812 const MemoryDependenceAnalysis::NonLocalDepInfo & 813 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { 814 assert(getDependency(QueryCS.getInstruction()).isNonLocal() && 815 "getNonLocalCallDependency should only be used on calls with non-local deps!"); 816 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()]; 817 NonLocalDepInfo &Cache = CacheP.first; 818 819 /// DirtyBlocks - This is the set of blocks that need to be recomputed. In 820 /// the cached case, this can happen due to instructions being deleted etc. In 821 /// the uncached case, this starts out as the set of predecessors we care 822 /// about. 823 SmallVector<BasicBlock*, 32> DirtyBlocks; 824 825 if (!Cache.empty()) { 826 // Okay, we have a cache entry. If we know it is not dirty, just return it 827 // with no computation. 828 if (!CacheP.second) { 829 ++NumCacheNonLocal; 830 return Cache; 831 } 832 833 // If we already have a partially computed set of results, scan them to 834 // determine what is dirty, seeding our initial DirtyBlocks worklist. 835 for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end(); 836 I != E; ++I) 837 if (I->getResult().isDirty()) 838 DirtyBlocks.push_back(I->getBB()); 839 840 // Sort the cache so that we can do fast binary search lookups below. 841 std::sort(Cache.begin(), Cache.end()); 842 843 ++NumCacheDirtyNonLocal; 844 //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " 845 // << Cache.size() << " cached: " << *QueryInst; 846 } else { 847 // Seed DirtyBlocks with each of the preds of QueryInst's block. 848 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent(); 849 for (BasicBlock *Pred : PredCache.get(QueryBB)) 850 DirtyBlocks.push_back(Pred); 851 ++NumUncacheNonLocal; 852 } 853 854 // isReadonlyCall - If this is a read-only call, we can be more aggressive. 855 bool isReadonlyCall = AA->onlyReadsMemory(QueryCS); 856 857 SmallPtrSet<BasicBlock*, 32> Visited; 858 859 unsigned NumSortedEntries = Cache.size(); 860 DEBUG(AssertSorted(Cache)); 861 862 // Iterate while we still have blocks to update. 863 while (!DirtyBlocks.empty()) { 864 BasicBlock *DirtyBB = DirtyBlocks.back(); 865 DirtyBlocks.pop_back(); 866 867 // Already processed this block? 868 if (!Visited.insert(DirtyBB).second) 869 continue; 870 871 // Do a binary search to see if we already have an entry for this block in 872 // the cache set. If so, find it. 873 DEBUG(AssertSorted(Cache, NumSortedEntries)); 874 NonLocalDepInfo::iterator Entry = 875 std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries, 876 NonLocalDepEntry(DirtyBB)); 877 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB) 878 --Entry; 879 880 NonLocalDepEntry *ExistingResult = nullptr; 881 if (Entry != Cache.begin()+NumSortedEntries && 882 Entry->getBB() == DirtyBB) { 883 // If we already have an entry, and if it isn't already dirty, the block 884 // is done. 885 if (!Entry->getResult().isDirty()) 886 continue; 887 888 // Otherwise, remember this slot so we can update the value. 889 ExistingResult = &*Entry; 890 } 891 892 // If the dirty entry has a pointer, start scanning from it so we don't have 893 // to rescan the entire block. 894 BasicBlock::iterator ScanPos = DirtyBB->end(); 895 if (ExistingResult) { 896 if (Instruction *Inst = ExistingResult->getResult().getInst()) { 897 ScanPos = Inst->getIterator(); 898 // We're removing QueryInst's use of Inst. 899 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, 900 QueryCS.getInstruction()); 901 } 902 } 903 904 // Find out if this block has a local dependency for QueryInst. 905 MemDepResult Dep; 906 907 if (ScanPos != DirtyBB->begin()) { 908 Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB); 909 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { 910 // No dependence found. If this is the entry block of the function, it is 911 // a clobber, otherwise it is unknown. 912 Dep = MemDepResult::getNonLocal(); 913 } else { 914 Dep = MemDepResult::getNonFuncLocal(); 915 } 916 917 // If we had a dirty entry for the block, update it. Otherwise, just add 918 // a new entry. 919 if (ExistingResult) 920 ExistingResult->setResult(Dep); 921 else 922 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); 923 924 // If the block has a dependency (i.e. it isn't completely transparent to 925 // the value), remember the association! 926 if (!Dep.isNonLocal()) { 927 // Keep the ReverseNonLocalDeps map up to date so we can efficiently 928 // update this when we remove instructions. 929 if (Instruction *Inst = Dep.getInst()) 930 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction()); 931 } else { 932 933 // If the block *is* completely transparent to the load, we need to check 934 // the predecessors of this block. Add them to our worklist. 935 for (BasicBlock *Pred : PredCache.get(DirtyBB)) 936 DirtyBlocks.push_back(Pred); 937 } 938 } 939 940 return Cache; 941 } 942 943 /// getNonLocalPointerDependency - Perform a full dependency query for an 944 /// access to the specified (non-volatile) memory location, returning the 945 /// set of instructions that either define or clobber the value. 946 /// 947 /// This method assumes the pointer has a "NonLocal" dependency within its 948 /// own block. 949 /// 950 void MemoryDependenceAnalysis:: 951 getNonLocalPointerDependency(Instruction *QueryInst, 952 SmallVectorImpl<NonLocalDepResult> &Result) { 953 const MemoryLocation Loc = MemoryLocation::get(QueryInst); 954 bool isLoad = isa<LoadInst>(QueryInst); 955 BasicBlock *FromBB = QueryInst->getParent(); 956 assert(FromBB); 957 958 assert(Loc.Ptr->getType()->isPointerTy() && 959 "Can't get pointer deps of a non-pointer!"); 960 Result.clear(); 961 962 // This routine does not expect to deal with volatile instructions. 963 // Doing so would require piping through the QueryInst all the way through. 964 // TODO: volatiles can't be elided, but they can be reordered with other 965 // non-volatile accesses. 966 967 // We currently give up on any instruction which is ordered, but we do handle 968 // atomic instructions which are unordered. 969 // TODO: Handle ordered instructions 970 auto isOrdered = [](Instruction *Inst) { 971 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 972 return !LI->isUnordered(); 973 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 974 return !SI->isUnordered(); 975 } 976 return false; 977 }; 978 if (isVolatile(QueryInst) || isOrdered(QueryInst)) { 979 Result.push_back(NonLocalDepResult(FromBB, 980 MemDepResult::getUnknown(), 981 const_cast<Value *>(Loc.Ptr))); 982 return; 983 } 984 const DataLayout &DL = FromBB->getModule()->getDataLayout(); 985 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, AC); 986 987 // This is the set of blocks we've inspected, and the pointer we consider in 988 // each block. Because of critical edges, we currently bail out if querying 989 // a block with multiple different pointers. This can happen during PHI 990 // translation. 991 DenseMap<BasicBlock*, Value*> Visited; 992 if (!getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB, 993 Result, Visited, true)) 994 return; 995 Result.clear(); 996 Result.push_back(NonLocalDepResult(FromBB, 997 MemDepResult::getUnknown(), 998 const_cast<Value *>(Loc.Ptr))); 999 } 1000 1001 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with 1002 /// Pointer/PointeeSize using either cached information in Cache or by doing a 1003 /// lookup (which may use dirty cache info if available). If we do a lookup, 1004 /// add the result to the cache. 1005 MemDepResult MemoryDependenceAnalysis::GetNonLocalInfoForBlock( 1006 Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad, 1007 BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) { 1008 1009 // Do a binary search to see if we already have an entry for this block in 1010 // the cache set. If so, find it. 1011 NonLocalDepInfo::iterator Entry = 1012 std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries, 1013 NonLocalDepEntry(BB)); 1014 if (Entry != Cache->begin() && (Entry-1)->getBB() == BB) 1015 --Entry; 1016 1017 NonLocalDepEntry *ExistingResult = nullptr; 1018 if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB) 1019 ExistingResult = &*Entry; 1020 1021 // If we have a cached entry, and it is non-dirty, use it as the value for 1022 // this dependency. 1023 if (ExistingResult && !ExistingResult->getResult().isDirty()) { 1024 ++NumCacheNonLocalPtr; 1025 return ExistingResult->getResult(); 1026 } 1027 1028 // Otherwise, we have to scan for the value. If we have a dirty cache 1029 // entry, start scanning from its position, otherwise we scan from the end 1030 // of the block. 1031 BasicBlock::iterator ScanPos = BB->end(); 1032 if (ExistingResult && ExistingResult->getResult().getInst()) { 1033 assert(ExistingResult->getResult().getInst()->getParent() == BB && 1034 "Instruction invalidated?"); 1035 ++NumCacheDirtyNonLocalPtr; 1036 ScanPos = ExistingResult->getResult().getInst()->getIterator(); 1037 1038 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1039 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 1040 RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey); 1041 } else { 1042 ++NumUncacheNonLocalPtr; 1043 } 1044 1045 // Scan the block for the dependency. 1046 MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, 1047 QueryInst); 1048 1049 // If we had a dirty entry for the block, update it. Otherwise, just add 1050 // a new entry. 1051 if (ExistingResult) 1052 ExistingResult->setResult(Dep); 1053 else 1054 Cache->push_back(NonLocalDepEntry(BB, Dep)); 1055 1056 // If the block has a dependency (i.e. it isn't completely transparent to 1057 // the value), remember the reverse association because we just added it 1058 // to Cache! 1059 if (!Dep.isDef() && !Dep.isClobber()) 1060 return Dep; 1061 1062 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently 1063 // update MemDep when we remove instructions. 1064 Instruction *Inst = Dep.getInst(); 1065 assert(Inst && "Didn't depend on anything?"); 1066 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 1067 ReverseNonLocalPtrDeps[Inst].insert(CacheKey); 1068 return Dep; 1069 } 1070 1071 /// SortNonLocalDepInfoCache - Sort the NonLocalDepInfo cache, given a certain 1072 /// number of elements in the array that are already properly ordered. This is 1073 /// optimized for the case when only a few entries are added. 1074 static void 1075 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 1076 unsigned NumSortedEntries) { 1077 switch (Cache.size() - NumSortedEntries) { 1078 case 0: 1079 // done, no new entries. 1080 break; 1081 case 2: { 1082 // Two new entries, insert the last one into place. 1083 NonLocalDepEntry Val = Cache.back(); 1084 Cache.pop_back(); 1085 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 1086 std::upper_bound(Cache.begin(), Cache.end()-1, Val); 1087 Cache.insert(Entry, Val); 1088 // FALL THROUGH. 1089 } 1090 case 1: 1091 // One new entry, Just insert the new value at the appropriate position. 1092 if (Cache.size() != 1) { 1093 NonLocalDepEntry Val = Cache.back(); 1094 Cache.pop_back(); 1095 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 1096 std::upper_bound(Cache.begin(), Cache.end(), Val); 1097 Cache.insert(Entry, Val); 1098 } 1099 break; 1100 default: 1101 // Added many values, do a full scale sort. 1102 std::sort(Cache.begin(), Cache.end()); 1103 break; 1104 } 1105 } 1106 1107 /// getNonLocalPointerDepFromBB - Perform a dependency query based on 1108 /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def 1109 /// results to the results vector and keep track of which blocks are visited in 1110 /// 'Visited'. 1111 /// 1112 /// This has special behavior for the first block queries (when SkipFirstBlock 1113 /// is true). In this special case, it ignores the contents of the specified 1114 /// block and starts returning dependence info for its predecessors. 1115 /// 1116 /// This function returns false on success, or true to indicate that it could 1117 /// not compute dependence information for some reason. This should be treated 1118 /// as a clobber dependence on the first instruction in the predecessor block. 1119 bool MemoryDependenceAnalysis::getNonLocalPointerDepFromBB( 1120 Instruction *QueryInst, const PHITransAddr &Pointer, 1121 const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB, 1122 SmallVectorImpl<NonLocalDepResult> &Result, 1123 DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock) { 1124 // Look up the cached info for Pointer. 1125 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); 1126 1127 // Set up a temporary NLPI value. If the map doesn't yet have an entry for 1128 // CacheKey, this value will be inserted as the associated value. Otherwise, 1129 // it'll be ignored, and we'll have to check to see if the cached size and 1130 // aa tags are consistent with the current query. 1131 NonLocalPointerInfo InitialNLPI; 1132 InitialNLPI.Size = Loc.Size; 1133 InitialNLPI.AATags = Loc.AATags; 1134 1135 // Get the NLPI for CacheKey, inserting one into the map if it doesn't 1136 // already have one. 1137 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = 1138 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); 1139 NonLocalPointerInfo *CacheInfo = &Pair.first->second; 1140 1141 // If we already have a cache entry for this CacheKey, we may need to do some 1142 // work to reconcile the cache entry and the current query. 1143 if (!Pair.second) { 1144 if (CacheInfo->Size < Loc.Size) { 1145 // The query's Size is greater than the cached one. Throw out the 1146 // cached data and proceed with the query at the greater size. 1147 CacheInfo->Pair = BBSkipFirstBlockPair(); 1148 CacheInfo->Size = Loc.Size; 1149 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(), 1150 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI) 1151 if (Instruction *Inst = DI->getResult().getInst()) 1152 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1153 CacheInfo->NonLocalDeps.clear(); 1154 } else if (CacheInfo->Size > Loc.Size) { 1155 // This query's Size is less than the cached one. Conservatively restart 1156 // the query using the greater size. 1157 return getNonLocalPointerDepFromBB(QueryInst, Pointer, 1158 Loc.getWithNewSize(CacheInfo->Size), 1159 isLoad, StartBB, Result, Visited, 1160 SkipFirstBlock); 1161 } 1162 1163 // If the query's AATags are inconsistent with the cached one, 1164 // conservatively throw out the cached data and restart the query with 1165 // no tag if needed. 1166 if (CacheInfo->AATags != Loc.AATags) { 1167 if (CacheInfo->AATags) { 1168 CacheInfo->Pair = BBSkipFirstBlockPair(); 1169 CacheInfo->AATags = AAMDNodes(); 1170 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(), 1171 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI) 1172 if (Instruction *Inst = DI->getResult().getInst()) 1173 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1174 CacheInfo->NonLocalDeps.clear(); 1175 } 1176 if (Loc.AATags) 1177 return getNonLocalPointerDepFromBB(QueryInst, 1178 Pointer, Loc.getWithoutAATags(), 1179 isLoad, StartBB, Result, Visited, 1180 SkipFirstBlock); 1181 } 1182 } 1183 1184 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; 1185 1186 // If we have valid cached information for exactly the block we are 1187 // investigating, just return it with no recomputation. 1188 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { 1189 // We have a fully cached result for this query then we can just return the 1190 // cached results and populate the visited set. However, we have to verify 1191 // that we don't already have conflicting results for these blocks. Check 1192 // to ensure that if a block in the results set is in the visited set that 1193 // it was for the same pointer query. 1194 if (!Visited.empty()) { 1195 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 1196 I != E; ++I) { 1197 DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB()); 1198 if (VI == Visited.end() || VI->second == Pointer.getAddr()) 1199 continue; 1200 1201 // We have a pointer mismatch in a block. Just return clobber, saying 1202 // that something was clobbered in this result. We could also do a 1203 // non-fully cached query, but there is little point in doing this. 1204 return true; 1205 } 1206 } 1207 1208 Value *Addr = Pointer.getAddr(); 1209 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 1210 I != E; ++I) { 1211 Visited.insert(std::make_pair(I->getBB(), Addr)); 1212 if (I->getResult().isNonLocal()) { 1213 continue; 1214 } 1215 1216 if (!DT) { 1217 Result.push_back(NonLocalDepResult(I->getBB(), 1218 MemDepResult::getUnknown(), 1219 Addr)); 1220 } else if (DT->isReachableFromEntry(I->getBB())) { 1221 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr)); 1222 } 1223 } 1224 ++NumCacheCompleteNonLocalPtr; 1225 return false; 1226 } 1227 1228 // Otherwise, either this is a new block, a block with an invalid cache 1229 // pointer or one that we're about to invalidate by putting more info into it 1230 // than its valid cache info. If empty, the result will be valid cache info, 1231 // otherwise it isn't. 1232 if (Cache->empty()) 1233 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); 1234 else 1235 CacheInfo->Pair = BBSkipFirstBlockPair(); 1236 1237 SmallVector<BasicBlock*, 32> Worklist; 1238 Worklist.push_back(StartBB); 1239 1240 // PredList used inside loop. 1241 SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList; 1242 1243 // Keep track of the entries that we know are sorted. Previously cached 1244 // entries will all be sorted. The entries we add we only sort on demand (we 1245 // don't insert every element into its sorted position). We know that we 1246 // won't get any reuse from currently inserted values, because we don't 1247 // revisit blocks after we insert info for them. 1248 unsigned NumSortedEntries = Cache->size(); 1249 DEBUG(AssertSorted(*Cache)); 1250 1251 while (!Worklist.empty()) { 1252 BasicBlock *BB = Worklist.pop_back_val(); 1253 1254 // If we do process a large number of blocks it becomes very expensive and 1255 // likely it isn't worth worrying about 1256 if (Result.size() > NumResultsLimit) { 1257 Worklist.clear(); 1258 // Sort it now (if needed) so that recursive invocations of 1259 // getNonLocalPointerDepFromBB and other routines that could reuse the 1260 // cache value will only see properly sorted cache arrays. 1261 if (Cache && NumSortedEntries != Cache->size()) { 1262 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1263 } 1264 // Since we bail out, the "Cache" set won't contain all of the 1265 // results for the query. This is ok (we can still use it to accelerate 1266 // specific block queries) but we can't do the fastpath "return all 1267 // results from the set". Clear out the indicator for this. 1268 CacheInfo->Pair = BBSkipFirstBlockPair(); 1269 return true; 1270 } 1271 1272 // Skip the first block if we have it. 1273 if (!SkipFirstBlock) { 1274 // Analyze the dependency of *Pointer in FromBB. See if we already have 1275 // been here. 1276 assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); 1277 1278 // Get the dependency info for Pointer in BB. If we have cached 1279 // information, we will use it, otherwise we compute it. 1280 DEBUG(AssertSorted(*Cache, NumSortedEntries)); 1281 MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, 1282 Loc, isLoad, BB, Cache, 1283 NumSortedEntries); 1284 1285 // If we got a Def or Clobber, add this to the list of results. 1286 if (!Dep.isNonLocal()) { 1287 if (!DT) { 1288 Result.push_back(NonLocalDepResult(BB, 1289 MemDepResult::getUnknown(), 1290 Pointer.getAddr())); 1291 continue; 1292 } else if (DT->isReachableFromEntry(BB)) { 1293 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); 1294 continue; 1295 } 1296 } 1297 } 1298 1299 // If 'Pointer' is an instruction defined in this block, then we need to do 1300 // phi translation to change it into a value live in the predecessor block. 1301 // If not, we just add the predecessors to the worklist and scan them with 1302 // the same Pointer. 1303 if (!Pointer.NeedsPHITranslationFromBlock(BB)) { 1304 SkipFirstBlock = false; 1305 SmallVector<BasicBlock*, 16> NewBlocks; 1306 for (BasicBlock *Pred : PredCache.get(BB)) { 1307 // Verify that we haven't looked at this block yet. 1308 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 1309 InsertRes = Visited.insert(std::make_pair(Pred, Pointer.getAddr())); 1310 if (InsertRes.second) { 1311 // First time we've looked at *PI. 1312 NewBlocks.push_back(Pred); 1313 continue; 1314 } 1315 1316 // If we have seen this block before, but it was with a different 1317 // pointer then we have a phi translation failure and we have to treat 1318 // this as a clobber. 1319 if (InsertRes.first->second != Pointer.getAddr()) { 1320 // Make sure to clean up the Visited map before continuing on to 1321 // PredTranslationFailure. 1322 for (unsigned i = 0; i < NewBlocks.size(); i++) 1323 Visited.erase(NewBlocks[i]); 1324 goto PredTranslationFailure; 1325 } 1326 } 1327 Worklist.append(NewBlocks.begin(), NewBlocks.end()); 1328 continue; 1329 } 1330 1331 // We do need to do phi translation, if we know ahead of time we can't phi 1332 // translate this value, don't even try. 1333 if (!Pointer.IsPotentiallyPHITranslatable()) 1334 goto PredTranslationFailure; 1335 1336 // We may have added values to the cache list before this PHI translation. 1337 // If so, we haven't done anything to ensure that the cache remains sorted. 1338 // Sort it now (if needed) so that recursive invocations of 1339 // getNonLocalPointerDepFromBB and other routines that could reuse the cache 1340 // value will only see properly sorted cache arrays. 1341 if (Cache && NumSortedEntries != Cache->size()) { 1342 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1343 NumSortedEntries = Cache->size(); 1344 } 1345 Cache = nullptr; 1346 1347 PredList.clear(); 1348 for (BasicBlock *Pred : PredCache.get(BB)) { 1349 PredList.push_back(std::make_pair(Pred, Pointer)); 1350 1351 // Get the PHI translated pointer in this predecessor. This can fail if 1352 // not translatable, in which case the getAddr() returns null. 1353 PHITransAddr &PredPointer = PredList.back().second; 1354 PredPointer.PHITranslateValue(BB, Pred, DT, /*MustDominate=*/false); 1355 Value *PredPtrVal = PredPointer.getAddr(); 1356 1357 // Check to see if we have already visited this pred block with another 1358 // pointer. If so, we can't do this lookup. This failure can occur 1359 // with PHI translation when a critical edge exists and the PHI node in 1360 // the successor translates to a pointer value different than the 1361 // pointer the block was first analyzed with. 1362 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 1363 InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal)); 1364 1365 if (!InsertRes.second) { 1366 // We found the pred; take it off the list of preds to visit. 1367 PredList.pop_back(); 1368 1369 // If the predecessor was visited with PredPtr, then we already did 1370 // the analysis and can ignore it. 1371 if (InsertRes.first->second == PredPtrVal) 1372 continue; 1373 1374 // Otherwise, the block was previously analyzed with a different 1375 // pointer. We can't represent the result of this case, so we just 1376 // treat this as a phi translation failure. 1377 1378 // Make sure to clean up the Visited map before continuing on to 1379 // PredTranslationFailure. 1380 for (unsigned i = 0, n = PredList.size(); i < n; ++i) 1381 Visited.erase(PredList[i].first); 1382 1383 goto PredTranslationFailure; 1384 } 1385 } 1386 1387 // Actually process results here; this need to be a separate loop to avoid 1388 // calling getNonLocalPointerDepFromBB for blocks we don't want to return 1389 // any results for. (getNonLocalPointerDepFromBB will modify our 1390 // datastructures in ways the code after the PredTranslationFailure label 1391 // doesn't expect.) 1392 for (unsigned i = 0, n = PredList.size(); i < n; ++i) { 1393 BasicBlock *Pred = PredList[i].first; 1394 PHITransAddr &PredPointer = PredList[i].second; 1395 Value *PredPtrVal = PredPointer.getAddr(); 1396 1397 bool CanTranslate = true; 1398 // If PHI translation was unable to find an available pointer in this 1399 // predecessor, then we have to assume that the pointer is clobbered in 1400 // that predecessor. We can still do PRE of the load, which would insert 1401 // a computation of the pointer in this predecessor. 1402 if (!PredPtrVal) 1403 CanTranslate = false; 1404 1405 // FIXME: it is entirely possible that PHI translating will end up with 1406 // the same value. Consider PHI translating something like: 1407 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* 1408 // to recurse here, pedantically speaking. 1409 1410 // If getNonLocalPointerDepFromBB fails here, that means the cached 1411 // result conflicted with the Visited list; we have to conservatively 1412 // assume it is unknown, but this also does not block PRE of the load. 1413 if (!CanTranslate || 1414 getNonLocalPointerDepFromBB(QueryInst, PredPointer, 1415 Loc.getWithNewPtr(PredPtrVal), 1416 isLoad, Pred, 1417 Result, Visited)) { 1418 // Add the entry to the Result list. 1419 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal); 1420 Result.push_back(Entry); 1421 1422 // Since we had a phi translation failure, the cache for CacheKey won't 1423 // include all of the entries that we need to immediately satisfy future 1424 // queries. Mark this in NonLocalPointerDeps by setting the 1425 // BBSkipFirstBlockPair pointer to null. This requires reuse of the 1426 // cached value to do more work but not miss the phi trans failure. 1427 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; 1428 NLPI.Pair = BBSkipFirstBlockPair(); 1429 continue; 1430 } 1431 } 1432 1433 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. 1434 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1435 Cache = &CacheInfo->NonLocalDeps; 1436 NumSortedEntries = Cache->size(); 1437 1438 // Since we did phi translation, the "Cache" set won't contain all of the 1439 // results for the query. This is ok (we can still use it to accelerate 1440 // specific block queries) but we can't do the fastpath "return all 1441 // results from the set" Clear out the indicator for this. 1442 CacheInfo->Pair = BBSkipFirstBlockPair(); 1443 SkipFirstBlock = false; 1444 continue; 1445 1446 PredTranslationFailure: 1447 // The following code is "failure"; we can't produce a sane translation 1448 // for the given block. It assumes that we haven't modified any of 1449 // our datastructures while processing the current block. 1450 1451 if (!Cache) { 1452 // Refresh the CacheInfo/Cache pointer if it got invalidated. 1453 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1454 Cache = &CacheInfo->NonLocalDeps; 1455 NumSortedEntries = Cache->size(); 1456 } 1457 1458 // Since we failed phi translation, the "Cache" set won't contain all of the 1459 // results for the query. This is ok (we can still use it to accelerate 1460 // specific block queries) but we can't do the fastpath "return all 1461 // results from the set". Clear out the indicator for this. 1462 CacheInfo->Pair = BBSkipFirstBlockPair(); 1463 1464 // If *nothing* works, mark the pointer as unknown. 1465 // 1466 // If this is the magic first block, return this as a clobber of the whole 1467 // incoming value. Since we can't phi translate to one of the predecessors, 1468 // we have to bail out. 1469 if (SkipFirstBlock) 1470 return true; 1471 1472 for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) { 1473 assert(I != Cache->rend() && "Didn't find current block??"); 1474 if (I->getBB() != BB) 1475 continue; 1476 1477 assert((I->getResult().isNonLocal() || !DT->isReachableFromEntry(BB)) && 1478 "Should only be here with transparent block"); 1479 I->setResult(MemDepResult::getUnknown()); 1480 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), 1481 Pointer.getAddr())); 1482 break; 1483 } 1484 } 1485 1486 // Okay, we're done now. If we added new values to the cache, re-sort it. 1487 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1488 DEBUG(AssertSorted(*Cache)); 1489 return false; 1490 } 1491 1492 /// RemoveCachedNonLocalPointerDependencies - If P exists in 1493 /// CachedNonLocalPointerInfo, remove it. 1494 void MemoryDependenceAnalysis:: 1495 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) { 1496 CachedNonLocalPointerInfo::iterator It = 1497 NonLocalPointerDeps.find(P); 1498 if (It == NonLocalPointerDeps.end()) return; 1499 1500 // Remove all of the entries in the BB->val map. This involves removing 1501 // instructions from the reverse map. 1502 NonLocalDepInfo &PInfo = It->second.NonLocalDeps; 1503 1504 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { 1505 Instruction *Target = PInfo[i].getResult().getInst(); 1506 if (!Target) continue; // Ignore non-local dep results. 1507 assert(Target->getParent() == PInfo[i].getBB()); 1508 1509 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1510 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); 1511 } 1512 1513 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). 1514 NonLocalPointerDeps.erase(It); 1515 } 1516 1517 1518 /// invalidateCachedPointerInfo - This method is used to invalidate cached 1519 /// information about the specified pointer, because it may be too 1520 /// conservative in memdep. This is an optional call that can be used when 1521 /// the client detects an equivalence between the pointer and some other 1522 /// value and replaces the other value with ptr. This can make Ptr available 1523 /// in more places that cached info does not necessarily keep. 1524 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) { 1525 // If Ptr isn't really a pointer, just ignore it. 1526 if (!Ptr->getType()->isPointerTy()) return; 1527 // Flush store info for the pointer. 1528 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); 1529 // Flush load info for the pointer. 1530 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); 1531 } 1532 1533 /// invalidateCachedPredecessors - Clear the PredIteratorCache info. 1534 /// This needs to be done when the CFG changes, e.g., due to splitting 1535 /// critical edges. 1536 void MemoryDependenceAnalysis::invalidateCachedPredecessors() { 1537 PredCache.clear(); 1538 } 1539 1540 /// removeInstruction - Remove an instruction from the dependence analysis, 1541 /// updating the dependence of instructions that previously depended on it. 1542 /// This method attempts to keep the cache coherent using the reverse map. 1543 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) { 1544 // Walk through the Non-local dependencies, removing this one as the value 1545 // for any cached queries. 1546 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); 1547 if (NLDI != NonLocalDeps.end()) { 1548 NonLocalDepInfo &BlockMap = NLDI->second.first; 1549 for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end(); 1550 DI != DE; ++DI) 1551 if (Instruction *Inst = DI->getResult().getInst()) 1552 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); 1553 NonLocalDeps.erase(NLDI); 1554 } 1555 1556 // If we have a cached local dependence query for this instruction, remove it. 1557 // 1558 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); 1559 if (LocalDepEntry != LocalDeps.end()) { 1560 // Remove us from DepInst's reverse set now that the local dep info is gone. 1561 if (Instruction *Inst = LocalDepEntry->second.getInst()) 1562 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); 1563 1564 // Remove this local dependency info. 1565 LocalDeps.erase(LocalDepEntry); 1566 } 1567 1568 // If we have any cached pointer dependencies on this instruction, remove 1569 // them. If the instruction has non-pointer type, then it can't be a pointer 1570 // base. 1571 1572 // Remove it from both the load info and the store info. The instruction 1573 // can't be in either of these maps if it is non-pointer. 1574 if (RemInst->getType()->isPointerTy()) { 1575 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); 1576 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); 1577 } 1578 1579 // Loop over all of the things that depend on the instruction we're removing. 1580 // 1581 SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd; 1582 1583 // If we find RemInst as a clobber or Def in any of the maps for other values, 1584 // we need to replace its entry with a dirty version of the instruction after 1585 // it. If RemInst is a terminator, we use a null dirty value. 1586 // 1587 // Using a dirty version of the instruction after RemInst saves having to scan 1588 // the entire block to get to this point. 1589 MemDepResult NewDirtyVal; 1590 if (!RemInst->isTerminator()) 1591 NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator()); 1592 1593 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); 1594 if (ReverseDepIt != ReverseLocalDeps.end()) { 1595 // RemInst can't be the terminator if it has local stuff depending on it. 1596 assert(!ReverseDepIt->second.empty() && !isa<TerminatorInst>(RemInst) && 1597 "Nothing can locally depend on a terminator"); 1598 1599 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) { 1600 assert(InstDependingOnRemInst != RemInst && 1601 "Already removed our local dep info"); 1602 1603 LocalDeps[InstDependingOnRemInst] = NewDirtyVal; 1604 1605 // Make sure to remember that new things depend on NewDepInst. 1606 assert(NewDirtyVal.getInst() && "There is no way something else can have " 1607 "a local dep on this if it is a terminator!"); 1608 ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(), 1609 InstDependingOnRemInst)); 1610 } 1611 1612 ReverseLocalDeps.erase(ReverseDepIt); 1613 1614 // Add new reverse deps after scanning the set, to avoid invalidating the 1615 // 'ReverseDeps' reference. 1616 while (!ReverseDepsToAdd.empty()) { 1617 ReverseLocalDeps[ReverseDepsToAdd.back().first] 1618 .insert(ReverseDepsToAdd.back().second); 1619 ReverseDepsToAdd.pop_back(); 1620 } 1621 } 1622 1623 ReverseDepIt = ReverseNonLocalDeps.find(RemInst); 1624 if (ReverseDepIt != ReverseNonLocalDeps.end()) { 1625 for (Instruction *I : ReverseDepIt->second) { 1626 assert(I != RemInst && "Already removed NonLocalDep info for RemInst"); 1627 1628 PerInstNLInfo &INLD = NonLocalDeps[I]; 1629 // The information is now dirty! 1630 INLD.second = true; 1631 1632 for (NonLocalDepInfo::iterator DI = INLD.first.begin(), 1633 DE = INLD.first.end(); DI != DE; ++DI) { 1634 if (DI->getResult().getInst() != RemInst) continue; 1635 1636 // Convert to a dirty entry for the subsequent instruction. 1637 DI->setResult(NewDirtyVal); 1638 1639 if (Instruction *NextI = NewDirtyVal.getInst()) 1640 ReverseDepsToAdd.push_back(std::make_pair(NextI, I)); 1641 } 1642 } 1643 1644 ReverseNonLocalDeps.erase(ReverseDepIt); 1645 1646 // Add new reverse deps after scanning the set, to avoid invalidating 'Set' 1647 while (!ReverseDepsToAdd.empty()) { 1648 ReverseNonLocalDeps[ReverseDepsToAdd.back().first] 1649 .insert(ReverseDepsToAdd.back().second); 1650 ReverseDepsToAdd.pop_back(); 1651 } 1652 } 1653 1654 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a 1655 // value in the NonLocalPointerDeps info. 1656 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = 1657 ReverseNonLocalPtrDeps.find(RemInst); 1658 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { 1659 SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd; 1660 1661 for (ValueIsLoadPair P : ReversePtrDepIt->second) { 1662 assert(P.getPointer() != RemInst && 1663 "Already removed NonLocalPointerDeps info for RemInst"); 1664 1665 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; 1666 1667 // The cache is not valid for any specific block anymore. 1668 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); 1669 1670 // Update any entries for RemInst to use the instruction after it. 1671 for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end(); 1672 DI != DE; ++DI) { 1673 if (DI->getResult().getInst() != RemInst) continue; 1674 1675 // Convert to a dirty entry for the subsequent instruction. 1676 DI->setResult(NewDirtyVal); 1677 1678 if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) 1679 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); 1680 } 1681 1682 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its 1683 // subsequent value may invalidate the sortedness. 1684 std::sort(NLPDI.begin(), NLPDI.end()); 1685 } 1686 1687 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); 1688 1689 while (!ReversePtrDepsToAdd.empty()) { 1690 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first] 1691 .insert(ReversePtrDepsToAdd.back().second); 1692 ReversePtrDepsToAdd.pop_back(); 1693 } 1694 } 1695 1696 1697 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); 1698 DEBUG(verifyRemoved(RemInst)); 1699 } 1700 /// verifyRemoved - Verify that the specified instruction does not occur 1701 /// in our internal data structures. This function verifies by asserting in 1702 /// debug builds. 1703 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const { 1704 #ifndef NDEBUG 1705 for (LocalDepMapType::const_iterator I = LocalDeps.begin(), 1706 E = LocalDeps.end(); I != E; ++I) { 1707 assert(I->first != D && "Inst occurs in data structures"); 1708 assert(I->second.getInst() != D && 1709 "Inst occurs in data structures"); 1710 } 1711 1712 for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(), 1713 E = NonLocalPointerDeps.end(); I != E; ++I) { 1714 assert(I->first.getPointer() != D && "Inst occurs in NLPD map key"); 1715 const NonLocalDepInfo &Val = I->second.NonLocalDeps; 1716 for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end(); 1717 II != E; ++II) 1718 assert(II->getResult().getInst() != D && "Inst occurs as NLPD value"); 1719 } 1720 1721 for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(), 1722 E = NonLocalDeps.end(); I != E; ++I) { 1723 assert(I->first != D && "Inst occurs in data structures"); 1724 const PerInstNLInfo &INLD = I->second; 1725 for (NonLocalDepInfo::const_iterator II = INLD.first.begin(), 1726 EE = INLD.first.end(); II != EE; ++II) 1727 assert(II->getResult().getInst() != D && "Inst occurs in data structures"); 1728 } 1729 1730 for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(), 1731 E = ReverseLocalDeps.end(); I != E; ++I) { 1732 assert(I->first != D && "Inst occurs in data structures"); 1733 for (Instruction *Inst : I->second) 1734 assert(Inst != D && "Inst occurs in data structures"); 1735 } 1736 1737 for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(), 1738 E = ReverseNonLocalDeps.end(); 1739 I != E; ++I) { 1740 assert(I->first != D && "Inst occurs in data structures"); 1741 for (Instruction *Inst : I->second) 1742 assert(Inst != D && "Inst occurs in data structures"); 1743 } 1744 1745 for (ReverseNonLocalPtrDepTy::const_iterator 1746 I = ReverseNonLocalPtrDeps.begin(), 1747 E = ReverseNonLocalPtrDeps.end(); I != E; ++I) { 1748 assert(I->first != D && "Inst occurs in rev NLPD map"); 1749 1750 for (ValueIsLoadPair P : I->second) 1751 assert(P != ValueIsLoadPair(D, false) && 1752 P != ValueIsLoadPair(D, true) && 1753 "Inst occurs in ReverseNonLocalPtrDeps map"); 1754 } 1755 #endif 1756 } 1757