1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation --*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements an analysis that determines, for a given memory 11 // operation, what preceding memory operations it depends on. It builds on 12 // alias analysis information, and tries to provide a lazy, caching interface to 13 // a common kind of alias information query. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #define DEBUG_TYPE "memdep" 18 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/IntrinsicInst.h" 21 #include "llvm/Function.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/Dominators.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/PHITransAddr.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/Support/PredIteratorCache.h" 30 #include "llvm/Support/Debug.h" 31 using namespace llvm; 32 33 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); 34 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); 35 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); 36 37 STATISTIC(NumCacheNonLocalPtr, 38 "Number of fully cached non-local ptr responses"); 39 STATISTIC(NumCacheDirtyNonLocalPtr, 40 "Number of cached, but dirty, non-local ptr responses"); 41 STATISTIC(NumUncacheNonLocalPtr, 42 "Number of uncached non-local ptr responses"); 43 STATISTIC(NumCacheCompleteNonLocalPtr, 44 "Number of block queries that were completely cached"); 45 46 char MemoryDependenceAnalysis::ID = 0; 47 48 // Register this pass... 49 static RegisterPass<MemoryDependenceAnalysis> X("memdep", 50 "Memory Dependence Analysis", false, true); 51 52 MemoryDependenceAnalysis::MemoryDependenceAnalysis() 53 : FunctionPass(&ID), PredCache(0) { 54 } 55 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() { 56 } 57 58 /// Clean up memory in between runs 59 void MemoryDependenceAnalysis::releaseMemory() { 60 LocalDeps.clear(); 61 NonLocalDeps.clear(); 62 NonLocalPointerDeps.clear(); 63 ReverseLocalDeps.clear(); 64 ReverseNonLocalDeps.clear(); 65 ReverseNonLocalPtrDeps.clear(); 66 PredCache->clear(); 67 } 68 69 70 71 /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis. 72 /// 73 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 74 AU.setPreservesAll(); 75 AU.addRequiredTransitive<AliasAnalysis>(); 76 } 77 78 bool MemoryDependenceAnalysis::runOnFunction(Function &) { 79 AA = &getAnalysis<AliasAnalysis>(); 80 if (PredCache == 0) 81 PredCache.reset(new PredIteratorCache()); 82 return false; 83 } 84 85 /// RemoveFromReverseMap - This is a helper function that removes Val from 86 /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry. 87 template <typename KeyTy> 88 static void RemoveFromReverseMap(DenseMap<Instruction*, 89 SmallPtrSet<KeyTy, 4> > &ReverseMap, 90 Instruction *Inst, KeyTy Val) { 91 typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator 92 InstIt = ReverseMap.find(Inst); 93 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); 94 bool Found = InstIt->second.erase(Val); 95 assert(Found && "Invalid reverse map!"); Found=Found; 96 if (InstIt->second.empty()) 97 ReverseMap.erase(InstIt); 98 } 99 100 101 /// getCallSiteDependencyFrom - Private helper for finding the local 102 /// dependencies of a call site. 103 MemDepResult MemoryDependenceAnalysis:: 104 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall, 105 BasicBlock::iterator ScanIt, BasicBlock *BB) { 106 // Walk backwards through the block, looking for dependencies 107 while (ScanIt != BB->begin()) { 108 Instruction *Inst = --ScanIt; 109 110 // If this inst is a memory op, get the pointer it accessed 111 Value *Pointer = 0; 112 uint64_t PointerSize = 0; 113 if (StoreInst *S = dyn_cast<StoreInst>(Inst)) { 114 Pointer = S->getPointerOperand(); 115 PointerSize = AA->getTypeStoreSize(S->getOperand(0)->getType()); 116 } else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { 117 Pointer = V->getOperand(0); 118 PointerSize = AA->getTypeStoreSize(V->getType()); 119 } else if (const CallInst *CI = isFreeCall(Inst)) { 120 Pointer = CI->getArgOperand(0); 121 // calls to free() erase the entire structure 122 PointerSize = ~0ULL; 123 } else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) { 124 // Debug intrinsics don't cause dependences. 125 if (isa<DbgInfoIntrinsic>(Inst)) continue; 126 CallSite InstCS = CallSite::get(Inst); 127 // If these two calls do not interfere, look past it. 128 switch (AA->getModRefInfo(CS, InstCS)) { 129 case AliasAnalysis::NoModRef: 130 // If the two calls don't interact (e.g. InstCS is readnone) keep 131 // scanning. 132 continue; 133 case AliasAnalysis::Ref: 134 // If the two calls read the same memory locations and CS is a readonly 135 // function, then we have two cases: 1) the calls may not interfere with 136 // each other at all. 2) the calls may produce the same value. In case 137 // #1 we want to ignore the values, in case #2, we want to return Inst 138 // as a Def dependence. This allows us to CSE in cases like: 139 // X = strlen(P); 140 // memchr(...); 141 // Y = strlen(P); // Y = X 142 if (isReadOnlyCall) { 143 if (CS.getCalledFunction() != 0 && 144 CS.getCalledFunction() == InstCS.getCalledFunction()) 145 return MemDepResult::getDef(Inst); 146 // Ignore unrelated read/read call dependences. 147 continue; 148 } 149 // FALL THROUGH 150 default: 151 return MemDepResult::getClobber(Inst); 152 } 153 } else { 154 // Non-memory instruction. 155 continue; 156 } 157 158 if (AA->getModRefInfo(CS, Pointer, PointerSize) != AliasAnalysis::NoModRef) 159 return MemDepResult::getClobber(Inst); 160 } 161 162 // No dependence found. If this is the entry block of the function, it is a 163 // clobber, otherwise it is non-local. 164 if (BB != &BB->getParent()->getEntryBlock()) 165 return MemDepResult::getNonLocal(); 166 return MemDepResult::getClobber(ScanIt); 167 } 168 169 /// getPointerDependencyFrom - Return the instruction on which a memory 170 /// location depends. If isLoad is true, this routine ignore may-aliases with 171 /// read-only operations. 172 MemDepResult MemoryDependenceAnalysis:: 173 getPointerDependencyFrom(Value *MemPtr, uint64_t MemSize, bool isLoad, 174 BasicBlock::iterator ScanIt, BasicBlock *BB) { 175 176 Value *InvariantTag = 0; 177 178 // Walk backwards through the basic block, looking for dependencies. 179 while (ScanIt != BB->begin()) { 180 Instruction *Inst = --ScanIt; 181 182 // If we're in an invariant region, no dependencies can be found before 183 // we pass an invariant-begin marker. 184 if (InvariantTag == Inst) { 185 InvariantTag = 0; 186 continue; 187 } 188 189 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 190 // Debug intrinsics don't cause dependences. 191 if (isa<DbgInfoIntrinsic>(Inst)) continue; 192 193 // If we pass an invariant-end marker, then we've just entered an 194 // invariant region and can start ignoring dependencies. 195 if (II->getIntrinsicID() == Intrinsic::invariant_end) { 196 // FIXME: This only considers queries directly on the invariant-tagged 197 // pointer, not on query pointers that are indexed off of them. It'd 198 // be nice to handle that at some point. 199 AliasAnalysis::AliasResult R = 200 AA->alias(II->getArgOperand(2), ~0U, MemPtr, ~0U); 201 if (R == AliasAnalysis::MustAlias) { 202 InvariantTag = II->getArgOperand(0); 203 continue; 204 } 205 206 // If we reach a lifetime begin or end marker, then the query ends here 207 // because the value is undefined. 208 } else if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 209 // FIXME: This only considers queries directly on the invariant-tagged 210 // pointer, not on query pointers that are indexed off of them. It'd 211 // be nice to handle that at some point. 212 AliasAnalysis::AliasResult R = 213 AA->alias(II->getArgOperand(1), ~0U, MemPtr, ~0U); 214 if (R == AliasAnalysis::MustAlias) 215 return MemDepResult::getDef(II); 216 } 217 } 218 219 // If we're querying on a load and we're in an invariant region, we're done 220 // at this point. Nothing a load depends on can live in an invariant region. 221 if (isLoad && InvariantTag) continue; 222 223 // Values depend on loads if the pointers are must aliased. This means that 224 // a load depends on another must aliased load from the same value. 225 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 226 Value *Pointer = LI->getPointerOperand(); 227 uint64_t PointerSize = AA->getTypeStoreSize(LI->getType()); 228 229 // If we found a pointer, check if it could be the same as our pointer. 230 AliasAnalysis::AliasResult R = 231 AA->alias(Pointer, PointerSize, MemPtr, MemSize); 232 if (R == AliasAnalysis::NoAlias) 233 continue; 234 235 // May-alias loads don't depend on each other without a dependence. 236 if (isLoad && R == AliasAnalysis::MayAlias) 237 continue; 238 // Stores depend on may and must aliased loads, loads depend on must-alias 239 // loads. 240 return MemDepResult::getDef(Inst); 241 } 242 243 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 244 // There can't be stores to the value we care about inside an 245 // invariant region. 246 if (InvariantTag) continue; 247 248 // If alias analysis can tell that this store is guaranteed to not modify 249 // the query pointer, ignore it. Use getModRefInfo to handle cases where 250 // the query pointer points to constant memory etc. 251 if (AA->getModRefInfo(SI, MemPtr, MemSize) == AliasAnalysis::NoModRef) 252 continue; 253 254 // Ok, this store might clobber the query pointer. Check to see if it is 255 // a must alias: in this case, we want to return this as a def. 256 Value *Pointer = SI->getPointerOperand(); 257 uint64_t PointerSize = AA->getTypeStoreSize(SI->getOperand(0)->getType()); 258 259 // If we found a pointer, check if it could be the same as our pointer. 260 AliasAnalysis::AliasResult R = 261 AA->alias(Pointer, PointerSize, MemPtr, MemSize); 262 263 if (R == AliasAnalysis::NoAlias) 264 continue; 265 if (R == AliasAnalysis::MayAlias) 266 return MemDepResult::getClobber(Inst); 267 return MemDepResult::getDef(Inst); 268 } 269 270 // If this is an allocation, and if we know that the accessed pointer is to 271 // the allocation, return Def. This means that there is no dependence and 272 // the access can be optimized based on that. For example, a load could 273 // turn into undef. 274 // Note: Only determine this to be a malloc if Inst is the malloc call, not 275 // a subsequent bitcast of the malloc call result. There can be stores to 276 // the malloced memory between the malloc call and its bitcast uses, and we 277 // need to continue scanning until the malloc call. 278 if (isa<AllocaInst>(Inst) || 279 (isa<CallInst>(Inst) && extractMallocCall(Inst))) { 280 Value *AccessPtr = MemPtr->getUnderlyingObject(); 281 282 if (AccessPtr == Inst || 283 AA->alias(Inst, 1, AccessPtr, 1) == AliasAnalysis::MustAlias) 284 return MemDepResult::getDef(Inst); 285 continue; 286 } 287 288 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. 289 switch (AA->getModRefInfo(Inst, MemPtr, MemSize)) { 290 case AliasAnalysis::NoModRef: 291 // If the call has no effect on the queried pointer, just ignore it. 292 continue; 293 case AliasAnalysis::Mod: 294 // If we're in an invariant region, we can ignore calls that ONLY 295 // modify the pointer. 296 if (InvariantTag) continue; 297 return MemDepResult::getClobber(Inst); 298 case AliasAnalysis::Ref: 299 // If the call is known to never store to the pointer, and if this is a 300 // load query, we can safely ignore it (scan past it). 301 if (isLoad) 302 continue; 303 default: 304 // Otherwise, there is a potential dependence. Return a clobber. 305 return MemDepResult::getClobber(Inst); 306 } 307 } 308 309 // No dependence found. If this is the entry block of the function, it is a 310 // clobber, otherwise it is non-local. 311 if (BB != &BB->getParent()->getEntryBlock()) 312 return MemDepResult::getNonLocal(); 313 return MemDepResult::getClobber(ScanIt); 314 } 315 316 /// getDependency - Return the instruction on which a memory operation 317 /// depends. 318 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) { 319 Instruction *ScanPos = QueryInst; 320 321 // Check for a cached result 322 MemDepResult &LocalCache = LocalDeps[QueryInst]; 323 324 // If the cached entry is non-dirty, just return it. Note that this depends 325 // on MemDepResult's default constructing to 'dirty'. 326 if (!LocalCache.isDirty()) 327 return LocalCache; 328 329 // Otherwise, if we have a dirty entry, we know we can start the scan at that 330 // instruction, which may save us some work. 331 if (Instruction *Inst = LocalCache.getInst()) { 332 ScanPos = Inst; 333 334 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); 335 } 336 337 BasicBlock *QueryParent = QueryInst->getParent(); 338 339 Value *MemPtr = 0; 340 uint64_t MemSize = 0; 341 342 // Do the scan. 343 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { 344 // No dependence found. If this is the entry block of the function, it is a 345 // clobber, otherwise it is non-local. 346 if (QueryParent != &QueryParent->getParent()->getEntryBlock()) 347 LocalCache = MemDepResult::getNonLocal(); 348 else 349 LocalCache = MemDepResult::getClobber(QueryInst); 350 } else if (StoreInst *SI = dyn_cast<StoreInst>(QueryInst)) { 351 // If this is a volatile store, don't mess around with it. Just return the 352 // previous instruction as a clobber. 353 if (SI->isVolatile()) 354 LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos)); 355 else { 356 MemPtr = SI->getPointerOperand(); 357 MemSize = AA->getTypeStoreSize(SI->getOperand(0)->getType()); 358 } 359 } else if (LoadInst *LI = dyn_cast<LoadInst>(QueryInst)) { 360 // If this is a volatile load, don't mess around with it. Just return the 361 // previous instruction as a clobber. 362 if (LI->isVolatile()) 363 LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos)); 364 else { 365 MemPtr = LI->getPointerOperand(); 366 MemSize = AA->getTypeStoreSize(LI->getType()); 367 } 368 } else if (const CallInst *CI = isFreeCall(QueryInst)) { 369 MemPtr = CI->getArgOperand(0); 370 // calls to free() erase the entire structure, not just a field. 371 MemSize = ~0UL; 372 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) { 373 int IntrinsicID = 0; // Intrinsic IDs start at 1. 374 IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst); 375 if (II) 376 IntrinsicID = II->getIntrinsicID(); 377 378 switch (IntrinsicID) { 379 case Intrinsic::lifetime_start: 380 case Intrinsic::lifetime_end: 381 case Intrinsic::invariant_start: 382 MemPtr = II->getArgOperand(1); 383 MemSize = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(); 384 break; 385 case Intrinsic::invariant_end: 386 MemPtr = II->getArgOperand(2); 387 MemSize = cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(); 388 break; 389 default: 390 CallSite QueryCS = CallSite::get(QueryInst); 391 bool isReadOnly = AA->onlyReadsMemory(QueryCS); 392 LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos, 393 QueryParent); 394 break; 395 } 396 } else { 397 // Non-memory instruction. 398 LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos)); 399 } 400 401 // If we need to do a pointer scan, make it happen. 402 if (MemPtr) { 403 bool isLoad = !QueryInst->mayWriteToMemory(); 404 if (IntrinsicInst *II = dyn_cast<MemoryUseIntrinsic>(QueryInst)) { 405 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_end; 406 } 407 LocalCache = getPointerDependencyFrom(MemPtr, MemSize, isLoad, ScanPos, 408 QueryParent); 409 } 410 411 // Remember the result! 412 if (Instruction *I = LocalCache.getInst()) 413 ReverseLocalDeps[I].insert(QueryInst); 414 415 return LocalCache; 416 } 417 418 #ifndef NDEBUG 419 /// AssertSorted - This method is used when -debug is specified to verify that 420 /// cache arrays are properly kept sorted. 421 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 422 int Count = -1) { 423 if (Count == -1) Count = Cache.size(); 424 if (Count == 0) return; 425 426 for (unsigned i = 1; i != unsigned(Count); ++i) 427 assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!"); 428 } 429 #endif 430 431 /// getNonLocalCallDependency - Perform a full dependency query for the 432 /// specified call, returning the set of blocks that the value is 433 /// potentially live across. The returned set of results will include a 434 /// "NonLocal" result for all blocks where the value is live across. 435 /// 436 /// This method assumes the instruction returns a "NonLocal" dependency 437 /// within its own block. 438 /// 439 /// This returns a reference to an internal data structure that may be 440 /// invalidated on the next non-local query or when an instruction is 441 /// removed. Clients must copy this data if they want it around longer than 442 /// that. 443 const MemoryDependenceAnalysis::NonLocalDepInfo & 444 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { 445 assert(getDependency(QueryCS.getInstruction()).isNonLocal() && 446 "getNonLocalCallDependency should only be used on calls with non-local deps!"); 447 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()]; 448 NonLocalDepInfo &Cache = CacheP.first; 449 450 /// DirtyBlocks - This is the set of blocks that need to be recomputed. In 451 /// the cached case, this can happen due to instructions being deleted etc. In 452 /// the uncached case, this starts out as the set of predecessors we care 453 /// about. 454 SmallVector<BasicBlock*, 32> DirtyBlocks; 455 456 if (!Cache.empty()) { 457 // Okay, we have a cache entry. If we know it is not dirty, just return it 458 // with no computation. 459 if (!CacheP.second) { 460 ++NumCacheNonLocal; 461 return Cache; 462 } 463 464 // If we already have a partially computed set of results, scan them to 465 // determine what is dirty, seeding our initial DirtyBlocks worklist. 466 for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end(); 467 I != E; ++I) 468 if (I->getResult().isDirty()) 469 DirtyBlocks.push_back(I->getBB()); 470 471 // Sort the cache so that we can do fast binary search lookups below. 472 std::sort(Cache.begin(), Cache.end()); 473 474 ++NumCacheDirtyNonLocal; 475 //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " 476 // << Cache.size() << " cached: " << *QueryInst; 477 } else { 478 // Seed DirtyBlocks with each of the preds of QueryInst's block. 479 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent(); 480 for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI) 481 DirtyBlocks.push_back(*PI); 482 ++NumUncacheNonLocal; 483 } 484 485 // isReadonlyCall - If this is a read-only call, we can be more aggressive. 486 bool isReadonlyCall = AA->onlyReadsMemory(QueryCS); 487 488 SmallPtrSet<BasicBlock*, 64> Visited; 489 490 unsigned NumSortedEntries = Cache.size(); 491 DEBUG(AssertSorted(Cache)); 492 493 // Iterate while we still have blocks to update. 494 while (!DirtyBlocks.empty()) { 495 BasicBlock *DirtyBB = DirtyBlocks.back(); 496 DirtyBlocks.pop_back(); 497 498 // Already processed this block? 499 if (!Visited.insert(DirtyBB)) 500 continue; 501 502 // Do a binary search to see if we already have an entry for this block in 503 // the cache set. If so, find it. 504 DEBUG(AssertSorted(Cache, NumSortedEntries)); 505 NonLocalDepInfo::iterator Entry = 506 std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries, 507 NonLocalDepEntry(DirtyBB)); 508 if (Entry != Cache.begin() && prior(Entry)->getBB() == DirtyBB) 509 --Entry; 510 511 NonLocalDepEntry *ExistingResult = 0; 512 if (Entry != Cache.begin()+NumSortedEntries && 513 Entry->getBB() == DirtyBB) { 514 // If we already have an entry, and if it isn't already dirty, the block 515 // is done. 516 if (!Entry->getResult().isDirty()) 517 continue; 518 519 // Otherwise, remember this slot so we can update the value. 520 ExistingResult = &*Entry; 521 } 522 523 // If the dirty entry has a pointer, start scanning from it so we don't have 524 // to rescan the entire block. 525 BasicBlock::iterator ScanPos = DirtyBB->end(); 526 if (ExistingResult) { 527 if (Instruction *Inst = ExistingResult->getResult().getInst()) { 528 ScanPos = Inst; 529 // We're removing QueryInst's use of Inst. 530 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, 531 QueryCS.getInstruction()); 532 } 533 } 534 535 // Find out if this block has a local dependency for QueryInst. 536 MemDepResult Dep; 537 538 if (ScanPos != DirtyBB->begin()) { 539 Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB); 540 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { 541 // No dependence found. If this is the entry block of the function, it is 542 // a clobber, otherwise it is non-local. 543 Dep = MemDepResult::getNonLocal(); 544 } else { 545 Dep = MemDepResult::getClobber(ScanPos); 546 } 547 548 // If we had a dirty entry for the block, update it. Otherwise, just add 549 // a new entry. 550 if (ExistingResult) 551 ExistingResult->setResult(Dep); 552 else 553 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); 554 555 // If the block has a dependency (i.e. it isn't completely transparent to 556 // the value), remember the association! 557 if (!Dep.isNonLocal()) { 558 // Keep the ReverseNonLocalDeps map up to date so we can efficiently 559 // update this when we remove instructions. 560 if (Instruction *Inst = Dep.getInst()) 561 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction()); 562 } else { 563 564 // If the block *is* completely transparent to the load, we need to check 565 // the predecessors of this block. Add them to our worklist. 566 for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI) 567 DirtyBlocks.push_back(*PI); 568 } 569 } 570 571 return Cache; 572 } 573 574 /// getNonLocalPointerDependency - Perform a full dependency query for an 575 /// access to the specified (non-volatile) memory location, returning the 576 /// set of instructions that either define or clobber the value. 577 /// 578 /// This method assumes the pointer has a "NonLocal" dependency within its 579 /// own block. 580 /// 581 void MemoryDependenceAnalysis:: 582 getNonLocalPointerDependency(Value *Pointer, bool isLoad, BasicBlock *FromBB, 583 SmallVectorImpl<NonLocalDepResult> &Result) { 584 assert(Pointer->getType()->isPointerTy() && 585 "Can't get pointer deps of a non-pointer!"); 586 Result.clear(); 587 588 // We know that the pointer value is live into FromBB find the def/clobbers 589 // from presecessors. 590 const Type *EltTy = cast<PointerType>(Pointer->getType())->getElementType(); 591 uint64_t PointeeSize = AA->getTypeStoreSize(EltTy); 592 593 PHITransAddr Address(Pointer, TD); 594 595 // This is the set of blocks we've inspected, and the pointer we consider in 596 // each block. Because of critical edges, we currently bail out if querying 597 // a block with multiple different pointers. This can happen during PHI 598 // translation. 599 DenseMap<BasicBlock*, Value*> Visited; 600 if (!getNonLocalPointerDepFromBB(Address, PointeeSize, isLoad, FromBB, 601 Result, Visited, true)) 602 return; 603 Result.clear(); 604 Result.push_back(NonLocalDepResult(FromBB, 605 MemDepResult::getClobber(FromBB->begin()), 606 Pointer)); 607 } 608 609 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with 610 /// Pointer/PointeeSize using either cached information in Cache or by doing a 611 /// lookup (which may use dirty cache info if available). If we do a lookup, 612 /// add the result to the cache. 613 MemDepResult MemoryDependenceAnalysis:: 614 GetNonLocalInfoForBlock(Value *Pointer, uint64_t PointeeSize, 615 bool isLoad, BasicBlock *BB, 616 NonLocalDepInfo *Cache, unsigned NumSortedEntries) { 617 618 // Do a binary search to see if we already have an entry for this block in 619 // the cache set. If so, find it. 620 NonLocalDepInfo::iterator Entry = 621 std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries, 622 NonLocalDepEntry(BB)); 623 if (Entry != Cache->begin() && (Entry-1)->getBB() == BB) 624 --Entry; 625 626 NonLocalDepEntry *ExistingResult = 0; 627 if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB) 628 ExistingResult = &*Entry; 629 630 // If we have a cached entry, and it is non-dirty, use it as the value for 631 // this dependency. 632 if (ExistingResult && !ExistingResult->getResult().isDirty()) { 633 ++NumCacheNonLocalPtr; 634 return ExistingResult->getResult(); 635 } 636 637 // Otherwise, we have to scan for the value. If we have a dirty cache 638 // entry, start scanning from its position, otherwise we scan from the end 639 // of the block. 640 BasicBlock::iterator ScanPos = BB->end(); 641 if (ExistingResult && ExistingResult->getResult().getInst()) { 642 assert(ExistingResult->getResult().getInst()->getParent() == BB && 643 "Instruction invalidated?"); 644 ++NumCacheDirtyNonLocalPtr; 645 ScanPos = ExistingResult->getResult().getInst(); 646 647 // Eliminating the dirty entry from 'Cache', so update the reverse info. 648 ValueIsLoadPair CacheKey(Pointer, isLoad); 649 RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey); 650 } else { 651 ++NumUncacheNonLocalPtr; 652 } 653 654 // Scan the block for the dependency. 655 MemDepResult Dep = getPointerDependencyFrom(Pointer, PointeeSize, isLoad, 656 ScanPos, BB); 657 658 // If we had a dirty entry for the block, update it. Otherwise, just add 659 // a new entry. 660 if (ExistingResult) 661 ExistingResult->setResult(Dep); 662 else 663 Cache->push_back(NonLocalDepEntry(BB, Dep)); 664 665 // If the block has a dependency (i.e. it isn't completely transparent to 666 // the value), remember the reverse association because we just added it 667 // to Cache! 668 if (Dep.isNonLocal()) 669 return Dep; 670 671 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently 672 // update MemDep when we remove instructions. 673 Instruction *Inst = Dep.getInst(); 674 assert(Inst && "Didn't depend on anything?"); 675 ValueIsLoadPair CacheKey(Pointer, isLoad); 676 ReverseNonLocalPtrDeps[Inst].insert(CacheKey); 677 return Dep; 678 } 679 680 /// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain 681 /// number of elements in the array that are already properly ordered. This is 682 /// optimized for the case when only a few entries are added. 683 static void 684 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 685 unsigned NumSortedEntries) { 686 switch (Cache.size() - NumSortedEntries) { 687 case 0: 688 // done, no new entries. 689 break; 690 case 2: { 691 // Two new entries, insert the last one into place. 692 NonLocalDepEntry Val = Cache.back(); 693 Cache.pop_back(); 694 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 695 std::upper_bound(Cache.begin(), Cache.end()-1, Val); 696 Cache.insert(Entry, Val); 697 // FALL THROUGH. 698 } 699 case 1: 700 // One new entry, Just insert the new value at the appropriate position. 701 if (Cache.size() != 1) { 702 NonLocalDepEntry Val = Cache.back(); 703 Cache.pop_back(); 704 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 705 std::upper_bound(Cache.begin(), Cache.end(), Val); 706 Cache.insert(Entry, Val); 707 } 708 break; 709 default: 710 // Added many values, do a full scale sort. 711 std::sort(Cache.begin(), Cache.end()); 712 break; 713 } 714 } 715 716 /// getNonLocalPointerDepFromBB - Perform a dependency query based on 717 /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def 718 /// results to the results vector and keep track of which blocks are visited in 719 /// 'Visited'. 720 /// 721 /// This has special behavior for the first block queries (when SkipFirstBlock 722 /// is true). In this special case, it ignores the contents of the specified 723 /// block and starts returning dependence info for its predecessors. 724 /// 725 /// This function returns false on success, or true to indicate that it could 726 /// not compute dependence information for some reason. This should be treated 727 /// as a clobber dependence on the first instruction in the predecessor block. 728 bool MemoryDependenceAnalysis:: 729 getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, uint64_t PointeeSize, 730 bool isLoad, BasicBlock *StartBB, 731 SmallVectorImpl<NonLocalDepResult> &Result, 732 DenseMap<BasicBlock*, Value*> &Visited, 733 bool SkipFirstBlock) { 734 735 // Look up the cached info for Pointer. 736 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); 737 738 std::pair<BBSkipFirstBlockPair, NonLocalDepInfo> *CacheInfo = 739 &NonLocalPointerDeps[CacheKey]; 740 NonLocalDepInfo *Cache = &CacheInfo->second; 741 742 // If we have valid cached information for exactly the block we are 743 // investigating, just return it with no recomputation. 744 if (CacheInfo->first == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { 745 // We have a fully cached result for this query then we can just return the 746 // cached results and populate the visited set. However, we have to verify 747 // that we don't already have conflicting results for these blocks. Check 748 // to ensure that if a block in the results set is in the visited set that 749 // it was for the same pointer query. 750 if (!Visited.empty()) { 751 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 752 I != E; ++I) { 753 DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB()); 754 if (VI == Visited.end() || VI->second == Pointer.getAddr()) 755 continue; 756 757 // We have a pointer mismatch in a block. Just return clobber, saying 758 // that something was clobbered in this result. We could also do a 759 // non-fully cached query, but there is little point in doing this. 760 return true; 761 } 762 } 763 764 Value *Addr = Pointer.getAddr(); 765 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 766 I != E; ++I) { 767 Visited.insert(std::make_pair(I->getBB(), Addr)); 768 if (!I->getResult().isNonLocal()) 769 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr)); 770 } 771 ++NumCacheCompleteNonLocalPtr; 772 return false; 773 } 774 775 // Otherwise, either this is a new block, a block with an invalid cache 776 // pointer or one that we're about to invalidate by putting more info into it 777 // than its valid cache info. If empty, the result will be valid cache info, 778 // otherwise it isn't. 779 if (Cache->empty()) 780 CacheInfo->first = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); 781 else 782 CacheInfo->first = BBSkipFirstBlockPair(); 783 784 SmallVector<BasicBlock*, 32> Worklist; 785 Worklist.push_back(StartBB); 786 787 // Keep track of the entries that we know are sorted. Previously cached 788 // entries will all be sorted. The entries we add we only sort on demand (we 789 // don't insert every element into its sorted position). We know that we 790 // won't get any reuse from currently inserted values, because we don't 791 // revisit blocks after we insert info for them. 792 unsigned NumSortedEntries = Cache->size(); 793 DEBUG(AssertSorted(*Cache)); 794 795 while (!Worklist.empty()) { 796 BasicBlock *BB = Worklist.pop_back_val(); 797 798 // Skip the first block if we have it. 799 if (!SkipFirstBlock) { 800 // Analyze the dependency of *Pointer in FromBB. See if we already have 801 // been here. 802 assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); 803 804 // Get the dependency info for Pointer in BB. If we have cached 805 // information, we will use it, otherwise we compute it. 806 DEBUG(AssertSorted(*Cache, NumSortedEntries)); 807 MemDepResult Dep = GetNonLocalInfoForBlock(Pointer.getAddr(), PointeeSize, 808 isLoad, BB, Cache, 809 NumSortedEntries); 810 811 // If we got a Def or Clobber, add this to the list of results. 812 if (!Dep.isNonLocal()) { 813 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); 814 continue; 815 } 816 } 817 818 // If 'Pointer' is an instruction defined in this block, then we need to do 819 // phi translation to change it into a value live in the predecessor block. 820 // If not, we just add the predecessors to the worklist and scan them with 821 // the same Pointer. 822 if (!Pointer.NeedsPHITranslationFromBlock(BB)) { 823 SkipFirstBlock = false; 824 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { 825 // Verify that we haven't looked at this block yet. 826 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 827 InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr())); 828 if (InsertRes.second) { 829 // First time we've looked at *PI. 830 Worklist.push_back(*PI); 831 continue; 832 } 833 834 // If we have seen this block before, but it was with a different 835 // pointer then we have a phi translation failure and we have to treat 836 // this as a clobber. 837 if (InsertRes.first->second != Pointer.getAddr()) 838 goto PredTranslationFailure; 839 } 840 continue; 841 } 842 843 // We do need to do phi translation, if we know ahead of time we can't phi 844 // translate this value, don't even try. 845 if (!Pointer.IsPotentiallyPHITranslatable()) 846 goto PredTranslationFailure; 847 848 // We may have added values to the cache list before this PHI translation. 849 // If so, we haven't done anything to ensure that the cache remains sorted. 850 // Sort it now (if needed) so that recursive invocations of 851 // getNonLocalPointerDepFromBB and other routines that could reuse the cache 852 // value will only see properly sorted cache arrays. 853 if (Cache && NumSortedEntries != Cache->size()) { 854 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 855 NumSortedEntries = Cache->size(); 856 } 857 Cache = 0; 858 859 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { 860 BasicBlock *Pred = *PI; 861 862 // Get the PHI translated pointer in this predecessor. This can fail if 863 // not translatable, in which case the getAddr() returns null. 864 PHITransAddr PredPointer(Pointer); 865 PredPointer.PHITranslateValue(BB, Pred, 0); 866 867 Value *PredPtrVal = PredPointer.getAddr(); 868 869 // Check to see if we have already visited this pred block with another 870 // pointer. If so, we can't do this lookup. This failure can occur 871 // with PHI translation when a critical edge exists and the PHI node in 872 // the successor translates to a pointer value different than the 873 // pointer the block was first analyzed with. 874 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 875 InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal)); 876 877 if (!InsertRes.second) { 878 // If the predecessor was visited with PredPtr, then we already did 879 // the analysis and can ignore it. 880 if (InsertRes.first->second == PredPtrVal) 881 continue; 882 883 // Otherwise, the block was previously analyzed with a different 884 // pointer. We can't represent the result of this case, so we just 885 // treat this as a phi translation failure. 886 goto PredTranslationFailure; 887 } 888 889 // If PHI translation was unable to find an available pointer in this 890 // predecessor, then we have to assume that the pointer is clobbered in 891 // that predecessor. We can still do PRE of the load, which would insert 892 // a computation of the pointer in this predecessor. 893 if (PredPtrVal == 0) { 894 // Add the entry to the Result list. 895 NonLocalDepResult Entry(Pred, 896 MemDepResult::getClobber(Pred->getTerminator()), 897 PredPtrVal); 898 Result.push_back(Entry); 899 900 // Since we had a phi translation failure, the cache for CacheKey won't 901 // include all of the entries that we need to immediately satisfy future 902 // queries. Mark this in NonLocalPointerDeps by setting the 903 // BBSkipFirstBlockPair pointer to null. This requires reuse of the 904 // cached value to do more work but not miss the phi trans failure. 905 NonLocalPointerDeps[CacheKey].first = BBSkipFirstBlockPair(); 906 continue; 907 } 908 909 // FIXME: it is entirely possible that PHI translating will end up with 910 // the same value. Consider PHI translating something like: 911 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* 912 // to recurse here, pedantically speaking. 913 914 // If we have a problem phi translating, fall through to the code below 915 // to handle the failure condition. 916 if (getNonLocalPointerDepFromBB(PredPointer, PointeeSize, isLoad, Pred, 917 Result, Visited)) 918 goto PredTranslationFailure; 919 } 920 921 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. 922 CacheInfo = &NonLocalPointerDeps[CacheKey]; 923 Cache = &CacheInfo->second; 924 NumSortedEntries = Cache->size(); 925 926 // Since we did phi translation, the "Cache" set won't contain all of the 927 // results for the query. This is ok (we can still use it to accelerate 928 // specific block queries) but we can't do the fastpath "return all 929 // results from the set" Clear out the indicator for this. 930 CacheInfo->first = BBSkipFirstBlockPair(); 931 SkipFirstBlock = false; 932 continue; 933 934 PredTranslationFailure: 935 936 if (Cache == 0) { 937 // Refresh the CacheInfo/Cache pointer if it got invalidated. 938 CacheInfo = &NonLocalPointerDeps[CacheKey]; 939 Cache = &CacheInfo->second; 940 NumSortedEntries = Cache->size(); 941 } 942 943 // Since we failed phi translation, the "Cache" set won't contain all of the 944 // results for the query. This is ok (we can still use it to accelerate 945 // specific block queries) but we can't do the fastpath "return all 946 // results from the set". Clear out the indicator for this. 947 CacheInfo->first = BBSkipFirstBlockPair(); 948 949 // If *nothing* works, mark the pointer as being clobbered by the first 950 // instruction in this block. 951 // 952 // If this is the magic first block, return this as a clobber of the whole 953 // incoming value. Since we can't phi translate to one of the predecessors, 954 // we have to bail out. 955 if (SkipFirstBlock) 956 return true; 957 958 for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) { 959 assert(I != Cache->rend() && "Didn't find current block??"); 960 if (I->getBB() != BB) 961 continue; 962 963 assert(I->getResult().isNonLocal() && 964 "Should only be here with transparent block"); 965 I->setResult(MemDepResult::getClobber(BB->begin())); 966 ReverseNonLocalPtrDeps[BB->begin()].insert(CacheKey); 967 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), 968 Pointer.getAddr())); 969 break; 970 } 971 } 972 973 // Okay, we're done now. If we added new values to the cache, re-sort it. 974 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 975 DEBUG(AssertSorted(*Cache)); 976 return false; 977 } 978 979 /// RemoveCachedNonLocalPointerDependencies - If P exists in 980 /// CachedNonLocalPointerInfo, remove it. 981 void MemoryDependenceAnalysis:: 982 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) { 983 CachedNonLocalPointerInfo::iterator It = 984 NonLocalPointerDeps.find(P); 985 if (It == NonLocalPointerDeps.end()) return; 986 987 // Remove all of the entries in the BB->val map. This involves removing 988 // instructions from the reverse map. 989 NonLocalDepInfo &PInfo = It->second.second; 990 991 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { 992 Instruction *Target = PInfo[i].getResult().getInst(); 993 if (Target == 0) continue; // Ignore non-local dep results. 994 assert(Target->getParent() == PInfo[i].getBB()); 995 996 // Eliminating the dirty entry from 'Cache', so update the reverse info. 997 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); 998 } 999 1000 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). 1001 NonLocalPointerDeps.erase(It); 1002 } 1003 1004 1005 /// invalidateCachedPointerInfo - This method is used to invalidate cached 1006 /// information about the specified pointer, because it may be too 1007 /// conservative in memdep. This is an optional call that can be used when 1008 /// the client detects an equivalence between the pointer and some other 1009 /// value and replaces the other value with ptr. This can make Ptr available 1010 /// in more places that cached info does not necessarily keep. 1011 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) { 1012 // If Ptr isn't really a pointer, just ignore it. 1013 if (!Ptr->getType()->isPointerTy()) return; 1014 // Flush store info for the pointer. 1015 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); 1016 // Flush load info for the pointer. 1017 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); 1018 } 1019 1020 /// invalidateCachedPredecessors - Clear the PredIteratorCache info. 1021 /// This needs to be done when the CFG changes, e.g., due to splitting 1022 /// critical edges. 1023 void MemoryDependenceAnalysis::invalidateCachedPredecessors() { 1024 PredCache->clear(); 1025 } 1026 1027 /// removeInstruction - Remove an instruction from the dependence analysis, 1028 /// updating the dependence of instructions that previously depended on it. 1029 /// This method attempts to keep the cache coherent using the reverse map. 1030 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) { 1031 // Walk through the Non-local dependencies, removing this one as the value 1032 // for any cached queries. 1033 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); 1034 if (NLDI != NonLocalDeps.end()) { 1035 NonLocalDepInfo &BlockMap = NLDI->second.first; 1036 for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end(); 1037 DI != DE; ++DI) 1038 if (Instruction *Inst = DI->getResult().getInst()) 1039 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); 1040 NonLocalDeps.erase(NLDI); 1041 } 1042 1043 // If we have a cached local dependence query for this instruction, remove it. 1044 // 1045 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); 1046 if (LocalDepEntry != LocalDeps.end()) { 1047 // Remove us from DepInst's reverse set now that the local dep info is gone. 1048 if (Instruction *Inst = LocalDepEntry->second.getInst()) 1049 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); 1050 1051 // Remove this local dependency info. 1052 LocalDeps.erase(LocalDepEntry); 1053 } 1054 1055 // If we have any cached pointer dependencies on this instruction, remove 1056 // them. If the instruction has non-pointer type, then it can't be a pointer 1057 // base. 1058 1059 // Remove it from both the load info and the store info. The instruction 1060 // can't be in either of these maps if it is non-pointer. 1061 if (RemInst->getType()->isPointerTy()) { 1062 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); 1063 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); 1064 } 1065 1066 // Loop over all of the things that depend on the instruction we're removing. 1067 // 1068 SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd; 1069 1070 // If we find RemInst as a clobber or Def in any of the maps for other values, 1071 // we need to replace its entry with a dirty version of the instruction after 1072 // it. If RemInst is a terminator, we use a null dirty value. 1073 // 1074 // Using a dirty version of the instruction after RemInst saves having to scan 1075 // the entire block to get to this point. 1076 MemDepResult NewDirtyVal; 1077 if (!RemInst->isTerminator()) 1078 NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst)); 1079 1080 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); 1081 if (ReverseDepIt != ReverseLocalDeps.end()) { 1082 SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second; 1083 // RemInst can't be the terminator if it has local stuff depending on it. 1084 assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) && 1085 "Nothing can locally depend on a terminator"); 1086 1087 for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(), 1088 E = ReverseDeps.end(); I != E; ++I) { 1089 Instruction *InstDependingOnRemInst = *I; 1090 assert(InstDependingOnRemInst != RemInst && 1091 "Already removed our local dep info"); 1092 1093 LocalDeps[InstDependingOnRemInst] = NewDirtyVal; 1094 1095 // Make sure to remember that new things depend on NewDepInst. 1096 assert(NewDirtyVal.getInst() && "There is no way something else can have " 1097 "a local dep on this if it is a terminator!"); 1098 ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(), 1099 InstDependingOnRemInst)); 1100 } 1101 1102 ReverseLocalDeps.erase(ReverseDepIt); 1103 1104 // Add new reverse deps after scanning the set, to avoid invalidating the 1105 // 'ReverseDeps' reference. 1106 while (!ReverseDepsToAdd.empty()) { 1107 ReverseLocalDeps[ReverseDepsToAdd.back().first] 1108 .insert(ReverseDepsToAdd.back().second); 1109 ReverseDepsToAdd.pop_back(); 1110 } 1111 } 1112 1113 ReverseDepIt = ReverseNonLocalDeps.find(RemInst); 1114 if (ReverseDepIt != ReverseNonLocalDeps.end()) { 1115 SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second; 1116 for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end(); 1117 I != E; ++I) { 1118 assert(*I != RemInst && "Already removed NonLocalDep info for RemInst"); 1119 1120 PerInstNLInfo &INLD = NonLocalDeps[*I]; 1121 // The information is now dirty! 1122 INLD.second = true; 1123 1124 for (NonLocalDepInfo::iterator DI = INLD.first.begin(), 1125 DE = INLD.first.end(); DI != DE; ++DI) { 1126 if (DI->getResult().getInst() != RemInst) continue; 1127 1128 // Convert to a dirty entry for the subsequent instruction. 1129 DI->setResult(NewDirtyVal); 1130 1131 if (Instruction *NextI = NewDirtyVal.getInst()) 1132 ReverseDepsToAdd.push_back(std::make_pair(NextI, *I)); 1133 } 1134 } 1135 1136 ReverseNonLocalDeps.erase(ReverseDepIt); 1137 1138 // Add new reverse deps after scanning the set, to avoid invalidating 'Set' 1139 while (!ReverseDepsToAdd.empty()) { 1140 ReverseNonLocalDeps[ReverseDepsToAdd.back().first] 1141 .insert(ReverseDepsToAdd.back().second); 1142 ReverseDepsToAdd.pop_back(); 1143 } 1144 } 1145 1146 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a 1147 // value in the NonLocalPointerDeps info. 1148 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = 1149 ReverseNonLocalPtrDeps.find(RemInst); 1150 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { 1151 SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second; 1152 SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd; 1153 1154 for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(), 1155 E = Set.end(); I != E; ++I) { 1156 ValueIsLoadPair P = *I; 1157 assert(P.getPointer() != RemInst && 1158 "Already removed NonLocalPointerDeps info for RemInst"); 1159 1160 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].second; 1161 1162 // The cache is not valid for any specific block anymore. 1163 NonLocalPointerDeps[P].first = BBSkipFirstBlockPair(); 1164 1165 // Update any entries for RemInst to use the instruction after it. 1166 for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end(); 1167 DI != DE; ++DI) { 1168 if (DI->getResult().getInst() != RemInst) continue; 1169 1170 // Convert to a dirty entry for the subsequent instruction. 1171 DI->setResult(NewDirtyVal); 1172 1173 if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) 1174 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); 1175 } 1176 1177 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its 1178 // subsequent value may invalidate the sortedness. 1179 std::sort(NLPDI.begin(), NLPDI.end()); 1180 } 1181 1182 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); 1183 1184 while (!ReversePtrDepsToAdd.empty()) { 1185 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first] 1186 .insert(ReversePtrDepsToAdd.back().second); 1187 ReversePtrDepsToAdd.pop_back(); 1188 } 1189 } 1190 1191 1192 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); 1193 AA->deleteValue(RemInst); 1194 DEBUG(verifyRemoved(RemInst)); 1195 } 1196 /// verifyRemoved - Verify that the specified instruction does not occur 1197 /// in our internal data structures. 1198 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const { 1199 for (LocalDepMapType::const_iterator I = LocalDeps.begin(), 1200 E = LocalDeps.end(); I != E; ++I) { 1201 assert(I->first != D && "Inst occurs in data structures"); 1202 assert(I->second.getInst() != D && 1203 "Inst occurs in data structures"); 1204 } 1205 1206 for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(), 1207 E = NonLocalPointerDeps.end(); I != E; ++I) { 1208 assert(I->first.getPointer() != D && "Inst occurs in NLPD map key"); 1209 const NonLocalDepInfo &Val = I->second.second; 1210 for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end(); 1211 II != E; ++II) 1212 assert(II->getResult().getInst() != D && "Inst occurs as NLPD value"); 1213 } 1214 1215 for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(), 1216 E = NonLocalDeps.end(); I != E; ++I) { 1217 assert(I->first != D && "Inst occurs in data structures"); 1218 const PerInstNLInfo &INLD = I->second; 1219 for (NonLocalDepInfo::const_iterator II = INLD.first.begin(), 1220 EE = INLD.first.end(); II != EE; ++II) 1221 assert(II->getResult().getInst() != D && "Inst occurs in data structures"); 1222 } 1223 1224 for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(), 1225 E = ReverseLocalDeps.end(); I != E; ++I) { 1226 assert(I->first != D && "Inst occurs in data structures"); 1227 for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(), 1228 EE = I->second.end(); II != EE; ++II) 1229 assert(*II != D && "Inst occurs in data structures"); 1230 } 1231 1232 for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(), 1233 E = ReverseNonLocalDeps.end(); 1234 I != E; ++I) { 1235 assert(I->first != D && "Inst occurs in data structures"); 1236 for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(), 1237 EE = I->second.end(); II != EE; ++II) 1238 assert(*II != D && "Inst occurs in data structures"); 1239 } 1240 1241 for (ReverseNonLocalPtrDepTy::const_iterator 1242 I = ReverseNonLocalPtrDeps.begin(), 1243 E = ReverseNonLocalPtrDeps.end(); I != E; ++I) { 1244 assert(I->first != D && "Inst occurs in rev NLPD map"); 1245 1246 for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(), 1247 E = I->second.end(); II != E; ++II) 1248 assert(*II != ValueIsLoadPair(D, false) && 1249 *II != ValueIsLoadPair(D, true) && 1250 "Inst occurs in ReverseNonLocalPtrDeps map"); 1251 } 1252 1253 } 1254