1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements an analysis that determines, for a given memory 11 // operation, what preceding memory operations it depends on. It builds on 12 // alias analysis information, and tries to provide a lazy, caching interface to 13 // a common kind of alias information query. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/MemoryBuiltins.h" 24 #include "llvm/Analysis/PHITransAddr.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/IR/PredIteratorCache.h" 33 #include "llvm/Support/Debug.h" 34 using namespace llvm; 35 36 #define DEBUG_TYPE "memdep" 37 38 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); 39 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); 40 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); 41 42 STATISTIC(NumCacheNonLocalPtr, 43 "Number of fully cached non-local ptr responses"); 44 STATISTIC(NumCacheDirtyNonLocalPtr, 45 "Number of cached, but dirty, non-local ptr responses"); 46 STATISTIC(NumUncacheNonLocalPtr, 47 "Number of uncached non-local ptr responses"); 48 STATISTIC(NumCacheCompleteNonLocalPtr, 49 "Number of block queries that were completely cached"); 50 51 // Limit for the number of instructions to scan in a block. 52 static const unsigned int BlockScanLimit = 100; 53 54 // Limit on the number of memdep results to process. 55 static const unsigned int NumResultsLimit = 100; 56 57 char MemoryDependenceAnalysis::ID = 0; 58 59 // Register this pass... 60 INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep", 61 "Memory Dependence Analysis", false, true) 62 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 63 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 64 INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep", 65 "Memory Dependence Analysis", false, true) 66 67 MemoryDependenceAnalysis::MemoryDependenceAnalysis() 68 : FunctionPass(ID) { 69 initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry()); 70 } 71 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() { 72 } 73 74 /// Clean up memory in between runs 75 void MemoryDependenceAnalysis::releaseMemory() { 76 LocalDeps.clear(); 77 NonLocalDeps.clear(); 78 NonLocalPointerDeps.clear(); 79 ReverseLocalDeps.clear(); 80 ReverseNonLocalDeps.clear(); 81 ReverseNonLocalPtrDeps.clear(); 82 PredCache.clear(); 83 } 84 85 /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis. 86 /// 87 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 88 AU.setPreservesAll(); 89 AU.addRequired<AssumptionCacheTracker>(); 90 AU.addRequiredTransitive<AliasAnalysis>(); 91 } 92 93 bool MemoryDependenceAnalysis::runOnFunction(Function &F) { 94 AA = &getAnalysis<AliasAnalysis>(); 95 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 96 DominatorTreeWrapperPass *DTWP = 97 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 98 DT = DTWP ? &DTWP->getDomTree() : nullptr; 99 return false; 100 } 101 102 /// RemoveFromReverseMap - This is a helper function that removes Val from 103 /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry. 104 template <typename KeyTy> 105 static void RemoveFromReverseMap(DenseMap<Instruction*, 106 SmallPtrSet<KeyTy, 4> > &ReverseMap, 107 Instruction *Inst, KeyTy Val) { 108 typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator 109 InstIt = ReverseMap.find(Inst); 110 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); 111 bool Found = InstIt->second.erase(Val); 112 assert(Found && "Invalid reverse map!"); (void)Found; 113 if (InstIt->second.empty()) 114 ReverseMap.erase(InstIt); 115 } 116 117 /// GetLocation - If the given instruction references a specific memory 118 /// location, fill in Loc with the details, otherwise set Loc.Ptr to null. 119 /// Return a ModRefInfo value describing the general behavior of the 120 /// instruction. 121 static 122 AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst, 123 AliasAnalysis::Location &Loc, 124 AliasAnalysis *AA) { 125 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 126 if (LI->isUnordered()) { 127 Loc = AA->getLocation(LI); 128 return AliasAnalysis::Ref; 129 } 130 if (LI->getOrdering() == Monotonic) { 131 Loc = AA->getLocation(LI); 132 return AliasAnalysis::ModRef; 133 } 134 Loc = AliasAnalysis::Location(); 135 return AliasAnalysis::ModRef; 136 } 137 138 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 139 if (SI->isUnordered()) { 140 Loc = AA->getLocation(SI); 141 return AliasAnalysis::Mod; 142 } 143 if (SI->getOrdering() == Monotonic) { 144 Loc = AA->getLocation(SI); 145 return AliasAnalysis::ModRef; 146 } 147 Loc = AliasAnalysis::Location(); 148 return AliasAnalysis::ModRef; 149 } 150 151 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { 152 Loc = AA->getLocation(V); 153 return AliasAnalysis::ModRef; 154 } 155 156 if (const CallInst *CI = isFreeCall(Inst, AA->getTargetLibraryInfo())) { 157 // calls to free() deallocate the entire structure 158 Loc = AliasAnalysis::Location(CI->getArgOperand(0)); 159 return AliasAnalysis::Mod; 160 } 161 162 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 163 AAMDNodes AAInfo; 164 165 switch (II->getIntrinsicID()) { 166 case Intrinsic::lifetime_start: 167 case Intrinsic::lifetime_end: 168 case Intrinsic::invariant_start: 169 II->getAAMetadata(AAInfo); 170 Loc = AliasAnalysis::Location(II->getArgOperand(1), 171 cast<ConstantInt>(II->getArgOperand(0)) 172 ->getZExtValue(), AAInfo); 173 // These intrinsics don't really modify the memory, but returning Mod 174 // will allow them to be handled conservatively. 175 return AliasAnalysis::Mod; 176 case Intrinsic::invariant_end: 177 II->getAAMetadata(AAInfo); 178 Loc = AliasAnalysis::Location(II->getArgOperand(2), 179 cast<ConstantInt>(II->getArgOperand(1)) 180 ->getZExtValue(), AAInfo); 181 // These intrinsics don't really modify the memory, but returning Mod 182 // will allow them to be handled conservatively. 183 return AliasAnalysis::Mod; 184 default: 185 break; 186 } 187 } 188 189 // Otherwise, just do the coarse-grained thing that always works. 190 if (Inst->mayWriteToMemory()) 191 return AliasAnalysis::ModRef; 192 if (Inst->mayReadFromMemory()) 193 return AliasAnalysis::Ref; 194 return AliasAnalysis::NoModRef; 195 } 196 197 /// getCallSiteDependencyFrom - Private helper for finding the local 198 /// dependencies of a call site. 199 MemDepResult MemoryDependenceAnalysis:: 200 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall, 201 BasicBlock::iterator ScanIt, BasicBlock *BB) { 202 unsigned Limit = BlockScanLimit; 203 204 // Walk backwards through the block, looking for dependencies 205 while (ScanIt != BB->begin()) { 206 // Limit the amount of scanning we do so we don't end up with quadratic 207 // running time on extreme testcases. 208 --Limit; 209 if (!Limit) 210 return MemDepResult::getUnknown(); 211 212 Instruction *Inst = --ScanIt; 213 214 // If this inst is a memory op, get the pointer it accessed 215 AliasAnalysis::Location Loc; 216 AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA); 217 if (Loc.Ptr) { 218 // A simple instruction. 219 if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef) 220 return MemDepResult::getClobber(Inst); 221 continue; 222 } 223 224 if (auto InstCS = CallSite(Inst)) { 225 // Debug intrinsics don't cause dependences. 226 if (isa<DbgInfoIntrinsic>(Inst)) continue; 227 // If these two calls do not interfere, look past it. 228 switch (AA->getModRefInfo(CS, InstCS)) { 229 case AliasAnalysis::NoModRef: 230 // If the two calls are the same, return InstCS as a Def, so that 231 // CS can be found redundant and eliminated. 232 if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) && 233 CS.getInstruction()->isIdenticalToWhenDefined(Inst)) 234 return MemDepResult::getDef(Inst); 235 236 // Otherwise if the two calls don't interact (e.g. InstCS is readnone) 237 // keep scanning. 238 continue; 239 default: 240 return MemDepResult::getClobber(Inst); 241 } 242 } 243 244 // If we could not obtain a pointer for the instruction and the instruction 245 // touches memory then assume that this is a dependency. 246 if (MR != AliasAnalysis::NoModRef) 247 return MemDepResult::getClobber(Inst); 248 } 249 250 // No dependence found. If this is the entry block of the function, it is 251 // unknown, otherwise it is non-local. 252 if (BB != &BB->getParent()->getEntryBlock()) 253 return MemDepResult::getNonLocal(); 254 return MemDepResult::getNonFuncLocal(); 255 } 256 257 /// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that 258 /// would fully overlap MemLoc if done as a wider legal integer load. 259 /// 260 /// MemLocBase, MemLocOffset are lazily computed here the first time the 261 /// base/offs of memloc is needed. 262 static bool isLoadLoadClobberIfExtendedToFullWidth( 263 const AliasAnalysis::Location &MemLoc, const Value *&MemLocBase, 264 int64_t &MemLocOffs, const LoadInst *LI) { 265 const DataLayout &DL = LI->getModule()->getDataLayout(); 266 267 // If we haven't already computed the base/offset of MemLoc, do so now. 268 if (!MemLocBase) 269 MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, DL); 270 271 unsigned Size = MemoryDependenceAnalysis::getLoadLoadClobberFullWidthSize( 272 MemLocBase, MemLocOffs, MemLoc.Size, LI); 273 return Size != 0; 274 } 275 276 /// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that 277 /// looks at a memory location for a load (specified by MemLocBase, Offs, 278 /// and Size) and compares it against a load. If the specified load could 279 /// be safely widened to a larger integer load that is 1) still efficient, 280 /// 2) safe for the target, and 3) would provide the specified memory 281 /// location value, then this function returns the size in bytes of the 282 /// load width to use. If not, this returns zero. 283 unsigned MemoryDependenceAnalysis::getLoadLoadClobberFullWidthSize( 284 const Value *MemLocBase, int64_t MemLocOffs, unsigned MemLocSize, 285 const LoadInst *LI) { 286 // We can only extend simple integer loads. 287 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0; 288 289 // Load widening is hostile to ThreadSanitizer: it may cause false positives 290 // or make the reports more cryptic (access sizes are wrong). 291 if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread)) 292 return 0; 293 294 const DataLayout &DL = LI->getModule()->getDataLayout(); 295 296 // Get the base of this load. 297 int64_t LIOffs = 0; 298 const Value *LIBase = 299 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL); 300 301 // If the two pointers are not based on the same pointer, we can't tell that 302 // they are related. 303 if (LIBase != MemLocBase) return 0; 304 305 // Okay, the two values are based on the same pointer, but returned as 306 // no-alias. This happens when we have things like two byte loads at "P+1" 307 // and "P+3". Check to see if increasing the size of the "LI" load up to its 308 // alignment (or the largest native integer type) will allow us to load all 309 // the bits required by MemLoc. 310 311 // If MemLoc is before LI, then no widening of LI will help us out. 312 if (MemLocOffs < LIOffs) return 0; 313 314 // Get the alignment of the load in bytes. We assume that it is safe to load 315 // any legal integer up to this size without a problem. For example, if we're 316 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can 317 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it 318 // to i16. 319 unsigned LoadAlign = LI->getAlignment(); 320 321 int64_t MemLocEnd = MemLocOffs+MemLocSize; 322 323 // If no amount of rounding up will let MemLoc fit into LI, then bail out. 324 if (LIOffs+LoadAlign < MemLocEnd) return 0; 325 326 // This is the size of the load to try. Start with the next larger power of 327 // two. 328 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U; 329 NewLoadByteSize = NextPowerOf2(NewLoadByteSize); 330 331 while (1) { 332 // If this load size is bigger than our known alignment or would not fit 333 // into a native integer register, then we fail. 334 if (NewLoadByteSize > LoadAlign || 335 !DL.fitsInLegalInteger(NewLoadByteSize*8)) 336 return 0; 337 338 if (LIOffs + NewLoadByteSize > MemLocEnd && 339 LI->getParent()->getParent()->hasFnAttribute( 340 Attribute::SanitizeAddress)) 341 // We will be reading past the location accessed by the original program. 342 // While this is safe in a regular build, Address Safety analysis tools 343 // may start reporting false warnings. So, don't do widening. 344 return 0; 345 346 // If a load of this width would include all of MemLoc, then we succeed. 347 if (LIOffs+NewLoadByteSize >= MemLocEnd) 348 return NewLoadByteSize; 349 350 NewLoadByteSize <<= 1; 351 } 352 } 353 354 static bool isVolatile(Instruction *Inst) { 355 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 356 return LI->isVolatile(); 357 else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) 358 return SI->isVolatile(); 359 else if (AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(Inst)) 360 return AI->isVolatile(); 361 return false; 362 } 363 364 365 /// getPointerDependencyFrom - Return the instruction on which a memory 366 /// location depends. If isLoad is true, this routine ignores may-aliases with 367 /// read-only operations. If isLoad is false, this routine ignores may-aliases 368 /// with reads from read-only locations. If possible, pass the query 369 /// instruction as well; this function may take advantage of the metadata 370 /// annotated to the query instruction to refine the result. 371 MemDepResult MemoryDependenceAnalysis:: 372 getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, 373 BasicBlock::iterator ScanIt, BasicBlock *BB, 374 Instruction *QueryInst) { 375 376 const Value *MemLocBase = nullptr; 377 int64_t MemLocOffset = 0; 378 unsigned Limit = BlockScanLimit; 379 bool isInvariantLoad = false; 380 381 // We must be careful with atomic accesses, as they may allow another thread 382 // to touch this location, cloberring it. We are conservative: if the 383 // QueryInst is not a simple (non-atomic) memory access, we automatically 384 // return getClobber. 385 // If it is simple, we know based on the results of 386 // "Compiler testing via a theory of sound optimisations in the C11/C++11 387 // memory model" in PLDI 2013, that a non-atomic location can only be 388 // clobbered between a pair of a release and an acquire action, with no 389 // access to the location in between. 390 // Here is an example for giving the general intuition behind this rule. 391 // In the following code: 392 // store x 0; 393 // release action; [1] 394 // acquire action; [4] 395 // %val = load x; 396 // It is unsafe to replace %val by 0 because another thread may be running: 397 // acquire action; [2] 398 // store x 42; 399 // release action; [3] 400 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val 401 // being 42. A key property of this program however is that if either 402 // 1 or 4 were missing, there would be a race between the store of 42 403 // either the store of 0 or the load (making the whole progam racy). 404 // The paper mentionned above shows that the same property is respected 405 // by every program that can detect any optimisation of that kind: either 406 // it is racy (undefined) or there is a release followed by an acquire 407 // between the pair of accesses under consideration. 408 409 // If the load is invariant, we "know" that it doesn't alias *any* write. We 410 // do want to respect mustalias results since defs are useful for value 411 // forwarding, but any mayalias write can be assumed to be noalias. 412 // Arguably, this logic should be pushed inside AliasAnalysis itself. 413 if (isLoad && QueryInst) { 414 LoadInst *LI = dyn_cast<LoadInst>(QueryInst); 415 if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr) 416 isInvariantLoad = true; 417 } 418 419 const DataLayout &DL = BB->getModule()->getDataLayout(); 420 421 // Walk backwards through the basic block, looking for dependencies. 422 while (ScanIt != BB->begin()) { 423 Instruction *Inst = --ScanIt; 424 425 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 426 // Debug intrinsics don't (and can't) cause dependencies. 427 if (isa<DbgInfoIntrinsic>(II)) continue; 428 429 // Limit the amount of scanning we do so we don't end up with quadratic 430 // running time on extreme testcases. 431 --Limit; 432 if (!Limit) 433 return MemDepResult::getUnknown(); 434 435 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 436 // If we reach a lifetime begin or end marker, then the query ends here 437 // because the value is undefined. 438 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 439 // FIXME: This only considers queries directly on the invariant-tagged 440 // pointer, not on query pointers that are indexed off of them. It'd 441 // be nice to handle that at some point (the right approach is to use 442 // GetPointerBaseWithConstantOffset). 443 if (AA->isMustAlias(AliasAnalysis::Location(II->getArgOperand(1)), 444 MemLoc)) 445 return MemDepResult::getDef(II); 446 continue; 447 } 448 } 449 450 // Values depend on loads if the pointers are must aliased. This means that 451 // a load depends on another must aliased load from the same value. 452 // One exception is atomic loads: a value can depend on an atomic load that it 453 // does not alias with when this atomic load indicates that another thread may 454 // be accessing the location. 455 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 456 457 // While volatile access cannot be eliminated, they do not have to clobber 458 // non-aliasing locations, as normal accesses, for example, can be safely 459 // reordered with volatile accesses. 460 if (LI->isVolatile()) { 461 if (!QueryInst) 462 // Original QueryInst *may* be volatile 463 return MemDepResult::getClobber(LI); 464 if (isVolatile(QueryInst)) 465 // Ordering required if QueryInst is itself volatile 466 return MemDepResult::getClobber(LI); 467 // Otherwise, volatile doesn't imply any special ordering 468 } 469 470 // Atomic loads have complications involved. 471 // A Monotonic (or higher) load is OK if the query inst is itself not atomic. 472 // FIXME: This is overly conservative. 473 if (LI->isAtomic() && LI->getOrdering() > Unordered) { 474 if (!QueryInst) 475 return MemDepResult::getClobber(LI); 476 if (LI->getOrdering() != Monotonic) 477 return MemDepResult::getClobber(LI); 478 if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) { 479 if (!QueryLI->isSimple()) 480 return MemDepResult::getClobber(LI); 481 } else if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) { 482 if (!QuerySI->isSimple()) 483 return MemDepResult::getClobber(LI); 484 } else if (QueryInst->mayReadOrWriteMemory()) { 485 return MemDepResult::getClobber(LI); 486 } 487 } 488 489 AliasAnalysis::Location LoadLoc = AA->getLocation(LI); 490 491 // If we found a pointer, check if it could be the same as our pointer. 492 AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc); 493 494 if (isLoad) { 495 if (R == AliasAnalysis::NoAlias) { 496 // If this is an over-aligned integer load (for example, 497 // "load i8* %P, align 4") see if it would obviously overlap with the 498 // queried location if widened to a larger load (e.g. if the queried 499 // location is 1 byte at P+1). If so, return it as a load/load 500 // clobber result, allowing the client to decide to widen the load if 501 // it wants to. 502 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) { 503 if (LI->getAlignment() * 8 > ITy->getPrimitiveSizeInBits() && 504 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase, 505 MemLocOffset, LI)) 506 return MemDepResult::getClobber(Inst); 507 } 508 continue; 509 } 510 511 // Must aliased loads are defs of each other. 512 if (R == AliasAnalysis::MustAlias) 513 return MemDepResult::getDef(Inst); 514 515 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads 516 // in terms of clobbering loads, but since it does this by looking 517 // at the clobbering load directly, it doesn't know about any 518 // phi translation that may have happened along the way. 519 520 // If we have a partial alias, then return this as a clobber for the 521 // client to handle. 522 if (R == AliasAnalysis::PartialAlias) 523 return MemDepResult::getClobber(Inst); 524 #endif 525 526 // Random may-alias loads don't depend on each other without a 527 // dependence. 528 continue; 529 } 530 531 // Stores don't depend on other no-aliased accesses. 532 if (R == AliasAnalysis::NoAlias) 533 continue; 534 535 // Stores don't alias loads from read-only memory. 536 if (AA->pointsToConstantMemory(LoadLoc)) 537 continue; 538 539 // Stores depend on may/must aliased loads. 540 return MemDepResult::getDef(Inst); 541 } 542 543 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 544 // Atomic stores have complications involved. 545 // A Monotonic store is OK if the query inst is itself not atomic. 546 // FIXME: This is overly conservative. 547 if (!SI->isUnordered()) { 548 if (!QueryInst) 549 return MemDepResult::getClobber(SI); 550 if (SI->getOrdering() != Monotonic) 551 return MemDepResult::getClobber(SI); 552 if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) { 553 if (!QueryLI->isSimple()) 554 return MemDepResult::getClobber(SI); 555 } else if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) { 556 if (!QuerySI->isSimple()) 557 return MemDepResult::getClobber(SI); 558 } else if (QueryInst->mayReadOrWriteMemory()) { 559 return MemDepResult::getClobber(SI); 560 } 561 } 562 563 // FIXME: this is overly conservative. 564 // While volatile access cannot be eliminated, they do not have to clobber 565 // non-aliasing locations, as normal accesses can for example be reordered 566 // with volatile accesses. 567 if (SI->isVolatile()) 568 return MemDepResult::getClobber(SI); 569 570 // If alias analysis can tell that this store is guaranteed to not modify 571 // the query pointer, ignore it. Use getModRefInfo to handle cases where 572 // the query pointer points to constant memory etc. 573 if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef) 574 continue; 575 576 // Ok, this store might clobber the query pointer. Check to see if it is 577 // a must alias: in this case, we want to return this as a def. 578 AliasAnalysis::Location StoreLoc = AA->getLocation(SI); 579 580 // If we found a pointer, check if it could be the same as our pointer. 581 AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc); 582 583 if (R == AliasAnalysis::NoAlias) 584 continue; 585 if (R == AliasAnalysis::MustAlias) 586 return MemDepResult::getDef(Inst); 587 if (isInvariantLoad) 588 continue; 589 return MemDepResult::getClobber(Inst); 590 } 591 592 // If this is an allocation, and if we know that the accessed pointer is to 593 // the allocation, return Def. This means that there is no dependence and 594 // the access can be optimized based on that. For example, a load could 595 // turn into undef. 596 // Note: Only determine this to be a malloc if Inst is the malloc call, not 597 // a subsequent bitcast of the malloc call result. There can be stores to 598 // the malloced memory between the malloc call and its bitcast uses, and we 599 // need to continue scanning until the malloc call. 600 const TargetLibraryInfo *TLI = AA->getTargetLibraryInfo(); 601 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, TLI)) { 602 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL); 603 604 if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr)) 605 return MemDepResult::getDef(Inst); 606 if (isInvariantLoad) 607 continue; 608 // Be conservative if the accessed pointer may alias the allocation. 609 if (AA->alias(Inst, AccessPtr) != AliasAnalysis::NoAlias) 610 return MemDepResult::getClobber(Inst); 611 // If the allocation is not aliased and does not read memory (like 612 // strdup), it is safe to ignore. 613 if (isa<AllocaInst>(Inst) || 614 isMallocLikeFn(Inst, TLI) || isCallocLikeFn(Inst, TLI)) 615 continue; 616 } 617 618 if (isInvariantLoad) 619 continue; 620 621 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. 622 AliasAnalysis::ModRefResult MR = AA->getModRefInfo(Inst, MemLoc); 623 // If necessary, perform additional analysis. 624 if (MR == AliasAnalysis::ModRef) 625 MR = AA->callCapturesBefore(Inst, MemLoc, DT); 626 switch (MR) { 627 case AliasAnalysis::NoModRef: 628 // If the call has no effect on the queried pointer, just ignore it. 629 continue; 630 case AliasAnalysis::Mod: 631 return MemDepResult::getClobber(Inst); 632 case AliasAnalysis::Ref: 633 // If the call is known to never store to the pointer, and if this is a 634 // load query, we can safely ignore it (scan past it). 635 if (isLoad) 636 continue; 637 default: 638 // Otherwise, there is a potential dependence. Return a clobber. 639 return MemDepResult::getClobber(Inst); 640 } 641 } 642 643 // No dependence found. If this is the entry block of the function, it is 644 // unknown, otherwise it is non-local. 645 if (BB != &BB->getParent()->getEntryBlock()) 646 return MemDepResult::getNonLocal(); 647 return MemDepResult::getNonFuncLocal(); 648 } 649 650 /// getDependency - Return the instruction on which a memory operation 651 /// depends. 652 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) { 653 Instruction *ScanPos = QueryInst; 654 655 // Check for a cached result 656 MemDepResult &LocalCache = LocalDeps[QueryInst]; 657 658 // If the cached entry is non-dirty, just return it. Note that this depends 659 // on MemDepResult's default constructing to 'dirty'. 660 if (!LocalCache.isDirty()) 661 return LocalCache; 662 663 // Otherwise, if we have a dirty entry, we know we can start the scan at that 664 // instruction, which may save us some work. 665 if (Instruction *Inst = LocalCache.getInst()) { 666 ScanPos = Inst; 667 668 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); 669 } 670 671 BasicBlock *QueryParent = QueryInst->getParent(); 672 673 // Do the scan. 674 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { 675 // No dependence found. If this is the entry block of the function, it is 676 // unknown, otherwise it is non-local. 677 if (QueryParent != &QueryParent->getParent()->getEntryBlock()) 678 LocalCache = MemDepResult::getNonLocal(); 679 else 680 LocalCache = MemDepResult::getNonFuncLocal(); 681 } else { 682 AliasAnalysis::Location MemLoc; 683 AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA); 684 if (MemLoc.Ptr) { 685 // If we can do a pointer scan, make it happen. 686 bool isLoad = !(MR & AliasAnalysis::Mod); 687 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst)) 688 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start; 689 690 LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos, 691 QueryParent, QueryInst); 692 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) { 693 CallSite QueryCS(QueryInst); 694 bool isReadOnly = AA->onlyReadsMemory(QueryCS); 695 LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos, 696 QueryParent); 697 } else 698 // Non-memory instruction. 699 LocalCache = MemDepResult::getUnknown(); 700 } 701 702 // Remember the result! 703 if (Instruction *I = LocalCache.getInst()) 704 ReverseLocalDeps[I].insert(QueryInst); 705 706 return LocalCache; 707 } 708 709 #ifndef NDEBUG 710 /// AssertSorted - This method is used when -debug is specified to verify that 711 /// cache arrays are properly kept sorted. 712 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 713 int Count = -1) { 714 if (Count == -1) Count = Cache.size(); 715 if (Count == 0) return; 716 717 for (unsigned i = 1; i != unsigned(Count); ++i) 718 assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!"); 719 } 720 #endif 721 722 /// getNonLocalCallDependency - Perform a full dependency query for the 723 /// specified call, returning the set of blocks that the value is 724 /// potentially live across. The returned set of results will include a 725 /// "NonLocal" result for all blocks where the value is live across. 726 /// 727 /// This method assumes the instruction returns a "NonLocal" dependency 728 /// within its own block. 729 /// 730 /// This returns a reference to an internal data structure that may be 731 /// invalidated on the next non-local query or when an instruction is 732 /// removed. Clients must copy this data if they want it around longer than 733 /// that. 734 const MemoryDependenceAnalysis::NonLocalDepInfo & 735 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { 736 assert(getDependency(QueryCS.getInstruction()).isNonLocal() && 737 "getNonLocalCallDependency should only be used on calls with non-local deps!"); 738 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()]; 739 NonLocalDepInfo &Cache = CacheP.first; 740 741 /// DirtyBlocks - This is the set of blocks that need to be recomputed. In 742 /// the cached case, this can happen due to instructions being deleted etc. In 743 /// the uncached case, this starts out as the set of predecessors we care 744 /// about. 745 SmallVector<BasicBlock*, 32> DirtyBlocks; 746 747 if (!Cache.empty()) { 748 // Okay, we have a cache entry. If we know it is not dirty, just return it 749 // with no computation. 750 if (!CacheP.second) { 751 ++NumCacheNonLocal; 752 return Cache; 753 } 754 755 // If we already have a partially computed set of results, scan them to 756 // determine what is dirty, seeding our initial DirtyBlocks worklist. 757 for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end(); 758 I != E; ++I) 759 if (I->getResult().isDirty()) 760 DirtyBlocks.push_back(I->getBB()); 761 762 // Sort the cache so that we can do fast binary search lookups below. 763 std::sort(Cache.begin(), Cache.end()); 764 765 ++NumCacheDirtyNonLocal; 766 //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " 767 // << Cache.size() << " cached: " << *QueryInst; 768 } else { 769 // Seed DirtyBlocks with each of the preds of QueryInst's block. 770 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent(); 771 for (BasicBlock *Pred : PredCache.get(QueryBB)) 772 DirtyBlocks.push_back(Pred); 773 ++NumUncacheNonLocal; 774 } 775 776 // isReadonlyCall - If this is a read-only call, we can be more aggressive. 777 bool isReadonlyCall = AA->onlyReadsMemory(QueryCS); 778 779 SmallPtrSet<BasicBlock*, 64> Visited; 780 781 unsigned NumSortedEntries = Cache.size(); 782 DEBUG(AssertSorted(Cache)); 783 784 // Iterate while we still have blocks to update. 785 while (!DirtyBlocks.empty()) { 786 BasicBlock *DirtyBB = DirtyBlocks.back(); 787 DirtyBlocks.pop_back(); 788 789 // Already processed this block? 790 if (!Visited.insert(DirtyBB).second) 791 continue; 792 793 // Do a binary search to see if we already have an entry for this block in 794 // the cache set. If so, find it. 795 DEBUG(AssertSorted(Cache, NumSortedEntries)); 796 NonLocalDepInfo::iterator Entry = 797 std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries, 798 NonLocalDepEntry(DirtyBB)); 799 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB) 800 --Entry; 801 802 NonLocalDepEntry *ExistingResult = nullptr; 803 if (Entry != Cache.begin()+NumSortedEntries && 804 Entry->getBB() == DirtyBB) { 805 // If we already have an entry, and if it isn't already dirty, the block 806 // is done. 807 if (!Entry->getResult().isDirty()) 808 continue; 809 810 // Otherwise, remember this slot so we can update the value. 811 ExistingResult = &*Entry; 812 } 813 814 // If the dirty entry has a pointer, start scanning from it so we don't have 815 // to rescan the entire block. 816 BasicBlock::iterator ScanPos = DirtyBB->end(); 817 if (ExistingResult) { 818 if (Instruction *Inst = ExistingResult->getResult().getInst()) { 819 ScanPos = Inst; 820 // We're removing QueryInst's use of Inst. 821 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, 822 QueryCS.getInstruction()); 823 } 824 } 825 826 // Find out if this block has a local dependency for QueryInst. 827 MemDepResult Dep; 828 829 if (ScanPos != DirtyBB->begin()) { 830 Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB); 831 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { 832 // No dependence found. If this is the entry block of the function, it is 833 // a clobber, otherwise it is unknown. 834 Dep = MemDepResult::getNonLocal(); 835 } else { 836 Dep = MemDepResult::getNonFuncLocal(); 837 } 838 839 // If we had a dirty entry for the block, update it. Otherwise, just add 840 // a new entry. 841 if (ExistingResult) 842 ExistingResult->setResult(Dep); 843 else 844 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); 845 846 // If the block has a dependency (i.e. it isn't completely transparent to 847 // the value), remember the association! 848 if (!Dep.isNonLocal()) { 849 // Keep the ReverseNonLocalDeps map up to date so we can efficiently 850 // update this when we remove instructions. 851 if (Instruction *Inst = Dep.getInst()) 852 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction()); 853 } else { 854 855 // If the block *is* completely transparent to the load, we need to check 856 // the predecessors of this block. Add them to our worklist. 857 for (BasicBlock *Pred : PredCache.get(DirtyBB)) 858 DirtyBlocks.push_back(Pred); 859 } 860 } 861 862 return Cache; 863 } 864 865 /// getNonLocalPointerDependency - Perform a full dependency query for an 866 /// access to the specified (non-volatile) memory location, returning the 867 /// set of instructions that either define or clobber the value. 868 /// 869 /// This method assumes the pointer has a "NonLocal" dependency within its 870 /// own block. 871 /// 872 void MemoryDependenceAnalysis:: 873 getNonLocalPointerDependency(Instruction *QueryInst, 874 SmallVectorImpl<NonLocalDepResult> &Result) { 875 const AliasAnalysis::Location Loc = AA->getLocation(QueryInst); 876 bool isLoad = isa<LoadInst>(QueryInst); 877 BasicBlock *FromBB = QueryInst->getParent(); 878 assert(FromBB); 879 880 assert(Loc.Ptr->getType()->isPointerTy() && 881 "Can't get pointer deps of a non-pointer!"); 882 Result.clear(); 883 884 // This routine does not expect to deal with volatile instructions. 885 // Doing so would require piping through the QueryInst all the way through. 886 // TODO: volatiles can't be elided, but they can be reordered with other 887 // non-volatile accesses. 888 889 // We currently give up on any instruction which is ordered, but we do handle 890 // atomic instructions which are unordered. 891 // TODO: Handle ordered instructions 892 auto isOrdered = [](Instruction *Inst) { 893 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 894 return !LI->isUnordered(); 895 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 896 return !SI->isUnordered(); 897 } 898 return false; 899 }; 900 if (isVolatile(QueryInst) || isOrdered(QueryInst)) { 901 Result.push_back(NonLocalDepResult(FromBB, 902 MemDepResult::getUnknown(), 903 const_cast<Value *>(Loc.Ptr))); 904 return; 905 } 906 const DataLayout &DL = FromBB->getModule()->getDataLayout(); 907 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, AC); 908 909 // This is the set of blocks we've inspected, and the pointer we consider in 910 // each block. Because of critical edges, we currently bail out if querying 911 // a block with multiple different pointers. This can happen during PHI 912 // translation. 913 DenseMap<BasicBlock*, Value*> Visited; 914 if (!getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB, 915 Result, Visited, true)) 916 return; 917 Result.clear(); 918 Result.push_back(NonLocalDepResult(FromBB, 919 MemDepResult::getUnknown(), 920 const_cast<Value *>(Loc.Ptr))); 921 } 922 923 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with 924 /// Pointer/PointeeSize using either cached information in Cache or by doing a 925 /// lookup (which may use dirty cache info if available). If we do a lookup, 926 /// add the result to the cache. 927 MemDepResult MemoryDependenceAnalysis:: 928 GetNonLocalInfoForBlock(Instruction *QueryInst, 929 const AliasAnalysis::Location &Loc, 930 bool isLoad, BasicBlock *BB, 931 NonLocalDepInfo *Cache, unsigned NumSortedEntries) { 932 933 // Do a binary search to see if we already have an entry for this block in 934 // the cache set. If so, find it. 935 NonLocalDepInfo::iterator Entry = 936 std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries, 937 NonLocalDepEntry(BB)); 938 if (Entry != Cache->begin() && (Entry-1)->getBB() == BB) 939 --Entry; 940 941 NonLocalDepEntry *ExistingResult = nullptr; 942 if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB) 943 ExistingResult = &*Entry; 944 945 // If we have a cached entry, and it is non-dirty, use it as the value for 946 // this dependency. 947 if (ExistingResult && !ExistingResult->getResult().isDirty()) { 948 ++NumCacheNonLocalPtr; 949 return ExistingResult->getResult(); 950 } 951 952 // Otherwise, we have to scan for the value. If we have a dirty cache 953 // entry, start scanning from its position, otherwise we scan from the end 954 // of the block. 955 BasicBlock::iterator ScanPos = BB->end(); 956 if (ExistingResult && ExistingResult->getResult().getInst()) { 957 assert(ExistingResult->getResult().getInst()->getParent() == BB && 958 "Instruction invalidated?"); 959 ++NumCacheDirtyNonLocalPtr; 960 ScanPos = ExistingResult->getResult().getInst(); 961 962 // Eliminating the dirty entry from 'Cache', so update the reverse info. 963 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 964 RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey); 965 } else { 966 ++NumUncacheNonLocalPtr; 967 } 968 969 // Scan the block for the dependency. 970 MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, 971 QueryInst); 972 973 // If we had a dirty entry for the block, update it. Otherwise, just add 974 // a new entry. 975 if (ExistingResult) 976 ExistingResult->setResult(Dep); 977 else 978 Cache->push_back(NonLocalDepEntry(BB, Dep)); 979 980 // If the block has a dependency (i.e. it isn't completely transparent to 981 // the value), remember the reverse association because we just added it 982 // to Cache! 983 if (!Dep.isDef() && !Dep.isClobber()) 984 return Dep; 985 986 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently 987 // update MemDep when we remove instructions. 988 Instruction *Inst = Dep.getInst(); 989 assert(Inst && "Didn't depend on anything?"); 990 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 991 ReverseNonLocalPtrDeps[Inst].insert(CacheKey); 992 return Dep; 993 } 994 995 /// SortNonLocalDepInfoCache - Sort the NonLocalDepInfo cache, given a certain 996 /// number of elements in the array that are already properly ordered. This is 997 /// optimized for the case when only a few entries are added. 998 static void 999 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 1000 unsigned NumSortedEntries) { 1001 switch (Cache.size() - NumSortedEntries) { 1002 case 0: 1003 // done, no new entries. 1004 break; 1005 case 2: { 1006 // Two new entries, insert the last one into place. 1007 NonLocalDepEntry Val = Cache.back(); 1008 Cache.pop_back(); 1009 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 1010 std::upper_bound(Cache.begin(), Cache.end()-1, Val); 1011 Cache.insert(Entry, Val); 1012 // FALL THROUGH. 1013 } 1014 case 1: 1015 // One new entry, Just insert the new value at the appropriate position. 1016 if (Cache.size() != 1) { 1017 NonLocalDepEntry Val = Cache.back(); 1018 Cache.pop_back(); 1019 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 1020 std::upper_bound(Cache.begin(), Cache.end(), Val); 1021 Cache.insert(Entry, Val); 1022 } 1023 break; 1024 default: 1025 // Added many values, do a full scale sort. 1026 std::sort(Cache.begin(), Cache.end()); 1027 break; 1028 } 1029 } 1030 1031 /// getNonLocalPointerDepFromBB - Perform a dependency query based on 1032 /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def 1033 /// results to the results vector and keep track of which blocks are visited in 1034 /// 'Visited'. 1035 /// 1036 /// This has special behavior for the first block queries (when SkipFirstBlock 1037 /// is true). In this special case, it ignores the contents of the specified 1038 /// block and starts returning dependence info for its predecessors. 1039 /// 1040 /// This function returns false on success, or true to indicate that it could 1041 /// not compute dependence information for some reason. This should be treated 1042 /// as a clobber dependence on the first instruction in the predecessor block. 1043 bool MemoryDependenceAnalysis:: 1044 getNonLocalPointerDepFromBB(Instruction *QueryInst, 1045 const PHITransAddr &Pointer, 1046 const AliasAnalysis::Location &Loc, 1047 bool isLoad, BasicBlock *StartBB, 1048 SmallVectorImpl<NonLocalDepResult> &Result, 1049 DenseMap<BasicBlock*, Value*> &Visited, 1050 bool SkipFirstBlock) { 1051 // Look up the cached info for Pointer. 1052 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); 1053 1054 // Set up a temporary NLPI value. If the map doesn't yet have an entry for 1055 // CacheKey, this value will be inserted as the associated value. Otherwise, 1056 // it'll be ignored, and we'll have to check to see if the cached size and 1057 // aa tags are consistent with the current query. 1058 NonLocalPointerInfo InitialNLPI; 1059 InitialNLPI.Size = Loc.Size; 1060 InitialNLPI.AATags = Loc.AATags; 1061 1062 // Get the NLPI for CacheKey, inserting one into the map if it doesn't 1063 // already have one. 1064 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = 1065 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); 1066 NonLocalPointerInfo *CacheInfo = &Pair.first->second; 1067 1068 // If we already have a cache entry for this CacheKey, we may need to do some 1069 // work to reconcile the cache entry and the current query. 1070 if (!Pair.second) { 1071 if (CacheInfo->Size < Loc.Size) { 1072 // The query's Size is greater than the cached one. Throw out the 1073 // cached data and proceed with the query at the greater size. 1074 CacheInfo->Pair = BBSkipFirstBlockPair(); 1075 CacheInfo->Size = Loc.Size; 1076 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(), 1077 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI) 1078 if (Instruction *Inst = DI->getResult().getInst()) 1079 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1080 CacheInfo->NonLocalDeps.clear(); 1081 } else if (CacheInfo->Size > Loc.Size) { 1082 // This query's Size is less than the cached one. Conservatively restart 1083 // the query using the greater size. 1084 return getNonLocalPointerDepFromBB(QueryInst, Pointer, 1085 Loc.getWithNewSize(CacheInfo->Size), 1086 isLoad, StartBB, Result, Visited, 1087 SkipFirstBlock); 1088 } 1089 1090 // If the query's AATags are inconsistent with the cached one, 1091 // conservatively throw out the cached data and restart the query with 1092 // no tag if needed. 1093 if (CacheInfo->AATags != Loc.AATags) { 1094 if (CacheInfo->AATags) { 1095 CacheInfo->Pair = BBSkipFirstBlockPair(); 1096 CacheInfo->AATags = AAMDNodes(); 1097 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(), 1098 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI) 1099 if (Instruction *Inst = DI->getResult().getInst()) 1100 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1101 CacheInfo->NonLocalDeps.clear(); 1102 } 1103 if (Loc.AATags) 1104 return getNonLocalPointerDepFromBB(QueryInst, 1105 Pointer, Loc.getWithoutAATags(), 1106 isLoad, StartBB, Result, Visited, 1107 SkipFirstBlock); 1108 } 1109 } 1110 1111 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; 1112 1113 // If we have valid cached information for exactly the block we are 1114 // investigating, just return it with no recomputation. 1115 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { 1116 // We have a fully cached result for this query then we can just return the 1117 // cached results and populate the visited set. However, we have to verify 1118 // that we don't already have conflicting results for these blocks. Check 1119 // to ensure that if a block in the results set is in the visited set that 1120 // it was for the same pointer query. 1121 if (!Visited.empty()) { 1122 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 1123 I != E; ++I) { 1124 DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB()); 1125 if (VI == Visited.end() || VI->second == Pointer.getAddr()) 1126 continue; 1127 1128 // We have a pointer mismatch in a block. Just return clobber, saying 1129 // that something was clobbered in this result. We could also do a 1130 // non-fully cached query, but there is little point in doing this. 1131 return true; 1132 } 1133 } 1134 1135 Value *Addr = Pointer.getAddr(); 1136 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 1137 I != E; ++I) { 1138 Visited.insert(std::make_pair(I->getBB(), Addr)); 1139 if (I->getResult().isNonLocal()) { 1140 continue; 1141 } 1142 1143 if (!DT) { 1144 Result.push_back(NonLocalDepResult(I->getBB(), 1145 MemDepResult::getUnknown(), 1146 Addr)); 1147 } else if (DT->isReachableFromEntry(I->getBB())) { 1148 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr)); 1149 } 1150 } 1151 ++NumCacheCompleteNonLocalPtr; 1152 return false; 1153 } 1154 1155 // Otherwise, either this is a new block, a block with an invalid cache 1156 // pointer or one that we're about to invalidate by putting more info into it 1157 // than its valid cache info. If empty, the result will be valid cache info, 1158 // otherwise it isn't. 1159 if (Cache->empty()) 1160 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); 1161 else 1162 CacheInfo->Pair = BBSkipFirstBlockPair(); 1163 1164 SmallVector<BasicBlock*, 32> Worklist; 1165 Worklist.push_back(StartBB); 1166 1167 // PredList used inside loop. 1168 SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList; 1169 1170 // Keep track of the entries that we know are sorted. Previously cached 1171 // entries will all be sorted. The entries we add we only sort on demand (we 1172 // don't insert every element into its sorted position). We know that we 1173 // won't get any reuse from currently inserted values, because we don't 1174 // revisit blocks after we insert info for them. 1175 unsigned NumSortedEntries = Cache->size(); 1176 DEBUG(AssertSorted(*Cache)); 1177 1178 while (!Worklist.empty()) { 1179 BasicBlock *BB = Worklist.pop_back_val(); 1180 1181 // If we do process a large number of blocks it becomes very expensive and 1182 // likely it isn't worth worrying about 1183 if (Result.size() > NumResultsLimit) { 1184 Worklist.clear(); 1185 // Sort it now (if needed) so that recursive invocations of 1186 // getNonLocalPointerDepFromBB and other routines that could reuse the 1187 // cache value will only see properly sorted cache arrays. 1188 if (Cache && NumSortedEntries != Cache->size()) { 1189 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1190 } 1191 // Since we bail out, the "Cache" set won't contain all of the 1192 // results for the query. This is ok (we can still use it to accelerate 1193 // specific block queries) but we can't do the fastpath "return all 1194 // results from the set". Clear out the indicator for this. 1195 CacheInfo->Pair = BBSkipFirstBlockPair(); 1196 return true; 1197 } 1198 1199 // Skip the first block if we have it. 1200 if (!SkipFirstBlock) { 1201 // Analyze the dependency of *Pointer in FromBB. See if we already have 1202 // been here. 1203 assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); 1204 1205 // Get the dependency info for Pointer in BB. If we have cached 1206 // information, we will use it, otherwise we compute it. 1207 DEBUG(AssertSorted(*Cache, NumSortedEntries)); 1208 MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, 1209 Loc, isLoad, BB, Cache, 1210 NumSortedEntries); 1211 1212 // If we got a Def or Clobber, add this to the list of results. 1213 if (!Dep.isNonLocal()) { 1214 if (!DT) { 1215 Result.push_back(NonLocalDepResult(BB, 1216 MemDepResult::getUnknown(), 1217 Pointer.getAddr())); 1218 continue; 1219 } else if (DT->isReachableFromEntry(BB)) { 1220 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); 1221 continue; 1222 } 1223 } 1224 } 1225 1226 // If 'Pointer' is an instruction defined in this block, then we need to do 1227 // phi translation to change it into a value live in the predecessor block. 1228 // If not, we just add the predecessors to the worklist and scan them with 1229 // the same Pointer. 1230 if (!Pointer.NeedsPHITranslationFromBlock(BB)) { 1231 SkipFirstBlock = false; 1232 SmallVector<BasicBlock*, 16> NewBlocks; 1233 for (BasicBlock *Pred : PredCache.get(BB)) { 1234 // Verify that we haven't looked at this block yet. 1235 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 1236 InsertRes = Visited.insert(std::make_pair(Pred, Pointer.getAddr())); 1237 if (InsertRes.second) { 1238 // First time we've looked at *PI. 1239 NewBlocks.push_back(Pred); 1240 continue; 1241 } 1242 1243 // If we have seen this block before, but it was with a different 1244 // pointer then we have a phi translation failure and we have to treat 1245 // this as a clobber. 1246 if (InsertRes.first->second != Pointer.getAddr()) { 1247 // Make sure to clean up the Visited map before continuing on to 1248 // PredTranslationFailure. 1249 for (unsigned i = 0; i < NewBlocks.size(); i++) 1250 Visited.erase(NewBlocks[i]); 1251 goto PredTranslationFailure; 1252 } 1253 } 1254 Worklist.append(NewBlocks.begin(), NewBlocks.end()); 1255 continue; 1256 } 1257 1258 // We do need to do phi translation, if we know ahead of time we can't phi 1259 // translate this value, don't even try. 1260 if (!Pointer.IsPotentiallyPHITranslatable()) 1261 goto PredTranslationFailure; 1262 1263 // We may have added values to the cache list before this PHI translation. 1264 // If so, we haven't done anything to ensure that the cache remains sorted. 1265 // Sort it now (if needed) so that recursive invocations of 1266 // getNonLocalPointerDepFromBB and other routines that could reuse the cache 1267 // value will only see properly sorted cache arrays. 1268 if (Cache && NumSortedEntries != Cache->size()) { 1269 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1270 NumSortedEntries = Cache->size(); 1271 } 1272 Cache = nullptr; 1273 1274 PredList.clear(); 1275 for (BasicBlock *Pred : PredCache.get(BB)) { 1276 PredList.push_back(std::make_pair(Pred, Pointer)); 1277 1278 // Get the PHI translated pointer in this predecessor. This can fail if 1279 // not translatable, in which case the getAddr() returns null. 1280 PHITransAddr &PredPointer = PredList.back().second; 1281 PredPointer.PHITranslateValue(BB, Pred, nullptr); 1282 1283 Value *PredPtrVal = PredPointer.getAddr(); 1284 1285 // Check to see if we have already visited this pred block with another 1286 // pointer. If so, we can't do this lookup. This failure can occur 1287 // with PHI translation when a critical edge exists and the PHI node in 1288 // the successor translates to a pointer value different than the 1289 // pointer the block was first analyzed with. 1290 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 1291 InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal)); 1292 1293 if (!InsertRes.second) { 1294 // We found the pred; take it off the list of preds to visit. 1295 PredList.pop_back(); 1296 1297 // If the predecessor was visited with PredPtr, then we already did 1298 // the analysis and can ignore it. 1299 if (InsertRes.first->second == PredPtrVal) 1300 continue; 1301 1302 // Otherwise, the block was previously analyzed with a different 1303 // pointer. We can't represent the result of this case, so we just 1304 // treat this as a phi translation failure. 1305 1306 // Make sure to clean up the Visited map before continuing on to 1307 // PredTranslationFailure. 1308 for (unsigned i = 0, n = PredList.size(); i < n; ++i) 1309 Visited.erase(PredList[i].first); 1310 1311 goto PredTranslationFailure; 1312 } 1313 } 1314 1315 // Actually process results here; this need to be a separate loop to avoid 1316 // calling getNonLocalPointerDepFromBB for blocks we don't want to return 1317 // any results for. (getNonLocalPointerDepFromBB will modify our 1318 // datastructures in ways the code after the PredTranslationFailure label 1319 // doesn't expect.) 1320 for (unsigned i = 0, n = PredList.size(); i < n; ++i) { 1321 BasicBlock *Pred = PredList[i].first; 1322 PHITransAddr &PredPointer = PredList[i].second; 1323 Value *PredPtrVal = PredPointer.getAddr(); 1324 1325 bool CanTranslate = true; 1326 // If PHI translation was unable to find an available pointer in this 1327 // predecessor, then we have to assume that the pointer is clobbered in 1328 // that predecessor. We can still do PRE of the load, which would insert 1329 // a computation of the pointer in this predecessor. 1330 if (!PredPtrVal) 1331 CanTranslate = false; 1332 1333 // FIXME: it is entirely possible that PHI translating will end up with 1334 // the same value. Consider PHI translating something like: 1335 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* 1336 // to recurse here, pedantically speaking. 1337 1338 // If getNonLocalPointerDepFromBB fails here, that means the cached 1339 // result conflicted with the Visited list; we have to conservatively 1340 // assume it is unknown, but this also does not block PRE of the load. 1341 if (!CanTranslate || 1342 getNonLocalPointerDepFromBB(QueryInst, PredPointer, 1343 Loc.getWithNewPtr(PredPtrVal), 1344 isLoad, Pred, 1345 Result, Visited)) { 1346 // Add the entry to the Result list. 1347 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal); 1348 Result.push_back(Entry); 1349 1350 // Since we had a phi translation failure, the cache for CacheKey won't 1351 // include all of the entries that we need to immediately satisfy future 1352 // queries. Mark this in NonLocalPointerDeps by setting the 1353 // BBSkipFirstBlockPair pointer to null. This requires reuse of the 1354 // cached value to do more work but not miss the phi trans failure. 1355 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; 1356 NLPI.Pair = BBSkipFirstBlockPair(); 1357 continue; 1358 } 1359 } 1360 1361 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. 1362 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1363 Cache = &CacheInfo->NonLocalDeps; 1364 NumSortedEntries = Cache->size(); 1365 1366 // Since we did phi translation, the "Cache" set won't contain all of the 1367 // results for the query. This is ok (we can still use it to accelerate 1368 // specific block queries) but we can't do the fastpath "return all 1369 // results from the set" Clear out the indicator for this. 1370 CacheInfo->Pair = BBSkipFirstBlockPair(); 1371 SkipFirstBlock = false; 1372 continue; 1373 1374 PredTranslationFailure: 1375 // The following code is "failure"; we can't produce a sane translation 1376 // for the given block. It assumes that we haven't modified any of 1377 // our datastructures while processing the current block. 1378 1379 if (!Cache) { 1380 // Refresh the CacheInfo/Cache pointer if it got invalidated. 1381 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1382 Cache = &CacheInfo->NonLocalDeps; 1383 NumSortedEntries = Cache->size(); 1384 } 1385 1386 // Since we failed phi translation, the "Cache" set won't contain all of the 1387 // results for the query. This is ok (we can still use it to accelerate 1388 // specific block queries) but we can't do the fastpath "return all 1389 // results from the set". Clear out the indicator for this. 1390 CacheInfo->Pair = BBSkipFirstBlockPair(); 1391 1392 // If *nothing* works, mark the pointer as unknown. 1393 // 1394 // If this is the magic first block, return this as a clobber of the whole 1395 // incoming value. Since we can't phi translate to one of the predecessors, 1396 // we have to bail out. 1397 if (SkipFirstBlock) 1398 return true; 1399 1400 for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) { 1401 assert(I != Cache->rend() && "Didn't find current block??"); 1402 if (I->getBB() != BB) 1403 continue; 1404 1405 assert((I->getResult().isNonLocal() || !DT->isReachableFromEntry(BB)) && 1406 "Should only be here with transparent block"); 1407 I->setResult(MemDepResult::getUnknown()); 1408 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), 1409 Pointer.getAddr())); 1410 break; 1411 } 1412 } 1413 1414 // Okay, we're done now. If we added new values to the cache, re-sort it. 1415 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1416 DEBUG(AssertSorted(*Cache)); 1417 return false; 1418 } 1419 1420 /// RemoveCachedNonLocalPointerDependencies - If P exists in 1421 /// CachedNonLocalPointerInfo, remove it. 1422 void MemoryDependenceAnalysis:: 1423 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) { 1424 CachedNonLocalPointerInfo::iterator It = 1425 NonLocalPointerDeps.find(P); 1426 if (It == NonLocalPointerDeps.end()) return; 1427 1428 // Remove all of the entries in the BB->val map. This involves removing 1429 // instructions from the reverse map. 1430 NonLocalDepInfo &PInfo = It->second.NonLocalDeps; 1431 1432 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { 1433 Instruction *Target = PInfo[i].getResult().getInst(); 1434 if (!Target) continue; // Ignore non-local dep results. 1435 assert(Target->getParent() == PInfo[i].getBB()); 1436 1437 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1438 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); 1439 } 1440 1441 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). 1442 NonLocalPointerDeps.erase(It); 1443 } 1444 1445 1446 /// invalidateCachedPointerInfo - This method is used to invalidate cached 1447 /// information about the specified pointer, because it may be too 1448 /// conservative in memdep. This is an optional call that can be used when 1449 /// the client detects an equivalence between the pointer and some other 1450 /// value and replaces the other value with ptr. This can make Ptr available 1451 /// in more places that cached info does not necessarily keep. 1452 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) { 1453 // If Ptr isn't really a pointer, just ignore it. 1454 if (!Ptr->getType()->isPointerTy()) return; 1455 // Flush store info for the pointer. 1456 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); 1457 // Flush load info for the pointer. 1458 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); 1459 } 1460 1461 /// invalidateCachedPredecessors - Clear the PredIteratorCache info. 1462 /// This needs to be done when the CFG changes, e.g., due to splitting 1463 /// critical edges. 1464 void MemoryDependenceAnalysis::invalidateCachedPredecessors() { 1465 PredCache.clear(); 1466 } 1467 1468 /// removeInstruction - Remove an instruction from the dependence analysis, 1469 /// updating the dependence of instructions that previously depended on it. 1470 /// This method attempts to keep the cache coherent using the reverse map. 1471 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) { 1472 // Walk through the Non-local dependencies, removing this one as the value 1473 // for any cached queries. 1474 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); 1475 if (NLDI != NonLocalDeps.end()) { 1476 NonLocalDepInfo &BlockMap = NLDI->second.first; 1477 for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end(); 1478 DI != DE; ++DI) 1479 if (Instruction *Inst = DI->getResult().getInst()) 1480 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); 1481 NonLocalDeps.erase(NLDI); 1482 } 1483 1484 // If we have a cached local dependence query for this instruction, remove it. 1485 // 1486 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); 1487 if (LocalDepEntry != LocalDeps.end()) { 1488 // Remove us from DepInst's reverse set now that the local dep info is gone. 1489 if (Instruction *Inst = LocalDepEntry->second.getInst()) 1490 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); 1491 1492 // Remove this local dependency info. 1493 LocalDeps.erase(LocalDepEntry); 1494 } 1495 1496 // If we have any cached pointer dependencies on this instruction, remove 1497 // them. If the instruction has non-pointer type, then it can't be a pointer 1498 // base. 1499 1500 // Remove it from both the load info and the store info. The instruction 1501 // can't be in either of these maps if it is non-pointer. 1502 if (RemInst->getType()->isPointerTy()) { 1503 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); 1504 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); 1505 } 1506 1507 // Loop over all of the things that depend on the instruction we're removing. 1508 // 1509 SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd; 1510 1511 // If we find RemInst as a clobber or Def in any of the maps for other values, 1512 // we need to replace its entry with a dirty version of the instruction after 1513 // it. If RemInst is a terminator, we use a null dirty value. 1514 // 1515 // Using a dirty version of the instruction after RemInst saves having to scan 1516 // the entire block to get to this point. 1517 MemDepResult NewDirtyVal; 1518 if (!RemInst->isTerminator()) 1519 NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst)); 1520 1521 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); 1522 if (ReverseDepIt != ReverseLocalDeps.end()) { 1523 // RemInst can't be the terminator if it has local stuff depending on it. 1524 assert(!ReverseDepIt->second.empty() && !isa<TerminatorInst>(RemInst) && 1525 "Nothing can locally depend on a terminator"); 1526 1527 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) { 1528 assert(InstDependingOnRemInst != RemInst && 1529 "Already removed our local dep info"); 1530 1531 LocalDeps[InstDependingOnRemInst] = NewDirtyVal; 1532 1533 // Make sure to remember that new things depend on NewDepInst. 1534 assert(NewDirtyVal.getInst() && "There is no way something else can have " 1535 "a local dep on this if it is a terminator!"); 1536 ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(), 1537 InstDependingOnRemInst)); 1538 } 1539 1540 ReverseLocalDeps.erase(ReverseDepIt); 1541 1542 // Add new reverse deps after scanning the set, to avoid invalidating the 1543 // 'ReverseDeps' reference. 1544 while (!ReverseDepsToAdd.empty()) { 1545 ReverseLocalDeps[ReverseDepsToAdd.back().first] 1546 .insert(ReverseDepsToAdd.back().second); 1547 ReverseDepsToAdd.pop_back(); 1548 } 1549 } 1550 1551 ReverseDepIt = ReverseNonLocalDeps.find(RemInst); 1552 if (ReverseDepIt != ReverseNonLocalDeps.end()) { 1553 for (Instruction *I : ReverseDepIt->second) { 1554 assert(I != RemInst && "Already removed NonLocalDep info for RemInst"); 1555 1556 PerInstNLInfo &INLD = NonLocalDeps[I]; 1557 // The information is now dirty! 1558 INLD.second = true; 1559 1560 for (NonLocalDepInfo::iterator DI = INLD.first.begin(), 1561 DE = INLD.first.end(); DI != DE; ++DI) { 1562 if (DI->getResult().getInst() != RemInst) continue; 1563 1564 // Convert to a dirty entry for the subsequent instruction. 1565 DI->setResult(NewDirtyVal); 1566 1567 if (Instruction *NextI = NewDirtyVal.getInst()) 1568 ReverseDepsToAdd.push_back(std::make_pair(NextI, I)); 1569 } 1570 } 1571 1572 ReverseNonLocalDeps.erase(ReverseDepIt); 1573 1574 // Add new reverse deps after scanning the set, to avoid invalidating 'Set' 1575 while (!ReverseDepsToAdd.empty()) { 1576 ReverseNonLocalDeps[ReverseDepsToAdd.back().first] 1577 .insert(ReverseDepsToAdd.back().second); 1578 ReverseDepsToAdd.pop_back(); 1579 } 1580 } 1581 1582 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a 1583 // value in the NonLocalPointerDeps info. 1584 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = 1585 ReverseNonLocalPtrDeps.find(RemInst); 1586 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { 1587 SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd; 1588 1589 for (ValueIsLoadPair P : ReversePtrDepIt->second) { 1590 assert(P.getPointer() != RemInst && 1591 "Already removed NonLocalPointerDeps info for RemInst"); 1592 1593 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; 1594 1595 // The cache is not valid for any specific block anymore. 1596 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); 1597 1598 // Update any entries for RemInst to use the instruction after it. 1599 for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end(); 1600 DI != DE; ++DI) { 1601 if (DI->getResult().getInst() != RemInst) continue; 1602 1603 // Convert to a dirty entry for the subsequent instruction. 1604 DI->setResult(NewDirtyVal); 1605 1606 if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) 1607 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); 1608 } 1609 1610 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its 1611 // subsequent value may invalidate the sortedness. 1612 std::sort(NLPDI.begin(), NLPDI.end()); 1613 } 1614 1615 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); 1616 1617 while (!ReversePtrDepsToAdd.empty()) { 1618 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first] 1619 .insert(ReversePtrDepsToAdd.back().second); 1620 ReversePtrDepsToAdd.pop_back(); 1621 } 1622 } 1623 1624 1625 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); 1626 AA->deleteValue(RemInst); 1627 DEBUG(verifyRemoved(RemInst)); 1628 } 1629 /// verifyRemoved - Verify that the specified instruction does not occur 1630 /// in our internal data structures. This function verifies by asserting in 1631 /// debug builds. 1632 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const { 1633 #ifndef NDEBUG 1634 for (LocalDepMapType::const_iterator I = LocalDeps.begin(), 1635 E = LocalDeps.end(); I != E; ++I) { 1636 assert(I->first != D && "Inst occurs in data structures"); 1637 assert(I->second.getInst() != D && 1638 "Inst occurs in data structures"); 1639 } 1640 1641 for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(), 1642 E = NonLocalPointerDeps.end(); I != E; ++I) { 1643 assert(I->first.getPointer() != D && "Inst occurs in NLPD map key"); 1644 const NonLocalDepInfo &Val = I->second.NonLocalDeps; 1645 for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end(); 1646 II != E; ++II) 1647 assert(II->getResult().getInst() != D && "Inst occurs as NLPD value"); 1648 } 1649 1650 for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(), 1651 E = NonLocalDeps.end(); I != E; ++I) { 1652 assert(I->first != D && "Inst occurs in data structures"); 1653 const PerInstNLInfo &INLD = I->second; 1654 for (NonLocalDepInfo::const_iterator II = INLD.first.begin(), 1655 EE = INLD.first.end(); II != EE; ++II) 1656 assert(II->getResult().getInst() != D && "Inst occurs in data structures"); 1657 } 1658 1659 for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(), 1660 E = ReverseLocalDeps.end(); I != E; ++I) { 1661 assert(I->first != D && "Inst occurs in data structures"); 1662 for (Instruction *Inst : I->second) 1663 assert(Inst != D && "Inst occurs in data structures"); 1664 } 1665 1666 for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(), 1667 E = ReverseNonLocalDeps.end(); 1668 I != E; ++I) { 1669 assert(I->first != D && "Inst occurs in data structures"); 1670 for (Instruction *Inst : I->second) 1671 assert(Inst != D && "Inst occurs in data structures"); 1672 } 1673 1674 for (ReverseNonLocalPtrDepTy::const_iterator 1675 I = ReverseNonLocalPtrDeps.begin(), 1676 E = ReverseNonLocalPtrDeps.end(); I != E; ++I) { 1677 assert(I->first != D && "Inst occurs in rev NLPD map"); 1678 1679 for (ValueIsLoadPair P : I->second) 1680 assert(P != ValueIsLoadPair(D, false) && 1681 P != ValueIsLoadPair(D, true) && 1682 "Inst occurs in ReverseNonLocalPtrDeps map"); 1683 } 1684 #endif 1685 } 1686