1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation --*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements an analysis that determines, for a given memory 11 // operation, what preceding memory operations it depends on. It builds on 12 // alias analysis information, and tries to provide a lazy, caching interface to 13 // a common kind of alias information query. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #define DEBUG_TYPE "memdep" 18 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/IntrinsicInst.h" 21 #include "llvm/Function.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/Dominators.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/PHITransAddr.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/Support/PredIteratorCache.h" 30 #include "llvm/Support/Debug.h" 31 using namespace llvm; 32 33 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); 34 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); 35 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); 36 37 STATISTIC(NumCacheNonLocalPtr, 38 "Number of fully cached non-local ptr responses"); 39 STATISTIC(NumCacheDirtyNonLocalPtr, 40 "Number of cached, but dirty, non-local ptr responses"); 41 STATISTIC(NumUncacheNonLocalPtr, 42 "Number of uncached non-local ptr responses"); 43 STATISTIC(NumCacheCompleteNonLocalPtr, 44 "Number of block queries that were completely cached"); 45 46 char MemoryDependenceAnalysis::ID = 0; 47 48 // Register this pass... 49 static RegisterPass<MemoryDependenceAnalysis> X("memdep", 50 "Memory Dependence Analysis", false, true); 51 52 MemoryDependenceAnalysis::MemoryDependenceAnalysis() 53 : FunctionPass(&ID), PredCache(0) { 54 } 55 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() { 56 } 57 58 /// Clean up memory in between runs 59 void MemoryDependenceAnalysis::releaseMemory() { 60 LocalDeps.clear(); 61 NonLocalDeps.clear(); 62 NonLocalPointerDeps.clear(); 63 ReverseLocalDeps.clear(); 64 ReverseNonLocalDeps.clear(); 65 ReverseNonLocalPtrDeps.clear(); 66 PredCache->clear(); 67 } 68 69 70 71 /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis. 72 /// 73 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 74 AU.setPreservesAll(); 75 AU.addRequiredTransitive<AliasAnalysis>(); 76 } 77 78 bool MemoryDependenceAnalysis::runOnFunction(Function &) { 79 AA = &getAnalysis<AliasAnalysis>(); 80 if (PredCache == 0) 81 PredCache.reset(new PredIteratorCache()); 82 return false; 83 } 84 85 /// RemoveFromReverseMap - This is a helper function that removes Val from 86 /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry. 87 template <typename KeyTy> 88 static void RemoveFromReverseMap(DenseMap<Instruction*, 89 SmallPtrSet<KeyTy, 4> > &ReverseMap, 90 Instruction *Inst, KeyTy Val) { 91 typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator 92 InstIt = ReverseMap.find(Inst); 93 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); 94 bool Found = InstIt->second.erase(Val); 95 assert(Found && "Invalid reverse map!"); Found=Found; 96 if (InstIt->second.empty()) 97 ReverseMap.erase(InstIt); 98 } 99 100 101 /// getCallSiteDependencyFrom - Private helper for finding the local 102 /// dependencies of a call site. 103 MemDepResult MemoryDependenceAnalysis:: 104 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall, 105 BasicBlock::iterator ScanIt, BasicBlock *BB) { 106 // Walk backwards through the block, looking for dependencies 107 while (ScanIt != BB->begin()) { 108 Instruction *Inst = --ScanIt; 109 110 // If this inst is a memory op, get the pointer it accessed 111 Value *Pointer = 0; 112 uint64_t PointerSize = 0; 113 if (StoreInst *S = dyn_cast<StoreInst>(Inst)) { 114 Pointer = S->getPointerOperand(); 115 PointerSize = AA->getTypeStoreSize(S->getOperand(0)->getType()); 116 } else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { 117 Pointer = V->getOperand(0); 118 PointerSize = AA->getTypeStoreSize(V->getType()); 119 } else if (isFreeCall(Inst)) { 120 Pointer = Inst->getOperand(1); 121 // calls to free() erase the entire structure 122 PointerSize = ~0ULL; 123 } else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) { 124 // Debug intrinsics don't cause dependences. 125 if (isa<DbgInfoIntrinsic>(Inst)) continue; 126 CallSite InstCS = CallSite::get(Inst); 127 // If these two calls do not interfere, look past it. 128 switch (AA->getModRefInfo(CS, InstCS)) { 129 case AliasAnalysis::NoModRef: 130 // If the two calls don't interact (e.g. InstCS is readnone) keep 131 // scanning. 132 continue; 133 case AliasAnalysis::Ref: 134 // If the two calls read the same memory locations and CS is a readonly 135 // function, then we have two cases: 1) the calls may not interfere with 136 // each other at all. 2) the calls may produce the same value. In case 137 // #1 we want to ignore the values, in case #2, we want to return Inst 138 // as a Def dependence. This allows us to CSE in cases like: 139 // X = strlen(P); 140 // memchr(...); 141 // Y = strlen(P); // Y = X 142 if (isReadOnlyCall) { 143 if (CS.getCalledFunction() != 0 && 144 CS.getCalledFunction() == InstCS.getCalledFunction()) 145 return MemDepResult::getDef(Inst); 146 // Ignore unrelated read/read call dependences. 147 continue; 148 } 149 // FALL THROUGH 150 default: 151 return MemDepResult::getClobber(Inst); 152 } 153 } else { 154 // Non-memory instruction. 155 continue; 156 } 157 158 if (AA->getModRefInfo(CS, Pointer, PointerSize) != AliasAnalysis::NoModRef) 159 return MemDepResult::getClobber(Inst); 160 } 161 162 // No dependence found. If this is the entry block of the function, it is a 163 // clobber, otherwise it is non-local. 164 if (BB != &BB->getParent()->getEntryBlock()) 165 return MemDepResult::getNonLocal(); 166 return MemDepResult::getClobber(ScanIt); 167 } 168 169 /// getPointerDependencyFrom - Return the instruction on which a memory 170 /// location depends. If isLoad is true, this routine ignore may-aliases with 171 /// read-only operations. 172 MemDepResult MemoryDependenceAnalysis:: 173 getPointerDependencyFrom(Value *MemPtr, uint64_t MemSize, bool isLoad, 174 BasicBlock::iterator ScanIt, BasicBlock *BB) { 175 176 Value *InvariantTag = 0; 177 178 // Walk backwards through the basic block, looking for dependencies. 179 while (ScanIt != BB->begin()) { 180 Instruction *Inst = --ScanIt; 181 182 // If we're in an invariant region, no dependencies can be found before 183 // we pass an invariant-begin marker. 184 if (InvariantTag == Inst) { 185 InvariantTag = 0; 186 continue; 187 } 188 189 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 190 // Debug intrinsics don't cause dependences. 191 if (isa<DbgInfoIntrinsic>(Inst)) continue; 192 193 // If we pass an invariant-end marker, then we've just entered an 194 // invariant region and can start ignoring dependencies. 195 if (II->getIntrinsicID() == Intrinsic::invariant_end) { 196 // FIXME: This only considers queries directly on the invariant-tagged 197 // pointer, not on query pointers that are indexed off of them. It'd 198 // be nice to handle that at some point. 199 AliasAnalysis::AliasResult R = 200 AA->alias(II->getOperand(3), ~0U, MemPtr, ~0U); 201 if (R == AliasAnalysis::MustAlias) { 202 InvariantTag = II->getOperand(1); 203 continue; 204 } 205 206 // If we reach a lifetime begin or end marker, then the query ends here 207 // because the value is undefined. 208 } else if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 209 // FIXME: This only considers queries directly on the invariant-tagged 210 // pointer, not on query pointers that are indexed off of them. It'd 211 // be nice to handle that at some point. 212 AliasAnalysis::AliasResult R = 213 AA->alias(II->getOperand(2), ~0U, MemPtr, ~0U); 214 if (R == AliasAnalysis::MustAlias) 215 return MemDepResult::getDef(II); 216 } 217 } 218 219 // If we're querying on a load and we're in an invariant region, we're done 220 // at this point. Nothing a load depends on can live in an invariant region. 221 if (isLoad && InvariantTag) continue; 222 223 // Values depend on loads if the pointers are must aliased. This means that 224 // a load depends on another must aliased load from the same value. 225 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 226 Value *Pointer = LI->getPointerOperand(); 227 uint64_t PointerSize = AA->getTypeStoreSize(LI->getType()); 228 229 // If we found a pointer, check if it could be the same as our pointer. 230 AliasAnalysis::AliasResult R = 231 AA->alias(Pointer, PointerSize, MemPtr, MemSize); 232 if (R == AliasAnalysis::NoAlias) 233 continue; 234 235 // May-alias loads don't depend on each other without a dependence. 236 if (isLoad && R == AliasAnalysis::MayAlias) 237 continue; 238 // Stores depend on may and must aliased loads, loads depend on must-alias 239 // loads. 240 return MemDepResult::getDef(Inst); 241 } 242 243 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 244 // There can't be stores to the value we care about inside an 245 // invariant region. 246 if (InvariantTag) continue; 247 248 // If alias analysis can tell that this store is guaranteed to not modify 249 // the query pointer, ignore it. Use getModRefInfo to handle cases where 250 // the query pointer points to constant memory etc. 251 if (AA->getModRefInfo(SI, MemPtr, MemSize) == AliasAnalysis::NoModRef) 252 continue; 253 254 // Ok, this store might clobber the query pointer. Check to see if it is 255 // a must alias: in this case, we want to return this as a def. 256 Value *Pointer = SI->getPointerOperand(); 257 uint64_t PointerSize = AA->getTypeStoreSize(SI->getOperand(0)->getType()); 258 259 // If we found a pointer, check if it could be the same as our pointer. 260 AliasAnalysis::AliasResult R = 261 AA->alias(Pointer, PointerSize, MemPtr, MemSize); 262 263 if (R == AliasAnalysis::NoAlias) 264 continue; 265 if (R == AliasAnalysis::MayAlias) 266 return MemDepResult::getClobber(Inst); 267 return MemDepResult::getDef(Inst); 268 } 269 270 // If this is an allocation, and if we know that the accessed pointer is to 271 // the allocation, return Def. This means that there is no dependence and 272 // the access can be optimized based on that. For example, a load could 273 // turn into undef. 274 // Note: Only determine this to be a malloc if Inst is the malloc call, not 275 // a subsequent bitcast of the malloc call result. There can be stores to 276 // the malloced memory between the malloc call and its bitcast uses, and we 277 // need to continue scanning until the malloc call. 278 if (isa<AllocaInst>(Inst) || extractMallocCall(Inst)) { 279 Value *AccessPtr = MemPtr->getUnderlyingObject(); 280 281 if (AccessPtr == Inst || 282 AA->alias(Inst, 1, AccessPtr, 1) == AliasAnalysis::MustAlias) 283 return MemDepResult::getDef(Inst); 284 continue; 285 } 286 287 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. 288 switch (AA->getModRefInfo(Inst, MemPtr, MemSize)) { 289 case AliasAnalysis::NoModRef: 290 // If the call has no effect on the queried pointer, just ignore it. 291 continue; 292 case AliasAnalysis::Mod: 293 // If we're in an invariant region, we can ignore calls that ONLY 294 // modify the pointer. 295 if (InvariantTag) continue; 296 return MemDepResult::getClobber(Inst); 297 case AliasAnalysis::Ref: 298 // If the call is known to never store to the pointer, and if this is a 299 // load query, we can safely ignore it (scan past it). 300 if (isLoad) 301 continue; 302 default: 303 // Otherwise, there is a potential dependence. Return a clobber. 304 return MemDepResult::getClobber(Inst); 305 } 306 } 307 308 // No dependence found. If this is the entry block of the function, it is a 309 // clobber, otherwise it is non-local. 310 if (BB != &BB->getParent()->getEntryBlock()) 311 return MemDepResult::getNonLocal(); 312 return MemDepResult::getClobber(ScanIt); 313 } 314 315 /// getDependency - Return the instruction on which a memory operation 316 /// depends. 317 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) { 318 Instruction *ScanPos = QueryInst; 319 320 // Check for a cached result 321 MemDepResult &LocalCache = LocalDeps[QueryInst]; 322 323 // If the cached entry is non-dirty, just return it. Note that this depends 324 // on MemDepResult's default constructing to 'dirty'. 325 if (!LocalCache.isDirty()) 326 return LocalCache; 327 328 // Otherwise, if we have a dirty entry, we know we can start the scan at that 329 // instruction, which may save us some work. 330 if (Instruction *Inst = LocalCache.getInst()) { 331 ScanPos = Inst; 332 333 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); 334 } 335 336 BasicBlock *QueryParent = QueryInst->getParent(); 337 338 Value *MemPtr = 0; 339 uint64_t MemSize = 0; 340 341 // Do the scan. 342 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { 343 // No dependence found. If this is the entry block of the function, it is a 344 // clobber, otherwise it is non-local. 345 if (QueryParent != &QueryParent->getParent()->getEntryBlock()) 346 LocalCache = MemDepResult::getNonLocal(); 347 else 348 LocalCache = MemDepResult::getClobber(QueryInst); 349 } else if (StoreInst *SI = dyn_cast<StoreInst>(QueryInst)) { 350 // If this is a volatile store, don't mess around with it. Just return the 351 // previous instruction as a clobber. 352 if (SI->isVolatile()) 353 LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos)); 354 else { 355 MemPtr = SI->getPointerOperand(); 356 MemSize = AA->getTypeStoreSize(SI->getOperand(0)->getType()); 357 } 358 } else if (LoadInst *LI = dyn_cast<LoadInst>(QueryInst)) { 359 // If this is a volatile load, don't mess around with it. Just return the 360 // previous instruction as a clobber. 361 if (LI->isVolatile()) 362 LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos)); 363 else { 364 MemPtr = LI->getPointerOperand(); 365 MemSize = AA->getTypeStoreSize(LI->getType()); 366 } 367 } else if (isFreeCall(QueryInst)) { 368 MemPtr = QueryInst->getOperand(1); 369 // calls to free() erase the entire structure, not just a field. 370 MemSize = ~0UL; 371 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) { 372 int IntrinsicID = 0; // Intrinsic IDs start at 1. 373 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst)) 374 IntrinsicID = II->getIntrinsicID(); 375 376 switch (IntrinsicID) { 377 case Intrinsic::lifetime_start: 378 case Intrinsic::lifetime_end: 379 case Intrinsic::invariant_start: 380 MemPtr = QueryInst->getOperand(2); 381 MemSize = cast<ConstantInt>(QueryInst->getOperand(1))->getZExtValue(); 382 break; 383 case Intrinsic::invariant_end: 384 MemPtr = QueryInst->getOperand(3); 385 MemSize = cast<ConstantInt>(QueryInst->getOperand(2))->getZExtValue(); 386 break; 387 default: 388 CallSite QueryCS = CallSite::get(QueryInst); 389 bool isReadOnly = AA->onlyReadsMemory(QueryCS); 390 LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos, 391 QueryParent); 392 break; 393 } 394 } else { 395 // Non-memory instruction. 396 LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos)); 397 } 398 399 // If we need to do a pointer scan, make it happen. 400 if (MemPtr) { 401 bool isLoad = !QueryInst->mayWriteToMemory(); 402 if (IntrinsicInst *II = dyn_cast<MemoryUseIntrinsic>(QueryInst)) { 403 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_end; 404 } 405 LocalCache = getPointerDependencyFrom(MemPtr, MemSize, isLoad, ScanPos, 406 QueryParent); 407 } 408 409 // Remember the result! 410 if (Instruction *I = LocalCache.getInst()) 411 ReverseLocalDeps[I].insert(QueryInst); 412 413 return LocalCache; 414 } 415 416 #ifndef NDEBUG 417 /// AssertSorted - This method is used when -debug is specified to verify that 418 /// cache arrays are properly kept sorted. 419 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 420 int Count = -1) { 421 if (Count == -1) Count = Cache.size(); 422 if (Count == 0) return; 423 424 for (unsigned i = 1; i != unsigned(Count); ++i) 425 assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!"); 426 } 427 #endif 428 429 /// getNonLocalCallDependency - Perform a full dependency query for the 430 /// specified call, returning the set of blocks that the value is 431 /// potentially live across. The returned set of results will include a 432 /// "NonLocal" result for all blocks where the value is live across. 433 /// 434 /// This method assumes the instruction returns a "NonLocal" dependency 435 /// within its own block. 436 /// 437 /// This returns a reference to an internal data structure that may be 438 /// invalidated on the next non-local query or when an instruction is 439 /// removed. Clients must copy this data if they want it around longer than 440 /// that. 441 const MemoryDependenceAnalysis::NonLocalDepInfo & 442 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { 443 assert(getDependency(QueryCS.getInstruction()).isNonLocal() && 444 "getNonLocalCallDependency should only be used on calls with non-local deps!"); 445 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()]; 446 NonLocalDepInfo &Cache = CacheP.first; 447 448 /// DirtyBlocks - This is the set of blocks that need to be recomputed. In 449 /// the cached case, this can happen due to instructions being deleted etc. In 450 /// the uncached case, this starts out as the set of predecessors we care 451 /// about. 452 SmallVector<BasicBlock*, 32> DirtyBlocks; 453 454 if (!Cache.empty()) { 455 // Okay, we have a cache entry. If we know it is not dirty, just return it 456 // with no computation. 457 if (!CacheP.second) { 458 NumCacheNonLocal++; 459 return Cache; 460 } 461 462 // If we already have a partially computed set of results, scan them to 463 // determine what is dirty, seeding our initial DirtyBlocks worklist. 464 for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end(); 465 I != E; ++I) 466 if (I->getResult().isDirty()) 467 DirtyBlocks.push_back(I->getBB()); 468 469 // Sort the cache so that we can do fast binary search lookups below. 470 std::sort(Cache.begin(), Cache.end()); 471 472 ++NumCacheDirtyNonLocal; 473 //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " 474 // << Cache.size() << " cached: " << *QueryInst; 475 } else { 476 // Seed DirtyBlocks with each of the preds of QueryInst's block. 477 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent(); 478 for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI) 479 DirtyBlocks.push_back(*PI); 480 NumUncacheNonLocal++; 481 } 482 483 // isReadonlyCall - If this is a read-only call, we can be more aggressive. 484 bool isReadonlyCall = AA->onlyReadsMemory(QueryCS); 485 486 SmallPtrSet<BasicBlock*, 64> Visited; 487 488 unsigned NumSortedEntries = Cache.size(); 489 DEBUG(AssertSorted(Cache)); 490 491 // Iterate while we still have blocks to update. 492 while (!DirtyBlocks.empty()) { 493 BasicBlock *DirtyBB = DirtyBlocks.back(); 494 DirtyBlocks.pop_back(); 495 496 // Already processed this block? 497 if (!Visited.insert(DirtyBB)) 498 continue; 499 500 // Do a binary search to see if we already have an entry for this block in 501 // the cache set. If so, find it. 502 DEBUG(AssertSorted(Cache, NumSortedEntries)); 503 NonLocalDepInfo::iterator Entry = 504 std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries, 505 NonLocalDepEntry(DirtyBB)); 506 if (Entry != Cache.begin() && prior(Entry)->getBB() == DirtyBB) 507 --Entry; 508 509 NonLocalDepEntry *ExistingResult = 0; 510 if (Entry != Cache.begin()+NumSortedEntries && 511 Entry->getBB() == DirtyBB) { 512 // If we already have an entry, and if it isn't already dirty, the block 513 // is done. 514 if (!Entry->getResult().isDirty()) 515 continue; 516 517 // Otherwise, remember this slot so we can update the value. 518 ExistingResult = &*Entry; 519 } 520 521 // If the dirty entry has a pointer, start scanning from it so we don't have 522 // to rescan the entire block. 523 BasicBlock::iterator ScanPos = DirtyBB->end(); 524 if (ExistingResult) { 525 if (Instruction *Inst = ExistingResult->getResult().getInst()) { 526 ScanPos = Inst; 527 // We're removing QueryInst's use of Inst. 528 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, 529 QueryCS.getInstruction()); 530 } 531 } 532 533 // Find out if this block has a local dependency for QueryInst. 534 MemDepResult Dep; 535 536 if (ScanPos != DirtyBB->begin()) { 537 Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB); 538 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { 539 // No dependence found. If this is the entry block of the function, it is 540 // a clobber, otherwise it is non-local. 541 Dep = MemDepResult::getNonLocal(); 542 } else { 543 Dep = MemDepResult::getClobber(ScanPos); 544 } 545 546 // If we had a dirty entry for the block, update it. Otherwise, just add 547 // a new entry. 548 if (ExistingResult) 549 ExistingResult->setResult(Dep, 0); 550 else 551 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep, 0)); 552 553 // If the block has a dependency (i.e. it isn't completely transparent to 554 // the value), remember the association! 555 if (!Dep.isNonLocal()) { 556 // Keep the ReverseNonLocalDeps map up to date so we can efficiently 557 // update this when we remove instructions. 558 if (Instruction *Inst = Dep.getInst()) 559 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction()); 560 } else { 561 562 // If the block *is* completely transparent to the load, we need to check 563 // the predecessors of this block. Add them to our worklist. 564 for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI) 565 DirtyBlocks.push_back(*PI); 566 } 567 } 568 569 return Cache; 570 } 571 572 /// getNonLocalPointerDependency - Perform a full dependency query for an 573 /// access to the specified (non-volatile) memory location, returning the 574 /// set of instructions that either define or clobber the value. 575 /// 576 /// This method assumes the pointer has a "NonLocal" dependency within its 577 /// own block. 578 /// 579 void MemoryDependenceAnalysis:: 580 getNonLocalPointerDependency(Value *Pointer, bool isLoad, BasicBlock *FromBB, 581 SmallVectorImpl<NonLocalDepEntry> &Result) { 582 assert(isa<PointerType>(Pointer->getType()) && 583 "Can't get pointer deps of a non-pointer!"); 584 Result.clear(); 585 586 // We know that the pointer value is live into FromBB find the def/clobbers 587 // from presecessors. 588 const Type *EltTy = cast<PointerType>(Pointer->getType())->getElementType(); 589 uint64_t PointeeSize = AA->getTypeStoreSize(EltTy); 590 591 PHITransAddr Address(Pointer, TD); 592 593 // This is the set of blocks we've inspected, and the pointer we consider in 594 // each block. Because of critical edges, we currently bail out if querying 595 // a block with multiple different pointers. This can happen during PHI 596 // translation. 597 DenseMap<BasicBlock*, Value*> Visited; 598 if (!getNonLocalPointerDepFromBB(Address, PointeeSize, isLoad, FromBB, 599 Result, Visited, true)) 600 return; 601 Result.clear(); 602 Result.push_back(NonLocalDepEntry(FromBB, 603 MemDepResult::getClobber(FromBB->begin()), 604 Pointer)); 605 } 606 607 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with 608 /// Pointer/PointeeSize using either cached information in Cache or by doing a 609 /// lookup (which may use dirty cache info if available). If we do a lookup, 610 /// add the result to the cache. 611 MemDepResult MemoryDependenceAnalysis:: 612 GetNonLocalInfoForBlock(Value *Pointer, uint64_t PointeeSize, 613 bool isLoad, BasicBlock *BB, 614 NonLocalDepInfo *Cache, unsigned NumSortedEntries) { 615 616 // Do a binary search to see if we already have an entry for this block in 617 // the cache set. If so, find it. 618 NonLocalDepInfo::iterator Entry = 619 std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries, 620 NonLocalDepEntry(BB)); 621 if (Entry != Cache->begin() && (Entry-1)->getBB() == BB) 622 --Entry; 623 624 NonLocalDepEntry *ExistingResult = 0; 625 if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB) 626 ExistingResult = &*Entry; 627 628 // If we have a cached entry, and it is non-dirty, use it as the value for 629 // this dependency. 630 if (ExistingResult && !ExistingResult->getResult().isDirty()) { 631 ++NumCacheNonLocalPtr; 632 return ExistingResult->getResult(); 633 } 634 635 // Otherwise, we have to scan for the value. If we have a dirty cache 636 // entry, start scanning from its position, otherwise we scan from the end 637 // of the block. 638 BasicBlock::iterator ScanPos = BB->end(); 639 if (ExistingResult && ExistingResult->getResult().getInst()) { 640 assert(ExistingResult->getResult().getInst()->getParent() == BB && 641 "Instruction invalidated?"); 642 ++NumCacheDirtyNonLocalPtr; 643 ScanPos = ExistingResult->getResult().getInst(); 644 645 // Eliminating the dirty entry from 'Cache', so update the reverse info. 646 ValueIsLoadPair CacheKey(Pointer, isLoad); 647 RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey); 648 } else { 649 ++NumUncacheNonLocalPtr; 650 } 651 652 // Scan the block for the dependency. 653 MemDepResult Dep = getPointerDependencyFrom(Pointer, PointeeSize, isLoad, 654 ScanPos, BB); 655 656 // If we had a dirty entry for the block, update it. Otherwise, just add 657 // a new entry. 658 if (ExistingResult) 659 ExistingResult->setResult(Dep, Pointer); 660 else 661 Cache->push_back(NonLocalDepEntry(BB, Dep, Pointer)); 662 663 // If the block has a dependency (i.e. it isn't completely transparent to 664 // the value), remember the reverse association because we just added it 665 // to Cache! 666 if (Dep.isNonLocal()) 667 return Dep; 668 669 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently 670 // update MemDep when we remove instructions. 671 Instruction *Inst = Dep.getInst(); 672 assert(Inst && "Didn't depend on anything?"); 673 ValueIsLoadPair CacheKey(Pointer, isLoad); 674 ReverseNonLocalPtrDeps[Inst].insert(CacheKey); 675 return Dep; 676 } 677 678 /// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain 679 /// number of elements in the array that are already properly ordered. This is 680 /// optimized for the case when only a few entries are added. 681 static void 682 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 683 unsigned NumSortedEntries) { 684 switch (Cache.size() - NumSortedEntries) { 685 case 0: 686 // done, no new entries. 687 break; 688 case 2: { 689 // Two new entries, insert the last one into place. 690 NonLocalDepEntry Val = Cache.back(); 691 Cache.pop_back(); 692 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 693 std::upper_bound(Cache.begin(), Cache.end()-1, Val); 694 Cache.insert(Entry, Val); 695 // FALL THROUGH. 696 } 697 case 1: 698 // One new entry, Just insert the new value at the appropriate position. 699 if (Cache.size() != 1) { 700 NonLocalDepEntry Val = Cache.back(); 701 Cache.pop_back(); 702 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 703 std::upper_bound(Cache.begin(), Cache.end(), Val); 704 Cache.insert(Entry, Val); 705 } 706 break; 707 default: 708 // Added many values, do a full scale sort. 709 std::sort(Cache.begin(), Cache.end()); 710 break; 711 } 712 } 713 714 /// getNonLocalPointerDepFromBB - Perform a dependency query based on 715 /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def 716 /// results to the results vector and keep track of which blocks are visited in 717 /// 'Visited'. 718 /// 719 /// This has special behavior for the first block queries (when SkipFirstBlock 720 /// is true). In this special case, it ignores the contents of the specified 721 /// block and starts returning dependence info for its predecessors. 722 /// 723 /// This function returns false on success, or true to indicate that it could 724 /// not compute dependence information for some reason. This should be treated 725 /// as a clobber dependence on the first instruction in the predecessor block. 726 bool MemoryDependenceAnalysis:: 727 getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, uint64_t PointeeSize, 728 bool isLoad, BasicBlock *StartBB, 729 SmallVectorImpl<NonLocalDepEntry> &Result, 730 DenseMap<BasicBlock*, Value*> &Visited, 731 bool SkipFirstBlock) { 732 733 // Look up the cached info for Pointer. 734 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); 735 736 std::pair<BBSkipFirstBlockPair, NonLocalDepInfo> *CacheInfo = 737 &NonLocalPointerDeps[CacheKey]; 738 NonLocalDepInfo *Cache = &CacheInfo->second; 739 740 // If we have valid cached information for exactly the block we are 741 // investigating, just return it with no recomputation. 742 if (CacheInfo->first == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { 743 // We have a fully cached result for this query then we can just return the 744 // cached results and populate the visited set. However, we have to verify 745 // that we don't already have conflicting results for these blocks. Check 746 // to ensure that if a block in the results set is in the visited set that 747 // it was for the same pointer query. 748 if (!Visited.empty()) { 749 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 750 I != E; ++I) { 751 DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB()); 752 if (VI == Visited.end() || VI->second == Pointer.getAddr()) 753 continue; 754 755 // We have a pointer mismatch in a block. Just return clobber, saying 756 // that something was clobbered in this result. We could also do a 757 // non-fully cached query, but there is little point in doing this. 758 return true; 759 } 760 } 761 762 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 763 I != E; ++I) { 764 Visited.insert(std::make_pair(I->getBB(), Pointer.getAddr())); 765 if (!I->getResult().isNonLocal()) 766 Result.push_back(*I); 767 } 768 ++NumCacheCompleteNonLocalPtr; 769 return false; 770 } 771 772 // Otherwise, either this is a new block, a block with an invalid cache 773 // pointer or one that we're about to invalidate by putting more info into it 774 // than its valid cache info. If empty, the result will be valid cache info, 775 // otherwise it isn't. 776 if (Cache->empty()) 777 CacheInfo->first = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); 778 else 779 CacheInfo->first = BBSkipFirstBlockPair(); 780 781 SmallVector<BasicBlock*, 32> Worklist; 782 Worklist.push_back(StartBB); 783 784 // Keep track of the entries that we know are sorted. Previously cached 785 // entries will all be sorted. The entries we add we only sort on demand (we 786 // don't insert every element into its sorted position). We know that we 787 // won't get any reuse from currently inserted values, because we don't 788 // revisit blocks after we insert info for them. 789 unsigned NumSortedEntries = Cache->size(); 790 DEBUG(AssertSorted(*Cache)); 791 792 while (!Worklist.empty()) { 793 BasicBlock *BB = Worklist.pop_back_val(); 794 795 // Skip the first block if we have it. 796 if (!SkipFirstBlock) { 797 // Analyze the dependency of *Pointer in FromBB. See if we already have 798 // been here. 799 assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); 800 801 // Get the dependency info for Pointer in BB. If we have cached 802 // information, we will use it, otherwise we compute it. 803 DEBUG(AssertSorted(*Cache, NumSortedEntries)); 804 MemDepResult Dep = GetNonLocalInfoForBlock(Pointer.getAddr(), PointeeSize, 805 isLoad, BB, Cache, 806 NumSortedEntries); 807 808 // If we got a Def or Clobber, add this to the list of results. 809 if (!Dep.isNonLocal()) { 810 Result.push_back(NonLocalDepEntry(BB, Dep, Pointer.getAddr())); 811 continue; 812 } 813 } 814 815 // If 'Pointer' is an instruction defined in this block, then we need to do 816 // phi translation to change it into a value live in the predecessor block. 817 // If not, we just add the predecessors to the worklist and scan them with 818 // the same Pointer. 819 if (!Pointer.NeedsPHITranslationFromBlock(BB)) { 820 SkipFirstBlock = false; 821 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { 822 // Verify that we haven't looked at this block yet. 823 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 824 InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr())); 825 if (InsertRes.second) { 826 // First time we've looked at *PI. 827 Worklist.push_back(*PI); 828 continue; 829 } 830 831 // If we have seen this block before, but it was with a different 832 // pointer then we have a phi translation failure and we have to treat 833 // this as a clobber. 834 if (InsertRes.first->second != Pointer.getAddr()) 835 goto PredTranslationFailure; 836 } 837 continue; 838 } 839 840 // We do need to do phi translation, if we know ahead of time we can't phi 841 // translate this value, don't even try. 842 if (!Pointer.IsPotentiallyPHITranslatable()) 843 goto PredTranslationFailure; 844 845 // We may have added values to the cache list before this PHI translation. 846 // If so, we haven't done anything to ensure that the cache remains sorted. 847 // Sort it now (if needed) so that recursive invocations of 848 // getNonLocalPointerDepFromBB and other routines that could reuse the cache 849 // value will only see properly sorted cache arrays. 850 if (Cache && NumSortedEntries != Cache->size()) { 851 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 852 NumSortedEntries = Cache->size(); 853 } 854 Cache = 0; 855 856 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { 857 BasicBlock *Pred = *PI; 858 859 // Get the PHI translated pointer in this predecessor. This can fail if 860 // not translatable, in which case the getAddr() returns null. 861 PHITransAddr PredPointer(Pointer); 862 PredPointer.PHITranslateValue(BB, Pred); 863 864 Value *PredPtrVal = PredPointer.getAddr(); 865 866 // Check to see if we have already visited this pred block with another 867 // pointer. If so, we can't do this lookup. This failure can occur 868 // with PHI translation when a critical edge exists and the PHI node in 869 // the successor translates to a pointer value different than the 870 // pointer the block was first analyzed with. 871 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 872 InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal)); 873 874 if (!InsertRes.second) { 875 // If the predecessor was visited with PredPtr, then we already did 876 // the analysis and can ignore it. 877 if (InsertRes.first->second == PredPtrVal) 878 continue; 879 880 // Otherwise, the block was previously analyzed with a different 881 // pointer. We can't represent the result of this case, so we just 882 // treat this as a phi translation failure. 883 goto PredTranslationFailure; 884 } 885 886 // If PHI translation was unable to find an available pointer in this 887 // predecessor, then we have to assume that the pointer is clobbered in 888 // that predecessor. We can still do PRE of the load, which would insert 889 // a computation of the pointer in this predecessor. 890 if (PredPtrVal == 0) { 891 // Add the entry to the Result list. 892 NonLocalDepEntry Entry(Pred, 893 MemDepResult::getClobber(Pred->getTerminator()), 894 PredPtrVal); 895 Result.push_back(Entry); 896 897 // Add it to the cache for this CacheKey so that subsequent queries get 898 // this result. 899 Cache = &NonLocalPointerDeps[CacheKey].second; 900 MemoryDependenceAnalysis::NonLocalDepInfo::iterator It = 901 std::upper_bound(Cache->begin(), Cache->end(), Entry); 902 903 if (It != Cache->begin() && (It-1)->getBB() == Pred) 904 --It; 905 906 if (It == Cache->end() || It->getBB() != Pred) { 907 Cache->insert(It, Entry); 908 // Add it to the reverse map. 909 ReverseNonLocalPtrDeps[Pred->getTerminator()].insert(CacheKey); 910 } else if (!It->getResult().isDirty()) { 911 // noop 912 } else if (It->getResult().getInst() == Pred->getTerminator()) { 913 // Same instruction, clear the dirty marker. 914 It->setResult(Entry.getResult(), PredPtrVal); 915 } else if (It->getResult().getInst() == 0) { 916 // Dirty, with no instruction, just add this. 917 It->setResult(Entry.getResult(), PredPtrVal); 918 ReverseNonLocalPtrDeps[Pred->getTerminator()].insert(CacheKey); 919 } else { 920 // Otherwise, dirty with a different instruction. 921 RemoveFromReverseMap(ReverseNonLocalPtrDeps, 922 It->getResult().getInst(), CacheKey); 923 It->setResult(Entry.getResult(),PredPtrVal); 924 ReverseNonLocalPtrDeps[Pred->getTerminator()].insert(CacheKey); 925 } 926 Cache = 0; 927 continue; 928 } 929 930 // FIXME: it is entirely possible that PHI translating will end up with 931 // the same value. Consider PHI translating something like: 932 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* 933 // to recurse here, pedantically speaking. 934 935 // If we have a problem phi translating, fall through to the code below 936 // to handle the failure condition. 937 if (getNonLocalPointerDepFromBB(PredPointer, PointeeSize, isLoad, Pred, 938 Result, Visited)) 939 goto PredTranslationFailure; 940 } 941 942 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. 943 CacheInfo = &NonLocalPointerDeps[CacheKey]; 944 Cache = &CacheInfo->second; 945 NumSortedEntries = Cache->size(); 946 947 // Since we did phi translation, the "Cache" set won't contain all of the 948 // results for the query. This is ok (we can still use it to accelerate 949 // specific block queries) but we can't do the fastpath "return all 950 // results from the set" Clear out the indicator for this. 951 CacheInfo->first = BBSkipFirstBlockPair(); 952 SkipFirstBlock = false; 953 continue; 954 955 PredTranslationFailure: 956 957 if (Cache == 0) { 958 // Refresh the CacheInfo/Cache pointer if it got invalidated. 959 CacheInfo = &NonLocalPointerDeps[CacheKey]; 960 Cache = &CacheInfo->second; 961 NumSortedEntries = Cache->size(); 962 } 963 964 // Since we did phi translation, the "Cache" set won't contain all of the 965 // results for the query. This is ok (we can still use it to accelerate 966 // specific block queries) but we can't do the fastpath "return all 967 // results from the set" Clear out the indicator for this. 968 CacheInfo->first = BBSkipFirstBlockPair(); 969 970 // If *nothing* works, mark the pointer as being clobbered by the first 971 // instruction in this block. 972 // 973 // If this is the magic first block, return this as a clobber of the whole 974 // incoming value. Since we can't phi translate to one of the predecessors, 975 // we have to bail out. 976 if (SkipFirstBlock) 977 return true; 978 979 for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) { 980 assert(I != Cache->rend() && "Didn't find current block??"); 981 if (I->getBB() != BB) 982 continue; 983 984 assert(I->getResult().isNonLocal() && 985 "Should only be here with transparent block"); 986 I->setResult(MemDepResult::getClobber(BB->begin()), Pointer.getAddr()); 987 ReverseNonLocalPtrDeps[BB->begin()].insert(CacheKey); 988 Result.push_back(*I); 989 break; 990 } 991 } 992 993 // Okay, we're done now. If we added new values to the cache, re-sort it. 994 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 995 DEBUG(AssertSorted(*Cache)); 996 return false; 997 } 998 999 /// RemoveCachedNonLocalPointerDependencies - If P exists in 1000 /// CachedNonLocalPointerInfo, remove it. 1001 void MemoryDependenceAnalysis:: 1002 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) { 1003 CachedNonLocalPointerInfo::iterator It = 1004 NonLocalPointerDeps.find(P); 1005 if (It == NonLocalPointerDeps.end()) return; 1006 1007 // Remove all of the entries in the BB->val map. This involves removing 1008 // instructions from the reverse map. 1009 NonLocalDepInfo &PInfo = It->second.second; 1010 1011 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { 1012 Instruction *Target = PInfo[i].getResult().getInst(); 1013 if (Target == 0) continue; // Ignore non-local dep results. 1014 assert(Target->getParent() == PInfo[i].getBB()); 1015 1016 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1017 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); 1018 } 1019 1020 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). 1021 NonLocalPointerDeps.erase(It); 1022 } 1023 1024 1025 /// invalidateCachedPointerInfo - This method is used to invalidate cached 1026 /// information about the specified pointer, because it may be too 1027 /// conservative in memdep. This is an optional call that can be used when 1028 /// the client detects an equivalence between the pointer and some other 1029 /// value and replaces the other value with ptr. This can make Ptr available 1030 /// in more places that cached info does not necessarily keep. 1031 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) { 1032 // If Ptr isn't really a pointer, just ignore it. 1033 if (!isa<PointerType>(Ptr->getType())) return; 1034 // Flush store info for the pointer. 1035 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); 1036 // Flush load info for the pointer. 1037 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); 1038 } 1039 1040 /// removeInstruction - Remove an instruction from the dependence analysis, 1041 /// updating the dependence of instructions that previously depended on it. 1042 /// This method attempts to keep the cache coherent using the reverse map. 1043 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) { 1044 // Walk through the Non-local dependencies, removing this one as the value 1045 // for any cached queries. 1046 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); 1047 if (NLDI != NonLocalDeps.end()) { 1048 NonLocalDepInfo &BlockMap = NLDI->second.first; 1049 for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end(); 1050 DI != DE; ++DI) 1051 if (Instruction *Inst = DI->getResult().getInst()) 1052 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); 1053 NonLocalDeps.erase(NLDI); 1054 } 1055 1056 // If we have a cached local dependence query for this instruction, remove it. 1057 // 1058 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); 1059 if (LocalDepEntry != LocalDeps.end()) { 1060 // Remove us from DepInst's reverse set now that the local dep info is gone. 1061 if (Instruction *Inst = LocalDepEntry->second.getInst()) 1062 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); 1063 1064 // Remove this local dependency info. 1065 LocalDeps.erase(LocalDepEntry); 1066 } 1067 1068 // If we have any cached pointer dependencies on this instruction, remove 1069 // them. If the instruction has non-pointer type, then it can't be a pointer 1070 // base. 1071 1072 // Remove it from both the load info and the store info. The instruction 1073 // can't be in either of these maps if it is non-pointer. 1074 if (isa<PointerType>(RemInst->getType())) { 1075 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); 1076 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); 1077 } 1078 1079 // Loop over all of the things that depend on the instruction we're removing. 1080 // 1081 SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd; 1082 1083 // If we find RemInst as a clobber or Def in any of the maps for other values, 1084 // we need to replace its entry with a dirty version of the instruction after 1085 // it. If RemInst is a terminator, we use a null dirty value. 1086 // 1087 // Using a dirty version of the instruction after RemInst saves having to scan 1088 // the entire block to get to this point. 1089 MemDepResult NewDirtyVal; 1090 if (!RemInst->isTerminator()) 1091 NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst)); 1092 1093 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); 1094 if (ReverseDepIt != ReverseLocalDeps.end()) { 1095 SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second; 1096 // RemInst can't be the terminator if it has local stuff depending on it. 1097 assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) && 1098 "Nothing can locally depend on a terminator"); 1099 1100 for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(), 1101 E = ReverseDeps.end(); I != E; ++I) { 1102 Instruction *InstDependingOnRemInst = *I; 1103 assert(InstDependingOnRemInst != RemInst && 1104 "Already removed our local dep info"); 1105 1106 LocalDeps[InstDependingOnRemInst] = NewDirtyVal; 1107 1108 // Make sure to remember that new things depend on NewDepInst. 1109 assert(NewDirtyVal.getInst() && "There is no way something else can have " 1110 "a local dep on this if it is a terminator!"); 1111 ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(), 1112 InstDependingOnRemInst)); 1113 } 1114 1115 ReverseLocalDeps.erase(ReverseDepIt); 1116 1117 // Add new reverse deps after scanning the set, to avoid invalidating the 1118 // 'ReverseDeps' reference. 1119 while (!ReverseDepsToAdd.empty()) { 1120 ReverseLocalDeps[ReverseDepsToAdd.back().first] 1121 .insert(ReverseDepsToAdd.back().second); 1122 ReverseDepsToAdd.pop_back(); 1123 } 1124 } 1125 1126 ReverseDepIt = ReverseNonLocalDeps.find(RemInst); 1127 if (ReverseDepIt != ReverseNonLocalDeps.end()) { 1128 SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second; 1129 for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end(); 1130 I != E; ++I) { 1131 assert(*I != RemInst && "Already removed NonLocalDep info for RemInst"); 1132 1133 PerInstNLInfo &INLD = NonLocalDeps[*I]; 1134 // The information is now dirty! 1135 INLD.second = true; 1136 1137 for (NonLocalDepInfo::iterator DI = INLD.first.begin(), 1138 DE = INLD.first.end(); DI != DE; ++DI) { 1139 if (DI->getResult().getInst() != RemInst) continue; 1140 1141 // Convert to a dirty entry for the subsequent instruction. 1142 DI->setResult(NewDirtyVal, DI->getAddress()); 1143 1144 if (Instruction *NextI = NewDirtyVal.getInst()) 1145 ReverseDepsToAdd.push_back(std::make_pair(NextI, *I)); 1146 } 1147 } 1148 1149 ReverseNonLocalDeps.erase(ReverseDepIt); 1150 1151 // Add new reverse deps after scanning the set, to avoid invalidating 'Set' 1152 while (!ReverseDepsToAdd.empty()) { 1153 ReverseNonLocalDeps[ReverseDepsToAdd.back().first] 1154 .insert(ReverseDepsToAdd.back().second); 1155 ReverseDepsToAdd.pop_back(); 1156 } 1157 } 1158 1159 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a 1160 // value in the NonLocalPointerDeps info. 1161 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = 1162 ReverseNonLocalPtrDeps.find(RemInst); 1163 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { 1164 SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second; 1165 SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd; 1166 1167 for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(), 1168 E = Set.end(); I != E; ++I) { 1169 ValueIsLoadPair P = *I; 1170 assert(P.getPointer() != RemInst && 1171 "Already removed NonLocalPointerDeps info for RemInst"); 1172 1173 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].second; 1174 1175 // The cache is not valid for any specific block anymore. 1176 NonLocalPointerDeps[P].first = BBSkipFirstBlockPair(); 1177 1178 // Update any entries for RemInst to use the instruction after it. 1179 for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end(); 1180 DI != DE; ++DI) { 1181 if (DI->getResult().getInst() != RemInst) continue; 1182 1183 // Convert to a dirty entry for the subsequent instruction. 1184 DI->setResult(NewDirtyVal, DI->getAddress()); 1185 1186 if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) 1187 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); 1188 } 1189 1190 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its 1191 // subsequent value may invalidate the sortedness. 1192 std::sort(NLPDI.begin(), NLPDI.end()); 1193 } 1194 1195 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); 1196 1197 while (!ReversePtrDepsToAdd.empty()) { 1198 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first] 1199 .insert(ReversePtrDepsToAdd.back().second); 1200 ReversePtrDepsToAdd.pop_back(); 1201 } 1202 } 1203 1204 1205 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); 1206 AA->deleteValue(RemInst); 1207 DEBUG(verifyRemoved(RemInst)); 1208 } 1209 /// verifyRemoved - Verify that the specified instruction does not occur 1210 /// in our internal data structures. 1211 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const { 1212 for (LocalDepMapType::const_iterator I = LocalDeps.begin(), 1213 E = LocalDeps.end(); I != E; ++I) { 1214 assert(I->first != D && "Inst occurs in data structures"); 1215 assert(I->second.getInst() != D && 1216 "Inst occurs in data structures"); 1217 } 1218 1219 for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(), 1220 E = NonLocalPointerDeps.end(); I != E; ++I) { 1221 assert(I->first.getPointer() != D && "Inst occurs in NLPD map key"); 1222 const NonLocalDepInfo &Val = I->second.second; 1223 for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end(); 1224 II != E; ++II) 1225 assert(II->getResult().getInst() != D && "Inst occurs as NLPD value"); 1226 } 1227 1228 for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(), 1229 E = NonLocalDeps.end(); I != E; ++I) { 1230 assert(I->first != D && "Inst occurs in data structures"); 1231 const PerInstNLInfo &INLD = I->second; 1232 for (NonLocalDepInfo::const_iterator II = INLD.first.begin(), 1233 EE = INLD.first.end(); II != EE; ++II) 1234 assert(II->getResult().getInst() != D && "Inst occurs in data structures"); 1235 } 1236 1237 for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(), 1238 E = ReverseLocalDeps.end(); I != E; ++I) { 1239 assert(I->first != D && "Inst occurs in data structures"); 1240 for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(), 1241 EE = I->second.end(); II != EE; ++II) 1242 assert(*II != D && "Inst occurs in data structures"); 1243 } 1244 1245 for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(), 1246 E = ReverseNonLocalDeps.end(); 1247 I != E; ++I) { 1248 assert(I->first != D && "Inst occurs in data structures"); 1249 for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(), 1250 EE = I->second.end(); II != EE; ++II) 1251 assert(*II != D && "Inst occurs in data structures"); 1252 } 1253 1254 for (ReverseNonLocalPtrDepTy::const_iterator 1255 I = ReverseNonLocalPtrDeps.begin(), 1256 E = ReverseNonLocalPtrDeps.end(); I != E; ++I) { 1257 assert(I->first != D && "Inst occurs in rev NLPD map"); 1258 1259 for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(), 1260 E = I->second.end(); II != E; ++II) 1261 assert(*II != ValueIsLoadPair(D, false) && 1262 *II != ValueIsLoadPair(D, true) && 1263 "Inst occurs in ReverseNonLocalPtrDeps map"); 1264 } 1265 1266 } 1267