1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an analysis that determines, for a given memory
10 // operation, what preceding memory operations it depends on.  It builds on
11 // alias analysis information, and tries to provide a lazy, caching interface to
12 // a common kind of alias information query.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/Analysis/PHITransAddr.h"
27 #include "llvm/Analysis/PhiValues.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/PredIteratorCache.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Use.h"
47 #include "llvm/IR/User.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/AtomicOrdering.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/MathExtras.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <iterator>
61 #include <utility>
62 
63 using namespace llvm;
64 
65 #define DEBUG_TYPE "memdep"
66 
67 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
68 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
69 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
70 
71 STATISTIC(NumCacheNonLocalPtr,
72           "Number of fully cached non-local ptr responses");
73 STATISTIC(NumCacheDirtyNonLocalPtr,
74           "Number of cached, but dirty, non-local ptr responses");
75 STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses");
76 STATISTIC(NumCacheCompleteNonLocalPtr,
77           "Number of block queries that were completely cached");
78 
79 // Limit for the number of instructions to scan in a block.
80 
81 static cl::opt<unsigned> BlockScanLimit(
82     "memdep-block-scan-limit", cl::Hidden, cl::init(100),
83     cl::desc("The number of instructions to scan in a block in memory "
84              "dependency analysis (default = 100)"));
85 
86 static cl::opt<unsigned>
87     BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000),
88                      cl::desc("The number of blocks to scan during memory "
89                               "dependency analysis (default = 1000)"));
90 
91 // Limit on the number of memdep results to process.
92 static const unsigned int NumResultsLimit = 100;
93 
94 /// This is a helper function that removes Val from 'Inst's set in ReverseMap.
95 ///
96 /// If the set becomes empty, remove Inst's entry.
97 template <typename KeyTy>
98 static void
99 RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap,
100                      Instruction *Inst, KeyTy Val) {
101   typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt =
102       ReverseMap.find(Inst);
103   assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
104   bool Found = InstIt->second.erase(Val);
105   assert(Found && "Invalid reverse map!");
106   (void)Found;
107   if (InstIt->second.empty())
108     ReverseMap.erase(InstIt);
109 }
110 
111 /// If the given instruction references a specific memory location, fill in Loc
112 /// with the details, otherwise set Loc.Ptr to null.
113 ///
114 /// Returns a ModRefInfo value describing the general behavior of the
115 /// instruction.
116 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc,
117                               const TargetLibraryInfo &TLI) {
118   if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
119     if (LI->isUnordered()) {
120       Loc = MemoryLocation::get(LI);
121       return ModRefInfo::Ref;
122     }
123     if (LI->getOrdering() == AtomicOrdering::Monotonic) {
124       Loc = MemoryLocation::get(LI);
125       return ModRefInfo::ModRef;
126     }
127     Loc = MemoryLocation();
128     return ModRefInfo::ModRef;
129   }
130 
131   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
132     if (SI->isUnordered()) {
133       Loc = MemoryLocation::get(SI);
134       return ModRefInfo::Mod;
135     }
136     if (SI->getOrdering() == AtomicOrdering::Monotonic) {
137       Loc = MemoryLocation::get(SI);
138       return ModRefInfo::ModRef;
139     }
140     Loc = MemoryLocation();
141     return ModRefInfo::ModRef;
142   }
143 
144   if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
145     Loc = MemoryLocation::get(V);
146     return ModRefInfo::ModRef;
147   }
148 
149   if (const CallInst *CI = isFreeCall(Inst, &TLI)) {
150     // calls to free() deallocate the entire structure
151     Loc = MemoryLocation(CI->getArgOperand(0));
152     return ModRefInfo::Mod;
153   }
154 
155   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
156     switch (II->getIntrinsicID()) {
157     case Intrinsic::lifetime_start:
158     case Intrinsic::lifetime_end:
159     case Intrinsic::invariant_start:
160       Loc = MemoryLocation::getForArgument(II, 1, TLI);
161       // These intrinsics don't really modify the memory, but returning Mod
162       // will allow them to be handled conservatively.
163       return ModRefInfo::Mod;
164     case Intrinsic::invariant_end:
165       Loc = MemoryLocation::getForArgument(II, 2, TLI);
166       // These intrinsics don't really modify the memory, but returning Mod
167       // will allow them to be handled conservatively.
168       return ModRefInfo::Mod;
169     default:
170       break;
171     }
172   }
173 
174   // Otherwise, just do the coarse-grained thing that always works.
175   if (Inst->mayWriteToMemory())
176     return ModRefInfo::ModRef;
177   if (Inst->mayReadFromMemory())
178     return ModRefInfo::Ref;
179   return ModRefInfo::NoModRef;
180 }
181 
182 /// Private helper for finding the local dependencies of a call site.
183 MemDepResult MemoryDependenceResults::getCallDependencyFrom(
184     CallBase *Call, bool isReadOnlyCall, BasicBlock::iterator ScanIt,
185     BasicBlock *BB) {
186   unsigned Limit = getDefaultBlockScanLimit();
187 
188   // Walk backwards through the block, looking for dependencies.
189   while (ScanIt != BB->begin()) {
190     Instruction *Inst = &*--ScanIt;
191     // Debug intrinsics don't cause dependences and should not affect Limit
192     if (isa<DbgInfoIntrinsic>(Inst))
193       continue;
194 
195     // Limit the amount of scanning we do so we don't end up with quadratic
196     // running time on extreme testcases.
197     --Limit;
198     if (!Limit)
199       return MemDepResult::getUnknown();
200 
201     // If this inst is a memory op, get the pointer it accessed
202     MemoryLocation Loc;
203     ModRefInfo MR = GetLocation(Inst, Loc, TLI);
204     if (Loc.Ptr) {
205       // A simple instruction.
206       if (isModOrRefSet(AA.getModRefInfo(Call, Loc)))
207         return MemDepResult::getClobber(Inst);
208       continue;
209     }
210 
211     if (auto *CallB = dyn_cast<CallBase>(Inst)) {
212       // If these two calls do not interfere, look past it.
213       if (isNoModRef(AA.getModRefInfo(Call, CallB))) {
214         // If the two calls are the same, return Inst as a Def, so that
215         // Call can be found redundant and eliminated.
216         if (isReadOnlyCall && !isModSet(MR) &&
217             Call->isIdenticalToWhenDefined(CallB))
218           return MemDepResult::getDef(Inst);
219 
220         // Otherwise if the two calls don't interact (e.g. CallB is readnone)
221         // keep scanning.
222         continue;
223       } else
224         return MemDepResult::getClobber(Inst);
225     }
226 
227     // If we could not obtain a pointer for the instruction and the instruction
228     // touches memory then assume that this is a dependency.
229     if (isModOrRefSet(MR))
230       return MemDepResult::getClobber(Inst);
231   }
232 
233   // No dependence found.  If this is the entry block of the function, it is
234   // unknown, otherwise it is non-local.
235   if (BB != &BB->getParent()->getEntryBlock())
236     return MemDepResult::getNonLocal();
237   return MemDepResult::getNonFuncLocal();
238 }
239 
240 static bool isVolatile(Instruction *Inst) {
241   if (auto *LI = dyn_cast<LoadInst>(Inst))
242     return LI->isVolatile();
243   if (auto *SI = dyn_cast<StoreInst>(Inst))
244     return SI->isVolatile();
245   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(Inst))
246     return AI->isVolatile();
247   return false;
248 }
249 
250 MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
251     const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
252     BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
253   MemDepResult InvariantGroupDependency = MemDepResult::getUnknown();
254   if (QueryInst != nullptr) {
255     if (auto *LI = dyn_cast<LoadInst>(QueryInst)) {
256       InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB);
257 
258       if (InvariantGroupDependency.isDef())
259         return InvariantGroupDependency;
260     }
261   }
262   MemDepResult SimpleDep = getSimplePointerDependencyFrom(
263       MemLoc, isLoad, ScanIt, BB, QueryInst, Limit);
264   if (SimpleDep.isDef())
265     return SimpleDep;
266   // Non-local invariant group dependency indicates there is non local Def
267   // (it only returns nonLocal if it finds nonLocal def), which is better than
268   // local clobber and everything else.
269   if (InvariantGroupDependency.isNonLocal())
270     return InvariantGroupDependency;
271 
272   assert(InvariantGroupDependency.isUnknown() &&
273          "InvariantGroupDependency should be only unknown at this point");
274   return SimpleDep;
275 }
276 
277 MemDepResult
278 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI,
279                                                             BasicBlock *BB) {
280 
281   if (!LI->hasMetadata(LLVMContext::MD_invariant_group))
282     return MemDepResult::getUnknown();
283 
284   // Take the ptr operand after all casts and geps 0. This way we can search
285   // cast graph down only.
286   Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts();
287 
288   // It's is not safe to walk the use list of global value, because function
289   // passes aren't allowed to look outside their functions.
290   // FIXME: this could be fixed by filtering instructions from outside
291   // of current function.
292   if (isa<GlobalValue>(LoadOperand))
293     return MemDepResult::getUnknown();
294 
295   // Queue to process all pointers that are equivalent to load operand.
296   SmallVector<const Value *, 8> LoadOperandsQueue;
297   LoadOperandsQueue.push_back(LoadOperand);
298 
299   Instruction *ClosestDependency = nullptr;
300   // Order of instructions in uses list is unpredictible. In order to always
301   // get the same result, we will look for the closest dominance.
302   auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) {
303     assert(Other && "Must call it with not null instruction");
304     if (Best == nullptr || DT.dominates(Best, Other))
305       return Other;
306     return Best;
307   };
308 
309   // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case
310   // we will see all the instructions. This should be fixed in MSSA.
311   while (!LoadOperandsQueue.empty()) {
312     const Value *Ptr = LoadOperandsQueue.pop_back_val();
313     assert(Ptr && !isa<GlobalValue>(Ptr) &&
314            "Null or GlobalValue should not be inserted");
315 
316     for (const Use &Us : Ptr->uses()) {
317       auto *U = dyn_cast<Instruction>(Us.getUser());
318       if (!U || U == LI || !DT.dominates(U, LI))
319         continue;
320 
321       // Bitcast or gep with zeros are using Ptr. Add to queue to check it's
322       // users.      U = bitcast Ptr
323       if (isa<BitCastInst>(U)) {
324         LoadOperandsQueue.push_back(U);
325         continue;
326       }
327       // Gep with zeros is equivalent to bitcast.
328       // FIXME: we are not sure if some bitcast should be canonicalized to gep 0
329       // or gep 0 to bitcast because of SROA, so there are 2 forms. When
330       // typeless pointers will be ready then both cases will be gone
331       // (and this BFS also won't be needed).
332       if (auto *GEP = dyn_cast<GetElementPtrInst>(U))
333         if (GEP->hasAllZeroIndices()) {
334           LoadOperandsQueue.push_back(U);
335           continue;
336         }
337 
338       // If we hit load/store with the same invariant.group metadata (and the
339       // same pointer operand) we can assume that value pointed by pointer
340       // operand didn't change.
341       if ((isa<LoadInst>(U) || isa<StoreInst>(U)) &&
342           U->hasMetadata(LLVMContext::MD_invariant_group))
343         ClosestDependency = GetClosestDependency(ClosestDependency, U);
344     }
345   }
346 
347   if (!ClosestDependency)
348     return MemDepResult::getUnknown();
349   if (ClosestDependency->getParent() == BB)
350     return MemDepResult::getDef(ClosestDependency);
351   // Def(U) can't be returned here because it is non-local. If local
352   // dependency won't be found then return nonLocal counting that the
353   // user will call getNonLocalPointerDependency, which will return cached
354   // result.
355   NonLocalDefsCache.try_emplace(
356       LI, NonLocalDepResult(ClosestDependency->getParent(),
357                             MemDepResult::getDef(ClosestDependency), nullptr));
358   ReverseNonLocalDefsCache[ClosestDependency].insert(LI);
359   return MemDepResult::getNonLocal();
360 }
361 
362 MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom(
363     const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
364     BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
365   // We can batch AA queries, because IR does not change during a MemDep query.
366   BatchAAResults BatchAA(AA);
367   bool isInvariantLoad = false;
368 
369   unsigned DefaultLimit = getDefaultBlockScanLimit();
370   if (!Limit)
371     Limit = &DefaultLimit;
372 
373   // We must be careful with atomic accesses, as they may allow another thread
374   //   to touch this location, clobbering it. We are conservative: if the
375   //   QueryInst is not a simple (non-atomic) memory access, we automatically
376   //   return getClobber.
377   // If it is simple, we know based on the results of
378   // "Compiler testing via a theory of sound optimisations in the C11/C++11
379   //   memory model" in PLDI 2013, that a non-atomic location can only be
380   //   clobbered between a pair of a release and an acquire action, with no
381   //   access to the location in between.
382   // Here is an example for giving the general intuition behind this rule.
383   // In the following code:
384   //   store x 0;
385   //   release action; [1]
386   //   acquire action; [4]
387   //   %val = load x;
388   // It is unsafe to replace %val by 0 because another thread may be running:
389   //   acquire action; [2]
390   //   store x 42;
391   //   release action; [3]
392   // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
393   // being 42. A key property of this program however is that if either
394   // 1 or 4 were missing, there would be a race between the store of 42
395   // either the store of 0 or the load (making the whole program racy).
396   // The paper mentioned above shows that the same property is respected
397   // by every program that can detect any optimization of that kind: either
398   // it is racy (undefined) or there is a release followed by an acquire
399   // between the pair of accesses under consideration.
400 
401   // If the load is invariant, we "know" that it doesn't alias *any* write. We
402   // do want to respect mustalias results since defs are useful for value
403   // forwarding, but any mayalias write can be assumed to be noalias.
404   // Arguably, this logic should be pushed inside AliasAnalysis itself.
405   if (isLoad && QueryInst) {
406     LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
407     if (LI && LI->hasMetadata(LLVMContext::MD_invariant_load))
408       isInvariantLoad = true;
409   }
410 
411   // Return "true" if and only if the instruction I is either a non-simple
412   // load or a non-simple store.
413   auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool {
414     if (auto *LI = dyn_cast<LoadInst>(I))
415       return !LI->isSimple();
416     if (auto *SI = dyn_cast<StoreInst>(I))
417       return !SI->isSimple();
418     return false;
419   };
420 
421   // Return "true" if I is not a load and not a store, but it does access
422   // memory.
423   auto isOtherMemAccess = [](Instruction *I) -> bool {
424     return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory();
425   };
426 
427   // Walk backwards through the basic block, looking for dependencies.
428   while (ScanIt != BB->begin()) {
429     Instruction *Inst = &*--ScanIt;
430 
431     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
432       // Debug intrinsics don't (and can't) cause dependencies.
433       if (isa<DbgInfoIntrinsic>(II))
434         continue;
435 
436     // Limit the amount of scanning we do so we don't end up with quadratic
437     // running time on extreme testcases.
438     --*Limit;
439     if (!*Limit)
440       return MemDepResult::getUnknown();
441 
442     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
443       // If we reach a lifetime begin or end marker, then the query ends here
444       // because the value is undefined.
445       if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
446         // FIXME: This only considers queries directly on the invariant-tagged
447         // pointer, not on query pointers that are indexed off of them.  It'd
448         // be nice to handle that at some point (the right approach is to use
449         // GetPointerBaseWithConstantOffset).
450         if (BatchAA.isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc))
451           return MemDepResult::getDef(II);
452         continue;
453       }
454     }
455 
456     // Values depend on loads if the pointers are must aliased.  This means
457     // that a load depends on another must aliased load from the same value.
458     // One exception is atomic loads: a value can depend on an atomic load that
459     // it does not alias with when this atomic load indicates that another
460     // thread may be accessing the location.
461     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
462       // While volatile access cannot be eliminated, they do not have to clobber
463       // non-aliasing locations, as normal accesses, for example, can be safely
464       // reordered with volatile accesses.
465       if (LI->isVolatile()) {
466         if (!QueryInst)
467           // Original QueryInst *may* be volatile
468           return MemDepResult::getClobber(LI);
469         if (isVolatile(QueryInst))
470           // Ordering required if QueryInst is itself volatile
471           return MemDepResult::getClobber(LI);
472         // Otherwise, volatile doesn't imply any special ordering
473       }
474 
475       // Atomic loads have complications involved.
476       // A Monotonic (or higher) load is OK if the query inst is itself not
477       // atomic.
478       // FIXME: This is overly conservative.
479       if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) {
480         if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
481             isOtherMemAccess(QueryInst))
482           return MemDepResult::getClobber(LI);
483         if (LI->getOrdering() != AtomicOrdering::Monotonic)
484           return MemDepResult::getClobber(LI);
485       }
486 
487       MemoryLocation LoadLoc = MemoryLocation::get(LI);
488 
489       // If we found a pointer, check if it could be the same as our pointer.
490       AliasResult R = BatchAA.alias(LoadLoc, MemLoc);
491 
492       if (isLoad) {
493         if (R == NoAlias)
494           continue;
495 
496         // Must aliased loads are defs of each other.
497         if (R == MustAlias)
498           return MemDepResult::getDef(Inst);
499 
500 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
501       // in terms of clobbering loads, but since it does this by looking
502       // at the clobbering load directly, it doesn't know about any
503       // phi translation that may have happened along the way.
504 
505         // If we have a partial alias, then return this as a clobber for the
506         // client to handle.
507         if (R == PartialAlias)
508           return MemDepResult::getClobber(Inst);
509 #endif
510 
511         // Random may-alias loads don't depend on each other without a
512         // dependence.
513         continue;
514       }
515 
516       // Stores don't depend on other no-aliased accesses.
517       if (R == NoAlias)
518         continue;
519 
520       // Stores don't alias loads from read-only memory.
521       if (BatchAA.pointsToConstantMemory(LoadLoc))
522         continue;
523 
524       // Stores depend on may/must aliased loads.
525       return MemDepResult::getDef(Inst);
526     }
527 
528     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
529       // Atomic stores have complications involved.
530       // A Monotonic store is OK if the query inst is itself not atomic.
531       // FIXME: This is overly conservative.
532       if (!SI->isUnordered() && SI->isAtomic()) {
533         if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
534             isOtherMemAccess(QueryInst))
535           return MemDepResult::getClobber(SI);
536         if (SI->getOrdering() != AtomicOrdering::Monotonic)
537           return MemDepResult::getClobber(SI);
538       }
539 
540       // FIXME: this is overly conservative.
541       // While volatile access cannot be eliminated, they do not have to clobber
542       // non-aliasing locations, as normal accesses can for example be reordered
543       // with volatile accesses.
544       if (SI->isVolatile())
545         if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
546             isOtherMemAccess(QueryInst))
547           return MemDepResult::getClobber(SI);
548 
549       // If alias analysis can tell that this store is guaranteed to not modify
550       // the query pointer, ignore it.  Use getModRefInfo to handle cases where
551       // the query pointer points to constant memory etc.
552       if (!isModOrRefSet(BatchAA.getModRefInfo(SI, MemLoc)))
553         continue;
554 
555       // Ok, this store might clobber the query pointer.  Check to see if it is
556       // a must alias: in this case, we want to return this as a def.
557       // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above.
558       MemoryLocation StoreLoc = MemoryLocation::get(SI);
559 
560       // If we found a pointer, check if it could be the same as our pointer.
561       AliasResult R = BatchAA.alias(StoreLoc, MemLoc);
562 
563       if (R == NoAlias)
564         continue;
565       if (R == MustAlias)
566         return MemDepResult::getDef(Inst);
567       if (isInvariantLoad)
568         continue;
569       return MemDepResult::getClobber(Inst);
570     }
571 
572     // If this is an allocation, and if we know that the accessed pointer is to
573     // the allocation, return Def.  This means that there is no dependence and
574     // the access can be optimized based on that.  For example, a load could
575     // turn into undef.  Note that we can bypass the allocation itself when
576     // looking for a clobber in many cases; that's an alias property and is
577     // handled by BasicAA.
578     if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) {
579       const Value *AccessPtr = getUnderlyingObject(MemLoc.Ptr);
580       if (AccessPtr == Inst || BatchAA.isMustAlias(Inst, AccessPtr))
581         return MemDepResult::getDef(Inst);
582     }
583 
584     if (isInvariantLoad)
585       continue;
586 
587     // A release fence requires that all stores complete before it, but does
588     // not prevent the reordering of following loads or stores 'before' the
589     // fence.  As a result, we look past it when finding a dependency for
590     // loads.  DSE uses this to find preceding stores to delete and thus we
591     // can't bypass the fence if the query instruction is a store.
592     if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
593       if (isLoad && FI->getOrdering() == AtomicOrdering::Release)
594         continue;
595 
596     // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
597     ModRefInfo MR = BatchAA.getModRefInfo(Inst, MemLoc);
598     // If necessary, perform additional analysis.
599     if (isModAndRefSet(MR))
600       // TODO: Support callCapturesBefore() on BatchAAResults.
601       MR = AA.callCapturesBefore(Inst, MemLoc, &DT);
602     switch (clearMust(MR)) {
603     case ModRefInfo::NoModRef:
604       // If the call has no effect on the queried pointer, just ignore it.
605       continue;
606     case ModRefInfo::Mod:
607       return MemDepResult::getClobber(Inst);
608     case ModRefInfo::Ref:
609       // If the call is known to never store to the pointer, and if this is a
610       // load query, we can safely ignore it (scan past it).
611       if (isLoad)
612         continue;
613       LLVM_FALLTHROUGH;
614     default:
615       // Otherwise, there is a potential dependence.  Return a clobber.
616       return MemDepResult::getClobber(Inst);
617     }
618   }
619 
620   // No dependence found.  If this is the entry block of the function, it is
621   // unknown, otherwise it is non-local.
622   if (BB != &BB->getParent()->getEntryBlock())
623     return MemDepResult::getNonLocal();
624   return MemDepResult::getNonFuncLocal();
625 }
626 
627 MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) {
628   Instruction *ScanPos = QueryInst;
629 
630   // Check for a cached result
631   MemDepResult &LocalCache = LocalDeps[QueryInst];
632 
633   // If the cached entry is non-dirty, just return it.  Note that this depends
634   // on MemDepResult's default constructing to 'dirty'.
635   if (!LocalCache.isDirty())
636     return LocalCache;
637 
638   // Otherwise, if we have a dirty entry, we know we can start the scan at that
639   // instruction, which may save us some work.
640   if (Instruction *Inst = LocalCache.getInst()) {
641     ScanPos = Inst;
642 
643     RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
644   }
645 
646   BasicBlock *QueryParent = QueryInst->getParent();
647 
648   // Do the scan.
649   if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
650     // No dependence found. If this is the entry block of the function, it is
651     // unknown, otherwise it is non-local.
652     if (QueryParent != &QueryParent->getParent()->getEntryBlock())
653       LocalCache = MemDepResult::getNonLocal();
654     else
655       LocalCache = MemDepResult::getNonFuncLocal();
656   } else {
657     MemoryLocation MemLoc;
658     ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI);
659     if (MemLoc.Ptr) {
660       // If we can do a pointer scan, make it happen.
661       bool isLoad = !isModSet(MR);
662       if (auto *II = dyn_cast<IntrinsicInst>(QueryInst))
663         isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
664 
665       LocalCache =
666           getPointerDependencyFrom(MemLoc, isLoad, ScanPos->getIterator(),
667                                    QueryParent, QueryInst, nullptr);
668     } else if (auto *QueryCall = dyn_cast<CallBase>(QueryInst)) {
669       bool isReadOnly = AA.onlyReadsMemory(QueryCall);
670       LocalCache = getCallDependencyFrom(QueryCall, isReadOnly,
671                                          ScanPos->getIterator(), QueryParent);
672     } else
673       // Non-memory instruction.
674       LocalCache = MemDepResult::getUnknown();
675   }
676 
677   // Remember the result!
678   if (Instruction *I = LocalCache.getInst())
679     ReverseLocalDeps[I].insert(QueryInst);
680 
681   return LocalCache;
682 }
683 
684 #ifndef NDEBUG
685 /// This method is used when -debug is specified to verify that cache arrays
686 /// are properly kept sorted.
687 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache,
688                          int Count = -1) {
689   if (Count == -1)
690     Count = Cache.size();
691   assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) &&
692          "Cache isn't sorted!");
693 }
694 #endif
695 
696 const MemoryDependenceResults::NonLocalDepInfo &
697 MemoryDependenceResults::getNonLocalCallDependency(CallBase *QueryCall) {
698   assert(getDependency(QueryCall).isNonLocal() &&
699          "getNonLocalCallDependency should only be used on calls with "
700          "non-local deps!");
701   PerInstNLInfo &CacheP = NonLocalDeps[QueryCall];
702   NonLocalDepInfo &Cache = CacheP.first;
703 
704   // This is the set of blocks that need to be recomputed.  In the cached case,
705   // this can happen due to instructions being deleted etc. In the uncached
706   // case, this starts out as the set of predecessors we care about.
707   SmallVector<BasicBlock *, 32> DirtyBlocks;
708 
709   if (!Cache.empty()) {
710     // Okay, we have a cache entry.  If we know it is not dirty, just return it
711     // with no computation.
712     if (!CacheP.second) {
713       ++NumCacheNonLocal;
714       return Cache;
715     }
716 
717     // If we already have a partially computed set of results, scan them to
718     // determine what is dirty, seeding our initial DirtyBlocks worklist.
719     for (auto &Entry : Cache)
720       if (Entry.getResult().isDirty())
721         DirtyBlocks.push_back(Entry.getBB());
722 
723     // Sort the cache so that we can do fast binary search lookups below.
724     llvm::sort(Cache);
725 
726     ++NumCacheDirtyNonLocal;
727     // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
728     //     << Cache.size() << " cached: " << *QueryInst;
729   } else {
730     // Seed DirtyBlocks with each of the preds of QueryInst's block.
731     BasicBlock *QueryBB = QueryCall->getParent();
732     for (BasicBlock *Pred : PredCache.get(QueryBB))
733       DirtyBlocks.push_back(Pred);
734     ++NumUncacheNonLocal;
735   }
736 
737   // isReadonlyCall - If this is a read-only call, we can be more aggressive.
738   bool isReadonlyCall = AA.onlyReadsMemory(QueryCall);
739 
740   SmallPtrSet<BasicBlock *, 32> Visited;
741 
742   unsigned NumSortedEntries = Cache.size();
743   LLVM_DEBUG(AssertSorted(Cache));
744 
745   // Iterate while we still have blocks to update.
746   while (!DirtyBlocks.empty()) {
747     BasicBlock *DirtyBB = DirtyBlocks.back();
748     DirtyBlocks.pop_back();
749 
750     // Already processed this block?
751     if (!Visited.insert(DirtyBB).second)
752       continue;
753 
754     // Do a binary search to see if we already have an entry for this block in
755     // the cache set.  If so, find it.
756     LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries));
757     NonLocalDepInfo::iterator Entry =
758         std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries,
759                          NonLocalDepEntry(DirtyBB));
760     if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
761       --Entry;
762 
763     NonLocalDepEntry *ExistingResult = nullptr;
764     if (Entry != Cache.begin() + NumSortedEntries &&
765         Entry->getBB() == DirtyBB) {
766       // If we already have an entry, and if it isn't already dirty, the block
767       // is done.
768       if (!Entry->getResult().isDirty())
769         continue;
770 
771       // Otherwise, remember this slot so we can update the value.
772       ExistingResult = &*Entry;
773     }
774 
775     // If the dirty entry has a pointer, start scanning from it so we don't have
776     // to rescan the entire block.
777     BasicBlock::iterator ScanPos = DirtyBB->end();
778     if (ExistingResult) {
779       if (Instruction *Inst = ExistingResult->getResult().getInst()) {
780         ScanPos = Inst->getIterator();
781         // We're removing QueryInst's use of Inst.
782         RemoveFromReverseMap<Instruction *>(ReverseNonLocalDeps, Inst,
783                                             QueryCall);
784       }
785     }
786 
787     // Find out if this block has a local dependency for QueryInst.
788     MemDepResult Dep;
789 
790     if (ScanPos != DirtyBB->begin()) {
791       Dep = getCallDependencyFrom(QueryCall, isReadonlyCall, ScanPos, DirtyBB);
792     } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
793       // No dependence found.  If this is the entry block of the function, it is
794       // a clobber, otherwise it is unknown.
795       Dep = MemDepResult::getNonLocal();
796     } else {
797       Dep = MemDepResult::getNonFuncLocal();
798     }
799 
800     // If we had a dirty entry for the block, update it.  Otherwise, just add
801     // a new entry.
802     if (ExistingResult)
803       ExistingResult->setResult(Dep);
804     else
805       Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
806 
807     // If the block has a dependency (i.e. it isn't completely transparent to
808     // the value), remember the association!
809     if (!Dep.isNonLocal()) {
810       // Keep the ReverseNonLocalDeps map up to date so we can efficiently
811       // update this when we remove instructions.
812       if (Instruction *Inst = Dep.getInst())
813         ReverseNonLocalDeps[Inst].insert(QueryCall);
814     } else {
815 
816       // If the block *is* completely transparent to the load, we need to check
817       // the predecessors of this block.  Add them to our worklist.
818       for (BasicBlock *Pred : PredCache.get(DirtyBB))
819         DirtyBlocks.push_back(Pred);
820     }
821   }
822 
823   return Cache;
824 }
825 
826 void MemoryDependenceResults::getNonLocalPointerDependency(
827     Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) {
828   const MemoryLocation Loc = MemoryLocation::get(QueryInst);
829   bool isLoad = isa<LoadInst>(QueryInst);
830   BasicBlock *FromBB = QueryInst->getParent();
831   assert(FromBB);
832 
833   assert(Loc.Ptr->getType()->isPointerTy() &&
834          "Can't get pointer deps of a non-pointer!");
835   Result.clear();
836   {
837     // Check if there is cached Def with invariant.group.
838     auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst);
839     if (NonLocalDefIt != NonLocalDefsCache.end()) {
840       Result.push_back(NonLocalDefIt->second);
841       ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()]
842           .erase(QueryInst);
843       NonLocalDefsCache.erase(NonLocalDefIt);
844       return;
845     }
846   }
847   // This routine does not expect to deal with volatile instructions.
848   // Doing so would require piping through the QueryInst all the way through.
849   // TODO: volatiles can't be elided, but they can be reordered with other
850   // non-volatile accesses.
851 
852   // We currently give up on any instruction which is ordered, but we do handle
853   // atomic instructions which are unordered.
854   // TODO: Handle ordered instructions
855   auto isOrdered = [](Instruction *Inst) {
856     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
857       return !LI->isUnordered();
858     } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
859       return !SI->isUnordered();
860     }
861     return false;
862   };
863   if (isVolatile(QueryInst) || isOrdered(QueryInst)) {
864     Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
865                                        const_cast<Value *>(Loc.Ptr)));
866     return;
867   }
868   const DataLayout &DL = FromBB->getModule()->getDataLayout();
869   PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC);
870 
871   // This is the set of blocks we've inspected, and the pointer we consider in
872   // each block.  Because of critical edges, we currently bail out if querying
873   // a block with multiple different pointers.  This can happen during PHI
874   // translation.
875   DenseMap<BasicBlock *, Value *> Visited;
876   if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB,
877                                    Result, Visited, true))
878     return;
879   Result.clear();
880   Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
881                                      const_cast<Value *>(Loc.Ptr)));
882 }
883 
884 /// Compute the memdep value for BB with Pointer/PointeeSize using either
885 /// cached information in Cache or by doing a lookup (which may use dirty cache
886 /// info if available).
887 ///
888 /// If we do a lookup, add the result to the cache.
889 MemDepResult MemoryDependenceResults::GetNonLocalInfoForBlock(
890     Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad,
891     BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
892 
893   bool isInvariantLoad = false;
894 
895   if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst))
896     isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load);
897 
898   // Do a binary search to see if we already have an entry for this block in
899   // the cache set.  If so, find it.
900   NonLocalDepInfo::iterator Entry = std::upper_bound(
901       Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB));
902   if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB)
903     --Entry;
904 
905   NonLocalDepEntry *ExistingResult = nullptr;
906   if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB)
907     ExistingResult = &*Entry;
908 
909   // Use cached result for invariant load only if there is no dependency for non
910   // invariant load. In this case invariant load can not have any dependency as
911   // well.
912   if (ExistingResult && isInvariantLoad &&
913       !ExistingResult->getResult().isNonFuncLocal())
914     ExistingResult = nullptr;
915 
916   // If we have a cached entry, and it is non-dirty, use it as the value for
917   // this dependency.
918   if (ExistingResult && !ExistingResult->getResult().isDirty()) {
919     ++NumCacheNonLocalPtr;
920     return ExistingResult->getResult();
921   }
922 
923   // Otherwise, we have to scan for the value.  If we have a dirty cache
924   // entry, start scanning from its position, otherwise we scan from the end
925   // of the block.
926   BasicBlock::iterator ScanPos = BB->end();
927   if (ExistingResult && ExistingResult->getResult().getInst()) {
928     assert(ExistingResult->getResult().getInst()->getParent() == BB &&
929            "Instruction invalidated?");
930     ++NumCacheDirtyNonLocalPtr;
931     ScanPos = ExistingResult->getResult().getInst()->getIterator();
932 
933     // Eliminating the dirty entry from 'Cache', so update the reverse info.
934     ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
935     RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey);
936   } else {
937     ++NumUncacheNonLocalPtr;
938   }
939 
940   // Scan the block for the dependency.
941   MemDepResult Dep =
942       getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, QueryInst);
943 
944   // Don't cache results for invariant load.
945   if (isInvariantLoad)
946     return Dep;
947 
948   // If we had a dirty entry for the block, update it.  Otherwise, just add
949   // a new entry.
950   if (ExistingResult)
951     ExistingResult->setResult(Dep);
952   else
953     Cache->push_back(NonLocalDepEntry(BB, Dep));
954 
955   // If the block has a dependency (i.e. it isn't completely transparent to
956   // the value), remember the reverse association because we just added it
957   // to Cache!
958   if (!Dep.isDef() && !Dep.isClobber())
959     return Dep;
960 
961   // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
962   // update MemDep when we remove instructions.
963   Instruction *Inst = Dep.getInst();
964   assert(Inst && "Didn't depend on anything?");
965   ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
966   ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
967   return Dep;
968 }
969 
970 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the
971 /// array that are already properly ordered.
972 ///
973 /// This is optimized for the case when only a few entries are added.
974 static void
975 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache,
976                          unsigned NumSortedEntries) {
977   switch (Cache.size() - NumSortedEntries) {
978   case 0:
979     // done, no new entries.
980     break;
981   case 2: {
982     // Two new entries, insert the last one into place.
983     NonLocalDepEntry Val = Cache.back();
984     Cache.pop_back();
985     MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
986         std::upper_bound(Cache.begin(), Cache.end() - 1, Val);
987     Cache.insert(Entry, Val);
988     LLVM_FALLTHROUGH;
989   }
990   case 1:
991     // One new entry, Just insert the new value at the appropriate position.
992     if (Cache.size() != 1) {
993       NonLocalDepEntry Val = Cache.back();
994       Cache.pop_back();
995       MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
996           std::upper_bound(Cache.begin(), Cache.end(), Val);
997       Cache.insert(Entry, Val);
998     }
999     break;
1000   default:
1001     // Added many values, do a full scale sort.
1002     llvm::sort(Cache);
1003     break;
1004   }
1005 }
1006 
1007 /// Perform a dependency query based on pointer/pointeesize starting at the end
1008 /// of StartBB.
1009 ///
1010 /// Add any clobber/def results to the results vector and keep track of which
1011 /// blocks are visited in 'Visited'.
1012 ///
1013 /// This has special behavior for the first block queries (when SkipFirstBlock
1014 /// is true).  In this special case, it ignores the contents of the specified
1015 /// block and starts returning dependence info for its predecessors.
1016 ///
1017 /// This function returns true on success, or false to indicate that it could
1018 /// not compute dependence information for some reason.  This should be treated
1019 /// as a clobber dependence on the first instruction in the predecessor block.
1020 bool MemoryDependenceResults::getNonLocalPointerDepFromBB(
1021     Instruction *QueryInst, const PHITransAddr &Pointer,
1022     const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB,
1023     SmallVectorImpl<NonLocalDepResult> &Result,
1024     DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock,
1025     bool IsIncomplete) {
1026   // Look up the cached info for Pointer.
1027   ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
1028 
1029   // Set up a temporary NLPI value. If the map doesn't yet have an entry for
1030   // CacheKey, this value will be inserted as the associated value. Otherwise,
1031   // it'll be ignored, and we'll have to check to see if the cached size and
1032   // aa tags are consistent with the current query.
1033   NonLocalPointerInfo InitialNLPI;
1034   InitialNLPI.Size = Loc.Size;
1035   InitialNLPI.AATags = Loc.AATags;
1036 
1037   bool isInvariantLoad = false;
1038   if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst))
1039     isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load);
1040 
1041   // Get the NLPI for CacheKey, inserting one into the map if it doesn't
1042   // already have one.
1043   std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
1044       NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
1045   NonLocalPointerInfo *CacheInfo = &Pair.first->second;
1046 
1047   // If we already have a cache entry for this CacheKey, we may need to do some
1048   // work to reconcile the cache entry and the current query.
1049   // Invariant loads don't participate in caching. Thus no need to reconcile.
1050   if (!isInvariantLoad && !Pair.second) {
1051     if (CacheInfo->Size != Loc.Size) {
1052       bool ThrowOutEverything;
1053       if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) {
1054         // FIXME: We may be able to do better in the face of results with mixed
1055         // precision. We don't appear to get them in practice, though, so just
1056         // be conservative.
1057         ThrowOutEverything =
1058             CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() ||
1059             CacheInfo->Size.getValue() < Loc.Size.getValue();
1060       } else {
1061         // For our purposes, unknown size > all others.
1062         ThrowOutEverything = !Loc.Size.hasValue();
1063       }
1064 
1065       if (ThrowOutEverything) {
1066         // The query's Size is greater than the cached one. Throw out the
1067         // cached data and proceed with the query at the greater size.
1068         CacheInfo->Pair = BBSkipFirstBlockPair();
1069         CacheInfo->Size = Loc.Size;
1070         for (auto &Entry : CacheInfo->NonLocalDeps)
1071           if (Instruction *Inst = Entry.getResult().getInst())
1072             RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1073         CacheInfo->NonLocalDeps.clear();
1074         // The cache is cleared (in the above line) so we will have lost
1075         // information about blocks we have already visited. We therefore must
1076         // assume that the cache information is incomplete.
1077         IsIncomplete = true;
1078       } else {
1079         // This query's Size is less than the cached one. Conservatively restart
1080         // the query using the greater size.
1081         return getNonLocalPointerDepFromBB(
1082             QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad,
1083             StartBB, Result, Visited, SkipFirstBlock, IsIncomplete);
1084       }
1085     }
1086 
1087     // If the query's AATags are inconsistent with the cached one,
1088     // conservatively throw out the cached data and restart the query with
1089     // no tag if needed.
1090     if (CacheInfo->AATags != Loc.AATags) {
1091       if (CacheInfo->AATags) {
1092         CacheInfo->Pair = BBSkipFirstBlockPair();
1093         CacheInfo->AATags = AAMDNodes();
1094         for (auto &Entry : CacheInfo->NonLocalDeps)
1095           if (Instruction *Inst = Entry.getResult().getInst())
1096             RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1097         CacheInfo->NonLocalDeps.clear();
1098         // The cache is cleared (in the above line) so we will have lost
1099         // information about blocks we have already visited. We therefore must
1100         // assume that the cache information is incomplete.
1101         IsIncomplete = true;
1102       }
1103       if (Loc.AATags)
1104         return getNonLocalPointerDepFromBB(
1105             QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result,
1106             Visited, SkipFirstBlock, IsIncomplete);
1107     }
1108   }
1109 
1110   NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
1111 
1112   // If we have valid cached information for exactly the block we are
1113   // investigating, just return it with no recomputation.
1114   // Don't use cached information for invariant loads since it is valid for
1115   // non-invariant loads only.
1116   //
1117   // Don't use cached information for invariant loads since it is valid for
1118   // non-invariant loads only.
1119   if (!IsIncomplete && !isInvariantLoad &&
1120       CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
1121     // We have a fully cached result for this query then we can just return the
1122     // cached results and populate the visited set.  However, we have to verify
1123     // that we don't already have conflicting results for these blocks.  Check
1124     // to ensure that if a block in the results set is in the visited set that
1125     // it was for the same pointer query.
1126     if (!Visited.empty()) {
1127       for (auto &Entry : *Cache) {
1128         DenseMap<BasicBlock *, Value *>::iterator VI =
1129             Visited.find(Entry.getBB());
1130         if (VI == Visited.end() || VI->second == Pointer.getAddr())
1131           continue;
1132 
1133         // We have a pointer mismatch in a block.  Just return false, saying
1134         // that something was clobbered in this result.  We could also do a
1135         // non-fully cached query, but there is little point in doing this.
1136         return false;
1137       }
1138     }
1139 
1140     Value *Addr = Pointer.getAddr();
1141     for (auto &Entry : *Cache) {
1142       Visited.insert(std::make_pair(Entry.getBB(), Addr));
1143       if (Entry.getResult().isNonLocal()) {
1144         continue;
1145       }
1146 
1147       if (DT.isReachableFromEntry(Entry.getBB())) {
1148         Result.push_back(
1149             NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr));
1150       }
1151     }
1152     ++NumCacheCompleteNonLocalPtr;
1153     return true;
1154   }
1155 
1156   // Otherwise, either this is a new block, a block with an invalid cache
1157   // pointer or one that we're about to invalidate by putting more info into
1158   // it than its valid cache info.  If empty and not explicitly indicated as
1159   // incomplete, the result will be valid cache info, otherwise it isn't.
1160   //
1161   // Invariant loads don't affect cache in any way thus no need to update
1162   // CacheInfo as well.
1163   if (!isInvariantLoad) {
1164     if (!IsIncomplete && Cache->empty())
1165       CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1166     else
1167       CacheInfo->Pair = BBSkipFirstBlockPair();
1168   }
1169 
1170   SmallVector<BasicBlock *, 32> Worklist;
1171   Worklist.push_back(StartBB);
1172 
1173   // PredList used inside loop.
1174   SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList;
1175 
1176   // Keep track of the entries that we know are sorted.  Previously cached
1177   // entries will all be sorted.  The entries we add we only sort on demand (we
1178   // don't insert every element into its sorted position).  We know that we
1179   // won't get any reuse from currently inserted values, because we don't
1180   // revisit blocks after we insert info for them.
1181   unsigned NumSortedEntries = Cache->size();
1182   unsigned WorklistEntries = BlockNumberLimit;
1183   bool GotWorklistLimit = false;
1184   LLVM_DEBUG(AssertSorted(*Cache));
1185 
1186   while (!Worklist.empty()) {
1187     BasicBlock *BB = Worklist.pop_back_val();
1188 
1189     // If we do process a large number of blocks it becomes very expensive and
1190     // likely it isn't worth worrying about
1191     if (Result.size() > NumResultsLimit) {
1192       Worklist.clear();
1193       // Sort it now (if needed) so that recursive invocations of
1194       // getNonLocalPointerDepFromBB and other routines that could reuse the
1195       // cache value will only see properly sorted cache arrays.
1196       if (Cache && NumSortedEntries != Cache->size()) {
1197         SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1198       }
1199       // Since we bail out, the "Cache" set won't contain all of the
1200       // results for the query.  This is ok (we can still use it to accelerate
1201       // specific block queries) but we can't do the fastpath "return all
1202       // results from the set".  Clear out the indicator for this.
1203       CacheInfo->Pair = BBSkipFirstBlockPair();
1204       return false;
1205     }
1206 
1207     // Skip the first block if we have it.
1208     if (!SkipFirstBlock) {
1209       // Analyze the dependency of *Pointer in FromBB.  See if we already have
1210       // been here.
1211       assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1212 
1213       // Get the dependency info for Pointer in BB.  If we have cached
1214       // information, we will use it, otherwise we compute it.
1215       LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries));
1216       MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, Loc, isLoad, BB,
1217                                                  Cache, NumSortedEntries);
1218 
1219       // If we got a Def or Clobber, add this to the list of results.
1220       if (!Dep.isNonLocal()) {
1221         if (DT.isReachableFromEntry(BB)) {
1222           Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1223           continue;
1224         }
1225       }
1226     }
1227 
1228     // If 'Pointer' is an instruction defined in this block, then we need to do
1229     // phi translation to change it into a value live in the predecessor block.
1230     // If not, we just add the predecessors to the worklist and scan them with
1231     // the same Pointer.
1232     if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1233       SkipFirstBlock = false;
1234       SmallVector<BasicBlock *, 16> NewBlocks;
1235       for (BasicBlock *Pred : PredCache.get(BB)) {
1236         // Verify that we haven't looked at this block yet.
1237         std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1238             Visited.insert(std::make_pair(Pred, Pointer.getAddr()));
1239         if (InsertRes.second) {
1240           // First time we've looked at *PI.
1241           NewBlocks.push_back(Pred);
1242           continue;
1243         }
1244 
1245         // If we have seen this block before, but it was with a different
1246         // pointer then we have a phi translation failure and we have to treat
1247         // this as a clobber.
1248         if (InsertRes.first->second != Pointer.getAddr()) {
1249           // Make sure to clean up the Visited map before continuing on to
1250           // PredTranslationFailure.
1251           for (unsigned i = 0; i < NewBlocks.size(); i++)
1252             Visited.erase(NewBlocks[i]);
1253           goto PredTranslationFailure;
1254         }
1255       }
1256       if (NewBlocks.size() > WorklistEntries) {
1257         // Make sure to clean up the Visited map before continuing on to
1258         // PredTranslationFailure.
1259         for (unsigned i = 0; i < NewBlocks.size(); i++)
1260           Visited.erase(NewBlocks[i]);
1261         GotWorklistLimit = true;
1262         goto PredTranslationFailure;
1263       }
1264       WorklistEntries -= NewBlocks.size();
1265       Worklist.append(NewBlocks.begin(), NewBlocks.end());
1266       continue;
1267     }
1268 
1269     // We do need to do phi translation, if we know ahead of time we can't phi
1270     // translate this value, don't even try.
1271     if (!Pointer.IsPotentiallyPHITranslatable())
1272       goto PredTranslationFailure;
1273 
1274     // We may have added values to the cache list before this PHI translation.
1275     // If so, we haven't done anything to ensure that the cache remains sorted.
1276     // Sort it now (if needed) so that recursive invocations of
1277     // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1278     // value will only see properly sorted cache arrays.
1279     if (Cache && NumSortedEntries != Cache->size()) {
1280       SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1281       NumSortedEntries = Cache->size();
1282     }
1283     Cache = nullptr;
1284 
1285     PredList.clear();
1286     for (BasicBlock *Pred : PredCache.get(BB)) {
1287       PredList.push_back(std::make_pair(Pred, Pointer));
1288 
1289       // Get the PHI translated pointer in this predecessor.  This can fail if
1290       // not translatable, in which case the getAddr() returns null.
1291       PHITransAddr &PredPointer = PredList.back().second;
1292       PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false);
1293       Value *PredPtrVal = PredPointer.getAddr();
1294 
1295       // Check to see if we have already visited this pred block with another
1296       // pointer.  If so, we can't do this lookup.  This failure can occur
1297       // with PHI translation when a critical edge exists and the PHI node in
1298       // the successor translates to a pointer value different than the
1299       // pointer the block was first analyzed with.
1300       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1301           Visited.insert(std::make_pair(Pred, PredPtrVal));
1302 
1303       if (!InsertRes.second) {
1304         // We found the pred; take it off the list of preds to visit.
1305         PredList.pop_back();
1306 
1307         // If the predecessor was visited with PredPtr, then we already did
1308         // the analysis and can ignore it.
1309         if (InsertRes.first->second == PredPtrVal)
1310           continue;
1311 
1312         // Otherwise, the block was previously analyzed with a different
1313         // pointer.  We can't represent the result of this case, so we just
1314         // treat this as a phi translation failure.
1315 
1316         // Make sure to clean up the Visited map before continuing on to
1317         // PredTranslationFailure.
1318         for (unsigned i = 0, n = PredList.size(); i < n; ++i)
1319           Visited.erase(PredList[i].first);
1320 
1321         goto PredTranslationFailure;
1322       }
1323     }
1324 
1325     // Actually process results here; this need to be a separate loop to avoid
1326     // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1327     // any results for.  (getNonLocalPointerDepFromBB will modify our
1328     // datastructures in ways the code after the PredTranslationFailure label
1329     // doesn't expect.)
1330     for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
1331       BasicBlock *Pred = PredList[i].first;
1332       PHITransAddr &PredPointer = PredList[i].second;
1333       Value *PredPtrVal = PredPointer.getAddr();
1334 
1335       bool CanTranslate = true;
1336       // If PHI translation was unable to find an available pointer in this
1337       // predecessor, then we have to assume that the pointer is clobbered in
1338       // that predecessor.  We can still do PRE of the load, which would insert
1339       // a computation of the pointer in this predecessor.
1340       if (!PredPtrVal)
1341         CanTranslate = false;
1342 
1343       // FIXME: it is entirely possible that PHI translating will end up with
1344       // the same value.  Consider PHI translating something like:
1345       // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
1346       // to recurse here, pedantically speaking.
1347 
1348       // If getNonLocalPointerDepFromBB fails here, that means the cached
1349       // result conflicted with the Visited list; we have to conservatively
1350       // assume it is unknown, but this also does not block PRE of the load.
1351       if (!CanTranslate ||
1352           !getNonLocalPointerDepFromBB(QueryInst, PredPointer,
1353                                       Loc.getWithNewPtr(PredPtrVal), isLoad,
1354                                       Pred, Result, Visited)) {
1355         // Add the entry to the Result list.
1356         NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1357         Result.push_back(Entry);
1358 
1359         // Since we had a phi translation failure, the cache for CacheKey won't
1360         // include all of the entries that we need to immediately satisfy future
1361         // queries.  Mark this in NonLocalPointerDeps by setting the
1362         // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
1363         // cached value to do more work but not miss the phi trans failure.
1364         NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1365         NLPI.Pair = BBSkipFirstBlockPair();
1366         continue;
1367       }
1368     }
1369 
1370     // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1371     CacheInfo = &NonLocalPointerDeps[CacheKey];
1372     Cache = &CacheInfo->NonLocalDeps;
1373     NumSortedEntries = Cache->size();
1374 
1375     // Since we did phi translation, the "Cache" set won't contain all of the
1376     // results for the query.  This is ok (we can still use it to accelerate
1377     // specific block queries) but we can't do the fastpath "return all
1378     // results from the set"  Clear out the indicator for this.
1379     CacheInfo->Pair = BBSkipFirstBlockPair();
1380     SkipFirstBlock = false;
1381     continue;
1382 
1383   PredTranslationFailure:
1384     // The following code is "failure"; we can't produce a sane translation
1385     // for the given block.  It assumes that we haven't modified any of
1386     // our datastructures while processing the current block.
1387 
1388     if (!Cache) {
1389       // Refresh the CacheInfo/Cache pointer if it got invalidated.
1390       CacheInfo = &NonLocalPointerDeps[CacheKey];
1391       Cache = &CacheInfo->NonLocalDeps;
1392       NumSortedEntries = Cache->size();
1393     }
1394 
1395     // Since we failed phi translation, the "Cache" set won't contain all of the
1396     // results for the query.  This is ok (we can still use it to accelerate
1397     // specific block queries) but we can't do the fastpath "return all
1398     // results from the set".  Clear out the indicator for this.
1399     CacheInfo->Pair = BBSkipFirstBlockPair();
1400 
1401     // If *nothing* works, mark the pointer as unknown.
1402     //
1403     // If this is the magic first block, return this as a clobber of the whole
1404     // incoming value.  Since we can't phi translate to one of the predecessors,
1405     // we have to bail out.
1406     if (SkipFirstBlock)
1407       return false;
1408 
1409     // Results of invariant loads are not cached thus no need to update cached
1410     // information.
1411     if (!isInvariantLoad) {
1412       for (NonLocalDepEntry &I : llvm::reverse(*Cache)) {
1413         if (I.getBB() != BB)
1414           continue;
1415 
1416         assert((GotWorklistLimit || I.getResult().isNonLocal() ||
1417                 !DT.isReachableFromEntry(BB)) &&
1418                "Should only be here with transparent block");
1419 
1420         I.setResult(MemDepResult::getUnknown());
1421 
1422 
1423         break;
1424       }
1425     }
1426     (void)GotWorklistLimit;
1427     // Go ahead and report unknown dependence.
1428     Result.push_back(
1429         NonLocalDepResult(BB, MemDepResult::getUnknown(), Pointer.getAddr()));
1430   }
1431 
1432   // Okay, we're done now.  If we added new values to the cache, re-sort it.
1433   SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1434   LLVM_DEBUG(AssertSorted(*Cache));
1435   return true;
1436 }
1437 
1438 /// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it.
1439 void MemoryDependenceResults::RemoveCachedNonLocalPointerDependencies(
1440     ValueIsLoadPair P) {
1441 
1442   // Most of the time this cache is empty.
1443   if (!NonLocalDefsCache.empty()) {
1444     auto it = NonLocalDefsCache.find(P.getPointer());
1445     if (it != NonLocalDefsCache.end()) {
1446       RemoveFromReverseMap(ReverseNonLocalDefsCache,
1447                            it->second.getResult().getInst(), P.getPointer());
1448       NonLocalDefsCache.erase(it);
1449     }
1450 
1451     if (auto *I = dyn_cast<Instruction>(P.getPointer())) {
1452       auto toRemoveIt = ReverseNonLocalDefsCache.find(I);
1453       if (toRemoveIt != ReverseNonLocalDefsCache.end()) {
1454         for (const auto *entry : toRemoveIt->second)
1455           NonLocalDefsCache.erase(entry);
1456         ReverseNonLocalDefsCache.erase(toRemoveIt);
1457       }
1458     }
1459   }
1460 
1461   CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P);
1462   if (It == NonLocalPointerDeps.end())
1463     return;
1464 
1465   // Remove all of the entries in the BB->val map.  This involves removing
1466   // instructions from the reverse map.
1467   NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1468 
1469   for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1470     Instruction *Target = PInfo[i].getResult().getInst();
1471     if (!Target)
1472       continue; // Ignore non-local dep results.
1473     assert(Target->getParent() == PInfo[i].getBB());
1474 
1475     // Eliminating the dirty entry from 'Cache', so update the reverse info.
1476     RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1477   }
1478 
1479   // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1480   NonLocalPointerDeps.erase(It);
1481 }
1482 
1483 void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) {
1484   // If Ptr isn't really a pointer, just ignore it.
1485   if (!Ptr->getType()->isPointerTy())
1486     return;
1487   // Flush store info for the pointer.
1488   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1489   // Flush load info for the pointer.
1490   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1491   // Invalidate phis that use the pointer.
1492   PV.invalidateValue(Ptr);
1493 }
1494 
1495 void MemoryDependenceResults::invalidateCachedPredecessors() {
1496   PredCache.clear();
1497 }
1498 
1499 void MemoryDependenceResults::removeInstruction(Instruction *RemInst) {
1500   // Walk through the Non-local dependencies, removing this one as the value
1501   // for any cached queries.
1502   NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1503   if (NLDI != NonLocalDeps.end()) {
1504     NonLocalDepInfo &BlockMap = NLDI->second.first;
1505     for (auto &Entry : BlockMap)
1506       if (Instruction *Inst = Entry.getResult().getInst())
1507         RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1508     NonLocalDeps.erase(NLDI);
1509   }
1510 
1511   // If we have a cached local dependence query for this instruction, remove it.
1512   LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1513   if (LocalDepEntry != LocalDeps.end()) {
1514     // Remove us from DepInst's reverse set now that the local dep info is gone.
1515     if (Instruction *Inst = LocalDepEntry->second.getInst())
1516       RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1517 
1518     // Remove this local dependency info.
1519     LocalDeps.erase(LocalDepEntry);
1520   }
1521 
1522   // If we have any cached dependencies on this instruction, remove
1523   // them.
1524 
1525   // If the instruction is a pointer, remove it from both the load info and the
1526   // store info.
1527   if (RemInst->getType()->isPointerTy()) {
1528     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1529     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1530   } else {
1531     // Otherwise, if the instructions is in the map directly, it must be a load.
1532     // Remove it.
1533     auto toRemoveIt = NonLocalDefsCache.find(RemInst);
1534     if (toRemoveIt != NonLocalDefsCache.end()) {
1535       assert(isa<LoadInst>(RemInst) &&
1536              "only load instructions should be added directly");
1537       const Instruction *DepV = toRemoveIt->second.getResult().getInst();
1538       ReverseNonLocalDefsCache.find(DepV)->second.erase(RemInst);
1539       NonLocalDefsCache.erase(toRemoveIt);
1540     }
1541   }
1542 
1543   // Loop over all of the things that depend on the instruction we're removing.
1544   SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd;
1545 
1546   // If we find RemInst as a clobber or Def in any of the maps for other values,
1547   // we need to replace its entry with a dirty version of the instruction after
1548   // it.  If RemInst is a terminator, we use a null dirty value.
1549   //
1550   // Using a dirty version of the instruction after RemInst saves having to scan
1551   // the entire block to get to this point.
1552   MemDepResult NewDirtyVal;
1553   if (!RemInst->isTerminator())
1554     NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator());
1555 
1556   ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1557   if (ReverseDepIt != ReverseLocalDeps.end()) {
1558     // RemInst can't be the terminator if it has local stuff depending on it.
1559     assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() &&
1560            "Nothing can locally depend on a terminator");
1561 
1562     for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
1563       assert(InstDependingOnRemInst != RemInst &&
1564              "Already removed our local dep info");
1565 
1566       LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1567 
1568       // Make sure to remember that new things depend on NewDepInst.
1569       assert(NewDirtyVal.getInst() &&
1570              "There is no way something else can have "
1571              "a local dep on this if it is a terminator!");
1572       ReverseDepsToAdd.push_back(
1573           std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst));
1574     }
1575 
1576     ReverseLocalDeps.erase(ReverseDepIt);
1577 
1578     // Add new reverse deps after scanning the set, to avoid invalidating the
1579     // 'ReverseDeps' reference.
1580     while (!ReverseDepsToAdd.empty()) {
1581       ReverseLocalDeps[ReverseDepsToAdd.back().first].insert(
1582           ReverseDepsToAdd.back().second);
1583       ReverseDepsToAdd.pop_back();
1584     }
1585   }
1586 
1587   ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1588   if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1589     for (Instruction *I : ReverseDepIt->second) {
1590       assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
1591 
1592       PerInstNLInfo &INLD = NonLocalDeps[I];
1593       // The information is now dirty!
1594       INLD.second = true;
1595 
1596       for (auto &Entry : INLD.first) {
1597         if (Entry.getResult().getInst() != RemInst)
1598           continue;
1599 
1600         // Convert to a dirty entry for the subsequent instruction.
1601         Entry.setResult(NewDirtyVal);
1602 
1603         if (Instruction *NextI = NewDirtyVal.getInst())
1604           ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
1605       }
1606     }
1607 
1608     ReverseNonLocalDeps.erase(ReverseDepIt);
1609 
1610     // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1611     while (!ReverseDepsToAdd.empty()) {
1612       ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert(
1613           ReverseDepsToAdd.back().second);
1614       ReverseDepsToAdd.pop_back();
1615     }
1616   }
1617 
1618   // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1619   // value in the NonLocalPointerDeps info.
1620   ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1621       ReverseNonLocalPtrDeps.find(RemInst);
1622   if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1623     SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8>
1624         ReversePtrDepsToAdd;
1625 
1626     for (ValueIsLoadPair P : ReversePtrDepIt->second) {
1627       assert(P.getPointer() != RemInst &&
1628              "Already removed NonLocalPointerDeps info for RemInst");
1629 
1630       NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1631 
1632       // The cache is not valid for any specific block anymore.
1633       NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1634 
1635       // Update any entries for RemInst to use the instruction after it.
1636       for (auto &Entry : NLPDI) {
1637         if (Entry.getResult().getInst() != RemInst)
1638           continue;
1639 
1640         // Convert to a dirty entry for the subsequent instruction.
1641         Entry.setResult(NewDirtyVal);
1642 
1643         if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1644           ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1645       }
1646 
1647       // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1648       // subsequent value may invalidate the sortedness.
1649       llvm::sort(NLPDI);
1650     }
1651 
1652     ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1653 
1654     while (!ReversePtrDepsToAdd.empty()) {
1655       ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert(
1656           ReversePtrDepsToAdd.back().second);
1657       ReversePtrDepsToAdd.pop_back();
1658     }
1659   }
1660 
1661   // Invalidate phis that use the removed instruction.
1662   PV.invalidateValue(RemInst);
1663 
1664   assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1665   LLVM_DEBUG(verifyRemoved(RemInst));
1666 }
1667 
1668 /// Verify that the specified instruction does not occur in our internal data
1669 /// structures.
1670 ///
1671 /// This function verifies by asserting in debug builds.
1672 void MemoryDependenceResults::verifyRemoved(Instruction *D) const {
1673 #ifndef NDEBUG
1674   for (const auto &DepKV : LocalDeps) {
1675     assert(DepKV.first != D && "Inst occurs in data structures");
1676     assert(DepKV.second.getInst() != D && "Inst occurs in data structures");
1677   }
1678 
1679   for (const auto &DepKV : NonLocalPointerDeps) {
1680     assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key");
1681     for (const auto &Entry : DepKV.second.NonLocalDeps)
1682       assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value");
1683   }
1684 
1685   for (const auto &DepKV : NonLocalDeps) {
1686     assert(DepKV.first != D && "Inst occurs in data structures");
1687     const PerInstNLInfo &INLD = DepKV.second;
1688     for (const auto &Entry : INLD.first)
1689       assert(Entry.getResult().getInst() != D &&
1690              "Inst occurs in data structures");
1691   }
1692 
1693   for (const auto &DepKV : ReverseLocalDeps) {
1694     assert(DepKV.first != D && "Inst occurs in data structures");
1695     for (Instruction *Inst : DepKV.second)
1696       assert(Inst != D && "Inst occurs in data structures");
1697   }
1698 
1699   for (const auto &DepKV : ReverseNonLocalDeps) {
1700     assert(DepKV.first != D && "Inst occurs in data structures");
1701     for (Instruction *Inst : DepKV.second)
1702       assert(Inst != D && "Inst occurs in data structures");
1703   }
1704 
1705   for (const auto &DepKV : ReverseNonLocalPtrDeps) {
1706     assert(DepKV.first != D && "Inst occurs in rev NLPD map");
1707 
1708     for (ValueIsLoadPair P : DepKV.second)
1709       assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) &&
1710              "Inst occurs in ReverseNonLocalPtrDeps map");
1711   }
1712 #endif
1713 }
1714 
1715 AnalysisKey MemoryDependenceAnalysis::Key;
1716 
1717 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
1718     : DefaultBlockScanLimit(BlockScanLimit) {}
1719 
1720 MemoryDependenceResults
1721 MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
1722   auto &AA = AM.getResult<AAManager>(F);
1723   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1724   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1725   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1726   auto &PV = AM.getResult<PhiValuesAnalysis>(F);
1727   return MemoryDependenceResults(AA, AC, TLI, DT, PV, DefaultBlockScanLimit);
1728 }
1729 
1730 char MemoryDependenceWrapperPass::ID = 0;
1731 
1732 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep",
1733                       "Memory Dependence Analysis", false, true)
1734 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1735 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1736 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1737 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1738 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
1739 INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep",
1740                     "Memory Dependence Analysis", false, true)
1741 
1742 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) {
1743   initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry());
1744 }
1745 
1746 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default;
1747 
1748 void MemoryDependenceWrapperPass::releaseMemory() {
1749   MemDep.reset();
1750 }
1751 
1752 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1753   AU.setPreservesAll();
1754   AU.addRequired<AssumptionCacheTracker>();
1755   AU.addRequired<DominatorTreeWrapperPass>();
1756   AU.addRequired<PhiValuesWrapperPass>();
1757   AU.addRequiredTransitive<AAResultsWrapperPass>();
1758   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1759 }
1760 
1761 bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA,
1762                                FunctionAnalysisManager::Invalidator &Inv) {
1763   // Check whether our analysis is preserved.
1764   auto PAC = PA.getChecker<MemoryDependenceAnalysis>();
1765   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
1766     // If not, give up now.
1767     return true;
1768 
1769   // Check whether the analyses we depend on became invalid for any reason.
1770   if (Inv.invalidate<AAManager>(F, PA) ||
1771       Inv.invalidate<AssumptionAnalysis>(F, PA) ||
1772       Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
1773       Inv.invalidate<PhiValuesAnalysis>(F, PA))
1774     return true;
1775 
1776   // Otherwise this analysis result remains valid.
1777   return false;
1778 }
1779 
1780 unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const {
1781   return DefaultBlockScanLimit;
1782 }
1783 
1784 bool MemoryDependenceWrapperPass::runOnFunction(Function &F) {
1785   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1786   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1787   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1788   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1789   auto &PV = getAnalysis<PhiValuesWrapperPass>().getResult();
1790   MemDep.emplace(AA, AC, TLI, DT, PV, BlockScanLimit);
1791   return false;
1792 }
1793