1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements an analysis that determines, for a given memory 10 // operation, what preceding memory operations it depends on. It builds on 11 // alias analysis information, and tries to provide a lazy, caching interface to 12 // a common kind of alias information query. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/MemoryLocation.h" 26 #include "llvm/Analysis/PHITransAddr.h" 27 #include "llvm/Analysis/PhiValues.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/Attributes.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/InstrTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/Metadata.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/PredIteratorCache.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/Use.h" 47 #include "llvm/IR/User.h" 48 #include "llvm/IR/Value.h" 49 #include "llvm/InitializePasses.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/AtomicOrdering.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Compiler.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/MathExtras.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <cstdint> 60 #include <iterator> 61 #include <utility> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "memdep" 66 67 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); 68 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); 69 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); 70 71 STATISTIC(NumCacheNonLocalPtr, 72 "Number of fully cached non-local ptr responses"); 73 STATISTIC(NumCacheDirtyNonLocalPtr, 74 "Number of cached, but dirty, non-local ptr responses"); 75 STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses"); 76 STATISTIC(NumCacheCompleteNonLocalPtr, 77 "Number of block queries that were completely cached"); 78 79 // Limit for the number of instructions to scan in a block. 80 81 static cl::opt<unsigned> BlockScanLimit( 82 "memdep-block-scan-limit", cl::Hidden, cl::init(100), 83 cl::desc("The number of instructions to scan in a block in memory " 84 "dependency analysis (default = 100)")); 85 86 static cl::opt<unsigned> 87 BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000), 88 cl::desc("The number of blocks to scan during memory " 89 "dependency analysis (default = 1000)")); 90 91 // Limit on the number of memdep results to process. 92 static const unsigned int NumResultsLimit = 100; 93 94 /// This is a helper function that removes Val from 'Inst's set in ReverseMap. 95 /// 96 /// If the set becomes empty, remove Inst's entry. 97 template <typename KeyTy> 98 static void 99 RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap, 100 Instruction *Inst, KeyTy Val) { 101 typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt = 102 ReverseMap.find(Inst); 103 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); 104 bool Found = InstIt->second.erase(Val); 105 assert(Found && "Invalid reverse map!"); 106 (void)Found; 107 if (InstIt->second.empty()) 108 ReverseMap.erase(InstIt); 109 } 110 111 /// If the given instruction references a specific memory location, fill in Loc 112 /// with the details, otherwise set Loc.Ptr to null. 113 /// 114 /// Returns a ModRefInfo value describing the general behavior of the 115 /// instruction. 116 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc, 117 const TargetLibraryInfo &TLI) { 118 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 119 if (LI->isUnordered()) { 120 Loc = MemoryLocation::get(LI); 121 return ModRefInfo::Ref; 122 } 123 if (LI->getOrdering() == AtomicOrdering::Monotonic) { 124 Loc = MemoryLocation::get(LI); 125 return ModRefInfo::ModRef; 126 } 127 Loc = MemoryLocation(); 128 return ModRefInfo::ModRef; 129 } 130 131 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 132 if (SI->isUnordered()) { 133 Loc = MemoryLocation::get(SI); 134 return ModRefInfo::Mod; 135 } 136 if (SI->getOrdering() == AtomicOrdering::Monotonic) { 137 Loc = MemoryLocation::get(SI); 138 return ModRefInfo::ModRef; 139 } 140 Loc = MemoryLocation(); 141 return ModRefInfo::ModRef; 142 } 143 144 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { 145 Loc = MemoryLocation::get(V); 146 return ModRefInfo::ModRef; 147 } 148 149 if (const CallInst *CI = isFreeCall(Inst, &TLI)) { 150 // calls to free() deallocate the entire structure 151 Loc = MemoryLocation(CI->getArgOperand(0)); 152 return ModRefInfo::Mod; 153 } 154 155 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 156 switch (II->getIntrinsicID()) { 157 case Intrinsic::lifetime_start: 158 case Intrinsic::lifetime_end: 159 case Intrinsic::invariant_start: 160 Loc = MemoryLocation::getForArgument(II, 1, TLI); 161 // These intrinsics don't really modify the memory, but returning Mod 162 // will allow them to be handled conservatively. 163 return ModRefInfo::Mod; 164 case Intrinsic::invariant_end: 165 Loc = MemoryLocation::getForArgument(II, 2, TLI); 166 // These intrinsics don't really modify the memory, but returning Mod 167 // will allow them to be handled conservatively. 168 return ModRefInfo::Mod; 169 default: 170 break; 171 } 172 } 173 174 // Otherwise, just do the coarse-grained thing that always works. 175 if (Inst->mayWriteToMemory()) 176 return ModRefInfo::ModRef; 177 if (Inst->mayReadFromMemory()) 178 return ModRefInfo::Ref; 179 return ModRefInfo::NoModRef; 180 } 181 182 /// Private helper for finding the local dependencies of a call site. 183 MemDepResult MemoryDependenceResults::getCallDependencyFrom( 184 CallBase *Call, bool isReadOnlyCall, BasicBlock::iterator ScanIt, 185 BasicBlock *BB) { 186 unsigned Limit = getDefaultBlockScanLimit(); 187 188 // Walk backwards through the block, looking for dependencies. 189 while (ScanIt != BB->begin()) { 190 Instruction *Inst = &*--ScanIt; 191 // Debug intrinsics don't cause dependences and should not affect Limit 192 if (isa<DbgInfoIntrinsic>(Inst)) 193 continue; 194 195 // Limit the amount of scanning we do so we don't end up with quadratic 196 // running time on extreme testcases. 197 --Limit; 198 if (!Limit) 199 return MemDepResult::getUnknown(); 200 201 // If this inst is a memory op, get the pointer it accessed 202 MemoryLocation Loc; 203 ModRefInfo MR = GetLocation(Inst, Loc, TLI); 204 if (Loc.Ptr) { 205 // A simple instruction. 206 if (isModOrRefSet(AA.getModRefInfo(Call, Loc))) 207 return MemDepResult::getClobber(Inst); 208 continue; 209 } 210 211 if (auto *CallB = dyn_cast<CallBase>(Inst)) { 212 // If these two calls do not interfere, look past it. 213 if (isNoModRef(AA.getModRefInfo(Call, CallB))) { 214 // If the two calls are the same, return Inst as a Def, so that 215 // Call can be found redundant and eliminated. 216 if (isReadOnlyCall && !isModSet(MR) && 217 Call->isIdenticalToWhenDefined(CallB)) 218 return MemDepResult::getDef(Inst); 219 220 // Otherwise if the two calls don't interact (e.g. CallB is readnone) 221 // keep scanning. 222 continue; 223 } else 224 return MemDepResult::getClobber(Inst); 225 } 226 227 // If we could not obtain a pointer for the instruction and the instruction 228 // touches memory then assume that this is a dependency. 229 if (isModOrRefSet(MR)) 230 return MemDepResult::getClobber(Inst); 231 } 232 233 // No dependence found. If this is the entry block of the function, it is 234 // unknown, otherwise it is non-local. 235 if (BB != &BB->getParent()->getEntryBlock()) 236 return MemDepResult::getNonLocal(); 237 return MemDepResult::getNonFuncLocal(); 238 } 239 240 static bool isVolatile(Instruction *Inst) { 241 if (auto *LI = dyn_cast<LoadInst>(Inst)) 242 return LI->isVolatile(); 243 if (auto *SI = dyn_cast<StoreInst>(Inst)) 244 return SI->isVolatile(); 245 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(Inst)) 246 return AI->isVolatile(); 247 return false; 248 } 249 250 MemDepResult MemoryDependenceResults::getPointerDependencyFrom( 251 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 252 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) { 253 MemDepResult InvariantGroupDependency = MemDepResult::getUnknown(); 254 if (QueryInst != nullptr) { 255 if (auto *LI = dyn_cast<LoadInst>(QueryInst)) { 256 InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB); 257 258 if (InvariantGroupDependency.isDef()) 259 return InvariantGroupDependency; 260 } 261 } 262 MemDepResult SimpleDep = getSimplePointerDependencyFrom( 263 MemLoc, isLoad, ScanIt, BB, QueryInst, Limit); 264 if (SimpleDep.isDef()) 265 return SimpleDep; 266 // Non-local invariant group dependency indicates there is non local Def 267 // (it only returns nonLocal if it finds nonLocal def), which is better than 268 // local clobber and everything else. 269 if (InvariantGroupDependency.isNonLocal()) 270 return InvariantGroupDependency; 271 272 assert(InvariantGroupDependency.isUnknown() && 273 "InvariantGroupDependency should be only unknown at this point"); 274 return SimpleDep; 275 } 276 277 MemDepResult 278 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI, 279 BasicBlock *BB) { 280 281 if (!LI->hasMetadata(LLVMContext::MD_invariant_group)) 282 return MemDepResult::getUnknown(); 283 284 // Take the ptr operand after all casts and geps 0. This way we can search 285 // cast graph down only. 286 Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts(); 287 288 // It's is not safe to walk the use list of global value, because function 289 // passes aren't allowed to look outside their functions. 290 // FIXME: this could be fixed by filtering instructions from outside 291 // of current function. 292 if (isa<GlobalValue>(LoadOperand)) 293 return MemDepResult::getUnknown(); 294 295 // Queue to process all pointers that are equivalent to load operand. 296 SmallVector<const Value *, 8> LoadOperandsQueue; 297 LoadOperandsQueue.push_back(LoadOperand); 298 299 Instruction *ClosestDependency = nullptr; 300 // Order of instructions in uses list is unpredictible. In order to always 301 // get the same result, we will look for the closest dominance. 302 auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) { 303 assert(Other && "Must call it with not null instruction"); 304 if (Best == nullptr || DT.dominates(Best, Other)) 305 return Other; 306 return Best; 307 }; 308 309 // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case 310 // we will see all the instructions. This should be fixed in MSSA. 311 while (!LoadOperandsQueue.empty()) { 312 const Value *Ptr = LoadOperandsQueue.pop_back_val(); 313 assert(Ptr && !isa<GlobalValue>(Ptr) && 314 "Null or GlobalValue should not be inserted"); 315 316 for (const Use &Us : Ptr->uses()) { 317 auto *U = dyn_cast<Instruction>(Us.getUser()); 318 if (!U || U == LI || !DT.dominates(U, LI)) 319 continue; 320 321 // Bitcast or gep with zeros are using Ptr. Add to queue to check it's 322 // users. U = bitcast Ptr 323 if (isa<BitCastInst>(U)) { 324 LoadOperandsQueue.push_back(U); 325 continue; 326 } 327 // Gep with zeros is equivalent to bitcast. 328 // FIXME: we are not sure if some bitcast should be canonicalized to gep 0 329 // or gep 0 to bitcast because of SROA, so there are 2 forms. When 330 // typeless pointers will be ready then both cases will be gone 331 // (and this BFS also won't be needed). 332 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) 333 if (GEP->hasAllZeroIndices()) { 334 LoadOperandsQueue.push_back(U); 335 continue; 336 } 337 338 // If we hit load/store with the same invariant.group metadata (and the 339 // same pointer operand) we can assume that value pointed by pointer 340 // operand didn't change. 341 if ((isa<LoadInst>(U) || isa<StoreInst>(U)) && 342 U->hasMetadata(LLVMContext::MD_invariant_group)) 343 ClosestDependency = GetClosestDependency(ClosestDependency, U); 344 } 345 } 346 347 if (!ClosestDependency) 348 return MemDepResult::getUnknown(); 349 if (ClosestDependency->getParent() == BB) 350 return MemDepResult::getDef(ClosestDependency); 351 // Def(U) can't be returned here because it is non-local. If local 352 // dependency won't be found then return nonLocal counting that the 353 // user will call getNonLocalPointerDependency, which will return cached 354 // result. 355 NonLocalDefsCache.try_emplace( 356 LI, NonLocalDepResult(ClosestDependency->getParent(), 357 MemDepResult::getDef(ClosestDependency), nullptr)); 358 ReverseNonLocalDefsCache[ClosestDependency].insert(LI); 359 return MemDepResult::getNonLocal(); 360 } 361 362 MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom( 363 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 364 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) { 365 // We can batch AA queries, because IR does not change during a MemDep query. 366 BatchAAResults BatchAA(AA); 367 bool isInvariantLoad = false; 368 369 unsigned DefaultLimit = getDefaultBlockScanLimit(); 370 if (!Limit) 371 Limit = &DefaultLimit; 372 373 // We must be careful with atomic accesses, as they may allow another thread 374 // to touch this location, clobbering it. We are conservative: if the 375 // QueryInst is not a simple (non-atomic) memory access, we automatically 376 // return getClobber. 377 // If it is simple, we know based on the results of 378 // "Compiler testing via a theory of sound optimisations in the C11/C++11 379 // memory model" in PLDI 2013, that a non-atomic location can only be 380 // clobbered between a pair of a release and an acquire action, with no 381 // access to the location in between. 382 // Here is an example for giving the general intuition behind this rule. 383 // In the following code: 384 // store x 0; 385 // release action; [1] 386 // acquire action; [4] 387 // %val = load x; 388 // It is unsafe to replace %val by 0 because another thread may be running: 389 // acquire action; [2] 390 // store x 42; 391 // release action; [3] 392 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val 393 // being 42. A key property of this program however is that if either 394 // 1 or 4 were missing, there would be a race between the store of 42 395 // either the store of 0 or the load (making the whole program racy). 396 // The paper mentioned above shows that the same property is respected 397 // by every program that can detect any optimization of that kind: either 398 // it is racy (undefined) or there is a release followed by an acquire 399 // between the pair of accesses under consideration. 400 401 // If the load is invariant, we "know" that it doesn't alias *any* write. We 402 // do want to respect mustalias results since defs are useful for value 403 // forwarding, but any mayalias write can be assumed to be noalias. 404 // Arguably, this logic should be pushed inside AliasAnalysis itself. 405 if (isLoad && QueryInst) { 406 LoadInst *LI = dyn_cast<LoadInst>(QueryInst); 407 if (LI && LI->hasMetadata(LLVMContext::MD_invariant_load)) 408 isInvariantLoad = true; 409 } 410 411 // Return "true" if and only if the instruction I is either a non-simple 412 // load or a non-simple store. 413 auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool { 414 if (auto *LI = dyn_cast<LoadInst>(I)) 415 return !LI->isSimple(); 416 if (auto *SI = dyn_cast<StoreInst>(I)) 417 return !SI->isSimple(); 418 return false; 419 }; 420 421 // Return "true" if I is not a load and not a store, but it does access 422 // memory. 423 auto isOtherMemAccess = [](Instruction *I) -> bool { 424 return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory(); 425 }; 426 427 // Walk backwards through the basic block, looking for dependencies. 428 while (ScanIt != BB->begin()) { 429 Instruction *Inst = &*--ScanIt; 430 431 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 432 // Debug intrinsics don't (and can't) cause dependencies. 433 if (isa<DbgInfoIntrinsic>(II)) 434 continue; 435 436 // Limit the amount of scanning we do so we don't end up with quadratic 437 // running time on extreme testcases. 438 --*Limit; 439 if (!*Limit) 440 return MemDepResult::getUnknown(); 441 442 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 443 // If we reach a lifetime begin or end marker, then the query ends here 444 // because the value is undefined. 445 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 446 // FIXME: This only considers queries directly on the invariant-tagged 447 // pointer, not on query pointers that are indexed off of them. It'd 448 // be nice to handle that at some point (the right approach is to use 449 // GetPointerBaseWithConstantOffset). 450 if (BatchAA.isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc)) 451 return MemDepResult::getDef(II); 452 continue; 453 } 454 } 455 456 // Values depend on loads if the pointers are must aliased. This means 457 // that a load depends on another must aliased load from the same value. 458 // One exception is atomic loads: a value can depend on an atomic load that 459 // it does not alias with when this atomic load indicates that another 460 // thread may be accessing the location. 461 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 462 // While volatile access cannot be eliminated, they do not have to clobber 463 // non-aliasing locations, as normal accesses, for example, can be safely 464 // reordered with volatile accesses. 465 if (LI->isVolatile()) { 466 if (!QueryInst) 467 // Original QueryInst *may* be volatile 468 return MemDepResult::getClobber(LI); 469 if (isVolatile(QueryInst)) 470 // Ordering required if QueryInst is itself volatile 471 return MemDepResult::getClobber(LI); 472 // Otherwise, volatile doesn't imply any special ordering 473 } 474 475 // Atomic loads have complications involved. 476 // A Monotonic (or higher) load is OK if the query inst is itself not 477 // atomic. 478 // FIXME: This is overly conservative. 479 if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) { 480 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 481 isOtherMemAccess(QueryInst)) 482 return MemDepResult::getClobber(LI); 483 if (LI->getOrdering() != AtomicOrdering::Monotonic) 484 return MemDepResult::getClobber(LI); 485 } 486 487 MemoryLocation LoadLoc = MemoryLocation::get(LI); 488 489 // If we found a pointer, check if it could be the same as our pointer. 490 AliasResult R = BatchAA.alias(LoadLoc, MemLoc); 491 492 if (isLoad) { 493 if (R == NoAlias) 494 continue; 495 496 // Must aliased loads are defs of each other. 497 if (R == MustAlias) 498 return MemDepResult::getDef(Inst); 499 500 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads 501 // in terms of clobbering loads, but since it does this by looking 502 // at the clobbering load directly, it doesn't know about any 503 // phi translation that may have happened along the way. 504 505 // If we have a partial alias, then return this as a clobber for the 506 // client to handle. 507 if (R == PartialAlias) 508 return MemDepResult::getClobber(Inst); 509 #endif 510 511 // Random may-alias loads don't depend on each other without a 512 // dependence. 513 continue; 514 } 515 516 // Stores don't depend on other no-aliased accesses. 517 if (R == NoAlias) 518 continue; 519 520 // Stores don't alias loads from read-only memory. 521 if (BatchAA.pointsToConstantMemory(LoadLoc)) 522 continue; 523 524 // Stores depend on may/must aliased loads. 525 return MemDepResult::getDef(Inst); 526 } 527 528 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 529 // Atomic stores have complications involved. 530 // A Monotonic store is OK if the query inst is itself not atomic. 531 // FIXME: This is overly conservative. 532 if (!SI->isUnordered() && SI->isAtomic()) { 533 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 534 isOtherMemAccess(QueryInst)) 535 return MemDepResult::getClobber(SI); 536 if (SI->getOrdering() != AtomicOrdering::Monotonic) 537 return MemDepResult::getClobber(SI); 538 } 539 540 // FIXME: this is overly conservative. 541 // While volatile access cannot be eliminated, they do not have to clobber 542 // non-aliasing locations, as normal accesses can for example be reordered 543 // with volatile accesses. 544 if (SI->isVolatile()) 545 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 546 isOtherMemAccess(QueryInst)) 547 return MemDepResult::getClobber(SI); 548 549 // If alias analysis can tell that this store is guaranteed to not modify 550 // the query pointer, ignore it. Use getModRefInfo to handle cases where 551 // the query pointer points to constant memory etc. 552 if (!isModOrRefSet(BatchAA.getModRefInfo(SI, MemLoc))) 553 continue; 554 555 // Ok, this store might clobber the query pointer. Check to see if it is 556 // a must alias: in this case, we want to return this as a def. 557 // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above. 558 MemoryLocation StoreLoc = MemoryLocation::get(SI); 559 560 // If we found a pointer, check if it could be the same as our pointer. 561 AliasResult R = BatchAA.alias(StoreLoc, MemLoc); 562 563 if (R == NoAlias) 564 continue; 565 if (R == MustAlias) 566 return MemDepResult::getDef(Inst); 567 if (isInvariantLoad) 568 continue; 569 return MemDepResult::getClobber(Inst); 570 } 571 572 // If this is an allocation, and if we know that the accessed pointer is to 573 // the allocation, return Def. This means that there is no dependence and 574 // the access can be optimized based on that. For example, a load could 575 // turn into undef. Note that we can bypass the allocation itself when 576 // looking for a clobber in many cases; that's an alias property and is 577 // handled by BasicAA. 578 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) { 579 const Value *AccessPtr = getUnderlyingObject(MemLoc.Ptr); 580 if (AccessPtr == Inst || BatchAA.isMustAlias(Inst, AccessPtr)) 581 return MemDepResult::getDef(Inst); 582 } 583 584 if (isInvariantLoad) 585 continue; 586 587 // A release fence requires that all stores complete before it, but does 588 // not prevent the reordering of following loads or stores 'before' the 589 // fence. As a result, we look past it when finding a dependency for 590 // loads. DSE uses this to find preceding stores to delete and thus we 591 // can't bypass the fence if the query instruction is a store. 592 if (FenceInst *FI = dyn_cast<FenceInst>(Inst)) 593 if (isLoad && FI->getOrdering() == AtomicOrdering::Release) 594 continue; 595 596 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. 597 ModRefInfo MR = BatchAA.getModRefInfo(Inst, MemLoc); 598 // If necessary, perform additional analysis. 599 if (isModAndRefSet(MR)) 600 // TODO: Support callCapturesBefore() on BatchAAResults. 601 MR = AA.callCapturesBefore(Inst, MemLoc, &DT); 602 switch (clearMust(MR)) { 603 case ModRefInfo::NoModRef: 604 // If the call has no effect on the queried pointer, just ignore it. 605 continue; 606 case ModRefInfo::Mod: 607 return MemDepResult::getClobber(Inst); 608 case ModRefInfo::Ref: 609 // If the call is known to never store to the pointer, and if this is a 610 // load query, we can safely ignore it (scan past it). 611 if (isLoad) 612 continue; 613 LLVM_FALLTHROUGH; 614 default: 615 // Otherwise, there is a potential dependence. Return a clobber. 616 return MemDepResult::getClobber(Inst); 617 } 618 } 619 620 // No dependence found. If this is the entry block of the function, it is 621 // unknown, otherwise it is non-local. 622 if (BB != &BB->getParent()->getEntryBlock()) 623 return MemDepResult::getNonLocal(); 624 return MemDepResult::getNonFuncLocal(); 625 } 626 627 MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) { 628 Instruction *ScanPos = QueryInst; 629 630 // Check for a cached result 631 MemDepResult &LocalCache = LocalDeps[QueryInst]; 632 633 // If the cached entry is non-dirty, just return it. Note that this depends 634 // on MemDepResult's default constructing to 'dirty'. 635 if (!LocalCache.isDirty()) 636 return LocalCache; 637 638 // Otherwise, if we have a dirty entry, we know we can start the scan at that 639 // instruction, which may save us some work. 640 if (Instruction *Inst = LocalCache.getInst()) { 641 ScanPos = Inst; 642 643 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); 644 } 645 646 BasicBlock *QueryParent = QueryInst->getParent(); 647 648 // Do the scan. 649 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { 650 // No dependence found. If this is the entry block of the function, it is 651 // unknown, otherwise it is non-local. 652 if (QueryParent != &QueryParent->getParent()->getEntryBlock()) 653 LocalCache = MemDepResult::getNonLocal(); 654 else 655 LocalCache = MemDepResult::getNonFuncLocal(); 656 } else { 657 MemoryLocation MemLoc; 658 ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI); 659 if (MemLoc.Ptr) { 660 // If we can do a pointer scan, make it happen. 661 bool isLoad = !isModSet(MR); 662 if (auto *II = dyn_cast<IntrinsicInst>(QueryInst)) 663 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start; 664 665 LocalCache = 666 getPointerDependencyFrom(MemLoc, isLoad, ScanPos->getIterator(), 667 QueryParent, QueryInst, nullptr); 668 } else if (auto *QueryCall = dyn_cast<CallBase>(QueryInst)) { 669 bool isReadOnly = AA.onlyReadsMemory(QueryCall); 670 LocalCache = getCallDependencyFrom(QueryCall, isReadOnly, 671 ScanPos->getIterator(), QueryParent); 672 } else 673 // Non-memory instruction. 674 LocalCache = MemDepResult::getUnknown(); 675 } 676 677 // Remember the result! 678 if (Instruction *I = LocalCache.getInst()) 679 ReverseLocalDeps[I].insert(QueryInst); 680 681 return LocalCache; 682 } 683 684 #ifndef NDEBUG 685 /// This method is used when -debug is specified to verify that cache arrays 686 /// are properly kept sorted. 687 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache, 688 int Count = -1) { 689 if (Count == -1) 690 Count = Cache.size(); 691 assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) && 692 "Cache isn't sorted!"); 693 } 694 #endif 695 696 const MemoryDependenceResults::NonLocalDepInfo & 697 MemoryDependenceResults::getNonLocalCallDependency(CallBase *QueryCall) { 698 assert(getDependency(QueryCall).isNonLocal() && 699 "getNonLocalCallDependency should only be used on calls with " 700 "non-local deps!"); 701 PerInstNLInfo &CacheP = NonLocalDeps[QueryCall]; 702 NonLocalDepInfo &Cache = CacheP.first; 703 704 // This is the set of blocks that need to be recomputed. In the cached case, 705 // this can happen due to instructions being deleted etc. In the uncached 706 // case, this starts out as the set of predecessors we care about. 707 SmallVector<BasicBlock *, 32> DirtyBlocks; 708 709 if (!Cache.empty()) { 710 // Okay, we have a cache entry. If we know it is not dirty, just return it 711 // with no computation. 712 if (!CacheP.second) { 713 ++NumCacheNonLocal; 714 return Cache; 715 } 716 717 // If we already have a partially computed set of results, scan them to 718 // determine what is dirty, seeding our initial DirtyBlocks worklist. 719 for (auto &Entry : Cache) 720 if (Entry.getResult().isDirty()) 721 DirtyBlocks.push_back(Entry.getBB()); 722 723 // Sort the cache so that we can do fast binary search lookups below. 724 llvm::sort(Cache); 725 726 ++NumCacheDirtyNonLocal; 727 // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " 728 // << Cache.size() << " cached: " << *QueryInst; 729 } else { 730 // Seed DirtyBlocks with each of the preds of QueryInst's block. 731 BasicBlock *QueryBB = QueryCall->getParent(); 732 for (BasicBlock *Pred : PredCache.get(QueryBB)) 733 DirtyBlocks.push_back(Pred); 734 ++NumUncacheNonLocal; 735 } 736 737 // isReadonlyCall - If this is a read-only call, we can be more aggressive. 738 bool isReadonlyCall = AA.onlyReadsMemory(QueryCall); 739 740 SmallPtrSet<BasicBlock *, 32> Visited; 741 742 unsigned NumSortedEntries = Cache.size(); 743 LLVM_DEBUG(AssertSorted(Cache)); 744 745 // Iterate while we still have blocks to update. 746 while (!DirtyBlocks.empty()) { 747 BasicBlock *DirtyBB = DirtyBlocks.back(); 748 DirtyBlocks.pop_back(); 749 750 // Already processed this block? 751 if (!Visited.insert(DirtyBB).second) 752 continue; 753 754 // Do a binary search to see if we already have an entry for this block in 755 // the cache set. If so, find it. 756 LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries)); 757 NonLocalDepInfo::iterator Entry = 758 std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries, 759 NonLocalDepEntry(DirtyBB)); 760 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB) 761 --Entry; 762 763 NonLocalDepEntry *ExistingResult = nullptr; 764 if (Entry != Cache.begin() + NumSortedEntries && 765 Entry->getBB() == DirtyBB) { 766 // If we already have an entry, and if it isn't already dirty, the block 767 // is done. 768 if (!Entry->getResult().isDirty()) 769 continue; 770 771 // Otherwise, remember this slot so we can update the value. 772 ExistingResult = &*Entry; 773 } 774 775 // If the dirty entry has a pointer, start scanning from it so we don't have 776 // to rescan the entire block. 777 BasicBlock::iterator ScanPos = DirtyBB->end(); 778 if (ExistingResult) { 779 if (Instruction *Inst = ExistingResult->getResult().getInst()) { 780 ScanPos = Inst->getIterator(); 781 // We're removing QueryInst's use of Inst. 782 RemoveFromReverseMap<Instruction *>(ReverseNonLocalDeps, Inst, 783 QueryCall); 784 } 785 } 786 787 // Find out if this block has a local dependency for QueryInst. 788 MemDepResult Dep; 789 790 if (ScanPos != DirtyBB->begin()) { 791 Dep = getCallDependencyFrom(QueryCall, isReadonlyCall, ScanPos, DirtyBB); 792 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { 793 // No dependence found. If this is the entry block of the function, it is 794 // a clobber, otherwise it is unknown. 795 Dep = MemDepResult::getNonLocal(); 796 } else { 797 Dep = MemDepResult::getNonFuncLocal(); 798 } 799 800 // If we had a dirty entry for the block, update it. Otherwise, just add 801 // a new entry. 802 if (ExistingResult) 803 ExistingResult->setResult(Dep); 804 else 805 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); 806 807 // If the block has a dependency (i.e. it isn't completely transparent to 808 // the value), remember the association! 809 if (!Dep.isNonLocal()) { 810 // Keep the ReverseNonLocalDeps map up to date so we can efficiently 811 // update this when we remove instructions. 812 if (Instruction *Inst = Dep.getInst()) 813 ReverseNonLocalDeps[Inst].insert(QueryCall); 814 } else { 815 816 // If the block *is* completely transparent to the load, we need to check 817 // the predecessors of this block. Add them to our worklist. 818 for (BasicBlock *Pred : PredCache.get(DirtyBB)) 819 DirtyBlocks.push_back(Pred); 820 } 821 } 822 823 return Cache; 824 } 825 826 void MemoryDependenceResults::getNonLocalPointerDependency( 827 Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) { 828 const MemoryLocation Loc = MemoryLocation::get(QueryInst); 829 bool isLoad = isa<LoadInst>(QueryInst); 830 BasicBlock *FromBB = QueryInst->getParent(); 831 assert(FromBB); 832 833 assert(Loc.Ptr->getType()->isPointerTy() && 834 "Can't get pointer deps of a non-pointer!"); 835 Result.clear(); 836 { 837 // Check if there is cached Def with invariant.group. 838 auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst); 839 if (NonLocalDefIt != NonLocalDefsCache.end()) { 840 Result.push_back(NonLocalDefIt->second); 841 ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()] 842 .erase(QueryInst); 843 NonLocalDefsCache.erase(NonLocalDefIt); 844 return; 845 } 846 } 847 // This routine does not expect to deal with volatile instructions. 848 // Doing so would require piping through the QueryInst all the way through. 849 // TODO: volatiles can't be elided, but they can be reordered with other 850 // non-volatile accesses. 851 852 // We currently give up on any instruction which is ordered, but we do handle 853 // atomic instructions which are unordered. 854 // TODO: Handle ordered instructions 855 auto isOrdered = [](Instruction *Inst) { 856 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 857 return !LI->isUnordered(); 858 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 859 return !SI->isUnordered(); 860 } 861 return false; 862 }; 863 if (isVolatile(QueryInst) || isOrdered(QueryInst)) { 864 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(), 865 const_cast<Value *>(Loc.Ptr))); 866 return; 867 } 868 const DataLayout &DL = FromBB->getModule()->getDataLayout(); 869 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC); 870 871 // This is the set of blocks we've inspected, and the pointer we consider in 872 // each block. Because of critical edges, we currently bail out if querying 873 // a block with multiple different pointers. This can happen during PHI 874 // translation. 875 DenseMap<BasicBlock *, Value *> Visited; 876 if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB, 877 Result, Visited, true)) 878 return; 879 Result.clear(); 880 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(), 881 const_cast<Value *>(Loc.Ptr))); 882 } 883 884 /// Compute the memdep value for BB with Pointer/PointeeSize using either 885 /// cached information in Cache or by doing a lookup (which may use dirty cache 886 /// info if available). 887 /// 888 /// If we do a lookup, add the result to the cache. 889 MemDepResult MemoryDependenceResults::GetNonLocalInfoForBlock( 890 Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad, 891 BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) { 892 893 bool isInvariantLoad = false; 894 895 if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst)) 896 isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load); 897 898 // Do a binary search to see if we already have an entry for this block in 899 // the cache set. If so, find it. 900 NonLocalDepInfo::iterator Entry = std::upper_bound( 901 Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB)); 902 if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB) 903 --Entry; 904 905 NonLocalDepEntry *ExistingResult = nullptr; 906 if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB) 907 ExistingResult = &*Entry; 908 909 // Use cached result for invariant load only if there is no dependency for non 910 // invariant load. In this case invariant load can not have any dependency as 911 // well. 912 if (ExistingResult && isInvariantLoad && 913 !ExistingResult->getResult().isNonFuncLocal()) 914 ExistingResult = nullptr; 915 916 // If we have a cached entry, and it is non-dirty, use it as the value for 917 // this dependency. 918 if (ExistingResult && !ExistingResult->getResult().isDirty()) { 919 ++NumCacheNonLocalPtr; 920 return ExistingResult->getResult(); 921 } 922 923 // Otherwise, we have to scan for the value. If we have a dirty cache 924 // entry, start scanning from its position, otherwise we scan from the end 925 // of the block. 926 BasicBlock::iterator ScanPos = BB->end(); 927 if (ExistingResult && ExistingResult->getResult().getInst()) { 928 assert(ExistingResult->getResult().getInst()->getParent() == BB && 929 "Instruction invalidated?"); 930 ++NumCacheDirtyNonLocalPtr; 931 ScanPos = ExistingResult->getResult().getInst()->getIterator(); 932 933 // Eliminating the dirty entry from 'Cache', so update the reverse info. 934 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 935 RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey); 936 } else { 937 ++NumUncacheNonLocalPtr; 938 } 939 940 // Scan the block for the dependency. 941 MemDepResult Dep = 942 getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, QueryInst); 943 944 // Don't cache results for invariant load. 945 if (isInvariantLoad) 946 return Dep; 947 948 // If we had a dirty entry for the block, update it. Otherwise, just add 949 // a new entry. 950 if (ExistingResult) 951 ExistingResult->setResult(Dep); 952 else 953 Cache->push_back(NonLocalDepEntry(BB, Dep)); 954 955 // If the block has a dependency (i.e. it isn't completely transparent to 956 // the value), remember the reverse association because we just added it 957 // to Cache! 958 if (!Dep.isDef() && !Dep.isClobber()) 959 return Dep; 960 961 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently 962 // update MemDep when we remove instructions. 963 Instruction *Inst = Dep.getInst(); 964 assert(Inst && "Didn't depend on anything?"); 965 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 966 ReverseNonLocalPtrDeps[Inst].insert(CacheKey); 967 return Dep; 968 } 969 970 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the 971 /// array that are already properly ordered. 972 /// 973 /// This is optimized for the case when only a few entries are added. 974 static void 975 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache, 976 unsigned NumSortedEntries) { 977 switch (Cache.size() - NumSortedEntries) { 978 case 0: 979 // done, no new entries. 980 break; 981 case 2: { 982 // Two new entries, insert the last one into place. 983 NonLocalDepEntry Val = Cache.back(); 984 Cache.pop_back(); 985 MemoryDependenceResults::NonLocalDepInfo::iterator Entry = 986 std::upper_bound(Cache.begin(), Cache.end() - 1, Val); 987 Cache.insert(Entry, Val); 988 LLVM_FALLTHROUGH; 989 } 990 case 1: 991 // One new entry, Just insert the new value at the appropriate position. 992 if (Cache.size() != 1) { 993 NonLocalDepEntry Val = Cache.back(); 994 Cache.pop_back(); 995 MemoryDependenceResults::NonLocalDepInfo::iterator Entry = 996 std::upper_bound(Cache.begin(), Cache.end(), Val); 997 Cache.insert(Entry, Val); 998 } 999 break; 1000 default: 1001 // Added many values, do a full scale sort. 1002 llvm::sort(Cache); 1003 break; 1004 } 1005 } 1006 1007 /// Perform a dependency query based on pointer/pointeesize starting at the end 1008 /// of StartBB. 1009 /// 1010 /// Add any clobber/def results to the results vector and keep track of which 1011 /// blocks are visited in 'Visited'. 1012 /// 1013 /// This has special behavior for the first block queries (when SkipFirstBlock 1014 /// is true). In this special case, it ignores the contents of the specified 1015 /// block and starts returning dependence info for its predecessors. 1016 /// 1017 /// This function returns true on success, or false to indicate that it could 1018 /// not compute dependence information for some reason. This should be treated 1019 /// as a clobber dependence on the first instruction in the predecessor block. 1020 bool MemoryDependenceResults::getNonLocalPointerDepFromBB( 1021 Instruction *QueryInst, const PHITransAddr &Pointer, 1022 const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB, 1023 SmallVectorImpl<NonLocalDepResult> &Result, 1024 DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock, 1025 bool IsIncomplete) { 1026 // Look up the cached info for Pointer. 1027 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); 1028 1029 // Set up a temporary NLPI value. If the map doesn't yet have an entry for 1030 // CacheKey, this value will be inserted as the associated value. Otherwise, 1031 // it'll be ignored, and we'll have to check to see if the cached size and 1032 // aa tags are consistent with the current query. 1033 NonLocalPointerInfo InitialNLPI; 1034 InitialNLPI.Size = Loc.Size; 1035 InitialNLPI.AATags = Loc.AATags; 1036 1037 bool isInvariantLoad = false; 1038 if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst)) 1039 isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load); 1040 1041 // Get the NLPI for CacheKey, inserting one into the map if it doesn't 1042 // already have one. 1043 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = 1044 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); 1045 NonLocalPointerInfo *CacheInfo = &Pair.first->second; 1046 1047 // If we already have a cache entry for this CacheKey, we may need to do some 1048 // work to reconcile the cache entry and the current query. 1049 // Invariant loads don't participate in caching. Thus no need to reconcile. 1050 if (!isInvariantLoad && !Pair.second) { 1051 if (CacheInfo->Size != Loc.Size) { 1052 bool ThrowOutEverything; 1053 if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) { 1054 // FIXME: We may be able to do better in the face of results with mixed 1055 // precision. We don't appear to get them in practice, though, so just 1056 // be conservative. 1057 ThrowOutEverything = 1058 CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() || 1059 CacheInfo->Size.getValue() < Loc.Size.getValue(); 1060 } else { 1061 // For our purposes, unknown size > all others. 1062 ThrowOutEverything = !Loc.Size.hasValue(); 1063 } 1064 1065 if (ThrowOutEverything) { 1066 // The query's Size is greater than the cached one. Throw out the 1067 // cached data and proceed with the query at the greater size. 1068 CacheInfo->Pair = BBSkipFirstBlockPair(); 1069 CacheInfo->Size = Loc.Size; 1070 for (auto &Entry : CacheInfo->NonLocalDeps) 1071 if (Instruction *Inst = Entry.getResult().getInst()) 1072 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1073 CacheInfo->NonLocalDeps.clear(); 1074 // The cache is cleared (in the above line) so we will have lost 1075 // information about blocks we have already visited. We therefore must 1076 // assume that the cache information is incomplete. 1077 IsIncomplete = true; 1078 } else { 1079 // This query's Size is less than the cached one. Conservatively restart 1080 // the query using the greater size. 1081 return getNonLocalPointerDepFromBB( 1082 QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad, 1083 StartBB, Result, Visited, SkipFirstBlock, IsIncomplete); 1084 } 1085 } 1086 1087 // If the query's AATags are inconsistent with the cached one, 1088 // conservatively throw out the cached data and restart the query with 1089 // no tag if needed. 1090 if (CacheInfo->AATags != Loc.AATags) { 1091 if (CacheInfo->AATags) { 1092 CacheInfo->Pair = BBSkipFirstBlockPair(); 1093 CacheInfo->AATags = AAMDNodes(); 1094 for (auto &Entry : CacheInfo->NonLocalDeps) 1095 if (Instruction *Inst = Entry.getResult().getInst()) 1096 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1097 CacheInfo->NonLocalDeps.clear(); 1098 // The cache is cleared (in the above line) so we will have lost 1099 // information about blocks we have already visited. We therefore must 1100 // assume that the cache information is incomplete. 1101 IsIncomplete = true; 1102 } 1103 if (Loc.AATags) 1104 return getNonLocalPointerDepFromBB( 1105 QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result, 1106 Visited, SkipFirstBlock, IsIncomplete); 1107 } 1108 } 1109 1110 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; 1111 1112 // If we have valid cached information for exactly the block we are 1113 // investigating, just return it with no recomputation. 1114 // Don't use cached information for invariant loads since it is valid for 1115 // non-invariant loads only. 1116 // 1117 // Don't use cached information for invariant loads since it is valid for 1118 // non-invariant loads only. 1119 if (!IsIncomplete && !isInvariantLoad && 1120 CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { 1121 // We have a fully cached result for this query then we can just return the 1122 // cached results and populate the visited set. However, we have to verify 1123 // that we don't already have conflicting results for these blocks. Check 1124 // to ensure that if a block in the results set is in the visited set that 1125 // it was for the same pointer query. 1126 if (!Visited.empty()) { 1127 for (auto &Entry : *Cache) { 1128 DenseMap<BasicBlock *, Value *>::iterator VI = 1129 Visited.find(Entry.getBB()); 1130 if (VI == Visited.end() || VI->second == Pointer.getAddr()) 1131 continue; 1132 1133 // We have a pointer mismatch in a block. Just return false, saying 1134 // that something was clobbered in this result. We could also do a 1135 // non-fully cached query, but there is little point in doing this. 1136 return false; 1137 } 1138 } 1139 1140 Value *Addr = Pointer.getAddr(); 1141 for (auto &Entry : *Cache) { 1142 Visited.insert(std::make_pair(Entry.getBB(), Addr)); 1143 if (Entry.getResult().isNonLocal()) { 1144 continue; 1145 } 1146 1147 if (DT.isReachableFromEntry(Entry.getBB())) { 1148 Result.push_back( 1149 NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr)); 1150 } 1151 } 1152 ++NumCacheCompleteNonLocalPtr; 1153 return true; 1154 } 1155 1156 // Otherwise, either this is a new block, a block with an invalid cache 1157 // pointer or one that we're about to invalidate by putting more info into 1158 // it than its valid cache info. If empty and not explicitly indicated as 1159 // incomplete, the result will be valid cache info, otherwise it isn't. 1160 // 1161 // Invariant loads don't affect cache in any way thus no need to update 1162 // CacheInfo as well. 1163 if (!isInvariantLoad) { 1164 if (!IsIncomplete && Cache->empty()) 1165 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); 1166 else 1167 CacheInfo->Pair = BBSkipFirstBlockPair(); 1168 } 1169 1170 SmallVector<BasicBlock *, 32> Worklist; 1171 Worklist.push_back(StartBB); 1172 1173 // PredList used inside loop. 1174 SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList; 1175 1176 // Keep track of the entries that we know are sorted. Previously cached 1177 // entries will all be sorted. The entries we add we only sort on demand (we 1178 // don't insert every element into its sorted position). We know that we 1179 // won't get any reuse from currently inserted values, because we don't 1180 // revisit blocks after we insert info for them. 1181 unsigned NumSortedEntries = Cache->size(); 1182 unsigned WorklistEntries = BlockNumberLimit; 1183 bool GotWorklistLimit = false; 1184 LLVM_DEBUG(AssertSorted(*Cache)); 1185 1186 while (!Worklist.empty()) { 1187 BasicBlock *BB = Worklist.pop_back_val(); 1188 1189 // If we do process a large number of blocks it becomes very expensive and 1190 // likely it isn't worth worrying about 1191 if (Result.size() > NumResultsLimit) { 1192 Worklist.clear(); 1193 // Sort it now (if needed) so that recursive invocations of 1194 // getNonLocalPointerDepFromBB and other routines that could reuse the 1195 // cache value will only see properly sorted cache arrays. 1196 if (Cache && NumSortedEntries != Cache->size()) { 1197 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1198 } 1199 // Since we bail out, the "Cache" set won't contain all of the 1200 // results for the query. This is ok (we can still use it to accelerate 1201 // specific block queries) but we can't do the fastpath "return all 1202 // results from the set". Clear out the indicator for this. 1203 CacheInfo->Pair = BBSkipFirstBlockPair(); 1204 return false; 1205 } 1206 1207 // Skip the first block if we have it. 1208 if (!SkipFirstBlock) { 1209 // Analyze the dependency of *Pointer in FromBB. See if we already have 1210 // been here. 1211 assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); 1212 1213 // Get the dependency info for Pointer in BB. If we have cached 1214 // information, we will use it, otherwise we compute it. 1215 LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries)); 1216 MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, Loc, isLoad, BB, 1217 Cache, NumSortedEntries); 1218 1219 // If we got a Def or Clobber, add this to the list of results. 1220 if (!Dep.isNonLocal()) { 1221 if (DT.isReachableFromEntry(BB)) { 1222 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); 1223 continue; 1224 } 1225 } 1226 } 1227 1228 // If 'Pointer' is an instruction defined in this block, then we need to do 1229 // phi translation to change it into a value live in the predecessor block. 1230 // If not, we just add the predecessors to the worklist and scan them with 1231 // the same Pointer. 1232 if (!Pointer.NeedsPHITranslationFromBlock(BB)) { 1233 SkipFirstBlock = false; 1234 SmallVector<BasicBlock *, 16> NewBlocks; 1235 for (BasicBlock *Pred : PredCache.get(BB)) { 1236 // Verify that we haven't looked at this block yet. 1237 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = 1238 Visited.insert(std::make_pair(Pred, Pointer.getAddr())); 1239 if (InsertRes.second) { 1240 // First time we've looked at *PI. 1241 NewBlocks.push_back(Pred); 1242 continue; 1243 } 1244 1245 // If we have seen this block before, but it was with a different 1246 // pointer then we have a phi translation failure and we have to treat 1247 // this as a clobber. 1248 if (InsertRes.first->second != Pointer.getAddr()) { 1249 // Make sure to clean up the Visited map before continuing on to 1250 // PredTranslationFailure. 1251 for (unsigned i = 0; i < NewBlocks.size(); i++) 1252 Visited.erase(NewBlocks[i]); 1253 goto PredTranslationFailure; 1254 } 1255 } 1256 if (NewBlocks.size() > WorklistEntries) { 1257 // Make sure to clean up the Visited map before continuing on to 1258 // PredTranslationFailure. 1259 for (unsigned i = 0; i < NewBlocks.size(); i++) 1260 Visited.erase(NewBlocks[i]); 1261 GotWorklistLimit = true; 1262 goto PredTranslationFailure; 1263 } 1264 WorklistEntries -= NewBlocks.size(); 1265 Worklist.append(NewBlocks.begin(), NewBlocks.end()); 1266 continue; 1267 } 1268 1269 // We do need to do phi translation, if we know ahead of time we can't phi 1270 // translate this value, don't even try. 1271 if (!Pointer.IsPotentiallyPHITranslatable()) 1272 goto PredTranslationFailure; 1273 1274 // We may have added values to the cache list before this PHI translation. 1275 // If so, we haven't done anything to ensure that the cache remains sorted. 1276 // Sort it now (if needed) so that recursive invocations of 1277 // getNonLocalPointerDepFromBB and other routines that could reuse the cache 1278 // value will only see properly sorted cache arrays. 1279 if (Cache && NumSortedEntries != Cache->size()) { 1280 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1281 NumSortedEntries = Cache->size(); 1282 } 1283 Cache = nullptr; 1284 1285 PredList.clear(); 1286 for (BasicBlock *Pred : PredCache.get(BB)) { 1287 PredList.push_back(std::make_pair(Pred, Pointer)); 1288 1289 // Get the PHI translated pointer in this predecessor. This can fail if 1290 // not translatable, in which case the getAddr() returns null. 1291 PHITransAddr &PredPointer = PredList.back().second; 1292 PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false); 1293 Value *PredPtrVal = PredPointer.getAddr(); 1294 1295 // Check to see if we have already visited this pred block with another 1296 // pointer. If so, we can't do this lookup. This failure can occur 1297 // with PHI translation when a critical edge exists and the PHI node in 1298 // the successor translates to a pointer value different than the 1299 // pointer the block was first analyzed with. 1300 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = 1301 Visited.insert(std::make_pair(Pred, PredPtrVal)); 1302 1303 if (!InsertRes.second) { 1304 // We found the pred; take it off the list of preds to visit. 1305 PredList.pop_back(); 1306 1307 // If the predecessor was visited with PredPtr, then we already did 1308 // the analysis and can ignore it. 1309 if (InsertRes.first->second == PredPtrVal) 1310 continue; 1311 1312 // Otherwise, the block was previously analyzed with a different 1313 // pointer. We can't represent the result of this case, so we just 1314 // treat this as a phi translation failure. 1315 1316 // Make sure to clean up the Visited map before continuing on to 1317 // PredTranslationFailure. 1318 for (unsigned i = 0, n = PredList.size(); i < n; ++i) 1319 Visited.erase(PredList[i].first); 1320 1321 goto PredTranslationFailure; 1322 } 1323 } 1324 1325 // Actually process results here; this need to be a separate loop to avoid 1326 // calling getNonLocalPointerDepFromBB for blocks we don't want to return 1327 // any results for. (getNonLocalPointerDepFromBB will modify our 1328 // datastructures in ways the code after the PredTranslationFailure label 1329 // doesn't expect.) 1330 for (unsigned i = 0, n = PredList.size(); i < n; ++i) { 1331 BasicBlock *Pred = PredList[i].first; 1332 PHITransAddr &PredPointer = PredList[i].second; 1333 Value *PredPtrVal = PredPointer.getAddr(); 1334 1335 bool CanTranslate = true; 1336 // If PHI translation was unable to find an available pointer in this 1337 // predecessor, then we have to assume that the pointer is clobbered in 1338 // that predecessor. We can still do PRE of the load, which would insert 1339 // a computation of the pointer in this predecessor. 1340 if (!PredPtrVal) 1341 CanTranslate = false; 1342 1343 // FIXME: it is entirely possible that PHI translating will end up with 1344 // the same value. Consider PHI translating something like: 1345 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* 1346 // to recurse here, pedantically speaking. 1347 1348 // If getNonLocalPointerDepFromBB fails here, that means the cached 1349 // result conflicted with the Visited list; we have to conservatively 1350 // assume it is unknown, but this also does not block PRE of the load. 1351 if (!CanTranslate || 1352 !getNonLocalPointerDepFromBB(QueryInst, PredPointer, 1353 Loc.getWithNewPtr(PredPtrVal), isLoad, 1354 Pred, Result, Visited)) { 1355 // Add the entry to the Result list. 1356 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal); 1357 Result.push_back(Entry); 1358 1359 // Since we had a phi translation failure, the cache for CacheKey won't 1360 // include all of the entries that we need to immediately satisfy future 1361 // queries. Mark this in NonLocalPointerDeps by setting the 1362 // BBSkipFirstBlockPair pointer to null. This requires reuse of the 1363 // cached value to do more work but not miss the phi trans failure. 1364 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; 1365 NLPI.Pair = BBSkipFirstBlockPair(); 1366 continue; 1367 } 1368 } 1369 1370 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. 1371 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1372 Cache = &CacheInfo->NonLocalDeps; 1373 NumSortedEntries = Cache->size(); 1374 1375 // Since we did phi translation, the "Cache" set won't contain all of the 1376 // results for the query. This is ok (we can still use it to accelerate 1377 // specific block queries) but we can't do the fastpath "return all 1378 // results from the set" Clear out the indicator for this. 1379 CacheInfo->Pair = BBSkipFirstBlockPair(); 1380 SkipFirstBlock = false; 1381 continue; 1382 1383 PredTranslationFailure: 1384 // The following code is "failure"; we can't produce a sane translation 1385 // for the given block. It assumes that we haven't modified any of 1386 // our datastructures while processing the current block. 1387 1388 if (!Cache) { 1389 // Refresh the CacheInfo/Cache pointer if it got invalidated. 1390 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1391 Cache = &CacheInfo->NonLocalDeps; 1392 NumSortedEntries = Cache->size(); 1393 } 1394 1395 // Since we failed phi translation, the "Cache" set won't contain all of the 1396 // results for the query. This is ok (we can still use it to accelerate 1397 // specific block queries) but we can't do the fastpath "return all 1398 // results from the set". Clear out the indicator for this. 1399 CacheInfo->Pair = BBSkipFirstBlockPair(); 1400 1401 // If *nothing* works, mark the pointer as unknown. 1402 // 1403 // If this is the magic first block, return this as a clobber of the whole 1404 // incoming value. Since we can't phi translate to one of the predecessors, 1405 // we have to bail out. 1406 if (SkipFirstBlock) 1407 return false; 1408 1409 // Results of invariant loads are not cached thus no need to update cached 1410 // information. 1411 if (!isInvariantLoad) { 1412 for (NonLocalDepEntry &I : llvm::reverse(*Cache)) { 1413 if (I.getBB() != BB) 1414 continue; 1415 1416 assert((GotWorklistLimit || I.getResult().isNonLocal() || 1417 !DT.isReachableFromEntry(BB)) && 1418 "Should only be here with transparent block"); 1419 1420 I.setResult(MemDepResult::getUnknown()); 1421 1422 1423 break; 1424 } 1425 } 1426 (void)GotWorklistLimit; 1427 // Go ahead and report unknown dependence. 1428 Result.push_back( 1429 NonLocalDepResult(BB, MemDepResult::getUnknown(), Pointer.getAddr())); 1430 } 1431 1432 // Okay, we're done now. If we added new values to the cache, re-sort it. 1433 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1434 LLVM_DEBUG(AssertSorted(*Cache)); 1435 return true; 1436 } 1437 1438 /// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it. 1439 void MemoryDependenceResults::RemoveCachedNonLocalPointerDependencies( 1440 ValueIsLoadPair P) { 1441 1442 // Most of the time this cache is empty. 1443 if (!NonLocalDefsCache.empty()) { 1444 auto it = NonLocalDefsCache.find(P.getPointer()); 1445 if (it != NonLocalDefsCache.end()) { 1446 RemoveFromReverseMap(ReverseNonLocalDefsCache, 1447 it->second.getResult().getInst(), P.getPointer()); 1448 NonLocalDefsCache.erase(it); 1449 } 1450 1451 if (auto *I = dyn_cast<Instruction>(P.getPointer())) { 1452 auto toRemoveIt = ReverseNonLocalDefsCache.find(I); 1453 if (toRemoveIt != ReverseNonLocalDefsCache.end()) { 1454 for (const auto *entry : toRemoveIt->second) 1455 NonLocalDefsCache.erase(entry); 1456 ReverseNonLocalDefsCache.erase(toRemoveIt); 1457 } 1458 } 1459 } 1460 1461 CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P); 1462 if (It == NonLocalPointerDeps.end()) 1463 return; 1464 1465 // Remove all of the entries in the BB->val map. This involves removing 1466 // instructions from the reverse map. 1467 NonLocalDepInfo &PInfo = It->second.NonLocalDeps; 1468 1469 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { 1470 Instruction *Target = PInfo[i].getResult().getInst(); 1471 if (!Target) 1472 continue; // Ignore non-local dep results. 1473 assert(Target->getParent() == PInfo[i].getBB()); 1474 1475 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1476 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); 1477 } 1478 1479 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). 1480 NonLocalPointerDeps.erase(It); 1481 } 1482 1483 void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) { 1484 // If Ptr isn't really a pointer, just ignore it. 1485 if (!Ptr->getType()->isPointerTy()) 1486 return; 1487 // Flush store info for the pointer. 1488 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); 1489 // Flush load info for the pointer. 1490 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); 1491 // Invalidate phis that use the pointer. 1492 PV.invalidateValue(Ptr); 1493 } 1494 1495 void MemoryDependenceResults::invalidateCachedPredecessors() { 1496 PredCache.clear(); 1497 } 1498 1499 void MemoryDependenceResults::removeInstruction(Instruction *RemInst) { 1500 // Walk through the Non-local dependencies, removing this one as the value 1501 // for any cached queries. 1502 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); 1503 if (NLDI != NonLocalDeps.end()) { 1504 NonLocalDepInfo &BlockMap = NLDI->second.first; 1505 for (auto &Entry : BlockMap) 1506 if (Instruction *Inst = Entry.getResult().getInst()) 1507 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); 1508 NonLocalDeps.erase(NLDI); 1509 } 1510 1511 // If we have a cached local dependence query for this instruction, remove it. 1512 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); 1513 if (LocalDepEntry != LocalDeps.end()) { 1514 // Remove us from DepInst's reverse set now that the local dep info is gone. 1515 if (Instruction *Inst = LocalDepEntry->second.getInst()) 1516 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); 1517 1518 // Remove this local dependency info. 1519 LocalDeps.erase(LocalDepEntry); 1520 } 1521 1522 // If we have any cached dependencies on this instruction, remove 1523 // them. 1524 1525 // If the instruction is a pointer, remove it from both the load info and the 1526 // store info. 1527 if (RemInst->getType()->isPointerTy()) { 1528 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); 1529 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); 1530 } else { 1531 // Otherwise, if the instructions is in the map directly, it must be a load. 1532 // Remove it. 1533 auto toRemoveIt = NonLocalDefsCache.find(RemInst); 1534 if (toRemoveIt != NonLocalDefsCache.end()) { 1535 assert(isa<LoadInst>(RemInst) && 1536 "only load instructions should be added directly"); 1537 const Instruction *DepV = toRemoveIt->second.getResult().getInst(); 1538 ReverseNonLocalDefsCache.find(DepV)->second.erase(RemInst); 1539 NonLocalDefsCache.erase(toRemoveIt); 1540 } 1541 } 1542 1543 // Loop over all of the things that depend on the instruction we're removing. 1544 SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd; 1545 1546 // If we find RemInst as a clobber or Def in any of the maps for other values, 1547 // we need to replace its entry with a dirty version of the instruction after 1548 // it. If RemInst is a terminator, we use a null dirty value. 1549 // 1550 // Using a dirty version of the instruction after RemInst saves having to scan 1551 // the entire block to get to this point. 1552 MemDepResult NewDirtyVal; 1553 if (!RemInst->isTerminator()) 1554 NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator()); 1555 1556 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); 1557 if (ReverseDepIt != ReverseLocalDeps.end()) { 1558 // RemInst can't be the terminator if it has local stuff depending on it. 1559 assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() && 1560 "Nothing can locally depend on a terminator"); 1561 1562 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) { 1563 assert(InstDependingOnRemInst != RemInst && 1564 "Already removed our local dep info"); 1565 1566 LocalDeps[InstDependingOnRemInst] = NewDirtyVal; 1567 1568 // Make sure to remember that new things depend on NewDepInst. 1569 assert(NewDirtyVal.getInst() && 1570 "There is no way something else can have " 1571 "a local dep on this if it is a terminator!"); 1572 ReverseDepsToAdd.push_back( 1573 std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst)); 1574 } 1575 1576 ReverseLocalDeps.erase(ReverseDepIt); 1577 1578 // Add new reverse deps after scanning the set, to avoid invalidating the 1579 // 'ReverseDeps' reference. 1580 while (!ReverseDepsToAdd.empty()) { 1581 ReverseLocalDeps[ReverseDepsToAdd.back().first].insert( 1582 ReverseDepsToAdd.back().second); 1583 ReverseDepsToAdd.pop_back(); 1584 } 1585 } 1586 1587 ReverseDepIt = ReverseNonLocalDeps.find(RemInst); 1588 if (ReverseDepIt != ReverseNonLocalDeps.end()) { 1589 for (Instruction *I : ReverseDepIt->second) { 1590 assert(I != RemInst && "Already removed NonLocalDep info for RemInst"); 1591 1592 PerInstNLInfo &INLD = NonLocalDeps[I]; 1593 // The information is now dirty! 1594 INLD.second = true; 1595 1596 for (auto &Entry : INLD.first) { 1597 if (Entry.getResult().getInst() != RemInst) 1598 continue; 1599 1600 // Convert to a dirty entry for the subsequent instruction. 1601 Entry.setResult(NewDirtyVal); 1602 1603 if (Instruction *NextI = NewDirtyVal.getInst()) 1604 ReverseDepsToAdd.push_back(std::make_pair(NextI, I)); 1605 } 1606 } 1607 1608 ReverseNonLocalDeps.erase(ReverseDepIt); 1609 1610 // Add new reverse deps after scanning the set, to avoid invalidating 'Set' 1611 while (!ReverseDepsToAdd.empty()) { 1612 ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert( 1613 ReverseDepsToAdd.back().second); 1614 ReverseDepsToAdd.pop_back(); 1615 } 1616 } 1617 1618 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a 1619 // value in the NonLocalPointerDeps info. 1620 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = 1621 ReverseNonLocalPtrDeps.find(RemInst); 1622 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { 1623 SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8> 1624 ReversePtrDepsToAdd; 1625 1626 for (ValueIsLoadPair P : ReversePtrDepIt->second) { 1627 assert(P.getPointer() != RemInst && 1628 "Already removed NonLocalPointerDeps info for RemInst"); 1629 1630 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; 1631 1632 // The cache is not valid for any specific block anymore. 1633 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); 1634 1635 // Update any entries for RemInst to use the instruction after it. 1636 for (auto &Entry : NLPDI) { 1637 if (Entry.getResult().getInst() != RemInst) 1638 continue; 1639 1640 // Convert to a dirty entry for the subsequent instruction. 1641 Entry.setResult(NewDirtyVal); 1642 1643 if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) 1644 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); 1645 } 1646 1647 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its 1648 // subsequent value may invalidate the sortedness. 1649 llvm::sort(NLPDI); 1650 } 1651 1652 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); 1653 1654 while (!ReversePtrDepsToAdd.empty()) { 1655 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert( 1656 ReversePtrDepsToAdd.back().second); 1657 ReversePtrDepsToAdd.pop_back(); 1658 } 1659 } 1660 1661 // Invalidate phis that use the removed instruction. 1662 PV.invalidateValue(RemInst); 1663 1664 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); 1665 LLVM_DEBUG(verifyRemoved(RemInst)); 1666 } 1667 1668 /// Verify that the specified instruction does not occur in our internal data 1669 /// structures. 1670 /// 1671 /// This function verifies by asserting in debug builds. 1672 void MemoryDependenceResults::verifyRemoved(Instruction *D) const { 1673 #ifndef NDEBUG 1674 for (const auto &DepKV : LocalDeps) { 1675 assert(DepKV.first != D && "Inst occurs in data structures"); 1676 assert(DepKV.second.getInst() != D && "Inst occurs in data structures"); 1677 } 1678 1679 for (const auto &DepKV : NonLocalPointerDeps) { 1680 assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key"); 1681 for (const auto &Entry : DepKV.second.NonLocalDeps) 1682 assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value"); 1683 } 1684 1685 for (const auto &DepKV : NonLocalDeps) { 1686 assert(DepKV.first != D && "Inst occurs in data structures"); 1687 const PerInstNLInfo &INLD = DepKV.second; 1688 for (const auto &Entry : INLD.first) 1689 assert(Entry.getResult().getInst() != D && 1690 "Inst occurs in data structures"); 1691 } 1692 1693 for (const auto &DepKV : ReverseLocalDeps) { 1694 assert(DepKV.first != D && "Inst occurs in data structures"); 1695 for (Instruction *Inst : DepKV.second) 1696 assert(Inst != D && "Inst occurs in data structures"); 1697 } 1698 1699 for (const auto &DepKV : ReverseNonLocalDeps) { 1700 assert(DepKV.first != D && "Inst occurs in data structures"); 1701 for (Instruction *Inst : DepKV.second) 1702 assert(Inst != D && "Inst occurs in data structures"); 1703 } 1704 1705 for (const auto &DepKV : ReverseNonLocalPtrDeps) { 1706 assert(DepKV.first != D && "Inst occurs in rev NLPD map"); 1707 1708 for (ValueIsLoadPair P : DepKV.second) 1709 assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) && 1710 "Inst occurs in ReverseNonLocalPtrDeps map"); 1711 } 1712 #endif 1713 } 1714 1715 AnalysisKey MemoryDependenceAnalysis::Key; 1716 1717 MemoryDependenceAnalysis::MemoryDependenceAnalysis() 1718 : DefaultBlockScanLimit(BlockScanLimit) {} 1719 1720 MemoryDependenceResults 1721 MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 1722 auto &AA = AM.getResult<AAManager>(F); 1723 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1724 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1725 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1726 auto &PV = AM.getResult<PhiValuesAnalysis>(F); 1727 return MemoryDependenceResults(AA, AC, TLI, DT, PV, DefaultBlockScanLimit); 1728 } 1729 1730 char MemoryDependenceWrapperPass::ID = 0; 1731 1732 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep", 1733 "Memory Dependence Analysis", false, true) 1734 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1735 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1736 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1737 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1738 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass) 1739 INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep", 1740 "Memory Dependence Analysis", false, true) 1741 1742 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) { 1743 initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry()); 1744 } 1745 1746 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default; 1747 1748 void MemoryDependenceWrapperPass::releaseMemory() { 1749 MemDep.reset(); 1750 } 1751 1752 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1753 AU.setPreservesAll(); 1754 AU.addRequired<AssumptionCacheTracker>(); 1755 AU.addRequired<DominatorTreeWrapperPass>(); 1756 AU.addRequired<PhiValuesWrapperPass>(); 1757 AU.addRequiredTransitive<AAResultsWrapperPass>(); 1758 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 1759 } 1760 1761 bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA, 1762 FunctionAnalysisManager::Invalidator &Inv) { 1763 // Check whether our analysis is preserved. 1764 auto PAC = PA.getChecker<MemoryDependenceAnalysis>(); 1765 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>()) 1766 // If not, give up now. 1767 return true; 1768 1769 // Check whether the analyses we depend on became invalid for any reason. 1770 if (Inv.invalidate<AAManager>(F, PA) || 1771 Inv.invalidate<AssumptionAnalysis>(F, PA) || 1772 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 1773 Inv.invalidate<PhiValuesAnalysis>(F, PA)) 1774 return true; 1775 1776 // Otherwise this analysis result remains valid. 1777 return false; 1778 } 1779 1780 unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const { 1781 return DefaultBlockScanLimit; 1782 } 1783 1784 bool MemoryDependenceWrapperPass::runOnFunction(Function &F) { 1785 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1786 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1787 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1788 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1789 auto &PV = getAnalysis<PhiValuesWrapperPass>().getResult(); 1790 MemDep.emplace(AA, AC, TLI, DT, PV, BlockScanLimit); 1791 return false; 1792 } 1793