1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements an analysis that determines, for a given memory 11 // operation, what preceding memory operations it depends on. It builds on 12 // alias analysis information, and tries to provide a lazy, caching interface to 13 // a common kind of alias information query. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/MemoryLocation.h" 27 #include "llvm/Analysis/OrderedBasicBlock.h" 28 #include "llvm/Analysis/PHITransAddr.h" 29 #include "llvm/Analysis/PhiValues.h" 30 #include "llvm/Analysis/TargetLibraryInfo.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CallSite.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/InstrTypes.h" 41 #include "llvm/IR/Instruction.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/Metadata.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/PredIteratorCache.h" 48 #include "llvm/IR/Type.h" 49 #include "llvm/IR/Use.h" 50 #include "llvm/IR/User.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/AtomicOrdering.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Compiler.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/MathExtras.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <cstdint> 62 #include <iterator> 63 #include <utility> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "memdep" 68 69 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); 70 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); 71 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); 72 73 STATISTIC(NumCacheNonLocalPtr, 74 "Number of fully cached non-local ptr responses"); 75 STATISTIC(NumCacheDirtyNonLocalPtr, 76 "Number of cached, but dirty, non-local ptr responses"); 77 STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses"); 78 STATISTIC(NumCacheCompleteNonLocalPtr, 79 "Number of block queries that were completely cached"); 80 81 // Limit for the number of instructions to scan in a block. 82 83 static cl::opt<unsigned> BlockScanLimit( 84 "memdep-block-scan-limit", cl::Hidden, cl::init(100), 85 cl::desc("The number of instructions to scan in a block in memory " 86 "dependency analysis (default = 100)")); 87 88 static cl::opt<unsigned> 89 BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000), 90 cl::desc("The number of blocks to scan during memory " 91 "dependency analysis (default = 1000)")); 92 93 // Limit on the number of memdep results to process. 94 static const unsigned int NumResultsLimit = 100; 95 96 /// This is a helper function that removes Val from 'Inst's set in ReverseMap. 97 /// 98 /// If the set becomes empty, remove Inst's entry. 99 template <typename KeyTy> 100 static void 101 RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap, 102 Instruction *Inst, KeyTy Val) { 103 typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt = 104 ReverseMap.find(Inst); 105 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); 106 bool Found = InstIt->second.erase(Val); 107 assert(Found && "Invalid reverse map!"); 108 (void)Found; 109 if (InstIt->second.empty()) 110 ReverseMap.erase(InstIt); 111 } 112 113 /// If the given instruction references a specific memory location, fill in Loc 114 /// with the details, otherwise set Loc.Ptr to null. 115 /// 116 /// Returns a ModRefInfo value describing the general behavior of the 117 /// instruction. 118 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc, 119 const TargetLibraryInfo &TLI) { 120 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 121 if (LI->isUnordered()) { 122 Loc = MemoryLocation::get(LI); 123 return ModRefInfo::Ref; 124 } 125 if (LI->getOrdering() == AtomicOrdering::Monotonic) { 126 Loc = MemoryLocation::get(LI); 127 return ModRefInfo::ModRef; 128 } 129 Loc = MemoryLocation(); 130 return ModRefInfo::ModRef; 131 } 132 133 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 134 if (SI->isUnordered()) { 135 Loc = MemoryLocation::get(SI); 136 return ModRefInfo::Mod; 137 } 138 if (SI->getOrdering() == AtomicOrdering::Monotonic) { 139 Loc = MemoryLocation::get(SI); 140 return ModRefInfo::ModRef; 141 } 142 Loc = MemoryLocation(); 143 return ModRefInfo::ModRef; 144 } 145 146 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { 147 Loc = MemoryLocation::get(V); 148 return ModRefInfo::ModRef; 149 } 150 151 if (const CallInst *CI = isFreeCall(Inst, &TLI)) { 152 // calls to free() deallocate the entire structure 153 Loc = MemoryLocation(CI->getArgOperand(0)); 154 return ModRefInfo::Mod; 155 } 156 157 if (const MemSetInst *MI = dyn_cast<MemSetInst>(Inst)) { 158 Loc = MemoryLocation::getForDest(MI); 159 // Conversatively assume ModRef for volatile memset. 160 return MI->isVolatile() ? ModRefInfo::ModRef : ModRefInfo::Mod; 161 } 162 163 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 164 switch (II->getIntrinsicID()) { 165 case Intrinsic::lifetime_start: 166 case Intrinsic::lifetime_end: 167 case Intrinsic::invariant_start: 168 Loc = MemoryLocation::getForArgument(II, 1, TLI); 169 // These intrinsics don't really modify the memory, but returning Mod 170 // will allow them to be handled conservatively. 171 return ModRefInfo::Mod; 172 case Intrinsic::invariant_end: 173 Loc = MemoryLocation::getForArgument(II, 2, TLI); 174 // These intrinsics don't really modify the memory, but returning Mod 175 // will allow them to be handled conservatively. 176 return ModRefInfo::Mod; 177 default: 178 break; 179 } 180 } 181 182 // Otherwise, just do the coarse-grained thing that always works. 183 if (Inst->mayWriteToMemory()) 184 return ModRefInfo::ModRef; 185 if (Inst->mayReadFromMemory()) 186 return ModRefInfo::Ref; 187 return ModRefInfo::NoModRef; 188 } 189 190 /// Private helper for finding the local dependencies of a call site. 191 MemDepResult MemoryDependenceResults::getCallSiteDependencyFrom( 192 CallSite CS, bool isReadOnlyCall, BasicBlock::iterator ScanIt, 193 BasicBlock *BB) { 194 unsigned Limit = BlockScanLimit; 195 196 // Walk backwards through the block, looking for dependencies. 197 while (ScanIt != BB->begin()) { 198 Instruction *Inst = &*--ScanIt; 199 // Debug intrinsics don't cause dependences and should not affect Limit 200 if (isa<DbgInfoIntrinsic>(Inst)) 201 continue; 202 203 // Limit the amount of scanning we do so we don't end up with quadratic 204 // running time on extreme testcases. 205 --Limit; 206 if (!Limit) 207 return MemDepResult::getUnknown(); 208 209 // If this inst is a memory op, get the pointer it accessed 210 MemoryLocation Loc; 211 ModRefInfo MR = GetLocation(Inst, Loc, TLI); 212 if (Loc.Ptr) { 213 // A simple instruction. 214 if (isModOrRefSet(AA.getModRefInfo(CS, Loc))) 215 return MemDepResult::getClobber(Inst); 216 continue; 217 } 218 219 if (auto InstCS = CallSite(Inst)) { 220 // If these two calls do not interfere, look past it. 221 if (isNoModRef(AA.getModRefInfo(CS, InstCS))) { 222 // If the two calls are the same, return InstCS as a Def, so that 223 // CS can be found redundant and eliminated. 224 if (isReadOnlyCall && !isModSet(MR) && 225 CS.getInstruction()->isIdenticalToWhenDefined(Inst)) 226 return MemDepResult::getDef(Inst); 227 228 // Otherwise if the two calls don't interact (e.g. InstCS is readnone) 229 // keep scanning. 230 continue; 231 } else 232 return MemDepResult::getClobber(Inst); 233 } 234 235 // If we could not obtain a pointer for the instruction and the instruction 236 // touches memory then assume that this is a dependency. 237 if (isModOrRefSet(MR)) 238 return MemDepResult::getClobber(Inst); 239 } 240 241 // No dependence found. If this is the entry block of the function, it is 242 // unknown, otherwise it is non-local. 243 if (BB != &BB->getParent()->getEntryBlock()) 244 return MemDepResult::getNonLocal(); 245 return MemDepResult::getNonFuncLocal(); 246 } 247 248 unsigned MemoryDependenceResults::getLoadLoadClobberFullWidthSize( 249 const Value *MemLocBase, int64_t MemLocOffs, unsigned MemLocSize, 250 const LoadInst *LI) { 251 // We can only extend simple integer loads. 252 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) 253 return 0; 254 255 // Load widening is hostile to ThreadSanitizer: it may cause false positives 256 // or make the reports more cryptic (access sizes are wrong). 257 if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread)) 258 return 0; 259 260 const DataLayout &DL = LI->getModule()->getDataLayout(); 261 262 // Get the base of this load. 263 int64_t LIOffs = 0; 264 const Value *LIBase = 265 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL); 266 267 // If the two pointers are not based on the same pointer, we can't tell that 268 // they are related. 269 if (LIBase != MemLocBase) 270 return 0; 271 272 // Okay, the two values are based on the same pointer, but returned as 273 // no-alias. This happens when we have things like two byte loads at "P+1" 274 // and "P+3". Check to see if increasing the size of the "LI" load up to its 275 // alignment (or the largest native integer type) will allow us to load all 276 // the bits required by MemLoc. 277 278 // If MemLoc is before LI, then no widening of LI will help us out. 279 if (MemLocOffs < LIOffs) 280 return 0; 281 282 // Get the alignment of the load in bytes. We assume that it is safe to load 283 // any legal integer up to this size without a problem. For example, if we're 284 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can 285 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it 286 // to i16. 287 unsigned LoadAlign = LI->getAlignment(); 288 289 int64_t MemLocEnd = MemLocOffs + MemLocSize; 290 291 // If no amount of rounding up will let MemLoc fit into LI, then bail out. 292 if (LIOffs + LoadAlign < MemLocEnd) 293 return 0; 294 295 // This is the size of the load to try. Start with the next larger power of 296 // two. 297 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits() / 8U; 298 NewLoadByteSize = NextPowerOf2(NewLoadByteSize); 299 300 while (true) { 301 // If this load size is bigger than our known alignment or would not fit 302 // into a native integer register, then we fail. 303 if (NewLoadByteSize > LoadAlign || 304 !DL.fitsInLegalInteger(NewLoadByteSize * 8)) 305 return 0; 306 307 if (LIOffs + NewLoadByteSize > MemLocEnd && 308 (LI->getParent()->getParent()->hasFnAttribute( 309 Attribute::SanitizeAddress) || 310 LI->getParent()->getParent()->hasFnAttribute( 311 Attribute::SanitizeHWAddress))) 312 // We will be reading past the location accessed by the original program. 313 // While this is safe in a regular build, Address Safety analysis tools 314 // may start reporting false warnings. So, don't do widening. 315 return 0; 316 317 // If a load of this width would include all of MemLoc, then we succeed. 318 if (LIOffs + NewLoadByteSize >= MemLocEnd) 319 return NewLoadByteSize; 320 321 NewLoadByteSize <<= 1; 322 } 323 } 324 325 static bool isVolatile(Instruction *Inst) { 326 if (auto *LI = dyn_cast<LoadInst>(Inst)) 327 return LI->isVolatile(); 328 if (auto *SI = dyn_cast<StoreInst>(Inst)) 329 return SI->isVolatile(); 330 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(Inst)) 331 return AI->isVolatile(); 332 return false; 333 } 334 335 MemDepResult MemoryDependenceResults::getPointerDependencyFrom( 336 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 337 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) { 338 MemDepResult InvariantGroupDependency = MemDepResult::getUnknown(); 339 if (QueryInst != nullptr) { 340 if (auto *LI = dyn_cast<LoadInst>(QueryInst)) { 341 InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB); 342 343 if (InvariantGroupDependency.isDef()) 344 return InvariantGroupDependency; 345 } 346 } 347 MemDepResult SimpleDep = getSimplePointerDependencyFrom( 348 MemLoc, isLoad, ScanIt, BB, QueryInst, Limit); 349 if (SimpleDep.isDef()) 350 return SimpleDep; 351 // Non-local invariant group dependency indicates there is non local Def 352 // (it only returns nonLocal if it finds nonLocal def), which is better than 353 // local clobber and everything else. 354 if (InvariantGroupDependency.isNonLocal()) 355 return InvariantGroupDependency; 356 357 assert(InvariantGroupDependency.isUnknown() && 358 "InvariantGroupDependency should be only unknown at this point"); 359 return SimpleDep; 360 } 361 362 MemDepResult 363 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI, 364 BasicBlock *BB) { 365 366 if (!LI->getMetadata(LLVMContext::MD_invariant_group)) 367 return MemDepResult::getUnknown(); 368 369 // Take the ptr operand after all casts and geps 0. This way we can search 370 // cast graph down only. 371 Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts(); 372 373 // It's is not safe to walk the use list of global value, because function 374 // passes aren't allowed to look outside their functions. 375 // FIXME: this could be fixed by filtering instructions from outside 376 // of current function. 377 if (isa<GlobalValue>(LoadOperand)) 378 return MemDepResult::getUnknown(); 379 380 // Queue to process all pointers that are equivalent to load operand. 381 SmallVector<const Value *, 8> LoadOperandsQueue; 382 LoadOperandsQueue.push_back(LoadOperand); 383 384 Instruction *ClosestDependency = nullptr; 385 // Order of instructions in uses list is unpredictible. In order to always 386 // get the same result, we will look for the closest dominance. 387 auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) { 388 assert(Other && "Must call it with not null instruction"); 389 if (Best == nullptr || DT.dominates(Best, Other)) 390 return Other; 391 return Best; 392 }; 393 394 // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case 395 // we will see all the instructions. This should be fixed in MSSA. 396 while (!LoadOperandsQueue.empty()) { 397 const Value *Ptr = LoadOperandsQueue.pop_back_val(); 398 assert(Ptr && !isa<GlobalValue>(Ptr) && 399 "Null or GlobalValue should not be inserted"); 400 401 for (const Use &Us : Ptr->uses()) { 402 auto *U = dyn_cast<Instruction>(Us.getUser()); 403 if (!U || U == LI || !DT.dominates(U, LI)) 404 continue; 405 406 // Bitcast or gep with zeros are using Ptr. Add to queue to check it's 407 // users. U = bitcast Ptr 408 if (isa<BitCastInst>(U)) { 409 LoadOperandsQueue.push_back(U); 410 continue; 411 } 412 // Gep with zeros is equivalent to bitcast. 413 // FIXME: we are not sure if some bitcast should be canonicalized to gep 0 414 // or gep 0 to bitcast because of SROA, so there are 2 forms. When 415 // typeless pointers will be ready then both cases will be gone 416 // (and this BFS also won't be needed). 417 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) 418 if (GEP->hasAllZeroIndices()) { 419 LoadOperandsQueue.push_back(U); 420 continue; 421 } 422 423 // If we hit load/store with the same invariant.group metadata (and the 424 // same pointer operand) we can assume that value pointed by pointer 425 // operand didn't change. 426 if ((isa<LoadInst>(U) || isa<StoreInst>(U)) && 427 U->getMetadata(LLVMContext::MD_invariant_group) != nullptr) 428 ClosestDependency = GetClosestDependency(ClosestDependency, U); 429 } 430 } 431 432 if (!ClosestDependency) 433 return MemDepResult::getUnknown(); 434 if (ClosestDependency->getParent() == BB) 435 return MemDepResult::getDef(ClosestDependency); 436 // Def(U) can't be returned here because it is non-local. If local 437 // dependency won't be found then return nonLocal counting that the 438 // user will call getNonLocalPointerDependency, which will return cached 439 // result. 440 NonLocalDefsCache.try_emplace( 441 LI, NonLocalDepResult(ClosestDependency->getParent(), 442 MemDepResult::getDef(ClosestDependency), nullptr)); 443 ReverseNonLocalDefsCache[ClosestDependency].insert(LI); 444 return MemDepResult::getNonLocal(); 445 } 446 447 MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom( 448 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 449 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) { 450 bool isInvariantLoad = false; 451 452 if (!Limit) { 453 unsigned DefaultLimit = BlockScanLimit; 454 return getSimplePointerDependencyFrom(MemLoc, isLoad, ScanIt, BB, QueryInst, 455 &DefaultLimit); 456 } 457 458 // We must be careful with atomic accesses, as they may allow another thread 459 // to touch this location, clobbering it. We are conservative: if the 460 // QueryInst is not a simple (non-atomic) memory access, we automatically 461 // return getClobber. 462 // If it is simple, we know based on the results of 463 // "Compiler testing via a theory of sound optimisations in the C11/C++11 464 // memory model" in PLDI 2013, that a non-atomic location can only be 465 // clobbered between a pair of a release and an acquire action, with no 466 // access to the location in between. 467 // Here is an example for giving the general intuition behind this rule. 468 // In the following code: 469 // store x 0; 470 // release action; [1] 471 // acquire action; [4] 472 // %val = load x; 473 // It is unsafe to replace %val by 0 because another thread may be running: 474 // acquire action; [2] 475 // store x 42; 476 // release action; [3] 477 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val 478 // being 42. A key property of this program however is that if either 479 // 1 or 4 were missing, there would be a race between the store of 42 480 // either the store of 0 or the load (making the whole program racy). 481 // The paper mentioned above shows that the same property is respected 482 // by every program that can detect any optimization of that kind: either 483 // it is racy (undefined) or there is a release followed by an acquire 484 // between the pair of accesses under consideration. 485 486 // If the load is invariant, we "know" that it doesn't alias *any* write. We 487 // do want to respect mustalias results since defs are useful for value 488 // forwarding, but any mayalias write can be assumed to be noalias. 489 // Arguably, this logic should be pushed inside AliasAnalysis itself. 490 if (isLoad && QueryInst) { 491 LoadInst *LI = dyn_cast<LoadInst>(QueryInst); 492 if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr) 493 isInvariantLoad = true; 494 } 495 496 const DataLayout &DL = BB->getModule()->getDataLayout(); 497 498 // Create a numbered basic block to lazily compute and cache instruction 499 // positions inside a BB. This is used to provide fast queries for relative 500 // position between two instructions in a BB and can be used by 501 // AliasAnalysis::callCapturesBefore. 502 OrderedBasicBlock OBB(BB); 503 504 // Return "true" if and only if the instruction I is either a non-simple 505 // load or a non-simple store. 506 auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool { 507 if (auto *LI = dyn_cast<LoadInst>(I)) 508 return !LI->isSimple(); 509 if (auto *SI = dyn_cast<StoreInst>(I)) 510 return !SI->isSimple(); 511 return false; 512 }; 513 514 // Return "true" if I is not a load and not a store, but it does access 515 // memory. 516 auto isOtherMemAccess = [](Instruction *I) -> bool { 517 return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory(); 518 }; 519 520 // Walk backwards through the basic block, looking for dependencies. 521 while (ScanIt != BB->begin()) { 522 Instruction *Inst = &*--ScanIt; 523 524 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 525 // Debug intrinsics don't (and can't) cause dependencies. 526 if (isa<DbgInfoIntrinsic>(II)) 527 continue; 528 529 // Limit the amount of scanning we do so we don't end up with quadratic 530 // running time on extreme testcases. 531 --*Limit; 532 if (!*Limit) 533 return MemDepResult::getUnknown(); 534 535 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 536 // If we reach a lifetime begin or end marker, then the query ends here 537 // because the value is undefined. 538 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 539 // FIXME: This only considers queries directly on the invariant-tagged 540 // pointer, not on query pointers that are indexed off of them. It'd 541 // be nice to handle that at some point (the right approach is to use 542 // GetPointerBaseWithConstantOffset). 543 if (AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc)) 544 return MemDepResult::getDef(II); 545 continue; 546 } 547 } 548 549 // Values depend on loads if the pointers are must aliased. This means 550 // that a load depends on another must aliased load from the same value. 551 // One exception is atomic loads: a value can depend on an atomic load that 552 // it does not alias with when this atomic load indicates that another 553 // thread may be accessing the location. 554 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 555 // While volatile access cannot be eliminated, they do not have to clobber 556 // non-aliasing locations, as normal accesses, for example, can be safely 557 // reordered with volatile accesses. 558 if (LI->isVolatile()) { 559 if (!QueryInst) 560 // Original QueryInst *may* be volatile 561 return MemDepResult::getClobber(LI); 562 if (isVolatile(QueryInst)) 563 // Ordering required if QueryInst is itself volatile 564 return MemDepResult::getClobber(LI); 565 // Otherwise, volatile doesn't imply any special ordering 566 } 567 568 // Atomic loads have complications involved. 569 // A Monotonic (or higher) load is OK if the query inst is itself not 570 // atomic. 571 // FIXME: This is overly conservative. 572 if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) { 573 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 574 isOtherMemAccess(QueryInst)) 575 return MemDepResult::getClobber(LI); 576 if (LI->getOrdering() != AtomicOrdering::Monotonic) 577 return MemDepResult::getClobber(LI); 578 } 579 580 MemoryLocation LoadLoc = MemoryLocation::get(LI); 581 582 // If we found a pointer, check if it could be the same as our pointer. 583 AliasResult R = AA.alias(LoadLoc, MemLoc); 584 585 if (isLoad) { 586 if (R == NoAlias) 587 continue; 588 589 // Must aliased loads are defs of each other. 590 if (R == MustAlias) 591 return MemDepResult::getDef(Inst); 592 593 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads 594 // in terms of clobbering loads, but since it does this by looking 595 // at the clobbering load directly, it doesn't know about any 596 // phi translation that may have happened along the way. 597 598 // If we have a partial alias, then return this as a clobber for the 599 // client to handle. 600 if (R == PartialAlias) 601 return MemDepResult::getClobber(Inst); 602 #endif 603 604 // Random may-alias loads don't depend on each other without a 605 // dependence. 606 continue; 607 } 608 609 // Stores don't depend on other no-aliased accesses. 610 if (R == NoAlias) 611 continue; 612 613 // Stores don't alias loads from read-only memory. 614 if (AA.pointsToConstantMemory(LoadLoc)) 615 continue; 616 617 // Stores depend on may/must aliased loads. 618 return MemDepResult::getDef(Inst); 619 } 620 621 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 622 // Atomic stores have complications involved. 623 // A Monotonic store is OK if the query inst is itself not atomic. 624 // FIXME: This is overly conservative. 625 if (!SI->isUnordered() && SI->isAtomic()) { 626 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 627 isOtherMemAccess(QueryInst)) 628 return MemDepResult::getClobber(SI); 629 if (SI->getOrdering() != AtomicOrdering::Monotonic) 630 return MemDepResult::getClobber(SI); 631 } 632 633 // FIXME: this is overly conservative. 634 // While volatile access cannot be eliminated, they do not have to clobber 635 // non-aliasing locations, as normal accesses can for example be reordered 636 // with volatile accesses. 637 if (SI->isVolatile()) 638 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 639 isOtherMemAccess(QueryInst)) 640 return MemDepResult::getClobber(SI); 641 642 // If alias analysis can tell that this store is guaranteed to not modify 643 // the query pointer, ignore it. Use getModRefInfo to handle cases where 644 // the query pointer points to constant memory etc. 645 if (!isModOrRefSet(AA.getModRefInfo(SI, MemLoc))) 646 continue; 647 648 // Ok, this store might clobber the query pointer. Check to see if it is 649 // a must alias: in this case, we want to return this as a def. 650 // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above. 651 MemoryLocation StoreLoc = MemoryLocation::get(SI); 652 653 // If we found a pointer, check if it could be the same as our pointer. 654 AliasResult R = AA.alias(StoreLoc, MemLoc); 655 656 if (R == NoAlias) 657 continue; 658 if (R == MustAlias) 659 return MemDepResult::getDef(Inst); 660 if (isInvariantLoad) 661 continue; 662 return MemDepResult::getClobber(Inst); 663 } 664 665 // If this is an allocation, and if we know that the accessed pointer is to 666 // the allocation, return Def. This means that there is no dependence and 667 // the access can be optimized based on that. For example, a load could 668 // turn into undef. Note that we can bypass the allocation itself when 669 // looking for a clobber in many cases; that's an alias property and is 670 // handled by BasicAA. 671 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) { 672 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL); 673 if (AccessPtr == Inst || AA.isMustAlias(Inst, AccessPtr)) 674 return MemDepResult::getDef(Inst); 675 } 676 677 if (isInvariantLoad) 678 continue; 679 680 // A release fence requires that all stores complete before it, but does 681 // not prevent the reordering of following loads or stores 'before' the 682 // fence. As a result, we look past it when finding a dependency for 683 // loads. DSE uses this to find preceeding stores to delete and thus we 684 // can't bypass the fence if the query instruction is a store. 685 if (FenceInst *FI = dyn_cast<FenceInst>(Inst)) 686 if (isLoad && FI->getOrdering() == AtomicOrdering::Release) 687 continue; 688 689 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. 690 ModRefInfo MR = AA.getModRefInfo(Inst, MemLoc); 691 // If necessary, perform additional analysis. 692 if (isModAndRefSet(MR)) 693 MR = AA.callCapturesBefore(Inst, MemLoc, &DT, &OBB); 694 switch (clearMust(MR)) { 695 case ModRefInfo::NoModRef: 696 // If the call has no effect on the queried pointer, just ignore it. 697 continue; 698 case ModRefInfo::Mod: 699 return MemDepResult::getClobber(Inst); 700 case ModRefInfo::Ref: 701 // If the call is known to never store to the pointer, and if this is a 702 // load query, we can safely ignore it (scan past it). 703 if (isLoad) 704 continue; 705 LLVM_FALLTHROUGH; 706 default: 707 // Otherwise, there is a potential dependence. Return a clobber. 708 return MemDepResult::getClobber(Inst); 709 } 710 } 711 712 // No dependence found. If this is the entry block of the function, it is 713 // unknown, otherwise it is non-local. 714 if (BB != &BB->getParent()->getEntryBlock()) 715 return MemDepResult::getNonLocal(); 716 return MemDepResult::getNonFuncLocal(); 717 } 718 719 MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) { 720 Instruction *ScanPos = QueryInst; 721 722 // Check for a cached result 723 MemDepResult &LocalCache = LocalDeps[QueryInst]; 724 725 // If the cached entry is non-dirty, just return it. Note that this depends 726 // on MemDepResult's default constructing to 'dirty'. 727 if (!LocalCache.isDirty()) 728 return LocalCache; 729 730 // Otherwise, if we have a dirty entry, we know we can start the scan at that 731 // instruction, which may save us some work. 732 if (Instruction *Inst = LocalCache.getInst()) { 733 ScanPos = Inst; 734 735 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); 736 } 737 738 BasicBlock *QueryParent = QueryInst->getParent(); 739 740 // Do the scan. 741 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { 742 // No dependence found. If this is the entry block of the function, it is 743 // unknown, otherwise it is non-local. 744 if (QueryParent != &QueryParent->getParent()->getEntryBlock()) 745 LocalCache = MemDepResult::getNonLocal(); 746 else 747 LocalCache = MemDepResult::getNonFuncLocal(); 748 } else { 749 MemoryLocation MemLoc; 750 ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI); 751 if (MemLoc.Ptr) { 752 // If we can do a pointer scan, make it happen. 753 bool isLoad = !isModSet(MR); 754 if (auto *II = dyn_cast<IntrinsicInst>(QueryInst)) 755 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start; 756 757 LocalCache = getPointerDependencyFrom( 758 MemLoc, isLoad, ScanPos->getIterator(), QueryParent, QueryInst); 759 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) { 760 CallSite QueryCS(QueryInst); 761 bool isReadOnly = AA.onlyReadsMemory(QueryCS); 762 LocalCache = getCallSiteDependencyFrom( 763 QueryCS, isReadOnly, ScanPos->getIterator(), QueryParent); 764 } else 765 // Non-memory instruction. 766 LocalCache = MemDepResult::getUnknown(); 767 } 768 769 // Remember the result! 770 if (Instruction *I = LocalCache.getInst()) 771 ReverseLocalDeps[I].insert(QueryInst); 772 773 return LocalCache; 774 } 775 776 #ifndef NDEBUG 777 /// This method is used when -debug is specified to verify that cache arrays 778 /// are properly kept sorted. 779 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache, 780 int Count = -1) { 781 if (Count == -1) 782 Count = Cache.size(); 783 assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) && 784 "Cache isn't sorted!"); 785 } 786 #endif 787 788 const MemoryDependenceResults::NonLocalDepInfo & 789 MemoryDependenceResults::getNonLocalCallDependency(CallSite QueryCS) { 790 assert(getDependency(QueryCS.getInstruction()).isNonLocal() && 791 "getNonLocalCallDependency should only be used on calls with " 792 "non-local deps!"); 793 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()]; 794 NonLocalDepInfo &Cache = CacheP.first; 795 796 // This is the set of blocks that need to be recomputed. In the cached case, 797 // this can happen due to instructions being deleted etc. In the uncached 798 // case, this starts out as the set of predecessors we care about. 799 SmallVector<BasicBlock *, 32> DirtyBlocks; 800 801 if (!Cache.empty()) { 802 // Okay, we have a cache entry. If we know it is not dirty, just return it 803 // with no computation. 804 if (!CacheP.second) { 805 ++NumCacheNonLocal; 806 return Cache; 807 } 808 809 // If we already have a partially computed set of results, scan them to 810 // determine what is dirty, seeding our initial DirtyBlocks worklist. 811 for (auto &Entry : Cache) 812 if (Entry.getResult().isDirty()) 813 DirtyBlocks.push_back(Entry.getBB()); 814 815 // Sort the cache so that we can do fast binary search lookups below. 816 llvm::sort(Cache); 817 818 ++NumCacheDirtyNonLocal; 819 // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " 820 // << Cache.size() << " cached: " << *QueryInst; 821 } else { 822 // Seed DirtyBlocks with each of the preds of QueryInst's block. 823 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent(); 824 for (BasicBlock *Pred : PredCache.get(QueryBB)) 825 DirtyBlocks.push_back(Pred); 826 ++NumUncacheNonLocal; 827 } 828 829 // isReadonlyCall - If this is a read-only call, we can be more aggressive. 830 bool isReadonlyCall = AA.onlyReadsMemory(QueryCS); 831 832 SmallPtrSet<BasicBlock *, 32> Visited; 833 834 unsigned NumSortedEntries = Cache.size(); 835 LLVM_DEBUG(AssertSorted(Cache)); 836 837 // Iterate while we still have blocks to update. 838 while (!DirtyBlocks.empty()) { 839 BasicBlock *DirtyBB = DirtyBlocks.back(); 840 DirtyBlocks.pop_back(); 841 842 // Already processed this block? 843 if (!Visited.insert(DirtyBB).second) 844 continue; 845 846 // Do a binary search to see if we already have an entry for this block in 847 // the cache set. If so, find it. 848 LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries)); 849 NonLocalDepInfo::iterator Entry = 850 std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries, 851 NonLocalDepEntry(DirtyBB)); 852 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB) 853 --Entry; 854 855 NonLocalDepEntry *ExistingResult = nullptr; 856 if (Entry != Cache.begin() + NumSortedEntries && 857 Entry->getBB() == DirtyBB) { 858 // If we already have an entry, and if it isn't already dirty, the block 859 // is done. 860 if (!Entry->getResult().isDirty()) 861 continue; 862 863 // Otherwise, remember this slot so we can update the value. 864 ExistingResult = &*Entry; 865 } 866 867 // If the dirty entry has a pointer, start scanning from it so we don't have 868 // to rescan the entire block. 869 BasicBlock::iterator ScanPos = DirtyBB->end(); 870 if (ExistingResult) { 871 if (Instruction *Inst = ExistingResult->getResult().getInst()) { 872 ScanPos = Inst->getIterator(); 873 // We're removing QueryInst's use of Inst. 874 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, 875 QueryCS.getInstruction()); 876 } 877 } 878 879 // Find out if this block has a local dependency for QueryInst. 880 MemDepResult Dep; 881 882 if (ScanPos != DirtyBB->begin()) { 883 Dep = 884 getCallSiteDependencyFrom(QueryCS, isReadonlyCall, ScanPos, DirtyBB); 885 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { 886 // No dependence found. If this is the entry block of the function, it is 887 // a clobber, otherwise it is unknown. 888 Dep = MemDepResult::getNonLocal(); 889 } else { 890 Dep = MemDepResult::getNonFuncLocal(); 891 } 892 893 // If we had a dirty entry for the block, update it. Otherwise, just add 894 // a new entry. 895 if (ExistingResult) 896 ExistingResult->setResult(Dep); 897 else 898 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); 899 900 // If the block has a dependency (i.e. it isn't completely transparent to 901 // the value), remember the association! 902 if (!Dep.isNonLocal()) { 903 // Keep the ReverseNonLocalDeps map up to date so we can efficiently 904 // update this when we remove instructions. 905 if (Instruction *Inst = Dep.getInst()) 906 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction()); 907 } else { 908 909 // If the block *is* completely transparent to the load, we need to check 910 // the predecessors of this block. Add them to our worklist. 911 for (BasicBlock *Pred : PredCache.get(DirtyBB)) 912 DirtyBlocks.push_back(Pred); 913 } 914 } 915 916 return Cache; 917 } 918 919 void MemoryDependenceResults::getNonLocalPointerDependency( 920 Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) { 921 const MemoryLocation Loc = MemoryLocation::get(QueryInst); 922 bool isLoad = isa<LoadInst>(QueryInst); 923 BasicBlock *FromBB = QueryInst->getParent(); 924 assert(FromBB); 925 926 assert(Loc.Ptr->getType()->isPointerTy() && 927 "Can't get pointer deps of a non-pointer!"); 928 Result.clear(); 929 { 930 // Check if there is cached Def with invariant.group. 931 auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst); 932 if (NonLocalDefIt != NonLocalDefsCache.end()) { 933 Result.push_back(NonLocalDefIt->second); 934 ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()] 935 .erase(QueryInst); 936 NonLocalDefsCache.erase(NonLocalDefIt); 937 return; 938 } 939 } 940 // This routine does not expect to deal with volatile instructions. 941 // Doing so would require piping through the QueryInst all the way through. 942 // TODO: volatiles can't be elided, but they can be reordered with other 943 // non-volatile accesses. 944 945 // We currently give up on any instruction which is ordered, but we do handle 946 // atomic instructions which are unordered. 947 // TODO: Handle ordered instructions 948 auto isOrdered = [](Instruction *Inst) { 949 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 950 return !LI->isUnordered(); 951 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 952 return !SI->isUnordered(); 953 } 954 return false; 955 }; 956 if (isVolatile(QueryInst) || isOrdered(QueryInst)) { 957 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(), 958 const_cast<Value *>(Loc.Ptr))); 959 return; 960 } 961 const DataLayout &DL = FromBB->getModule()->getDataLayout(); 962 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC); 963 964 // This is the set of blocks we've inspected, and the pointer we consider in 965 // each block. Because of critical edges, we currently bail out if querying 966 // a block with multiple different pointers. This can happen during PHI 967 // translation. 968 DenseMap<BasicBlock *, Value *> Visited; 969 if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB, 970 Result, Visited, true)) 971 return; 972 Result.clear(); 973 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(), 974 const_cast<Value *>(Loc.Ptr))); 975 } 976 977 /// Compute the memdep value for BB with Pointer/PointeeSize using either 978 /// cached information in Cache or by doing a lookup (which may use dirty cache 979 /// info if available). 980 /// 981 /// If we do a lookup, add the result to the cache. 982 MemDepResult MemoryDependenceResults::GetNonLocalInfoForBlock( 983 Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad, 984 BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) { 985 986 // Do a binary search to see if we already have an entry for this block in 987 // the cache set. If so, find it. 988 NonLocalDepInfo::iterator Entry = std::upper_bound( 989 Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB)); 990 if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB) 991 --Entry; 992 993 NonLocalDepEntry *ExistingResult = nullptr; 994 if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB) 995 ExistingResult = &*Entry; 996 997 // If we have a cached entry, and it is non-dirty, use it as the value for 998 // this dependency. 999 if (ExistingResult && !ExistingResult->getResult().isDirty()) { 1000 ++NumCacheNonLocalPtr; 1001 return ExistingResult->getResult(); 1002 } 1003 1004 // Otherwise, we have to scan for the value. If we have a dirty cache 1005 // entry, start scanning from its position, otherwise we scan from the end 1006 // of the block. 1007 BasicBlock::iterator ScanPos = BB->end(); 1008 if (ExistingResult && ExistingResult->getResult().getInst()) { 1009 assert(ExistingResult->getResult().getInst()->getParent() == BB && 1010 "Instruction invalidated?"); 1011 ++NumCacheDirtyNonLocalPtr; 1012 ScanPos = ExistingResult->getResult().getInst()->getIterator(); 1013 1014 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1015 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 1016 RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey); 1017 } else { 1018 ++NumUncacheNonLocalPtr; 1019 } 1020 1021 // Scan the block for the dependency. 1022 MemDepResult Dep = 1023 getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, QueryInst); 1024 1025 // If we had a dirty entry for the block, update it. Otherwise, just add 1026 // a new entry. 1027 if (ExistingResult) 1028 ExistingResult->setResult(Dep); 1029 else 1030 Cache->push_back(NonLocalDepEntry(BB, Dep)); 1031 1032 // If the block has a dependency (i.e. it isn't completely transparent to 1033 // the value), remember the reverse association because we just added it 1034 // to Cache! 1035 if (!Dep.isDef() && !Dep.isClobber()) 1036 return Dep; 1037 1038 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently 1039 // update MemDep when we remove instructions. 1040 Instruction *Inst = Dep.getInst(); 1041 assert(Inst && "Didn't depend on anything?"); 1042 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 1043 ReverseNonLocalPtrDeps[Inst].insert(CacheKey); 1044 return Dep; 1045 } 1046 1047 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the 1048 /// array that are already properly ordered. 1049 /// 1050 /// This is optimized for the case when only a few entries are added. 1051 static void 1052 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache, 1053 unsigned NumSortedEntries) { 1054 switch (Cache.size() - NumSortedEntries) { 1055 case 0: 1056 // done, no new entries. 1057 break; 1058 case 2: { 1059 // Two new entries, insert the last one into place. 1060 NonLocalDepEntry Val = Cache.back(); 1061 Cache.pop_back(); 1062 MemoryDependenceResults::NonLocalDepInfo::iterator Entry = 1063 std::upper_bound(Cache.begin(), Cache.end() - 1, Val); 1064 Cache.insert(Entry, Val); 1065 LLVM_FALLTHROUGH; 1066 } 1067 case 1: 1068 // One new entry, Just insert the new value at the appropriate position. 1069 if (Cache.size() != 1) { 1070 NonLocalDepEntry Val = Cache.back(); 1071 Cache.pop_back(); 1072 MemoryDependenceResults::NonLocalDepInfo::iterator Entry = 1073 std::upper_bound(Cache.begin(), Cache.end(), Val); 1074 Cache.insert(Entry, Val); 1075 } 1076 break; 1077 default: 1078 // Added many values, do a full scale sort. 1079 llvm::sort(Cache); 1080 break; 1081 } 1082 } 1083 1084 /// Perform a dependency query based on pointer/pointeesize starting at the end 1085 /// of StartBB. 1086 /// 1087 /// Add any clobber/def results to the results vector and keep track of which 1088 /// blocks are visited in 'Visited'. 1089 /// 1090 /// This has special behavior for the first block queries (when SkipFirstBlock 1091 /// is true). In this special case, it ignores the contents of the specified 1092 /// block and starts returning dependence info for its predecessors. 1093 /// 1094 /// This function returns true on success, or false to indicate that it could 1095 /// not compute dependence information for some reason. This should be treated 1096 /// as a clobber dependence on the first instruction in the predecessor block. 1097 bool MemoryDependenceResults::getNonLocalPointerDepFromBB( 1098 Instruction *QueryInst, const PHITransAddr &Pointer, 1099 const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB, 1100 SmallVectorImpl<NonLocalDepResult> &Result, 1101 DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock) { 1102 // Look up the cached info for Pointer. 1103 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); 1104 1105 // Set up a temporary NLPI value. If the map doesn't yet have an entry for 1106 // CacheKey, this value will be inserted as the associated value. Otherwise, 1107 // it'll be ignored, and we'll have to check to see if the cached size and 1108 // aa tags are consistent with the current query. 1109 NonLocalPointerInfo InitialNLPI; 1110 InitialNLPI.Size = Loc.Size; 1111 InitialNLPI.AATags = Loc.AATags; 1112 1113 // Get the NLPI for CacheKey, inserting one into the map if it doesn't 1114 // already have one. 1115 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = 1116 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); 1117 NonLocalPointerInfo *CacheInfo = &Pair.first->second; 1118 1119 // If we already have a cache entry for this CacheKey, we may need to do some 1120 // work to reconcile the cache entry and the current query. 1121 if (!Pair.second) { 1122 if (CacheInfo->Size != Loc.Size) { 1123 bool ThrowOutEverything; 1124 if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) { 1125 // FIXME: We may be able to do better in the face of results with mixed 1126 // precision. We don't appear to get them in practice, though, so just 1127 // be conservative. 1128 ThrowOutEverything = 1129 CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() || 1130 CacheInfo->Size.getValue() < Loc.Size.getValue(); 1131 } else { 1132 // For our purposes, unknown size > all others. 1133 ThrowOutEverything = !Loc.Size.hasValue(); 1134 } 1135 1136 if (ThrowOutEverything) { 1137 // The query's Size is greater than the cached one. Throw out the 1138 // cached data and proceed with the query at the greater size. 1139 CacheInfo->Pair = BBSkipFirstBlockPair(); 1140 CacheInfo->Size = Loc.Size; 1141 for (auto &Entry : CacheInfo->NonLocalDeps) 1142 if (Instruction *Inst = Entry.getResult().getInst()) 1143 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1144 CacheInfo->NonLocalDeps.clear(); 1145 } else { 1146 // This query's Size is less than the cached one. Conservatively restart 1147 // the query using the greater size. 1148 return getNonLocalPointerDepFromBB( 1149 QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad, 1150 StartBB, Result, Visited, SkipFirstBlock); 1151 } 1152 } 1153 1154 // If the query's AATags are inconsistent with the cached one, 1155 // conservatively throw out the cached data and restart the query with 1156 // no tag if needed. 1157 if (CacheInfo->AATags != Loc.AATags) { 1158 if (CacheInfo->AATags) { 1159 CacheInfo->Pair = BBSkipFirstBlockPair(); 1160 CacheInfo->AATags = AAMDNodes(); 1161 for (auto &Entry : CacheInfo->NonLocalDeps) 1162 if (Instruction *Inst = Entry.getResult().getInst()) 1163 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1164 CacheInfo->NonLocalDeps.clear(); 1165 } 1166 if (Loc.AATags) 1167 return getNonLocalPointerDepFromBB( 1168 QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result, 1169 Visited, SkipFirstBlock); 1170 } 1171 } 1172 1173 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; 1174 1175 // If we have valid cached information for exactly the block we are 1176 // investigating, just return it with no recomputation. 1177 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { 1178 // We have a fully cached result for this query then we can just return the 1179 // cached results and populate the visited set. However, we have to verify 1180 // that we don't already have conflicting results for these blocks. Check 1181 // to ensure that if a block in the results set is in the visited set that 1182 // it was for the same pointer query. 1183 if (!Visited.empty()) { 1184 for (auto &Entry : *Cache) { 1185 DenseMap<BasicBlock *, Value *>::iterator VI = 1186 Visited.find(Entry.getBB()); 1187 if (VI == Visited.end() || VI->second == Pointer.getAddr()) 1188 continue; 1189 1190 // We have a pointer mismatch in a block. Just return false, saying 1191 // that something was clobbered in this result. We could also do a 1192 // non-fully cached query, but there is little point in doing this. 1193 return false; 1194 } 1195 } 1196 1197 Value *Addr = Pointer.getAddr(); 1198 for (auto &Entry : *Cache) { 1199 Visited.insert(std::make_pair(Entry.getBB(), Addr)); 1200 if (Entry.getResult().isNonLocal()) { 1201 continue; 1202 } 1203 1204 if (DT.isReachableFromEntry(Entry.getBB())) { 1205 Result.push_back( 1206 NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr)); 1207 } 1208 } 1209 ++NumCacheCompleteNonLocalPtr; 1210 return true; 1211 } 1212 1213 // Otherwise, either this is a new block, a block with an invalid cache 1214 // pointer or one that we're about to invalidate by putting more info into it 1215 // than its valid cache info. If empty, the result will be valid cache info, 1216 // otherwise it isn't. 1217 if (Cache->empty()) 1218 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); 1219 else 1220 CacheInfo->Pair = BBSkipFirstBlockPair(); 1221 1222 SmallVector<BasicBlock *, 32> Worklist; 1223 Worklist.push_back(StartBB); 1224 1225 // PredList used inside loop. 1226 SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList; 1227 1228 // Keep track of the entries that we know are sorted. Previously cached 1229 // entries will all be sorted. The entries we add we only sort on demand (we 1230 // don't insert every element into its sorted position). We know that we 1231 // won't get any reuse from currently inserted values, because we don't 1232 // revisit blocks after we insert info for them. 1233 unsigned NumSortedEntries = Cache->size(); 1234 unsigned WorklistEntries = BlockNumberLimit; 1235 bool GotWorklistLimit = false; 1236 LLVM_DEBUG(AssertSorted(*Cache)); 1237 1238 while (!Worklist.empty()) { 1239 BasicBlock *BB = Worklist.pop_back_val(); 1240 1241 // If we do process a large number of blocks it becomes very expensive and 1242 // likely it isn't worth worrying about 1243 if (Result.size() > NumResultsLimit) { 1244 Worklist.clear(); 1245 // Sort it now (if needed) so that recursive invocations of 1246 // getNonLocalPointerDepFromBB and other routines that could reuse the 1247 // cache value will only see properly sorted cache arrays. 1248 if (Cache && NumSortedEntries != Cache->size()) { 1249 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1250 } 1251 // Since we bail out, the "Cache" set won't contain all of the 1252 // results for the query. This is ok (we can still use it to accelerate 1253 // specific block queries) but we can't do the fastpath "return all 1254 // results from the set". Clear out the indicator for this. 1255 CacheInfo->Pair = BBSkipFirstBlockPair(); 1256 return false; 1257 } 1258 1259 // Skip the first block if we have it. 1260 if (!SkipFirstBlock) { 1261 // Analyze the dependency of *Pointer in FromBB. See if we already have 1262 // been here. 1263 assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); 1264 1265 // Get the dependency info for Pointer in BB. If we have cached 1266 // information, we will use it, otherwise we compute it. 1267 LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries)); 1268 MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, Loc, isLoad, BB, 1269 Cache, NumSortedEntries); 1270 1271 // If we got a Def or Clobber, add this to the list of results. 1272 if (!Dep.isNonLocal()) { 1273 if (DT.isReachableFromEntry(BB)) { 1274 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); 1275 continue; 1276 } 1277 } 1278 } 1279 1280 // If 'Pointer' is an instruction defined in this block, then we need to do 1281 // phi translation to change it into a value live in the predecessor block. 1282 // If not, we just add the predecessors to the worklist and scan them with 1283 // the same Pointer. 1284 if (!Pointer.NeedsPHITranslationFromBlock(BB)) { 1285 SkipFirstBlock = false; 1286 SmallVector<BasicBlock *, 16> NewBlocks; 1287 for (BasicBlock *Pred : PredCache.get(BB)) { 1288 // Verify that we haven't looked at this block yet. 1289 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = 1290 Visited.insert(std::make_pair(Pred, Pointer.getAddr())); 1291 if (InsertRes.second) { 1292 // First time we've looked at *PI. 1293 NewBlocks.push_back(Pred); 1294 continue; 1295 } 1296 1297 // If we have seen this block before, but it was with a different 1298 // pointer then we have a phi translation failure and we have to treat 1299 // this as a clobber. 1300 if (InsertRes.first->second != Pointer.getAddr()) { 1301 // Make sure to clean up the Visited map before continuing on to 1302 // PredTranslationFailure. 1303 for (unsigned i = 0; i < NewBlocks.size(); i++) 1304 Visited.erase(NewBlocks[i]); 1305 goto PredTranslationFailure; 1306 } 1307 } 1308 if (NewBlocks.size() > WorklistEntries) { 1309 // Make sure to clean up the Visited map before continuing on to 1310 // PredTranslationFailure. 1311 for (unsigned i = 0; i < NewBlocks.size(); i++) 1312 Visited.erase(NewBlocks[i]); 1313 GotWorklistLimit = true; 1314 goto PredTranslationFailure; 1315 } 1316 WorklistEntries -= NewBlocks.size(); 1317 Worklist.append(NewBlocks.begin(), NewBlocks.end()); 1318 continue; 1319 } 1320 1321 // We do need to do phi translation, if we know ahead of time we can't phi 1322 // translate this value, don't even try. 1323 if (!Pointer.IsPotentiallyPHITranslatable()) 1324 goto PredTranslationFailure; 1325 1326 // We may have added values to the cache list before this PHI translation. 1327 // If so, we haven't done anything to ensure that the cache remains sorted. 1328 // Sort it now (if needed) so that recursive invocations of 1329 // getNonLocalPointerDepFromBB and other routines that could reuse the cache 1330 // value will only see properly sorted cache arrays. 1331 if (Cache && NumSortedEntries != Cache->size()) { 1332 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1333 NumSortedEntries = Cache->size(); 1334 } 1335 Cache = nullptr; 1336 1337 PredList.clear(); 1338 for (BasicBlock *Pred : PredCache.get(BB)) { 1339 PredList.push_back(std::make_pair(Pred, Pointer)); 1340 1341 // Get the PHI translated pointer in this predecessor. This can fail if 1342 // not translatable, in which case the getAddr() returns null. 1343 PHITransAddr &PredPointer = PredList.back().second; 1344 PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false); 1345 Value *PredPtrVal = PredPointer.getAddr(); 1346 1347 // Check to see if we have already visited this pred block with another 1348 // pointer. If so, we can't do this lookup. This failure can occur 1349 // with PHI translation when a critical edge exists and the PHI node in 1350 // the successor translates to a pointer value different than the 1351 // pointer the block was first analyzed with. 1352 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = 1353 Visited.insert(std::make_pair(Pred, PredPtrVal)); 1354 1355 if (!InsertRes.second) { 1356 // We found the pred; take it off the list of preds to visit. 1357 PredList.pop_back(); 1358 1359 // If the predecessor was visited with PredPtr, then we already did 1360 // the analysis and can ignore it. 1361 if (InsertRes.first->second == PredPtrVal) 1362 continue; 1363 1364 // Otherwise, the block was previously analyzed with a different 1365 // pointer. We can't represent the result of this case, so we just 1366 // treat this as a phi translation failure. 1367 1368 // Make sure to clean up the Visited map before continuing on to 1369 // PredTranslationFailure. 1370 for (unsigned i = 0, n = PredList.size(); i < n; ++i) 1371 Visited.erase(PredList[i].first); 1372 1373 goto PredTranslationFailure; 1374 } 1375 } 1376 1377 // Actually process results here; this need to be a separate loop to avoid 1378 // calling getNonLocalPointerDepFromBB for blocks we don't want to return 1379 // any results for. (getNonLocalPointerDepFromBB will modify our 1380 // datastructures in ways the code after the PredTranslationFailure label 1381 // doesn't expect.) 1382 for (unsigned i = 0, n = PredList.size(); i < n; ++i) { 1383 BasicBlock *Pred = PredList[i].first; 1384 PHITransAddr &PredPointer = PredList[i].second; 1385 Value *PredPtrVal = PredPointer.getAddr(); 1386 1387 bool CanTranslate = true; 1388 // If PHI translation was unable to find an available pointer in this 1389 // predecessor, then we have to assume that the pointer is clobbered in 1390 // that predecessor. We can still do PRE of the load, which would insert 1391 // a computation of the pointer in this predecessor. 1392 if (!PredPtrVal) 1393 CanTranslate = false; 1394 1395 // FIXME: it is entirely possible that PHI translating will end up with 1396 // the same value. Consider PHI translating something like: 1397 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* 1398 // to recurse here, pedantically speaking. 1399 1400 // If getNonLocalPointerDepFromBB fails here, that means the cached 1401 // result conflicted with the Visited list; we have to conservatively 1402 // assume it is unknown, but this also does not block PRE of the load. 1403 if (!CanTranslate || 1404 !getNonLocalPointerDepFromBB(QueryInst, PredPointer, 1405 Loc.getWithNewPtr(PredPtrVal), isLoad, 1406 Pred, Result, Visited)) { 1407 // Add the entry to the Result list. 1408 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal); 1409 Result.push_back(Entry); 1410 1411 // Since we had a phi translation failure, the cache for CacheKey won't 1412 // include all of the entries that we need to immediately satisfy future 1413 // queries. Mark this in NonLocalPointerDeps by setting the 1414 // BBSkipFirstBlockPair pointer to null. This requires reuse of the 1415 // cached value to do more work but not miss the phi trans failure. 1416 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; 1417 NLPI.Pair = BBSkipFirstBlockPair(); 1418 continue; 1419 } 1420 } 1421 1422 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. 1423 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1424 Cache = &CacheInfo->NonLocalDeps; 1425 NumSortedEntries = Cache->size(); 1426 1427 // Since we did phi translation, the "Cache" set won't contain all of the 1428 // results for the query. This is ok (we can still use it to accelerate 1429 // specific block queries) but we can't do the fastpath "return all 1430 // results from the set" Clear out the indicator for this. 1431 CacheInfo->Pair = BBSkipFirstBlockPair(); 1432 SkipFirstBlock = false; 1433 continue; 1434 1435 PredTranslationFailure: 1436 // The following code is "failure"; we can't produce a sane translation 1437 // for the given block. It assumes that we haven't modified any of 1438 // our datastructures while processing the current block. 1439 1440 if (!Cache) { 1441 // Refresh the CacheInfo/Cache pointer if it got invalidated. 1442 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1443 Cache = &CacheInfo->NonLocalDeps; 1444 NumSortedEntries = Cache->size(); 1445 } 1446 1447 // Since we failed phi translation, the "Cache" set won't contain all of the 1448 // results for the query. This is ok (we can still use it to accelerate 1449 // specific block queries) but we can't do the fastpath "return all 1450 // results from the set". Clear out the indicator for this. 1451 CacheInfo->Pair = BBSkipFirstBlockPair(); 1452 1453 // If *nothing* works, mark the pointer as unknown. 1454 // 1455 // If this is the magic first block, return this as a clobber of the whole 1456 // incoming value. Since we can't phi translate to one of the predecessors, 1457 // we have to bail out. 1458 if (SkipFirstBlock) 1459 return false; 1460 1461 bool foundBlock = false; 1462 for (NonLocalDepEntry &I : llvm::reverse(*Cache)) { 1463 if (I.getBB() != BB) 1464 continue; 1465 1466 assert((GotWorklistLimit || I.getResult().isNonLocal() || 1467 !DT.isReachableFromEntry(BB)) && 1468 "Should only be here with transparent block"); 1469 foundBlock = true; 1470 I.setResult(MemDepResult::getUnknown()); 1471 Result.push_back( 1472 NonLocalDepResult(I.getBB(), I.getResult(), Pointer.getAddr())); 1473 break; 1474 } 1475 (void)foundBlock; (void)GotWorklistLimit; 1476 assert((foundBlock || GotWorklistLimit) && "Current block not in cache?"); 1477 } 1478 1479 // Okay, we're done now. If we added new values to the cache, re-sort it. 1480 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1481 LLVM_DEBUG(AssertSorted(*Cache)); 1482 return true; 1483 } 1484 1485 /// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it. 1486 void MemoryDependenceResults::RemoveCachedNonLocalPointerDependencies( 1487 ValueIsLoadPair P) { 1488 1489 // Most of the time this cache is empty. 1490 if (!NonLocalDefsCache.empty()) { 1491 auto it = NonLocalDefsCache.find(P.getPointer()); 1492 if (it != NonLocalDefsCache.end()) { 1493 RemoveFromReverseMap(ReverseNonLocalDefsCache, 1494 it->second.getResult().getInst(), P.getPointer()); 1495 NonLocalDefsCache.erase(it); 1496 } 1497 1498 if (auto *I = dyn_cast<Instruction>(P.getPointer())) { 1499 auto toRemoveIt = ReverseNonLocalDefsCache.find(I); 1500 if (toRemoveIt != ReverseNonLocalDefsCache.end()) { 1501 for (const auto &entry : toRemoveIt->second) 1502 NonLocalDefsCache.erase(entry); 1503 ReverseNonLocalDefsCache.erase(toRemoveIt); 1504 } 1505 } 1506 } 1507 1508 CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P); 1509 if (It == NonLocalPointerDeps.end()) 1510 return; 1511 1512 // Remove all of the entries in the BB->val map. This involves removing 1513 // instructions from the reverse map. 1514 NonLocalDepInfo &PInfo = It->second.NonLocalDeps; 1515 1516 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { 1517 Instruction *Target = PInfo[i].getResult().getInst(); 1518 if (!Target) 1519 continue; // Ignore non-local dep results. 1520 assert(Target->getParent() == PInfo[i].getBB()); 1521 1522 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1523 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); 1524 } 1525 1526 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). 1527 NonLocalPointerDeps.erase(It); 1528 } 1529 1530 void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) { 1531 // If Ptr isn't really a pointer, just ignore it. 1532 if (!Ptr->getType()->isPointerTy()) 1533 return; 1534 // Flush store info for the pointer. 1535 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); 1536 // Flush load info for the pointer. 1537 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); 1538 // Invalidate phis that use the pointer. 1539 PV.invalidateValue(Ptr); 1540 } 1541 1542 void MemoryDependenceResults::invalidateCachedPredecessors() { 1543 PredCache.clear(); 1544 } 1545 1546 void MemoryDependenceResults::removeInstruction(Instruction *RemInst) { 1547 // Walk through the Non-local dependencies, removing this one as the value 1548 // for any cached queries. 1549 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); 1550 if (NLDI != NonLocalDeps.end()) { 1551 NonLocalDepInfo &BlockMap = NLDI->second.first; 1552 for (auto &Entry : BlockMap) 1553 if (Instruction *Inst = Entry.getResult().getInst()) 1554 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); 1555 NonLocalDeps.erase(NLDI); 1556 } 1557 1558 // If we have a cached local dependence query for this instruction, remove it. 1559 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); 1560 if (LocalDepEntry != LocalDeps.end()) { 1561 // Remove us from DepInst's reverse set now that the local dep info is gone. 1562 if (Instruction *Inst = LocalDepEntry->second.getInst()) 1563 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); 1564 1565 // Remove this local dependency info. 1566 LocalDeps.erase(LocalDepEntry); 1567 } 1568 1569 // If we have any cached pointer dependencies on this instruction, remove 1570 // them. If the instruction has non-pointer type, then it can't be a pointer 1571 // base. 1572 1573 // Remove it from both the load info and the store info. The instruction 1574 // can't be in either of these maps if it is non-pointer. 1575 if (RemInst->getType()->isPointerTy()) { 1576 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); 1577 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); 1578 } 1579 1580 // Loop over all of the things that depend on the instruction we're removing. 1581 SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd; 1582 1583 // If we find RemInst as a clobber or Def in any of the maps for other values, 1584 // we need to replace its entry with a dirty version of the instruction after 1585 // it. If RemInst is a terminator, we use a null dirty value. 1586 // 1587 // Using a dirty version of the instruction after RemInst saves having to scan 1588 // the entire block to get to this point. 1589 MemDepResult NewDirtyVal; 1590 if (!RemInst->isTerminator()) 1591 NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator()); 1592 1593 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); 1594 if (ReverseDepIt != ReverseLocalDeps.end()) { 1595 // RemInst can't be the terminator if it has local stuff depending on it. 1596 assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() && 1597 "Nothing can locally depend on a terminator"); 1598 1599 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) { 1600 assert(InstDependingOnRemInst != RemInst && 1601 "Already removed our local dep info"); 1602 1603 LocalDeps[InstDependingOnRemInst] = NewDirtyVal; 1604 1605 // Make sure to remember that new things depend on NewDepInst. 1606 assert(NewDirtyVal.getInst() && 1607 "There is no way something else can have " 1608 "a local dep on this if it is a terminator!"); 1609 ReverseDepsToAdd.push_back( 1610 std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst)); 1611 } 1612 1613 ReverseLocalDeps.erase(ReverseDepIt); 1614 1615 // Add new reverse deps after scanning the set, to avoid invalidating the 1616 // 'ReverseDeps' reference. 1617 while (!ReverseDepsToAdd.empty()) { 1618 ReverseLocalDeps[ReverseDepsToAdd.back().first].insert( 1619 ReverseDepsToAdd.back().second); 1620 ReverseDepsToAdd.pop_back(); 1621 } 1622 } 1623 1624 ReverseDepIt = ReverseNonLocalDeps.find(RemInst); 1625 if (ReverseDepIt != ReverseNonLocalDeps.end()) { 1626 for (Instruction *I : ReverseDepIt->second) { 1627 assert(I != RemInst && "Already removed NonLocalDep info for RemInst"); 1628 1629 PerInstNLInfo &INLD = NonLocalDeps[I]; 1630 // The information is now dirty! 1631 INLD.second = true; 1632 1633 for (auto &Entry : INLD.first) { 1634 if (Entry.getResult().getInst() != RemInst) 1635 continue; 1636 1637 // Convert to a dirty entry for the subsequent instruction. 1638 Entry.setResult(NewDirtyVal); 1639 1640 if (Instruction *NextI = NewDirtyVal.getInst()) 1641 ReverseDepsToAdd.push_back(std::make_pair(NextI, I)); 1642 } 1643 } 1644 1645 ReverseNonLocalDeps.erase(ReverseDepIt); 1646 1647 // Add new reverse deps after scanning the set, to avoid invalidating 'Set' 1648 while (!ReverseDepsToAdd.empty()) { 1649 ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert( 1650 ReverseDepsToAdd.back().second); 1651 ReverseDepsToAdd.pop_back(); 1652 } 1653 } 1654 1655 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a 1656 // value in the NonLocalPointerDeps info. 1657 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = 1658 ReverseNonLocalPtrDeps.find(RemInst); 1659 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { 1660 SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8> 1661 ReversePtrDepsToAdd; 1662 1663 for (ValueIsLoadPair P : ReversePtrDepIt->second) { 1664 assert(P.getPointer() != RemInst && 1665 "Already removed NonLocalPointerDeps info for RemInst"); 1666 1667 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; 1668 1669 // The cache is not valid for any specific block anymore. 1670 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); 1671 1672 // Update any entries for RemInst to use the instruction after it. 1673 for (auto &Entry : NLPDI) { 1674 if (Entry.getResult().getInst() != RemInst) 1675 continue; 1676 1677 // Convert to a dirty entry for the subsequent instruction. 1678 Entry.setResult(NewDirtyVal); 1679 1680 if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) 1681 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); 1682 } 1683 1684 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its 1685 // subsequent value may invalidate the sortedness. 1686 llvm::sort(NLPDI); 1687 } 1688 1689 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); 1690 1691 while (!ReversePtrDepsToAdd.empty()) { 1692 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert( 1693 ReversePtrDepsToAdd.back().second); 1694 ReversePtrDepsToAdd.pop_back(); 1695 } 1696 } 1697 1698 // Invalidate phis that use the removed instruction. 1699 PV.invalidateValue(RemInst); 1700 1701 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); 1702 LLVM_DEBUG(verifyRemoved(RemInst)); 1703 } 1704 1705 /// Verify that the specified instruction does not occur in our internal data 1706 /// structures. 1707 /// 1708 /// This function verifies by asserting in debug builds. 1709 void MemoryDependenceResults::verifyRemoved(Instruction *D) const { 1710 #ifndef NDEBUG 1711 for (const auto &DepKV : LocalDeps) { 1712 assert(DepKV.first != D && "Inst occurs in data structures"); 1713 assert(DepKV.second.getInst() != D && "Inst occurs in data structures"); 1714 } 1715 1716 for (const auto &DepKV : NonLocalPointerDeps) { 1717 assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key"); 1718 for (const auto &Entry : DepKV.second.NonLocalDeps) 1719 assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value"); 1720 } 1721 1722 for (const auto &DepKV : NonLocalDeps) { 1723 assert(DepKV.first != D && "Inst occurs in data structures"); 1724 const PerInstNLInfo &INLD = DepKV.second; 1725 for (const auto &Entry : INLD.first) 1726 assert(Entry.getResult().getInst() != D && 1727 "Inst occurs in data structures"); 1728 } 1729 1730 for (const auto &DepKV : ReverseLocalDeps) { 1731 assert(DepKV.first != D && "Inst occurs in data structures"); 1732 for (Instruction *Inst : DepKV.second) 1733 assert(Inst != D && "Inst occurs in data structures"); 1734 } 1735 1736 for (const auto &DepKV : ReverseNonLocalDeps) { 1737 assert(DepKV.first != D && "Inst occurs in data structures"); 1738 for (Instruction *Inst : DepKV.second) 1739 assert(Inst != D && "Inst occurs in data structures"); 1740 } 1741 1742 for (const auto &DepKV : ReverseNonLocalPtrDeps) { 1743 assert(DepKV.first != D && "Inst occurs in rev NLPD map"); 1744 1745 for (ValueIsLoadPair P : DepKV.second) 1746 assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) && 1747 "Inst occurs in ReverseNonLocalPtrDeps map"); 1748 } 1749 #endif 1750 } 1751 1752 AnalysisKey MemoryDependenceAnalysis::Key; 1753 1754 MemoryDependenceResults 1755 MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 1756 auto &AA = AM.getResult<AAManager>(F); 1757 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1758 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1759 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1760 auto &PV = AM.getResult<PhiValuesAnalysis>(F); 1761 return MemoryDependenceResults(AA, AC, TLI, DT, PV); 1762 } 1763 1764 char MemoryDependenceWrapperPass::ID = 0; 1765 1766 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep", 1767 "Memory Dependence Analysis", false, true) 1768 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1769 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1770 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1771 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1772 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass) 1773 INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep", 1774 "Memory Dependence Analysis", false, true) 1775 1776 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) { 1777 initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry()); 1778 } 1779 1780 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default; 1781 1782 void MemoryDependenceWrapperPass::releaseMemory() { 1783 MemDep.reset(); 1784 } 1785 1786 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1787 AU.setPreservesAll(); 1788 AU.addRequired<AssumptionCacheTracker>(); 1789 AU.addRequired<DominatorTreeWrapperPass>(); 1790 AU.addRequired<PhiValuesWrapperPass>(); 1791 AU.addRequiredTransitive<AAResultsWrapperPass>(); 1792 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 1793 } 1794 1795 bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA, 1796 FunctionAnalysisManager::Invalidator &Inv) { 1797 // Check whether our analysis is preserved. 1798 auto PAC = PA.getChecker<MemoryDependenceAnalysis>(); 1799 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>()) 1800 // If not, give up now. 1801 return true; 1802 1803 // Check whether the analyses we depend on became invalid for any reason. 1804 if (Inv.invalidate<AAManager>(F, PA) || 1805 Inv.invalidate<AssumptionAnalysis>(F, PA) || 1806 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 1807 Inv.invalidate<PhiValuesAnalysis>(F, PA)) 1808 return true; 1809 1810 // Otherwise this analysis result remains valid. 1811 return false; 1812 } 1813 1814 unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const { 1815 return BlockScanLimit; 1816 } 1817 1818 bool MemoryDependenceWrapperPass::runOnFunction(Function &F) { 1819 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1820 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1821 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1822 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1823 auto &PV = getAnalysis<PhiValuesWrapperPass>().getResult(); 1824 MemDep.emplace(AA, AC, TLI, DT, PV); 1825 return false; 1826 } 1827