1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements an analysis that determines, for a given memory
11 // operation, what preceding memory operations it depends on.  It builds on
12 // alias analysis information, and tries to provide a lazy, caching interface to
13 // a common kind of alias information query.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/MemoryLocation.h"
27 #include "llvm/Analysis/OrderedBasicBlock.h"
28 #include "llvm/Analysis/PHITransAddr.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/InstrTypes.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/LLVMContext.h"
44 #include "llvm/IR/Metadata.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/PredIteratorCache.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Use.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/AtomicOrdering.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/MathExtras.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <cstdint>
61 #include <iterator>
62 #include <utility>
63 
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "memdep"
67 
68 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
69 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
70 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
71 
72 STATISTIC(NumCacheNonLocalPtr,
73           "Number of fully cached non-local ptr responses");
74 STATISTIC(NumCacheDirtyNonLocalPtr,
75           "Number of cached, but dirty, non-local ptr responses");
76 STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses");
77 STATISTIC(NumCacheCompleteNonLocalPtr,
78           "Number of block queries that were completely cached");
79 
80 // Limit for the number of instructions to scan in a block.
81 
82 static cl::opt<unsigned> BlockScanLimit(
83     "memdep-block-scan-limit", cl::Hidden, cl::init(100),
84     cl::desc("The number of instructions to scan in a block in memory "
85              "dependency analysis (default = 100)"));
86 
87 static cl::opt<unsigned>
88     BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000),
89                      cl::desc("The number of blocks to scan during memory "
90                               "dependency analysis (default = 1000)"));
91 
92 // Limit on the number of memdep results to process.
93 static const unsigned int NumResultsLimit = 100;
94 
95 /// This is a helper function that removes Val from 'Inst's set in ReverseMap.
96 ///
97 /// If the set becomes empty, remove Inst's entry.
98 template <typename KeyTy>
99 static void
100 RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap,
101                      Instruction *Inst, KeyTy Val) {
102   typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt =
103       ReverseMap.find(Inst);
104   assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
105   bool Found = InstIt->second.erase(Val);
106   assert(Found && "Invalid reverse map!");
107   (void)Found;
108   if (InstIt->second.empty())
109     ReverseMap.erase(InstIt);
110 }
111 
112 /// If the given instruction references a specific memory location, fill in Loc
113 /// with the details, otherwise set Loc.Ptr to null.
114 ///
115 /// Returns a ModRefInfo value describing the general behavior of the
116 /// instruction.
117 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc,
118                               const TargetLibraryInfo &TLI) {
119   if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
120     if (LI->isUnordered()) {
121       Loc = MemoryLocation::get(LI);
122       return ModRefInfo::Ref;
123     }
124     if (LI->getOrdering() == AtomicOrdering::Monotonic) {
125       Loc = MemoryLocation::get(LI);
126       return ModRefInfo::ModRef;
127     }
128     Loc = MemoryLocation();
129     return ModRefInfo::ModRef;
130   }
131 
132   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
133     if (SI->isUnordered()) {
134       Loc = MemoryLocation::get(SI);
135       return ModRefInfo::Mod;
136     }
137     if (SI->getOrdering() == AtomicOrdering::Monotonic) {
138       Loc = MemoryLocation::get(SI);
139       return ModRefInfo::ModRef;
140     }
141     Loc = MemoryLocation();
142     return ModRefInfo::ModRef;
143   }
144 
145   if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
146     Loc = MemoryLocation::get(V);
147     return ModRefInfo::ModRef;
148   }
149 
150   if (const CallInst *CI = isFreeCall(Inst, &TLI)) {
151     // calls to free() deallocate the entire structure
152     Loc = MemoryLocation(CI->getArgOperand(0));
153     return ModRefInfo::Mod;
154   }
155 
156   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
157     switch (II->getIntrinsicID()) {
158     case Intrinsic::lifetime_start:
159     case Intrinsic::lifetime_end:
160     case Intrinsic::invariant_start:
161       Loc = MemoryLocation::getForArgument(II, 1, TLI);
162       // These intrinsics don't really modify the memory, but returning Mod
163       // will allow them to be handled conservatively.
164       return ModRefInfo::Mod;
165     case Intrinsic::invariant_end:
166       Loc = MemoryLocation::getForArgument(II, 2, TLI);
167       // These intrinsics don't really modify the memory, but returning Mod
168       // will allow them to be handled conservatively.
169       return ModRefInfo::Mod;
170     default:
171       break;
172     }
173   }
174 
175   // Otherwise, just do the coarse-grained thing that always works.
176   if (Inst->mayWriteToMemory())
177     return ModRefInfo::ModRef;
178   if (Inst->mayReadFromMemory())
179     return ModRefInfo::Ref;
180   return ModRefInfo::NoModRef;
181 }
182 
183 /// Private helper for finding the local dependencies of a call site.
184 MemDepResult MemoryDependenceResults::getCallSiteDependencyFrom(
185     CallSite CS, bool isReadOnlyCall, BasicBlock::iterator ScanIt,
186     BasicBlock *BB) {
187   unsigned Limit = BlockScanLimit;
188 
189   // Walk backwards through the block, looking for dependencies.
190   while (ScanIt != BB->begin()) {
191     Instruction *Inst = &*--ScanIt;
192     // Debug intrinsics don't cause dependences and should not affect Limit
193     if (isa<DbgInfoIntrinsic>(Inst))
194       continue;
195 
196     // Limit the amount of scanning we do so we don't end up with quadratic
197     // running time on extreme testcases.
198     --Limit;
199     if (!Limit)
200       return MemDepResult::getUnknown();
201 
202     // If this inst is a memory op, get the pointer it accessed
203     MemoryLocation Loc;
204     ModRefInfo MR = GetLocation(Inst, Loc, TLI);
205     if (Loc.Ptr) {
206       // A simple instruction.
207       if (isModOrRefSet(AA.getModRefInfo(CS, Loc)))
208         return MemDepResult::getClobber(Inst);
209       continue;
210     }
211 
212     if (auto InstCS = CallSite(Inst)) {
213       // If these two calls do not interfere, look past it.
214       if (isNoModRef(AA.getModRefInfo(CS, InstCS))) {
215         // If the two calls are the same, return InstCS as a Def, so that
216         // CS can be found redundant and eliminated.
217         if (isReadOnlyCall && !isModSet(MR) &&
218             CS.getInstruction()->isIdenticalToWhenDefined(Inst))
219           return MemDepResult::getDef(Inst);
220 
221         // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
222         // keep scanning.
223         continue;
224       } else
225         return MemDepResult::getClobber(Inst);
226     }
227 
228     // If we could not obtain a pointer for the instruction and the instruction
229     // touches memory then assume that this is a dependency.
230     if (isModOrRefSet(MR))
231       return MemDepResult::getClobber(Inst);
232   }
233 
234   // No dependence found.  If this is the entry block of the function, it is
235   // unknown, otherwise it is non-local.
236   if (BB != &BB->getParent()->getEntryBlock())
237     return MemDepResult::getNonLocal();
238   return MemDepResult::getNonFuncLocal();
239 }
240 
241 unsigned MemoryDependenceResults::getLoadLoadClobberFullWidthSize(
242     const Value *MemLocBase, int64_t MemLocOffs, unsigned MemLocSize,
243     const LoadInst *LI) {
244   // We can only extend simple integer loads.
245   if (!isa<IntegerType>(LI->getType()) || !LI->isSimple())
246     return 0;
247 
248   // Load widening is hostile to ThreadSanitizer: it may cause false positives
249   // or make the reports more cryptic (access sizes are wrong).
250   if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
251     return 0;
252 
253   const DataLayout &DL = LI->getModule()->getDataLayout();
254 
255   // Get the base of this load.
256   int64_t LIOffs = 0;
257   const Value *LIBase =
258       GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL);
259 
260   // If the two pointers are not based on the same pointer, we can't tell that
261   // they are related.
262   if (LIBase != MemLocBase)
263     return 0;
264 
265   // Okay, the two values are based on the same pointer, but returned as
266   // no-alias.  This happens when we have things like two byte loads at "P+1"
267   // and "P+3".  Check to see if increasing the size of the "LI" load up to its
268   // alignment (or the largest native integer type) will allow us to load all
269   // the bits required by MemLoc.
270 
271   // If MemLoc is before LI, then no widening of LI will help us out.
272   if (MemLocOffs < LIOffs)
273     return 0;
274 
275   // Get the alignment of the load in bytes.  We assume that it is safe to load
276   // any legal integer up to this size without a problem.  For example, if we're
277   // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
278   // widen it up to an i32 load.  If it is known 2-byte aligned, we can widen it
279   // to i16.
280   unsigned LoadAlign = LI->getAlignment();
281 
282   int64_t MemLocEnd = MemLocOffs + MemLocSize;
283 
284   // If no amount of rounding up will let MemLoc fit into LI, then bail out.
285   if (LIOffs + LoadAlign < MemLocEnd)
286     return 0;
287 
288   // This is the size of the load to try.  Start with the next larger power of
289   // two.
290   unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits() / 8U;
291   NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
292 
293   while (true) {
294     // If this load size is bigger than our known alignment or would not fit
295     // into a native integer register, then we fail.
296     if (NewLoadByteSize > LoadAlign ||
297         !DL.fitsInLegalInteger(NewLoadByteSize * 8))
298       return 0;
299 
300     if (LIOffs + NewLoadByteSize > MemLocEnd &&
301         (LI->getParent()->getParent()->hasFnAttribute(
302              Attribute::SanitizeAddress) ||
303          LI->getParent()->getParent()->hasFnAttribute(
304              Attribute::SanitizeHWAddress)))
305       // We will be reading past the location accessed by the original program.
306       // While this is safe in a regular build, Address Safety analysis tools
307       // may start reporting false warnings. So, don't do widening.
308       return 0;
309 
310     // If a load of this width would include all of MemLoc, then we succeed.
311     if (LIOffs + NewLoadByteSize >= MemLocEnd)
312       return NewLoadByteSize;
313 
314     NewLoadByteSize <<= 1;
315   }
316 }
317 
318 static bool isVolatile(Instruction *Inst) {
319   if (auto *LI = dyn_cast<LoadInst>(Inst))
320     return LI->isVolatile();
321   if (auto *SI = dyn_cast<StoreInst>(Inst))
322     return SI->isVolatile();
323   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(Inst))
324     return AI->isVolatile();
325   return false;
326 }
327 
328 MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
329     const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
330     BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
331   MemDepResult InvariantGroupDependency = MemDepResult::getUnknown();
332   if (QueryInst != nullptr) {
333     if (auto *LI = dyn_cast<LoadInst>(QueryInst)) {
334       InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB);
335 
336       if (InvariantGroupDependency.isDef())
337         return InvariantGroupDependency;
338     }
339   }
340   MemDepResult SimpleDep = getSimplePointerDependencyFrom(
341       MemLoc, isLoad, ScanIt, BB, QueryInst, Limit);
342   if (SimpleDep.isDef())
343     return SimpleDep;
344   // Non-local invariant group dependency indicates there is non local Def
345   // (it only returns nonLocal if it finds nonLocal def), which is better than
346   // local clobber and everything else.
347   if (InvariantGroupDependency.isNonLocal())
348     return InvariantGroupDependency;
349 
350   assert(InvariantGroupDependency.isUnknown() &&
351          "InvariantGroupDependency should be only unknown at this point");
352   return SimpleDep;
353 }
354 
355 MemDepResult
356 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI,
357                                                             BasicBlock *BB) {
358 
359   if (!LI->getMetadata(LLVMContext::MD_invariant_group))
360     return MemDepResult::getUnknown();
361 
362   // Take the ptr operand after all casts and geps 0. This way we can search
363   // cast graph down only.
364   Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts();
365 
366   // It's is not safe to walk the use list of global value, because function
367   // passes aren't allowed to look outside their functions.
368   // FIXME: this could be fixed by filtering instructions from outside
369   // of current function.
370   if (isa<GlobalValue>(LoadOperand))
371     return MemDepResult::getUnknown();
372 
373   // Queue to process all pointers that are equivalent to load operand.
374   SmallVector<const Value *, 8> LoadOperandsQueue;
375   LoadOperandsQueue.push_back(LoadOperand);
376 
377   Instruction *ClosestDependency = nullptr;
378   // Order of instructions in uses list is unpredictible. In order to always
379   // get the same result, we will look for the closest dominance.
380   auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) {
381     assert(Other && "Must call it with not null instruction");
382     if (Best == nullptr || DT.dominates(Best, Other))
383       return Other;
384     return Best;
385   };
386 
387   // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case
388   // we will see all the instructions. This should be fixed in MSSA.
389   while (!LoadOperandsQueue.empty()) {
390     const Value *Ptr = LoadOperandsQueue.pop_back_val();
391     assert(Ptr && !isa<GlobalValue>(Ptr) &&
392            "Null or GlobalValue should not be inserted");
393 
394     for (const Use &Us : Ptr->uses()) {
395       auto *U = dyn_cast<Instruction>(Us.getUser());
396       if (!U || U == LI || !DT.dominates(U, LI))
397         continue;
398 
399       // Bitcast or gep with zeros are using Ptr. Add to queue to check it's
400       // users.      U = bitcast Ptr
401       if (isa<BitCastInst>(U)) {
402         LoadOperandsQueue.push_back(U);
403         continue;
404       }
405       // Gep with zeros is equivalent to bitcast.
406       // FIXME: we are not sure if some bitcast should be canonicalized to gep 0
407       // or gep 0 to bitcast because of SROA, so there are 2 forms. When
408       // typeless pointers will be ready then both cases will be gone
409       // (and this BFS also won't be needed).
410       if (auto *GEP = dyn_cast<GetElementPtrInst>(U))
411         if (GEP->hasAllZeroIndices()) {
412           LoadOperandsQueue.push_back(U);
413           continue;
414         }
415 
416       // If we hit load/store with the same invariant.group metadata (and the
417       // same pointer operand) we can assume that value pointed by pointer
418       // operand didn't change.
419       if ((isa<LoadInst>(U) || isa<StoreInst>(U)) &&
420           U->getMetadata(LLVMContext::MD_invariant_group) != nullptr)
421         ClosestDependency = GetClosestDependency(ClosestDependency, U);
422     }
423   }
424 
425   if (!ClosestDependency)
426     return MemDepResult::getUnknown();
427   if (ClosestDependency->getParent() == BB)
428     return MemDepResult::getDef(ClosestDependency);
429   // Def(U) can't be returned here because it is non-local. If local
430   // dependency won't be found then return nonLocal counting that the
431   // user will call getNonLocalPointerDependency, which will return cached
432   // result.
433   NonLocalDefsCache.try_emplace(
434       LI, NonLocalDepResult(ClosestDependency->getParent(),
435                             MemDepResult::getDef(ClosestDependency), nullptr));
436   ReverseNonLocalDefsCache[ClosestDependency].insert(LI);
437   return MemDepResult::getNonLocal();
438 }
439 
440 MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom(
441     const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
442     BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
443   bool isInvariantLoad = false;
444 
445   if (!Limit) {
446     unsigned DefaultLimit = BlockScanLimit;
447     return getSimplePointerDependencyFrom(MemLoc, isLoad, ScanIt, BB, QueryInst,
448                                           &DefaultLimit);
449   }
450 
451   // We must be careful with atomic accesses, as they may allow another thread
452   //   to touch this location, clobbering it. We are conservative: if the
453   //   QueryInst is not a simple (non-atomic) memory access, we automatically
454   //   return getClobber.
455   // If it is simple, we know based on the results of
456   // "Compiler testing via a theory of sound optimisations in the C11/C++11
457   //   memory model" in PLDI 2013, that a non-atomic location can only be
458   //   clobbered between a pair of a release and an acquire action, with no
459   //   access to the location in between.
460   // Here is an example for giving the general intuition behind this rule.
461   // In the following code:
462   //   store x 0;
463   //   release action; [1]
464   //   acquire action; [4]
465   //   %val = load x;
466   // It is unsafe to replace %val by 0 because another thread may be running:
467   //   acquire action; [2]
468   //   store x 42;
469   //   release action; [3]
470   // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
471   // being 42. A key property of this program however is that if either
472   // 1 or 4 were missing, there would be a race between the store of 42
473   // either the store of 0 or the load (making the whole program racy).
474   // The paper mentioned above shows that the same property is respected
475   // by every program that can detect any optimization of that kind: either
476   // it is racy (undefined) or there is a release followed by an acquire
477   // between the pair of accesses under consideration.
478 
479   // If the load is invariant, we "know" that it doesn't alias *any* write. We
480   // do want to respect mustalias results since defs are useful for value
481   // forwarding, but any mayalias write can be assumed to be noalias.
482   // Arguably, this logic should be pushed inside AliasAnalysis itself.
483   if (isLoad && QueryInst) {
484     LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
485     if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr)
486       isInvariantLoad = true;
487   }
488 
489   const DataLayout &DL = BB->getModule()->getDataLayout();
490 
491   // Create a numbered basic block to lazily compute and cache instruction
492   // positions inside a BB. This is used to provide fast queries for relative
493   // position between two instructions in a BB and can be used by
494   // AliasAnalysis::callCapturesBefore.
495   OrderedBasicBlock OBB(BB);
496 
497   // Return "true" if and only if the instruction I is either a non-simple
498   // load or a non-simple store.
499   auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool {
500     if (auto *LI = dyn_cast<LoadInst>(I))
501       return !LI->isSimple();
502     if (auto *SI = dyn_cast<StoreInst>(I))
503       return !SI->isSimple();
504     return false;
505   };
506 
507   // Return "true" if I is not a load and not a store, but it does access
508   // memory.
509   auto isOtherMemAccess = [](Instruction *I) -> bool {
510     return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory();
511   };
512 
513   // Walk backwards through the basic block, looking for dependencies.
514   while (ScanIt != BB->begin()) {
515     Instruction *Inst = &*--ScanIt;
516 
517     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
518       // Debug intrinsics don't (and can't) cause dependencies.
519       if (isa<DbgInfoIntrinsic>(II))
520         continue;
521 
522     // Limit the amount of scanning we do so we don't end up with quadratic
523     // running time on extreme testcases.
524     --*Limit;
525     if (!*Limit)
526       return MemDepResult::getUnknown();
527 
528     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
529       // If we reach a lifetime begin or end marker, then the query ends here
530       // because the value is undefined.
531       if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
532         // FIXME: This only considers queries directly on the invariant-tagged
533         // pointer, not on query pointers that are indexed off of them.  It'd
534         // be nice to handle that at some point (the right approach is to use
535         // GetPointerBaseWithConstantOffset).
536         if (AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc))
537           return MemDepResult::getDef(II);
538         continue;
539       }
540     }
541 
542     // Values depend on loads if the pointers are must aliased.  This means
543     // that a load depends on another must aliased load from the same value.
544     // One exception is atomic loads: a value can depend on an atomic load that
545     // it does not alias with when this atomic load indicates that another
546     // thread may be accessing the location.
547     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
548       // While volatile access cannot be eliminated, they do not have to clobber
549       // non-aliasing locations, as normal accesses, for example, can be safely
550       // reordered with volatile accesses.
551       if (LI->isVolatile()) {
552         if (!QueryInst)
553           // Original QueryInst *may* be volatile
554           return MemDepResult::getClobber(LI);
555         if (isVolatile(QueryInst))
556           // Ordering required if QueryInst is itself volatile
557           return MemDepResult::getClobber(LI);
558         // Otherwise, volatile doesn't imply any special ordering
559       }
560 
561       // Atomic loads have complications involved.
562       // A Monotonic (or higher) load is OK if the query inst is itself not
563       // atomic.
564       // FIXME: This is overly conservative.
565       if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) {
566         if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
567             isOtherMemAccess(QueryInst))
568           return MemDepResult::getClobber(LI);
569         if (LI->getOrdering() != AtomicOrdering::Monotonic)
570           return MemDepResult::getClobber(LI);
571       }
572 
573       MemoryLocation LoadLoc = MemoryLocation::get(LI);
574 
575       // If we found a pointer, check if it could be the same as our pointer.
576       AliasResult R = AA.alias(LoadLoc, MemLoc);
577 
578       if (isLoad) {
579         if (R == NoAlias)
580           continue;
581 
582         // Must aliased loads are defs of each other.
583         if (R == MustAlias)
584           return MemDepResult::getDef(Inst);
585 
586 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
587       // in terms of clobbering loads, but since it does this by looking
588       // at the clobbering load directly, it doesn't know about any
589       // phi translation that may have happened along the way.
590 
591         // If we have a partial alias, then return this as a clobber for the
592         // client to handle.
593         if (R == PartialAlias)
594           return MemDepResult::getClobber(Inst);
595 #endif
596 
597         // Random may-alias loads don't depend on each other without a
598         // dependence.
599         continue;
600       }
601 
602       // Stores don't depend on other no-aliased accesses.
603       if (R == NoAlias)
604         continue;
605 
606       // Stores don't alias loads from read-only memory.
607       if (AA.pointsToConstantMemory(LoadLoc))
608         continue;
609 
610       // Stores depend on may/must aliased loads.
611       return MemDepResult::getDef(Inst);
612     }
613 
614     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
615       // Atomic stores have complications involved.
616       // A Monotonic store is OK if the query inst is itself not atomic.
617       // FIXME: This is overly conservative.
618       if (!SI->isUnordered() && SI->isAtomic()) {
619         if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
620             isOtherMemAccess(QueryInst))
621           return MemDepResult::getClobber(SI);
622         if (SI->getOrdering() != AtomicOrdering::Monotonic)
623           return MemDepResult::getClobber(SI);
624       }
625 
626       // FIXME: this is overly conservative.
627       // While volatile access cannot be eliminated, they do not have to clobber
628       // non-aliasing locations, as normal accesses can for example be reordered
629       // with volatile accesses.
630       if (SI->isVolatile())
631         if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
632             isOtherMemAccess(QueryInst))
633           return MemDepResult::getClobber(SI);
634 
635       // If alias analysis can tell that this store is guaranteed to not modify
636       // the query pointer, ignore it.  Use getModRefInfo to handle cases where
637       // the query pointer points to constant memory etc.
638       if (!isModOrRefSet(AA.getModRefInfo(SI, MemLoc)))
639         continue;
640 
641       // Ok, this store might clobber the query pointer.  Check to see if it is
642       // a must alias: in this case, we want to return this as a def.
643       // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above.
644       MemoryLocation StoreLoc = MemoryLocation::get(SI);
645 
646       // If we found a pointer, check if it could be the same as our pointer.
647       AliasResult R = AA.alias(StoreLoc, MemLoc);
648 
649       if (R == NoAlias)
650         continue;
651       if (R == MustAlias)
652         return MemDepResult::getDef(Inst);
653       if (isInvariantLoad)
654         continue;
655       return MemDepResult::getClobber(Inst);
656     }
657 
658     // If this is an allocation, and if we know that the accessed pointer is to
659     // the allocation, return Def.  This means that there is no dependence and
660     // the access can be optimized based on that.  For example, a load could
661     // turn into undef.  Note that we can bypass the allocation itself when
662     // looking for a clobber in many cases; that's an alias property and is
663     // handled by BasicAA.
664     if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) {
665       const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL);
666       if (AccessPtr == Inst || AA.isMustAlias(Inst, AccessPtr))
667         return MemDepResult::getDef(Inst);
668     }
669 
670     if (isInvariantLoad)
671       continue;
672 
673     // A release fence requires that all stores complete before it, but does
674     // not prevent the reordering of following loads or stores 'before' the
675     // fence.  As a result, we look past it when finding a dependency for
676     // loads.  DSE uses this to find preceeding stores to delete and thus we
677     // can't bypass the fence if the query instruction is a store.
678     if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
679       if (isLoad && FI->getOrdering() == AtomicOrdering::Release)
680         continue;
681 
682     // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
683     ModRefInfo MR = AA.getModRefInfo(Inst, MemLoc);
684     // If necessary, perform additional analysis.
685     if (isModAndRefSet(MR))
686       MR = AA.callCapturesBefore(Inst, MemLoc, &DT, &OBB);
687     switch (clearMust(MR)) {
688     case ModRefInfo::NoModRef:
689       // If the call has no effect on the queried pointer, just ignore it.
690       continue;
691     case ModRefInfo::Mod:
692       return MemDepResult::getClobber(Inst);
693     case ModRefInfo::Ref:
694       // If the call is known to never store to the pointer, and if this is a
695       // load query, we can safely ignore it (scan past it).
696       if (isLoad)
697         continue;
698       LLVM_FALLTHROUGH;
699     default:
700       // Otherwise, there is a potential dependence.  Return a clobber.
701       return MemDepResult::getClobber(Inst);
702     }
703   }
704 
705   // No dependence found.  If this is the entry block of the function, it is
706   // unknown, otherwise it is non-local.
707   if (BB != &BB->getParent()->getEntryBlock())
708     return MemDepResult::getNonLocal();
709   return MemDepResult::getNonFuncLocal();
710 }
711 
712 MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) {
713   Instruction *ScanPos = QueryInst;
714 
715   // Check for a cached result
716   MemDepResult &LocalCache = LocalDeps[QueryInst];
717 
718   // If the cached entry is non-dirty, just return it.  Note that this depends
719   // on MemDepResult's default constructing to 'dirty'.
720   if (!LocalCache.isDirty())
721     return LocalCache;
722 
723   // Otherwise, if we have a dirty entry, we know we can start the scan at that
724   // instruction, which may save us some work.
725   if (Instruction *Inst = LocalCache.getInst()) {
726     ScanPos = Inst;
727 
728     RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
729   }
730 
731   BasicBlock *QueryParent = QueryInst->getParent();
732 
733   // Do the scan.
734   if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
735     // No dependence found. If this is the entry block of the function, it is
736     // unknown, otherwise it is non-local.
737     if (QueryParent != &QueryParent->getParent()->getEntryBlock())
738       LocalCache = MemDepResult::getNonLocal();
739     else
740       LocalCache = MemDepResult::getNonFuncLocal();
741   } else {
742     MemoryLocation MemLoc;
743     ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI);
744     if (MemLoc.Ptr) {
745       // If we can do a pointer scan, make it happen.
746       bool isLoad = !isModSet(MR);
747       if (auto *II = dyn_cast<IntrinsicInst>(QueryInst))
748         isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
749 
750       LocalCache = getPointerDependencyFrom(
751           MemLoc, isLoad, ScanPos->getIterator(), QueryParent, QueryInst);
752     } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
753       CallSite QueryCS(QueryInst);
754       bool isReadOnly = AA.onlyReadsMemory(QueryCS);
755       LocalCache = getCallSiteDependencyFrom(
756           QueryCS, isReadOnly, ScanPos->getIterator(), QueryParent);
757     } else
758       // Non-memory instruction.
759       LocalCache = MemDepResult::getUnknown();
760   }
761 
762   // Remember the result!
763   if (Instruction *I = LocalCache.getInst())
764     ReverseLocalDeps[I].insert(QueryInst);
765 
766   return LocalCache;
767 }
768 
769 #ifndef NDEBUG
770 /// This method is used when -debug is specified to verify that cache arrays
771 /// are properly kept sorted.
772 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache,
773                          int Count = -1) {
774   if (Count == -1)
775     Count = Cache.size();
776   assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) &&
777          "Cache isn't sorted!");
778 }
779 #endif
780 
781 const MemoryDependenceResults::NonLocalDepInfo &
782 MemoryDependenceResults::getNonLocalCallDependency(CallSite QueryCS) {
783   assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
784          "getNonLocalCallDependency should only be used on calls with "
785          "non-local deps!");
786   PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
787   NonLocalDepInfo &Cache = CacheP.first;
788 
789   // This is the set of blocks that need to be recomputed.  In the cached case,
790   // this can happen due to instructions being deleted etc. In the uncached
791   // case, this starts out as the set of predecessors we care about.
792   SmallVector<BasicBlock *, 32> DirtyBlocks;
793 
794   if (!Cache.empty()) {
795     // Okay, we have a cache entry.  If we know it is not dirty, just return it
796     // with no computation.
797     if (!CacheP.second) {
798       ++NumCacheNonLocal;
799       return Cache;
800     }
801 
802     // If we already have a partially computed set of results, scan them to
803     // determine what is dirty, seeding our initial DirtyBlocks worklist.
804     for (auto &Entry : Cache)
805       if (Entry.getResult().isDirty())
806         DirtyBlocks.push_back(Entry.getBB());
807 
808     // Sort the cache so that we can do fast binary search lookups below.
809     llvm::sort(Cache.begin(), Cache.end());
810 
811     ++NumCacheDirtyNonLocal;
812     // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
813     //     << Cache.size() << " cached: " << *QueryInst;
814   } else {
815     // Seed DirtyBlocks with each of the preds of QueryInst's block.
816     BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
817     for (BasicBlock *Pred : PredCache.get(QueryBB))
818       DirtyBlocks.push_back(Pred);
819     ++NumUncacheNonLocal;
820   }
821 
822   // isReadonlyCall - If this is a read-only call, we can be more aggressive.
823   bool isReadonlyCall = AA.onlyReadsMemory(QueryCS);
824 
825   SmallPtrSet<BasicBlock *, 32> Visited;
826 
827   unsigned NumSortedEntries = Cache.size();
828   LLVM_DEBUG(AssertSorted(Cache));
829 
830   // Iterate while we still have blocks to update.
831   while (!DirtyBlocks.empty()) {
832     BasicBlock *DirtyBB = DirtyBlocks.back();
833     DirtyBlocks.pop_back();
834 
835     // Already processed this block?
836     if (!Visited.insert(DirtyBB).second)
837       continue;
838 
839     // Do a binary search to see if we already have an entry for this block in
840     // the cache set.  If so, find it.
841     LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries));
842     NonLocalDepInfo::iterator Entry =
843         std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries,
844                          NonLocalDepEntry(DirtyBB));
845     if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
846       --Entry;
847 
848     NonLocalDepEntry *ExistingResult = nullptr;
849     if (Entry != Cache.begin() + NumSortedEntries &&
850         Entry->getBB() == DirtyBB) {
851       // If we already have an entry, and if it isn't already dirty, the block
852       // is done.
853       if (!Entry->getResult().isDirty())
854         continue;
855 
856       // Otherwise, remember this slot so we can update the value.
857       ExistingResult = &*Entry;
858     }
859 
860     // If the dirty entry has a pointer, start scanning from it so we don't have
861     // to rescan the entire block.
862     BasicBlock::iterator ScanPos = DirtyBB->end();
863     if (ExistingResult) {
864       if (Instruction *Inst = ExistingResult->getResult().getInst()) {
865         ScanPos = Inst->getIterator();
866         // We're removing QueryInst's use of Inst.
867         RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
868                              QueryCS.getInstruction());
869       }
870     }
871 
872     // Find out if this block has a local dependency for QueryInst.
873     MemDepResult Dep;
874 
875     if (ScanPos != DirtyBB->begin()) {
876       Dep =
877           getCallSiteDependencyFrom(QueryCS, isReadonlyCall, ScanPos, DirtyBB);
878     } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
879       // No dependence found.  If this is the entry block of the function, it is
880       // a clobber, otherwise it is unknown.
881       Dep = MemDepResult::getNonLocal();
882     } else {
883       Dep = MemDepResult::getNonFuncLocal();
884     }
885 
886     // If we had a dirty entry for the block, update it.  Otherwise, just add
887     // a new entry.
888     if (ExistingResult)
889       ExistingResult->setResult(Dep);
890     else
891       Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
892 
893     // If the block has a dependency (i.e. it isn't completely transparent to
894     // the value), remember the association!
895     if (!Dep.isNonLocal()) {
896       // Keep the ReverseNonLocalDeps map up to date so we can efficiently
897       // update this when we remove instructions.
898       if (Instruction *Inst = Dep.getInst())
899         ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
900     } else {
901 
902       // If the block *is* completely transparent to the load, we need to check
903       // the predecessors of this block.  Add them to our worklist.
904       for (BasicBlock *Pred : PredCache.get(DirtyBB))
905         DirtyBlocks.push_back(Pred);
906     }
907   }
908 
909   return Cache;
910 }
911 
912 void MemoryDependenceResults::getNonLocalPointerDependency(
913     Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) {
914   const MemoryLocation Loc = MemoryLocation::get(QueryInst);
915   bool isLoad = isa<LoadInst>(QueryInst);
916   BasicBlock *FromBB = QueryInst->getParent();
917   assert(FromBB);
918 
919   assert(Loc.Ptr->getType()->isPointerTy() &&
920          "Can't get pointer deps of a non-pointer!");
921   Result.clear();
922   {
923     // Check if there is cached Def with invariant.group.
924     auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst);
925     if (NonLocalDefIt != NonLocalDefsCache.end()) {
926       Result.push_back(NonLocalDefIt->second);
927       ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()]
928           .erase(QueryInst);
929       NonLocalDefsCache.erase(NonLocalDefIt);
930       return;
931     }
932   }
933   // This routine does not expect to deal with volatile instructions.
934   // Doing so would require piping through the QueryInst all the way through.
935   // TODO: volatiles can't be elided, but they can be reordered with other
936   // non-volatile accesses.
937 
938   // We currently give up on any instruction which is ordered, but we do handle
939   // atomic instructions which are unordered.
940   // TODO: Handle ordered instructions
941   auto isOrdered = [](Instruction *Inst) {
942     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
943       return !LI->isUnordered();
944     } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
945       return !SI->isUnordered();
946     }
947     return false;
948   };
949   if (isVolatile(QueryInst) || isOrdered(QueryInst)) {
950     Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
951                                        const_cast<Value *>(Loc.Ptr)));
952     return;
953   }
954   const DataLayout &DL = FromBB->getModule()->getDataLayout();
955   PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC);
956 
957   // This is the set of blocks we've inspected, and the pointer we consider in
958   // each block.  Because of critical edges, we currently bail out if querying
959   // a block with multiple different pointers.  This can happen during PHI
960   // translation.
961   DenseMap<BasicBlock *, Value *> Visited;
962   if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB,
963                                    Result, Visited, true))
964     return;
965   Result.clear();
966   Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
967                                      const_cast<Value *>(Loc.Ptr)));
968 }
969 
970 /// Compute the memdep value for BB with Pointer/PointeeSize using either
971 /// cached information in Cache or by doing a lookup (which may use dirty cache
972 /// info if available).
973 ///
974 /// If we do a lookup, add the result to the cache.
975 MemDepResult MemoryDependenceResults::GetNonLocalInfoForBlock(
976     Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad,
977     BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
978 
979   // Do a binary search to see if we already have an entry for this block in
980   // the cache set.  If so, find it.
981   NonLocalDepInfo::iterator Entry = std::upper_bound(
982       Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB));
983   if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB)
984     --Entry;
985 
986   NonLocalDepEntry *ExistingResult = nullptr;
987   if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB)
988     ExistingResult = &*Entry;
989 
990   // If we have a cached entry, and it is non-dirty, use it as the value for
991   // this dependency.
992   if (ExistingResult && !ExistingResult->getResult().isDirty()) {
993     ++NumCacheNonLocalPtr;
994     return ExistingResult->getResult();
995   }
996 
997   // Otherwise, we have to scan for the value.  If we have a dirty cache
998   // entry, start scanning from its position, otherwise we scan from the end
999   // of the block.
1000   BasicBlock::iterator ScanPos = BB->end();
1001   if (ExistingResult && ExistingResult->getResult().getInst()) {
1002     assert(ExistingResult->getResult().getInst()->getParent() == BB &&
1003            "Instruction invalidated?");
1004     ++NumCacheDirtyNonLocalPtr;
1005     ScanPos = ExistingResult->getResult().getInst()->getIterator();
1006 
1007     // Eliminating the dirty entry from 'Cache', so update the reverse info.
1008     ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
1009     RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey);
1010   } else {
1011     ++NumUncacheNonLocalPtr;
1012   }
1013 
1014   // Scan the block for the dependency.
1015   MemDepResult Dep =
1016       getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, QueryInst);
1017 
1018   // If we had a dirty entry for the block, update it.  Otherwise, just add
1019   // a new entry.
1020   if (ExistingResult)
1021     ExistingResult->setResult(Dep);
1022   else
1023     Cache->push_back(NonLocalDepEntry(BB, Dep));
1024 
1025   // If the block has a dependency (i.e. it isn't completely transparent to
1026   // the value), remember the reverse association because we just added it
1027   // to Cache!
1028   if (!Dep.isDef() && !Dep.isClobber())
1029     return Dep;
1030 
1031   // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
1032   // update MemDep when we remove instructions.
1033   Instruction *Inst = Dep.getInst();
1034   assert(Inst && "Didn't depend on anything?");
1035   ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
1036   ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
1037   return Dep;
1038 }
1039 
1040 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the
1041 /// array that are already properly ordered.
1042 ///
1043 /// This is optimized for the case when only a few entries are added.
1044 static void
1045 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache,
1046                          unsigned NumSortedEntries) {
1047   switch (Cache.size() - NumSortedEntries) {
1048   case 0:
1049     // done, no new entries.
1050     break;
1051   case 2: {
1052     // Two new entries, insert the last one into place.
1053     NonLocalDepEntry Val = Cache.back();
1054     Cache.pop_back();
1055     MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
1056         std::upper_bound(Cache.begin(), Cache.end() - 1, Val);
1057     Cache.insert(Entry, Val);
1058     LLVM_FALLTHROUGH;
1059   }
1060   case 1:
1061     // One new entry, Just insert the new value at the appropriate position.
1062     if (Cache.size() != 1) {
1063       NonLocalDepEntry Val = Cache.back();
1064       Cache.pop_back();
1065       MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
1066           std::upper_bound(Cache.begin(), Cache.end(), Val);
1067       Cache.insert(Entry, Val);
1068     }
1069     break;
1070   default:
1071     // Added many values, do a full scale sort.
1072     llvm::sort(Cache.begin(), Cache.end());
1073     break;
1074   }
1075 }
1076 
1077 /// Perform a dependency query based on pointer/pointeesize starting at the end
1078 /// of StartBB.
1079 ///
1080 /// Add any clobber/def results to the results vector and keep track of which
1081 /// blocks are visited in 'Visited'.
1082 ///
1083 /// This has special behavior for the first block queries (when SkipFirstBlock
1084 /// is true).  In this special case, it ignores the contents of the specified
1085 /// block and starts returning dependence info for its predecessors.
1086 ///
1087 /// This function returns true on success, or false to indicate that it could
1088 /// not compute dependence information for some reason.  This should be treated
1089 /// as a clobber dependence on the first instruction in the predecessor block.
1090 bool MemoryDependenceResults::getNonLocalPointerDepFromBB(
1091     Instruction *QueryInst, const PHITransAddr &Pointer,
1092     const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB,
1093     SmallVectorImpl<NonLocalDepResult> &Result,
1094     DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock) {
1095   // Look up the cached info for Pointer.
1096   ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
1097 
1098   // Set up a temporary NLPI value. If the map doesn't yet have an entry for
1099   // CacheKey, this value will be inserted as the associated value. Otherwise,
1100   // it'll be ignored, and we'll have to check to see if the cached size and
1101   // aa tags are consistent with the current query.
1102   NonLocalPointerInfo InitialNLPI;
1103   InitialNLPI.Size = Loc.Size;
1104   InitialNLPI.AATags = Loc.AATags;
1105 
1106   // Get the NLPI for CacheKey, inserting one into the map if it doesn't
1107   // already have one.
1108   std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
1109       NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
1110   NonLocalPointerInfo *CacheInfo = &Pair.first->second;
1111 
1112   // If we already have a cache entry for this CacheKey, we may need to do some
1113   // work to reconcile the cache entry and the current query.
1114   if (!Pair.second) {
1115     if (CacheInfo->Size < Loc.Size) {
1116       // The query's Size is greater than the cached one. Throw out the
1117       // cached data and proceed with the query at the greater size.
1118       CacheInfo->Pair = BBSkipFirstBlockPair();
1119       CacheInfo->Size = Loc.Size;
1120       for (auto &Entry : CacheInfo->NonLocalDeps)
1121         if (Instruction *Inst = Entry.getResult().getInst())
1122           RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1123       CacheInfo->NonLocalDeps.clear();
1124     } else if (CacheInfo->Size > Loc.Size) {
1125       // This query's Size is less than the cached one. Conservatively restart
1126       // the query using the greater size.
1127       return getNonLocalPointerDepFromBB(
1128           QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad,
1129           StartBB, Result, Visited, SkipFirstBlock);
1130     }
1131 
1132     // If the query's AATags are inconsistent with the cached one,
1133     // conservatively throw out the cached data and restart the query with
1134     // no tag if needed.
1135     if (CacheInfo->AATags != Loc.AATags) {
1136       if (CacheInfo->AATags) {
1137         CacheInfo->Pair = BBSkipFirstBlockPair();
1138         CacheInfo->AATags = AAMDNodes();
1139         for (auto &Entry : CacheInfo->NonLocalDeps)
1140           if (Instruction *Inst = Entry.getResult().getInst())
1141             RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1142         CacheInfo->NonLocalDeps.clear();
1143       }
1144       if (Loc.AATags)
1145         return getNonLocalPointerDepFromBB(
1146             QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result,
1147             Visited, SkipFirstBlock);
1148     }
1149   }
1150 
1151   NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
1152 
1153   // If we have valid cached information for exactly the block we are
1154   // investigating, just return it with no recomputation.
1155   if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
1156     // We have a fully cached result for this query then we can just return the
1157     // cached results and populate the visited set.  However, we have to verify
1158     // that we don't already have conflicting results for these blocks.  Check
1159     // to ensure that if a block in the results set is in the visited set that
1160     // it was for the same pointer query.
1161     if (!Visited.empty()) {
1162       for (auto &Entry : *Cache) {
1163         DenseMap<BasicBlock *, Value *>::iterator VI =
1164             Visited.find(Entry.getBB());
1165         if (VI == Visited.end() || VI->second == Pointer.getAddr())
1166           continue;
1167 
1168         // We have a pointer mismatch in a block.  Just return false, saying
1169         // that something was clobbered in this result.  We could also do a
1170         // non-fully cached query, but there is little point in doing this.
1171         return false;
1172       }
1173     }
1174 
1175     Value *Addr = Pointer.getAddr();
1176     for (auto &Entry : *Cache) {
1177       Visited.insert(std::make_pair(Entry.getBB(), Addr));
1178       if (Entry.getResult().isNonLocal()) {
1179         continue;
1180       }
1181 
1182       if (DT.isReachableFromEntry(Entry.getBB())) {
1183         Result.push_back(
1184             NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr));
1185       }
1186     }
1187     ++NumCacheCompleteNonLocalPtr;
1188     return true;
1189   }
1190 
1191   // Otherwise, either this is a new block, a block with an invalid cache
1192   // pointer or one that we're about to invalidate by putting more info into it
1193   // than its valid cache info.  If empty, the result will be valid cache info,
1194   // otherwise it isn't.
1195   if (Cache->empty())
1196     CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1197   else
1198     CacheInfo->Pair = BBSkipFirstBlockPair();
1199 
1200   SmallVector<BasicBlock *, 32> Worklist;
1201   Worklist.push_back(StartBB);
1202 
1203   // PredList used inside loop.
1204   SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList;
1205 
1206   // Keep track of the entries that we know are sorted.  Previously cached
1207   // entries will all be sorted.  The entries we add we only sort on demand (we
1208   // don't insert every element into its sorted position).  We know that we
1209   // won't get any reuse from currently inserted values, because we don't
1210   // revisit blocks after we insert info for them.
1211   unsigned NumSortedEntries = Cache->size();
1212   unsigned WorklistEntries = BlockNumberLimit;
1213   bool GotWorklistLimit = false;
1214   LLVM_DEBUG(AssertSorted(*Cache));
1215 
1216   while (!Worklist.empty()) {
1217     BasicBlock *BB = Worklist.pop_back_val();
1218 
1219     // If we do process a large number of blocks it becomes very expensive and
1220     // likely it isn't worth worrying about
1221     if (Result.size() > NumResultsLimit) {
1222       Worklist.clear();
1223       // Sort it now (if needed) so that recursive invocations of
1224       // getNonLocalPointerDepFromBB and other routines that could reuse the
1225       // cache value will only see properly sorted cache arrays.
1226       if (Cache && NumSortedEntries != Cache->size()) {
1227         SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1228       }
1229       // Since we bail out, the "Cache" set won't contain all of the
1230       // results for the query.  This is ok (we can still use it to accelerate
1231       // specific block queries) but we can't do the fastpath "return all
1232       // results from the set".  Clear out the indicator for this.
1233       CacheInfo->Pair = BBSkipFirstBlockPair();
1234       return false;
1235     }
1236 
1237     // Skip the first block if we have it.
1238     if (!SkipFirstBlock) {
1239       // Analyze the dependency of *Pointer in FromBB.  See if we already have
1240       // been here.
1241       assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1242 
1243       // Get the dependency info for Pointer in BB.  If we have cached
1244       // information, we will use it, otherwise we compute it.
1245       LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries));
1246       MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, Loc, isLoad, BB,
1247                                                  Cache, NumSortedEntries);
1248 
1249       // If we got a Def or Clobber, add this to the list of results.
1250       if (!Dep.isNonLocal()) {
1251         if (DT.isReachableFromEntry(BB)) {
1252           Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1253           continue;
1254         }
1255       }
1256     }
1257 
1258     // If 'Pointer' is an instruction defined in this block, then we need to do
1259     // phi translation to change it into a value live in the predecessor block.
1260     // If not, we just add the predecessors to the worklist and scan them with
1261     // the same Pointer.
1262     if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1263       SkipFirstBlock = false;
1264       SmallVector<BasicBlock *, 16> NewBlocks;
1265       for (BasicBlock *Pred : PredCache.get(BB)) {
1266         // Verify that we haven't looked at this block yet.
1267         std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1268             Visited.insert(std::make_pair(Pred, Pointer.getAddr()));
1269         if (InsertRes.second) {
1270           // First time we've looked at *PI.
1271           NewBlocks.push_back(Pred);
1272           continue;
1273         }
1274 
1275         // If we have seen this block before, but it was with a different
1276         // pointer then we have a phi translation failure and we have to treat
1277         // this as a clobber.
1278         if (InsertRes.first->second != Pointer.getAddr()) {
1279           // Make sure to clean up the Visited map before continuing on to
1280           // PredTranslationFailure.
1281           for (unsigned i = 0; i < NewBlocks.size(); i++)
1282             Visited.erase(NewBlocks[i]);
1283           goto PredTranslationFailure;
1284         }
1285       }
1286       if (NewBlocks.size() > WorklistEntries) {
1287         // Make sure to clean up the Visited map before continuing on to
1288         // PredTranslationFailure.
1289         for (unsigned i = 0; i < NewBlocks.size(); i++)
1290           Visited.erase(NewBlocks[i]);
1291         GotWorklistLimit = true;
1292         goto PredTranslationFailure;
1293       }
1294       WorklistEntries -= NewBlocks.size();
1295       Worklist.append(NewBlocks.begin(), NewBlocks.end());
1296       continue;
1297     }
1298 
1299     // We do need to do phi translation, if we know ahead of time we can't phi
1300     // translate this value, don't even try.
1301     if (!Pointer.IsPotentiallyPHITranslatable())
1302       goto PredTranslationFailure;
1303 
1304     // We may have added values to the cache list before this PHI translation.
1305     // If so, we haven't done anything to ensure that the cache remains sorted.
1306     // Sort it now (if needed) so that recursive invocations of
1307     // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1308     // value will only see properly sorted cache arrays.
1309     if (Cache && NumSortedEntries != Cache->size()) {
1310       SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1311       NumSortedEntries = Cache->size();
1312     }
1313     Cache = nullptr;
1314 
1315     PredList.clear();
1316     for (BasicBlock *Pred : PredCache.get(BB)) {
1317       PredList.push_back(std::make_pair(Pred, Pointer));
1318 
1319       // Get the PHI translated pointer in this predecessor.  This can fail if
1320       // not translatable, in which case the getAddr() returns null.
1321       PHITransAddr &PredPointer = PredList.back().second;
1322       PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false);
1323       Value *PredPtrVal = PredPointer.getAddr();
1324 
1325       // Check to see if we have already visited this pred block with another
1326       // pointer.  If so, we can't do this lookup.  This failure can occur
1327       // with PHI translation when a critical edge exists and the PHI node in
1328       // the successor translates to a pointer value different than the
1329       // pointer the block was first analyzed with.
1330       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1331           Visited.insert(std::make_pair(Pred, PredPtrVal));
1332 
1333       if (!InsertRes.second) {
1334         // We found the pred; take it off the list of preds to visit.
1335         PredList.pop_back();
1336 
1337         // If the predecessor was visited with PredPtr, then we already did
1338         // the analysis and can ignore it.
1339         if (InsertRes.first->second == PredPtrVal)
1340           continue;
1341 
1342         // Otherwise, the block was previously analyzed with a different
1343         // pointer.  We can't represent the result of this case, so we just
1344         // treat this as a phi translation failure.
1345 
1346         // Make sure to clean up the Visited map before continuing on to
1347         // PredTranslationFailure.
1348         for (unsigned i = 0, n = PredList.size(); i < n; ++i)
1349           Visited.erase(PredList[i].first);
1350 
1351         goto PredTranslationFailure;
1352       }
1353     }
1354 
1355     // Actually process results here; this need to be a separate loop to avoid
1356     // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1357     // any results for.  (getNonLocalPointerDepFromBB will modify our
1358     // datastructures in ways the code after the PredTranslationFailure label
1359     // doesn't expect.)
1360     for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
1361       BasicBlock *Pred = PredList[i].first;
1362       PHITransAddr &PredPointer = PredList[i].second;
1363       Value *PredPtrVal = PredPointer.getAddr();
1364 
1365       bool CanTranslate = true;
1366       // If PHI translation was unable to find an available pointer in this
1367       // predecessor, then we have to assume that the pointer is clobbered in
1368       // that predecessor.  We can still do PRE of the load, which would insert
1369       // a computation of the pointer in this predecessor.
1370       if (!PredPtrVal)
1371         CanTranslate = false;
1372 
1373       // FIXME: it is entirely possible that PHI translating will end up with
1374       // the same value.  Consider PHI translating something like:
1375       // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
1376       // to recurse here, pedantically speaking.
1377 
1378       // If getNonLocalPointerDepFromBB fails here, that means the cached
1379       // result conflicted with the Visited list; we have to conservatively
1380       // assume it is unknown, but this also does not block PRE of the load.
1381       if (!CanTranslate ||
1382           !getNonLocalPointerDepFromBB(QueryInst, PredPointer,
1383                                       Loc.getWithNewPtr(PredPtrVal), isLoad,
1384                                       Pred, Result, Visited)) {
1385         // Add the entry to the Result list.
1386         NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1387         Result.push_back(Entry);
1388 
1389         // Since we had a phi translation failure, the cache for CacheKey won't
1390         // include all of the entries that we need to immediately satisfy future
1391         // queries.  Mark this in NonLocalPointerDeps by setting the
1392         // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
1393         // cached value to do more work but not miss the phi trans failure.
1394         NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1395         NLPI.Pair = BBSkipFirstBlockPair();
1396         continue;
1397       }
1398     }
1399 
1400     // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1401     CacheInfo = &NonLocalPointerDeps[CacheKey];
1402     Cache = &CacheInfo->NonLocalDeps;
1403     NumSortedEntries = Cache->size();
1404 
1405     // Since we did phi translation, the "Cache" set won't contain all of the
1406     // results for the query.  This is ok (we can still use it to accelerate
1407     // specific block queries) but we can't do the fastpath "return all
1408     // results from the set"  Clear out the indicator for this.
1409     CacheInfo->Pair = BBSkipFirstBlockPair();
1410     SkipFirstBlock = false;
1411     continue;
1412 
1413   PredTranslationFailure:
1414     // The following code is "failure"; we can't produce a sane translation
1415     // for the given block.  It assumes that we haven't modified any of
1416     // our datastructures while processing the current block.
1417 
1418     if (!Cache) {
1419       // Refresh the CacheInfo/Cache pointer if it got invalidated.
1420       CacheInfo = &NonLocalPointerDeps[CacheKey];
1421       Cache = &CacheInfo->NonLocalDeps;
1422       NumSortedEntries = Cache->size();
1423     }
1424 
1425     // Since we failed phi translation, the "Cache" set won't contain all of the
1426     // results for the query.  This is ok (we can still use it to accelerate
1427     // specific block queries) but we can't do the fastpath "return all
1428     // results from the set".  Clear out the indicator for this.
1429     CacheInfo->Pair = BBSkipFirstBlockPair();
1430 
1431     // If *nothing* works, mark the pointer as unknown.
1432     //
1433     // If this is the magic first block, return this as a clobber of the whole
1434     // incoming value.  Since we can't phi translate to one of the predecessors,
1435     // we have to bail out.
1436     if (SkipFirstBlock)
1437       return false;
1438 
1439     bool foundBlock = false;
1440     for (NonLocalDepEntry &I : llvm::reverse(*Cache)) {
1441       if (I.getBB() != BB)
1442         continue;
1443 
1444       assert((GotWorklistLimit || I.getResult().isNonLocal() ||
1445               !DT.isReachableFromEntry(BB)) &&
1446              "Should only be here with transparent block");
1447       foundBlock = true;
1448       I.setResult(MemDepResult::getUnknown());
1449       Result.push_back(
1450           NonLocalDepResult(I.getBB(), I.getResult(), Pointer.getAddr()));
1451       break;
1452     }
1453     (void)foundBlock; (void)GotWorklistLimit;
1454     assert((foundBlock || GotWorklistLimit) && "Current block not in cache?");
1455   }
1456 
1457   // Okay, we're done now.  If we added new values to the cache, re-sort it.
1458   SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1459   LLVM_DEBUG(AssertSorted(*Cache));
1460   return true;
1461 }
1462 
1463 /// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it.
1464 void MemoryDependenceResults::RemoveCachedNonLocalPointerDependencies(
1465     ValueIsLoadPair P) {
1466 
1467   // Most of the time this cache is empty.
1468   if (!NonLocalDefsCache.empty()) {
1469     auto it = NonLocalDefsCache.find(P.getPointer());
1470     if (it != NonLocalDefsCache.end()) {
1471       RemoveFromReverseMap(ReverseNonLocalDefsCache,
1472                            it->second.getResult().getInst(), P.getPointer());
1473       NonLocalDefsCache.erase(it);
1474     }
1475 
1476     if (auto *I = dyn_cast<Instruction>(P.getPointer())) {
1477       auto toRemoveIt = ReverseNonLocalDefsCache.find(I);
1478       if (toRemoveIt != ReverseNonLocalDefsCache.end()) {
1479         for (const auto &entry : toRemoveIt->second)
1480           NonLocalDefsCache.erase(entry);
1481         ReverseNonLocalDefsCache.erase(toRemoveIt);
1482       }
1483     }
1484   }
1485 
1486   CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P);
1487   if (It == NonLocalPointerDeps.end())
1488     return;
1489 
1490   // Remove all of the entries in the BB->val map.  This involves removing
1491   // instructions from the reverse map.
1492   NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1493 
1494   for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1495     Instruction *Target = PInfo[i].getResult().getInst();
1496     if (!Target)
1497       continue; // Ignore non-local dep results.
1498     assert(Target->getParent() == PInfo[i].getBB());
1499 
1500     // Eliminating the dirty entry from 'Cache', so update the reverse info.
1501     RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1502   }
1503 
1504   // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1505   NonLocalPointerDeps.erase(It);
1506 }
1507 
1508 void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) {
1509   // If Ptr isn't really a pointer, just ignore it.
1510   if (!Ptr->getType()->isPointerTy())
1511     return;
1512   // Flush store info for the pointer.
1513   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1514   // Flush load info for the pointer.
1515   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1516 }
1517 
1518 void MemoryDependenceResults::invalidateCachedPredecessors() {
1519   PredCache.clear();
1520 }
1521 
1522 void MemoryDependenceResults::removeInstruction(Instruction *RemInst) {
1523   // Walk through the Non-local dependencies, removing this one as the value
1524   // for any cached queries.
1525   NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1526   if (NLDI != NonLocalDeps.end()) {
1527     NonLocalDepInfo &BlockMap = NLDI->second.first;
1528     for (auto &Entry : BlockMap)
1529       if (Instruction *Inst = Entry.getResult().getInst())
1530         RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1531     NonLocalDeps.erase(NLDI);
1532   }
1533 
1534   // If we have a cached local dependence query for this instruction, remove it.
1535   LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1536   if (LocalDepEntry != LocalDeps.end()) {
1537     // Remove us from DepInst's reverse set now that the local dep info is gone.
1538     if (Instruction *Inst = LocalDepEntry->second.getInst())
1539       RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1540 
1541     // Remove this local dependency info.
1542     LocalDeps.erase(LocalDepEntry);
1543   }
1544 
1545   // If we have any cached pointer dependencies on this instruction, remove
1546   // them.  If the instruction has non-pointer type, then it can't be a pointer
1547   // base.
1548 
1549   // Remove it from both the load info and the store info.  The instruction
1550   // can't be in either of these maps if it is non-pointer.
1551   if (RemInst->getType()->isPointerTy()) {
1552     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1553     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1554   }
1555 
1556   // Loop over all of the things that depend on the instruction we're removing.
1557   SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd;
1558 
1559   // If we find RemInst as a clobber or Def in any of the maps for other values,
1560   // we need to replace its entry with a dirty version of the instruction after
1561   // it.  If RemInst is a terminator, we use a null dirty value.
1562   //
1563   // Using a dirty version of the instruction after RemInst saves having to scan
1564   // the entire block to get to this point.
1565   MemDepResult NewDirtyVal;
1566   if (!RemInst->isTerminator())
1567     NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator());
1568 
1569   ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1570   if (ReverseDepIt != ReverseLocalDeps.end()) {
1571     // RemInst can't be the terminator if it has local stuff depending on it.
1572     assert(!ReverseDepIt->second.empty() && !isa<TerminatorInst>(RemInst) &&
1573            "Nothing can locally depend on a terminator");
1574 
1575     for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
1576       assert(InstDependingOnRemInst != RemInst &&
1577              "Already removed our local dep info");
1578 
1579       LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1580 
1581       // Make sure to remember that new things depend on NewDepInst.
1582       assert(NewDirtyVal.getInst() &&
1583              "There is no way something else can have "
1584              "a local dep on this if it is a terminator!");
1585       ReverseDepsToAdd.push_back(
1586           std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst));
1587     }
1588 
1589     ReverseLocalDeps.erase(ReverseDepIt);
1590 
1591     // Add new reverse deps after scanning the set, to avoid invalidating the
1592     // 'ReverseDeps' reference.
1593     while (!ReverseDepsToAdd.empty()) {
1594       ReverseLocalDeps[ReverseDepsToAdd.back().first].insert(
1595           ReverseDepsToAdd.back().second);
1596       ReverseDepsToAdd.pop_back();
1597     }
1598   }
1599 
1600   ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1601   if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1602     for (Instruction *I : ReverseDepIt->second) {
1603       assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
1604 
1605       PerInstNLInfo &INLD = NonLocalDeps[I];
1606       // The information is now dirty!
1607       INLD.second = true;
1608 
1609       for (auto &Entry : INLD.first) {
1610         if (Entry.getResult().getInst() != RemInst)
1611           continue;
1612 
1613         // Convert to a dirty entry for the subsequent instruction.
1614         Entry.setResult(NewDirtyVal);
1615 
1616         if (Instruction *NextI = NewDirtyVal.getInst())
1617           ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
1618       }
1619     }
1620 
1621     ReverseNonLocalDeps.erase(ReverseDepIt);
1622 
1623     // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1624     while (!ReverseDepsToAdd.empty()) {
1625       ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert(
1626           ReverseDepsToAdd.back().second);
1627       ReverseDepsToAdd.pop_back();
1628     }
1629   }
1630 
1631   // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1632   // value in the NonLocalPointerDeps info.
1633   ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1634       ReverseNonLocalPtrDeps.find(RemInst);
1635   if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1636     SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8>
1637         ReversePtrDepsToAdd;
1638 
1639     for (ValueIsLoadPair P : ReversePtrDepIt->second) {
1640       assert(P.getPointer() != RemInst &&
1641              "Already removed NonLocalPointerDeps info for RemInst");
1642 
1643       NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1644 
1645       // The cache is not valid for any specific block anymore.
1646       NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1647 
1648       // Update any entries for RemInst to use the instruction after it.
1649       for (auto &Entry : NLPDI) {
1650         if (Entry.getResult().getInst() != RemInst)
1651           continue;
1652 
1653         // Convert to a dirty entry for the subsequent instruction.
1654         Entry.setResult(NewDirtyVal);
1655 
1656         if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1657           ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1658       }
1659 
1660       // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1661       // subsequent value may invalidate the sortedness.
1662       llvm::sort(NLPDI.begin(), NLPDI.end());
1663     }
1664 
1665     ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1666 
1667     while (!ReversePtrDepsToAdd.empty()) {
1668       ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert(
1669           ReversePtrDepsToAdd.back().second);
1670       ReversePtrDepsToAdd.pop_back();
1671     }
1672   }
1673 
1674   assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1675   LLVM_DEBUG(verifyRemoved(RemInst));
1676 }
1677 
1678 /// Verify that the specified instruction does not occur in our internal data
1679 /// structures.
1680 ///
1681 /// This function verifies by asserting in debug builds.
1682 void MemoryDependenceResults::verifyRemoved(Instruction *D) const {
1683 #ifndef NDEBUG
1684   for (const auto &DepKV : LocalDeps) {
1685     assert(DepKV.first != D && "Inst occurs in data structures");
1686     assert(DepKV.second.getInst() != D && "Inst occurs in data structures");
1687   }
1688 
1689   for (const auto &DepKV : NonLocalPointerDeps) {
1690     assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key");
1691     for (const auto &Entry : DepKV.second.NonLocalDeps)
1692       assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value");
1693   }
1694 
1695   for (const auto &DepKV : NonLocalDeps) {
1696     assert(DepKV.first != D && "Inst occurs in data structures");
1697     const PerInstNLInfo &INLD = DepKV.second;
1698     for (const auto &Entry : INLD.first)
1699       assert(Entry.getResult().getInst() != D &&
1700              "Inst occurs in data structures");
1701   }
1702 
1703   for (const auto &DepKV : ReverseLocalDeps) {
1704     assert(DepKV.first != D && "Inst occurs in data structures");
1705     for (Instruction *Inst : DepKV.second)
1706       assert(Inst != D && "Inst occurs in data structures");
1707   }
1708 
1709   for (const auto &DepKV : ReverseNonLocalDeps) {
1710     assert(DepKV.first != D && "Inst occurs in data structures");
1711     for (Instruction *Inst : DepKV.second)
1712       assert(Inst != D && "Inst occurs in data structures");
1713   }
1714 
1715   for (const auto &DepKV : ReverseNonLocalPtrDeps) {
1716     assert(DepKV.first != D && "Inst occurs in rev NLPD map");
1717 
1718     for (ValueIsLoadPair P : DepKV.second)
1719       assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) &&
1720              "Inst occurs in ReverseNonLocalPtrDeps map");
1721   }
1722 #endif
1723 }
1724 
1725 AnalysisKey MemoryDependenceAnalysis::Key;
1726 
1727 MemoryDependenceResults
1728 MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
1729   auto &AA = AM.getResult<AAManager>(F);
1730   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1731   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1732   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1733   return MemoryDependenceResults(AA, AC, TLI, DT);
1734 }
1735 
1736 char MemoryDependenceWrapperPass::ID = 0;
1737 
1738 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep",
1739                       "Memory Dependence Analysis", false, true)
1740 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1741 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1742 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1743 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1744 INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep",
1745                     "Memory Dependence Analysis", false, true)
1746 
1747 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) {
1748   initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry());
1749 }
1750 
1751 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default;
1752 
1753 void MemoryDependenceWrapperPass::releaseMemory() {
1754   MemDep.reset();
1755 }
1756 
1757 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1758   AU.setPreservesAll();
1759   AU.addRequired<AssumptionCacheTracker>();
1760   AU.addRequired<DominatorTreeWrapperPass>();
1761   AU.addRequiredTransitive<AAResultsWrapperPass>();
1762   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1763 }
1764 
1765 bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA,
1766                                FunctionAnalysisManager::Invalidator &Inv) {
1767   // Check whether our analysis is preserved.
1768   auto PAC = PA.getChecker<MemoryDependenceAnalysis>();
1769   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
1770     // If not, give up now.
1771     return true;
1772 
1773   // Check whether the analyses we depend on became invalid for any reason.
1774   if (Inv.invalidate<AAManager>(F, PA) ||
1775       Inv.invalidate<AssumptionAnalysis>(F, PA) ||
1776       Inv.invalidate<DominatorTreeAnalysis>(F, PA))
1777     return true;
1778 
1779   // Otherwise this analysis result remains valid.
1780   return false;
1781 }
1782 
1783 unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const {
1784   return BlockScanLimit;
1785 }
1786 
1787 bool MemoryDependenceWrapperPass::runOnFunction(Function &F) {
1788   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1789   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1790   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1791   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1792   MemDep.emplace(AA, AC, TLI, DT);
1793   return false;
1794 }
1795