1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements an analysis that determines, for a given memory 11 // operation, what preceding memory operations it depends on. It builds on 12 // alias analysis information, and tries to provide a lazy, caching interface to 13 // a common kind of alias information query. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/MemoryBuiltins.h" 23 #include "llvm/Analysis/PHITransAddr.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/PredIteratorCache.h" 32 #include "llvm/Support/Debug.h" 33 using namespace llvm; 34 35 #define DEBUG_TYPE "memdep" 36 37 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); 38 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); 39 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); 40 41 STATISTIC(NumCacheNonLocalPtr, 42 "Number of fully cached non-local ptr responses"); 43 STATISTIC(NumCacheDirtyNonLocalPtr, 44 "Number of cached, but dirty, non-local ptr responses"); 45 STATISTIC(NumUncacheNonLocalPtr, 46 "Number of uncached non-local ptr responses"); 47 STATISTIC(NumCacheCompleteNonLocalPtr, 48 "Number of block queries that were completely cached"); 49 50 // Limit for the number of instructions to scan in a block. 51 static const int BlockScanLimit = 100; 52 53 char MemoryDependenceAnalysis::ID = 0; 54 55 // Register this pass... 56 INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep", 57 "Memory Dependence Analysis", false, true) 58 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 59 INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep", 60 "Memory Dependence Analysis", false, true) 61 62 MemoryDependenceAnalysis::MemoryDependenceAnalysis() 63 : FunctionPass(ID), PredCache() { 64 initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry()); 65 } 66 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() { 67 } 68 69 /// Clean up memory in between runs 70 void MemoryDependenceAnalysis::releaseMemory() { 71 LocalDeps.clear(); 72 NonLocalDeps.clear(); 73 NonLocalPointerDeps.clear(); 74 ReverseLocalDeps.clear(); 75 ReverseNonLocalDeps.clear(); 76 ReverseNonLocalPtrDeps.clear(); 77 PredCache->clear(); 78 } 79 80 81 82 /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis. 83 /// 84 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 85 AU.setPreservesAll(); 86 AU.addRequiredTransitive<AliasAnalysis>(); 87 } 88 89 bool MemoryDependenceAnalysis::runOnFunction(Function &) { 90 AA = &getAnalysis<AliasAnalysis>(); 91 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 92 DL = DLP ? &DLP->getDataLayout() : nullptr; 93 DominatorTreeWrapperPass *DTWP = 94 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 95 DT = DTWP ? &DTWP->getDomTree() : nullptr; 96 if (!PredCache) 97 PredCache.reset(new PredIteratorCache()); 98 return false; 99 } 100 101 /// RemoveFromReverseMap - This is a helper function that removes Val from 102 /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry. 103 template <typename KeyTy> 104 static void RemoveFromReverseMap(DenseMap<Instruction*, 105 SmallPtrSet<KeyTy, 4> > &ReverseMap, 106 Instruction *Inst, KeyTy Val) { 107 typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator 108 InstIt = ReverseMap.find(Inst); 109 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); 110 bool Found = InstIt->second.erase(Val); 111 assert(Found && "Invalid reverse map!"); (void)Found; 112 if (InstIt->second.empty()) 113 ReverseMap.erase(InstIt); 114 } 115 116 /// GetLocation - If the given instruction references a specific memory 117 /// location, fill in Loc with the details, otherwise set Loc.Ptr to null. 118 /// Return a ModRefInfo value describing the general behavior of the 119 /// instruction. 120 static 121 AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst, 122 AliasAnalysis::Location &Loc, 123 AliasAnalysis *AA) { 124 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 125 if (LI->isUnordered()) { 126 Loc = AA->getLocation(LI); 127 return AliasAnalysis::Ref; 128 } 129 if (LI->getOrdering() == Monotonic) { 130 Loc = AA->getLocation(LI); 131 return AliasAnalysis::ModRef; 132 } 133 Loc = AliasAnalysis::Location(); 134 return AliasAnalysis::ModRef; 135 } 136 137 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 138 if (SI->isUnordered()) { 139 Loc = AA->getLocation(SI); 140 return AliasAnalysis::Mod; 141 } 142 if (SI->getOrdering() == Monotonic) { 143 Loc = AA->getLocation(SI); 144 return AliasAnalysis::ModRef; 145 } 146 Loc = AliasAnalysis::Location(); 147 return AliasAnalysis::ModRef; 148 } 149 150 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { 151 Loc = AA->getLocation(V); 152 return AliasAnalysis::ModRef; 153 } 154 155 if (const CallInst *CI = isFreeCall(Inst, AA->getTargetLibraryInfo())) { 156 // calls to free() deallocate the entire structure 157 Loc = AliasAnalysis::Location(CI->getArgOperand(0)); 158 return AliasAnalysis::Mod; 159 } 160 161 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 162 AAMDNodes AAInfo; 163 164 switch (II->getIntrinsicID()) { 165 case Intrinsic::lifetime_start: 166 case Intrinsic::lifetime_end: 167 case Intrinsic::invariant_start: 168 II->getAAMetadata(AAInfo); 169 Loc = AliasAnalysis::Location(II->getArgOperand(1), 170 cast<ConstantInt>(II->getArgOperand(0)) 171 ->getZExtValue(), AAInfo); 172 // These intrinsics don't really modify the memory, but returning Mod 173 // will allow them to be handled conservatively. 174 return AliasAnalysis::Mod; 175 case Intrinsic::invariant_end: 176 II->getAAMetadata(AAInfo); 177 Loc = AliasAnalysis::Location(II->getArgOperand(2), 178 cast<ConstantInt>(II->getArgOperand(1)) 179 ->getZExtValue(), AAInfo); 180 // These intrinsics don't really modify the memory, but returning Mod 181 // will allow them to be handled conservatively. 182 return AliasAnalysis::Mod; 183 default: 184 break; 185 } 186 } 187 188 // Otherwise, just do the coarse-grained thing that always works. 189 if (Inst->mayWriteToMemory()) 190 return AliasAnalysis::ModRef; 191 if (Inst->mayReadFromMemory()) 192 return AliasAnalysis::Ref; 193 return AliasAnalysis::NoModRef; 194 } 195 196 /// getCallSiteDependencyFrom - Private helper for finding the local 197 /// dependencies of a call site. 198 MemDepResult MemoryDependenceAnalysis:: 199 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall, 200 BasicBlock::iterator ScanIt, BasicBlock *BB) { 201 unsigned Limit = BlockScanLimit; 202 203 // Walk backwards through the block, looking for dependencies 204 while (ScanIt != BB->begin()) { 205 // Limit the amount of scanning we do so we don't end up with quadratic 206 // running time on extreme testcases. 207 --Limit; 208 if (!Limit) 209 return MemDepResult::getUnknown(); 210 211 Instruction *Inst = --ScanIt; 212 213 // If this inst is a memory op, get the pointer it accessed 214 AliasAnalysis::Location Loc; 215 AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA); 216 if (Loc.Ptr) { 217 // A simple instruction. 218 if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef) 219 return MemDepResult::getClobber(Inst); 220 continue; 221 } 222 223 if (CallSite InstCS = cast<Value>(Inst)) { 224 // Debug intrinsics don't cause dependences. 225 if (isa<DbgInfoIntrinsic>(Inst)) continue; 226 // If these two calls do not interfere, look past it. 227 switch (AA->getModRefInfo(CS, InstCS)) { 228 case AliasAnalysis::NoModRef: 229 // If the two calls are the same, return InstCS as a Def, so that 230 // CS can be found redundant and eliminated. 231 if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) && 232 CS.getInstruction()->isIdenticalToWhenDefined(Inst)) 233 return MemDepResult::getDef(Inst); 234 235 // Otherwise if the two calls don't interact (e.g. InstCS is readnone) 236 // keep scanning. 237 continue; 238 default: 239 return MemDepResult::getClobber(Inst); 240 } 241 } 242 243 // If we could not obtain a pointer for the instruction and the instruction 244 // touches memory then assume that this is a dependency. 245 if (MR != AliasAnalysis::NoModRef) 246 return MemDepResult::getClobber(Inst); 247 } 248 249 // No dependence found. If this is the entry block of the function, it is 250 // unknown, otherwise it is non-local. 251 if (BB != &BB->getParent()->getEntryBlock()) 252 return MemDepResult::getNonLocal(); 253 return MemDepResult::getNonFuncLocal(); 254 } 255 256 /// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that 257 /// would fully overlap MemLoc if done as a wider legal integer load. 258 /// 259 /// MemLocBase, MemLocOffset are lazily computed here the first time the 260 /// base/offs of memloc is needed. 261 static bool 262 isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc, 263 const Value *&MemLocBase, 264 int64_t &MemLocOffs, 265 const LoadInst *LI, 266 const DataLayout *DL) { 267 // If we have no target data, we can't do this. 268 if (!DL) return false; 269 270 // If we haven't already computed the base/offset of MemLoc, do so now. 271 if (!MemLocBase) 272 MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, DL); 273 274 unsigned Size = MemoryDependenceAnalysis:: 275 getLoadLoadClobberFullWidthSize(MemLocBase, MemLocOffs, MemLoc.Size, 276 LI, *DL); 277 return Size != 0; 278 } 279 280 /// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that 281 /// looks at a memory location for a load (specified by MemLocBase, Offs, 282 /// and Size) and compares it against a load. If the specified load could 283 /// be safely widened to a larger integer load that is 1) still efficient, 284 /// 2) safe for the target, and 3) would provide the specified memory 285 /// location value, then this function returns the size in bytes of the 286 /// load width to use. If not, this returns zero. 287 unsigned MemoryDependenceAnalysis:: 288 getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs, 289 unsigned MemLocSize, const LoadInst *LI, 290 const DataLayout &DL) { 291 // We can only extend simple integer loads. 292 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0; 293 294 // Load widening is hostile to ThreadSanitizer: it may cause false positives 295 // or make the reports more cryptic (access sizes are wrong). 296 if (LI->getParent()->getParent()->getAttributes(). 297 hasAttribute(AttributeSet::FunctionIndex, Attribute::SanitizeThread)) 298 return 0; 299 300 // Get the base of this load. 301 int64_t LIOffs = 0; 302 const Value *LIBase = 303 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, &DL); 304 305 // If the two pointers are not based on the same pointer, we can't tell that 306 // they are related. 307 if (LIBase != MemLocBase) return 0; 308 309 // Okay, the two values are based on the same pointer, but returned as 310 // no-alias. This happens when we have things like two byte loads at "P+1" 311 // and "P+3". Check to see if increasing the size of the "LI" load up to its 312 // alignment (or the largest native integer type) will allow us to load all 313 // the bits required by MemLoc. 314 315 // If MemLoc is before LI, then no widening of LI will help us out. 316 if (MemLocOffs < LIOffs) return 0; 317 318 // Get the alignment of the load in bytes. We assume that it is safe to load 319 // any legal integer up to this size without a problem. For example, if we're 320 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can 321 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it 322 // to i16. 323 unsigned LoadAlign = LI->getAlignment(); 324 325 int64_t MemLocEnd = MemLocOffs+MemLocSize; 326 327 // If no amount of rounding up will let MemLoc fit into LI, then bail out. 328 if (LIOffs+LoadAlign < MemLocEnd) return 0; 329 330 // This is the size of the load to try. Start with the next larger power of 331 // two. 332 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U; 333 NewLoadByteSize = NextPowerOf2(NewLoadByteSize); 334 335 while (1) { 336 // If this load size is bigger than our known alignment or would not fit 337 // into a native integer register, then we fail. 338 if (NewLoadByteSize > LoadAlign || 339 !DL.fitsInLegalInteger(NewLoadByteSize*8)) 340 return 0; 341 342 if (LIOffs+NewLoadByteSize > MemLocEnd && 343 LI->getParent()->getParent()->getAttributes(). 344 hasAttribute(AttributeSet::FunctionIndex, Attribute::SanitizeAddress)) 345 // We will be reading past the location accessed by the original program. 346 // While this is safe in a regular build, Address Safety analysis tools 347 // may start reporting false warnings. So, don't do widening. 348 return 0; 349 350 // If a load of this width would include all of MemLoc, then we succeed. 351 if (LIOffs+NewLoadByteSize >= MemLocEnd) 352 return NewLoadByteSize; 353 354 NewLoadByteSize <<= 1; 355 } 356 } 357 358 /// getPointerDependencyFrom - Return the instruction on which a memory 359 /// location depends. If isLoad is true, this routine ignores may-aliases with 360 /// read-only operations. If isLoad is false, this routine ignores may-aliases 361 /// with reads from read-only locations. If possible, pass the query 362 /// instruction as well; this function may take advantage of the metadata 363 /// annotated to the query instruction to refine the result. 364 MemDepResult MemoryDependenceAnalysis:: 365 getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, 366 BasicBlock::iterator ScanIt, BasicBlock *BB, 367 Instruction *QueryInst) { 368 369 const Value *MemLocBase = nullptr; 370 int64_t MemLocOffset = 0; 371 unsigned Limit = BlockScanLimit; 372 bool isInvariantLoad = false; 373 if (isLoad && QueryInst) { 374 LoadInst *LI = dyn_cast<LoadInst>(QueryInst); 375 if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr) 376 isInvariantLoad = true; 377 } 378 379 // Walk backwards through the basic block, looking for dependencies. 380 while (ScanIt != BB->begin()) { 381 Instruction *Inst = --ScanIt; 382 383 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 384 // Debug intrinsics don't (and can't) cause dependencies. 385 if (isa<DbgInfoIntrinsic>(II)) continue; 386 387 // Limit the amount of scanning we do so we don't end up with quadratic 388 // running time on extreme testcases. 389 --Limit; 390 if (!Limit) 391 return MemDepResult::getUnknown(); 392 393 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 394 // If we reach a lifetime begin or end marker, then the query ends here 395 // because the value is undefined. 396 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 397 // FIXME: This only considers queries directly on the invariant-tagged 398 // pointer, not on query pointers that are indexed off of them. It'd 399 // be nice to handle that at some point (the right approach is to use 400 // GetPointerBaseWithConstantOffset). 401 if (AA->isMustAlias(AliasAnalysis::Location(II->getArgOperand(1)), 402 MemLoc)) 403 return MemDepResult::getDef(II); 404 continue; 405 } 406 } 407 408 // Values depend on loads if the pointers are must aliased. This means that 409 // a load depends on another must aliased load from the same value. 410 // One exception is atomic loads: a value can depend on an atomic load that it 411 // does not alias with when this atomic load indicates that another thread may 412 // be accessing the location. 413 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 414 // Atomic loads have complications involved. 415 // A monotonic load is OK if the query inst is itself not atomic. 416 // FIXME: This is overly conservative. 417 if (!LI->isUnordered()) { 418 if (!QueryInst) 419 return MemDepResult::getClobber(LI); 420 if (LI->getOrdering() != Monotonic) 421 return MemDepResult::getClobber(LI); 422 if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) 423 if (!QueryLI->isSimple()) 424 return MemDepResult::getClobber(LI); 425 if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) 426 if (!QuerySI->isSimple()) 427 return MemDepResult::getClobber(LI); 428 } 429 430 // FIXME: this is overly conservative. 431 // While volatile access cannot be eliminated, they do not have to clobber 432 // non-aliasing locations, as normal accesses can for example be reordered 433 // with volatile accesses. 434 if (LI->isVolatile()) 435 return MemDepResult::getClobber(LI); 436 437 AliasAnalysis::Location LoadLoc = AA->getLocation(LI); 438 439 // If we found a pointer, check if it could be the same as our pointer. 440 AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc); 441 442 if (isLoad) { 443 if (R == AliasAnalysis::NoAlias) { 444 // If this is an over-aligned integer load (for example, 445 // "load i8* %P, align 4") see if it would obviously overlap with the 446 // queried location if widened to a larger load (e.g. if the queried 447 // location is 1 byte at P+1). If so, return it as a load/load 448 // clobber result, allowing the client to decide to widen the load if 449 // it wants to. 450 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) 451 if (LI->getAlignment()*8 > ITy->getPrimitiveSizeInBits() && 452 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase, 453 MemLocOffset, LI, DL)) 454 return MemDepResult::getClobber(Inst); 455 456 continue; 457 } 458 459 // Must aliased loads are defs of each other. 460 if (R == AliasAnalysis::MustAlias) 461 return MemDepResult::getDef(Inst); 462 463 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads 464 // in terms of clobbering loads, but since it does this by looking 465 // at the clobbering load directly, it doesn't know about any 466 // phi translation that may have happened along the way. 467 468 // If we have a partial alias, then return this as a clobber for the 469 // client to handle. 470 if (R == AliasAnalysis::PartialAlias) 471 return MemDepResult::getClobber(Inst); 472 #endif 473 474 // Random may-alias loads don't depend on each other without a 475 // dependence. 476 continue; 477 } 478 479 // Stores don't depend on other no-aliased accesses. 480 if (R == AliasAnalysis::NoAlias) 481 continue; 482 483 // Stores don't alias loads from read-only memory. 484 if (AA->pointsToConstantMemory(LoadLoc)) 485 continue; 486 487 // Stores depend on may/must aliased loads. 488 return MemDepResult::getDef(Inst); 489 } 490 491 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 492 // Atomic stores have complications involved. 493 // A monotonic store is OK if the query inst is itself not atomic. 494 // FIXME: This is overly conservative. 495 if (!SI->isUnordered()) { 496 if (!QueryInst) 497 return MemDepResult::getClobber(SI); 498 if (SI->getOrdering() != Monotonic) 499 return MemDepResult::getClobber(SI); 500 if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) 501 if (!QueryLI->isSimple()) 502 return MemDepResult::getClobber(SI); 503 if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) 504 if (!QuerySI->isSimple()) 505 return MemDepResult::getClobber(SI); 506 } 507 508 // FIXME: this is overly conservative. 509 // While volatile access cannot be eliminated, they do not have to clobber 510 // non-aliasing locations, as normal accesses can for example be reordered 511 // with volatile accesses. 512 if (SI->isVolatile()) 513 return MemDepResult::getClobber(SI); 514 515 // If alias analysis can tell that this store is guaranteed to not modify 516 // the query pointer, ignore it. Use getModRefInfo to handle cases where 517 // the query pointer points to constant memory etc. 518 if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef) 519 continue; 520 521 // Ok, this store might clobber the query pointer. Check to see if it is 522 // a must alias: in this case, we want to return this as a def. 523 AliasAnalysis::Location StoreLoc = AA->getLocation(SI); 524 525 // If we found a pointer, check if it could be the same as our pointer. 526 AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc); 527 528 if (R == AliasAnalysis::NoAlias) 529 continue; 530 if (R == AliasAnalysis::MustAlias) 531 return MemDepResult::getDef(Inst); 532 if (isInvariantLoad) 533 continue; 534 return MemDepResult::getClobber(Inst); 535 } 536 537 // If this is an allocation, and if we know that the accessed pointer is to 538 // the allocation, return Def. This means that there is no dependence and 539 // the access can be optimized based on that. For example, a load could 540 // turn into undef. 541 // Note: Only determine this to be a malloc if Inst is the malloc call, not 542 // a subsequent bitcast of the malloc call result. There can be stores to 543 // the malloced memory between the malloc call and its bitcast uses, and we 544 // need to continue scanning until the malloc call. 545 const TargetLibraryInfo *TLI = AA->getTargetLibraryInfo(); 546 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, TLI)) { 547 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL); 548 549 if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr)) 550 return MemDepResult::getDef(Inst); 551 // Be conservative if the accessed pointer may alias the allocation. 552 if (AA->alias(Inst, AccessPtr) != AliasAnalysis::NoAlias) 553 return MemDepResult::getClobber(Inst); 554 // If the allocation is not aliased and does not read memory (like 555 // strdup), it is safe to ignore. 556 if (isa<AllocaInst>(Inst) || 557 isMallocLikeFn(Inst, TLI) || isCallocLikeFn(Inst, TLI)) 558 continue; 559 } 560 561 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. 562 AliasAnalysis::ModRefResult MR = AA->getModRefInfo(Inst, MemLoc); 563 // If necessary, perform additional analysis. 564 if (MR == AliasAnalysis::ModRef) 565 MR = AA->callCapturesBefore(Inst, MemLoc, DT); 566 switch (MR) { 567 case AliasAnalysis::NoModRef: 568 // If the call has no effect on the queried pointer, just ignore it. 569 continue; 570 case AliasAnalysis::Mod: 571 return MemDepResult::getClobber(Inst); 572 case AliasAnalysis::Ref: 573 // If the call is known to never store to the pointer, and if this is a 574 // load query, we can safely ignore it (scan past it). 575 if (isLoad) 576 continue; 577 default: 578 // Otherwise, there is a potential dependence. Return a clobber. 579 return MemDepResult::getClobber(Inst); 580 } 581 } 582 583 // No dependence found. If this is the entry block of the function, it is 584 // unknown, otherwise it is non-local. 585 if (BB != &BB->getParent()->getEntryBlock()) 586 return MemDepResult::getNonLocal(); 587 return MemDepResult::getNonFuncLocal(); 588 } 589 590 /// getDependency - Return the instruction on which a memory operation 591 /// depends. 592 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) { 593 Instruction *ScanPos = QueryInst; 594 595 // Check for a cached result 596 MemDepResult &LocalCache = LocalDeps[QueryInst]; 597 598 // If the cached entry is non-dirty, just return it. Note that this depends 599 // on MemDepResult's default constructing to 'dirty'. 600 if (!LocalCache.isDirty()) 601 return LocalCache; 602 603 // Otherwise, if we have a dirty entry, we know we can start the scan at that 604 // instruction, which may save us some work. 605 if (Instruction *Inst = LocalCache.getInst()) { 606 ScanPos = Inst; 607 608 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); 609 } 610 611 BasicBlock *QueryParent = QueryInst->getParent(); 612 613 // Do the scan. 614 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { 615 // No dependence found. If this is the entry block of the function, it is 616 // unknown, otherwise it is non-local. 617 if (QueryParent != &QueryParent->getParent()->getEntryBlock()) 618 LocalCache = MemDepResult::getNonLocal(); 619 else 620 LocalCache = MemDepResult::getNonFuncLocal(); 621 } else { 622 AliasAnalysis::Location MemLoc; 623 AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA); 624 if (MemLoc.Ptr) { 625 // If we can do a pointer scan, make it happen. 626 bool isLoad = !(MR & AliasAnalysis::Mod); 627 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst)) 628 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start; 629 630 LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos, 631 QueryParent, QueryInst); 632 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) { 633 CallSite QueryCS(QueryInst); 634 bool isReadOnly = AA->onlyReadsMemory(QueryCS); 635 LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos, 636 QueryParent); 637 } else 638 // Non-memory instruction. 639 LocalCache = MemDepResult::getUnknown(); 640 } 641 642 // Remember the result! 643 if (Instruction *I = LocalCache.getInst()) 644 ReverseLocalDeps[I].insert(QueryInst); 645 646 return LocalCache; 647 } 648 649 #ifndef NDEBUG 650 /// AssertSorted - This method is used when -debug is specified to verify that 651 /// cache arrays are properly kept sorted. 652 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 653 int Count = -1) { 654 if (Count == -1) Count = Cache.size(); 655 if (Count == 0) return; 656 657 for (unsigned i = 1; i != unsigned(Count); ++i) 658 assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!"); 659 } 660 #endif 661 662 /// getNonLocalCallDependency - Perform a full dependency query for the 663 /// specified call, returning the set of blocks that the value is 664 /// potentially live across. The returned set of results will include a 665 /// "NonLocal" result for all blocks where the value is live across. 666 /// 667 /// This method assumes the instruction returns a "NonLocal" dependency 668 /// within its own block. 669 /// 670 /// This returns a reference to an internal data structure that may be 671 /// invalidated on the next non-local query or when an instruction is 672 /// removed. Clients must copy this data if they want it around longer than 673 /// that. 674 const MemoryDependenceAnalysis::NonLocalDepInfo & 675 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { 676 assert(getDependency(QueryCS.getInstruction()).isNonLocal() && 677 "getNonLocalCallDependency should only be used on calls with non-local deps!"); 678 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()]; 679 NonLocalDepInfo &Cache = CacheP.first; 680 681 /// DirtyBlocks - This is the set of blocks that need to be recomputed. In 682 /// the cached case, this can happen due to instructions being deleted etc. In 683 /// the uncached case, this starts out as the set of predecessors we care 684 /// about. 685 SmallVector<BasicBlock*, 32> DirtyBlocks; 686 687 if (!Cache.empty()) { 688 // Okay, we have a cache entry. If we know it is not dirty, just return it 689 // with no computation. 690 if (!CacheP.second) { 691 ++NumCacheNonLocal; 692 return Cache; 693 } 694 695 // If we already have a partially computed set of results, scan them to 696 // determine what is dirty, seeding our initial DirtyBlocks worklist. 697 for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end(); 698 I != E; ++I) 699 if (I->getResult().isDirty()) 700 DirtyBlocks.push_back(I->getBB()); 701 702 // Sort the cache so that we can do fast binary search lookups below. 703 std::sort(Cache.begin(), Cache.end()); 704 705 ++NumCacheDirtyNonLocal; 706 //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " 707 // << Cache.size() << " cached: " << *QueryInst; 708 } else { 709 // Seed DirtyBlocks with each of the preds of QueryInst's block. 710 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent(); 711 for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI) 712 DirtyBlocks.push_back(*PI); 713 ++NumUncacheNonLocal; 714 } 715 716 // isReadonlyCall - If this is a read-only call, we can be more aggressive. 717 bool isReadonlyCall = AA->onlyReadsMemory(QueryCS); 718 719 SmallPtrSet<BasicBlock*, 64> Visited; 720 721 unsigned NumSortedEntries = Cache.size(); 722 DEBUG(AssertSorted(Cache)); 723 724 // Iterate while we still have blocks to update. 725 while (!DirtyBlocks.empty()) { 726 BasicBlock *DirtyBB = DirtyBlocks.back(); 727 DirtyBlocks.pop_back(); 728 729 // Already processed this block? 730 if (!Visited.insert(DirtyBB)) 731 continue; 732 733 // Do a binary search to see if we already have an entry for this block in 734 // the cache set. If so, find it. 735 DEBUG(AssertSorted(Cache, NumSortedEntries)); 736 NonLocalDepInfo::iterator Entry = 737 std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries, 738 NonLocalDepEntry(DirtyBB)); 739 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB) 740 --Entry; 741 742 NonLocalDepEntry *ExistingResult = nullptr; 743 if (Entry != Cache.begin()+NumSortedEntries && 744 Entry->getBB() == DirtyBB) { 745 // If we already have an entry, and if it isn't already dirty, the block 746 // is done. 747 if (!Entry->getResult().isDirty()) 748 continue; 749 750 // Otherwise, remember this slot so we can update the value. 751 ExistingResult = &*Entry; 752 } 753 754 // If the dirty entry has a pointer, start scanning from it so we don't have 755 // to rescan the entire block. 756 BasicBlock::iterator ScanPos = DirtyBB->end(); 757 if (ExistingResult) { 758 if (Instruction *Inst = ExistingResult->getResult().getInst()) { 759 ScanPos = Inst; 760 // We're removing QueryInst's use of Inst. 761 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, 762 QueryCS.getInstruction()); 763 } 764 } 765 766 // Find out if this block has a local dependency for QueryInst. 767 MemDepResult Dep; 768 769 if (ScanPos != DirtyBB->begin()) { 770 Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB); 771 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { 772 // No dependence found. If this is the entry block of the function, it is 773 // a clobber, otherwise it is unknown. 774 Dep = MemDepResult::getNonLocal(); 775 } else { 776 Dep = MemDepResult::getNonFuncLocal(); 777 } 778 779 // If we had a dirty entry for the block, update it. Otherwise, just add 780 // a new entry. 781 if (ExistingResult) 782 ExistingResult->setResult(Dep); 783 else 784 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); 785 786 // If the block has a dependency (i.e. it isn't completely transparent to 787 // the value), remember the association! 788 if (!Dep.isNonLocal()) { 789 // Keep the ReverseNonLocalDeps map up to date so we can efficiently 790 // update this when we remove instructions. 791 if (Instruction *Inst = Dep.getInst()) 792 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction()); 793 } else { 794 795 // If the block *is* completely transparent to the load, we need to check 796 // the predecessors of this block. Add them to our worklist. 797 for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI) 798 DirtyBlocks.push_back(*PI); 799 } 800 } 801 802 return Cache; 803 } 804 805 /// getNonLocalPointerDependency - Perform a full dependency query for an 806 /// access to the specified (non-volatile) memory location, returning the 807 /// set of instructions that either define or clobber the value. 808 /// 809 /// This method assumes the pointer has a "NonLocal" dependency within its 810 /// own block. 811 /// 812 void MemoryDependenceAnalysis:: 813 getNonLocalPointerDependency(const AliasAnalysis::Location &Loc, bool isLoad, 814 BasicBlock *FromBB, 815 SmallVectorImpl<NonLocalDepResult> &Result) { 816 assert(Loc.Ptr->getType()->isPointerTy() && 817 "Can't get pointer deps of a non-pointer!"); 818 Result.clear(); 819 820 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL); 821 822 // This is the set of blocks we've inspected, and the pointer we consider in 823 // each block. Because of critical edges, we currently bail out if querying 824 // a block with multiple different pointers. This can happen during PHI 825 // translation. 826 DenseMap<BasicBlock*, Value*> Visited; 827 if (!getNonLocalPointerDepFromBB(Address, Loc, isLoad, FromBB, 828 Result, Visited, true)) 829 return; 830 Result.clear(); 831 Result.push_back(NonLocalDepResult(FromBB, 832 MemDepResult::getUnknown(), 833 const_cast<Value *>(Loc.Ptr))); 834 } 835 836 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with 837 /// Pointer/PointeeSize using either cached information in Cache or by doing a 838 /// lookup (which may use dirty cache info if available). If we do a lookup, 839 /// add the result to the cache. 840 MemDepResult MemoryDependenceAnalysis:: 841 GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc, 842 bool isLoad, BasicBlock *BB, 843 NonLocalDepInfo *Cache, unsigned NumSortedEntries) { 844 845 // Do a binary search to see if we already have an entry for this block in 846 // the cache set. If so, find it. 847 NonLocalDepInfo::iterator Entry = 848 std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries, 849 NonLocalDepEntry(BB)); 850 if (Entry != Cache->begin() && (Entry-1)->getBB() == BB) 851 --Entry; 852 853 NonLocalDepEntry *ExistingResult = nullptr; 854 if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB) 855 ExistingResult = &*Entry; 856 857 // If we have a cached entry, and it is non-dirty, use it as the value for 858 // this dependency. 859 if (ExistingResult && !ExistingResult->getResult().isDirty()) { 860 ++NumCacheNonLocalPtr; 861 return ExistingResult->getResult(); 862 } 863 864 // Otherwise, we have to scan for the value. If we have a dirty cache 865 // entry, start scanning from its position, otherwise we scan from the end 866 // of the block. 867 BasicBlock::iterator ScanPos = BB->end(); 868 if (ExistingResult && ExistingResult->getResult().getInst()) { 869 assert(ExistingResult->getResult().getInst()->getParent() == BB && 870 "Instruction invalidated?"); 871 ++NumCacheDirtyNonLocalPtr; 872 ScanPos = ExistingResult->getResult().getInst(); 873 874 // Eliminating the dirty entry from 'Cache', so update the reverse info. 875 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 876 RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey); 877 } else { 878 ++NumUncacheNonLocalPtr; 879 } 880 881 // Scan the block for the dependency. 882 MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB); 883 884 // If we had a dirty entry for the block, update it. Otherwise, just add 885 // a new entry. 886 if (ExistingResult) 887 ExistingResult->setResult(Dep); 888 else 889 Cache->push_back(NonLocalDepEntry(BB, Dep)); 890 891 // If the block has a dependency (i.e. it isn't completely transparent to 892 // the value), remember the reverse association because we just added it 893 // to Cache! 894 if (!Dep.isDef() && !Dep.isClobber()) 895 return Dep; 896 897 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently 898 // update MemDep when we remove instructions. 899 Instruction *Inst = Dep.getInst(); 900 assert(Inst && "Didn't depend on anything?"); 901 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 902 ReverseNonLocalPtrDeps[Inst].insert(CacheKey); 903 return Dep; 904 } 905 906 /// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain 907 /// number of elements in the array that are already properly ordered. This is 908 /// optimized for the case when only a few entries are added. 909 static void 910 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 911 unsigned NumSortedEntries) { 912 switch (Cache.size() - NumSortedEntries) { 913 case 0: 914 // done, no new entries. 915 break; 916 case 2: { 917 // Two new entries, insert the last one into place. 918 NonLocalDepEntry Val = Cache.back(); 919 Cache.pop_back(); 920 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 921 std::upper_bound(Cache.begin(), Cache.end()-1, Val); 922 Cache.insert(Entry, Val); 923 // FALL THROUGH. 924 } 925 case 1: 926 // One new entry, Just insert the new value at the appropriate position. 927 if (Cache.size() != 1) { 928 NonLocalDepEntry Val = Cache.back(); 929 Cache.pop_back(); 930 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 931 std::upper_bound(Cache.begin(), Cache.end(), Val); 932 Cache.insert(Entry, Val); 933 } 934 break; 935 default: 936 // Added many values, do a full scale sort. 937 std::sort(Cache.begin(), Cache.end()); 938 break; 939 } 940 } 941 942 /// getNonLocalPointerDepFromBB - Perform a dependency query based on 943 /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def 944 /// results to the results vector and keep track of which blocks are visited in 945 /// 'Visited'. 946 /// 947 /// This has special behavior for the first block queries (when SkipFirstBlock 948 /// is true). In this special case, it ignores the contents of the specified 949 /// block and starts returning dependence info for its predecessors. 950 /// 951 /// This function returns false on success, or true to indicate that it could 952 /// not compute dependence information for some reason. This should be treated 953 /// as a clobber dependence on the first instruction in the predecessor block. 954 bool MemoryDependenceAnalysis:: 955 getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, 956 const AliasAnalysis::Location &Loc, 957 bool isLoad, BasicBlock *StartBB, 958 SmallVectorImpl<NonLocalDepResult> &Result, 959 DenseMap<BasicBlock*, Value*> &Visited, 960 bool SkipFirstBlock) { 961 // Look up the cached info for Pointer. 962 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); 963 964 // Set up a temporary NLPI value. If the map doesn't yet have an entry for 965 // CacheKey, this value will be inserted as the associated value. Otherwise, 966 // it'll be ignored, and we'll have to check to see if the cached size and 967 // aa tags are consistent with the current query. 968 NonLocalPointerInfo InitialNLPI; 969 InitialNLPI.Size = Loc.Size; 970 InitialNLPI.AATags = Loc.AATags; 971 972 // Get the NLPI for CacheKey, inserting one into the map if it doesn't 973 // already have one. 974 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = 975 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); 976 NonLocalPointerInfo *CacheInfo = &Pair.first->second; 977 978 // If we already have a cache entry for this CacheKey, we may need to do some 979 // work to reconcile the cache entry and the current query. 980 if (!Pair.second) { 981 if (CacheInfo->Size < Loc.Size) { 982 // The query's Size is greater than the cached one. Throw out the 983 // cached data and proceed with the query at the greater size. 984 CacheInfo->Pair = BBSkipFirstBlockPair(); 985 CacheInfo->Size = Loc.Size; 986 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(), 987 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI) 988 if (Instruction *Inst = DI->getResult().getInst()) 989 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 990 CacheInfo->NonLocalDeps.clear(); 991 } else if (CacheInfo->Size > Loc.Size) { 992 // This query's Size is less than the cached one. Conservatively restart 993 // the query using the greater size. 994 return getNonLocalPointerDepFromBB(Pointer, 995 Loc.getWithNewSize(CacheInfo->Size), 996 isLoad, StartBB, Result, Visited, 997 SkipFirstBlock); 998 } 999 1000 // If the query's AATags are inconsistent with the cached one, 1001 // conservatively throw out the cached data and restart the query with 1002 // no tag if needed. 1003 if (CacheInfo->AATags != Loc.AATags) { 1004 if (CacheInfo->AATags) { 1005 CacheInfo->Pair = BBSkipFirstBlockPair(); 1006 CacheInfo->AATags = AAMDNodes(); 1007 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(), 1008 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI) 1009 if (Instruction *Inst = DI->getResult().getInst()) 1010 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1011 CacheInfo->NonLocalDeps.clear(); 1012 } 1013 if (Loc.AATags) 1014 return getNonLocalPointerDepFromBB(Pointer, Loc.getWithoutAATags(), 1015 isLoad, StartBB, Result, Visited, 1016 SkipFirstBlock); 1017 } 1018 } 1019 1020 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; 1021 1022 // If we have valid cached information for exactly the block we are 1023 // investigating, just return it with no recomputation. 1024 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { 1025 // We have a fully cached result for this query then we can just return the 1026 // cached results and populate the visited set. However, we have to verify 1027 // that we don't already have conflicting results for these blocks. Check 1028 // to ensure that if a block in the results set is in the visited set that 1029 // it was for the same pointer query. 1030 if (!Visited.empty()) { 1031 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 1032 I != E; ++I) { 1033 DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB()); 1034 if (VI == Visited.end() || VI->second == Pointer.getAddr()) 1035 continue; 1036 1037 // We have a pointer mismatch in a block. Just return clobber, saying 1038 // that something was clobbered in this result. We could also do a 1039 // non-fully cached query, but there is little point in doing this. 1040 return true; 1041 } 1042 } 1043 1044 Value *Addr = Pointer.getAddr(); 1045 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 1046 I != E; ++I) { 1047 Visited.insert(std::make_pair(I->getBB(), Addr)); 1048 if (I->getResult().isNonLocal()) { 1049 continue; 1050 } 1051 1052 if (!DT) { 1053 Result.push_back(NonLocalDepResult(I->getBB(), 1054 MemDepResult::getUnknown(), 1055 Addr)); 1056 } else if (DT->isReachableFromEntry(I->getBB())) { 1057 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr)); 1058 } 1059 } 1060 ++NumCacheCompleteNonLocalPtr; 1061 return false; 1062 } 1063 1064 // Otherwise, either this is a new block, a block with an invalid cache 1065 // pointer or one that we're about to invalidate by putting more info into it 1066 // than its valid cache info. If empty, the result will be valid cache info, 1067 // otherwise it isn't. 1068 if (Cache->empty()) 1069 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); 1070 else 1071 CacheInfo->Pair = BBSkipFirstBlockPair(); 1072 1073 SmallVector<BasicBlock*, 32> Worklist; 1074 Worklist.push_back(StartBB); 1075 1076 // PredList used inside loop. 1077 SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList; 1078 1079 // Keep track of the entries that we know are sorted. Previously cached 1080 // entries will all be sorted. The entries we add we only sort on demand (we 1081 // don't insert every element into its sorted position). We know that we 1082 // won't get any reuse from currently inserted values, because we don't 1083 // revisit blocks after we insert info for them. 1084 unsigned NumSortedEntries = Cache->size(); 1085 DEBUG(AssertSorted(*Cache)); 1086 1087 while (!Worklist.empty()) { 1088 BasicBlock *BB = Worklist.pop_back_val(); 1089 1090 // Skip the first block if we have it. 1091 if (!SkipFirstBlock) { 1092 // Analyze the dependency of *Pointer in FromBB. See if we already have 1093 // been here. 1094 assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); 1095 1096 // Get the dependency info for Pointer in BB. If we have cached 1097 // information, we will use it, otherwise we compute it. 1098 DEBUG(AssertSorted(*Cache, NumSortedEntries)); 1099 MemDepResult Dep = GetNonLocalInfoForBlock(Loc, isLoad, BB, Cache, 1100 NumSortedEntries); 1101 1102 // If we got a Def or Clobber, add this to the list of results. 1103 if (!Dep.isNonLocal()) { 1104 if (!DT) { 1105 Result.push_back(NonLocalDepResult(BB, 1106 MemDepResult::getUnknown(), 1107 Pointer.getAddr())); 1108 continue; 1109 } else if (DT->isReachableFromEntry(BB)) { 1110 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); 1111 continue; 1112 } 1113 } 1114 } 1115 1116 // If 'Pointer' is an instruction defined in this block, then we need to do 1117 // phi translation to change it into a value live in the predecessor block. 1118 // If not, we just add the predecessors to the worklist and scan them with 1119 // the same Pointer. 1120 if (!Pointer.NeedsPHITranslationFromBlock(BB)) { 1121 SkipFirstBlock = false; 1122 SmallVector<BasicBlock*, 16> NewBlocks; 1123 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { 1124 // Verify that we haven't looked at this block yet. 1125 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 1126 InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr())); 1127 if (InsertRes.second) { 1128 // First time we've looked at *PI. 1129 NewBlocks.push_back(*PI); 1130 continue; 1131 } 1132 1133 // If we have seen this block before, but it was with a different 1134 // pointer then we have a phi translation failure and we have to treat 1135 // this as a clobber. 1136 if (InsertRes.first->second != Pointer.getAddr()) { 1137 // Make sure to clean up the Visited map before continuing on to 1138 // PredTranslationFailure. 1139 for (unsigned i = 0; i < NewBlocks.size(); i++) 1140 Visited.erase(NewBlocks[i]); 1141 goto PredTranslationFailure; 1142 } 1143 } 1144 Worklist.append(NewBlocks.begin(), NewBlocks.end()); 1145 continue; 1146 } 1147 1148 // We do need to do phi translation, if we know ahead of time we can't phi 1149 // translate this value, don't even try. 1150 if (!Pointer.IsPotentiallyPHITranslatable()) 1151 goto PredTranslationFailure; 1152 1153 // We may have added values to the cache list before this PHI translation. 1154 // If so, we haven't done anything to ensure that the cache remains sorted. 1155 // Sort it now (if needed) so that recursive invocations of 1156 // getNonLocalPointerDepFromBB and other routines that could reuse the cache 1157 // value will only see properly sorted cache arrays. 1158 if (Cache && NumSortedEntries != Cache->size()) { 1159 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1160 NumSortedEntries = Cache->size(); 1161 } 1162 Cache = nullptr; 1163 1164 PredList.clear(); 1165 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { 1166 BasicBlock *Pred = *PI; 1167 PredList.push_back(std::make_pair(Pred, Pointer)); 1168 1169 // Get the PHI translated pointer in this predecessor. This can fail if 1170 // not translatable, in which case the getAddr() returns null. 1171 PHITransAddr &PredPointer = PredList.back().second; 1172 PredPointer.PHITranslateValue(BB, Pred, nullptr); 1173 1174 Value *PredPtrVal = PredPointer.getAddr(); 1175 1176 // Check to see if we have already visited this pred block with another 1177 // pointer. If so, we can't do this lookup. This failure can occur 1178 // with PHI translation when a critical edge exists and the PHI node in 1179 // the successor translates to a pointer value different than the 1180 // pointer the block was first analyzed with. 1181 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 1182 InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal)); 1183 1184 if (!InsertRes.second) { 1185 // We found the pred; take it off the list of preds to visit. 1186 PredList.pop_back(); 1187 1188 // If the predecessor was visited with PredPtr, then we already did 1189 // the analysis and can ignore it. 1190 if (InsertRes.first->second == PredPtrVal) 1191 continue; 1192 1193 // Otherwise, the block was previously analyzed with a different 1194 // pointer. We can't represent the result of this case, so we just 1195 // treat this as a phi translation failure. 1196 1197 // Make sure to clean up the Visited map before continuing on to 1198 // PredTranslationFailure. 1199 for (unsigned i = 0, n = PredList.size(); i < n; ++i) 1200 Visited.erase(PredList[i].first); 1201 1202 goto PredTranslationFailure; 1203 } 1204 } 1205 1206 // Actually process results here; this need to be a separate loop to avoid 1207 // calling getNonLocalPointerDepFromBB for blocks we don't want to return 1208 // any results for. (getNonLocalPointerDepFromBB will modify our 1209 // datastructures in ways the code after the PredTranslationFailure label 1210 // doesn't expect.) 1211 for (unsigned i = 0, n = PredList.size(); i < n; ++i) { 1212 BasicBlock *Pred = PredList[i].first; 1213 PHITransAddr &PredPointer = PredList[i].second; 1214 Value *PredPtrVal = PredPointer.getAddr(); 1215 1216 bool CanTranslate = true; 1217 // If PHI translation was unable to find an available pointer in this 1218 // predecessor, then we have to assume that the pointer is clobbered in 1219 // that predecessor. We can still do PRE of the load, which would insert 1220 // a computation of the pointer in this predecessor. 1221 if (!PredPtrVal) 1222 CanTranslate = false; 1223 1224 // FIXME: it is entirely possible that PHI translating will end up with 1225 // the same value. Consider PHI translating something like: 1226 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* 1227 // to recurse here, pedantically speaking. 1228 1229 // If getNonLocalPointerDepFromBB fails here, that means the cached 1230 // result conflicted with the Visited list; we have to conservatively 1231 // assume it is unknown, but this also does not block PRE of the load. 1232 if (!CanTranslate || 1233 getNonLocalPointerDepFromBB(PredPointer, 1234 Loc.getWithNewPtr(PredPtrVal), 1235 isLoad, Pred, 1236 Result, Visited)) { 1237 // Add the entry to the Result list. 1238 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal); 1239 Result.push_back(Entry); 1240 1241 // Since we had a phi translation failure, the cache for CacheKey won't 1242 // include all of the entries that we need to immediately satisfy future 1243 // queries. Mark this in NonLocalPointerDeps by setting the 1244 // BBSkipFirstBlockPair pointer to null. This requires reuse of the 1245 // cached value to do more work but not miss the phi trans failure. 1246 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; 1247 NLPI.Pair = BBSkipFirstBlockPair(); 1248 continue; 1249 } 1250 } 1251 1252 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. 1253 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1254 Cache = &CacheInfo->NonLocalDeps; 1255 NumSortedEntries = Cache->size(); 1256 1257 // Since we did phi translation, the "Cache" set won't contain all of the 1258 // results for the query. This is ok (we can still use it to accelerate 1259 // specific block queries) but we can't do the fastpath "return all 1260 // results from the set" Clear out the indicator for this. 1261 CacheInfo->Pair = BBSkipFirstBlockPair(); 1262 SkipFirstBlock = false; 1263 continue; 1264 1265 PredTranslationFailure: 1266 // The following code is "failure"; we can't produce a sane translation 1267 // for the given block. It assumes that we haven't modified any of 1268 // our datastructures while processing the current block. 1269 1270 if (!Cache) { 1271 // Refresh the CacheInfo/Cache pointer if it got invalidated. 1272 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1273 Cache = &CacheInfo->NonLocalDeps; 1274 NumSortedEntries = Cache->size(); 1275 } 1276 1277 // Since we failed phi translation, the "Cache" set won't contain all of the 1278 // results for the query. This is ok (we can still use it to accelerate 1279 // specific block queries) but we can't do the fastpath "return all 1280 // results from the set". Clear out the indicator for this. 1281 CacheInfo->Pair = BBSkipFirstBlockPair(); 1282 1283 // If *nothing* works, mark the pointer as unknown. 1284 // 1285 // If this is the magic first block, return this as a clobber of the whole 1286 // incoming value. Since we can't phi translate to one of the predecessors, 1287 // we have to bail out. 1288 if (SkipFirstBlock) 1289 return true; 1290 1291 for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) { 1292 assert(I != Cache->rend() && "Didn't find current block??"); 1293 if (I->getBB() != BB) 1294 continue; 1295 1296 assert(I->getResult().isNonLocal() && 1297 "Should only be here with transparent block"); 1298 I->setResult(MemDepResult::getUnknown()); 1299 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), 1300 Pointer.getAddr())); 1301 break; 1302 } 1303 } 1304 1305 // Okay, we're done now. If we added new values to the cache, re-sort it. 1306 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1307 DEBUG(AssertSorted(*Cache)); 1308 return false; 1309 } 1310 1311 /// RemoveCachedNonLocalPointerDependencies - If P exists in 1312 /// CachedNonLocalPointerInfo, remove it. 1313 void MemoryDependenceAnalysis:: 1314 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) { 1315 CachedNonLocalPointerInfo::iterator It = 1316 NonLocalPointerDeps.find(P); 1317 if (It == NonLocalPointerDeps.end()) return; 1318 1319 // Remove all of the entries in the BB->val map. This involves removing 1320 // instructions from the reverse map. 1321 NonLocalDepInfo &PInfo = It->second.NonLocalDeps; 1322 1323 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { 1324 Instruction *Target = PInfo[i].getResult().getInst(); 1325 if (!Target) continue; // Ignore non-local dep results. 1326 assert(Target->getParent() == PInfo[i].getBB()); 1327 1328 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1329 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); 1330 } 1331 1332 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). 1333 NonLocalPointerDeps.erase(It); 1334 } 1335 1336 1337 /// invalidateCachedPointerInfo - This method is used to invalidate cached 1338 /// information about the specified pointer, because it may be too 1339 /// conservative in memdep. This is an optional call that can be used when 1340 /// the client detects an equivalence between the pointer and some other 1341 /// value and replaces the other value with ptr. This can make Ptr available 1342 /// in more places that cached info does not necessarily keep. 1343 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) { 1344 // If Ptr isn't really a pointer, just ignore it. 1345 if (!Ptr->getType()->isPointerTy()) return; 1346 // Flush store info for the pointer. 1347 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); 1348 // Flush load info for the pointer. 1349 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); 1350 } 1351 1352 /// invalidateCachedPredecessors - Clear the PredIteratorCache info. 1353 /// This needs to be done when the CFG changes, e.g., due to splitting 1354 /// critical edges. 1355 void MemoryDependenceAnalysis::invalidateCachedPredecessors() { 1356 PredCache->clear(); 1357 } 1358 1359 /// removeInstruction - Remove an instruction from the dependence analysis, 1360 /// updating the dependence of instructions that previously depended on it. 1361 /// This method attempts to keep the cache coherent using the reverse map. 1362 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) { 1363 // Walk through the Non-local dependencies, removing this one as the value 1364 // for any cached queries. 1365 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); 1366 if (NLDI != NonLocalDeps.end()) { 1367 NonLocalDepInfo &BlockMap = NLDI->second.first; 1368 for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end(); 1369 DI != DE; ++DI) 1370 if (Instruction *Inst = DI->getResult().getInst()) 1371 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); 1372 NonLocalDeps.erase(NLDI); 1373 } 1374 1375 // If we have a cached local dependence query for this instruction, remove it. 1376 // 1377 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); 1378 if (LocalDepEntry != LocalDeps.end()) { 1379 // Remove us from DepInst's reverse set now that the local dep info is gone. 1380 if (Instruction *Inst = LocalDepEntry->second.getInst()) 1381 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); 1382 1383 // Remove this local dependency info. 1384 LocalDeps.erase(LocalDepEntry); 1385 } 1386 1387 // If we have any cached pointer dependencies on this instruction, remove 1388 // them. If the instruction has non-pointer type, then it can't be a pointer 1389 // base. 1390 1391 // Remove it from both the load info and the store info. The instruction 1392 // can't be in either of these maps if it is non-pointer. 1393 if (RemInst->getType()->isPointerTy()) { 1394 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); 1395 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); 1396 } 1397 1398 // Loop over all of the things that depend on the instruction we're removing. 1399 // 1400 SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd; 1401 1402 // If we find RemInst as a clobber or Def in any of the maps for other values, 1403 // we need to replace its entry with a dirty version of the instruction after 1404 // it. If RemInst is a terminator, we use a null dirty value. 1405 // 1406 // Using a dirty version of the instruction after RemInst saves having to scan 1407 // the entire block to get to this point. 1408 MemDepResult NewDirtyVal; 1409 if (!RemInst->isTerminator()) 1410 NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst)); 1411 1412 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); 1413 if (ReverseDepIt != ReverseLocalDeps.end()) { 1414 SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second; 1415 // RemInst can't be the terminator if it has local stuff depending on it. 1416 assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) && 1417 "Nothing can locally depend on a terminator"); 1418 1419 for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(), 1420 E = ReverseDeps.end(); I != E; ++I) { 1421 Instruction *InstDependingOnRemInst = *I; 1422 assert(InstDependingOnRemInst != RemInst && 1423 "Already removed our local dep info"); 1424 1425 LocalDeps[InstDependingOnRemInst] = NewDirtyVal; 1426 1427 // Make sure to remember that new things depend on NewDepInst. 1428 assert(NewDirtyVal.getInst() && "There is no way something else can have " 1429 "a local dep on this if it is a terminator!"); 1430 ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(), 1431 InstDependingOnRemInst)); 1432 } 1433 1434 ReverseLocalDeps.erase(ReverseDepIt); 1435 1436 // Add new reverse deps after scanning the set, to avoid invalidating the 1437 // 'ReverseDeps' reference. 1438 while (!ReverseDepsToAdd.empty()) { 1439 ReverseLocalDeps[ReverseDepsToAdd.back().first] 1440 .insert(ReverseDepsToAdd.back().second); 1441 ReverseDepsToAdd.pop_back(); 1442 } 1443 } 1444 1445 ReverseDepIt = ReverseNonLocalDeps.find(RemInst); 1446 if (ReverseDepIt != ReverseNonLocalDeps.end()) { 1447 SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second; 1448 for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end(); 1449 I != E; ++I) { 1450 assert(*I != RemInst && "Already removed NonLocalDep info for RemInst"); 1451 1452 PerInstNLInfo &INLD = NonLocalDeps[*I]; 1453 // The information is now dirty! 1454 INLD.second = true; 1455 1456 for (NonLocalDepInfo::iterator DI = INLD.first.begin(), 1457 DE = INLD.first.end(); DI != DE; ++DI) { 1458 if (DI->getResult().getInst() != RemInst) continue; 1459 1460 // Convert to a dirty entry for the subsequent instruction. 1461 DI->setResult(NewDirtyVal); 1462 1463 if (Instruction *NextI = NewDirtyVal.getInst()) 1464 ReverseDepsToAdd.push_back(std::make_pair(NextI, *I)); 1465 } 1466 } 1467 1468 ReverseNonLocalDeps.erase(ReverseDepIt); 1469 1470 // Add new reverse deps after scanning the set, to avoid invalidating 'Set' 1471 while (!ReverseDepsToAdd.empty()) { 1472 ReverseNonLocalDeps[ReverseDepsToAdd.back().first] 1473 .insert(ReverseDepsToAdd.back().second); 1474 ReverseDepsToAdd.pop_back(); 1475 } 1476 } 1477 1478 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a 1479 // value in the NonLocalPointerDeps info. 1480 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = 1481 ReverseNonLocalPtrDeps.find(RemInst); 1482 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { 1483 SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second; 1484 SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd; 1485 1486 for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(), 1487 E = Set.end(); I != E; ++I) { 1488 ValueIsLoadPair P = *I; 1489 assert(P.getPointer() != RemInst && 1490 "Already removed NonLocalPointerDeps info for RemInst"); 1491 1492 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; 1493 1494 // The cache is not valid for any specific block anymore. 1495 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); 1496 1497 // Update any entries for RemInst to use the instruction after it. 1498 for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end(); 1499 DI != DE; ++DI) { 1500 if (DI->getResult().getInst() != RemInst) continue; 1501 1502 // Convert to a dirty entry for the subsequent instruction. 1503 DI->setResult(NewDirtyVal); 1504 1505 if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) 1506 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); 1507 } 1508 1509 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its 1510 // subsequent value may invalidate the sortedness. 1511 std::sort(NLPDI.begin(), NLPDI.end()); 1512 } 1513 1514 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); 1515 1516 while (!ReversePtrDepsToAdd.empty()) { 1517 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first] 1518 .insert(ReversePtrDepsToAdd.back().second); 1519 ReversePtrDepsToAdd.pop_back(); 1520 } 1521 } 1522 1523 1524 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); 1525 AA->deleteValue(RemInst); 1526 DEBUG(verifyRemoved(RemInst)); 1527 } 1528 /// verifyRemoved - Verify that the specified instruction does not occur 1529 /// in our internal data structures. 1530 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const { 1531 for (LocalDepMapType::const_iterator I = LocalDeps.begin(), 1532 E = LocalDeps.end(); I != E; ++I) { 1533 assert(I->first != D && "Inst occurs in data structures"); 1534 assert(I->second.getInst() != D && 1535 "Inst occurs in data structures"); 1536 } 1537 1538 for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(), 1539 E = NonLocalPointerDeps.end(); I != E; ++I) { 1540 assert(I->first.getPointer() != D && "Inst occurs in NLPD map key"); 1541 const NonLocalDepInfo &Val = I->second.NonLocalDeps; 1542 for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end(); 1543 II != E; ++II) 1544 assert(II->getResult().getInst() != D && "Inst occurs as NLPD value"); 1545 } 1546 1547 for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(), 1548 E = NonLocalDeps.end(); I != E; ++I) { 1549 assert(I->first != D && "Inst occurs in data structures"); 1550 const PerInstNLInfo &INLD = I->second; 1551 for (NonLocalDepInfo::const_iterator II = INLD.first.begin(), 1552 EE = INLD.first.end(); II != EE; ++II) 1553 assert(II->getResult().getInst() != D && "Inst occurs in data structures"); 1554 } 1555 1556 for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(), 1557 E = ReverseLocalDeps.end(); I != E; ++I) { 1558 assert(I->first != D && "Inst occurs in data structures"); 1559 for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(), 1560 EE = I->second.end(); II != EE; ++II) 1561 assert(*II != D && "Inst occurs in data structures"); 1562 } 1563 1564 for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(), 1565 E = ReverseNonLocalDeps.end(); 1566 I != E; ++I) { 1567 assert(I->first != D && "Inst occurs in data structures"); 1568 for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(), 1569 EE = I->second.end(); II != EE; ++II) 1570 assert(*II != D && "Inst occurs in data structures"); 1571 } 1572 1573 for (ReverseNonLocalPtrDepTy::const_iterator 1574 I = ReverseNonLocalPtrDeps.begin(), 1575 E = ReverseNonLocalPtrDeps.end(); I != E; ++I) { 1576 assert(I->first != D && "Inst occurs in rev NLPD map"); 1577 1578 for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(), 1579 E = I->second.end(); II != E; ++II) 1580 assert(*II != ValueIsLoadPair(D, false) && 1581 *II != ValueIsLoadPair(D, true) && 1582 "Inst occurs in ReverseNonLocalPtrDeps map"); 1583 } 1584 1585 } 1586