1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements an analysis that determines, for a given memory 11 // operation, what preceding memory operations it depends on. It builds on 12 // alias analysis information, and tries to provide a lazy, caching interface to 13 // a common kind of alias information query. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/MemoryBuiltins.h" 24 #include "llvm/Analysis/PHITransAddr.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/IR/PredIteratorCache.h" 33 #include "llvm/Support/Debug.h" 34 using namespace llvm; 35 36 #define DEBUG_TYPE "memdep" 37 38 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); 39 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); 40 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); 41 42 STATISTIC(NumCacheNonLocalPtr, 43 "Number of fully cached non-local ptr responses"); 44 STATISTIC(NumCacheDirtyNonLocalPtr, 45 "Number of cached, but dirty, non-local ptr responses"); 46 STATISTIC(NumUncacheNonLocalPtr, 47 "Number of uncached non-local ptr responses"); 48 STATISTIC(NumCacheCompleteNonLocalPtr, 49 "Number of block queries that were completely cached"); 50 51 // Limit for the number of instructions to scan in a block. 52 static const unsigned int BlockScanLimit = 100; 53 54 // Limit on the number of memdep results to process. 55 static const unsigned int NumResultsLimit = 100; 56 57 char MemoryDependenceAnalysis::ID = 0; 58 59 // Register this pass... 60 INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep", 61 "Memory Dependence Analysis", false, true) 62 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 63 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 64 INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep", 65 "Memory Dependence Analysis", false, true) 66 67 MemoryDependenceAnalysis::MemoryDependenceAnalysis() 68 : FunctionPass(ID), PredCache() { 69 initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry()); 70 } 71 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() { 72 } 73 74 /// Clean up memory in between runs 75 void MemoryDependenceAnalysis::releaseMemory() { 76 LocalDeps.clear(); 77 NonLocalDeps.clear(); 78 NonLocalPointerDeps.clear(); 79 ReverseLocalDeps.clear(); 80 ReverseNonLocalDeps.clear(); 81 ReverseNonLocalPtrDeps.clear(); 82 PredCache->clear(); 83 } 84 85 /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis. 86 /// 87 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 88 AU.setPreservesAll(); 89 AU.addRequired<AssumptionCacheTracker>(); 90 AU.addRequiredTransitive<AliasAnalysis>(); 91 } 92 93 bool MemoryDependenceAnalysis::runOnFunction(Function &F) { 94 AA = &getAnalysis<AliasAnalysis>(); 95 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 96 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 97 DL = DLP ? &DLP->getDataLayout() : nullptr; 98 DominatorTreeWrapperPass *DTWP = 99 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 100 DT = DTWP ? &DTWP->getDomTree() : nullptr; 101 if (!PredCache) 102 PredCache.reset(new PredIteratorCache()); 103 return false; 104 } 105 106 /// RemoveFromReverseMap - This is a helper function that removes Val from 107 /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry. 108 template <typename KeyTy> 109 static void RemoveFromReverseMap(DenseMap<Instruction*, 110 SmallPtrSet<KeyTy, 4> > &ReverseMap, 111 Instruction *Inst, KeyTy Val) { 112 typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator 113 InstIt = ReverseMap.find(Inst); 114 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); 115 bool Found = InstIt->second.erase(Val); 116 assert(Found && "Invalid reverse map!"); (void)Found; 117 if (InstIt->second.empty()) 118 ReverseMap.erase(InstIt); 119 } 120 121 /// GetLocation - If the given instruction references a specific memory 122 /// location, fill in Loc with the details, otherwise set Loc.Ptr to null. 123 /// Return a ModRefInfo value describing the general behavior of the 124 /// instruction. 125 static 126 AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst, 127 AliasAnalysis::Location &Loc, 128 AliasAnalysis *AA) { 129 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 130 if (LI->isUnordered()) { 131 Loc = AA->getLocation(LI); 132 return AliasAnalysis::Ref; 133 } 134 if (LI->getOrdering() == Monotonic) { 135 Loc = AA->getLocation(LI); 136 return AliasAnalysis::ModRef; 137 } 138 Loc = AliasAnalysis::Location(); 139 return AliasAnalysis::ModRef; 140 } 141 142 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 143 if (SI->isUnordered()) { 144 Loc = AA->getLocation(SI); 145 return AliasAnalysis::Mod; 146 } 147 if (SI->getOrdering() == Monotonic) { 148 Loc = AA->getLocation(SI); 149 return AliasAnalysis::ModRef; 150 } 151 Loc = AliasAnalysis::Location(); 152 return AliasAnalysis::ModRef; 153 } 154 155 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { 156 Loc = AA->getLocation(V); 157 return AliasAnalysis::ModRef; 158 } 159 160 if (const CallInst *CI = isFreeCall(Inst, AA->getTargetLibraryInfo())) { 161 // calls to free() deallocate the entire structure 162 Loc = AliasAnalysis::Location(CI->getArgOperand(0)); 163 return AliasAnalysis::Mod; 164 } 165 166 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 167 AAMDNodes AAInfo; 168 169 switch (II->getIntrinsicID()) { 170 case Intrinsic::lifetime_start: 171 case Intrinsic::lifetime_end: 172 case Intrinsic::invariant_start: 173 II->getAAMetadata(AAInfo); 174 Loc = AliasAnalysis::Location(II->getArgOperand(1), 175 cast<ConstantInt>(II->getArgOperand(0)) 176 ->getZExtValue(), AAInfo); 177 // These intrinsics don't really modify the memory, but returning Mod 178 // will allow them to be handled conservatively. 179 return AliasAnalysis::Mod; 180 case Intrinsic::invariant_end: 181 II->getAAMetadata(AAInfo); 182 Loc = AliasAnalysis::Location(II->getArgOperand(2), 183 cast<ConstantInt>(II->getArgOperand(1)) 184 ->getZExtValue(), AAInfo); 185 // These intrinsics don't really modify the memory, but returning Mod 186 // will allow them to be handled conservatively. 187 return AliasAnalysis::Mod; 188 default: 189 break; 190 } 191 } 192 193 // Otherwise, just do the coarse-grained thing that always works. 194 if (Inst->mayWriteToMemory()) 195 return AliasAnalysis::ModRef; 196 if (Inst->mayReadFromMemory()) 197 return AliasAnalysis::Ref; 198 return AliasAnalysis::NoModRef; 199 } 200 201 /// getCallSiteDependencyFrom - Private helper for finding the local 202 /// dependencies of a call site. 203 MemDepResult MemoryDependenceAnalysis:: 204 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall, 205 BasicBlock::iterator ScanIt, BasicBlock *BB) { 206 unsigned Limit = BlockScanLimit; 207 208 // Walk backwards through the block, looking for dependencies 209 while (ScanIt != BB->begin()) { 210 // Limit the amount of scanning we do so we don't end up with quadratic 211 // running time on extreme testcases. 212 --Limit; 213 if (!Limit) 214 return MemDepResult::getUnknown(); 215 216 Instruction *Inst = --ScanIt; 217 218 // If this inst is a memory op, get the pointer it accessed 219 AliasAnalysis::Location Loc; 220 AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA); 221 if (Loc.Ptr) { 222 // A simple instruction. 223 if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef) 224 return MemDepResult::getClobber(Inst); 225 continue; 226 } 227 228 if (CallSite InstCS = cast<Value>(Inst)) { 229 // Debug intrinsics don't cause dependences. 230 if (isa<DbgInfoIntrinsic>(Inst)) continue; 231 // If these two calls do not interfere, look past it. 232 switch (AA->getModRefInfo(CS, InstCS)) { 233 case AliasAnalysis::NoModRef: 234 // If the two calls are the same, return InstCS as a Def, so that 235 // CS can be found redundant and eliminated. 236 if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) && 237 CS.getInstruction()->isIdenticalToWhenDefined(Inst)) 238 return MemDepResult::getDef(Inst); 239 240 // Otherwise if the two calls don't interact (e.g. InstCS is readnone) 241 // keep scanning. 242 continue; 243 default: 244 return MemDepResult::getClobber(Inst); 245 } 246 } 247 248 // If we could not obtain a pointer for the instruction and the instruction 249 // touches memory then assume that this is a dependency. 250 if (MR != AliasAnalysis::NoModRef) 251 return MemDepResult::getClobber(Inst); 252 } 253 254 // No dependence found. If this is the entry block of the function, it is 255 // unknown, otherwise it is non-local. 256 if (BB != &BB->getParent()->getEntryBlock()) 257 return MemDepResult::getNonLocal(); 258 return MemDepResult::getNonFuncLocal(); 259 } 260 261 /// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that 262 /// would fully overlap MemLoc if done as a wider legal integer load. 263 /// 264 /// MemLocBase, MemLocOffset are lazily computed here the first time the 265 /// base/offs of memloc is needed. 266 static bool 267 isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc, 268 const Value *&MemLocBase, 269 int64_t &MemLocOffs, 270 const LoadInst *LI, 271 const DataLayout *DL) { 272 // If we have no target data, we can't do this. 273 if (!DL) return false; 274 275 // If we haven't already computed the base/offset of MemLoc, do so now. 276 if (!MemLocBase) 277 MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, DL); 278 279 unsigned Size = MemoryDependenceAnalysis:: 280 getLoadLoadClobberFullWidthSize(MemLocBase, MemLocOffs, MemLoc.Size, 281 LI, *DL); 282 return Size != 0; 283 } 284 285 /// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that 286 /// looks at a memory location for a load (specified by MemLocBase, Offs, 287 /// and Size) and compares it against a load. If the specified load could 288 /// be safely widened to a larger integer load that is 1) still efficient, 289 /// 2) safe for the target, and 3) would provide the specified memory 290 /// location value, then this function returns the size in bytes of the 291 /// load width to use. If not, this returns zero. 292 unsigned MemoryDependenceAnalysis:: 293 getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs, 294 unsigned MemLocSize, const LoadInst *LI, 295 const DataLayout &DL) { 296 // We can only extend simple integer loads. 297 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0; 298 299 // Load widening is hostile to ThreadSanitizer: it may cause false positives 300 // or make the reports more cryptic (access sizes are wrong). 301 if (LI->getParent()->getParent()->getAttributes(). 302 hasAttribute(AttributeSet::FunctionIndex, Attribute::SanitizeThread)) 303 return 0; 304 305 // Get the base of this load. 306 int64_t LIOffs = 0; 307 const Value *LIBase = 308 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, &DL); 309 310 // If the two pointers are not based on the same pointer, we can't tell that 311 // they are related. 312 if (LIBase != MemLocBase) return 0; 313 314 // Okay, the two values are based on the same pointer, but returned as 315 // no-alias. This happens when we have things like two byte loads at "P+1" 316 // and "P+3". Check to see if increasing the size of the "LI" load up to its 317 // alignment (or the largest native integer type) will allow us to load all 318 // the bits required by MemLoc. 319 320 // If MemLoc is before LI, then no widening of LI will help us out. 321 if (MemLocOffs < LIOffs) return 0; 322 323 // Get the alignment of the load in bytes. We assume that it is safe to load 324 // any legal integer up to this size without a problem. For example, if we're 325 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can 326 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it 327 // to i16. 328 unsigned LoadAlign = LI->getAlignment(); 329 330 int64_t MemLocEnd = MemLocOffs+MemLocSize; 331 332 // If no amount of rounding up will let MemLoc fit into LI, then bail out. 333 if (LIOffs+LoadAlign < MemLocEnd) return 0; 334 335 // This is the size of the load to try. Start with the next larger power of 336 // two. 337 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U; 338 NewLoadByteSize = NextPowerOf2(NewLoadByteSize); 339 340 while (1) { 341 // If this load size is bigger than our known alignment or would not fit 342 // into a native integer register, then we fail. 343 if (NewLoadByteSize > LoadAlign || 344 !DL.fitsInLegalInteger(NewLoadByteSize*8)) 345 return 0; 346 347 if (LIOffs+NewLoadByteSize > MemLocEnd && 348 LI->getParent()->getParent()->getAttributes(). 349 hasAttribute(AttributeSet::FunctionIndex, Attribute::SanitizeAddress)) 350 // We will be reading past the location accessed by the original program. 351 // While this is safe in a regular build, Address Safety analysis tools 352 // may start reporting false warnings. So, don't do widening. 353 return 0; 354 355 // If a load of this width would include all of MemLoc, then we succeed. 356 if (LIOffs+NewLoadByteSize >= MemLocEnd) 357 return NewLoadByteSize; 358 359 NewLoadByteSize <<= 1; 360 } 361 } 362 363 static bool isVolatile(Instruction *Inst) { 364 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 365 return LI->isVolatile(); 366 else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) 367 return SI->isVolatile(); 368 else if (AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(Inst)) 369 return AI->isVolatile(); 370 return false; 371 } 372 373 374 /// getPointerDependencyFrom - Return the instruction on which a memory 375 /// location depends. If isLoad is true, this routine ignores may-aliases with 376 /// read-only operations. If isLoad is false, this routine ignores may-aliases 377 /// with reads from read-only locations. If possible, pass the query 378 /// instruction as well; this function may take advantage of the metadata 379 /// annotated to the query instruction to refine the result. 380 MemDepResult MemoryDependenceAnalysis:: 381 getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, 382 BasicBlock::iterator ScanIt, BasicBlock *BB, 383 Instruction *QueryInst) { 384 385 const Value *MemLocBase = nullptr; 386 int64_t MemLocOffset = 0; 387 unsigned Limit = BlockScanLimit; 388 bool isInvariantLoad = false; 389 390 // We must be careful with atomic accesses, as they may allow another thread 391 // to touch this location, cloberring it. We are conservative: if the 392 // QueryInst is not a simple (non-atomic) memory access, we automatically 393 // return getClobber. 394 // If it is simple, we know based on the results of 395 // "Compiler testing via a theory of sound optimisations in the C11/C++11 396 // memory model" in PLDI 2013, that a non-atomic location can only be 397 // clobbered between a pair of a release and an acquire action, with no 398 // access to the location in between. 399 // Here is an example for giving the general intuition behind this rule. 400 // In the following code: 401 // store x 0; 402 // release action; [1] 403 // acquire action; [4] 404 // %val = load x; 405 // It is unsafe to replace %val by 0 because another thread may be running: 406 // acquire action; [2] 407 // store x 42; 408 // release action; [3] 409 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val 410 // being 42. A key property of this program however is that if either 411 // 1 or 4 were missing, there would be a race between the store of 42 412 // either the store of 0 or the load (making the whole progam racy). 413 // The paper mentionned above shows that the same property is respected 414 // by every program that can detect any optimisation of that kind: either 415 // it is racy (undefined) or there is a release followed by an acquire 416 // between the pair of accesses under consideration. 417 bool HasSeenAcquire = false; 418 419 if (isLoad && QueryInst) { 420 LoadInst *LI = dyn_cast<LoadInst>(QueryInst); 421 if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr) 422 isInvariantLoad = true; 423 } 424 425 // Walk backwards through the basic block, looking for dependencies. 426 while (ScanIt != BB->begin()) { 427 Instruction *Inst = --ScanIt; 428 429 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 430 // Debug intrinsics don't (and can't) cause dependencies. 431 if (isa<DbgInfoIntrinsic>(II)) continue; 432 433 // Limit the amount of scanning we do so we don't end up with quadratic 434 // running time on extreme testcases. 435 --Limit; 436 if (!Limit) 437 return MemDepResult::getUnknown(); 438 439 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 440 // If we reach a lifetime begin or end marker, then the query ends here 441 // because the value is undefined. 442 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 443 // FIXME: This only considers queries directly on the invariant-tagged 444 // pointer, not on query pointers that are indexed off of them. It'd 445 // be nice to handle that at some point (the right approach is to use 446 // GetPointerBaseWithConstantOffset). 447 if (AA->isMustAlias(AliasAnalysis::Location(II->getArgOperand(1)), 448 MemLoc)) 449 return MemDepResult::getDef(II); 450 continue; 451 } 452 } 453 454 // Values depend on loads if the pointers are must aliased. This means that 455 // a load depends on another must aliased load from the same value. 456 // One exception is atomic loads: a value can depend on an atomic load that it 457 // does not alias with when this atomic load indicates that another thread may 458 // be accessing the location. 459 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 460 461 // While volatile access cannot be eliminated, they do not have to clobber 462 // non-aliasing locations, as normal accesses, for example, can be safely 463 // reordered with volatile accesses. 464 if (LI->isVolatile()) { 465 if (!QueryInst) 466 // Original QueryInst *may* be volatile 467 return MemDepResult::getClobber(LI); 468 if (isVolatile(QueryInst)) 469 // Ordering required if QueryInst is itself volatile 470 return MemDepResult::getClobber(LI); 471 // Otherwise, volatile doesn't imply any special ordering 472 } 473 474 // Atomic loads have complications involved. 475 // A Monotonic (or higher) load is OK if the query inst is itself not atomic. 476 // An Acquire (or higher) load sets the HasSeenAcquire flag, so that any 477 // release store will know to return getClobber. 478 // FIXME: This is overly conservative. 479 if (LI->isAtomic() && LI->getOrdering() > Unordered) { 480 if (!QueryInst) 481 return MemDepResult::getClobber(LI); 482 if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) { 483 if (!QueryLI->isSimple()) 484 return MemDepResult::getClobber(LI); 485 } else if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) { 486 if (!QuerySI->isSimple()) 487 return MemDepResult::getClobber(LI); 488 } else if (QueryInst->mayReadOrWriteMemory()) { 489 return MemDepResult::getClobber(LI); 490 } 491 492 if (isAtLeastAcquire(LI->getOrdering())) 493 HasSeenAcquire = true; 494 } 495 496 AliasAnalysis::Location LoadLoc = AA->getLocation(LI); 497 498 // If we found a pointer, check if it could be the same as our pointer. 499 AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc); 500 501 if (isLoad) { 502 if (R == AliasAnalysis::NoAlias) { 503 // If this is an over-aligned integer load (for example, 504 // "load i8* %P, align 4") see if it would obviously overlap with the 505 // queried location if widened to a larger load (e.g. if the queried 506 // location is 1 byte at P+1). If so, return it as a load/load 507 // clobber result, allowing the client to decide to widen the load if 508 // it wants to. 509 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) 510 if (LI->getAlignment()*8 > ITy->getPrimitiveSizeInBits() && 511 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase, 512 MemLocOffset, LI, DL)) 513 return MemDepResult::getClobber(Inst); 514 515 continue; 516 } 517 518 // Must aliased loads are defs of each other. 519 if (R == AliasAnalysis::MustAlias) 520 return MemDepResult::getDef(Inst); 521 522 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads 523 // in terms of clobbering loads, but since it does this by looking 524 // at the clobbering load directly, it doesn't know about any 525 // phi translation that may have happened along the way. 526 527 // If we have a partial alias, then return this as a clobber for the 528 // client to handle. 529 if (R == AliasAnalysis::PartialAlias) 530 return MemDepResult::getClobber(Inst); 531 #endif 532 533 // Random may-alias loads don't depend on each other without a 534 // dependence. 535 continue; 536 } 537 538 // Stores don't depend on other no-aliased accesses. 539 if (R == AliasAnalysis::NoAlias) 540 continue; 541 542 // Stores don't alias loads from read-only memory. 543 if (AA->pointsToConstantMemory(LoadLoc)) 544 continue; 545 546 // Stores depend on may/must aliased loads. 547 return MemDepResult::getDef(Inst); 548 } 549 550 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 551 // Atomic stores have complications involved. 552 // A Monotonic store is OK if the query inst is itself not atomic. 553 // A Release (or higher) store further requires that no acquire load 554 // has been seen. 555 // FIXME: This is overly conservative. 556 if (!SI->isUnordered()) { 557 if (!QueryInst) 558 return MemDepResult::getClobber(SI); 559 if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) { 560 if (!QueryLI->isSimple()) 561 return MemDepResult::getClobber(SI); 562 } else if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) { 563 if (!QuerySI->isSimple()) 564 return MemDepResult::getClobber(SI); 565 } else if (QueryInst->mayReadOrWriteMemory()) { 566 return MemDepResult::getClobber(SI); 567 } 568 569 if (HasSeenAcquire && isAtLeastRelease(SI->getOrdering())) 570 return MemDepResult::getClobber(SI); 571 } 572 573 // FIXME: this is overly conservative. 574 // While volatile access cannot be eliminated, they do not have to clobber 575 // non-aliasing locations, as normal accesses can for example be reordered 576 // with volatile accesses. 577 if (SI->isVolatile()) 578 return MemDepResult::getClobber(SI); 579 580 // If alias analysis can tell that this store is guaranteed to not modify 581 // the query pointer, ignore it. Use getModRefInfo to handle cases where 582 // the query pointer points to constant memory etc. 583 if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef) 584 continue; 585 586 // Ok, this store might clobber the query pointer. Check to see if it is 587 // a must alias: in this case, we want to return this as a def. 588 AliasAnalysis::Location StoreLoc = AA->getLocation(SI); 589 590 // If we found a pointer, check if it could be the same as our pointer. 591 AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc); 592 593 if (R == AliasAnalysis::NoAlias) 594 continue; 595 if (R == AliasAnalysis::MustAlias) 596 return MemDepResult::getDef(Inst); 597 if (isInvariantLoad) 598 continue; 599 return MemDepResult::getClobber(Inst); 600 } 601 602 // If this is an allocation, and if we know that the accessed pointer is to 603 // the allocation, return Def. This means that there is no dependence and 604 // the access can be optimized based on that. For example, a load could 605 // turn into undef. 606 // Note: Only determine this to be a malloc if Inst is the malloc call, not 607 // a subsequent bitcast of the malloc call result. There can be stores to 608 // the malloced memory between the malloc call and its bitcast uses, and we 609 // need to continue scanning until the malloc call. 610 const TargetLibraryInfo *TLI = AA->getTargetLibraryInfo(); 611 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, TLI)) { 612 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL); 613 614 if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr)) 615 return MemDepResult::getDef(Inst); 616 // Be conservative if the accessed pointer may alias the allocation. 617 if (AA->alias(Inst, AccessPtr) != AliasAnalysis::NoAlias) 618 return MemDepResult::getClobber(Inst); 619 // If the allocation is not aliased and does not read memory (like 620 // strdup), it is safe to ignore. 621 if (isa<AllocaInst>(Inst) || 622 isMallocLikeFn(Inst, TLI) || isCallocLikeFn(Inst, TLI)) 623 continue; 624 } 625 626 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. 627 AliasAnalysis::ModRefResult MR = AA->getModRefInfo(Inst, MemLoc); 628 // If necessary, perform additional analysis. 629 if (MR == AliasAnalysis::ModRef) 630 MR = AA->callCapturesBefore(Inst, MemLoc, DT); 631 switch (MR) { 632 case AliasAnalysis::NoModRef: 633 // If the call has no effect on the queried pointer, just ignore it. 634 continue; 635 case AliasAnalysis::Mod: 636 return MemDepResult::getClobber(Inst); 637 case AliasAnalysis::Ref: 638 // If the call is known to never store to the pointer, and if this is a 639 // load query, we can safely ignore it (scan past it). 640 if (isLoad) 641 continue; 642 default: 643 // Otherwise, there is a potential dependence. Return a clobber. 644 return MemDepResult::getClobber(Inst); 645 } 646 } 647 648 // No dependence found. If this is the entry block of the function, it is 649 // unknown, otherwise it is non-local. 650 if (BB != &BB->getParent()->getEntryBlock()) 651 return MemDepResult::getNonLocal(); 652 return MemDepResult::getNonFuncLocal(); 653 } 654 655 /// getDependency - Return the instruction on which a memory operation 656 /// depends. 657 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) { 658 Instruction *ScanPos = QueryInst; 659 660 // Check for a cached result 661 MemDepResult &LocalCache = LocalDeps[QueryInst]; 662 663 // If the cached entry is non-dirty, just return it. Note that this depends 664 // on MemDepResult's default constructing to 'dirty'. 665 if (!LocalCache.isDirty()) 666 return LocalCache; 667 668 // Otherwise, if we have a dirty entry, we know we can start the scan at that 669 // instruction, which may save us some work. 670 if (Instruction *Inst = LocalCache.getInst()) { 671 ScanPos = Inst; 672 673 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); 674 } 675 676 BasicBlock *QueryParent = QueryInst->getParent(); 677 678 // Do the scan. 679 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { 680 // No dependence found. If this is the entry block of the function, it is 681 // unknown, otherwise it is non-local. 682 if (QueryParent != &QueryParent->getParent()->getEntryBlock()) 683 LocalCache = MemDepResult::getNonLocal(); 684 else 685 LocalCache = MemDepResult::getNonFuncLocal(); 686 } else { 687 AliasAnalysis::Location MemLoc; 688 AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA); 689 if (MemLoc.Ptr) { 690 // If we can do a pointer scan, make it happen. 691 bool isLoad = !(MR & AliasAnalysis::Mod); 692 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst)) 693 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start; 694 695 LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos, 696 QueryParent, QueryInst); 697 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) { 698 CallSite QueryCS(QueryInst); 699 bool isReadOnly = AA->onlyReadsMemory(QueryCS); 700 LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos, 701 QueryParent); 702 } else 703 // Non-memory instruction. 704 LocalCache = MemDepResult::getUnknown(); 705 } 706 707 // Remember the result! 708 if (Instruction *I = LocalCache.getInst()) 709 ReverseLocalDeps[I].insert(QueryInst); 710 711 return LocalCache; 712 } 713 714 #ifndef NDEBUG 715 /// AssertSorted - This method is used when -debug is specified to verify that 716 /// cache arrays are properly kept sorted. 717 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 718 int Count = -1) { 719 if (Count == -1) Count = Cache.size(); 720 if (Count == 0) return; 721 722 for (unsigned i = 1; i != unsigned(Count); ++i) 723 assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!"); 724 } 725 #endif 726 727 /// getNonLocalCallDependency - Perform a full dependency query for the 728 /// specified call, returning the set of blocks that the value is 729 /// potentially live across. The returned set of results will include a 730 /// "NonLocal" result for all blocks where the value is live across. 731 /// 732 /// This method assumes the instruction returns a "NonLocal" dependency 733 /// within its own block. 734 /// 735 /// This returns a reference to an internal data structure that may be 736 /// invalidated on the next non-local query or when an instruction is 737 /// removed. Clients must copy this data if they want it around longer than 738 /// that. 739 const MemoryDependenceAnalysis::NonLocalDepInfo & 740 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { 741 assert(getDependency(QueryCS.getInstruction()).isNonLocal() && 742 "getNonLocalCallDependency should only be used on calls with non-local deps!"); 743 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()]; 744 NonLocalDepInfo &Cache = CacheP.first; 745 746 /// DirtyBlocks - This is the set of blocks that need to be recomputed. In 747 /// the cached case, this can happen due to instructions being deleted etc. In 748 /// the uncached case, this starts out as the set of predecessors we care 749 /// about. 750 SmallVector<BasicBlock*, 32> DirtyBlocks; 751 752 if (!Cache.empty()) { 753 // Okay, we have a cache entry. If we know it is not dirty, just return it 754 // with no computation. 755 if (!CacheP.second) { 756 ++NumCacheNonLocal; 757 return Cache; 758 } 759 760 // If we already have a partially computed set of results, scan them to 761 // determine what is dirty, seeding our initial DirtyBlocks worklist. 762 for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end(); 763 I != E; ++I) 764 if (I->getResult().isDirty()) 765 DirtyBlocks.push_back(I->getBB()); 766 767 // Sort the cache so that we can do fast binary search lookups below. 768 std::sort(Cache.begin(), Cache.end()); 769 770 ++NumCacheDirtyNonLocal; 771 //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " 772 // << Cache.size() << " cached: " << *QueryInst; 773 } else { 774 // Seed DirtyBlocks with each of the preds of QueryInst's block. 775 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent(); 776 for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI) 777 DirtyBlocks.push_back(*PI); 778 ++NumUncacheNonLocal; 779 } 780 781 // isReadonlyCall - If this is a read-only call, we can be more aggressive. 782 bool isReadonlyCall = AA->onlyReadsMemory(QueryCS); 783 784 SmallPtrSet<BasicBlock*, 64> Visited; 785 786 unsigned NumSortedEntries = Cache.size(); 787 DEBUG(AssertSorted(Cache)); 788 789 // Iterate while we still have blocks to update. 790 while (!DirtyBlocks.empty()) { 791 BasicBlock *DirtyBB = DirtyBlocks.back(); 792 DirtyBlocks.pop_back(); 793 794 // Already processed this block? 795 if (!Visited.insert(DirtyBB).second) 796 continue; 797 798 // Do a binary search to see if we already have an entry for this block in 799 // the cache set. If so, find it. 800 DEBUG(AssertSorted(Cache, NumSortedEntries)); 801 NonLocalDepInfo::iterator Entry = 802 std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries, 803 NonLocalDepEntry(DirtyBB)); 804 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB) 805 --Entry; 806 807 NonLocalDepEntry *ExistingResult = nullptr; 808 if (Entry != Cache.begin()+NumSortedEntries && 809 Entry->getBB() == DirtyBB) { 810 // If we already have an entry, and if it isn't already dirty, the block 811 // is done. 812 if (!Entry->getResult().isDirty()) 813 continue; 814 815 // Otherwise, remember this slot so we can update the value. 816 ExistingResult = &*Entry; 817 } 818 819 // If the dirty entry has a pointer, start scanning from it so we don't have 820 // to rescan the entire block. 821 BasicBlock::iterator ScanPos = DirtyBB->end(); 822 if (ExistingResult) { 823 if (Instruction *Inst = ExistingResult->getResult().getInst()) { 824 ScanPos = Inst; 825 // We're removing QueryInst's use of Inst. 826 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, 827 QueryCS.getInstruction()); 828 } 829 } 830 831 // Find out if this block has a local dependency for QueryInst. 832 MemDepResult Dep; 833 834 if (ScanPos != DirtyBB->begin()) { 835 Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB); 836 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { 837 // No dependence found. If this is the entry block of the function, it is 838 // a clobber, otherwise it is unknown. 839 Dep = MemDepResult::getNonLocal(); 840 } else { 841 Dep = MemDepResult::getNonFuncLocal(); 842 } 843 844 // If we had a dirty entry for the block, update it. Otherwise, just add 845 // a new entry. 846 if (ExistingResult) 847 ExistingResult->setResult(Dep); 848 else 849 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); 850 851 // If the block has a dependency (i.e. it isn't completely transparent to 852 // the value), remember the association! 853 if (!Dep.isNonLocal()) { 854 // Keep the ReverseNonLocalDeps map up to date so we can efficiently 855 // update this when we remove instructions. 856 if (Instruction *Inst = Dep.getInst()) 857 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction()); 858 } else { 859 860 // If the block *is* completely transparent to the load, we need to check 861 // the predecessors of this block. Add them to our worklist. 862 for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI) 863 DirtyBlocks.push_back(*PI); 864 } 865 } 866 867 return Cache; 868 } 869 870 /// getNonLocalPointerDependency - Perform a full dependency query for an 871 /// access to the specified (non-volatile) memory location, returning the 872 /// set of instructions that either define or clobber the value. 873 /// 874 /// This method assumes the pointer has a "NonLocal" dependency within its 875 /// own block. 876 /// 877 void MemoryDependenceAnalysis:: 878 getNonLocalPointerDependency(Instruction *QueryInst, 879 SmallVectorImpl<NonLocalDepResult> &Result) { 880 881 auto getLocation = [](AliasAnalysis *AA, Instruction *Inst) { 882 if (auto *I = dyn_cast<LoadInst>(Inst)) 883 return AA->getLocation(I); 884 else if (auto *I = dyn_cast<StoreInst>(Inst)) 885 return AA->getLocation(I); 886 else if (auto *I = dyn_cast<VAArgInst>(Inst)) 887 return AA->getLocation(I); 888 else if (auto *I = dyn_cast<AtomicCmpXchgInst>(Inst)) 889 return AA->getLocation(I); 890 else if (auto *I = dyn_cast<AtomicRMWInst>(Inst)) 891 return AA->getLocation(I); 892 else 893 llvm_unreachable("unsupported memory instruction"); 894 }; 895 896 const AliasAnalysis::Location Loc = getLocation(AA, QueryInst); 897 bool isLoad = isa<LoadInst>(QueryInst); 898 BasicBlock *FromBB = QueryInst->getParent(); 899 assert(FromBB); 900 901 assert(Loc.Ptr->getType()->isPointerTy() && 902 "Can't get pointer deps of a non-pointer!"); 903 Result.clear(); 904 905 // This routine does not expect to deal with volatile instructions. 906 // Doing so would require piping through the QueryInst all the way through. 907 // TODO: volatiles can't be elided, but they can be reordered with other 908 // non-volatile accesses. 909 910 // We currently give up on any instruction which is ordered, but we do handle 911 // atomic instructions which are unordered. 912 // TODO: Handle ordered instructions 913 auto isOrdered = [](Instruction *Inst) { 914 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 915 return !LI->isUnordered(); 916 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 917 return !SI->isUnordered(); 918 } 919 return false; 920 }; 921 if (isVolatile(QueryInst) || isOrdered(QueryInst)) { 922 Result.push_back(NonLocalDepResult(FromBB, 923 MemDepResult::getUnknown(), 924 const_cast<Value *>(Loc.Ptr))); 925 return; 926 } 927 928 929 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, AC); 930 931 // This is the set of blocks we've inspected, and the pointer we consider in 932 // each block. Because of critical edges, we currently bail out if querying 933 // a block with multiple different pointers. This can happen during PHI 934 // translation. 935 DenseMap<BasicBlock*, Value*> Visited; 936 if (!getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB, 937 Result, Visited, true)) 938 return; 939 Result.clear(); 940 Result.push_back(NonLocalDepResult(FromBB, 941 MemDepResult::getUnknown(), 942 const_cast<Value *>(Loc.Ptr))); 943 } 944 945 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with 946 /// Pointer/PointeeSize using either cached information in Cache or by doing a 947 /// lookup (which may use dirty cache info if available). If we do a lookup, 948 /// add the result to the cache. 949 MemDepResult MemoryDependenceAnalysis:: 950 GetNonLocalInfoForBlock(Instruction *QueryInst, 951 const AliasAnalysis::Location &Loc, 952 bool isLoad, BasicBlock *BB, 953 NonLocalDepInfo *Cache, unsigned NumSortedEntries) { 954 955 // Do a binary search to see if we already have an entry for this block in 956 // the cache set. If so, find it. 957 NonLocalDepInfo::iterator Entry = 958 std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries, 959 NonLocalDepEntry(BB)); 960 if (Entry != Cache->begin() && (Entry-1)->getBB() == BB) 961 --Entry; 962 963 NonLocalDepEntry *ExistingResult = nullptr; 964 if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB) 965 ExistingResult = &*Entry; 966 967 // If we have a cached entry, and it is non-dirty, use it as the value for 968 // this dependency. 969 if (ExistingResult && !ExistingResult->getResult().isDirty()) { 970 ++NumCacheNonLocalPtr; 971 return ExistingResult->getResult(); 972 } 973 974 // Otherwise, we have to scan for the value. If we have a dirty cache 975 // entry, start scanning from its position, otherwise we scan from the end 976 // of the block. 977 BasicBlock::iterator ScanPos = BB->end(); 978 if (ExistingResult && ExistingResult->getResult().getInst()) { 979 assert(ExistingResult->getResult().getInst()->getParent() == BB && 980 "Instruction invalidated?"); 981 ++NumCacheDirtyNonLocalPtr; 982 ScanPos = ExistingResult->getResult().getInst(); 983 984 // Eliminating the dirty entry from 'Cache', so update the reverse info. 985 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 986 RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey); 987 } else { 988 ++NumUncacheNonLocalPtr; 989 } 990 991 // Scan the block for the dependency. 992 MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, 993 QueryInst); 994 995 // If we had a dirty entry for the block, update it. Otherwise, just add 996 // a new entry. 997 if (ExistingResult) 998 ExistingResult->setResult(Dep); 999 else 1000 Cache->push_back(NonLocalDepEntry(BB, Dep)); 1001 1002 // If the block has a dependency (i.e. it isn't completely transparent to 1003 // the value), remember the reverse association because we just added it 1004 // to Cache! 1005 if (!Dep.isDef() && !Dep.isClobber()) 1006 return Dep; 1007 1008 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently 1009 // update MemDep when we remove instructions. 1010 Instruction *Inst = Dep.getInst(); 1011 assert(Inst && "Didn't depend on anything?"); 1012 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 1013 ReverseNonLocalPtrDeps[Inst].insert(CacheKey); 1014 return Dep; 1015 } 1016 1017 /// SortNonLocalDepInfoCache - Sort the NonLocalDepInfo cache, given a certain 1018 /// number of elements in the array that are already properly ordered. This is 1019 /// optimized for the case when only a few entries are added. 1020 static void 1021 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 1022 unsigned NumSortedEntries) { 1023 switch (Cache.size() - NumSortedEntries) { 1024 case 0: 1025 // done, no new entries. 1026 break; 1027 case 2: { 1028 // Two new entries, insert the last one into place. 1029 NonLocalDepEntry Val = Cache.back(); 1030 Cache.pop_back(); 1031 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 1032 std::upper_bound(Cache.begin(), Cache.end()-1, Val); 1033 Cache.insert(Entry, Val); 1034 // FALL THROUGH. 1035 } 1036 case 1: 1037 // One new entry, Just insert the new value at the appropriate position. 1038 if (Cache.size() != 1) { 1039 NonLocalDepEntry Val = Cache.back(); 1040 Cache.pop_back(); 1041 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 1042 std::upper_bound(Cache.begin(), Cache.end(), Val); 1043 Cache.insert(Entry, Val); 1044 } 1045 break; 1046 default: 1047 // Added many values, do a full scale sort. 1048 std::sort(Cache.begin(), Cache.end()); 1049 break; 1050 } 1051 } 1052 1053 /// getNonLocalPointerDepFromBB - Perform a dependency query based on 1054 /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def 1055 /// results to the results vector and keep track of which blocks are visited in 1056 /// 'Visited'. 1057 /// 1058 /// This has special behavior for the first block queries (when SkipFirstBlock 1059 /// is true). In this special case, it ignores the contents of the specified 1060 /// block and starts returning dependence info for its predecessors. 1061 /// 1062 /// This function returns false on success, or true to indicate that it could 1063 /// not compute dependence information for some reason. This should be treated 1064 /// as a clobber dependence on the first instruction in the predecessor block. 1065 bool MemoryDependenceAnalysis:: 1066 getNonLocalPointerDepFromBB(Instruction *QueryInst, 1067 const PHITransAddr &Pointer, 1068 const AliasAnalysis::Location &Loc, 1069 bool isLoad, BasicBlock *StartBB, 1070 SmallVectorImpl<NonLocalDepResult> &Result, 1071 DenseMap<BasicBlock*, Value*> &Visited, 1072 bool SkipFirstBlock) { 1073 // Look up the cached info for Pointer. 1074 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); 1075 1076 // Set up a temporary NLPI value. If the map doesn't yet have an entry for 1077 // CacheKey, this value will be inserted as the associated value. Otherwise, 1078 // it'll be ignored, and we'll have to check to see if the cached size and 1079 // aa tags are consistent with the current query. 1080 NonLocalPointerInfo InitialNLPI; 1081 InitialNLPI.Size = Loc.Size; 1082 InitialNLPI.AATags = Loc.AATags; 1083 1084 // Get the NLPI for CacheKey, inserting one into the map if it doesn't 1085 // already have one. 1086 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = 1087 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); 1088 NonLocalPointerInfo *CacheInfo = &Pair.first->second; 1089 1090 // If we already have a cache entry for this CacheKey, we may need to do some 1091 // work to reconcile the cache entry and the current query. 1092 if (!Pair.second) { 1093 if (CacheInfo->Size < Loc.Size) { 1094 // The query's Size is greater than the cached one. Throw out the 1095 // cached data and proceed with the query at the greater size. 1096 CacheInfo->Pair = BBSkipFirstBlockPair(); 1097 CacheInfo->Size = Loc.Size; 1098 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(), 1099 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI) 1100 if (Instruction *Inst = DI->getResult().getInst()) 1101 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1102 CacheInfo->NonLocalDeps.clear(); 1103 } else if (CacheInfo->Size > Loc.Size) { 1104 // This query's Size is less than the cached one. Conservatively restart 1105 // the query using the greater size. 1106 return getNonLocalPointerDepFromBB(QueryInst, Pointer, 1107 Loc.getWithNewSize(CacheInfo->Size), 1108 isLoad, StartBB, Result, Visited, 1109 SkipFirstBlock); 1110 } 1111 1112 // If the query's AATags are inconsistent with the cached one, 1113 // conservatively throw out the cached data and restart the query with 1114 // no tag if needed. 1115 if (CacheInfo->AATags != Loc.AATags) { 1116 if (CacheInfo->AATags) { 1117 CacheInfo->Pair = BBSkipFirstBlockPair(); 1118 CacheInfo->AATags = AAMDNodes(); 1119 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(), 1120 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI) 1121 if (Instruction *Inst = DI->getResult().getInst()) 1122 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1123 CacheInfo->NonLocalDeps.clear(); 1124 } 1125 if (Loc.AATags) 1126 return getNonLocalPointerDepFromBB(QueryInst, 1127 Pointer, Loc.getWithoutAATags(), 1128 isLoad, StartBB, Result, Visited, 1129 SkipFirstBlock); 1130 } 1131 } 1132 1133 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; 1134 1135 // If we have valid cached information for exactly the block we are 1136 // investigating, just return it with no recomputation. 1137 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { 1138 // We have a fully cached result for this query then we can just return the 1139 // cached results and populate the visited set. However, we have to verify 1140 // that we don't already have conflicting results for these blocks. Check 1141 // to ensure that if a block in the results set is in the visited set that 1142 // it was for the same pointer query. 1143 if (!Visited.empty()) { 1144 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 1145 I != E; ++I) { 1146 DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB()); 1147 if (VI == Visited.end() || VI->second == Pointer.getAddr()) 1148 continue; 1149 1150 // We have a pointer mismatch in a block. Just return clobber, saying 1151 // that something was clobbered in this result. We could also do a 1152 // non-fully cached query, but there is little point in doing this. 1153 return true; 1154 } 1155 } 1156 1157 Value *Addr = Pointer.getAddr(); 1158 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 1159 I != E; ++I) { 1160 Visited.insert(std::make_pair(I->getBB(), Addr)); 1161 if (I->getResult().isNonLocal()) { 1162 continue; 1163 } 1164 1165 if (!DT) { 1166 Result.push_back(NonLocalDepResult(I->getBB(), 1167 MemDepResult::getUnknown(), 1168 Addr)); 1169 } else if (DT->isReachableFromEntry(I->getBB())) { 1170 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr)); 1171 } 1172 } 1173 ++NumCacheCompleteNonLocalPtr; 1174 return false; 1175 } 1176 1177 // Otherwise, either this is a new block, a block with an invalid cache 1178 // pointer or one that we're about to invalidate by putting more info into it 1179 // than its valid cache info. If empty, the result will be valid cache info, 1180 // otherwise it isn't. 1181 if (Cache->empty()) 1182 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); 1183 else 1184 CacheInfo->Pair = BBSkipFirstBlockPair(); 1185 1186 SmallVector<BasicBlock*, 32> Worklist; 1187 Worklist.push_back(StartBB); 1188 1189 // PredList used inside loop. 1190 SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList; 1191 1192 // Keep track of the entries that we know are sorted. Previously cached 1193 // entries will all be sorted. The entries we add we only sort on demand (we 1194 // don't insert every element into its sorted position). We know that we 1195 // won't get any reuse from currently inserted values, because we don't 1196 // revisit blocks after we insert info for them. 1197 unsigned NumSortedEntries = Cache->size(); 1198 DEBUG(AssertSorted(*Cache)); 1199 1200 while (!Worklist.empty()) { 1201 BasicBlock *BB = Worklist.pop_back_val(); 1202 1203 // If we do process a large number of blocks it becomes very expensive and 1204 // likely it isn't worth worrying about 1205 if (Result.size() > NumResultsLimit) { 1206 Worklist.clear(); 1207 // Sort it now (if needed) so that recursive invocations of 1208 // getNonLocalPointerDepFromBB and other routines that could reuse the 1209 // cache value will only see properly sorted cache arrays. 1210 if (Cache && NumSortedEntries != Cache->size()) { 1211 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1212 } 1213 // Since we bail out, the "Cache" set won't contain all of the 1214 // results for the query. This is ok (we can still use it to accelerate 1215 // specific block queries) but we can't do the fastpath "return all 1216 // results from the set". Clear out the indicator for this. 1217 CacheInfo->Pair = BBSkipFirstBlockPair(); 1218 return true; 1219 } 1220 1221 // Skip the first block if we have it. 1222 if (!SkipFirstBlock) { 1223 // Analyze the dependency of *Pointer in FromBB. See if we already have 1224 // been here. 1225 assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); 1226 1227 // Get the dependency info for Pointer in BB. If we have cached 1228 // information, we will use it, otherwise we compute it. 1229 DEBUG(AssertSorted(*Cache, NumSortedEntries)); 1230 MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, 1231 Loc, isLoad, BB, Cache, 1232 NumSortedEntries); 1233 1234 // If we got a Def or Clobber, add this to the list of results. 1235 if (!Dep.isNonLocal()) { 1236 if (!DT) { 1237 Result.push_back(NonLocalDepResult(BB, 1238 MemDepResult::getUnknown(), 1239 Pointer.getAddr())); 1240 continue; 1241 } else if (DT->isReachableFromEntry(BB)) { 1242 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); 1243 continue; 1244 } 1245 } 1246 } 1247 1248 // If 'Pointer' is an instruction defined in this block, then we need to do 1249 // phi translation to change it into a value live in the predecessor block. 1250 // If not, we just add the predecessors to the worklist and scan them with 1251 // the same Pointer. 1252 if (!Pointer.NeedsPHITranslationFromBlock(BB)) { 1253 SkipFirstBlock = false; 1254 SmallVector<BasicBlock*, 16> NewBlocks; 1255 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { 1256 // Verify that we haven't looked at this block yet. 1257 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 1258 InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr())); 1259 if (InsertRes.second) { 1260 // First time we've looked at *PI. 1261 NewBlocks.push_back(*PI); 1262 continue; 1263 } 1264 1265 // If we have seen this block before, but it was with a different 1266 // pointer then we have a phi translation failure and we have to treat 1267 // this as a clobber. 1268 if (InsertRes.first->second != Pointer.getAddr()) { 1269 // Make sure to clean up the Visited map before continuing on to 1270 // PredTranslationFailure. 1271 for (unsigned i = 0; i < NewBlocks.size(); i++) 1272 Visited.erase(NewBlocks[i]); 1273 goto PredTranslationFailure; 1274 } 1275 } 1276 Worklist.append(NewBlocks.begin(), NewBlocks.end()); 1277 continue; 1278 } 1279 1280 // We do need to do phi translation, if we know ahead of time we can't phi 1281 // translate this value, don't even try. 1282 if (!Pointer.IsPotentiallyPHITranslatable()) 1283 goto PredTranslationFailure; 1284 1285 // We may have added values to the cache list before this PHI translation. 1286 // If so, we haven't done anything to ensure that the cache remains sorted. 1287 // Sort it now (if needed) so that recursive invocations of 1288 // getNonLocalPointerDepFromBB and other routines that could reuse the cache 1289 // value will only see properly sorted cache arrays. 1290 if (Cache && NumSortedEntries != Cache->size()) { 1291 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1292 NumSortedEntries = Cache->size(); 1293 } 1294 Cache = nullptr; 1295 1296 PredList.clear(); 1297 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { 1298 BasicBlock *Pred = *PI; 1299 PredList.push_back(std::make_pair(Pred, Pointer)); 1300 1301 // Get the PHI translated pointer in this predecessor. This can fail if 1302 // not translatable, in which case the getAddr() returns null. 1303 PHITransAddr &PredPointer = PredList.back().second; 1304 PredPointer.PHITranslateValue(BB, Pred, nullptr); 1305 1306 Value *PredPtrVal = PredPointer.getAddr(); 1307 1308 // Check to see if we have already visited this pred block with another 1309 // pointer. If so, we can't do this lookup. This failure can occur 1310 // with PHI translation when a critical edge exists and the PHI node in 1311 // the successor translates to a pointer value different than the 1312 // pointer the block was first analyzed with. 1313 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 1314 InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal)); 1315 1316 if (!InsertRes.second) { 1317 // We found the pred; take it off the list of preds to visit. 1318 PredList.pop_back(); 1319 1320 // If the predecessor was visited with PredPtr, then we already did 1321 // the analysis and can ignore it. 1322 if (InsertRes.first->second == PredPtrVal) 1323 continue; 1324 1325 // Otherwise, the block was previously analyzed with a different 1326 // pointer. We can't represent the result of this case, so we just 1327 // treat this as a phi translation failure. 1328 1329 // Make sure to clean up the Visited map before continuing on to 1330 // PredTranslationFailure. 1331 for (unsigned i = 0, n = PredList.size(); i < n; ++i) 1332 Visited.erase(PredList[i].first); 1333 1334 goto PredTranslationFailure; 1335 } 1336 } 1337 1338 // Actually process results here; this need to be a separate loop to avoid 1339 // calling getNonLocalPointerDepFromBB for blocks we don't want to return 1340 // any results for. (getNonLocalPointerDepFromBB will modify our 1341 // datastructures in ways the code after the PredTranslationFailure label 1342 // doesn't expect.) 1343 for (unsigned i = 0, n = PredList.size(); i < n; ++i) { 1344 BasicBlock *Pred = PredList[i].first; 1345 PHITransAddr &PredPointer = PredList[i].second; 1346 Value *PredPtrVal = PredPointer.getAddr(); 1347 1348 bool CanTranslate = true; 1349 // If PHI translation was unable to find an available pointer in this 1350 // predecessor, then we have to assume that the pointer is clobbered in 1351 // that predecessor. We can still do PRE of the load, which would insert 1352 // a computation of the pointer in this predecessor. 1353 if (!PredPtrVal) 1354 CanTranslate = false; 1355 1356 // FIXME: it is entirely possible that PHI translating will end up with 1357 // the same value. Consider PHI translating something like: 1358 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* 1359 // to recurse here, pedantically speaking. 1360 1361 // If getNonLocalPointerDepFromBB fails here, that means the cached 1362 // result conflicted with the Visited list; we have to conservatively 1363 // assume it is unknown, but this also does not block PRE of the load. 1364 if (!CanTranslate || 1365 getNonLocalPointerDepFromBB(QueryInst, PredPointer, 1366 Loc.getWithNewPtr(PredPtrVal), 1367 isLoad, Pred, 1368 Result, Visited)) { 1369 // Add the entry to the Result list. 1370 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal); 1371 Result.push_back(Entry); 1372 1373 // Since we had a phi translation failure, the cache for CacheKey won't 1374 // include all of the entries that we need to immediately satisfy future 1375 // queries. Mark this in NonLocalPointerDeps by setting the 1376 // BBSkipFirstBlockPair pointer to null. This requires reuse of the 1377 // cached value to do more work but not miss the phi trans failure. 1378 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; 1379 NLPI.Pair = BBSkipFirstBlockPair(); 1380 continue; 1381 } 1382 } 1383 1384 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. 1385 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1386 Cache = &CacheInfo->NonLocalDeps; 1387 NumSortedEntries = Cache->size(); 1388 1389 // Since we did phi translation, the "Cache" set won't contain all of the 1390 // results for the query. This is ok (we can still use it to accelerate 1391 // specific block queries) but we can't do the fastpath "return all 1392 // results from the set" Clear out the indicator for this. 1393 CacheInfo->Pair = BBSkipFirstBlockPair(); 1394 SkipFirstBlock = false; 1395 continue; 1396 1397 PredTranslationFailure: 1398 // The following code is "failure"; we can't produce a sane translation 1399 // for the given block. It assumes that we haven't modified any of 1400 // our datastructures while processing the current block. 1401 1402 if (!Cache) { 1403 // Refresh the CacheInfo/Cache pointer if it got invalidated. 1404 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1405 Cache = &CacheInfo->NonLocalDeps; 1406 NumSortedEntries = Cache->size(); 1407 } 1408 1409 // Since we failed phi translation, the "Cache" set won't contain all of the 1410 // results for the query. This is ok (we can still use it to accelerate 1411 // specific block queries) but we can't do the fastpath "return all 1412 // results from the set". Clear out the indicator for this. 1413 CacheInfo->Pair = BBSkipFirstBlockPair(); 1414 1415 // If *nothing* works, mark the pointer as unknown. 1416 // 1417 // If this is the magic first block, return this as a clobber of the whole 1418 // incoming value. Since we can't phi translate to one of the predecessors, 1419 // we have to bail out. 1420 if (SkipFirstBlock) 1421 return true; 1422 1423 for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) { 1424 assert(I != Cache->rend() && "Didn't find current block??"); 1425 if (I->getBB() != BB) 1426 continue; 1427 1428 assert((I->getResult().isNonLocal() || !DT->isReachableFromEntry(BB)) && 1429 "Should only be here with transparent block"); 1430 I->setResult(MemDepResult::getUnknown()); 1431 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), 1432 Pointer.getAddr())); 1433 break; 1434 } 1435 } 1436 1437 // Okay, we're done now. If we added new values to the cache, re-sort it. 1438 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1439 DEBUG(AssertSorted(*Cache)); 1440 return false; 1441 } 1442 1443 /// RemoveCachedNonLocalPointerDependencies - If P exists in 1444 /// CachedNonLocalPointerInfo, remove it. 1445 void MemoryDependenceAnalysis:: 1446 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) { 1447 CachedNonLocalPointerInfo::iterator It = 1448 NonLocalPointerDeps.find(P); 1449 if (It == NonLocalPointerDeps.end()) return; 1450 1451 // Remove all of the entries in the BB->val map. This involves removing 1452 // instructions from the reverse map. 1453 NonLocalDepInfo &PInfo = It->second.NonLocalDeps; 1454 1455 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { 1456 Instruction *Target = PInfo[i].getResult().getInst(); 1457 if (!Target) continue; // Ignore non-local dep results. 1458 assert(Target->getParent() == PInfo[i].getBB()); 1459 1460 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1461 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); 1462 } 1463 1464 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). 1465 NonLocalPointerDeps.erase(It); 1466 } 1467 1468 1469 /// invalidateCachedPointerInfo - This method is used to invalidate cached 1470 /// information about the specified pointer, because it may be too 1471 /// conservative in memdep. This is an optional call that can be used when 1472 /// the client detects an equivalence between the pointer and some other 1473 /// value and replaces the other value with ptr. This can make Ptr available 1474 /// in more places that cached info does not necessarily keep. 1475 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) { 1476 // If Ptr isn't really a pointer, just ignore it. 1477 if (!Ptr->getType()->isPointerTy()) return; 1478 // Flush store info for the pointer. 1479 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); 1480 // Flush load info for the pointer. 1481 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); 1482 } 1483 1484 /// invalidateCachedPredecessors - Clear the PredIteratorCache info. 1485 /// This needs to be done when the CFG changes, e.g., due to splitting 1486 /// critical edges. 1487 void MemoryDependenceAnalysis::invalidateCachedPredecessors() { 1488 PredCache->clear(); 1489 } 1490 1491 /// removeInstruction - Remove an instruction from the dependence analysis, 1492 /// updating the dependence of instructions that previously depended on it. 1493 /// This method attempts to keep the cache coherent using the reverse map. 1494 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) { 1495 // Walk through the Non-local dependencies, removing this one as the value 1496 // for any cached queries. 1497 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); 1498 if (NLDI != NonLocalDeps.end()) { 1499 NonLocalDepInfo &BlockMap = NLDI->second.first; 1500 for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end(); 1501 DI != DE; ++DI) 1502 if (Instruction *Inst = DI->getResult().getInst()) 1503 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); 1504 NonLocalDeps.erase(NLDI); 1505 } 1506 1507 // If we have a cached local dependence query for this instruction, remove it. 1508 // 1509 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); 1510 if (LocalDepEntry != LocalDeps.end()) { 1511 // Remove us from DepInst's reverse set now that the local dep info is gone. 1512 if (Instruction *Inst = LocalDepEntry->second.getInst()) 1513 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); 1514 1515 // Remove this local dependency info. 1516 LocalDeps.erase(LocalDepEntry); 1517 } 1518 1519 // If we have any cached pointer dependencies on this instruction, remove 1520 // them. If the instruction has non-pointer type, then it can't be a pointer 1521 // base. 1522 1523 // Remove it from both the load info and the store info. The instruction 1524 // can't be in either of these maps if it is non-pointer. 1525 if (RemInst->getType()->isPointerTy()) { 1526 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); 1527 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); 1528 } 1529 1530 // Loop over all of the things that depend on the instruction we're removing. 1531 // 1532 SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd; 1533 1534 // If we find RemInst as a clobber or Def in any of the maps for other values, 1535 // we need to replace its entry with a dirty version of the instruction after 1536 // it. If RemInst is a terminator, we use a null dirty value. 1537 // 1538 // Using a dirty version of the instruction after RemInst saves having to scan 1539 // the entire block to get to this point. 1540 MemDepResult NewDirtyVal; 1541 if (!RemInst->isTerminator()) 1542 NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst)); 1543 1544 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); 1545 if (ReverseDepIt != ReverseLocalDeps.end()) { 1546 // RemInst can't be the terminator if it has local stuff depending on it. 1547 assert(!ReverseDepIt->second.empty() && !isa<TerminatorInst>(RemInst) && 1548 "Nothing can locally depend on a terminator"); 1549 1550 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) { 1551 assert(InstDependingOnRemInst != RemInst && 1552 "Already removed our local dep info"); 1553 1554 LocalDeps[InstDependingOnRemInst] = NewDirtyVal; 1555 1556 // Make sure to remember that new things depend on NewDepInst. 1557 assert(NewDirtyVal.getInst() && "There is no way something else can have " 1558 "a local dep on this if it is a terminator!"); 1559 ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(), 1560 InstDependingOnRemInst)); 1561 } 1562 1563 ReverseLocalDeps.erase(ReverseDepIt); 1564 1565 // Add new reverse deps after scanning the set, to avoid invalidating the 1566 // 'ReverseDeps' reference. 1567 while (!ReverseDepsToAdd.empty()) { 1568 ReverseLocalDeps[ReverseDepsToAdd.back().first] 1569 .insert(ReverseDepsToAdd.back().second); 1570 ReverseDepsToAdd.pop_back(); 1571 } 1572 } 1573 1574 ReverseDepIt = ReverseNonLocalDeps.find(RemInst); 1575 if (ReverseDepIt != ReverseNonLocalDeps.end()) { 1576 for (Instruction *I : ReverseDepIt->second) { 1577 assert(I != RemInst && "Already removed NonLocalDep info for RemInst"); 1578 1579 PerInstNLInfo &INLD = NonLocalDeps[I]; 1580 // The information is now dirty! 1581 INLD.second = true; 1582 1583 for (NonLocalDepInfo::iterator DI = INLD.first.begin(), 1584 DE = INLD.first.end(); DI != DE; ++DI) { 1585 if (DI->getResult().getInst() != RemInst) continue; 1586 1587 // Convert to a dirty entry for the subsequent instruction. 1588 DI->setResult(NewDirtyVal); 1589 1590 if (Instruction *NextI = NewDirtyVal.getInst()) 1591 ReverseDepsToAdd.push_back(std::make_pair(NextI, I)); 1592 } 1593 } 1594 1595 ReverseNonLocalDeps.erase(ReverseDepIt); 1596 1597 // Add new reverse deps after scanning the set, to avoid invalidating 'Set' 1598 while (!ReverseDepsToAdd.empty()) { 1599 ReverseNonLocalDeps[ReverseDepsToAdd.back().first] 1600 .insert(ReverseDepsToAdd.back().second); 1601 ReverseDepsToAdd.pop_back(); 1602 } 1603 } 1604 1605 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a 1606 // value in the NonLocalPointerDeps info. 1607 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = 1608 ReverseNonLocalPtrDeps.find(RemInst); 1609 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { 1610 SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd; 1611 1612 for (ValueIsLoadPair P : ReversePtrDepIt->second) { 1613 assert(P.getPointer() != RemInst && 1614 "Already removed NonLocalPointerDeps info for RemInst"); 1615 1616 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; 1617 1618 // The cache is not valid for any specific block anymore. 1619 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); 1620 1621 // Update any entries for RemInst to use the instruction after it. 1622 for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end(); 1623 DI != DE; ++DI) { 1624 if (DI->getResult().getInst() != RemInst) continue; 1625 1626 // Convert to a dirty entry for the subsequent instruction. 1627 DI->setResult(NewDirtyVal); 1628 1629 if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) 1630 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); 1631 } 1632 1633 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its 1634 // subsequent value may invalidate the sortedness. 1635 std::sort(NLPDI.begin(), NLPDI.end()); 1636 } 1637 1638 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); 1639 1640 while (!ReversePtrDepsToAdd.empty()) { 1641 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first] 1642 .insert(ReversePtrDepsToAdd.back().second); 1643 ReversePtrDepsToAdd.pop_back(); 1644 } 1645 } 1646 1647 1648 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); 1649 AA->deleteValue(RemInst); 1650 DEBUG(verifyRemoved(RemInst)); 1651 } 1652 /// verifyRemoved - Verify that the specified instruction does not occur 1653 /// in our internal data structures. This function verifies by asserting in 1654 /// debug builds. 1655 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const { 1656 #ifndef NDEBUG 1657 for (LocalDepMapType::const_iterator I = LocalDeps.begin(), 1658 E = LocalDeps.end(); I != E; ++I) { 1659 assert(I->first != D && "Inst occurs in data structures"); 1660 assert(I->second.getInst() != D && 1661 "Inst occurs in data structures"); 1662 } 1663 1664 for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(), 1665 E = NonLocalPointerDeps.end(); I != E; ++I) { 1666 assert(I->first.getPointer() != D && "Inst occurs in NLPD map key"); 1667 const NonLocalDepInfo &Val = I->second.NonLocalDeps; 1668 for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end(); 1669 II != E; ++II) 1670 assert(II->getResult().getInst() != D && "Inst occurs as NLPD value"); 1671 } 1672 1673 for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(), 1674 E = NonLocalDeps.end(); I != E; ++I) { 1675 assert(I->first != D && "Inst occurs in data structures"); 1676 const PerInstNLInfo &INLD = I->second; 1677 for (NonLocalDepInfo::const_iterator II = INLD.first.begin(), 1678 EE = INLD.first.end(); II != EE; ++II) 1679 assert(II->getResult().getInst() != D && "Inst occurs in data structures"); 1680 } 1681 1682 for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(), 1683 E = ReverseLocalDeps.end(); I != E; ++I) { 1684 assert(I->first != D && "Inst occurs in data structures"); 1685 for (Instruction *Inst : I->second) 1686 assert(Inst != D && "Inst occurs in data structures"); 1687 } 1688 1689 for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(), 1690 E = ReverseNonLocalDeps.end(); 1691 I != E; ++I) { 1692 assert(I->first != D && "Inst occurs in data structures"); 1693 for (Instruction *Inst : I->second) 1694 assert(Inst != D && "Inst occurs in data structures"); 1695 } 1696 1697 for (ReverseNonLocalPtrDepTy::const_iterator 1698 I = ReverseNonLocalPtrDeps.begin(), 1699 E = ReverseNonLocalPtrDeps.end(); I != E; ++I) { 1700 assert(I->first != D && "Inst occurs in rev NLPD map"); 1701 1702 for (ValueIsLoadPair P : I->second) 1703 assert(P != ValueIsLoadPair(D, false) && 1704 P != ValueIsLoadPair(D, true) && 1705 "Inst occurs in ReverseNonLocalPtrDeps map"); 1706 } 1707 #endif 1708 } 1709