1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements an analysis that determines, for a given memory 11 // operation, what preceding memory operations it depends on. It builds on 12 // alias analysis information, and tries to provide a lazy, caching interface to 13 // a common kind of alias information query. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/MemoryBuiltins.h" 23 #include "llvm/Analysis/PHITransAddr.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/PredIteratorCache.h" 32 #include "llvm/Support/Debug.h" 33 using namespace llvm; 34 35 #define DEBUG_TYPE "memdep" 36 37 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); 38 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); 39 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); 40 41 STATISTIC(NumCacheNonLocalPtr, 42 "Number of fully cached non-local ptr responses"); 43 STATISTIC(NumCacheDirtyNonLocalPtr, 44 "Number of cached, but dirty, non-local ptr responses"); 45 STATISTIC(NumUncacheNonLocalPtr, 46 "Number of uncached non-local ptr responses"); 47 STATISTIC(NumCacheCompleteNonLocalPtr, 48 "Number of block queries that were completely cached"); 49 50 // Limit for the number of instructions to scan in a block. 51 static const int BlockScanLimit = 100; 52 53 char MemoryDependenceAnalysis::ID = 0; 54 55 // Register this pass... 56 INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep", 57 "Memory Dependence Analysis", false, true) 58 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 59 INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep", 60 "Memory Dependence Analysis", false, true) 61 62 MemoryDependenceAnalysis::MemoryDependenceAnalysis() 63 : FunctionPass(ID), PredCache() { 64 initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry()); 65 } 66 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() { 67 } 68 69 /// Clean up memory in between runs 70 void MemoryDependenceAnalysis::releaseMemory() { 71 LocalDeps.clear(); 72 NonLocalDeps.clear(); 73 NonLocalPointerDeps.clear(); 74 ReverseLocalDeps.clear(); 75 ReverseNonLocalDeps.clear(); 76 ReverseNonLocalPtrDeps.clear(); 77 PredCache->clear(); 78 } 79 80 81 82 /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis. 83 /// 84 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 85 AU.setPreservesAll(); 86 AU.addRequiredTransitive<AliasAnalysis>(); 87 } 88 89 bool MemoryDependenceAnalysis::runOnFunction(Function &) { 90 AA = &getAnalysis<AliasAnalysis>(); 91 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 92 DL = DLP ? &DLP->getDataLayout() : nullptr; 93 DominatorTreeWrapperPass *DTWP = 94 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 95 DT = DTWP ? &DTWP->getDomTree() : nullptr; 96 if (!PredCache) 97 PredCache.reset(new PredIteratorCache()); 98 return false; 99 } 100 101 /// RemoveFromReverseMap - This is a helper function that removes Val from 102 /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry. 103 template <typename KeyTy> 104 static void RemoveFromReverseMap(DenseMap<Instruction*, 105 SmallPtrSet<KeyTy, 4> > &ReverseMap, 106 Instruction *Inst, KeyTy Val) { 107 typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator 108 InstIt = ReverseMap.find(Inst); 109 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); 110 bool Found = InstIt->second.erase(Val); 111 assert(Found && "Invalid reverse map!"); (void)Found; 112 if (InstIt->second.empty()) 113 ReverseMap.erase(InstIt); 114 } 115 116 /// GetLocation - If the given instruction references a specific memory 117 /// location, fill in Loc with the details, otherwise set Loc.Ptr to null. 118 /// Return a ModRefInfo value describing the general behavior of the 119 /// instruction. 120 static 121 AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst, 122 AliasAnalysis::Location &Loc, 123 AliasAnalysis *AA) { 124 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 125 if (LI->isUnordered()) { 126 Loc = AA->getLocation(LI); 127 return AliasAnalysis::Ref; 128 } 129 if (LI->getOrdering() == Monotonic) { 130 Loc = AA->getLocation(LI); 131 return AliasAnalysis::ModRef; 132 } 133 Loc = AliasAnalysis::Location(); 134 return AliasAnalysis::ModRef; 135 } 136 137 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 138 if (SI->isUnordered()) { 139 Loc = AA->getLocation(SI); 140 return AliasAnalysis::Mod; 141 } 142 if (SI->getOrdering() == Monotonic) { 143 Loc = AA->getLocation(SI); 144 return AliasAnalysis::ModRef; 145 } 146 Loc = AliasAnalysis::Location(); 147 return AliasAnalysis::ModRef; 148 } 149 150 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { 151 Loc = AA->getLocation(V); 152 return AliasAnalysis::ModRef; 153 } 154 155 if (const CallInst *CI = isFreeCall(Inst, AA->getTargetLibraryInfo())) { 156 // calls to free() deallocate the entire structure 157 Loc = AliasAnalysis::Location(CI->getArgOperand(0)); 158 return AliasAnalysis::Mod; 159 } 160 161 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 162 AAMDNodes AAInfo; 163 164 switch (II->getIntrinsicID()) { 165 case Intrinsic::lifetime_start: 166 case Intrinsic::lifetime_end: 167 case Intrinsic::invariant_start: 168 II->getAAMetadata(AAInfo); 169 Loc = AliasAnalysis::Location(II->getArgOperand(1), 170 cast<ConstantInt>(II->getArgOperand(0)) 171 ->getZExtValue(), AAInfo); 172 // These intrinsics don't really modify the memory, but returning Mod 173 // will allow them to be handled conservatively. 174 return AliasAnalysis::Mod; 175 case Intrinsic::invariant_end: 176 II->getAAMetadata(AAInfo); 177 Loc = AliasAnalysis::Location(II->getArgOperand(2), 178 cast<ConstantInt>(II->getArgOperand(1)) 179 ->getZExtValue(), AAInfo); 180 // These intrinsics don't really modify the memory, but returning Mod 181 // will allow them to be handled conservatively. 182 return AliasAnalysis::Mod; 183 default: 184 break; 185 } 186 } 187 188 // Otherwise, just do the coarse-grained thing that always works. 189 if (Inst->mayWriteToMemory()) 190 return AliasAnalysis::ModRef; 191 if (Inst->mayReadFromMemory()) 192 return AliasAnalysis::Ref; 193 return AliasAnalysis::NoModRef; 194 } 195 196 /// getCallSiteDependencyFrom - Private helper for finding the local 197 /// dependencies of a call site. 198 MemDepResult MemoryDependenceAnalysis:: 199 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall, 200 BasicBlock::iterator ScanIt, BasicBlock *BB) { 201 unsigned Limit = BlockScanLimit; 202 203 // Walk backwards through the block, looking for dependencies 204 while (ScanIt != BB->begin()) { 205 // Limit the amount of scanning we do so we don't end up with quadratic 206 // running time on extreme testcases. 207 --Limit; 208 if (!Limit) 209 return MemDepResult::getUnknown(); 210 211 Instruction *Inst = --ScanIt; 212 213 // If this inst is a memory op, get the pointer it accessed 214 AliasAnalysis::Location Loc; 215 AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA); 216 if (Loc.Ptr) { 217 // A simple instruction. 218 if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef) 219 return MemDepResult::getClobber(Inst); 220 continue; 221 } 222 223 if (CallSite InstCS = cast<Value>(Inst)) { 224 // Debug intrinsics don't cause dependences. 225 if (isa<DbgInfoIntrinsic>(Inst)) continue; 226 // If these two calls do not interfere, look past it. 227 switch (AA->getModRefInfo(CS, InstCS)) { 228 case AliasAnalysis::NoModRef: 229 // If the two calls are the same, return InstCS as a Def, so that 230 // CS can be found redundant and eliminated. 231 if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) && 232 CS.getInstruction()->isIdenticalToWhenDefined(Inst)) 233 return MemDepResult::getDef(Inst); 234 235 // Otherwise if the two calls don't interact (e.g. InstCS is readnone) 236 // keep scanning. 237 continue; 238 default: 239 return MemDepResult::getClobber(Inst); 240 } 241 } 242 243 // If we could not obtain a pointer for the instruction and the instruction 244 // touches memory then assume that this is a dependency. 245 if (MR != AliasAnalysis::NoModRef) 246 return MemDepResult::getClobber(Inst); 247 } 248 249 // No dependence found. If this is the entry block of the function, it is 250 // unknown, otherwise it is non-local. 251 if (BB != &BB->getParent()->getEntryBlock()) 252 return MemDepResult::getNonLocal(); 253 return MemDepResult::getNonFuncLocal(); 254 } 255 256 /// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that 257 /// would fully overlap MemLoc if done as a wider legal integer load. 258 /// 259 /// MemLocBase, MemLocOffset are lazily computed here the first time the 260 /// base/offs of memloc is needed. 261 static bool 262 isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc, 263 const Value *&MemLocBase, 264 int64_t &MemLocOffs, 265 const LoadInst *LI, 266 const DataLayout *DL) { 267 // If we have no target data, we can't do this. 268 if (!DL) return false; 269 270 // If we haven't already computed the base/offset of MemLoc, do so now. 271 if (!MemLocBase) 272 MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, DL); 273 274 unsigned Size = MemoryDependenceAnalysis:: 275 getLoadLoadClobberFullWidthSize(MemLocBase, MemLocOffs, MemLoc.Size, 276 LI, *DL); 277 return Size != 0; 278 } 279 280 /// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that 281 /// looks at a memory location for a load (specified by MemLocBase, Offs, 282 /// and Size) and compares it against a load. If the specified load could 283 /// be safely widened to a larger integer load that is 1) still efficient, 284 /// 2) safe for the target, and 3) would provide the specified memory 285 /// location value, then this function returns the size in bytes of the 286 /// load width to use. If not, this returns zero. 287 unsigned MemoryDependenceAnalysis:: 288 getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs, 289 unsigned MemLocSize, const LoadInst *LI, 290 const DataLayout &DL) { 291 // We can only extend simple integer loads. 292 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0; 293 294 // Load widening is hostile to ThreadSanitizer: it may cause false positives 295 // or make the reports more cryptic (access sizes are wrong). 296 if (LI->getParent()->getParent()->getAttributes(). 297 hasAttribute(AttributeSet::FunctionIndex, Attribute::SanitizeThread)) 298 return 0; 299 300 // Get the base of this load. 301 int64_t LIOffs = 0; 302 const Value *LIBase = 303 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, &DL); 304 305 // If the two pointers are not based on the same pointer, we can't tell that 306 // they are related. 307 if (LIBase != MemLocBase) return 0; 308 309 // Okay, the two values are based on the same pointer, but returned as 310 // no-alias. This happens when we have things like two byte loads at "P+1" 311 // and "P+3". Check to see if increasing the size of the "LI" load up to its 312 // alignment (or the largest native integer type) will allow us to load all 313 // the bits required by MemLoc. 314 315 // If MemLoc is before LI, then no widening of LI will help us out. 316 if (MemLocOffs < LIOffs) return 0; 317 318 // Get the alignment of the load in bytes. We assume that it is safe to load 319 // any legal integer up to this size without a problem. For example, if we're 320 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can 321 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it 322 // to i16. 323 unsigned LoadAlign = LI->getAlignment(); 324 325 int64_t MemLocEnd = MemLocOffs+MemLocSize; 326 327 // If no amount of rounding up will let MemLoc fit into LI, then bail out. 328 if (LIOffs+LoadAlign < MemLocEnd) return 0; 329 330 // This is the size of the load to try. Start with the next larger power of 331 // two. 332 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U; 333 NewLoadByteSize = NextPowerOf2(NewLoadByteSize); 334 335 while (1) { 336 // If this load size is bigger than our known alignment or would not fit 337 // into a native integer register, then we fail. 338 if (NewLoadByteSize > LoadAlign || 339 !DL.fitsInLegalInteger(NewLoadByteSize*8)) 340 return 0; 341 342 if (LIOffs+NewLoadByteSize > MemLocEnd && 343 LI->getParent()->getParent()->getAttributes(). 344 hasAttribute(AttributeSet::FunctionIndex, Attribute::SanitizeAddress)) 345 // We will be reading past the location accessed by the original program. 346 // While this is safe in a regular build, Address Safety analysis tools 347 // may start reporting false warnings. So, don't do widening. 348 return 0; 349 350 // If a load of this width would include all of MemLoc, then we succeed. 351 if (LIOffs+NewLoadByteSize >= MemLocEnd) 352 return NewLoadByteSize; 353 354 NewLoadByteSize <<= 1; 355 } 356 } 357 358 /// getPointerDependencyFrom - Return the instruction on which a memory 359 /// location depends. If isLoad is true, this routine ignores may-aliases with 360 /// read-only operations. If isLoad is false, this routine ignores may-aliases 361 /// with reads from read-only locations. If possible, pass the query 362 /// instruction as well; this function may take advantage of the metadata 363 /// annotated to the query instruction to refine the result. 364 MemDepResult MemoryDependenceAnalysis:: 365 getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, 366 BasicBlock::iterator ScanIt, BasicBlock *BB, 367 Instruction *QueryInst) { 368 369 const Value *MemLocBase = nullptr; 370 int64_t MemLocOffset = 0; 371 unsigned Limit = BlockScanLimit; 372 bool isInvariantLoad = false; 373 if (isLoad && QueryInst) { 374 LoadInst *LI = dyn_cast<LoadInst>(QueryInst); 375 if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr) 376 isInvariantLoad = true; 377 } 378 379 // Walk backwards through the basic block, looking for dependencies. 380 while (ScanIt != BB->begin()) { 381 Instruction *Inst = --ScanIt; 382 383 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 384 // Debug intrinsics don't (and can't) cause dependencies. 385 if (isa<DbgInfoIntrinsic>(II)) continue; 386 387 // Limit the amount of scanning we do so we don't end up with quadratic 388 // running time on extreme testcases. 389 --Limit; 390 if (!Limit) 391 return MemDepResult::getUnknown(); 392 393 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 394 // If we reach a lifetime begin or end marker, then the query ends here 395 // because the value is undefined. 396 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 397 // FIXME: This only considers queries directly on the invariant-tagged 398 // pointer, not on query pointers that are indexed off of them. It'd 399 // be nice to handle that at some point (the right approach is to use 400 // GetPointerBaseWithConstantOffset). 401 if (AA->isMustAlias(AliasAnalysis::Location(II->getArgOperand(1)), 402 MemLoc)) 403 return MemDepResult::getDef(II); 404 continue; 405 } 406 } 407 408 // Values depend on loads if the pointers are must aliased. This means that 409 // a load depends on another must aliased load from the same value. 410 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 411 // Atomic loads have complications involved. 412 // FIXME: This is overly conservative. 413 if (!LI->isUnordered()) 414 return MemDepResult::getClobber(LI); 415 416 AliasAnalysis::Location LoadLoc = AA->getLocation(LI); 417 418 // If we found a pointer, check if it could be the same as our pointer. 419 AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc); 420 421 if (isLoad) { 422 if (R == AliasAnalysis::NoAlias) { 423 // If this is an over-aligned integer load (for example, 424 // "load i8* %P, align 4") see if it would obviously overlap with the 425 // queried location if widened to a larger load (e.g. if the queried 426 // location is 1 byte at P+1). If so, return it as a load/load 427 // clobber result, allowing the client to decide to widen the load if 428 // it wants to. 429 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) 430 if (LI->getAlignment()*8 > ITy->getPrimitiveSizeInBits() && 431 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase, 432 MemLocOffset, LI, DL)) 433 return MemDepResult::getClobber(Inst); 434 435 continue; 436 } 437 438 // Must aliased loads are defs of each other. 439 if (R == AliasAnalysis::MustAlias) 440 return MemDepResult::getDef(Inst); 441 442 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads 443 // in terms of clobbering loads, but since it does this by looking 444 // at the clobbering load directly, it doesn't know about any 445 // phi translation that may have happened along the way. 446 447 // If we have a partial alias, then return this as a clobber for the 448 // client to handle. 449 if (R == AliasAnalysis::PartialAlias) 450 return MemDepResult::getClobber(Inst); 451 #endif 452 453 // Random may-alias loads don't depend on each other without a 454 // dependence. 455 continue; 456 } 457 458 // Stores don't depend on other no-aliased accesses. 459 if (R == AliasAnalysis::NoAlias) 460 continue; 461 462 // Stores don't alias loads from read-only memory. 463 if (AA->pointsToConstantMemory(LoadLoc)) 464 continue; 465 466 // Stores depend on may/must aliased loads. 467 return MemDepResult::getDef(Inst); 468 } 469 470 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 471 // Atomic stores have complications involved. 472 // FIXME: This is overly conservative. 473 if (!SI->isUnordered()) 474 return MemDepResult::getClobber(SI); 475 476 // If alias analysis can tell that this store is guaranteed to not modify 477 // the query pointer, ignore it. Use getModRefInfo to handle cases where 478 // the query pointer points to constant memory etc. 479 if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef) 480 continue; 481 482 // Ok, this store might clobber the query pointer. Check to see if it is 483 // a must alias: in this case, we want to return this as a def. 484 AliasAnalysis::Location StoreLoc = AA->getLocation(SI); 485 486 // If we found a pointer, check if it could be the same as our pointer. 487 AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc); 488 489 if (R == AliasAnalysis::NoAlias) 490 continue; 491 if (R == AliasAnalysis::MustAlias) 492 return MemDepResult::getDef(Inst); 493 if (isInvariantLoad) 494 continue; 495 return MemDepResult::getClobber(Inst); 496 } 497 498 // If this is an allocation, and if we know that the accessed pointer is to 499 // the allocation, return Def. This means that there is no dependence and 500 // the access can be optimized based on that. For example, a load could 501 // turn into undef. 502 // Note: Only determine this to be a malloc if Inst is the malloc call, not 503 // a subsequent bitcast of the malloc call result. There can be stores to 504 // the malloced memory between the malloc call and its bitcast uses, and we 505 // need to continue scanning until the malloc call. 506 const TargetLibraryInfo *TLI = AA->getTargetLibraryInfo(); 507 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, TLI)) { 508 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL); 509 510 if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr)) 511 return MemDepResult::getDef(Inst); 512 // Be conservative if the accessed pointer may alias the allocation. 513 if (AA->alias(Inst, AccessPtr) != AliasAnalysis::NoAlias) 514 return MemDepResult::getClobber(Inst); 515 // If the allocation is not aliased and does not read memory (like 516 // strdup), it is safe to ignore. 517 if (isa<AllocaInst>(Inst) || 518 isMallocLikeFn(Inst, TLI) || isCallocLikeFn(Inst, TLI)) 519 continue; 520 } 521 522 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. 523 AliasAnalysis::ModRefResult MR = AA->getModRefInfo(Inst, MemLoc); 524 // If necessary, perform additional analysis. 525 if (MR == AliasAnalysis::ModRef) 526 MR = AA->callCapturesBefore(Inst, MemLoc, DT); 527 switch (MR) { 528 case AliasAnalysis::NoModRef: 529 // If the call has no effect on the queried pointer, just ignore it. 530 continue; 531 case AliasAnalysis::Mod: 532 return MemDepResult::getClobber(Inst); 533 case AliasAnalysis::Ref: 534 // If the call is known to never store to the pointer, and if this is a 535 // load query, we can safely ignore it (scan past it). 536 if (isLoad) 537 continue; 538 default: 539 // Otherwise, there is a potential dependence. Return a clobber. 540 return MemDepResult::getClobber(Inst); 541 } 542 } 543 544 // No dependence found. If this is the entry block of the function, it is 545 // unknown, otherwise it is non-local. 546 if (BB != &BB->getParent()->getEntryBlock()) 547 return MemDepResult::getNonLocal(); 548 return MemDepResult::getNonFuncLocal(); 549 } 550 551 /// getDependency - Return the instruction on which a memory operation 552 /// depends. 553 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) { 554 Instruction *ScanPos = QueryInst; 555 556 // Check for a cached result 557 MemDepResult &LocalCache = LocalDeps[QueryInst]; 558 559 // If the cached entry is non-dirty, just return it. Note that this depends 560 // on MemDepResult's default constructing to 'dirty'. 561 if (!LocalCache.isDirty()) 562 return LocalCache; 563 564 // Otherwise, if we have a dirty entry, we know we can start the scan at that 565 // instruction, which may save us some work. 566 if (Instruction *Inst = LocalCache.getInst()) { 567 ScanPos = Inst; 568 569 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); 570 } 571 572 BasicBlock *QueryParent = QueryInst->getParent(); 573 574 // Do the scan. 575 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { 576 // No dependence found. If this is the entry block of the function, it is 577 // unknown, otherwise it is non-local. 578 if (QueryParent != &QueryParent->getParent()->getEntryBlock()) 579 LocalCache = MemDepResult::getNonLocal(); 580 else 581 LocalCache = MemDepResult::getNonFuncLocal(); 582 } else { 583 AliasAnalysis::Location MemLoc; 584 AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA); 585 if (MemLoc.Ptr) { 586 // If we can do a pointer scan, make it happen. 587 bool isLoad = !(MR & AliasAnalysis::Mod); 588 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst)) 589 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start; 590 591 LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos, 592 QueryParent, QueryInst); 593 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) { 594 CallSite QueryCS(QueryInst); 595 bool isReadOnly = AA->onlyReadsMemory(QueryCS); 596 LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos, 597 QueryParent); 598 } else 599 // Non-memory instruction. 600 LocalCache = MemDepResult::getUnknown(); 601 } 602 603 // Remember the result! 604 if (Instruction *I = LocalCache.getInst()) 605 ReverseLocalDeps[I].insert(QueryInst); 606 607 return LocalCache; 608 } 609 610 #ifndef NDEBUG 611 /// AssertSorted - This method is used when -debug is specified to verify that 612 /// cache arrays are properly kept sorted. 613 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 614 int Count = -1) { 615 if (Count == -1) Count = Cache.size(); 616 if (Count == 0) return; 617 618 for (unsigned i = 1; i != unsigned(Count); ++i) 619 assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!"); 620 } 621 #endif 622 623 /// getNonLocalCallDependency - Perform a full dependency query for the 624 /// specified call, returning the set of blocks that the value is 625 /// potentially live across. The returned set of results will include a 626 /// "NonLocal" result for all blocks where the value is live across. 627 /// 628 /// This method assumes the instruction returns a "NonLocal" dependency 629 /// within its own block. 630 /// 631 /// This returns a reference to an internal data structure that may be 632 /// invalidated on the next non-local query or when an instruction is 633 /// removed. Clients must copy this data if they want it around longer than 634 /// that. 635 const MemoryDependenceAnalysis::NonLocalDepInfo & 636 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { 637 assert(getDependency(QueryCS.getInstruction()).isNonLocal() && 638 "getNonLocalCallDependency should only be used on calls with non-local deps!"); 639 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()]; 640 NonLocalDepInfo &Cache = CacheP.first; 641 642 /// DirtyBlocks - This is the set of blocks that need to be recomputed. In 643 /// the cached case, this can happen due to instructions being deleted etc. In 644 /// the uncached case, this starts out as the set of predecessors we care 645 /// about. 646 SmallVector<BasicBlock*, 32> DirtyBlocks; 647 648 if (!Cache.empty()) { 649 // Okay, we have a cache entry. If we know it is not dirty, just return it 650 // with no computation. 651 if (!CacheP.second) { 652 ++NumCacheNonLocal; 653 return Cache; 654 } 655 656 // If we already have a partially computed set of results, scan them to 657 // determine what is dirty, seeding our initial DirtyBlocks worklist. 658 for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end(); 659 I != E; ++I) 660 if (I->getResult().isDirty()) 661 DirtyBlocks.push_back(I->getBB()); 662 663 // Sort the cache so that we can do fast binary search lookups below. 664 std::sort(Cache.begin(), Cache.end()); 665 666 ++NumCacheDirtyNonLocal; 667 //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " 668 // << Cache.size() << " cached: " << *QueryInst; 669 } else { 670 // Seed DirtyBlocks with each of the preds of QueryInst's block. 671 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent(); 672 for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI) 673 DirtyBlocks.push_back(*PI); 674 ++NumUncacheNonLocal; 675 } 676 677 // isReadonlyCall - If this is a read-only call, we can be more aggressive. 678 bool isReadonlyCall = AA->onlyReadsMemory(QueryCS); 679 680 SmallPtrSet<BasicBlock*, 64> Visited; 681 682 unsigned NumSortedEntries = Cache.size(); 683 DEBUG(AssertSorted(Cache)); 684 685 // Iterate while we still have blocks to update. 686 while (!DirtyBlocks.empty()) { 687 BasicBlock *DirtyBB = DirtyBlocks.back(); 688 DirtyBlocks.pop_back(); 689 690 // Already processed this block? 691 if (!Visited.insert(DirtyBB)) 692 continue; 693 694 // Do a binary search to see if we already have an entry for this block in 695 // the cache set. If so, find it. 696 DEBUG(AssertSorted(Cache, NumSortedEntries)); 697 NonLocalDepInfo::iterator Entry = 698 std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries, 699 NonLocalDepEntry(DirtyBB)); 700 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB) 701 --Entry; 702 703 NonLocalDepEntry *ExistingResult = nullptr; 704 if (Entry != Cache.begin()+NumSortedEntries && 705 Entry->getBB() == DirtyBB) { 706 // If we already have an entry, and if it isn't already dirty, the block 707 // is done. 708 if (!Entry->getResult().isDirty()) 709 continue; 710 711 // Otherwise, remember this slot so we can update the value. 712 ExistingResult = &*Entry; 713 } 714 715 // If the dirty entry has a pointer, start scanning from it so we don't have 716 // to rescan the entire block. 717 BasicBlock::iterator ScanPos = DirtyBB->end(); 718 if (ExistingResult) { 719 if (Instruction *Inst = ExistingResult->getResult().getInst()) { 720 ScanPos = Inst; 721 // We're removing QueryInst's use of Inst. 722 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, 723 QueryCS.getInstruction()); 724 } 725 } 726 727 // Find out if this block has a local dependency for QueryInst. 728 MemDepResult Dep; 729 730 if (ScanPos != DirtyBB->begin()) { 731 Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB); 732 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { 733 // No dependence found. If this is the entry block of the function, it is 734 // a clobber, otherwise it is unknown. 735 Dep = MemDepResult::getNonLocal(); 736 } else { 737 Dep = MemDepResult::getNonFuncLocal(); 738 } 739 740 // If we had a dirty entry for the block, update it. Otherwise, just add 741 // a new entry. 742 if (ExistingResult) 743 ExistingResult->setResult(Dep); 744 else 745 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); 746 747 // If the block has a dependency (i.e. it isn't completely transparent to 748 // the value), remember the association! 749 if (!Dep.isNonLocal()) { 750 // Keep the ReverseNonLocalDeps map up to date so we can efficiently 751 // update this when we remove instructions. 752 if (Instruction *Inst = Dep.getInst()) 753 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction()); 754 } else { 755 756 // If the block *is* completely transparent to the load, we need to check 757 // the predecessors of this block. Add them to our worklist. 758 for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI) 759 DirtyBlocks.push_back(*PI); 760 } 761 } 762 763 return Cache; 764 } 765 766 /// getNonLocalPointerDependency - Perform a full dependency query for an 767 /// access to the specified (non-volatile) memory location, returning the 768 /// set of instructions that either define or clobber the value. 769 /// 770 /// This method assumes the pointer has a "NonLocal" dependency within its 771 /// own block. 772 /// 773 void MemoryDependenceAnalysis:: 774 getNonLocalPointerDependency(const AliasAnalysis::Location &Loc, bool isLoad, 775 BasicBlock *FromBB, 776 SmallVectorImpl<NonLocalDepResult> &Result) { 777 assert(Loc.Ptr->getType()->isPointerTy() && 778 "Can't get pointer deps of a non-pointer!"); 779 Result.clear(); 780 781 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL); 782 783 // This is the set of blocks we've inspected, and the pointer we consider in 784 // each block. Because of critical edges, we currently bail out if querying 785 // a block with multiple different pointers. This can happen during PHI 786 // translation. 787 DenseMap<BasicBlock*, Value*> Visited; 788 if (!getNonLocalPointerDepFromBB(Address, Loc, isLoad, FromBB, 789 Result, Visited, true)) 790 return; 791 Result.clear(); 792 Result.push_back(NonLocalDepResult(FromBB, 793 MemDepResult::getUnknown(), 794 const_cast<Value *>(Loc.Ptr))); 795 } 796 797 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with 798 /// Pointer/PointeeSize using either cached information in Cache or by doing a 799 /// lookup (which may use dirty cache info if available). If we do a lookup, 800 /// add the result to the cache. 801 MemDepResult MemoryDependenceAnalysis:: 802 GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc, 803 bool isLoad, BasicBlock *BB, 804 NonLocalDepInfo *Cache, unsigned NumSortedEntries) { 805 806 // Do a binary search to see if we already have an entry for this block in 807 // the cache set. If so, find it. 808 NonLocalDepInfo::iterator Entry = 809 std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries, 810 NonLocalDepEntry(BB)); 811 if (Entry != Cache->begin() && (Entry-1)->getBB() == BB) 812 --Entry; 813 814 NonLocalDepEntry *ExistingResult = nullptr; 815 if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB) 816 ExistingResult = &*Entry; 817 818 // If we have a cached entry, and it is non-dirty, use it as the value for 819 // this dependency. 820 if (ExistingResult && !ExistingResult->getResult().isDirty()) { 821 ++NumCacheNonLocalPtr; 822 return ExistingResult->getResult(); 823 } 824 825 // Otherwise, we have to scan for the value. If we have a dirty cache 826 // entry, start scanning from its position, otherwise we scan from the end 827 // of the block. 828 BasicBlock::iterator ScanPos = BB->end(); 829 if (ExistingResult && ExistingResult->getResult().getInst()) { 830 assert(ExistingResult->getResult().getInst()->getParent() == BB && 831 "Instruction invalidated?"); 832 ++NumCacheDirtyNonLocalPtr; 833 ScanPos = ExistingResult->getResult().getInst(); 834 835 // Eliminating the dirty entry from 'Cache', so update the reverse info. 836 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 837 RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey); 838 } else { 839 ++NumUncacheNonLocalPtr; 840 } 841 842 // Scan the block for the dependency. 843 MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB); 844 845 // If we had a dirty entry for the block, update it. Otherwise, just add 846 // a new entry. 847 if (ExistingResult) 848 ExistingResult->setResult(Dep); 849 else 850 Cache->push_back(NonLocalDepEntry(BB, Dep)); 851 852 // If the block has a dependency (i.e. it isn't completely transparent to 853 // the value), remember the reverse association because we just added it 854 // to Cache! 855 if (!Dep.isDef() && !Dep.isClobber()) 856 return Dep; 857 858 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently 859 // update MemDep when we remove instructions. 860 Instruction *Inst = Dep.getInst(); 861 assert(Inst && "Didn't depend on anything?"); 862 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 863 ReverseNonLocalPtrDeps[Inst].insert(CacheKey); 864 return Dep; 865 } 866 867 /// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain 868 /// number of elements in the array that are already properly ordered. This is 869 /// optimized for the case when only a few entries are added. 870 static void 871 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 872 unsigned NumSortedEntries) { 873 switch (Cache.size() - NumSortedEntries) { 874 case 0: 875 // done, no new entries. 876 break; 877 case 2: { 878 // Two new entries, insert the last one into place. 879 NonLocalDepEntry Val = Cache.back(); 880 Cache.pop_back(); 881 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 882 std::upper_bound(Cache.begin(), Cache.end()-1, Val); 883 Cache.insert(Entry, Val); 884 // FALL THROUGH. 885 } 886 case 1: 887 // One new entry, Just insert the new value at the appropriate position. 888 if (Cache.size() != 1) { 889 NonLocalDepEntry Val = Cache.back(); 890 Cache.pop_back(); 891 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 892 std::upper_bound(Cache.begin(), Cache.end(), Val); 893 Cache.insert(Entry, Val); 894 } 895 break; 896 default: 897 // Added many values, do a full scale sort. 898 std::sort(Cache.begin(), Cache.end()); 899 break; 900 } 901 } 902 903 /// getNonLocalPointerDepFromBB - Perform a dependency query based on 904 /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def 905 /// results to the results vector and keep track of which blocks are visited in 906 /// 'Visited'. 907 /// 908 /// This has special behavior for the first block queries (when SkipFirstBlock 909 /// is true). In this special case, it ignores the contents of the specified 910 /// block and starts returning dependence info for its predecessors. 911 /// 912 /// This function returns false on success, or true to indicate that it could 913 /// not compute dependence information for some reason. This should be treated 914 /// as a clobber dependence on the first instruction in the predecessor block. 915 bool MemoryDependenceAnalysis:: 916 getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, 917 const AliasAnalysis::Location &Loc, 918 bool isLoad, BasicBlock *StartBB, 919 SmallVectorImpl<NonLocalDepResult> &Result, 920 DenseMap<BasicBlock*, Value*> &Visited, 921 bool SkipFirstBlock) { 922 // Look up the cached info for Pointer. 923 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); 924 925 // Set up a temporary NLPI value. If the map doesn't yet have an entry for 926 // CacheKey, this value will be inserted as the associated value. Otherwise, 927 // it'll be ignored, and we'll have to check to see if the cached size and 928 // aa tags are consistent with the current query. 929 NonLocalPointerInfo InitialNLPI; 930 InitialNLPI.Size = Loc.Size; 931 InitialNLPI.AATags = Loc.AATags; 932 933 // Get the NLPI for CacheKey, inserting one into the map if it doesn't 934 // already have one. 935 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = 936 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); 937 NonLocalPointerInfo *CacheInfo = &Pair.first->second; 938 939 // If we already have a cache entry for this CacheKey, we may need to do some 940 // work to reconcile the cache entry and the current query. 941 if (!Pair.second) { 942 if (CacheInfo->Size < Loc.Size) { 943 // The query's Size is greater than the cached one. Throw out the 944 // cached data and proceed with the query at the greater size. 945 CacheInfo->Pair = BBSkipFirstBlockPair(); 946 CacheInfo->Size = Loc.Size; 947 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(), 948 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI) 949 if (Instruction *Inst = DI->getResult().getInst()) 950 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 951 CacheInfo->NonLocalDeps.clear(); 952 } else if (CacheInfo->Size > Loc.Size) { 953 // This query's Size is less than the cached one. Conservatively restart 954 // the query using the greater size. 955 return getNonLocalPointerDepFromBB(Pointer, 956 Loc.getWithNewSize(CacheInfo->Size), 957 isLoad, StartBB, Result, Visited, 958 SkipFirstBlock); 959 } 960 961 // If the query's AATags are inconsistent with the cached one, 962 // conservatively throw out the cached data and restart the query with 963 // no tag if needed. 964 if (CacheInfo->AATags != Loc.AATags) { 965 if (CacheInfo->AATags) { 966 CacheInfo->Pair = BBSkipFirstBlockPair(); 967 CacheInfo->AATags = AAMDNodes(); 968 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(), 969 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI) 970 if (Instruction *Inst = DI->getResult().getInst()) 971 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 972 CacheInfo->NonLocalDeps.clear(); 973 } 974 if (Loc.AATags) 975 return getNonLocalPointerDepFromBB(Pointer, Loc.getWithoutAATags(), 976 isLoad, StartBB, Result, Visited, 977 SkipFirstBlock); 978 } 979 } 980 981 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; 982 983 // If we have valid cached information for exactly the block we are 984 // investigating, just return it with no recomputation. 985 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { 986 // We have a fully cached result for this query then we can just return the 987 // cached results and populate the visited set. However, we have to verify 988 // that we don't already have conflicting results for these blocks. Check 989 // to ensure that if a block in the results set is in the visited set that 990 // it was for the same pointer query. 991 if (!Visited.empty()) { 992 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 993 I != E; ++I) { 994 DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB()); 995 if (VI == Visited.end() || VI->second == Pointer.getAddr()) 996 continue; 997 998 // We have a pointer mismatch in a block. Just return clobber, saying 999 // that something was clobbered in this result. We could also do a 1000 // non-fully cached query, but there is little point in doing this. 1001 return true; 1002 } 1003 } 1004 1005 Value *Addr = Pointer.getAddr(); 1006 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 1007 I != E; ++I) { 1008 Visited.insert(std::make_pair(I->getBB(), Addr)); 1009 if (I->getResult().isNonLocal()) { 1010 continue; 1011 } 1012 1013 if (!DT) { 1014 Result.push_back(NonLocalDepResult(I->getBB(), 1015 MemDepResult::getUnknown(), 1016 Addr)); 1017 } else if (DT->isReachableFromEntry(I->getBB())) { 1018 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr)); 1019 } 1020 } 1021 ++NumCacheCompleteNonLocalPtr; 1022 return false; 1023 } 1024 1025 // Otherwise, either this is a new block, a block with an invalid cache 1026 // pointer or one that we're about to invalidate by putting more info into it 1027 // than its valid cache info. If empty, the result will be valid cache info, 1028 // otherwise it isn't. 1029 if (Cache->empty()) 1030 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); 1031 else 1032 CacheInfo->Pair = BBSkipFirstBlockPair(); 1033 1034 SmallVector<BasicBlock*, 32> Worklist; 1035 Worklist.push_back(StartBB); 1036 1037 // PredList used inside loop. 1038 SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList; 1039 1040 // Keep track of the entries that we know are sorted. Previously cached 1041 // entries will all be sorted. The entries we add we only sort on demand (we 1042 // don't insert every element into its sorted position). We know that we 1043 // won't get any reuse from currently inserted values, because we don't 1044 // revisit blocks after we insert info for them. 1045 unsigned NumSortedEntries = Cache->size(); 1046 DEBUG(AssertSorted(*Cache)); 1047 1048 while (!Worklist.empty()) { 1049 BasicBlock *BB = Worklist.pop_back_val(); 1050 1051 // Skip the first block if we have it. 1052 if (!SkipFirstBlock) { 1053 // Analyze the dependency of *Pointer in FromBB. See if we already have 1054 // been here. 1055 assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); 1056 1057 // Get the dependency info for Pointer in BB. If we have cached 1058 // information, we will use it, otherwise we compute it. 1059 DEBUG(AssertSorted(*Cache, NumSortedEntries)); 1060 MemDepResult Dep = GetNonLocalInfoForBlock(Loc, isLoad, BB, Cache, 1061 NumSortedEntries); 1062 1063 // If we got a Def or Clobber, add this to the list of results. 1064 if (!Dep.isNonLocal()) { 1065 if (!DT) { 1066 Result.push_back(NonLocalDepResult(BB, 1067 MemDepResult::getUnknown(), 1068 Pointer.getAddr())); 1069 continue; 1070 } else if (DT->isReachableFromEntry(BB)) { 1071 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); 1072 continue; 1073 } 1074 } 1075 } 1076 1077 // If 'Pointer' is an instruction defined in this block, then we need to do 1078 // phi translation to change it into a value live in the predecessor block. 1079 // If not, we just add the predecessors to the worklist and scan them with 1080 // the same Pointer. 1081 if (!Pointer.NeedsPHITranslationFromBlock(BB)) { 1082 SkipFirstBlock = false; 1083 SmallVector<BasicBlock*, 16> NewBlocks; 1084 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { 1085 // Verify that we haven't looked at this block yet. 1086 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 1087 InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr())); 1088 if (InsertRes.second) { 1089 // First time we've looked at *PI. 1090 NewBlocks.push_back(*PI); 1091 continue; 1092 } 1093 1094 // If we have seen this block before, but it was with a different 1095 // pointer then we have a phi translation failure and we have to treat 1096 // this as a clobber. 1097 if (InsertRes.first->second != Pointer.getAddr()) { 1098 // Make sure to clean up the Visited map before continuing on to 1099 // PredTranslationFailure. 1100 for (unsigned i = 0; i < NewBlocks.size(); i++) 1101 Visited.erase(NewBlocks[i]); 1102 goto PredTranslationFailure; 1103 } 1104 } 1105 Worklist.append(NewBlocks.begin(), NewBlocks.end()); 1106 continue; 1107 } 1108 1109 // We do need to do phi translation, if we know ahead of time we can't phi 1110 // translate this value, don't even try. 1111 if (!Pointer.IsPotentiallyPHITranslatable()) 1112 goto PredTranslationFailure; 1113 1114 // We may have added values to the cache list before this PHI translation. 1115 // If so, we haven't done anything to ensure that the cache remains sorted. 1116 // Sort it now (if needed) so that recursive invocations of 1117 // getNonLocalPointerDepFromBB and other routines that could reuse the cache 1118 // value will only see properly sorted cache arrays. 1119 if (Cache && NumSortedEntries != Cache->size()) { 1120 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1121 NumSortedEntries = Cache->size(); 1122 } 1123 Cache = nullptr; 1124 1125 PredList.clear(); 1126 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { 1127 BasicBlock *Pred = *PI; 1128 PredList.push_back(std::make_pair(Pred, Pointer)); 1129 1130 // Get the PHI translated pointer in this predecessor. This can fail if 1131 // not translatable, in which case the getAddr() returns null. 1132 PHITransAddr &PredPointer = PredList.back().second; 1133 PredPointer.PHITranslateValue(BB, Pred, nullptr); 1134 1135 Value *PredPtrVal = PredPointer.getAddr(); 1136 1137 // Check to see if we have already visited this pred block with another 1138 // pointer. If so, we can't do this lookup. This failure can occur 1139 // with PHI translation when a critical edge exists and the PHI node in 1140 // the successor translates to a pointer value different than the 1141 // pointer the block was first analyzed with. 1142 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 1143 InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal)); 1144 1145 if (!InsertRes.second) { 1146 // We found the pred; take it off the list of preds to visit. 1147 PredList.pop_back(); 1148 1149 // If the predecessor was visited with PredPtr, then we already did 1150 // the analysis and can ignore it. 1151 if (InsertRes.first->second == PredPtrVal) 1152 continue; 1153 1154 // Otherwise, the block was previously analyzed with a different 1155 // pointer. We can't represent the result of this case, so we just 1156 // treat this as a phi translation failure. 1157 1158 // Make sure to clean up the Visited map before continuing on to 1159 // PredTranslationFailure. 1160 for (unsigned i = 0, n = PredList.size(); i < n; ++i) 1161 Visited.erase(PredList[i].first); 1162 1163 goto PredTranslationFailure; 1164 } 1165 } 1166 1167 // Actually process results here; this need to be a separate loop to avoid 1168 // calling getNonLocalPointerDepFromBB for blocks we don't want to return 1169 // any results for. (getNonLocalPointerDepFromBB will modify our 1170 // datastructures in ways the code after the PredTranslationFailure label 1171 // doesn't expect.) 1172 for (unsigned i = 0, n = PredList.size(); i < n; ++i) { 1173 BasicBlock *Pred = PredList[i].first; 1174 PHITransAddr &PredPointer = PredList[i].second; 1175 Value *PredPtrVal = PredPointer.getAddr(); 1176 1177 bool CanTranslate = true; 1178 // If PHI translation was unable to find an available pointer in this 1179 // predecessor, then we have to assume that the pointer is clobbered in 1180 // that predecessor. We can still do PRE of the load, which would insert 1181 // a computation of the pointer in this predecessor. 1182 if (!PredPtrVal) 1183 CanTranslate = false; 1184 1185 // FIXME: it is entirely possible that PHI translating will end up with 1186 // the same value. Consider PHI translating something like: 1187 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* 1188 // to recurse here, pedantically speaking. 1189 1190 // If getNonLocalPointerDepFromBB fails here, that means the cached 1191 // result conflicted with the Visited list; we have to conservatively 1192 // assume it is unknown, but this also does not block PRE of the load. 1193 if (!CanTranslate || 1194 getNonLocalPointerDepFromBB(PredPointer, 1195 Loc.getWithNewPtr(PredPtrVal), 1196 isLoad, Pred, 1197 Result, Visited)) { 1198 // Add the entry to the Result list. 1199 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal); 1200 Result.push_back(Entry); 1201 1202 // Since we had a phi translation failure, the cache for CacheKey won't 1203 // include all of the entries that we need to immediately satisfy future 1204 // queries. Mark this in NonLocalPointerDeps by setting the 1205 // BBSkipFirstBlockPair pointer to null. This requires reuse of the 1206 // cached value to do more work but not miss the phi trans failure. 1207 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; 1208 NLPI.Pair = BBSkipFirstBlockPair(); 1209 continue; 1210 } 1211 } 1212 1213 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. 1214 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1215 Cache = &CacheInfo->NonLocalDeps; 1216 NumSortedEntries = Cache->size(); 1217 1218 // Since we did phi translation, the "Cache" set won't contain all of the 1219 // results for the query. This is ok (we can still use it to accelerate 1220 // specific block queries) but we can't do the fastpath "return all 1221 // results from the set" Clear out the indicator for this. 1222 CacheInfo->Pair = BBSkipFirstBlockPair(); 1223 SkipFirstBlock = false; 1224 continue; 1225 1226 PredTranslationFailure: 1227 // The following code is "failure"; we can't produce a sane translation 1228 // for the given block. It assumes that we haven't modified any of 1229 // our datastructures while processing the current block. 1230 1231 if (!Cache) { 1232 // Refresh the CacheInfo/Cache pointer if it got invalidated. 1233 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1234 Cache = &CacheInfo->NonLocalDeps; 1235 NumSortedEntries = Cache->size(); 1236 } 1237 1238 // Since we failed phi translation, the "Cache" set won't contain all of the 1239 // results for the query. This is ok (we can still use it to accelerate 1240 // specific block queries) but we can't do the fastpath "return all 1241 // results from the set". Clear out the indicator for this. 1242 CacheInfo->Pair = BBSkipFirstBlockPair(); 1243 1244 // If *nothing* works, mark the pointer as unknown. 1245 // 1246 // If this is the magic first block, return this as a clobber of the whole 1247 // incoming value. Since we can't phi translate to one of the predecessors, 1248 // we have to bail out. 1249 if (SkipFirstBlock) 1250 return true; 1251 1252 for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) { 1253 assert(I != Cache->rend() && "Didn't find current block??"); 1254 if (I->getBB() != BB) 1255 continue; 1256 1257 assert(I->getResult().isNonLocal() && 1258 "Should only be here with transparent block"); 1259 I->setResult(MemDepResult::getUnknown()); 1260 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), 1261 Pointer.getAddr())); 1262 break; 1263 } 1264 } 1265 1266 // Okay, we're done now. If we added new values to the cache, re-sort it. 1267 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1268 DEBUG(AssertSorted(*Cache)); 1269 return false; 1270 } 1271 1272 /// RemoveCachedNonLocalPointerDependencies - If P exists in 1273 /// CachedNonLocalPointerInfo, remove it. 1274 void MemoryDependenceAnalysis:: 1275 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) { 1276 CachedNonLocalPointerInfo::iterator It = 1277 NonLocalPointerDeps.find(P); 1278 if (It == NonLocalPointerDeps.end()) return; 1279 1280 // Remove all of the entries in the BB->val map. This involves removing 1281 // instructions from the reverse map. 1282 NonLocalDepInfo &PInfo = It->second.NonLocalDeps; 1283 1284 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { 1285 Instruction *Target = PInfo[i].getResult().getInst(); 1286 if (!Target) continue; // Ignore non-local dep results. 1287 assert(Target->getParent() == PInfo[i].getBB()); 1288 1289 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1290 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); 1291 } 1292 1293 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). 1294 NonLocalPointerDeps.erase(It); 1295 } 1296 1297 1298 /// invalidateCachedPointerInfo - This method is used to invalidate cached 1299 /// information about the specified pointer, because it may be too 1300 /// conservative in memdep. This is an optional call that can be used when 1301 /// the client detects an equivalence between the pointer and some other 1302 /// value and replaces the other value with ptr. This can make Ptr available 1303 /// in more places that cached info does not necessarily keep. 1304 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) { 1305 // If Ptr isn't really a pointer, just ignore it. 1306 if (!Ptr->getType()->isPointerTy()) return; 1307 // Flush store info for the pointer. 1308 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); 1309 // Flush load info for the pointer. 1310 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); 1311 } 1312 1313 /// invalidateCachedPredecessors - Clear the PredIteratorCache info. 1314 /// This needs to be done when the CFG changes, e.g., due to splitting 1315 /// critical edges. 1316 void MemoryDependenceAnalysis::invalidateCachedPredecessors() { 1317 PredCache->clear(); 1318 } 1319 1320 /// removeInstruction - Remove an instruction from the dependence analysis, 1321 /// updating the dependence of instructions that previously depended on it. 1322 /// This method attempts to keep the cache coherent using the reverse map. 1323 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) { 1324 // Walk through the Non-local dependencies, removing this one as the value 1325 // for any cached queries. 1326 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); 1327 if (NLDI != NonLocalDeps.end()) { 1328 NonLocalDepInfo &BlockMap = NLDI->second.first; 1329 for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end(); 1330 DI != DE; ++DI) 1331 if (Instruction *Inst = DI->getResult().getInst()) 1332 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); 1333 NonLocalDeps.erase(NLDI); 1334 } 1335 1336 // If we have a cached local dependence query for this instruction, remove it. 1337 // 1338 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); 1339 if (LocalDepEntry != LocalDeps.end()) { 1340 // Remove us from DepInst's reverse set now that the local dep info is gone. 1341 if (Instruction *Inst = LocalDepEntry->second.getInst()) 1342 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); 1343 1344 // Remove this local dependency info. 1345 LocalDeps.erase(LocalDepEntry); 1346 } 1347 1348 // If we have any cached pointer dependencies on this instruction, remove 1349 // them. If the instruction has non-pointer type, then it can't be a pointer 1350 // base. 1351 1352 // Remove it from both the load info and the store info. The instruction 1353 // can't be in either of these maps if it is non-pointer. 1354 if (RemInst->getType()->isPointerTy()) { 1355 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); 1356 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); 1357 } 1358 1359 // Loop over all of the things that depend on the instruction we're removing. 1360 // 1361 SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd; 1362 1363 // If we find RemInst as a clobber or Def in any of the maps for other values, 1364 // we need to replace its entry with a dirty version of the instruction after 1365 // it. If RemInst is a terminator, we use a null dirty value. 1366 // 1367 // Using a dirty version of the instruction after RemInst saves having to scan 1368 // the entire block to get to this point. 1369 MemDepResult NewDirtyVal; 1370 if (!RemInst->isTerminator()) 1371 NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst)); 1372 1373 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); 1374 if (ReverseDepIt != ReverseLocalDeps.end()) { 1375 SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second; 1376 // RemInst can't be the terminator if it has local stuff depending on it. 1377 assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) && 1378 "Nothing can locally depend on a terminator"); 1379 1380 for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(), 1381 E = ReverseDeps.end(); I != E; ++I) { 1382 Instruction *InstDependingOnRemInst = *I; 1383 assert(InstDependingOnRemInst != RemInst && 1384 "Already removed our local dep info"); 1385 1386 LocalDeps[InstDependingOnRemInst] = NewDirtyVal; 1387 1388 // Make sure to remember that new things depend on NewDepInst. 1389 assert(NewDirtyVal.getInst() && "There is no way something else can have " 1390 "a local dep on this if it is a terminator!"); 1391 ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(), 1392 InstDependingOnRemInst)); 1393 } 1394 1395 ReverseLocalDeps.erase(ReverseDepIt); 1396 1397 // Add new reverse deps after scanning the set, to avoid invalidating the 1398 // 'ReverseDeps' reference. 1399 while (!ReverseDepsToAdd.empty()) { 1400 ReverseLocalDeps[ReverseDepsToAdd.back().first] 1401 .insert(ReverseDepsToAdd.back().second); 1402 ReverseDepsToAdd.pop_back(); 1403 } 1404 } 1405 1406 ReverseDepIt = ReverseNonLocalDeps.find(RemInst); 1407 if (ReverseDepIt != ReverseNonLocalDeps.end()) { 1408 SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second; 1409 for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end(); 1410 I != E; ++I) { 1411 assert(*I != RemInst && "Already removed NonLocalDep info for RemInst"); 1412 1413 PerInstNLInfo &INLD = NonLocalDeps[*I]; 1414 // The information is now dirty! 1415 INLD.second = true; 1416 1417 for (NonLocalDepInfo::iterator DI = INLD.first.begin(), 1418 DE = INLD.first.end(); DI != DE; ++DI) { 1419 if (DI->getResult().getInst() != RemInst) continue; 1420 1421 // Convert to a dirty entry for the subsequent instruction. 1422 DI->setResult(NewDirtyVal); 1423 1424 if (Instruction *NextI = NewDirtyVal.getInst()) 1425 ReverseDepsToAdd.push_back(std::make_pair(NextI, *I)); 1426 } 1427 } 1428 1429 ReverseNonLocalDeps.erase(ReverseDepIt); 1430 1431 // Add new reverse deps after scanning the set, to avoid invalidating 'Set' 1432 while (!ReverseDepsToAdd.empty()) { 1433 ReverseNonLocalDeps[ReverseDepsToAdd.back().first] 1434 .insert(ReverseDepsToAdd.back().second); 1435 ReverseDepsToAdd.pop_back(); 1436 } 1437 } 1438 1439 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a 1440 // value in the NonLocalPointerDeps info. 1441 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = 1442 ReverseNonLocalPtrDeps.find(RemInst); 1443 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { 1444 SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second; 1445 SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd; 1446 1447 for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(), 1448 E = Set.end(); I != E; ++I) { 1449 ValueIsLoadPair P = *I; 1450 assert(P.getPointer() != RemInst && 1451 "Already removed NonLocalPointerDeps info for RemInst"); 1452 1453 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; 1454 1455 // The cache is not valid for any specific block anymore. 1456 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); 1457 1458 // Update any entries for RemInst to use the instruction after it. 1459 for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end(); 1460 DI != DE; ++DI) { 1461 if (DI->getResult().getInst() != RemInst) continue; 1462 1463 // Convert to a dirty entry for the subsequent instruction. 1464 DI->setResult(NewDirtyVal); 1465 1466 if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) 1467 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); 1468 } 1469 1470 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its 1471 // subsequent value may invalidate the sortedness. 1472 std::sort(NLPDI.begin(), NLPDI.end()); 1473 } 1474 1475 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); 1476 1477 while (!ReversePtrDepsToAdd.empty()) { 1478 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first] 1479 .insert(ReversePtrDepsToAdd.back().second); 1480 ReversePtrDepsToAdd.pop_back(); 1481 } 1482 } 1483 1484 1485 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); 1486 AA->deleteValue(RemInst); 1487 DEBUG(verifyRemoved(RemInst)); 1488 } 1489 /// verifyRemoved - Verify that the specified instruction does not occur 1490 /// in our internal data structures. 1491 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const { 1492 for (LocalDepMapType::const_iterator I = LocalDeps.begin(), 1493 E = LocalDeps.end(); I != E; ++I) { 1494 assert(I->first != D && "Inst occurs in data structures"); 1495 assert(I->second.getInst() != D && 1496 "Inst occurs in data structures"); 1497 } 1498 1499 for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(), 1500 E = NonLocalPointerDeps.end(); I != E; ++I) { 1501 assert(I->first.getPointer() != D && "Inst occurs in NLPD map key"); 1502 const NonLocalDepInfo &Val = I->second.NonLocalDeps; 1503 for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end(); 1504 II != E; ++II) 1505 assert(II->getResult().getInst() != D && "Inst occurs as NLPD value"); 1506 } 1507 1508 for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(), 1509 E = NonLocalDeps.end(); I != E; ++I) { 1510 assert(I->first != D && "Inst occurs in data structures"); 1511 const PerInstNLInfo &INLD = I->second; 1512 for (NonLocalDepInfo::const_iterator II = INLD.first.begin(), 1513 EE = INLD.first.end(); II != EE; ++II) 1514 assert(II->getResult().getInst() != D && "Inst occurs in data structures"); 1515 } 1516 1517 for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(), 1518 E = ReverseLocalDeps.end(); I != E; ++I) { 1519 assert(I->first != D && "Inst occurs in data structures"); 1520 for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(), 1521 EE = I->second.end(); II != EE; ++II) 1522 assert(*II != D && "Inst occurs in data structures"); 1523 } 1524 1525 for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(), 1526 E = ReverseNonLocalDeps.end(); 1527 I != E; ++I) { 1528 assert(I->first != D && "Inst occurs in data structures"); 1529 for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(), 1530 EE = I->second.end(); II != EE; ++II) 1531 assert(*II != D && "Inst occurs in data structures"); 1532 } 1533 1534 for (ReverseNonLocalPtrDepTy::const_iterator 1535 I = ReverseNonLocalPtrDeps.begin(), 1536 E = ReverseNonLocalPtrDeps.end(); I != E; ++I) { 1537 assert(I->first != D && "Inst occurs in rev NLPD map"); 1538 1539 for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(), 1540 E = I->second.end(); II != E; ++II) 1541 assert(*II != ValueIsLoadPair(D, false) && 1542 *II != ValueIsLoadPair(D, true) && 1543 "Inst occurs in ReverseNonLocalPtrDeps map"); 1544 } 1545 1546 } 1547