1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements an analysis that determines, for a given memory
11 // operation, what preceding memory operations it depends on.  It builds on
12 // alias analysis information, and tries to provide a lazy, caching interface to
13 // a common kind of alias information query.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/PHITransAddr.h"
26 #include "llvm/Analysis/OrderedBasicBlock.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/IR/CallSite.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/LLVMContext.h"
39 #include "llvm/IR/PredIteratorCache.h"
40 #include "llvm/Support/AtomicOrdering.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Compiler.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/MathExtras.h"
46 #include <algorithm>
47 #include <cassert>
48 #include <iterator>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "memdep"
53 
54 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
55 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
56 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
57 
58 STATISTIC(NumCacheNonLocalPtr,
59           "Number of fully cached non-local ptr responses");
60 STATISTIC(NumCacheDirtyNonLocalPtr,
61           "Number of cached, but dirty, non-local ptr responses");
62 STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses");
63 STATISTIC(NumCacheCompleteNonLocalPtr,
64           "Number of block queries that were completely cached");
65 
66 // Limit for the number of instructions to scan in a block.
67 
68 static cl::opt<unsigned> BlockScanLimit(
69     "memdep-block-scan-limit", cl::Hidden, cl::init(100),
70     cl::desc("The number of instructions to scan in a block in memory "
71              "dependency analysis (default = 100)"));
72 
73 static cl::opt<unsigned>
74     BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000),
75                      cl::desc("The number of blocks to scan during memory "
76                               "dependency analysis (default = 1000)"));
77 
78 // Limit on the number of memdep results to process.
79 static const unsigned int NumResultsLimit = 100;
80 
81 /// This is a helper function that removes Val from 'Inst's set in ReverseMap.
82 ///
83 /// If the set becomes empty, remove Inst's entry.
84 template <typename KeyTy>
85 static void
86 RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap,
87                      Instruction *Inst, KeyTy Val) {
88   typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt =
89       ReverseMap.find(Inst);
90   assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
91   bool Found = InstIt->second.erase(Val);
92   assert(Found && "Invalid reverse map!");
93   (void)Found;
94   if (InstIt->second.empty())
95     ReverseMap.erase(InstIt);
96 }
97 
98 /// If the given instruction references a specific memory location, fill in Loc
99 /// with the details, otherwise set Loc.Ptr to null.
100 ///
101 /// Returns a ModRefInfo value describing the general behavior of the
102 /// instruction.
103 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc,
104                               const TargetLibraryInfo &TLI) {
105   if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
106     if (LI->isUnordered()) {
107       Loc = MemoryLocation::get(LI);
108       return MRI_Ref;
109     }
110     if (LI->getOrdering() == AtomicOrdering::Monotonic) {
111       Loc = MemoryLocation::get(LI);
112       return MRI_ModRef;
113     }
114     Loc = MemoryLocation();
115     return MRI_ModRef;
116   }
117 
118   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
119     if (SI->isUnordered()) {
120       Loc = MemoryLocation::get(SI);
121       return MRI_Mod;
122     }
123     if (SI->getOrdering() == AtomicOrdering::Monotonic) {
124       Loc = MemoryLocation::get(SI);
125       return MRI_ModRef;
126     }
127     Loc = MemoryLocation();
128     return MRI_ModRef;
129   }
130 
131   if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
132     Loc = MemoryLocation::get(V);
133     return MRI_ModRef;
134   }
135 
136   if (const CallInst *CI = isFreeCall(Inst, &TLI)) {
137     // calls to free() deallocate the entire structure
138     Loc = MemoryLocation(CI->getArgOperand(0));
139     return MRI_Mod;
140   }
141 
142   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
143     AAMDNodes AAInfo;
144 
145     switch (II->getIntrinsicID()) {
146     case Intrinsic::lifetime_start:
147     case Intrinsic::lifetime_end:
148     case Intrinsic::invariant_start:
149       II->getAAMetadata(AAInfo);
150       Loc = MemoryLocation(
151           II->getArgOperand(1),
152           cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(), AAInfo);
153       // These intrinsics don't really modify the memory, but returning Mod
154       // will allow them to be handled conservatively.
155       return MRI_Mod;
156     case Intrinsic::invariant_end:
157       II->getAAMetadata(AAInfo);
158       Loc = MemoryLocation(
159           II->getArgOperand(2),
160           cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(), AAInfo);
161       // These intrinsics don't really modify the memory, but returning Mod
162       // will allow them to be handled conservatively.
163       return MRI_Mod;
164     default:
165       break;
166     }
167   }
168 
169   // Otherwise, just do the coarse-grained thing that always works.
170   if (Inst->mayWriteToMemory())
171     return MRI_ModRef;
172   if (Inst->mayReadFromMemory())
173     return MRI_Ref;
174   return MRI_NoModRef;
175 }
176 
177 /// Private helper for finding the local dependencies of a call site.
178 MemDepResult MemoryDependenceResults::getCallSiteDependencyFrom(
179     CallSite CS, bool isReadOnlyCall, BasicBlock::iterator ScanIt,
180     BasicBlock *BB) {
181   unsigned Limit = BlockScanLimit;
182 
183   // Walk backwards through the block, looking for dependencies.
184   while (ScanIt != BB->begin()) {
185     // Limit the amount of scanning we do so we don't end up with quadratic
186     // running time on extreme testcases.
187     --Limit;
188     if (!Limit)
189       return MemDepResult::getUnknown();
190 
191     Instruction *Inst = &*--ScanIt;
192 
193     // If this inst is a memory op, get the pointer it accessed
194     MemoryLocation Loc;
195     ModRefInfo MR = GetLocation(Inst, Loc, TLI);
196     if (Loc.Ptr) {
197       // A simple instruction.
198       if (AA.getModRefInfo(CS, Loc) != MRI_NoModRef)
199         return MemDepResult::getClobber(Inst);
200       continue;
201     }
202 
203     if (auto InstCS = CallSite(Inst)) {
204       // Debug intrinsics don't cause dependences.
205       if (isa<DbgInfoIntrinsic>(Inst))
206         continue;
207       // If these two calls do not interfere, look past it.
208       switch (AA.getModRefInfo(CS, InstCS)) {
209       case MRI_NoModRef:
210         // If the two calls are the same, return InstCS as a Def, so that
211         // CS can be found redundant and eliminated.
212         if (isReadOnlyCall && !(MR & MRI_Mod) &&
213             CS.getInstruction()->isIdenticalToWhenDefined(Inst))
214           return MemDepResult::getDef(Inst);
215 
216         // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
217         // keep scanning.
218         continue;
219       default:
220         return MemDepResult::getClobber(Inst);
221       }
222     }
223 
224     // If we could not obtain a pointer for the instruction and the instruction
225     // touches memory then assume that this is a dependency.
226     if (MR != MRI_NoModRef)
227       return MemDepResult::getClobber(Inst);
228   }
229 
230   // No dependence found.  If this is the entry block of the function, it is
231   // unknown, otherwise it is non-local.
232   if (BB != &BB->getParent()->getEntryBlock())
233     return MemDepResult::getNonLocal();
234   return MemDepResult::getNonFuncLocal();
235 }
236 
237 unsigned MemoryDependenceResults::getLoadLoadClobberFullWidthSize(
238     const Value *MemLocBase, int64_t MemLocOffs, unsigned MemLocSize,
239     const LoadInst *LI) {
240   // We can only extend simple integer loads.
241   if (!isa<IntegerType>(LI->getType()) || !LI->isSimple())
242     return 0;
243 
244   // Load widening is hostile to ThreadSanitizer: it may cause false positives
245   // or make the reports more cryptic (access sizes are wrong).
246   if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
247     return 0;
248 
249   const DataLayout &DL = LI->getModule()->getDataLayout();
250 
251   // Get the base of this load.
252   int64_t LIOffs = 0;
253   const Value *LIBase =
254       GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL);
255 
256   // If the two pointers are not based on the same pointer, we can't tell that
257   // they are related.
258   if (LIBase != MemLocBase)
259     return 0;
260 
261   // Okay, the two values are based on the same pointer, but returned as
262   // no-alias.  This happens when we have things like two byte loads at "P+1"
263   // and "P+3".  Check to see if increasing the size of the "LI" load up to its
264   // alignment (or the largest native integer type) will allow us to load all
265   // the bits required by MemLoc.
266 
267   // If MemLoc is before LI, then no widening of LI will help us out.
268   if (MemLocOffs < LIOffs)
269     return 0;
270 
271   // Get the alignment of the load in bytes.  We assume that it is safe to load
272   // any legal integer up to this size without a problem.  For example, if we're
273   // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
274   // widen it up to an i32 load.  If it is known 2-byte aligned, we can widen it
275   // to i16.
276   unsigned LoadAlign = LI->getAlignment();
277 
278   int64_t MemLocEnd = MemLocOffs + MemLocSize;
279 
280   // If no amount of rounding up will let MemLoc fit into LI, then bail out.
281   if (LIOffs + LoadAlign < MemLocEnd)
282     return 0;
283 
284   // This is the size of the load to try.  Start with the next larger power of
285   // two.
286   unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits() / 8U;
287   NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
288 
289   while (true) {
290     // If this load size is bigger than our known alignment or would not fit
291     // into a native integer register, then we fail.
292     if (NewLoadByteSize > LoadAlign ||
293         !DL.fitsInLegalInteger(NewLoadByteSize * 8))
294       return 0;
295 
296     if (LIOffs + NewLoadByteSize > MemLocEnd &&
297         LI->getParent()->getParent()->hasFnAttribute(
298             Attribute::SanitizeAddress))
299       // We will be reading past the location accessed by the original program.
300       // While this is safe in a regular build, Address Safety analysis tools
301       // may start reporting false warnings. So, don't do widening.
302       return 0;
303 
304     // If a load of this width would include all of MemLoc, then we succeed.
305     if (LIOffs + NewLoadByteSize >= MemLocEnd)
306       return NewLoadByteSize;
307 
308     NewLoadByteSize <<= 1;
309   }
310 }
311 
312 static bool isVolatile(Instruction *Inst) {
313   if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
314     return LI->isVolatile();
315   else if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
316     return SI->isVolatile();
317   else if (AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(Inst))
318     return AI->isVolatile();
319   return false;
320 }
321 
322 MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
323     const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
324     BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
325 
326   if (QueryInst != nullptr) {
327     if (auto *LI = dyn_cast<LoadInst>(QueryInst)) {
328       MemDepResult invariantGroupDependency =
329           getInvariantGroupPointerDependency(LI, BB);
330 
331       if (invariantGroupDependency.isDef())
332         return invariantGroupDependency;
333     }
334   }
335   return getSimplePointerDependencyFrom(MemLoc, isLoad, ScanIt, BB, QueryInst,
336                                         Limit);
337 }
338 
339 MemDepResult
340 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI,
341                                                              BasicBlock *BB) {
342   Value *LoadOperand = LI->getPointerOperand();
343   // It's is not safe to walk the use list of global value, because function
344   // passes aren't allowed to look outside their functions.
345   if (isa<GlobalValue>(LoadOperand))
346     return MemDepResult::getUnknown();
347 
348   auto *InvariantGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group);
349   if (!InvariantGroupMD)
350     return MemDepResult::getUnknown();
351 
352   MemDepResult Result = MemDepResult::getUnknown();
353   SmallSet<Value *, 14> Seen;
354   // Queue to process all pointers that are equivalent to load operand.
355   SmallVector<Value *, 8> LoadOperandsQueue;
356   LoadOperandsQueue.push_back(LoadOperand);
357   while (!LoadOperandsQueue.empty()) {
358     Value *Ptr = LoadOperandsQueue.pop_back_val();
359     if (isa<GlobalValue>(Ptr))
360       continue;
361 
362     if (auto *BCI = dyn_cast<BitCastInst>(Ptr)) {
363       if (Seen.insert(BCI->getOperand(0)).second) {
364         LoadOperandsQueue.push_back(BCI->getOperand(0));
365       }
366     }
367 
368     for (Use &Us : Ptr->uses()) {
369       auto *U = dyn_cast<Instruction>(Us.getUser());
370       if (!U || U == LI || !DT.dominates(U, LI))
371         continue;
372 
373       if (auto *BCI = dyn_cast<BitCastInst>(U)) {
374         if (Seen.insert(BCI).second) {
375           LoadOperandsQueue.push_back(BCI);
376         }
377         continue;
378       }
379       // If we hit load/store with the same invariant.group metadata (and the
380       // same pointer operand) we can assume that value pointed by pointer
381       // operand didn't change.
382       if ((isa<LoadInst>(U) || isa<StoreInst>(U)) && U->getParent() == BB &&
383           U->getMetadata(LLVMContext::MD_invariant_group) == InvariantGroupMD)
384         return MemDepResult::getDef(U);
385     }
386   }
387   return Result;
388 }
389 
390 MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom(
391     const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
392     BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
393   bool isInvariantLoad = false;
394 
395   if (!Limit) {
396     unsigned DefaultLimit = BlockScanLimit;
397     return getSimplePointerDependencyFrom(MemLoc, isLoad, ScanIt, BB, QueryInst,
398                                           &DefaultLimit);
399   }
400 
401   // We must be careful with atomic accesses, as they may allow another thread
402   //   to touch this location, clobbering it. We are conservative: if the
403   //   QueryInst is not a simple (non-atomic) memory access, we automatically
404   //   return getClobber.
405   // If it is simple, we know based on the results of
406   // "Compiler testing via a theory of sound optimisations in the C11/C++11
407   //   memory model" in PLDI 2013, that a non-atomic location can only be
408   //   clobbered between a pair of a release and an acquire action, with no
409   //   access to the location in between.
410   // Here is an example for giving the general intuition behind this rule.
411   // In the following code:
412   //   store x 0;
413   //   release action; [1]
414   //   acquire action; [4]
415   //   %val = load x;
416   // It is unsafe to replace %val by 0 because another thread may be running:
417   //   acquire action; [2]
418   //   store x 42;
419   //   release action; [3]
420   // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
421   // being 42. A key property of this program however is that if either
422   // 1 or 4 were missing, there would be a race between the store of 42
423   // either the store of 0 or the load (making the whole program racy).
424   // The paper mentioned above shows that the same property is respected
425   // by every program that can detect any optimization of that kind: either
426   // it is racy (undefined) or there is a release followed by an acquire
427   // between the pair of accesses under consideration.
428 
429   // If the load is invariant, we "know" that it doesn't alias *any* write. We
430   // do want to respect mustalias results since defs are useful for value
431   // forwarding, but any mayalias write can be assumed to be noalias.
432   // Arguably, this logic should be pushed inside AliasAnalysis itself.
433   if (isLoad && QueryInst) {
434     LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
435     if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr)
436       isInvariantLoad = true;
437   }
438 
439   const DataLayout &DL = BB->getModule()->getDataLayout();
440 
441   // Create a numbered basic block to lazily compute and cache instruction
442   // positions inside a BB. This is used to provide fast queries for relative
443   // position between two instructions in a BB and can be used by
444   // AliasAnalysis::callCapturesBefore.
445   OrderedBasicBlock OBB(BB);
446 
447   // Return "true" if and only if the instruction I is either a non-simple
448   // load or a non-simple store.
449   auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool {
450     if (auto *LI = dyn_cast<LoadInst>(I))
451       return !LI->isSimple();
452     if (auto *SI = dyn_cast<StoreInst>(I))
453       return !SI->isSimple();
454     return false;
455   };
456 
457   // Return "true" if I is not a load and not a store, but it does access
458   // memory.
459   auto isOtherMemAccess = [](Instruction *I) -> bool {
460     return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory();
461   };
462 
463   // Walk backwards through the basic block, looking for dependencies.
464   while (ScanIt != BB->begin()) {
465     Instruction *Inst = &*--ScanIt;
466 
467     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
468       // Debug intrinsics don't (and can't) cause dependencies.
469       if (isa<DbgInfoIntrinsic>(II))
470         continue;
471 
472     // Limit the amount of scanning we do so we don't end up with quadratic
473     // running time on extreme testcases.
474     --*Limit;
475     if (!*Limit)
476       return MemDepResult::getUnknown();
477 
478     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
479       // If we reach a lifetime begin or end marker, then the query ends here
480       // because the value is undefined.
481       if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
482         // FIXME: This only considers queries directly on the invariant-tagged
483         // pointer, not on query pointers that are indexed off of them.  It'd
484         // be nice to handle that at some point (the right approach is to use
485         // GetPointerBaseWithConstantOffset).
486         if (AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc))
487           return MemDepResult::getDef(II);
488         continue;
489       }
490     }
491 
492     // Values depend on loads if the pointers are must aliased.  This means
493     // that a load depends on another must aliased load from the same value.
494     // One exception is atomic loads: a value can depend on an atomic load that
495     // it does not alias with when this atomic load indicates that another
496     // thread may be accessing the location.
497     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
498 
499       // While volatile access cannot be eliminated, they do not have to clobber
500       // non-aliasing locations, as normal accesses, for example, can be safely
501       // reordered with volatile accesses.
502       if (LI->isVolatile()) {
503         if (!QueryInst)
504           // Original QueryInst *may* be volatile
505           return MemDepResult::getClobber(LI);
506         if (isVolatile(QueryInst))
507           // Ordering required if QueryInst is itself volatile
508           return MemDepResult::getClobber(LI);
509         // Otherwise, volatile doesn't imply any special ordering
510       }
511 
512       // Atomic loads have complications involved.
513       // A Monotonic (or higher) load is OK if the query inst is itself not
514       // atomic.
515       // FIXME: This is overly conservative.
516       if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) {
517         if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
518             isOtherMemAccess(QueryInst))
519           return MemDepResult::getClobber(LI);
520         if (LI->getOrdering() != AtomicOrdering::Monotonic)
521           return MemDepResult::getClobber(LI);
522       }
523 
524       MemoryLocation LoadLoc = MemoryLocation::get(LI);
525 
526       // If we found a pointer, check if it could be the same as our pointer.
527       AliasResult R = AA.alias(LoadLoc, MemLoc);
528 
529       if (isLoad) {
530         if (R == NoAlias)
531           continue;
532 
533         // Must aliased loads are defs of each other.
534         if (R == MustAlias)
535           return MemDepResult::getDef(Inst);
536 
537 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
538       // in terms of clobbering loads, but since it does this by looking
539       // at the clobbering load directly, it doesn't know about any
540       // phi translation that may have happened along the way.
541 
542         // If we have a partial alias, then return this as a clobber for the
543         // client to handle.
544         if (R == PartialAlias)
545           return MemDepResult::getClobber(Inst);
546 #endif
547 
548         // Random may-alias loads don't depend on each other without a
549         // dependence.
550         continue;
551       }
552 
553       // Stores don't depend on other no-aliased accesses.
554       if (R == NoAlias)
555         continue;
556 
557       // Stores don't alias loads from read-only memory.
558       if (AA.pointsToConstantMemory(LoadLoc))
559         continue;
560 
561       // Stores depend on may/must aliased loads.
562       return MemDepResult::getDef(Inst);
563     }
564 
565     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
566       // Atomic stores have complications involved.
567       // A Monotonic store is OK if the query inst is itself not atomic.
568       // FIXME: This is overly conservative.
569       if (!SI->isUnordered() && SI->isAtomic()) {
570         if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
571             isOtherMemAccess(QueryInst))
572           return MemDepResult::getClobber(SI);
573         if (SI->getOrdering() != AtomicOrdering::Monotonic)
574           return MemDepResult::getClobber(SI);
575       }
576 
577       // FIXME: this is overly conservative.
578       // While volatile access cannot be eliminated, they do not have to clobber
579       // non-aliasing locations, as normal accesses can for example be reordered
580       // with volatile accesses.
581       if (SI->isVolatile())
582         if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
583             isOtherMemAccess(QueryInst))
584           return MemDepResult::getClobber(SI);
585 
586       // If alias analysis can tell that this store is guaranteed to not modify
587       // the query pointer, ignore it.  Use getModRefInfo to handle cases where
588       // the query pointer points to constant memory etc.
589       if (AA.getModRefInfo(SI, MemLoc) == MRI_NoModRef)
590         continue;
591 
592       // Ok, this store might clobber the query pointer.  Check to see if it is
593       // a must alias: in this case, we want to return this as a def.
594       MemoryLocation StoreLoc = MemoryLocation::get(SI);
595 
596       // If we found a pointer, check if it could be the same as our pointer.
597       AliasResult R = AA.alias(StoreLoc, MemLoc);
598 
599       if (R == NoAlias)
600         continue;
601       if (R == MustAlias)
602         return MemDepResult::getDef(Inst);
603       if (isInvariantLoad)
604         continue;
605       return MemDepResult::getClobber(Inst);
606     }
607 
608     // If this is an allocation, and if we know that the accessed pointer is to
609     // the allocation, return Def.  This means that there is no dependence and
610     // the access can be optimized based on that.  For example, a load could
611     // turn into undef.  Note that we can bypass the allocation itself when
612     // looking for a clobber in many cases; that's an alias property and is
613     // handled by BasicAA.
614     if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) {
615       const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL);
616       if (AccessPtr == Inst || AA.isMustAlias(Inst, AccessPtr))
617         return MemDepResult::getDef(Inst);
618     }
619 
620     if (isInvariantLoad)
621       continue;
622 
623     // A release fence requires that all stores complete before it, but does
624     // not prevent the reordering of following loads or stores 'before' the
625     // fence.  As a result, we look past it when finding a dependency for
626     // loads.  DSE uses this to find preceeding stores to delete and thus we
627     // can't bypass the fence if the query instruction is a store.
628     if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
629       if (isLoad && FI->getOrdering() == AtomicOrdering::Release)
630         continue;
631 
632     // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
633     ModRefInfo MR = AA.getModRefInfo(Inst, MemLoc);
634     // If necessary, perform additional analysis.
635     if (MR == MRI_ModRef)
636       MR = AA.callCapturesBefore(Inst, MemLoc, &DT, &OBB);
637     switch (MR) {
638     case MRI_NoModRef:
639       // If the call has no effect on the queried pointer, just ignore it.
640       continue;
641     case MRI_Mod:
642       return MemDepResult::getClobber(Inst);
643     case MRI_Ref:
644       // If the call is known to never store to the pointer, and if this is a
645       // load query, we can safely ignore it (scan past it).
646       if (isLoad)
647         continue;
648     default:
649       // Otherwise, there is a potential dependence.  Return a clobber.
650       return MemDepResult::getClobber(Inst);
651     }
652   }
653 
654   // No dependence found.  If this is the entry block of the function, it is
655   // unknown, otherwise it is non-local.
656   if (BB != &BB->getParent()->getEntryBlock())
657     return MemDepResult::getNonLocal();
658   return MemDepResult::getNonFuncLocal();
659 }
660 
661 MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) {
662   Instruction *ScanPos = QueryInst;
663 
664   // Check for a cached result
665   MemDepResult &LocalCache = LocalDeps[QueryInst];
666 
667   // If the cached entry is non-dirty, just return it.  Note that this depends
668   // on MemDepResult's default constructing to 'dirty'.
669   if (!LocalCache.isDirty())
670     return LocalCache;
671 
672   // Otherwise, if we have a dirty entry, we know we can start the scan at that
673   // instruction, which may save us some work.
674   if (Instruction *Inst = LocalCache.getInst()) {
675     ScanPos = Inst;
676 
677     RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
678   }
679 
680   BasicBlock *QueryParent = QueryInst->getParent();
681 
682   // Do the scan.
683   if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
684     // No dependence found.  If this is the entry block of the function, it is
685     // unknown, otherwise it is non-local.
686     if (QueryParent != &QueryParent->getParent()->getEntryBlock())
687       LocalCache = MemDepResult::getNonLocal();
688     else
689       LocalCache = MemDepResult::getNonFuncLocal();
690   } else {
691     MemoryLocation MemLoc;
692     ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI);
693     if (MemLoc.Ptr) {
694       // If we can do a pointer scan, make it happen.
695       bool isLoad = !(MR & MRI_Mod);
696       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst))
697         isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
698 
699       LocalCache = getPointerDependencyFrom(
700           MemLoc, isLoad, ScanPos->getIterator(), QueryParent, QueryInst);
701     } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
702       CallSite QueryCS(QueryInst);
703       bool isReadOnly = AA.onlyReadsMemory(QueryCS);
704       LocalCache = getCallSiteDependencyFrom(
705           QueryCS, isReadOnly, ScanPos->getIterator(), QueryParent);
706     } else
707       // Non-memory instruction.
708       LocalCache = MemDepResult::getUnknown();
709   }
710 
711   // Remember the result!
712   if (Instruction *I = LocalCache.getInst())
713     ReverseLocalDeps[I].insert(QueryInst);
714 
715   return LocalCache;
716 }
717 
718 #ifndef NDEBUG
719 /// This method is used when -debug is specified to verify that cache arrays
720 /// are properly kept sorted.
721 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache,
722                          int Count = -1) {
723   if (Count == -1)
724     Count = Cache.size();
725   assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) &&
726          "Cache isn't sorted!");
727 }
728 #endif
729 
730 const MemoryDependenceResults::NonLocalDepInfo &
731 MemoryDependenceResults::getNonLocalCallDependency(CallSite QueryCS) {
732   assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
733          "getNonLocalCallDependency should only be used on calls with "
734          "non-local deps!");
735   PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
736   NonLocalDepInfo &Cache = CacheP.first;
737 
738   // This is the set of blocks that need to be recomputed.  In the cached case,
739   // this can happen due to instructions being deleted etc. In the uncached
740   // case, this starts out as the set of predecessors we care about.
741   SmallVector<BasicBlock *, 32> DirtyBlocks;
742 
743   if (!Cache.empty()) {
744     // Okay, we have a cache entry.  If we know it is not dirty, just return it
745     // with no computation.
746     if (!CacheP.second) {
747       ++NumCacheNonLocal;
748       return Cache;
749     }
750 
751     // If we already have a partially computed set of results, scan them to
752     // determine what is dirty, seeding our initial DirtyBlocks worklist.
753     for (auto &Entry : Cache)
754       if (Entry.getResult().isDirty())
755         DirtyBlocks.push_back(Entry.getBB());
756 
757     // Sort the cache so that we can do fast binary search lookups below.
758     std::sort(Cache.begin(), Cache.end());
759 
760     ++NumCacheDirtyNonLocal;
761     // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
762     //     << Cache.size() << " cached: " << *QueryInst;
763   } else {
764     // Seed DirtyBlocks with each of the preds of QueryInst's block.
765     BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
766     for (BasicBlock *Pred : PredCache.get(QueryBB))
767       DirtyBlocks.push_back(Pred);
768     ++NumUncacheNonLocal;
769   }
770 
771   // isReadonlyCall - If this is a read-only call, we can be more aggressive.
772   bool isReadonlyCall = AA.onlyReadsMemory(QueryCS);
773 
774   SmallPtrSet<BasicBlock *, 32> Visited;
775 
776   unsigned NumSortedEntries = Cache.size();
777   DEBUG(AssertSorted(Cache));
778 
779   // Iterate while we still have blocks to update.
780   while (!DirtyBlocks.empty()) {
781     BasicBlock *DirtyBB = DirtyBlocks.back();
782     DirtyBlocks.pop_back();
783 
784     // Already processed this block?
785     if (!Visited.insert(DirtyBB).second)
786       continue;
787 
788     // Do a binary search to see if we already have an entry for this block in
789     // the cache set.  If so, find it.
790     DEBUG(AssertSorted(Cache, NumSortedEntries));
791     NonLocalDepInfo::iterator Entry =
792         std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries,
793                          NonLocalDepEntry(DirtyBB));
794     if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
795       --Entry;
796 
797     NonLocalDepEntry *ExistingResult = nullptr;
798     if (Entry != Cache.begin() + NumSortedEntries &&
799         Entry->getBB() == DirtyBB) {
800       // If we already have an entry, and if it isn't already dirty, the block
801       // is done.
802       if (!Entry->getResult().isDirty())
803         continue;
804 
805       // Otherwise, remember this slot so we can update the value.
806       ExistingResult = &*Entry;
807     }
808 
809     // If the dirty entry has a pointer, start scanning from it so we don't have
810     // to rescan the entire block.
811     BasicBlock::iterator ScanPos = DirtyBB->end();
812     if (ExistingResult) {
813       if (Instruction *Inst = ExistingResult->getResult().getInst()) {
814         ScanPos = Inst->getIterator();
815         // We're removing QueryInst's use of Inst.
816         RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
817                              QueryCS.getInstruction());
818       }
819     }
820 
821     // Find out if this block has a local dependency for QueryInst.
822     MemDepResult Dep;
823 
824     if (ScanPos != DirtyBB->begin()) {
825       Dep =
826           getCallSiteDependencyFrom(QueryCS, isReadonlyCall, ScanPos, DirtyBB);
827     } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
828       // No dependence found.  If this is the entry block of the function, it is
829       // a clobber, otherwise it is unknown.
830       Dep = MemDepResult::getNonLocal();
831     } else {
832       Dep = MemDepResult::getNonFuncLocal();
833     }
834 
835     // If we had a dirty entry for the block, update it.  Otherwise, just add
836     // a new entry.
837     if (ExistingResult)
838       ExistingResult->setResult(Dep);
839     else
840       Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
841 
842     // If the block has a dependency (i.e. it isn't completely transparent to
843     // the value), remember the association!
844     if (!Dep.isNonLocal()) {
845       // Keep the ReverseNonLocalDeps map up to date so we can efficiently
846       // update this when we remove instructions.
847       if (Instruction *Inst = Dep.getInst())
848         ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
849     } else {
850 
851       // If the block *is* completely transparent to the load, we need to check
852       // the predecessors of this block.  Add them to our worklist.
853       for (BasicBlock *Pred : PredCache.get(DirtyBB))
854         DirtyBlocks.push_back(Pred);
855     }
856   }
857 
858   return Cache;
859 }
860 
861 void MemoryDependenceResults::getNonLocalPointerDependency(
862     Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) {
863   const MemoryLocation Loc = MemoryLocation::get(QueryInst);
864   bool isLoad = isa<LoadInst>(QueryInst);
865   BasicBlock *FromBB = QueryInst->getParent();
866   assert(FromBB);
867 
868   assert(Loc.Ptr->getType()->isPointerTy() &&
869          "Can't get pointer deps of a non-pointer!");
870   Result.clear();
871 
872   // This routine does not expect to deal with volatile instructions.
873   // Doing so would require piping through the QueryInst all the way through.
874   // TODO: volatiles can't be elided, but they can be reordered with other
875   // non-volatile accesses.
876 
877   // We currently give up on any instruction which is ordered, but we do handle
878   // atomic instructions which are unordered.
879   // TODO: Handle ordered instructions
880   auto isOrdered = [](Instruction *Inst) {
881     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
882       return !LI->isUnordered();
883     } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
884       return !SI->isUnordered();
885     }
886     return false;
887   };
888   if (isVolatile(QueryInst) || isOrdered(QueryInst)) {
889     Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
890                                        const_cast<Value *>(Loc.Ptr)));
891     return;
892   }
893   const DataLayout &DL = FromBB->getModule()->getDataLayout();
894   PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC);
895 
896   // This is the set of blocks we've inspected, and the pointer we consider in
897   // each block.  Because of critical edges, we currently bail out if querying
898   // a block with multiple different pointers.  This can happen during PHI
899   // translation.
900   DenseMap<BasicBlock *, Value *> Visited;
901   if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB,
902                                    Result, Visited, true))
903     return;
904   Result.clear();
905   Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
906                                      const_cast<Value *>(Loc.Ptr)));
907 }
908 
909 /// Compute the memdep value for BB with Pointer/PointeeSize using either
910 /// cached information in Cache or by doing a lookup (which may use dirty cache
911 /// info if available).
912 ///
913 /// If we do a lookup, add the result to the cache.
914 MemDepResult MemoryDependenceResults::GetNonLocalInfoForBlock(
915     Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad,
916     BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
917 
918   // Do a binary search to see if we already have an entry for this block in
919   // the cache set.  If so, find it.
920   NonLocalDepInfo::iterator Entry = std::upper_bound(
921       Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB));
922   if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB)
923     --Entry;
924 
925   NonLocalDepEntry *ExistingResult = nullptr;
926   if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB)
927     ExistingResult = &*Entry;
928 
929   // If we have a cached entry, and it is non-dirty, use it as the value for
930   // this dependency.
931   if (ExistingResult && !ExistingResult->getResult().isDirty()) {
932     ++NumCacheNonLocalPtr;
933     return ExistingResult->getResult();
934   }
935 
936   // Otherwise, we have to scan for the value.  If we have a dirty cache
937   // entry, start scanning from its position, otherwise we scan from the end
938   // of the block.
939   BasicBlock::iterator ScanPos = BB->end();
940   if (ExistingResult && ExistingResult->getResult().getInst()) {
941     assert(ExistingResult->getResult().getInst()->getParent() == BB &&
942            "Instruction invalidated?");
943     ++NumCacheDirtyNonLocalPtr;
944     ScanPos = ExistingResult->getResult().getInst()->getIterator();
945 
946     // Eliminating the dirty entry from 'Cache', so update the reverse info.
947     ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
948     RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey);
949   } else {
950     ++NumUncacheNonLocalPtr;
951   }
952 
953   // Scan the block for the dependency.
954   MemDepResult Dep =
955       getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, QueryInst);
956 
957   // If we had a dirty entry for the block, update it.  Otherwise, just add
958   // a new entry.
959   if (ExistingResult)
960     ExistingResult->setResult(Dep);
961   else
962     Cache->push_back(NonLocalDepEntry(BB, Dep));
963 
964   // If the block has a dependency (i.e. it isn't completely transparent to
965   // the value), remember the reverse association because we just added it
966   // to Cache!
967   if (!Dep.isDef() && !Dep.isClobber())
968     return Dep;
969 
970   // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
971   // update MemDep when we remove instructions.
972   Instruction *Inst = Dep.getInst();
973   assert(Inst && "Didn't depend on anything?");
974   ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
975   ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
976   return Dep;
977 }
978 
979 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the
980 /// array that are already properly ordered.
981 ///
982 /// This is optimized for the case when only a few entries are added.
983 static void
984 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache,
985                          unsigned NumSortedEntries) {
986   switch (Cache.size() - NumSortedEntries) {
987   case 0:
988     // done, no new entries.
989     break;
990   case 2: {
991     // Two new entries, insert the last one into place.
992     NonLocalDepEntry Val = Cache.back();
993     Cache.pop_back();
994     MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
995         std::upper_bound(Cache.begin(), Cache.end() - 1, Val);
996     Cache.insert(Entry, Val);
997     LLVM_FALLTHROUGH;
998   }
999   case 1:
1000     // One new entry, Just insert the new value at the appropriate position.
1001     if (Cache.size() != 1) {
1002       NonLocalDepEntry Val = Cache.back();
1003       Cache.pop_back();
1004       MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
1005           std::upper_bound(Cache.begin(), Cache.end(), Val);
1006       Cache.insert(Entry, Val);
1007     }
1008     break;
1009   default:
1010     // Added many values, do a full scale sort.
1011     std::sort(Cache.begin(), Cache.end());
1012     break;
1013   }
1014 }
1015 
1016 /// Perform a dependency query based on pointer/pointeesize starting at the end
1017 /// of StartBB.
1018 ///
1019 /// Add any clobber/def results to the results vector and keep track of which
1020 /// blocks are visited in 'Visited'.
1021 ///
1022 /// This has special behavior for the first block queries (when SkipFirstBlock
1023 /// is true).  In this special case, it ignores the contents of the specified
1024 /// block and starts returning dependence info for its predecessors.
1025 ///
1026 /// This function returns true on success, or false to indicate that it could
1027 /// not compute dependence information for some reason.  This should be treated
1028 /// as a clobber dependence on the first instruction in the predecessor block.
1029 bool MemoryDependenceResults::getNonLocalPointerDepFromBB(
1030     Instruction *QueryInst, const PHITransAddr &Pointer,
1031     const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB,
1032     SmallVectorImpl<NonLocalDepResult> &Result,
1033     DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock) {
1034   // Look up the cached info for Pointer.
1035   ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
1036 
1037   // Set up a temporary NLPI value. If the map doesn't yet have an entry for
1038   // CacheKey, this value will be inserted as the associated value. Otherwise,
1039   // it'll be ignored, and we'll have to check to see if the cached size and
1040   // aa tags are consistent with the current query.
1041   NonLocalPointerInfo InitialNLPI;
1042   InitialNLPI.Size = Loc.Size;
1043   InitialNLPI.AATags = Loc.AATags;
1044 
1045   // Get the NLPI for CacheKey, inserting one into the map if it doesn't
1046   // already have one.
1047   std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
1048       NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
1049   NonLocalPointerInfo *CacheInfo = &Pair.first->second;
1050 
1051   // If we already have a cache entry for this CacheKey, we may need to do some
1052   // work to reconcile the cache entry and the current query.
1053   if (!Pair.second) {
1054     if (CacheInfo->Size < Loc.Size) {
1055       // The query's Size is greater than the cached one. Throw out the
1056       // cached data and proceed with the query at the greater size.
1057       CacheInfo->Pair = BBSkipFirstBlockPair();
1058       CacheInfo->Size = Loc.Size;
1059       for (auto &Entry : CacheInfo->NonLocalDeps)
1060         if (Instruction *Inst = Entry.getResult().getInst())
1061           RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1062       CacheInfo->NonLocalDeps.clear();
1063     } else if (CacheInfo->Size > Loc.Size) {
1064       // This query's Size is less than the cached one. Conservatively restart
1065       // the query using the greater size.
1066       return getNonLocalPointerDepFromBB(
1067           QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad,
1068           StartBB, Result, Visited, SkipFirstBlock);
1069     }
1070 
1071     // If the query's AATags are inconsistent with the cached one,
1072     // conservatively throw out the cached data and restart the query with
1073     // no tag if needed.
1074     if (CacheInfo->AATags != Loc.AATags) {
1075       if (CacheInfo->AATags) {
1076         CacheInfo->Pair = BBSkipFirstBlockPair();
1077         CacheInfo->AATags = AAMDNodes();
1078         for (auto &Entry : CacheInfo->NonLocalDeps)
1079           if (Instruction *Inst = Entry.getResult().getInst())
1080             RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1081         CacheInfo->NonLocalDeps.clear();
1082       }
1083       if (Loc.AATags)
1084         return getNonLocalPointerDepFromBB(
1085             QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result,
1086             Visited, SkipFirstBlock);
1087     }
1088   }
1089 
1090   NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
1091 
1092   // If we have valid cached information for exactly the block we are
1093   // investigating, just return it with no recomputation.
1094   if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
1095     // We have a fully cached result for this query then we can just return the
1096     // cached results and populate the visited set.  However, we have to verify
1097     // that we don't already have conflicting results for these blocks.  Check
1098     // to ensure that if a block in the results set is in the visited set that
1099     // it was for the same pointer query.
1100     if (!Visited.empty()) {
1101       for (auto &Entry : *Cache) {
1102         DenseMap<BasicBlock *, Value *>::iterator VI =
1103             Visited.find(Entry.getBB());
1104         if (VI == Visited.end() || VI->second == Pointer.getAddr())
1105           continue;
1106 
1107         // We have a pointer mismatch in a block.  Just return false, saying
1108         // that something was clobbered in this result.  We could also do a
1109         // non-fully cached query, but there is little point in doing this.
1110         return false;
1111       }
1112     }
1113 
1114     Value *Addr = Pointer.getAddr();
1115     for (auto &Entry : *Cache) {
1116       Visited.insert(std::make_pair(Entry.getBB(), Addr));
1117       if (Entry.getResult().isNonLocal()) {
1118         continue;
1119       }
1120 
1121       if (DT.isReachableFromEntry(Entry.getBB())) {
1122         Result.push_back(
1123             NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr));
1124       }
1125     }
1126     ++NumCacheCompleteNonLocalPtr;
1127     return true;
1128   }
1129 
1130   // Otherwise, either this is a new block, a block with an invalid cache
1131   // pointer or one that we're about to invalidate by putting more info into it
1132   // than its valid cache info.  If empty, the result will be valid cache info,
1133   // otherwise it isn't.
1134   if (Cache->empty())
1135     CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1136   else
1137     CacheInfo->Pair = BBSkipFirstBlockPair();
1138 
1139   SmallVector<BasicBlock *, 32> Worklist;
1140   Worklist.push_back(StartBB);
1141 
1142   // PredList used inside loop.
1143   SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList;
1144 
1145   // Keep track of the entries that we know are sorted.  Previously cached
1146   // entries will all be sorted.  The entries we add we only sort on demand (we
1147   // don't insert every element into its sorted position).  We know that we
1148   // won't get any reuse from currently inserted values, because we don't
1149   // revisit blocks after we insert info for them.
1150   unsigned NumSortedEntries = Cache->size();
1151   unsigned WorklistEntries = BlockNumberLimit;
1152   bool GotWorklistLimit = false;
1153   DEBUG(AssertSorted(*Cache));
1154 
1155   while (!Worklist.empty()) {
1156     BasicBlock *BB = Worklist.pop_back_val();
1157 
1158     // If we do process a large number of blocks it becomes very expensive and
1159     // likely it isn't worth worrying about
1160     if (Result.size() > NumResultsLimit) {
1161       Worklist.clear();
1162       // Sort it now (if needed) so that recursive invocations of
1163       // getNonLocalPointerDepFromBB and other routines that could reuse the
1164       // cache value will only see properly sorted cache arrays.
1165       if (Cache && NumSortedEntries != Cache->size()) {
1166         SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1167       }
1168       // Since we bail out, the "Cache" set won't contain all of the
1169       // results for the query.  This is ok (we can still use it to accelerate
1170       // specific block queries) but we can't do the fastpath "return all
1171       // results from the set".  Clear out the indicator for this.
1172       CacheInfo->Pair = BBSkipFirstBlockPair();
1173       return false;
1174     }
1175 
1176     // Skip the first block if we have it.
1177     if (!SkipFirstBlock) {
1178       // Analyze the dependency of *Pointer in FromBB.  See if we already have
1179       // been here.
1180       assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1181 
1182       // Get the dependency info for Pointer in BB.  If we have cached
1183       // information, we will use it, otherwise we compute it.
1184       DEBUG(AssertSorted(*Cache, NumSortedEntries));
1185       MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, Loc, isLoad, BB,
1186                                                  Cache, NumSortedEntries);
1187 
1188       // If we got a Def or Clobber, add this to the list of results.
1189       if (!Dep.isNonLocal()) {
1190         if (DT.isReachableFromEntry(BB)) {
1191           Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1192           continue;
1193         }
1194       }
1195     }
1196 
1197     // If 'Pointer' is an instruction defined in this block, then we need to do
1198     // phi translation to change it into a value live in the predecessor block.
1199     // If not, we just add the predecessors to the worklist and scan them with
1200     // the same Pointer.
1201     if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1202       SkipFirstBlock = false;
1203       SmallVector<BasicBlock *, 16> NewBlocks;
1204       for (BasicBlock *Pred : PredCache.get(BB)) {
1205         // Verify that we haven't looked at this block yet.
1206         std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1207             Visited.insert(std::make_pair(Pred, Pointer.getAddr()));
1208         if (InsertRes.second) {
1209           // First time we've looked at *PI.
1210           NewBlocks.push_back(Pred);
1211           continue;
1212         }
1213 
1214         // If we have seen this block before, but it was with a different
1215         // pointer then we have a phi translation failure and we have to treat
1216         // this as a clobber.
1217         if (InsertRes.first->second != Pointer.getAddr()) {
1218           // Make sure to clean up the Visited map before continuing on to
1219           // PredTranslationFailure.
1220           for (unsigned i = 0; i < NewBlocks.size(); i++)
1221             Visited.erase(NewBlocks[i]);
1222           goto PredTranslationFailure;
1223         }
1224       }
1225       if (NewBlocks.size() > WorklistEntries) {
1226         // Make sure to clean up the Visited map before continuing on to
1227         // PredTranslationFailure.
1228         for (unsigned i = 0; i < NewBlocks.size(); i++)
1229           Visited.erase(NewBlocks[i]);
1230         GotWorklistLimit = true;
1231         goto PredTranslationFailure;
1232       }
1233       WorklistEntries -= NewBlocks.size();
1234       Worklist.append(NewBlocks.begin(), NewBlocks.end());
1235       continue;
1236     }
1237 
1238     // We do need to do phi translation, if we know ahead of time we can't phi
1239     // translate this value, don't even try.
1240     if (!Pointer.IsPotentiallyPHITranslatable())
1241       goto PredTranslationFailure;
1242 
1243     // We may have added values to the cache list before this PHI translation.
1244     // If so, we haven't done anything to ensure that the cache remains sorted.
1245     // Sort it now (if needed) so that recursive invocations of
1246     // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1247     // value will only see properly sorted cache arrays.
1248     if (Cache && NumSortedEntries != Cache->size()) {
1249       SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1250       NumSortedEntries = Cache->size();
1251     }
1252     Cache = nullptr;
1253 
1254     PredList.clear();
1255     for (BasicBlock *Pred : PredCache.get(BB)) {
1256       PredList.push_back(std::make_pair(Pred, Pointer));
1257 
1258       // Get the PHI translated pointer in this predecessor.  This can fail if
1259       // not translatable, in which case the getAddr() returns null.
1260       PHITransAddr &PredPointer = PredList.back().second;
1261       PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false);
1262       Value *PredPtrVal = PredPointer.getAddr();
1263 
1264       // Check to see if we have already visited this pred block with another
1265       // pointer.  If so, we can't do this lookup.  This failure can occur
1266       // with PHI translation when a critical edge exists and the PHI node in
1267       // the successor translates to a pointer value different than the
1268       // pointer the block was first analyzed with.
1269       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1270           Visited.insert(std::make_pair(Pred, PredPtrVal));
1271 
1272       if (!InsertRes.second) {
1273         // We found the pred; take it off the list of preds to visit.
1274         PredList.pop_back();
1275 
1276         // If the predecessor was visited with PredPtr, then we already did
1277         // the analysis and can ignore it.
1278         if (InsertRes.first->second == PredPtrVal)
1279           continue;
1280 
1281         // Otherwise, the block was previously analyzed with a different
1282         // pointer.  We can't represent the result of this case, so we just
1283         // treat this as a phi translation failure.
1284 
1285         // Make sure to clean up the Visited map before continuing on to
1286         // PredTranslationFailure.
1287         for (unsigned i = 0, n = PredList.size(); i < n; ++i)
1288           Visited.erase(PredList[i].first);
1289 
1290         goto PredTranslationFailure;
1291       }
1292     }
1293 
1294     // Actually process results here; this need to be a separate loop to avoid
1295     // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1296     // any results for.  (getNonLocalPointerDepFromBB will modify our
1297     // datastructures in ways the code after the PredTranslationFailure label
1298     // doesn't expect.)
1299     for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
1300       BasicBlock *Pred = PredList[i].first;
1301       PHITransAddr &PredPointer = PredList[i].second;
1302       Value *PredPtrVal = PredPointer.getAddr();
1303 
1304       bool CanTranslate = true;
1305       // If PHI translation was unable to find an available pointer in this
1306       // predecessor, then we have to assume that the pointer is clobbered in
1307       // that predecessor.  We can still do PRE of the load, which would insert
1308       // a computation of the pointer in this predecessor.
1309       if (!PredPtrVal)
1310         CanTranslate = false;
1311 
1312       // FIXME: it is entirely possible that PHI translating will end up with
1313       // the same value.  Consider PHI translating something like:
1314       // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
1315       // to recurse here, pedantically speaking.
1316 
1317       // If getNonLocalPointerDepFromBB fails here, that means the cached
1318       // result conflicted with the Visited list; we have to conservatively
1319       // assume it is unknown, but this also does not block PRE of the load.
1320       if (!CanTranslate ||
1321           !getNonLocalPointerDepFromBB(QueryInst, PredPointer,
1322                                       Loc.getWithNewPtr(PredPtrVal), isLoad,
1323                                       Pred, Result, Visited)) {
1324         // Add the entry to the Result list.
1325         NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1326         Result.push_back(Entry);
1327 
1328         // Since we had a phi translation failure, the cache for CacheKey won't
1329         // include all of the entries that we need to immediately satisfy future
1330         // queries.  Mark this in NonLocalPointerDeps by setting the
1331         // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
1332         // cached value to do more work but not miss the phi trans failure.
1333         NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1334         NLPI.Pair = BBSkipFirstBlockPair();
1335         continue;
1336       }
1337     }
1338 
1339     // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1340     CacheInfo = &NonLocalPointerDeps[CacheKey];
1341     Cache = &CacheInfo->NonLocalDeps;
1342     NumSortedEntries = Cache->size();
1343 
1344     // Since we did phi translation, the "Cache" set won't contain all of the
1345     // results for the query.  This is ok (we can still use it to accelerate
1346     // specific block queries) but we can't do the fastpath "return all
1347     // results from the set"  Clear out the indicator for this.
1348     CacheInfo->Pair = BBSkipFirstBlockPair();
1349     SkipFirstBlock = false;
1350     continue;
1351 
1352   PredTranslationFailure:
1353     // The following code is "failure"; we can't produce a sane translation
1354     // for the given block.  It assumes that we haven't modified any of
1355     // our datastructures while processing the current block.
1356 
1357     if (!Cache) {
1358       // Refresh the CacheInfo/Cache pointer if it got invalidated.
1359       CacheInfo = &NonLocalPointerDeps[CacheKey];
1360       Cache = &CacheInfo->NonLocalDeps;
1361       NumSortedEntries = Cache->size();
1362     }
1363 
1364     // Since we failed phi translation, the "Cache" set won't contain all of the
1365     // results for the query.  This is ok (we can still use it to accelerate
1366     // specific block queries) but we can't do the fastpath "return all
1367     // results from the set".  Clear out the indicator for this.
1368     CacheInfo->Pair = BBSkipFirstBlockPair();
1369 
1370     // If *nothing* works, mark the pointer as unknown.
1371     //
1372     // If this is the magic first block, return this as a clobber of the whole
1373     // incoming value.  Since we can't phi translate to one of the predecessors,
1374     // we have to bail out.
1375     if (SkipFirstBlock)
1376       return false;
1377 
1378     bool foundBlock = false;
1379     for (NonLocalDepEntry &I : llvm::reverse(*Cache)) {
1380       if (I.getBB() != BB)
1381         continue;
1382 
1383       assert((GotWorklistLimit || I.getResult().isNonLocal() ||
1384               !DT.isReachableFromEntry(BB)) &&
1385              "Should only be here with transparent block");
1386       foundBlock = true;
1387       I.setResult(MemDepResult::getUnknown());
1388       Result.push_back(
1389           NonLocalDepResult(I.getBB(), I.getResult(), Pointer.getAddr()));
1390       break;
1391     }
1392     (void)foundBlock; (void)GotWorklistLimit;
1393     assert((foundBlock || GotWorklistLimit) && "Current block not in cache?");
1394   }
1395 
1396   // Okay, we're done now.  If we added new values to the cache, re-sort it.
1397   SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1398   DEBUG(AssertSorted(*Cache));
1399   return true;
1400 }
1401 
1402 /// If P exists in CachedNonLocalPointerInfo, remove it.
1403 void MemoryDependenceResults::RemoveCachedNonLocalPointerDependencies(
1404     ValueIsLoadPair P) {
1405   CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P);
1406   if (It == NonLocalPointerDeps.end())
1407     return;
1408 
1409   // Remove all of the entries in the BB->val map.  This involves removing
1410   // instructions from the reverse map.
1411   NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1412 
1413   for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1414     Instruction *Target = PInfo[i].getResult().getInst();
1415     if (!Target)
1416       continue; // Ignore non-local dep results.
1417     assert(Target->getParent() == PInfo[i].getBB());
1418 
1419     // Eliminating the dirty entry from 'Cache', so update the reverse info.
1420     RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1421   }
1422 
1423   // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1424   NonLocalPointerDeps.erase(It);
1425 }
1426 
1427 void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) {
1428   // If Ptr isn't really a pointer, just ignore it.
1429   if (!Ptr->getType()->isPointerTy())
1430     return;
1431   // Flush store info for the pointer.
1432   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1433   // Flush load info for the pointer.
1434   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1435 }
1436 
1437 void MemoryDependenceResults::invalidateCachedPredecessors() {
1438   PredCache.clear();
1439 }
1440 
1441 void MemoryDependenceResults::removeInstruction(Instruction *RemInst) {
1442   // Walk through the Non-local dependencies, removing this one as the value
1443   // for any cached queries.
1444   NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1445   if (NLDI != NonLocalDeps.end()) {
1446     NonLocalDepInfo &BlockMap = NLDI->second.first;
1447     for (auto &Entry : BlockMap)
1448       if (Instruction *Inst = Entry.getResult().getInst())
1449         RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1450     NonLocalDeps.erase(NLDI);
1451   }
1452 
1453   // If we have a cached local dependence query for this instruction, remove it.
1454   //
1455   LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1456   if (LocalDepEntry != LocalDeps.end()) {
1457     // Remove us from DepInst's reverse set now that the local dep info is gone.
1458     if (Instruction *Inst = LocalDepEntry->second.getInst())
1459       RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1460 
1461     // Remove this local dependency info.
1462     LocalDeps.erase(LocalDepEntry);
1463   }
1464 
1465   // If we have any cached pointer dependencies on this instruction, remove
1466   // them.  If the instruction has non-pointer type, then it can't be a pointer
1467   // base.
1468 
1469   // Remove it from both the load info and the store info.  The instruction
1470   // can't be in either of these maps if it is non-pointer.
1471   if (RemInst->getType()->isPointerTy()) {
1472     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1473     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1474   }
1475 
1476   // Loop over all of the things that depend on the instruction we're removing.
1477   //
1478   SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd;
1479 
1480   // If we find RemInst as a clobber or Def in any of the maps for other values,
1481   // we need to replace its entry with a dirty version of the instruction after
1482   // it.  If RemInst is a terminator, we use a null dirty value.
1483   //
1484   // Using a dirty version of the instruction after RemInst saves having to scan
1485   // the entire block to get to this point.
1486   MemDepResult NewDirtyVal;
1487   if (!RemInst->isTerminator())
1488     NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator());
1489 
1490   ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1491   if (ReverseDepIt != ReverseLocalDeps.end()) {
1492     // RemInst can't be the terminator if it has local stuff depending on it.
1493     assert(!ReverseDepIt->second.empty() && !isa<TerminatorInst>(RemInst) &&
1494            "Nothing can locally depend on a terminator");
1495 
1496     for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
1497       assert(InstDependingOnRemInst != RemInst &&
1498              "Already removed our local dep info");
1499 
1500       LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1501 
1502       // Make sure to remember that new things depend on NewDepInst.
1503       assert(NewDirtyVal.getInst() &&
1504              "There is no way something else can have "
1505              "a local dep on this if it is a terminator!");
1506       ReverseDepsToAdd.push_back(
1507           std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst));
1508     }
1509 
1510     ReverseLocalDeps.erase(ReverseDepIt);
1511 
1512     // Add new reverse deps after scanning the set, to avoid invalidating the
1513     // 'ReverseDeps' reference.
1514     while (!ReverseDepsToAdd.empty()) {
1515       ReverseLocalDeps[ReverseDepsToAdd.back().first].insert(
1516           ReverseDepsToAdd.back().second);
1517       ReverseDepsToAdd.pop_back();
1518     }
1519   }
1520 
1521   ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1522   if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1523     for (Instruction *I : ReverseDepIt->second) {
1524       assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
1525 
1526       PerInstNLInfo &INLD = NonLocalDeps[I];
1527       // The information is now dirty!
1528       INLD.second = true;
1529 
1530       for (auto &Entry : INLD.first) {
1531         if (Entry.getResult().getInst() != RemInst)
1532           continue;
1533 
1534         // Convert to a dirty entry for the subsequent instruction.
1535         Entry.setResult(NewDirtyVal);
1536 
1537         if (Instruction *NextI = NewDirtyVal.getInst())
1538           ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
1539       }
1540     }
1541 
1542     ReverseNonLocalDeps.erase(ReverseDepIt);
1543 
1544     // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1545     while (!ReverseDepsToAdd.empty()) {
1546       ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert(
1547           ReverseDepsToAdd.back().second);
1548       ReverseDepsToAdd.pop_back();
1549     }
1550   }
1551 
1552   // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1553   // value in the NonLocalPointerDeps info.
1554   ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1555       ReverseNonLocalPtrDeps.find(RemInst);
1556   if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1557     SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8>
1558         ReversePtrDepsToAdd;
1559 
1560     for (ValueIsLoadPair P : ReversePtrDepIt->second) {
1561       assert(P.getPointer() != RemInst &&
1562              "Already removed NonLocalPointerDeps info for RemInst");
1563 
1564       NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1565 
1566       // The cache is not valid for any specific block anymore.
1567       NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1568 
1569       // Update any entries for RemInst to use the instruction after it.
1570       for (auto &Entry : NLPDI) {
1571         if (Entry.getResult().getInst() != RemInst)
1572           continue;
1573 
1574         // Convert to a dirty entry for the subsequent instruction.
1575         Entry.setResult(NewDirtyVal);
1576 
1577         if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1578           ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1579       }
1580 
1581       // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1582       // subsequent value may invalidate the sortedness.
1583       std::sort(NLPDI.begin(), NLPDI.end());
1584     }
1585 
1586     ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1587 
1588     while (!ReversePtrDepsToAdd.empty()) {
1589       ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert(
1590           ReversePtrDepsToAdd.back().second);
1591       ReversePtrDepsToAdd.pop_back();
1592     }
1593   }
1594 
1595   assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1596   DEBUG(verifyRemoved(RemInst));
1597 }
1598 
1599 /// Verify that the specified instruction does not occur in our internal data
1600 /// structures.
1601 ///
1602 /// This function verifies by asserting in debug builds.
1603 void MemoryDependenceResults::verifyRemoved(Instruction *D) const {
1604 #ifndef NDEBUG
1605   for (const auto &DepKV : LocalDeps) {
1606     assert(DepKV.first != D && "Inst occurs in data structures");
1607     assert(DepKV.second.getInst() != D && "Inst occurs in data structures");
1608   }
1609 
1610   for (const auto &DepKV : NonLocalPointerDeps) {
1611     assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key");
1612     for (const auto &Entry : DepKV.second.NonLocalDeps)
1613       assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value");
1614   }
1615 
1616   for (const auto &DepKV : NonLocalDeps) {
1617     assert(DepKV.first != D && "Inst occurs in data structures");
1618     const PerInstNLInfo &INLD = DepKV.second;
1619     for (const auto &Entry : INLD.first)
1620       assert(Entry.getResult().getInst() != D &&
1621              "Inst occurs in data structures");
1622   }
1623 
1624   for (const auto &DepKV : ReverseLocalDeps) {
1625     assert(DepKV.first != D && "Inst occurs in data structures");
1626     for (Instruction *Inst : DepKV.second)
1627       assert(Inst != D && "Inst occurs in data structures");
1628   }
1629 
1630   for (const auto &DepKV : ReverseNonLocalDeps) {
1631     assert(DepKV.first != D && "Inst occurs in data structures");
1632     for (Instruction *Inst : DepKV.second)
1633       assert(Inst != D && "Inst occurs in data structures");
1634   }
1635 
1636   for (const auto &DepKV : ReverseNonLocalPtrDeps) {
1637     assert(DepKV.first != D && "Inst occurs in rev NLPD map");
1638 
1639     for (ValueIsLoadPair P : DepKV.second)
1640       assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) &&
1641              "Inst occurs in ReverseNonLocalPtrDeps map");
1642   }
1643 #endif
1644 }
1645 
1646 char MemoryDependenceAnalysis::PassID;
1647 
1648 MemoryDependenceResults
1649 MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
1650   auto &AA = AM.getResult<AAManager>(F);
1651   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1652   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1653   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1654   return MemoryDependenceResults(AA, AC, TLI, DT);
1655 }
1656 
1657 char MemoryDependenceWrapperPass::ID = 0;
1658 
1659 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep",
1660                       "Memory Dependence Analysis", false, true)
1661 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1662 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1663 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1664 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1665 INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep",
1666                     "Memory Dependence Analysis", false, true)
1667 
1668 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) {
1669   initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry());
1670 }
1671 
1672 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() {}
1673 
1674 void MemoryDependenceWrapperPass::releaseMemory() {
1675   MemDep.reset();
1676 }
1677 
1678 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1679   AU.setPreservesAll();
1680   AU.addRequired<AssumptionCacheTracker>();
1681   AU.addRequired<DominatorTreeWrapperPass>();
1682   AU.addRequiredTransitive<AAResultsWrapperPass>();
1683   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1684 }
1685 
1686 unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const {
1687   return BlockScanLimit;
1688 }
1689 
1690 bool MemoryDependenceWrapperPass::runOnFunction(Function &F) {
1691   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1692   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1693   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1694   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1695   MemDep.emplace(AA, AC, TLI, DT);
1696   return false;
1697 }
1698