1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an analysis that determines, for a given memory
10 // operation, what preceding memory operations it depends on.  It builds on
11 // alias analysis information, and tries to provide a lazy, caching interface to
12 // a common kind of alias information query.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/Analysis/PHITransAddr.h"
27 #include "llvm/Analysis/PhiValues.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/PredIteratorCache.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Use.h"
47 #include "llvm/IR/User.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/AtomicOrdering.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/MathExtras.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <iterator>
61 #include <utility>
62 
63 using namespace llvm;
64 
65 #define DEBUG_TYPE "memdep"
66 
67 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
68 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
69 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
70 
71 STATISTIC(NumCacheNonLocalPtr,
72           "Number of fully cached non-local ptr responses");
73 STATISTIC(NumCacheDirtyNonLocalPtr,
74           "Number of cached, but dirty, non-local ptr responses");
75 STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses");
76 STATISTIC(NumCacheCompleteNonLocalPtr,
77           "Number of block queries that were completely cached");
78 
79 // Limit for the number of instructions to scan in a block.
80 
81 static cl::opt<unsigned> BlockScanLimit(
82     "memdep-block-scan-limit", cl::Hidden, cl::init(100),
83     cl::desc("The number of instructions to scan in a block in memory "
84              "dependency analysis (default = 100)"));
85 
86 static cl::opt<unsigned>
87     BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000),
88                      cl::desc("The number of blocks to scan during memory "
89                               "dependency analysis (default = 1000)"));
90 
91 // Limit on the number of memdep results to process.
92 static const unsigned int NumResultsLimit = 100;
93 
94 /// This is a helper function that removes Val from 'Inst's set in ReverseMap.
95 ///
96 /// If the set becomes empty, remove Inst's entry.
97 template <typename KeyTy>
98 static void
99 RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap,
100                      Instruction *Inst, KeyTy Val) {
101   typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt =
102       ReverseMap.find(Inst);
103   assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
104   bool Found = InstIt->second.erase(Val);
105   assert(Found && "Invalid reverse map!");
106   (void)Found;
107   if (InstIt->second.empty())
108     ReverseMap.erase(InstIt);
109 }
110 
111 /// If the given instruction references a specific memory location, fill in Loc
112 /// with the details, otherwise set Loc.Ptr to null.
113 ///
114 /// Returns a ModRefInfo value describing the general behavior of the
115 /// instruction.
116 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc,
117                               const TargetLibraryInfo &TLI) {
118   if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
119     if (LI->isUnordered()) {
120       Loc = MemoryLocation::get(LI);
121       return ModRefInfo::Ref;
122     }
123     if (LI->getOrdering() == AtomicOrdering::Monotonic) {
124       Loc = MemoryLocation::get(LI);
125       return ModRefInfo::ModRef;
126     }
127     Loc = MemoryLocation();
128     return ModRefInfo::ModRef;
129   }
130 
131   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
132     if (SI->isUnordered()) {
133       Loc = MemoryLocation::get(SI);
134       return ModRefInfo::Mod;
135     }
136     if (SI->getOrdering() == AtomicOrdering::Monotonic) {
137       Loc = MemoryLocation::get(SI);
138       return ModRefInfo::ModRef;
139     }
140     Loc = MemoryLocation();
141     return ModRefInfo::ModRef;
142   }
143 
144   if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
145     Loc = MemoryLocation::get(V);
146     return ModRefInfo::ModRef;
147   }
148 
149   if (const CallInst *CI = isFreeCall(Inst, &TLI)) {
150     // calls to free() deallocate the entire structure
151     Loc = MemoryLocation::getAfter(CI->getArgOperand(0));
152     return ModRefInfo::Mod;
153   }
154 
155   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
156     switch (II->getIntrinsicID()) {
157     case Intrinsic::lifetime_start:
158     case Intrinsic::lifetime_end:
159     case Intrinsic::invariant_start:
160       Loc = MemoryLocation::getForArgument(II, 1, TLI);
161       // These intrinsics don't really modify the memory, but returning Mod
162       // will allow them to be handled conservatively.
163       return ModRefInfo::Mod;
164     case Intrinsic::invariant_end:
165       Loc = MemoryLocation::getForArgument(II, 2, TLI);
166       // These intrinsics don't really modify the memory, but returning Mod
167       // will allow them to be handled conservatively.
168       return ModRefInfo::Mod;
169     case Intrinsic::masked_load:
170       Loc = MemoryLocation::getForArgument(II, 0, TLI);
171       return ModRefInfo::Ref;
172     case Intrinsic::masked_store:
173       Loc = MemoryLocation::getForArgument(II, 1, TLI);
174       return ModRefInfo::Mod;
175     default:
176       break;
177     }
178   }
179 
180   // Otherwise, just do the coarse-grained thing that always works.
181   if (Inst->mayWriteToMemory())
182     return ModRefInfo::ModRef;
183   if (Inst->mayReadFromMemory())
184     return ModRefInfo::Ref;
185   return ModRefInfo::NoModRef;
186 }
187 
188 /// Private helper for finding the local dependencies of a call site.
189 MemDepResult MemoryDependenceResults::getCallDependencyFrom(
190     CallBase *Call, bool isReadOnlyCall, BasicBlock::iterator ScanIt,
191     BasicBlock *BB) {
192   unsigned Limit = getDefaultBlockScanLimit();
193 
194   // Walk backwards through the block, looking for dependencies.
195   while (ScanIt != BB->begin()) {
196     Instruction *Inst = &*--ScanIt;
197     // Debug intrinsics don't cause dependences and should not affect Limit
198     if (isa<DbgInfoIntrinsic>(Inst))
199       continue;
200 
201     // Limit the amount of scanning we do so we don't end up with quadratic
202     // running time on extreme testcases.
203     --Limit;
204     if (!Limit)
205       return MemDepResult::getUnknown();
206 
207     // If this inst is a memory op, get the pointer it accessed
208     MemoryLocation Loc;
209     ModRefInfo MR = GetLocation(Inst, Loc, TLI);
210     if (Loc.Ptr) {
211       // A simple instruction.
212       if (isModOrRefSet(AA.getModRefInfo(Call, Loc)))
213         return MemDepResult::getClobber(Inst);
214       continue;
215     }
216 
217     if (auto *CallB = dyn_cast<CallBase>(Inst)) {
218       // If these two calls do not interfere, look past it.
219       if (isNoModRef(AA.getModRefInfo(Call, CallB))) {
220         // If the two calls are the same, return Inst as a Def, so that
221         // Call can be found redundant and eliminated.
222         if (isReadOnlyCall && !isModSet(MR) &&
223             Call->isIdenticalToWhenDefined(CallB))
224           return MemDepResult::getDef(Inst);
225 
226         // Otherwise if the two calls don't interact (e.g. CallB is readnone)
227         // keep scanning.
228         continue;
229       } else
230         return MemDepResult::getClobber(Inst);
231     }
232 
233     // If we could not obtain a pointer for the instruction and the instruction
234     // touches memory then assume that this is a dependency.
235     if (isModOrRefSet(MR))
236       return MemDepResult::getClobber(Inst);
237   }
238 
239   // No dependence found.  If this is the entry block of the function, it is
240   // unknown, otherwise it is non-local.
241   if (BB != &BB->getParent()->getEntryBlock())
242     return MemDepResult::getNonLocal();
243   return MemDepResult::getNonFuncLocal();
244 }
245 
246 MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
247     const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
248     BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
249   MemDepResult InvariantGroupDependency = MemDepResult::getUnknown();
250   if (QueryInst != nullptr) {
251     if (auto *LI = dyn_cast<LoadInst>(QueryInst)) {
252       InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB);
253 
254       if (InvariantGroupDependency.isDef())
255         return InvariantGroupDependency;
256     }
257   }
258   MemDepResult SimpleDep = getSimplePointerDependencyFrom(
259       MemLoc, isLoad, ScanIt, BB, QueryInst, Limit);
260   if (SimpleDep.isDef())
261     return SimpleDep;
262   // Non-local invariant group dependency indicates there is non local Def
263   // (it only returns nonLocal if it finds nonLocal def), which is better than
264   // local clobber and everything else.
265   if (InvariantGroupDependency.isNonLocal())
266     return InvariantGroupDependency;
267 
268   assert(InvariantGroupDependency.isUnknown() &&
269          "InvariantGroupDependency should be only unknown at this point");
270   return SimpleDep;
271 }
272 
273 MemDepResult
274 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI,
275                                                             BasicBlock *BB) {
276 
277   if (!LI->hasMetadata(LLVMContext::MD_invariant_group))
278     return MemDepResult::getUnknown();
279 
280   // Take the ptr operand after all casts and geps 0. This way we can search
281   // cast graph down only.
282   Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts();
283 
284   // It's is not safe to walk the use list of global value, because function
285   // passes aren't allowed to look outside their functions.
286   // FIXME: this could be fixed by filtering instructions from outside
287   // of current function.
288   if (isa<GlobalValue>(LoadOperand))
289     return MemDepResult::getUnknown();
290 
291   // Queue to process all pointers that are equivalent to load operand.
292   SmallVector<const Value *, 8> LoadOperandsQueue;
293   LoadOperandsQueue.push_back(LoadOperand);
294 
295   Instruction *ClosestDependency = nullptr;
296   // Order of instructions in uses list is unpredictible. In order to always
297   // get the same result, we will look for the closest dominance.
298   auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) {
299     assert(Other && "Must call it with not null instruction");
300     if (Best == nullptr || DT.dominates(Best, Other))
301       return Other;
302     return Best;
303   };
304 
305   // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case
306   // we will see all the instructions. This should be fixed in MSSA.
307   while (!LoadOperandsQueue.empty()) {
308     const Value *Ptr = LoadOperandsQueue.pop_back_val();
309     assert(Ptr && !isa<GlobalValue>(Ptr) &&
310            "Null or GlobalValue should not be inserted");
311 
312     for (const Use &Us : Ptr->uses()) {
313       auto *U = dyn_cast<Instruction>(Us.getUser());
314       if (!U || U == LI || !DT.dominates(U, LI))
315         continue;
316 
317       // Bitcast or gep with zeros are using Ptr. Add to queue to check it's
318       // users.      U = bitcast Ptr
319       if (isa<BitCastInst>(U)) {
320         LoadOperandsQueue.push_back(U);
321         continue;
322       }
323       // Gep with zeros is equivalent to bitcast.
324       // FIXME: we are not sure if some bitcast should be canonicalized to gep 0
325       // or gep 0 to bitcast because of SROA, so there are 2 forms. When
326       // typeless pointers will be ready then both cases will be gone
327       // (and this BFS also won't be needed).
328       if (auto *GEP = dyn_cast<GetElementPtrInst>(U))
329         if (GEP->hasAllZeroIndices()) {
330           LoadOperandsQueue.push_back(U);
331           continue;
332         }
333 
334       // If we hit load/store with the same invariant.group metadata (and the
335       // same pointer operand) we can assume that value pointed by pointer
336       // operand didn't change.
337       if ((isa<LoadInst>(U) ||
338            (isa<StoreInst>(U) &&
339             cast<StoreInst>(U)->getPointerOperand() == Ptr)) &&
340           U->hasMetadata(LLVMContext::MD_invariant_group))
341         ClosestDependency = GetClosestDependency(ClosestDependency, U);
342     }
343   }
344 
345   if (!ClosestDependency)
346     return MemDepResult::getUnknown();
347   if (ClosestDependency->getParent() == BB)
348     return MemDepResult::getDef(ClosestDependency);
349   // Def(U) can't be returned here because it is non-local. If local
350   // dependency won't be found then return nonLocal counting that the
351   // user will call getNonLocalPointerDependency, which will return cached
352   // result.
353   NonLocalDefsCache.try_emplace(
354       LI, NonLocalDepResult(ClosestDependency->getParent(),
355                             MemDepResult::getDef(ClosestDependency), nullptr));
356   ReverseNonLocalDefsCache[ClosestDependency].insert(LI);
357   return MemDepResult::getNonLocal();
358 }
359 
360 MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom(
361     const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
362     BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
363   // We can batch AA queries, because IR does not change during a MemDep query.
364   BatchAAResults BatchAA(AA);
365   bool isInvariantLoad = false;
366 
367   unsigned DefaultLimit = getDefaultBlockScanLimit();
368   if (!Limit)
369     Limit = &DefaultLimit;
370 
371   // We must be careful with atomic accesses, as they may allow another thread
372   //   to touch this location, clobbering it. We are conservative: if the
373   //   QueryInst is not a simple (non-atomic) memory access, we automatically
374   //   return getClobber.
375   // If it is simple, we know based on the results of
376   // "Compiler testing via a theory of sound optimisations in the C11/C++11
377   //   memory model" in PLDI 2013, that a non-atomic location can only be
378   //   clobbered between a pair of a release and an acquire action, with no
379   //   access to the location in between.
380   // Here is an example for giving the general intuition behind this rule.
381   // In the following code:
382   //   store x 0;
383   //   release action; [1]
384   //   acquire action; [4]
385   //   %val = load x;
386   // It is unsafe to replace %val by 0 because another thread may be running:
387   //   acquire action; [2]
388   //   store x 42;
389   //   release action; [3]
390   // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
391   // being 42. A key property of this program however is that if either
392   // 1 or 4 were missing, there would be a race between the store of 42
393   // either the store of 0 or the load (making the whole program racy).
394   // The paper mentioned above shows that the same property is respected
395   // by every program that can detect any optimization of that kind: either
396   // it is racy (undefined) or there is a release followed by an acquire
397   // between the pair of accesses under consideration.
398 
399   // If the load is invariant, we "know" that it doesn't alias *any* write. We
400   // do want to respect mustalias results since defs are useful for value
401   // forwarding, but any mayalias write can be assumed to be noalias.
402   // Arguably, this logic should be pushed inside AliasAnalysis itself.
403   if (isLoad && QueryInst) {
404     LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
405     if (LI && LI->hasMetadata(LLVMContext::MD_invariant_load))
406       isInvariantLoad = true;
407   }
408 
409   // Return "true" if and only if the instruction I is either a non-simple
410   // load or a non-simple store.
411   auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool {
412     if (auto *LI = dyn_cast<LoadInst>(I))
413       return !LI->isSimple();
414     if (auto *SI = dyn_cast<StoreInst>(I))
415       return !SI->isSimple();
416     return false;
417   };
418 
419   // Return "true" if I is not a load and not a store, but it does access
420   // memory.
421   auto isOtherMemAccess = [](Instruction *I) -> bool {
422     return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory();
423   };
424 
425   // Walk backwards through the basic block, looking for dependencies.
426   while (ScanIt != BB->begin()) {
427     Instruction *Inst = &*--ScanIt;
428 
429     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
430       // Debug intrinsics don't (and can't) cause dependencies.
431       if (isa<DbgInfoIntrinsic>(II))
432         continue;
433 
434     // Limit the amount of scanning we do so we don't end up with quadratic
435     // running time on extreme testcases.
436     --*Limit;
437     if (!*Limit)
438       return MemDepResult::getUnknown();
439 
440     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
441       // If we reach a lifetime begin or end marker, then the query ends here
442       // because the value is undefined.
443       Intrinsic::ID ID = II->getIntrinsicID();
444       switch (ID) {
445       case Intrinsic::lifetime_start: {
446         // FIXME: This only considers queries directly on the invariant-tagged
447         // pointer, not on query pointers that are indexed off of them.  It'd
448         // be nice to handle that at some point (the right approach is to use
449         // GetPointerBaseWithConstantOffset).
450         MemoryLocation ArgLoc = MemoryLocation::getAfter(II->getArgOperand(1));
451         if (BatchAA.isMustAlias(ArgLoc, MemLoc))
452           return MemDepResult::getDef(II);
453         continue;
454       }
455       case Intrinsic::masked_load:
456       case Intrinsic::masked_store: {
457         MemoryLocation Loc;
458         /*ModRefInfo MR =*/ GetLocation(II, Loc, TLI);
459         AliasResult R = BatchAA.alias(Loc, MemLoc);
460         if (R == AliasResult::NoAlias)
461           continue;
462         if (R == AliasResult::MustAlias)
463           return MemDepResult::getDef(II);
464         if (ID == Intrinsic::masked_load)
465           continue;
466         return MemDepResult::getClobber(II);
467       }
468       }
469     }
470 
471     // Values depend on loads if the pointers are must aliased.  This means
472     // that a load depends on another must aliased load from the same value.
473     // One exception is atomic loads: a value can depend on an atomic load that
474     // it does not alias with when this atomic load indicates that another
475     // thread may be accessing the location.
476     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
477       // While volatile access cannot be eliminated, they do not have to clobber
478       // non-aliasing locations, as normal accesses, for example, can be safely
479       // reordered with volatile accesses.
480       if (LI->isVolatile()) {
481         if (!QueryInst)
482           // Original QueryInst *may* be volatile
483           return MemDepResult::getClobber(LI);
484         if (QueryInst->isVolatile())
485           // Ordering required if QueryInst is itself volatile
486           return MemDepResult::getClobber(LI);
487         // Otherwise, volatile doesn't imply any special ordering
488       }
489 
490       // Atomic loads have complications involved.
491       // A Monotonic (or higher) load is OK if the query inst is itself not
492       // atomic.
493       // FIXME: This is overly conservative.
494       if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) {
495         if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
496             isOtherMemAccess(QueryInst))
497           return MemDepResult::getClobber(LI);
498         if (LI->getOrdering() != AtomicOrdering::Monotonic)
499           return MemDepResult::getClobber(LI);
500       }
501 
502       MemoryLocation LoadLoc = MemoryLocation::get(LI);
503 
504       // If we found a pointer, check if it could be the same as our pointer.
505       AliasResult R = BatchAA.alias(LoadLoc, MemLoc);
506 
507       if (isLoad) {
508         if (R == AliasResult::NoAlias)
509           continue;
510 
511         // Must aliased loads are defs of each other.
512         if (R == AliasResult::MustAlias)
513           return MemDepResult::getDef(Inst);
514 
515 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
516       // in terms of clobbering loads, but since it does this by looking
517       // at the clobbering load directly, it doesn't know about any
518       // phi translation that may have happened along the way.
519 
520         // If we have a partial alias, then return this as a clobber for the
521         // client to handle.
522         if (R == AliasResult::PartialAlias)
523           return MemDepResult::getClobber(Inst);
524 #endif
525 
526         // Random may-alias loads don't depend on each other without a
527         // dependence.
528         continue;
529       }
530 
531       // Stores don't depend on other no-aliased accesses.
532       if (R == AliasResult::NoAlias)
533         continue;
534 
535       // Stores don't alias loads from read-only memory.
536       if (BatchAA.pointsToConstantMemory(LoadLoc))
537         continue;
538 
539       // Stores depend on may/must aliased loads.
540       return MemDepResult::getDef(Inst);
541     }
542 
543     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
544       // Atomic stores have complications involved.
545       // A Monotonic store is OK if the query inst is itself not atomic.
546       // FIXME: This is overly conservative.
547       if (!SI->isUnordered() && SI->isAtomic()) {
548         if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
549             isOtherMemAccess(QueryInst))
550           return MemDepResult::getClobber(SI);
551         if (SI->getOrdering() != AtomicOrdering::Monotonic)
552           return MemDepResult::getClobber(SI);
553       }
554 
555       // FIXME: this is overly conservative.
556       // While volatile access cannot be eliminated, they do not have to clobber
557       // non-aliasing locations, as normal accesses can for example be reordered
558       // with volatile accesses.
559       if (SI->isVolatile())
560         if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
561             isOtherMemAccess(QueryInst))
562           return MemDepResult::getClobber(SI);
563 
564       // If alias analysis can tell that this store is guaranteed to not modify
565       // the query pointer, ignore it.  Use getModRefInfo to handle cases where
566       // the query pointer points to constant memory etc.
567       if (!isModOrRefSet(BatchAA.getModRefInfo(SI, MemLoc)))
568         continue;
569 
570       // Ok, this store might clobber the query pointer.  Check to see if it is
571       // a must alias: in this case, we want to return this as a def.
572       // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above.
573       MemoryLocation StoreLoc = MemoryLocation::get(SI);
574 
575       // If we found a pointer, check if it could be the same as our pointer.
576       AliasResult R = BatchAA.alias(StoreLoc, MemLoc);
577 
578       if (R == AliasResult::NoAlias)
579         continue;
580       if (R == AliasResult::MustAlias)
581         return MemDepResult::getDef(Inst);
582       if (isInvariantLoad)
583         continue;
584       return MemDepResult::getClobber(Inst);
585     }
586 
587     // If this is an allocation, and if we know that the accessed pointer is to
588     // the allocation, return Def.  This means that there is no dependence and
589     // the access can be optimized based on that.  For example, a load could
590     // turn into undef.  Note that we can bypass the allocation itself when
591     // looking for a clobber in many cases; that's an alias property and is
592     // handled by BasicAA.
593     if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) {
594       const Value *AccessPtr = getUnderlyingObject(MemLoc.Ptr);
595       if (AccessPtr == Inst || BatchAA.isMustAlias(Inst, AccessPtr))
596         return MemDepResult::getDef(Inst);
597     }
598 
599     if (isInvariantLoad)
600       continue;
601 
602     // A release fence requires that all stores complete before it, but does
603     // not prevent the reordering of following loads or stores 'before' the
604     // fence.  As a result, we look past it when finding a dependency for
605     // loads.  DSE uses this to find preceding stores to delete and thus we
606     // can't bypass the fence if the query instruction is a store.
607     if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
608       if (isLoad && FI->getOrdering() == AtomicOrdering::Release)
609         continue;
610 
611     // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
612     ModRefInfo MR = BatchAA.getModRefInfo(Inst, MemLoc);
613     // If necessary, perform additional analysis.
614     if (isModAndRefSet(MR))
615       // TODO: Support callCapturesBefore() on BatchAAResults.
616       MR = AA.callCapturesBefore(Inst, MemLoc, &DT);
617     switch (clearMust(MR)) {
618     case ModRefInfo::NoModRef:
619       // If the call has no effect on the queried pointer, just ignore it.
620       continue;
621     case ModRefInfo::Mod:
622       return MemDepResult::getClobber(Inst);
623     case ModRefInfo::Ref:
624       // If the call is known to never store to the pointer, and if this is a
625       // load query, we can safely ignore it (scan past it).
626       if (isLoad)
627         continue;
628       LLVM_FALLTHROUGH;
629     default:
630       // Otherwise, there is a potential dependence.  Return a clobber.
631       return MemDepResult::getClobber(Inst);
632     }
633   }
634 
635   // No dependence found.  If this is the entry block of the function, it is
636   // unknown, otherwise it is non-local.
637   if (BB != &BB->getParent()->getEntryBlock())
638     return MemDepResult::getNonLocal();
639   return MemDepResult::getNonFuncLocal();
640 }
641 
642 MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) {
643   Instruction *ScanPos = QueryInst;
644 
645   // Check for a cached result
646   MemDepResult &LocalCache = LocalDeps[QueryInst];
647 
648   // If the cached entry is non-dirty, just return it.  Note that this depends
649   // on MemDepResult's default constructing to 'dirty'.
650   if (!LocalCache.isDirty())
651     return LocalCache;
652 
653   // Otherwise, if we have a dirty entry, we know we can start the scan at that
654   // instruction, which may save us some work.
655   if (Instruction *Inst = LocalCache.getInst()) {
656     ScanPos = Inst;
657 
658     RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
659   }
660 
661   BasicBlock *QueryParent = QueryInst->getParent();
662 
663   // Do the scan.
664   if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
665     // No dependence found. If this is the entry block of the function, it is
666     // unknown, otherwise it is non-local.
667     if (QueryParent != &QueryParent->getParent()->getEntryBlock())
668       LocalCache = MemDepResult::getNonLocal();
669     else
670       LocalCache = MemDepResult::getNonFuncLocal();
671   } else {
672     MemoryLocation MemLoc;
673     ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI);
674     if (MemLoc.Ptr) {
675       // If we can do a pointer scan, make it happen.
676       bool isLoad = !isModSet(MR);
677       if (auto *II = dyn_cast<IntrinsicInst>(QueryInst))
678         isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
679 
680       LocalCache =
681           getPointerDependencyFrom(MemLoc, isLoad, ScanPos->getIterator(),
682                                    QueryParent, QueryInst, nullptr);
683     } else if (auto *QueryCall = dyn_cast<CallBase>(QueryInst)) {
684       bool isReadOnly = AA.onlyReadsMemory(QueryCall);
685       LocalCache = getCallDependencyFrom(QueryCall, isReadOnly,
686                                          ScanPos->getIterator(), QueryParent);
687     } else
688       // Non-memory instruction.
689       LocalCache = MemDepResult::getUnknown();
690   }
691 
692   // Remember the result!
693   if (Instruction *I = LocalCache.getInst())
694     ReverseLocalDeps[I].insert(QueryInst);
695 
696   return LocalCache;
697 }
698 
699 #ifndef NDEBUG
700 /// This method is used when -debug is specified to verify that cache arrays
701 /// are properly kept sorted.
702 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache,
703                          int Count = -1) {
704   if (Count == -1)
705     Count = Cache.size();
706   assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) &&
707          "Cache isn't sorted!");
708 }
709 #endif
710 
711 const MemoryDependenceResults::NonLocalDepInfo &
712 MemoryDependenceResults::getNonLocalCallDependency(CallBase *QueryCall) {
713   assert(getDependency(QueryCall).isNonLocal() &&
714          "getNonLocalCallDependency should only be used on calls with "
715          "non-local deps!");
716   PerInstNLInfo &CacheP = NonLocalDeps[QueryCall];
717   NonLocalDepInfo &Cache = CacheP.first;
718 
719   // This is the set of blocks that need to be recomputed.  In the cached case,
720   // this can happen due to instructions being deleted etc. In the uncached
721   // case, this starts out as the set of predecessors we care about.
722   SmallVector<BasicBlock *, 32> DirtyBlocks;
723 
724   if (!Cache.empty()) {
725     // Okay, we have a cache entry.  If we know it is not dirty, just return it
726     // with no computation.
727     if (!CacheP.second) {
728       ++NumCacheNonLocal;
729       return Cache;
730     }
731 
732     // If we already have a partially computed set of results, scan them to
733     // determine what is dirty, seeding our initial DirtyBlocks worklist.
734     for (auto &Entry : Cache)
735       if (Entry.getResult().isDirty())
736         DirtyBlocks.push_back(Entry.getBB());
737 
738     // Sort the cache so that we can do fast binary search lookups below.
739     llvm::sort(Cache);
740 
741     ++NumCacheDirtyNonLocal;
742     // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
743     //     << Cache.size() << " cached: " << *QueryInst;
744   } else {
745     // Seed DirtyBlocks with each of the preds of QueryInst's block.
746     BasicBlock *QueryBB = QueryCall->getParent();
747     append_range(DirtyBlocks, PredCache.get(QueryBB));
748     ++NumUncacheNonLocal;
749   }
750 
751   // isReadonlyCall - If this is a read-only call, we can be more aggressive.
752   bool isReadonlyCall = AA.onlyReadsMemory(QueryCall);
753 
754   SmallPtrSet<BasicBlock *, 32> Visited;
755 
756   unsigned NumSortedEntries = Cache.size();
757   LLVM_DEBUG(AssertSorted(Cache));
758 
759   // Iterate while we still have blocks to update.
760   while (!DirtyBlocks.empty()) {
761     BasicBlock *DirtyBB = DirtyBlocks.pop_back_val();
762 
763     // Already processed this block?
764     if (!Visited.insert(DirtyBB).second)
765       continue;
766 
767     // Do a binary search to see if we already have an entry for this block in
768     // the cache set.  If so, find it.
769     LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries));
770     NonLocalDepInfo::iterator Entry =
771         std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries,
772                          NonLocalDepEntry(DirtyBB));
773     if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
774       --Entry;
775 
776     NonLocalDepEntry *ExistingResult = nullptr;
777     if (Entry != Cache.begin() + NumSortedEntries &&
778         Entry->getBB() == DirtyBB) {
779       // If we already have an entry, and if it isn't already dirty, the block
780       // is done.
781       if (!Entry->getResult().isDirty())
782         continue;
783 
784       // Otherwise, remember this slot so we can update the value.
785       ExistingResult = &*Entry;
786     }
787 
788     // If the dirty entry has a pointer, start scanning from it so we don't have
789     // to rescan the entire block.
790     BasicBlock::iterator ScanPos = DirtyBB->end();
791     if (ExistingResult) {
792       if (Instruction *Inst = ExistingResult->getResult().getInst()) {
793         ScanPos = Inst->getIterator();
794         // We're removing QueryInst's use of Inst.
795         RemoveFromReverseMap<Instruction *>(ReverseNonLocalDeps, Inst,
796                                             QueryCall);
797       }
798     }
799 
800     // Find out if this block has a local dependency for QueryInst.
801     MemDepResult Dep;
802 
803     if (ScanPos != DirtyBB->begin()) {
804       Dep = getCallDependencyFrom(QueryCall, isReadonlyCall, ScanPos, DirtyBB);
805     } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
806       // No dependence found.  If this is the entry block of the function, it is
807       // a clobber, otherwise it is unknown.
808       Dep = MemDepResult::getNonLocal();
809     } else {
810       Dep = MemDepResult::getNonFuncLocal();
811     }
812 
813     // If we had a dirty entry for the block, update it.  Otherwise, just add
814     // a new entry.
815     if (ExistingResult)
816       ExistingResult->setResult(Dep);
817     else
818       Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
819 
820     // If the block has a dependency (i.e. it isn't completely transparent to
821     // the value), remember the association!
822     if (!Dep.isNonLocal()) {
823       // Keep the ReverseNonLocalDeps map up to date so we can efficiently
824       // update this when we remove instructions.
825       if (Instruction *Inst = Dep.getInst())
826         ReverseNonLocalDeps[Inst].insert(QueryCall);
827     } else {
828 
829       // If the block *is* completely transparent to the load, we need to check
830       // the predecessors of this block.  Add them to our worklist.
831       append_range(DirtyBlocks, PredCache.get(DirtyBB));
832     }
833   }
834 
835   return Cache;
836 }
837 
838 void MemoryDependenceResults::getNonLocalPointerDependency(
839     Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) {
840   const MemoryLocation Loc = MemoryLocation::get(QueryInst);
841   bool isLoad = isa<LoadInst>(QueryInst);
842   BasicBlock *FromBB = QueryInst->getParent();
843   assert(FromBB);
844 
845   assert(Loc.Ptr->getType()->isPointerTy() &&
846          "Can't get pointer deps of a non-pointer!");
847   Result.clear();
848   {
849     // Check if there is cached Def with invariant.group.
850     auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst);
851     if (NonLocalDefIt != NonLocalDefsCache.end()) {
852       Result.push_back(NonLocalDefIt->second);
853       ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()]
854           .erase(QueryInst);
855       NonLocalDefsCache.erase(NonLocalDefIt);
856       return;
857     }
858   }
859   // This routine does not expect to deal with volatile instructions.
860   // Doing so would require piping through the QueryInst all the way through.
861   // TODO: volatiles can't be elided, but they can be reordered with other
862   // non-volatile accesses.
863 
864   // We currently give up on any instruction which is ordered, but we do handle
865   // atomic instructions which are unordered.
866   // TODO: Handle ordered instructions
867   auto isOrdered = [](Instruction *Inst) {
868     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
869       return !LI->isUnordered();
870     } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
871       return !SI->isUnordered();
872     }
873     return false;
874   };
875   if (QueryInst->isVolatile() || isOrdered(QueryInst)) {
876     Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
877                                        const_cast<Value *>(Loc.Ptr)));
878     return;
879   }
880   const DataLayout &DL = FromBB->getModule()->getDataLayout();
881   PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC);
882 
883   // This is the set of blocks we've inspected, and the pointer we consider in
884   // each block.  Because of critical edges, we currently bail out if querying
885   // a block with multiple different pointers.  This can happen during PHI
886   // translation.
887   DenseMap<BasicBlock *, Value *> Visited;
888   if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB,
889                                    Result, Visited, true))
890     return;
891   Result.clear();
892   Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
893                                      const_cast<Value *>(Loc.Ptr)));
894 }
895 
896 /// Compute the memdep value for BB with Pointer/PointeeSize using either
897 /// cached information in Cache or by doing a lookup (which may use dirty cache
898 /// info if available).
899 ///
900 /// If we do a lookup, add the result to the cache.
901 MemDepResult MemoryDependenceResults::GetNonLocalInfoForBlock(
902     Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad,
903     BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
904 
905   bool isInvariantLoad = false;
906 
907   if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst))
908     isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load);
909 
910   // Do a binary search to see if we already have an entry for this block in
911   // the cache set.  If so, find it.
912   NonLocalDepInfo::iterator Entry = std::upper_bound(
913       Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB));
914   if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB)
915     --Entry;
916 
917   NonLocalDepEntry *ExistingResult = nullptr;
918   if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB)
919     ExistingResult = &*Entry;
920 
921   // Use cached result for invariant load only if there is no dependency for non
922   // invariant load. In this case invariant load can not have any dependency as
923   // well.
924   if (ExistingResult && isInvariantLoad &&
925       !ExistingResult->getResult().isNonFuncLocal())
926     ExistingResult = nullptr;
927 
928   // If we have a cached entry, and it is non-dirty, use it as the value for
929   // this dependency.
930   if (ExistingResult && !ExistingResult->getResult().isDirty()) {
931     ++NumCacheNonLocalPtr;
932     return ExistingResult->getResult();
933   }
934 
935   // Otherwise, we have to scan for the value.  If we have a dirty cache
936   // entry, start scanning from its position, otherwise we scan from the end
937   // of the block.
938   BasicBlock::iterator ScanPos = BB->end();
939   if (ExistingResult && ExistingResult->getResult().getInst()) {
940     assert(ExistingResult->getResult().getInst()->getParent() == BB &&
941            "Instruction invalidated?");
942     ++NumCacheDirtyNonLocalPtr;
943     ScanPos = ExistingResult->getResult().getInst()->getIterator();
944 
945     // Eliminating the dirty entry from 'Cache', so update the reverse info.
946     ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
947     RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey);
948   } else {
949     ++NumUncacheNonLocalPtr;
950   }
951 
952   // Scan the block for the dependency.
953   MemDepResult Dep =
954       getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, QueryInst);
955 
956   // Don't cache results for invariant load.
957   if (isInvariantLoad)
958     return Dep;
959 
960   // If we had a dirty entry for the block, update it.  Otherwise, just add
961   // a new entry.
962   if (ExistingResult)
963     ExistingResult->setResult(Dep);
964   else
965     Cache->push_back(NonLocalDepEntry(BB, Dep));
966 
967   // If the block has a dependency (i.e. it isn't completely transparent to
968   // the value), remember the reverse association because we just added it
969   // to Cache!
970   if (!Dep.isDef() && !Dep.isClobber())
971     return Dep;
972 
973   // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
974   // update MemDep when we remove instructions.
975   Instruction *Inst = Dep.getInst();
976   assert(Inst && "Didn't depend on anything?");
977   ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
978   ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
979   return Dep;
980 }
981 
982 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the
983 /// array that are already properly ordered.
984 ///
985 /// This is optimized for the case when only a few entries are added.
986 static void
987 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache,
988                          unsigned NumSortedEntries) {
989   switch (Cache.size() - NumSortedEntries) {
990   case 0:
991     // done, no new entries.
992     break;
993   case 2: {
994     // Two new entries, insert the last one into place.
995     NonLocalDepEntry Val = Cache.back();
996     Cache.pop_back();
997     MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
998         std::upper_bound(Cache.begin(), Cache.end() - 1, Val);
999     Cache.insert(Entry, Val);
1000     LLVM_FALLTHROUGH;
1001   }
1002   case 1:
1003     // One new entry, Just insert the new value at the appropriate position.
1004     if (Cache.size() != 1) {
1005       NonLocalDepEntry Val = Cache.back();
1006       Cache.pop_back();
1007       MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
1008           llvm::upper_bound(Cache, Val);
1009       Cache.insert(Entry, Val);
1010     }
1011     break;
1012   default:
1013     // Added many values, do a full scale sort.
1014     llvm::sort(Cache);
1015     break;
1016   }
1017 }
1018 
1019 /// Perform a dependency query based on pointer/pointeesize starting at the end
1020 /// of StartBB.
1021 ///
1022 /// Add any clobber/def results to the results vector and keep track of which
1023 /// blocks are visited in 'Visited'.
1024 ///
1025 /// This has special behavior for the first block queries (when SkipFirstBlock
1026 /// is true).  In this special case, it ignores the contents of the specified
1027 /// block and starts returning dependence info for its predecessors.
1028 ///
1029 /// This function returns true on success, or false to indicate that it could
1030 /// not compute dependence information for some reason.  This should be treated
1031 /// as a clobber dependence on the first instruction in the predecessor block.
1032 bool MemoryDependenceResults::getNonLocalPointerDepFromBB(
1033     Instruction *QueryInst, const PHITransAddr &Pointer,
1034     const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB,
1035     SmallVectorImpl<NonLocalDepResult> &Result,
1036     DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock,
1037     bool IsIncomplete) {
1038   // Look up the cached info for Pointer.
1039   ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
1040 
1041   // Set up a temporary NLPI value. If the map doesn't yet have an entry for
1042   // CacheKey, this value will be inserted as the associated value. Otherwise,
1043   // it'll be ignored, and we'll have to check to see if the cached size and
1044   // aa tags are consistent with the current query.
1045   NonLocalPointerInfo InitialNLPI;
1046   InitialNLPI.Size = Loc.Size;
1047   InitialNLPI.AATags = Loc.AATags;
1048 
1049   bool isInvariantLoad = false;
1050   if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst))
1051     isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load);
1052 
1053   // Get the NLPI for CacheKey, inserting one into the map if it doesn't
1054   // already have one.
1055   std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
1056       NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
1057   NonLocalPointerInfo *CacheInfo = &Pair.first->second;
1058 
1059   // If we already have a cache entry for this CacheKey, we may need to do some
1060   // work to reconcile the cache entry and the current query.
1061   // Invariant loads don't participate in caching. Thus no need to reconcile.
1062   if (!isInvariantLoad && !Pair.second) {
1063     if (CacheInfo->Size != Loc.Size) {
1064       bool ThrowOutEverything;
1065       if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) {
1066         // FIXME: We may be able to do better in the face of results with mixed
1067         // precision. We don't appear to get them in practice, though, so just
1068         // be conservative.
1069         ThrowOutEverything =
1070             CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() ||
1071             CacheInfo->Size.getValue() < Loc.Size.getValue();
1072       } else {
1073         // For our purposes, unknown size > all others.
1074         ThrowOutEverything = !Loc.Size.hasValue();
1075       }
1076 
1077       if (ThrowOutEverything) {
1078         // The query's Size is greater than the cached one. Throw out the
1079         // cached data and proceed with the query at the greater size.
1080         CacheInfo->Pair = BBSkipFirstBlockPair();
1081         CacheInfo->Size = Loc.Size;
1082         for (auto &Entry : CacheInfo->NonLocalDeps)
1083           if (Instruction *Inst = Entry.getResult().getInst())
1084             RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1085         CacheInfo->NonLocalDeps.clear();
1086         // The cache is cleared (in the above line) so we will have lost
1087         // information about blocks we have already visited. We therefore must
1088         // assume that the cache information is incomplete.
1089         IsIncomplete = true;
1090       } else {
1091         // This query's Size is less than the cached one. Conservatively restart
1092         // the query using the greater size.
1093         return getNonLocalPointerDepFromBB(
1094             QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad,
1095             StartBB, Result, Visited, SkipFirstBlock, IsIncomplete);
1096       }
1097     }
1098 
1099     // If the query's AATags are inconsistent with the cached one,
1100     // conservatively throw out the cached data and restart the query with
1101     // no tag if needed.
1102     if (CacheInfo->AATags != Loc.AATags) {
1103       if (CacheInfo->AATags) {
1104         CacheInfo->Pair = BBSkipFirstBlockPair();
1105         CacheInfo->AATags = AAMDNodes();
1106         for (auto &Entry : CacheInfo->NonLocalDeps)
1107           if (Instruction *Inst = Entry.getResult().getInst())
1108             RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1109         CacheInfo->NonLocalDeps.clear();
1110         // The cache is cleared (in the above line) so we will have lost
1111         // information about blocks we have already visited. We therefore must
1112         // assume that the cache information is incomplete.
1113         IsIncomplete = true;
1114       }
1115       if (Loc.AATags)
1116         return getNonLocalPointerDepFromBB(
1117             QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result,
1118             Visited, SkipFirstBlock, IsIncomplete);
1119     }
1120   }
1121 
1122   NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
1123 
1124   // If we have valid cached information for exactly the block we are
1125   // investigating, just return it with no recomputation.
1126   // Don't use cached information for invariant loads since it is valid for
1127   // non-invariant loads only.
1128   if (!IsIncomplete && !isInvariantLoad &&
1129       CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
1130     // We have a fully cached result for this query then we can just return the
1131     // cached results and populate the visited set.  However, we have to verify
1132     // that we don't already have conflicting results for these blocks.  Check
1133     // to ensure that if a block in the results set is in the visited set that
1134     // it was for the same pointer query.
1135     if (!Visited.empty()) {
1136       for (auto &Entry : *Cache) {
1137         DenseMap<BasicBlock *, Value *>::iterator VI =
1138             Visited.find(Entry.getBB());
1139         if (VI == Visited.end() || VI->second == Pointer.getAddr())
1140           continue;
1141 
1142         // We have a pointer mismatch in a block.  Just return false, saying
1143         // that something was clobbered in this result.  We could also do a
1144         // non-fully cached query, but there is little point in doing this.
1145         return false;
1146       }
1147     }
1148 
1149     Value *Addr = Pointer.getAddr();
1150     for (auto &Entry : *Cache) {
1151       Visited.insert(std::make_pair(Entry.getBB(), Addr));
1152       if (Entry.getResult().isNonLocal()) {
1153         continue;
1154       }
1155 
1156       if (DT.isReachableFromEntry(Entry.getBB())) {
1157         Result.push_back(
1158             NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr));
1159       }
1160     }
1161     ++NumCacheCompleteNonLocalPtr;
1162     return true;
1163   }
1164 
1165   // Otherwise, either this is a new block, a block with an invalid cache
1166   // pointer or one that we're about to invalidate by putting more info into
1167   // it than its valid cache info.  If empty and not explicitly indicated as
1168   // incomplete, the result will be valid cache info, otherwise it isn't.
1169   //
1170   // Invariant loads don't affect cache in any way thus no need to update
1171   // CacheInfo as well.
1172   if (!isInvariantLoad) {
1173     if (!IsIncomplete && Cache->empty())
1174       CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1175     else
1176       CacheInfo->Pair = BBSkipFirstBlockPair();
1177   }
1178 
1179   SmallVector<BasicBlock *, 32> Worklist;
1180   Worklist.push_back(StartBB);
1181 
1182   // PredList used inside loop.
1183   SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList;
1184 
1185   // Keep track of the entries that we know are sorted.  Previously cached
1186   // entries will all be sorted.  The entries we add we only sort on demand (we
1187   // don't insert every element into its sorted position).  We know that we
1188   // won't get any reuse from currently inserted values, because we don't
1189   // revisit blocks after we insert info for them.
1190   unsigned NumSortedEntries = Cache->size();
1191   unsigned WorklistEntries = BlockNumberLimit;
1192   bool GotWorklistLimit = false;
1193   LLVM_DEBUG(AssertSorted(*Cache));
1194 
1195   while (!Worklist.empty()) {
1196     BasicBlock *BB = Worklist.pop_back_val();
1197 
1198     // If we do process a large number of blocks it becomes very expensive and
1199     // likely it isn't worth worrying about
1200     if (Result.size() > NumResultsLimit) {
1201       Worklist.clear();
1202       // Sort it now (if needed) so that recursive invocations of
1203       // getNonLocalPointerDepFromBB and other routines that could reuse the
1204       // cache value will only see properly sorted cache arrays.
1205       if (Cache && NumSortedEntries != Cache->size()) {
1206         SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1207       }
1208       // Since we bail out, the "Cache" set won't contain all of the
1209       // results for the query.  This is ok (we can still use it to accelerate
1210       // specific block queries) but we can't do the fastpath "return all
1211       // results from the set".  Clear out the indicator for this.
1212       CacheInfo->Pair = BBSkipFirstBlockPair();
1213       return false;
1214     }
1215 
1216     // Skip the first block if we have it.
1217     if (!SkipFirstBlock) {
1218       // Analyze the dependency of *Pointer in FromBB.  See if we already have
1219       // been here.
1220       assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1221 
1222       // Get the dependency info for Pointer in BB.  If we have cached
1223       // information, we will use it, otherwise we compute it.
1224       LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries));
1225       MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, Loc, isLoad, BB,
1226                                                  Cache, NumSortedEntries);
1227 
1228       // If we got a Def or Clobber, add this to the list of results.
1229       if (!Dep.isNonLocal()) {
1230         if (DT.isReachableFromEntry(BB)) {
1231           Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1232           continue;
1233         }
1234       }
1235     }
1236 
1237     // If 'Pointer' is an instruction defined in this block, then we need to do
1238     // phi translation to change it into a value live in the predecessor block.
1239     // If not, we just add the predecessors to the worklist and scan them with
1240     // the same Pointer.
1241     if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1242       SkipFirstBlock = false;
1243       SmallVector<BasicBlock *, 16> NewBlocks;
1244       for (BasicBlock *Pred : PredCache.get(BB)) {
1245         // Verify that we haven't looked at this block yet.
1246         std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1247             Visited.insert(std::make_pair(Pred, Pointer.getAddr()));
1248         if (InsertRes.second) {
1249           // First time we've looked at *PI.
1250           NewBlocks.push_back(Pred);
1251           continue;
1252         }
1253 
1254         // If we have seen this block before, but it was with a different
1255         // pointer then we have a phi translation failure and we have to treat
1256         // this as a clobber.
1257         if (InsertRes.first->second != Pointer.getAddr()) {
1258           // Make sure to clean up the Visited map before continuing on to
1259           // PredTranslationFailure.
1260           for (unsigned i = 0; i < NewBlocks.size(); i++)
1261             Visited.erase(NewBlocks[i]);
1262           goto PredTranslationFailure;
1263         }
1264       }
1265       if (NewBlocks.size() > WorklistEntries) {
1266         // Make sure to clean up the Visited map before continuing on to
1267         // PredTranslationFailure.
1268         for (unsigned i = 0; i < NewBlocks.size(); i++)
1269           Visited.erase(NewBlocks[i]);
1270         GotWorklistLimit = true;
1271         goto PredTranslationFailure;
1272       }
1273       WorklistEntries -= NewBlocks.size();
1274       Worklist.append(NewBlocks.begin(), NewBlocks.end());
1275       continue;
1276     }
1277 
1278     // We do need to do phi translation, if we know ahead of time we can't phi
1279     // translate this value, don't even try.
1280     if (!Pointer.IsPotentiallyPHITranslatable())
1281       goto PredTranslationFailure;
1282 
1283     // We may have added values to the cache list before this PHI translation.
1284     // If so, we haven't done anything to ensure that the cache remains sorted.
1285     // Sort it now (if needed) so that recursive invocations of
1286     // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1287     // value will only see properly sorted cache arrays.
1288     if (Cache && NumSortedEntries != Cache->size()) {
1289       SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1290       NumSortedEntries = Cache->size();
1291     }
1292     Cache = nullptr;
1293 
1294     PredList.clear();
1295     for (BasicBlock *Pred : PredCache.get(BB)) {
1296       PredList.push_back(std::make_pair(Pred, Pointer));
1297 
1298       // Get the PHI translated pointer in this predecessor.  This can fail if
1299       // not translatable, in which case the getAddr() returns null.
1300       PHITransAddr &PredPointer = PredList.back().second;
1301       PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false);
1302       Value *PredPtrVal = PredPointer.getAddr();
1303 
1304       // Check to see if we have already visited this pred block with another
1305       // pointer.  If so, we can't do this lookup.  This failure can occur
1306       // with PHI translation when a critical edge exists and the PHI node in
1307       // the successor translates to a pointer value different than the
1308       // pointer the block was first analyzed with.
1309       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1310           Visited.insert(std::make_pair(Pred, PredPtrVal));
1311 
1312       if (!InsertRes.second) {
1313         // We found the pred; take it off the list of preds to visit.
1314         PredList.pop_back();
1315 
1316         // If the predecessor was visited with PredPtr, then we already did
1317         // the analysis and can ignore it.
1318         if (InsertRes.first->second == PredPtrVal)
1319           continue;
1320 
1321         // Otherwise, the block was previously analyzed with a different
1322         // pointer.  We can't represent the result of this case, so we just
1323         // treat this as a phi translation failure.
1324 
1325         // Make sure to clean up the Visited map before continuing on to
1326         // PredTranslationFailure.
1327         for (unsigned i = 0, n = PredList.size(); i < n; ++i)
1328           Visited.erase(PredList[i].first);
1329 
1330         goto PredTranslationFailure;
1331       }
1332     }
1333 
1334     // Actually process results here; this need to be a separate loop to avoid
1335     // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1336     // any results for.  (getNonLocalPointerDepFromBB will modify our
1337     // datastructures in ways the code after the PredTranslationFailure label
1338     // doesn't expect.)
1339     for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
1340       BasicBlock *Pred = PredList[i].first;
1341       PHITransAddr &PredPointer = PredList[i].second;
1342       Value *PredPtrVal = PredPointer.getAddr();
1343 
1344       bool CanTranslate = true;
1345       // If PHI translation was unable to find an available pointer in this
1346       // predecessor, then we have to assume that the pointer is clobbered in
1347       // that predecessor.  We can still do PRE of the load, which would insert
1348       // a computation of the pointer in this predecessor.
1349       if (!PredPtrVal)
1350         CanTranslate = false;
1351 
1352       // FIXME: it is entirely possible that PHI translating will end up with
1353       // the same value.  Consider PHI translating something like:
1354       // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
1355       // to recurse here, pedantically speaking.
1356 
1357       // If getNonLocalPointerDepFromBB fails here, that means the cached
1358       // result conflicted with the Visited list; we have to conservatively
1359       // assume it is unknown, but this also does not block PRE of the load.
1360       if (!CanTranslate ||
1361           !getNonLocalPointerDepFromBB(QueryInst, PredPointer,
1362                                       Loc.getWithNewPtr(PredPtrVal), isLoad,
1363                                       Pred, Result, Visited)) {
1364         // Add the entry to the Result list.
1365         NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1366         Result.push_back(Entry);
1367 
1368         // Since we had a phi translation failure, the cache for CacheKey won't
1369         // include all of the entries that we need to immediately satisfy future
1370         // queries.  Mark this in NonLocalPointerDeps by setting the
1371         // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
1372         // cached value to do more work but not miss the phi trans failure.
1373         NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1374         NLPI.Pair = BBSkipFirstBlockPair();
1375         continue;
1376       }
1377     }
1378 
1379     // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1380     CacheInfo = &NonLocalPointerDeps[CacheKey];
1381     Cache = &CacheInfo->NonLocalDeps;
1382     NumSortedEntries = Cache->size();
1383 
1384     // Since we did phi translation, the "Cache" set won't contain all of the
1385     // results for the query.  This is ok (we can still use it to accelerate
1386     // specific block queries) but we can't do the fastpath "return all
1387     // results from the set"  Clear out the indicator for this.
1388     CacheInfo->Pair = BBSkipFirstBlockPair();
1389     SkipFirstBlock = false;
1390     continue;
1391 
1392   PredTranslationFailure:
1393     // The following code is "failure"; we can't produce a sane translation
1394     // for the given block.  It assumes that we haven't modified any of
1395     // our datastructures while processing the current block.
1396 
1397     if (!Cache) {
1398       // Refresh the CacheInfo/Cache pointer if it got invalidated.
1399       CacheInfo = &NonLocalPointerDeps[CacheKey];
1400       Cache = &CacheInfo->NonLocalDeps;
1401       NumSortedEntries = Cache->size();
1402     }
1403 
1404     // Since we failed phi translation, the "Cache" set won't contain all of the
1405     // results for the query.  This is ok (we can still use it to accelerate
1406     // specific block queries) but we can't do the fastpath "return all
1407     // results from the set".  Clear out the indicator for this.
1408     CacheInfo->Pair = BBSkipFirstBlockPair();
1409 
1410     // If *nothing* works, mark the pointer as unknown.
1411     //
1412     // If this is the magic first block, return this as a clobber of the whole
1413     // incoming value.  Since we can't phi translate to one of the predecessors,
1414     // we have to bail out.
1415     if (SkipFirstBlock)
1416       return false;
1417 
1418     // Results of invariant loads are not cached thus no need to update cached
1419     // information.
1420     if (!isInvariantLoad) {
1421       for (NonLocalDepEntry &I : llvm::reverse(*Cache)) {
1422         if (I.getBB() != BB)
1423           continue;
1424 
1425         assert((GotWorklistLimit || I.getResult().isNonLocal() ||
1426                 !DT.isReachableFromEntry(BB)) &&
1427                "Should only be here with transparent block");
1428 
1429         I.setResult(MemDepResult::getUnknown());
1430 
1431 
1432         break;
1433       }
1434     }
1435     (void)GotWorklistLimit;
1436     // Go ahead and report unknown dependence.
1437     Result.push_back(
1438         NonLocalDepResult(BB, MemDepResult::getUnknown(), Pointer.getAddr()));
1439   }
1440 
1441   // Okay, we're done now.  If we added new values to the cache, re-sort it.
1442   SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1443   LLVM_DEBUG(AssertSorted(*Cache));
1444   return true;
1445 }
1446 
1447 /// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it.
1448 void MemoryDependenceResults::RemoveCachedNonLocalPointerDependencies(
1449     ValueIsLoadPair P) {
1450 
1451   // Most of the time this cache is empty.
1452   if (!NonLocalDefsCache.empty()) {
1453     auto it = NonLocalDefsCache.find(P.getPointer());
1454     if (it != NonLocalDefsCache.end()) {
1455       RemoveFromReverseMap(ReverseNonLocalDefsCache,
1456                            it->second.getResult().getInst(), P.getPointer());
1457       NonLocalDefsCache.erase(it);
1458     }
1459 
1460     if (auto *I = dyn_cast<Instruction>(P.getPointer())) {
1461       auto toRemoveIt = ReverseNonLocalDefsCache.find(I);
1462       if (toRemoveIt != ReverseNonLocalDefsCache.end()) {
1463         for (const auto *entry : toRemoveIt->second)
1464           NonLocalDefsCache.erase(entry);
1465         ReverseNonLocalDefsCache.erase(toRemoveIt);
1466       }
1467     }
1468   }
1469 
1470   CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P);
1471   if (It == NonLocalPointerDeps.end())
1472     return;
1473 
1474   // Remove all of the entries in the BB->val map.  This involves removing
1475   // instructions from the reverse map.
1476   NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1477 
1478   for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1479     Instruction *Target = PInfo[i].getResult().getInst();
1480     if (!Target)
1481       continue; // Ignore non-local dep results.
1482     assert(Target->getParent() == PInfo[i].getBB());
1483 
1484     // Eliminating the dirty entry from 'Cache', so update the reverse info.
1485     RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1486   }
1487 
1488   // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1489   NonLocalPointerDeps.erase(It);
1490 }
1491 
1492 void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) {
1493   // If Ptr isn't really a pointer, just ignore it.
1494   if (!Ptr->getType()->isPointerTy())
1495     return;
1496   // Flush store info for the pointer.
1497   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1498   // Flush load info for the pointer.
1499   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1500   // Invalidate phis that use the pointer.
1501   PV.invalidateValue(Ptr);
1502 }
1503 
1504 void MemoryDependenceResults::invalidateCachedPredecessors() {
1505   PredCache.clear();
1506 }
1507 
1508 void MemoryDependenceResults::removeInstruction(Instruction *RemInst) {
1509   // Walk through the Non-local dependencies, removing this one as the value
1510   // for any cached queries.
1511   NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1512   if (NLDI != NonLocalDeps.end()) {
1513     NonLocalDepInfo &BlockMap = NLDI->second.first;
1514     for (auto &Entry : BlockMap)
1515       if (Instruction *Inst = Entry.getResult().getInst())
1516         RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1517     NonLocalDeps.erase(NLDI);
1518   }
1519 
1520   // If we have a cached local dependence query for this instruction, remove it.
1521   LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1522   if (LocalDepEntry != LocalDeps.end()) {
1523     // Remove us from DepInst's reverse set now that the local dep info is gone.
1524     if (Instruction *Inst = LocalDepEntry->second.getInst())
1525       RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1526 
1527     // Remove this local dependency info.
1528     LocalDeps.erase(LocalDepEntry);
1529   }
1530 
1531   // If we have any cached dependencies on this instruction, remove
1532   // them.
1533 
1534   // If the instruction is a pointer, remove it from both the load info and the
1535   // store info.
1536   if (RemInst->getType()->isPointerTy()) {
1537     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1538     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1539   } else {
1540     // Otherwise, if the instructions is in the map directly, it must be a load.
1541     // Remove it.
1542     auto toRemoveIt = NonLocalDefsCache.find(RemInst);
1543     if (toRemoveIt != NonLocalDefsCache.end()) {
1544       assert(isa<LoadInst>(RemInst) &&
1545              "only load instructions should be added directly");
1546       const Instruction *DepV = toRemoveIt->second.getResult().getInst();
1547       ReverseNonLocalDefsCache.find(DepV)->second.erase(RemInst);
1548       NonLocalDefsCache.erase(toRemoveIt);
1549     }
1550   }
1551 
1552   // Loop over all of the things that depend on the instruction we're removing.
1553   SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd;
1554 
1555   // If we find RemInst as a clobber or Def in any of the maps for other values,
1556   // we need to replace its entry with a dirty version of the instruction after
1557   // it.  If RemInst is a terminator, we use a null dirty value.
1558   //
1559   // Using a dirty version of the instruction after RemInst saves having to scan
1560   // the entire block to get to this point.
1561   MemDepResult NewDirtyVal;
1562   if (!RemInst->isTerminator())
1563     NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator());
1564 
1565   ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1566   if (ReverseDepIt != ReverseLocalDeps.end()) {
1567     // RemInst can't be the terminator if it has local stuff depending on it.
1568     assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() &&
1569            "Nothing can locally depend on a terminator");
1570 
1571     for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
1572       assert(InstDependingOnRemInst != RemInst &&
1573              "Already removed our local dep info");
1574 
1575       LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1576 
1577       // Make sure to remember that new things depend on NewDepInst.
1578       assert(NewDirtyVal.getInst() &&
1579              "There is no way something else can have "
1580              "a local dep on this if it is a terminator!");
1581       ReverseDepsToAdd.push_back(
1582           std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst));
1583     }
1584 
1585     ReverseLocalDeps.erase(ReverseDepIt);
1586 
1587     // Add new reverse deps after scanning the set, to avoid invalidating the
1588     // 'ReverseDeps' reference.
1589     while (!ReverseDepsToAdd.empty()) {
1590       ReverseLocalDeps[ReverseDepsToAdd.back().first].insert(
1591           ReverseDepsToAdd.back().second);
1592       ReverseDepsToAdd.pop_back();
1593     }
1594   }
1595 
1596   ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1597   if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1598     for (Instruction *I : ReverseDepIt->second) {
1599       assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
1600 
1601       PerInstNLInfo &INLD = NonLocalDeps[I];
1602       // The information is now dirty!
1603       INLD.second = true;
1604 
1605       for (auto &Entry : INLD.first) {
1606         if (Entry.getResult().getInst() != RemInst)
1607           continue;
1608 
1609         // Convert to a dirty entry for the subsequent instruction.
1610         Entry.setResult(NewDirtyVal);
1611 
1612         if (Instruction *NextI = NewDirtyVal.getInst())
1613           ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
1614       }
1615     }
1616 
1617     ReverseNonLocalDeps.erase(ReverseDepIt);
1618 
1619     // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1620     while (!ReverseDepsToAdd.empty()) {
1621       ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert(
1622           ReverseDepsToAdd.back().second);
1623       ReverseDepsToAdd.pop_back();
1624     }
1625   }
1626 
1627   // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1628   // value in the NonLocalPointerDeps info.
1629   ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1630       ReverseNonLocalPtrDeps.find(RemInst);
1631   if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1632     SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8>
1633         ReversePtrDepsToAdd;
1634 
1635     for (ValueIsLoadPair P : ReversePtrDepIt->second) {
1636       assert(P.getPointer() != RemInst &&
1637              "Already removed NonLocalPointerDeps info for RemInst");
1638 
1639       NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1640 
1641       // The cache is not valid for any specific block anymore.
1642       NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1643 
1644       // Update any entries for RemInst to use the instruction after it.
1645       for (auto &Entry : NLPDI) {
1646         if (Entry.getResult().getInst() != RemInst)
1647           continue;
1648 
1649         // Convert to a dirty entry for the subsequent instruction.
1650         Entry.setResult(NewDirtyVal);
1651 
1652         if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1653           ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1654       }
1655 
1656       // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1657       // subsequent value may invalidate the sortedness.
1658       llvm::sort(NLPDI);
1659     }
1660 
1661     ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1662 
1663     while (!ReversePtrDepsToAdd.empty()) {
1664       ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert(
1665           ReversePtrDepsToAdd.back().second);
1666       ReversePtrDepsToAdd.pop_back();
1667     }
1668   }
1669 
1670   // Invalidate phis that use the removed instruction.
1671   PV.invalidateValue(RemInst);
1672 
1673   assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1674   LLVM_DEBUG(verifyRemoved(RemInst));
1675 }
1676 
1677 /// Verify that the specified instruction does not occur in our internal data
1678 /// structures.
1679 ///
1680 /// This function verifies by asserting in debug builds.
1681 void MemoryDependenceResults::verifyRemoved(Instruction *D) const {
1682 #ifndef NDEBUG
1683   for (const auto &DepKV : LocalDeps) {
1684     assert(DepKV.first != D && "Inst occurs in data structures");
1685     assert(DepKV.second.getInst() != D && "Inst occurs in data structures");
1686   }
1687 
1688   for (const auto &DepKV : NonLocalPointerDeps) {
1689     assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key");
1690     for (const auto &Entry : DepKV.second.NonLocalDeps)
1691       assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value");
1692   }
1693 
1694   for (const auto &DepKV : NonLocalDeps) {
1695     assert(DepKV.first != D && "Inst occurs in data structures");
1696     const PerInstNLInfo &INLD = DepKV.second;
1697     for (const auto &Entry : INLD.first)
1698       assert(Entry.getResult().getInst() != D &&
1699              "Inst occurs in data structures");
1700   }
1701 
1702   for (const auto &DepKV : ReverseLocalDeps) {
1703     assert(DepKV.first != D && "Inst occurs in data structures");
1704     for (Instruction *Inst : DepKV.second)
1705       assert(Inst != D && "Inst occurs in data structures");
1706   }
1707 
1708   for (const auto &DepKV : ReverseNonLocalDeps) {
1709     assert(DepKV.first != D && "Inst occurs in data structures");
1710     for (Instruction *Inst : DepKV.second)
1711       assert(Inst != D && "Inst occurs in data structures");
1712   }
1713 
1714   for (const auto &DepKV : ReverseNonLocalPtrDeps) {
1715     assert(DepKV.first != D && "Inst occurs in rev NLPD map");
1716 
1717     for (ValueIsLoadPair P : DepKV.second)
1718       assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) &&
1719              "Inst occurs in ReverseNonLocalPtrDeps map");
1720   }
1721 #endif
1722 }
1723 
1724 AnalysisKey MemoryDependenceAnalysis::Key;
1725 
1726 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
1727     : DefaultBlockScanLimit(BlockScanLimit) {}
1728 
1729 MemoryDependenceResults
1730 MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
1731   auto &AA = AM.getResult<AAManager>(F);
1732   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1733   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1734   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1735   auto &PV = AM.getResult<PhiValuesAnalysis>(F);
1736   return MemoryDependenceResults(AA, AC, TLI, DT, PV, DefaultBlockScanLimit);
1737 }
1738 
1739 char MemoryDependenceWrapperPass::ID = 0;
1740 
1741 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep",
1742                       "Memory Dependence Analysis", false, true)
1743 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1744 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1745 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1746 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1747 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
1748 INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep",
1749                     "Memory Dependence Analysis", false, true)
1750 
1751 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) {
1752   initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry());
1753 }
1754 
1755 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default;
1756 
1757 void MemoryDependenceWrapperPass::releaseMemory() {
1758   MemDep.reset();
1759 }
1760 
1761 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1762   AU.setPreservesAll();
1763   AU.addRequired<AssumptionCacheTracker>();
1764   AU.addRequired<DominatorTreeWrapperPass>();
1765   AU.addRequired<PhiValuesWrapperPass>();
1766   AU.addRequiredTransitive<AAResultsWrapperPass>();
1767   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1768 }
1769 
1770 bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA,
1771                                FunctionAnalysisManager::Invalidator &Inv) {
1772   // Check whether our analysis is preserved.
1773   auto PAC = PA.getChecker<MemoryDependenceAnalysis>();
1774   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
1775     // If not, give up now.
1776     return true;
1777 
1778   // Check whether the analyses we depend on became invalid for any reason.
1779   if (Inv.invalidate<AAManager>(F, PA) ||
1780       Inv.invalidate<AssumptionAnalysis>(F, PA) ||
1781       Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
1782       Inv.invalidate<PhiValuesAnalysis>(F, PA))
1783     return true;
1784 
1785   // Otherwise this analysis result remains valid.
1786   return false;
1787 }
1788 
1789 unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const {
1790   return DefaultBlockScanLimit;
1791 }
1792 
1793 bool MemoryDependenceWrapperPass::runOnFunction(Function &F) {
1794   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1795   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1796   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1797   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1798   auto &PV = getAnalysis<PhiValuesWrapperPass>().getResult();
1799   MemDep.emplace(AA, AC, TLI, DT, PV, BlockScanLimit);
1800   return false;
1801 }
1802