1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation --*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements an analysis that determines, for a given memory 11 // operation, what preceding memory operations it depends on. It builds on 12 // alias analysis information, and tries to provide a lazy, caching interface to 13 // a common kind of alias information query. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #define DEBUG_TYPE "memdep" 18 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/Instructions.h" 21 #include "llvm/IntrinsicInst.h" 22 #include "llvm/Function.h" 23 #include "llvm/LLVMContext.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/Dominators.h" 26 #include "llvm/Analysis/InstructionSimplify.h" 27 #include "llvm/Analysis/MemoryBuiltins.h" 28 #include "llvm/Analysis/PHITransAddr.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/Support/PredIteratorCache.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Target/TargetData.h" 35 using namespace llvm; 36 37 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); 38 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); 39 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); 40 41 STATISTIC(NumCacheNonLocalPtr, 42 "Number of fully cached non-local ptr responses"); 43 STATISTIC(NumCacheDirtyNonLocalPtr, 44 "Number of cached, but dirty, non-local ptr responses"); 45 STATISTIC(NumUncacheNonLocalPtr, 46 "Number of uncached non-local ptr responses"); 47 STATISTIC(NumCacheCompleteNonLocalPtr, 48 "Number of block queries that were completely cached"); 49 50 char MemoryDependenceAnalysis::ID = 0; 51 52 // Register this pass... 53 INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep", 54 "Memory Dependence Analysis", false, true) 55 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 56 INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep", 57 "Memory Dependence Analysis", false, true) 58 59 MemoryDependenceAnalysis::MemoryDependenceAnalysis() 60 : FunctionPass(ID), PredCache(0) { 61 initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry()); 62 } 63 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() { 64 } 65 66 /// Clean up memory in between runs 67 void MemoryDependenceAnalysis::releaseMemory() { 68 LocalDeps.clear(); 69 NonLocalDeps.clear(); 70 NonLocalPointerDeps.clear(); 71 ReverseLocalDeps.clear(); 72 ReverseNonLocalDeps.clear(); 73 ReverseNonLocalPtrDeps.clear(); 74 PredCache->clear(); 75 } 76 77 78 79 /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis. 80 /// 81 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 82 AU.setPreservesAll(); 83 AU.addRequiredTransitive<AliasAnalysis>(); 84 } 85 86 bool MemoryDependenceAnalysis::runOnFunction(Function &) { 87 AA = &getAnalysis<AliasAnalysis>(); 88 TD = getAnalysisIfAvailable<TargetData>(); 89 if (PredCache == 0) 90 PredCache.reset(new PredIteratorCache()); 91 return false; 92 } 93 94 /// RemoveFromReverseMap - This is a helper function that removes Val from 95 /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry. 96 template <typename KeyTy> 97 static void RemoveFromReverseMap(DenseMap<Instruction*, 98 SmallPtrSet<KeyTy, 4> > &ReverseMap, 99 Instruction *Inst, KeyTy Val) { 100 typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator 101 InstIt = ReverseMap.find(Inst); 102 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); 103 bool Found = InstIt->second.erase(Val); 104 assert(Found && "Invalid reverse map!"); (void)Found; 105 if (InstIt->second.empty()) 106 ReverseMap.erase(InstIt); 107 } 108 109 /// GetLocation - If the given instruction references a specific memory 110 /// location, fill in Loc with the details, otherwise set Loc.Ptr to null. 111 /// Return a ModRefInfo value describing the general behavior of the 112 /// instruction. 113 static 114 AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst, 115 AliasAnalysis::Location &Loc, 116 AliasAnalysis *AA) { 117 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 118 if (LI->isVolatile()) { 119 Loc = AliasAnalysis::Location(); 120 return AliasAnalysis::ModRef; 121 } 122 Loc = AA->getLocation(LI); 123 return AliasAnalysis::Ref; 124 } 125 126 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 127 if (SI->isVolatile()) { 128 Loc = AliasAnalysis::Location(); 129 return AliasAnalysis::ModRef; 130 } 131 Loc = AA->getLocation(SI); 132 return AliasAnalysis::Mod; 133 } 134 135 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { 136 Loc = AA->getLocation(V); 137 return AliasAnalysis::ModRef; 138 } 139 140 if (const CallInst *CI = isFreeCall(Inst)) { 141 // calls to free() deallocate the entire structure 142 Loc = AliasAnalysis::Location(CI->getArgOperand(0)); 143 return AliasAnalysis::Mod; 144 } 145 146 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 147 switch (II->getIntrinsicID()) { 148 case Intrinsic::lifetime_start: 149 case Intrinsic::lifetime_end: 150 case Intrinsic::invariant_start: 151 Loc = AliasAnalysis::Location(II->getArgOperand(1), 152 cast<ConstantInt>(II->getArgOperand(0)) 153 ->getZExtValue(), 154 II->getMetadata(LLVMContext::MD_tbaa)); 155 // These intrinsics don't really modify the memory, but returning Mod 156 // will allow them to be handled conservatively. 157 return AliasAnalysis::Mod; 158 case Intrinsic::invariant_end: 159 Loc = AliasAnalysis::Location(II->getArgOperand(2), 160 cast<ConstantInt>(II->getArgOperand(1)) 161 ->getZExtValue(), 162 II->getMetadata(LLVMContext::MD_tbaa)); 163 // These intrinsics don't really modify the memory, but returning Mod 164 // will allow them to be handled conservatively. 165 return AliasAnalysis::Mod; 166 default: 167 break; 168 } 169 170 // Otherwise, just do the coarse-grained thing that always works. 171 if (Inst->mayWriteToMemory()) 172 return AliasAnalysis::ModRef; 173 if (Inst->mayReadFromMemory()) 174 return AliasAnalysis::Ref; 175 return AliasAnalysis::NoModRef; 176 } 177 178 /// getCallSiteDependencyFrom - Private helper for finding the local 179 /// dependencies of a call site. 180 MemDepResult MemoryDependenceAnalysis:: 181 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall, 182 BasicBlock::iterator ScanIt, BasicBlock *BB) { 183 // Walk backwards through the block, looking for dependencies 184 while (ScanIt != BB->begin()) { 185 Instruction *Inst = --ScanIt; 186 187 // If this inst is a memory op, get the pointer it accessed 188 AliasAnalysis::Location Loc; 189 AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA); 190 if (Loc.Ptr) { 191 // A simple instruction. 192 if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef) 193 return MemDepResult::getClobber(Inst); 194 continue; 195 } 196 197 if (CallSite InstCS = cast<Value>(Inst)) { 198 // Debug intrinsics don't cause dependences. 199 if (isa<DbgInfoIntrinsic>(Inst)) continue; 200 // If these two calls do not interfere, look past it. 201 switch (AA->getModRefInfo(CS, InstCS)) { 202 case AliasAnalysis::NoModRef: 203 // If the two calls are the same, return InstCS as a Def, so that 204 // CS can be found redundant and eliminated. 205 if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) && 206 CS.getInstruction()->isIdenticalToWhenDefined(Inst)) 207 return MemDepResult::getDef(Inst); 208 209 // Otherwise if the two calls don't interact (e.g. InstCS is readnone) 210 // keep scanning. 211 break; 212 default: 213 return MemDepResult::getClobber(Inst); 214 } 215 } 216 } 217 218 // No dependence found. If this is the entry block of the function, it is a 219 // clobber, otherwise it is non-local. 220 if (BB != &BB->getParent()->getEntryBlock()) 221 return MemDepResult::getNonLocal(); 222 return MemDepResult::getClobber(ScanIt); 223 } 224 225 /// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that 226 /// would fully overlap MemLoc if done as a wider legal integer load. 227 /// 228 /// MemLocBase, MemLocOffset are lazily computed here the first time the 229 /// base/offs of memloc is needed. 230 static bool 231 isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc, 232 const Value *&MemLocBase, 233 int64_t &MemLocOffs, 234 const LoadInst *LI, 235 const TargetData *TD) { 236 // If we have no target data, we can't do this. 237 if (TD == 0) return false; 238 239 // If we haven't already computed the base/offset of MemLoc, do so now. 240 if (MemLocBase == 0) 241 MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, *TD); 242 243 unsigned Size = MemoryDependenceAnalysis:: 244 getLoadLoadClobberFullWidthSize(MemLocBase, MemLocOffs, MemLoc.Size, 245 LI, *TD); 246 return Size != 0; 247 } 248 249 /// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that 250 /// looks at a memory location for a load (specified by MemLocBase, Offs, 251 /// and Size) and compares it against a load. If the specified load could 252 /// be safely widened to a larger integer load that is 1) still efficient, 253 /// 2) safe for the target, and 3) would provide the specified memory 254 /// location value, then this function returns the size in bytes of the 255 /// load width to use. If not, this returns zero. 256 unsigned MemoryDependenceAnalysis:: 257 getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs, 258 unsigned MemLocSize, const LoadInst *LI, 259 const TargetData &TD) { 260 // We can only extend non-volatile integer loads. 261 if (!isa<IntegerType>(LI->getType()) || LI->isVolatile()) return 0; 262 263 // Get the base of this load. 264 int64_t LIOffs = 0; 265 const Value *LIBase = 266 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, TD); 267 268 // If the two pointers are not based on the same pointer, we can't tell that 269 // they are related. 270 if (LIBase != MemLocBase) return 0; 271 272 // Okay, the two values are based on the same pointer, but returned as 273 // no-alias. This happens when we have things like two byte loads at "P+1" 274 // and "P+3". Check to see if increasing the size of the "LI" load up to its 275 // alignment (or the largest native integer type) will allow us to load all 276 // the bits required by MemLoc. 277 278 // If MemLoc is before LI, then no widening of LI will help us out. 279 if (MemLocOffs < LIOffs) return 0; 280 281 // Get the alignment of the load in bytes. We assume that it is safe to load 282 // any legal integer up to this size without a problem. For example, if we're 283 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can 284 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it 285 // to i16. 286 unsigned LoadAlign = LI->getAlignment(); 287 288 int64_t MemLocEnd = MemLocOffs+MemLocSize; 289 290 // If no amount of rounding up will let MemLoc fit into LI, then bail out. 291 if (LIOffs+LoadAlign < MemLocEnd) return 0; 292 293 // This is the size of the load to try. Start with the next larger power of 294 // two. 295 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U; 296 NewLoadByteSize = NextPowerOf2(NewLoadByteSize); 297 298 while (1) { 299 // If this load size is bigger than our known alignment or would not fit 300 // into a native integer register, then we fail. 301 if (NewLoadByteSize > LoadAlign || 302 !TD.fitsInLegalInteger(NewLoadByteSize*8)) 303 return 0; 304 305 // If a load of this width would include all of MemLoc, then we succeed. 306 if (LIOffs+NewLoadByteSize >= MemLocEnd) 307 return NewLoadByteSize; 308 309 NewLoadByteSize <<= 1; 310 } 311 312 return 0; 313 } 314 315 /// getPointerDependencyFrom - Return the instruction on which a memory 316 /// location depends. If isLoad is true, this routine ignores may-aliases with 317 /// read-only operations. If isLoad is false, this routine ignores may-aliases 318 /// with reads from read-only locations. 319 MemDepResult MemoryDependenceAnalysis:: 320 getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, 321 BasicBlock::iterator ScanIt, BasicBlock *BB) { 322 323 const Value *MemLocBase = 0; 324 int64_t MemLocOffset = 0; 325 326 // Walk backwards through the basic block, looking for dependencies. 327 while (ScanIt != BB->begin()) { 328 Instruction *Inst = --ScanIt; 329 330 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 331 // Debug intrinsics don't (and can't) cause dependences. 332 if (isa<DbgInfoIntrinsic>(II)) continue; 333 334 // If we reach a lifetime begin or end marker, then the query ends here 335 // because the value is undefined. 336 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 337 // FIXME: This only considers queries directly on the invariant-tagged 338 // pointer, not on query pointers that are indexed off of them. It'd 339 // be nice to handle that at some point (the right approach is to use 340 // GetPointerBaseWithConstantOffset). 341 if (AA->isMustAlias(AliasAnalysis::Location(II->getArgOperand(1)), 342 MemLoc)) 343 return MemDepResult::getDef(II); 344 continue; 345 } 346 } 347 348 // Values depend on loads if the pointers are must aliased. This means that 349 // a load depends on another must aliased load from the same value. 350 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 351 AliasAnalysis::Location LoadLoc = AA->getLocation(LI); 352 353 // If we found a pointer, check if it could be the same as our pointer. 354 AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc); 355 356 if (isLoad) { 357 if (R == AliasAnalysis::NoAlias) { 358 // If this is an over-aligned integer load (for example, 359 // "load i8* %P, align 4") see if it would obviously overlap with the 360 // queried location if widened to a larger load (e.g. if the queried 361 // location is 1 byte at P+1). If so, return it as a load/load 362 // clobber result, allowing the client to decide to widen the load if 363 // it wants to. 364 if (const IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) 365 if (LI->getAlignment()*8 > ITy->getPrimitiveSizeInBits() && 366 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase, 367 MemLocOffset, LI, TD)) 368 return MemDepResult::getClobber(Inst); 369 370 continue; 371 } 372 373 // Must aliased loads are defs of each other. 374 if (R == AliasAnalysis::MustAlias) 375 return MemDepResult::getDef(Inst); 376 377 // If we have a partial alias, then return this as a clobber for the 378 // client to handle. 379 if (R == AliasAnalysis::PartialAlias) 380 return MemDepResult::getClobber(Inst); 381 382 // Random may-alias loads don't depend on each other without a 383 // dependence. 384 continue; 385 } 386 387 // Stores don't depend on other no-aliased accesses. 388 if (R == AliasAnalysis::NoAlias) 389 continue; 390 391 // Stores don't alias loads from read-only memory. 392 if (AA->pointsToConstantMemory(LoadLoc)) 393 continue; 394 395 // Stores depend on may/must aliased loads. 396 return MemDepResult::getDef(Inst); 397 } 398 399 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 400 // If alias analysis can tell that this store is guaranteed to not modify 401 // the query pointer, ignore it. Use getModRefInfo to handle cases where 402 // the query pointer points to constant memory etc. 403 if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef) 404 continue; 405 406 // Ok, this store might clobber the query pointer. Check to see if it is 407 // a must alias: in this case, we want to return this as a def. 408 AliasAnalysis::Location StoreLoc = AA->getLocation(SI); 409 410 // If we found a pointer, check if it could be the same as our pointer. 411 AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc); 412 413 if (R == AliasAnalysis::NoAlias) 414 continue; 415 if (R == AliasAnalysis::MustAlias) 416 return MemDepResult::getDef(Inst); 417 return MemDepResult::getClobber(Inst); 418 } 419 420 // If this is an allocation, and if we know that the accessed pointer is to 421 // the allocation, return Def. This means that there is no dependence and 422 // the access can be optimized based on that. For example, a load could 423 // turn into undef. 424 // Note: Only determine this to be a malloc if Inst is the malloc call, not 425 // a subsequent bitcast of the malloc call result. There can be stores to 426 // the malloced memory between the malloc call and its bitcast uses, and we 427 // need to continue scanning until the malloc call. 428 if (isa<AllocaInst>(Inst) || 429 (isa<CallInst>(Inst) && extractMallocCall(Inst))) { 430 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, TD); 431 432 if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr)) 433 return MemDepResult::getDef(Inst); 434 continue; 435 } 436 437 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. 438 switch (AA->getModRefInfo(Inst, MemLoc)) { 439 case AliasAnalysis::NoModRef: 440 // If the call has no effect on the queried pointer, just ignore it. 441 continue; 442 case AliasAnalysis::Mod: 443 return MemDepResult::getClobber(Inst); 444 case AliasAnalysis::Ref: 445 // If the call is known to never store to the pointer, and if this is a 446 // load query, we can safely ignore it (scan past it). 447 if (isLoad) 448 continue; 449 default: 450 // Otherwise, there is a potential dependence. Return a clobber. 451 return MemDepResult::getClobber(Inst); 452 } 453 } 454 455 // No dependence found. If this is the entry block of the function, it is a 456 // clobber, otherwise it is non-local. 457 if (BB != &BB->getParent()->getEntryBlock()) 458 return MemDepResult::getNonLocal(); 459 return MemDepResult::getClobber(ScanIt); 460 } 461 462 /// getDependency - Return the instruction on which a memory operation 463 /// depends. 464 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) { 465 Instruction *ScanPos = QueryInst; 466 467 // Check for a cached result 468 MemDepResult &LocalCache = LocalDeps[QueryInst]; 469 470 // If the cached entry is non-dirty, just return it. Note that this depends 471 // on MemDepResult's default constructing to 'dirty'. 472 if (!LocalCache.isDirty()) 473 return LocalCache; 474 475 // Otherwise, if we have a dirty entry, we know we can start the scan at that 476 // instruction, which may save us some work. 477 if (Instruction *Inst = LocalCache.getInst()) { 478 ScanPos = Inst; 479 480 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); 481 } 482 483 BasicBlock *QueryParent = QueryInst->getParent(); 484 485 // Do the scan. 486 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { 487 // No dependence found. If this is the entry block of the function, it is a 488 // clobber, otherwise it is non-local. 489 if (QueryParent != &QueryParent->getParent()->getEntryBlock()) 490 LocalCache = MemDepResult::getNonLocal(); 491 else 492 LocalCache = MemDepResult::getClobber(QueryInst); 493 } else { 494 AliasAnalysis::Location MemLoc; 495 AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA); 496 if (MemLoc.Ptr) { 497 // If we can do a pointer scan, make it happen. 498 bool isLoad = !(MR & AliasAnalysis::Mod); 499 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst)) 500 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start; 501 502 LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos, 503 QueryParent); 504 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) { 505 CallSite QueryCS(QueryInst); 506 bool isReadOnly = AA->onlyReadsMemory(QueryCS); 507 LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos, 508 QueryParent); 509 } else 510 // Non-memory instruction. 511 LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos)); 512 } 513 514 // Remember the result! 515 if (Instruction *I = LocalCache.getInst()) 516 ReverseLocalDeps[I].insert(QueryInst); 517 518 return LocalCache; 519 } 520 521 #ifndef NDEBUG 522 /// AssertSorted - This method is used when -debug is specified to verify that 523 /// cache arrays are properly kept sorted. 524 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 525 int Count = -1) { 526 if (Count == -1) Count = Cache.size(); 527 if (Count == 0) return; 528 529 for (unsigned i = 1; i != unsigned(Count); ++i) 530 assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!"); 531 } 532 #endif 533 534 /// getNonLocalCallDependency - Perform a full dependency query for the 535 /// specified call, returning the set of blocks that the value is 536 /// potentially live across. The returned set of results will include a 537 /// "NonLocal" result for all blocks where the value is live across. 538 /// 539 /// This method assumes the instruction returns a "NonLocal" dependency 540 /// within its own block. 541 /// 542 /// This returns a reference to an internal data structure that may be 543 /// invalidated on the next non-local query or when an instruction is 544 /// removed. Clients must copy this data if they want it around longer than 545 /// that. 546 const MemoryDependenceAnalysis::NonLocalDepInfo & 547 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { 548 assert(getDependency(QueryCS.getInstruction()).isNonLocal() && 549 "getNonLocalCallDependency should only be used on calls with non-local deps!"); 550 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()]; 551 NonLocalDepInfo &Cache = CacheP.first; 552 553 /// DirtyBlocks - This is the set of blocks that need to be recomputed. In 554 /// the cached case, this can happen due to instructions being deleted etc. In 555 /// the uncached case, this starts out as the set of predecessors we care 556 /// about. 557 SmallVector<BasicBlock*, 32> DirtyBlocks; 558 559 if (!Cache.empty()) { 560 // Okay, we have a cache entry. If we know it is not dirty, just return it 561 // with no computation. 562 if (!CacheP.second) { 563 ++NumCacheNonLocal; 564 return Cache; 565 } 566 567 // If we already have a partially computed set of results, scan them to 568 // determine what is dirty, seeding our initial DirtyBlocks worklist. 569 for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end(); 570 I != E; ++I) 571 if (I->getResult().isDirty()) 572 DirtyBlocks.push_back(I->getBB()); 573 574 // Sort the cache so that we can do fast binary search lookups below. 575 std::sort(Cache.begin(), Cache.end()); 576 577 ++NumCacheDirtyNonLocal; 578 //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " 579 // << Cache.size() << " cached: " << *QueryInst; 580 } else { 581 // Seed DirtyBlocks with each of the preds of QueryInst's block. 582 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent(); 583 for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI) 584 DirtyBlocks.push_back(*PI); 585 ++NumUncacheNonLocal; 586 } 587 588 // isReadonlyCall - If this is a read-only call, we can be more aggressive. 589 bool isReadonlyCall = AA->onlyReadsMemory(QueryCS); 590 591 SmallPtrSet<BasicBlock*, 64> Visited; 592 593 unsigned NumSortedEntries = Cache.size(); 594 DEBUG(AssertSorted(Cache)); 595 596 // Iterate while we still have blocks to update. 597 while (!DirtyBlocks.empty()) { 598 BasicBlock *DirtyBB = DirtyBlocks.back(); 599 DirtyBlocks.pop_back(); 600 601 // Already processed this block? 602 if (!Visited.insert(DirtyBB)) 603 continue; 604 605 // Do a binary search to see if we already have an entry for this block in 606 // the cache set. If so, find it. 607 DEBUG(AssertSorted(Cache, NumSortedEntries)); 608 NonLocalDepInfo::iterator Entry = 609 std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries, 610 NonLocalDepEntry(DirtyBB)); 611 if (Entry != Cache.begin() && prior(Entry)->getBB() == DirtyBB) 612 --Entry; 613 614 NonLocalDepEntry *ExistingResult = 0; 615 if (Entry != Cache.begin()+NumSortedEntries && 616 Entry->getBB() == DirtyBB) { 617 // If we already have an entry, and if it isn't already dirty, the block 618 // is done. 619 if (!Entry->getResult().isDirty()) 620 continue; 621 622 // Otherwise, remember this slot so we can update the value. 623 ExistingResult = &*Entry; 624 } 625 626 // If the dirty entry has a pointer, start scanning from it so we don't have 627 // to rescan the entire block. 628 BasicBlock::iterator ScanPos = DirtyBB->end(); 629 if (ExistingResult) { 630 if (Instruction *Inst = ExistingResult->getResult().getInst()) { 631 ScanPos = Inst; 632 // We're removing QueryInst's use of Inst. 633 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, 634 QueryCS.getInstruction()); 635 } 636 } 637 638 // Find out if this block has a local dependency for QueryInst. 639 MemDepResult Dep; 640 641 if (ScanPos != DirtyBB->begin()) { 642 Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB); 643 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { 644 // No dependence found. If this is the entry block of the function, it is 645 // a clobber, otherwise it is non-local. 646 Dep = MemDepResult::getNonLocal(); 647 } else { 648 Dep = MemDepResult::getClobber(ScanPos); 649 } 650 651 // If we had a dirty entry for the block, update it. Otherwise, just add 652 // a new entry. 653 if (ExistingResult) 654 ExistingResult->setResult(Dep); 655 else 656 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); 657 658 // If the block has a dependency (i.e. it isn't completely transparent to 659 // the value), remember the association! 660 if (!Dep.isNonLocal()) { 661 // Keep the ReverseNonLocalDeps map up to date so we can efficiently 662 // update this when we remove instructions. 663 if (Instruction *Inst = Dep.getInst()) 664 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction()); 665 } else { 666 667 // If the block *is* completely transparent to the load, we need to check 668 // the predecessors of this block. Add them to our worklist. 669 for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI) 670 DirtyBlocks.push_back(*PI); 671 } 672 } 673 674 return Cache; 675 } 676 677 /// getNonLocalPointerDependency - Perform a full dependency query for an 678 /// access to the specified (non-volatile) memory location, returning the 679 /// set of instructions that either define or clobber the value. 680 /// 681 /// This method assumes the pointer has a "NonLocal" dependency within its 682 /// own block. 683 /// 684 void MemoryDependenceAnalysis:: 685 getNonLocalPointerDependency(const AliasAnalysis::Location &Loc, bool isLoad, 686 BasicBlock *FromBB, 687 SmallVectorImpl<NonLocalDepResult> &Result) { 688 assert(Loc.Ptr->getType()->isPointerTy() && 689 "Can't get pointer deps of a non-pointer!"); 690 Result.clear(); 691 692 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), TD); 693 694 // This is the set of blocks we've inspected, and the pointer we consider in 695 // each block. Because of critical edges, we currently bail out if querying 696 // a block with multiple different pointers. This can happen during PHI 697 // translation. 698 DenseMap<BasicBlock*, Value*> Visited; 699 if (!getNonLocalPointerDepFromBB(Address, Loc, isLoad, FromBB, 700 Result, Visited, true)) 701 return; 702 Result.clear(); 703 Result.push_back(NonLocalDepResult(FromBB, 704 MemDepResult::getClobber(FromBB->begin()), 705 const_cast<Value *>(Loc.Ptr))); 706 } 707 708 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with 709 /// Pointer/PointeeSize using either cached information in Cache or by doing a 710 /// lookup (which may use dirty cache info if available). If we do a lookup, 711 /// add the result to the cache. 712 MemDepResult MemoryDependenceAnalysis:: 713 GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc, 714 bool isLoad, BasicBlock *BB, 715 NonLocalDepInfo *Cache, unsigned NumSortedEntries) { 716 717 // Do a binary search to see if we already have an entry for this block in 718 // the cache set. If so, find it. 719 NonLocalDepInfo::iterator Entry = 720 std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries, 721 NonLocalDepEntry(BB)); 722 if (Entry != Cache->begin() && (Entry-1)->getBB() == BB) 723 --Entry; 724 725 NonLocalDepEntry *ExistingResult = 0; 726 if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB) 727 ExistingResult = &*Entry; 728 729 // If we have a cached entry, and it is non-dirty, use it as the value for 730 // this dependency. 731 if (ExistingResult && !ExistingResult->getResult().isDirty()) { 732 ++NumCacheNonLocalPtr; 733 return ExistingResult->getResult(); 734 } 735 736 // Otherwise, we have to scan for the value. If we have a dirty cache 737 // entry, start scanning from its position, otherwise we scan from the end 738 // of the block. 739 BasicBlock::iterator ScanPos = BB->end(); 740 if (ExistingResult && ExistingResult->getResult().getInst()) { 741 assert(ExistingResult->getResult().getInst()->getParent() == BB && 742 "Instruction invalidated?"); 743 ++NumCacheDirtyNonLocalPtr; 744 ScanPos = ExistingResult->getResult().getInst(); 745 746 // Eliminating the dirty entry from 'Cache', so update the reverse info. 747 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 748 RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey); 749 } else { 750 ++NumUncacheNonLocalPtr; 751 } 752 753 // Scan the block for the dependency. 754 MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB); 755 756 // If we had a dirty entry for the block, update it. Otherwise, just add 757 // a new entry. 758 if (ExistingResult) 759 ExistingResult->setResult(Dep); 760 else 761 Cache->push_back(NonLocalDepEntry(BB, Dep)); 762 763 // If the block has a dependency (i.e. it isn't completely transparent to 764 // the value), remember the reverse association because we just added it 765 // to Cache! 766 if (Dep.isNonLocal()) 767 return Dep; 768 769 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently 770 // update MemDep when we remove instructions. 771 Instruction *Inst = Dep.getInst(); 772 assert(Inst && "Didn't depend on anything?"); 773 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 774 ReverseNonLocalPtrDeps[Inst].insert(CacheKey); 775 return Dep; 776 } 777 778 /// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain 779 /// number of elements in the array that are already properly ordered. This is 780 /// optimized for the case when only a few entries are added. 781 static void 782 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 783 unsigned NumSortedEntries) { 784 switch (Cache.size() - NumSortedEntries) { 785 case 0: 786 // done, no new entries. 787 break; 788 case 2: { 789 // Two new entries, insert the last one into place. 790 NonLocalDepEntry Val = Cache.back(); 791 Cache.pop_back(); 792 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 793 std::upper_bound(Cache.begin(), Cache.end()-1, Val); 794 Cache.insert(Entry, Val); 795 // FALL THROUGH. 796 } 797 case 1: 798 // One new entry, Just insert the new value at the appropriate position. 799 if (Cache.size() != 1) { 800 NonLocalDepEntry Val = Cache.back(); 801 Cache.pop_back(); 802 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 803 std::upper_bound(Cache.begin(), Cache.end(), Val); 804 Cache.insert(Entry, Val); 805 } 806 break; 807 default: 808 // Added many values, do a full scale sort. 809 std::sort(Cache.begin(), Cache.end()); 810 break; 811 } 812 } 813 814 /// getNonLocalPointerDepFromBB - Perform a dependency query based on 815 /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def 816 /// results to the results vector and keep track of which blocks are visited in 817 /// 'Visited'. 818 /// 819 /// This has special behavior for the first block queries (when SkipFirstBlock 820 /// is true). In this special case, it ignores the contents of the specified 821 /// block and starts returning dependence info for its predecessors. 822 /// 823 /// This function returns false on success, or true to indicate that it could 824 /// not compute dependence information for some reason. This should be treated 825 /// as a clobber dependence on the first instruction in the predecessor block. 826 bool MemoryDependenceAnalysis:: 827 getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, 828 const AliasAnalysis::Location &Loc, 829 bool isLoad, BasicBlock *StartBB, 830 SmallVectorImpl<NonLocalDepResult> &Result, 831 DenseMap<BasicBlock*, Value*> &Visited, 832 bool SkipFirstBlock) { 833 834 // Look up the cached info for Pointer. 835 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); 836 837 // Set up a temporary NLPI value. If the map doesn't yet have an entry for 838 // CacheKey, this value will be inserted as the associated value. Otherwise, 839 // it'll be ignored, and we'll have to check to see if the cached size and 840 // tbaa tag are consistent with the current query. 841 NonLocalPointerInfo InitialNLPI; 842 InitialNLPI.Size = Loc.Size; 843 InitialNLPI.TBAATag = Loc.TBAATag; 844 845 // Get the NLPI for CacheKey, inserting one into the map if it doesn't 846 // already have one. 847 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = 848 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); 849 NonLocalPointerInfo *CacheInfo = &Pair.first->second; 850 851 // If we already have a cache entry for this CacheKey, we may need to do some 852 // work to reconcile the cache entry and the current query. 853 if (!Pair.second) { 854 if (CacheInfo->Size < Loc.Size) { 855 // The query's Size is greater than the cached one. Throw out the 856 // cached data and procede with the query at the greater size. 857 CacheInfo->Pair = BBSkipFirstBlockPair(); 858 CacheInfo->Size = Loc.Size; 859 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(), 860 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI) 861 if (Instruction *Inst = DI->getResult().getInst()) 862 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 863 CacheInfo->NonLocalDeps.clear(); 864 } else if (CacheInfo->Size > Loc.Size) { 865 // This query's Size is less than the cached one. Conservatively restart 866 // the query using the greater size. 867 return getNonLocalPointerDepFromBB(Pointer, 868 Loc.getWithNewSize(CacheInfo->Size), 869 isLoad, StartBB, Result, Visited, 870 SkipFirstBlock); 871 } 872 873 // If the query's TBAATag is inconsistent with the cached one, 874 // conservatively throw out the cached data and restart the query with 875 // no tag if needed. 876 if (CacheInfo->TBAATag != Loc.TBAATag) { 877 if (CacheInfo->TBAATag) { 878 CacheInfo->Pair = BBSkipFirstBlockPair(); 879 CacheInfo->TBAATag = 0; 880 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(), 881 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI) 882 if (Instruction *Inst = DI->getResult().getInst()) 883 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 884 CacheInfo->NonLocalDeps.clear(); 885 } 886 if (Loc.TBAATag) 887 return getNonLocalPointerDepFromBB(Pointer, Loc.getWithoutTBAATag(), 888 isLoad, StartBB, Result, Visited, 889 SkipFirstBlock); 890 } 891 } 892 893 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; 894 895 // If we have valid cached information for exactly the block we are 896 // investigating, just return it with no recomputation. 897 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { 898 // We have a fully cached result for this query then we can just return the 899 // cached results and populate the visited set. However, we have to verify 900 // that we don't already have conflicting results for these blocks. Check 901 // to ensure that if a block in the results set is in the visited set that 902 // it was for the same pointer query. 903 if (!Visited.empty()) { 904 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 905 I != E; ++I) { 906 DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB()); 907 if (VI == Visited.end() || VI->second == Pointer.getAddr()) 908 continue; 909 910 // We have a pointer mismatch in a block. Just return clobber, saying 911 // that something was clobbered in this result. We could also do a 912 // non-fully cached query, but there is little point in doing this. 913 return true; 914 } 915 } 916 917 Value *Addr = Pointer.getAddr(); 918 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 919 I != E; ++I) { 920 Visited.insert(std::make_pair(I->getBB(), Addr)); 921 if (!I->getResult().isNonLocal()) 922 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr)); 923 } 924 ++NumCacheCompleteNonLocalPtr; 925 return false; 926 } 927 928 // Otherwise, either this is a new block, a block with an invalid cache 929 // pointer or one that we're about to invalidate by putting more info into it 930 // than its valid cache info. If empty, the result will be valid cache info, 931 // otherwise it isn't. 932 if (Cache->empty()) 933 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); 934 else 935 CacheInfo->Pair = BBSkipFirstBlockPair(); 936 937 SmallVector<BasicBlock*, 32> Worklist; 938 Worklist.push_back(StartBB); 939 940 // PredList used inside loop. 941 SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList; 942 943 // Keep track of the entries that we know are sorted. Previously cached 944 // entries will all be sorted. The entries we add we only sort on demand (we 945 // don't insert every element into its sorted position). We know that we 946 // won't get any reuse from currently inserted values, because we don't 947 // revisit blocks after we insert info for them. 948 unsigned NumSortedEntries = Cache->size(); 949 DEBUG(AssertSorted(*Cache)); 950 951 while (!Worklist.empty()) { 952 BasicBlock *BB = Worklist.pop_back_val(); 953 954 // Skip the first block if we have it. 955 if (!SkipFirstBlock) { 956 // Analyze the dependency of *Pointer in FromBB. See if we already have 957 // been here. 958 assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); 959 960 // Get the dependency info for Pointer in BB. If we have cached 961 // information, we will use it, otherwise we compute it. 962 DEBUG(AssertSorted(*Cache, NumSortedEntries)); 963 MemDepResult Dep = GetNonLocalInfoForBlock(Loc, isLoad, BB, Cache, 964 NumSortedEntries); 965 966 // If we got a Def or Clobber, add this to the list of results. 967 if (!Dep.isNonLocal()) { 968 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); 969 continue; 970 } 971 } 972 973 // If 'Pointer' is an instruction defined in this block, then we need to do 974 // phi translation to change it into a value live in the predecessor block. 975 // If not, we just add the predecessors to the worklist and scan them with 976 // the same Pointer. 977 if (!Pointer.NeedsPHITranslationFromBlock(BB)) { 978 SkipFirstBlock = false; 979 SmallVector<BasicBlock*, 16> NewBlocks; 980 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { 981 // Verify that we haven't looked at this block yet. 982 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 983 InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr())); 984 if (InsertRes.second) { 985 // First time we've looked at *PI. 986 NewBlocks.push_back(*PI); 987 continue; 988 } 989 990 // If we have seen this block before, but it was with a different 991 // pointer then we have a phi translation failure and we have to treat 992 // this as a clobber. 993 if (InsertRes.first->second != Pointer.getAddr()) { 994 // Make sure to clean up the Visited map before continuing on to 995 // PredTranslationFailure. 996 for (unsigned i = 0; i < NewBlocks.size(); i++) 997 Visited.erase(NewBlocks[i]); 998 goto PredTranslationFailure; 999 } 1000 } 1001 Worklist.append(NewBlocks.begin(), NewBlocks.end()); 1002 continue; 1003 } 1004 1005 // We do need to do phi translation, if we know ahead of time we can't phi 1006 // translate this value, don't even try. 1007 if (!Pointer.IsPotentiallyPHITranslatable()) 1008 goto PredTranslationFailure; 1009 1010 // We may have added values to the cache list before this PHI translation. 1011 // If so, we haven't done anything to ensure that the cache remains sorted. 1012 // Sort it now (if needed) so that recursive invocations of 1013 // getNonLocalPointerDepFromBB and other routines that could reuse the cache 1014 // value will only see properly sorted cache arrays. 1015 if (Cache && NumSortedEntries != Cache->size()) { 1016 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1017 NumSortedEntries = Cache->size(); 1018 } 1019 Cache = 0; 1020 1021 PredList.clear(); 1022 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { 1023 BasicBlock *Pred = *PI; 1024 PredList.push_back(std::make_pair(Pred, Pointer)); 1025 1026 // Get the PHI translated pointer in this predecessor. This can fail if 1027 // not translatable, in which case the getAddr() returns null. 1028 PHITransAddr &PredPointer = PredList.back().second; 1029 PredPointer.PHITranslateValue(BB, Pred, 0); 1030 1031 Value *PredPtrVal = PredPointer.getAddr(); 1032 1033 // Check to see if we have already visited this pred block with another 1034 // pointer. If so, we can't do this lookup. This failure can occur 1035 // with PHI translation when a critical edge exists and the PHI node in 1036 // the successor translates to a pointer value different than the 1037 // pointer the block was first analyzed with. 1038 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 1039 InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal)); 1040 1041 if (!InsertRes.second) { 1042 // We found the pred; take it off the list of preds to visit. 1043 PredList.pop_back(); 1044 1045 // If the predecessor was visited with PredPtr, then we already did 1046 // the analysis and can ignore it. 1047 if (InsertRes.first->second == PredPtrVal) 1048 continue; 1049 1050 // Otherwise, the block was previously analyzed with a different 1051 // pointer. We can't represent the result of this case, so we just 1052 // treat this as a phi translation failure. 1053 1054 // Make sure to clean up the Visited map before continuing on to 1055 // PredTranslationFailure. 1056 for (unsigned i = 0; i < PredList.size(); i++) 1057 Visited.erase(PredList[i].first); 1058 1059 goto PredTranslationFailure; 1060 } 1061 } 1062 1063 // Actually process results here; this need to be a separate loop to avoid 1064 // calling getNonLocalPointerDepFromBB for blocks we don't want to return 1065 // any results for. (getNonLocalPointerDepFromBB will modify our 1066 // datastructures in ways the code after the PredTranslationFailure label 1067 // doesn't expect.) 1068 for (unsigned i = 0; i < PredList.size(); i++) { 1069 BasicBlock *Pred = PredList[i].first; 1070 PHITransAddr &PredPointer = PredList[i].second; 1071 Value *PredPtrVal = PredPointer.getAddr(); 1072 1073 bool CanTranslate = true; 1074 // If PHI translation was unable to find an available pointer in this 1075 // predecessor, then we have to assume that the pointer is clobbered in 1076 // that predecessor. We can still do PRE of the load, which would insert 1077 // a computation of the pointer in this predecessor. 1078 if (PredPtrVal == 0) 1079 CanTranslate = false; 1080 1081 // FIXME: it is entirely possible that PHI translating will end up with 1082 // the same value. Consider PHI translating something like: 1083 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* 1084 // to recurse here, pedantically speaking. 1085 1086 // If getNonLocalPointerDepFromBB fails here, that means the cached 1087 // result conflicted with the Visited list; we have to conservatively 1088 // assume a clobber, but this also does not block PRE of the load. 1089 if (!CanTranslate || 1090 getNonLocalPointerDepFromBB(PredPointer, 1091 Loc.getWithNewPtr(PredPtrVal), 1092 isLoad, Pred, 1093 Result, Visited)) { 1094 // Add the entry to the Result list. 1095 NonLocalDepResult Entry(Pred, 1096 MemDepResult::getClobber(Pred->getTerminator()), 1097 PredPtrVal); 1098 Result.push_back(Entry); 1099 1100 // Since we had a phi translation failure, the cache for CacheKey won't 1101 // include all of the entries that we need to immediately satisfy future 1102 // queries. Mark this in NonLocalPointerDeps by setting the 1103 // BBSkipFirstBlockPair pointer to null. This requires reuse of the 1104 // cached value to do more work but not miss the phi trans failure. 1105 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; 1106 NLPI.Pair = BBSkipFirstBlockPair(); 1107 continue; 1108 } 1109 } 1110 1111 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. 1112 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1113 Cache = &CacheInfo->NonLocalDeps; 1114 NumSortedEntries = Cache->size(); 1115 1116 // Since we did phi translation, the "Cache" set won't contain all of the 1117 // results for the query. This is ok (we can still use it to accelerate 1118 // specific block queries) but we can't do the fastpath "return all 1119 // results from the set" Clear out the indicator for this. 1120 CacheInfo->Pair = BBSkipFirstBlockPair(); 1121 SkipFirstBlock = false; 1122 continue; 1123 1124 PredTranslationFailure: 1125 // The following code is "failure"; we can't produce a sane translation 1126 // for the given block. It assumes that we haven't modified any of 1127 // our datastructures while processing the current block. 1128 1129 if (Cache == 0) { 1130 // Refresh the CacheInfo/Cache pointer if it got invalidated. 1131 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1132 Cache = &CacheInfo->NonLocalDeps; 1133 NumSortedEntries = Cache->size(); 1134 } 1135 1136 // Since we failed phi translation, the "Cache" set won't contain all of the 1137 // results for the query. This is ok (we can still use it to accelerate 1138 // specific block queries) but we can't do the fastpath "return all 1139 // results from the set". Clear out the indicator for this. 1140 CacheInfo->Pair = BBSkipFirstBlockPair(); 1141 1142 // If *nothing* works, mark the pointer as being clobbered by the first 1143 // instruction in this block. 1144 // 1145 // If this is the magic first block, return this as a clobber of the whole 1146 // incoming value. Since we can't phi translate to one of the predecessors, 1147 // we have to bail out. 1148 if (SkipFirstBlock) 1149 return true; 1150 1151 for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) { 1152 assert(I != Cache->rend() && "Didn't find current block??"); 1153 if (I->getBB() != BB) 1154 continue; 1155 1156 assert(I->getResult().isNonLocal() && 1157 "Should only be here with transparent block"); 1158 I->setResult(MemDepResult::getClobber(BB->getTerminator())); 1159 ReverseNonLocalPtrDeps[BB->getTerminator()].insert(CacheKey); 1160 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), 1161 Pointer.getAddr())); 1162 break; 1163 } 1164 } 1165 1166 // Okay, we're done now. If we added new values to the cache, re-sort it. 1167 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1168 DEBUG(AssertSorted(*Cache)); 1169 return false; 1170 } 1171 1172 /// RemoveCachedNonLocalPointerDependencies - If P exists in 1173 /// CachedNonLocalPointerInfo, remove it. 1174 void MemoryDependenceAnalysis:: 1175 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) { 1176 CachedNonLocalPointerInfo::iterator It = 1177 NonLocalPointerDeps.find(P); 1178 if (It == NonLocalPointerDeps.end()) return; 1179 1180 // Remove all of the entries in the BB->val map. This involves removing 1181 // instructions from the reverse map. 1182 NonLocalDepInfo &PInfo = It->second.NonLocalDeps; 1183 1184 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { 1185 Instruction *Target = PInfo[i].getResult().getInst(); 1186 if (Target == 0) continue; // Ignore non-local dep results. 1187 assert(Target->getParent() == PInfo[i].getBB()); 1188 1189 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1190 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); 1191 } 1192 1193 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). 1194 NonLocalPointerDeps.erase(It); 1195 } 1196 1197 1198 /// invalidateCachedPointerInfo - This method is used to invalidate cached 1199 /// information about the specified pointer, because it may be too 1200 /// conservative in memdep. This is an optional call that can be used when 1201 /// the client detects an equivalence between the pointer and some other 1202 /// value and replaces the other value with ptr. This can make Ptr available 1203 /// in more places that cached info does not necessarily keep. 1204 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) { 1205 // If Ptr isn't really a pointer, just ignore it. 1206 if (!Ptr->getType()->isPointerTy()) return; 1207 // Flush store info for the pointer. 1208 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); 1209 // Flush load info for the pointer. 1210 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); 1211 } 1212 1213 /// invalidateCachedPredecessors - Clear the PredIteratorCache info. 1214 /// This needs to be done when the CFG changes, e.g., due to splitting 1215 /// critical edges. 1216 void MemoryDependenceAnalysis::invalidateCachedPredecessors() { 1217 PredCache->clear(); 1218 } 1219 1220 /// removeInstruction - Remove an instruction from the dependence analysis, 1221 /// updating the dependence of instructions that previously depended on it. 1222 /// This method attempts to keep the cache coherent using the reverse map. 1223 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) { 1224 // Walk through the Non-local dependencies, removing this one as the value 1225 // for any cached queries. 1226 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); 1227 if (NLDI != NonLocalDeps.end()) { 1228 NonLocalDepInfo &BlockMap = NLDI->second.first; 1229 for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end(); 1230 DI != DE; ++DI) 1231 if (Instruction *Inst = DI->getResult().getInst()) 1232 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); 1233 NonLocalDeps.erase(NLDI); 1234 } 1235 1236 // If we have a cached local dependence query for this instruction, remove it. 1237 // 1238 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); 1239 if (LocalDepEntry != LocalDeps.end()) { 1240 // Remove us from DepInst's reverse set now that the local dep info is gone. 1241 if (Instruction *Inst = LocalDepEntry->second.getInst()) 1242 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); 1243 1244 // Remove this local dependency info. 1245 LocalDeps.erase(LocalDepEntry); 1246 } 1247 1248 // If we have any cached pointer dependencies on this instruction, remove 1249 // them. If the instruction has non-pointer type, then it can't be a pointer 1250 // base. 1251 1252 // Remove it from both the load info and the store info. The instruction 1253 // can't be in either of these maps if it is non-pointer. 1254 if (RemInst->getType()->isPointerTy()) { 1255 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); 1256 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); 1257 } 1258 1259 // Loop over all of the things that depend on the instruction we're removing. 1260 // 1261 SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd; 1262 1263 // If we find RemInst as a clobber or Def in any of the maps for other values, 1264 // we need to replace its entry with a dirty version of the instruction after 1265 // it. If RemInst is a terminator, we use a null dirty value. 1266 // 1267 // Using a dirty version of the instruction after RemInst saves having to scan 1268 // the entire block to get to this point. 1269 MemDepResult NewDirtyVal; 1270 if (!RemInst->isTerminator()) 1271 NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst)); 1272 1273 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); 1274 if (ReverseDepIt != ReverseLocalDeps.end()) { 1275 SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second; 1276 // RemInst can't be the terminator if it has local stuff depending on it. 1277 assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) && 1278 "Nothing can locally depend on a terminator"); 1279 1280 for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(), 1281 E = ReverseDeps.end(); I != E; ++I) { 1282 Instruction *InstDependingOnRemInst = *I; 1283 assert(InstDependingOnRemInst != RemInst && 1284 "Already removed our local dep info"); 1285 1286 LocalDeps[InstDependingOnRemInst] = NewDirtyVal; 1287 1288 // Make sure to remember that new things depend on NewDepInst. 1289 assert(NewDirtyVal.getInst() && "There is no way something else can have " 1290 "a local dep on this if it is a terminator!"); 1291 ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(), 1292 InstDependingOnRemInst)); 1293 } 1294 1295 ReverseLocalDeps.erase(ReverseDepIt); 1296 1297 // Add new reverse deps after scanning the set, to avoid invalidating the 1298 // 'ReverseDeps' reference. 1299 while (!ReverseDepsToAdd.empty()) { 1300 ReverseLocalDeps[ReverseDepsToAdd.back().first] 1301 .insert(ReverseDepsToAdd.back().second); 1302 ReverseDepsToAdd.pop_back(); 1303 } 1304 } 1305 1306 ReverseDepIt = ReverseNonLocalDeps.find(RemInst); 1307 if (ReverseDepIt != ReverseNonLocalDeps.end()) { 1308 SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second; 1309 for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end(); 1310 I != E; ++I) { 1311 assert(*I != RemInst && "Already removed NonLocalDep info for RemInst"); 1312 1313 PerInstNLInfo &INLD = NonLocalDeps[*I]; 1314 // The information is now dirty! 1315 INLD.second = true; 1316 1317 for (NonLocalDepInfo::iterator DI = INLD.first.begin(), 1318 DE = INLD.first.end(); DI != DE; ++DI) { 1319 if (DI->getResult().getInst() != RemInst) continue; 1320 1321 // Convert to a dirty entry for the subsequent instruction. 1322 DI->setResult(NewDirtyVal); 1323 1324 if (Instruction *NextI = NewDirtyVal.getInst()) 1325 ReverseDepsToAdd.push_back(std::make_pair(NextI, *I)); 1326 } 1327 } 1328 1329 ReverseNonLocalDeps.erase(ReverseDepIt); 1330 1331 // Add new reverse deps after scanning the set, to avoid invalidating 'Set' 1332 while (!ReverseDepsToAdd.empty()) { 1333 ReverseNonLocalDeps[ReverseDepsToAdd.back().first] 1334 .insert(ReverseDepsToAdd.back().second); 1335 ReverseDepsToAdd.pop_back(); 1336 } 1337 } 1338 1339 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a 1340 // value in the NonLocalPointerDeps info. 1341 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = 1342 ReverseNonLocalPtrDeps.find(RemInst); 1343 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { 1344 SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second; 1345 SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd; 1346 1347 for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(), 1348 E = Set.end(); I != E; ++I) { 1349 ValueIsLoadPair P = *I; 1350 assert(P.getPointer() != RemInst && 1351 "Already removed NonLocalPointerDeps info for RemInst"); 1352 1353 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; 1354 1355 // The cache is not valid for any specific block anymore. 1356 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); 1357 1358 // Update any entries for RemInst to use the instruction after it. 1359 for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end(); 1360 DI != DE; ++DI) { 1361 if (DI->getResult().getInst() != RemInst) continue; 1362 1363 // Convert to a dirty entry for the subsequent instruction. 1364 DI->setResult(NewDirtyVal); 1365 1366 if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) 1367 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); 1368 } 1369 1370 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its 1371 // subsequent value may invalidate the sortedness. 1372 std::sort(NLPDI.begin(), NLPDI.end()); 1373 } 1374 1375 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); 1376 1377 while (!ReversePtrDepsToAdd.empty()) { 1378 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first] 1379 .insert(ReversePtrDepsToAdd.back().second); 1380 ReversePtrDepsToAdd.pop_back(); 1381 } 1382 } 1383 1384 1385 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); 1386 AA->deleteValue(RemInst); 1387 DEBUG(verifyRemoved(RemInst)); 1388 } 1389 /// verifyRemoved - Verify that the specified instruction does not occur 1390 /// in our internal data structures. 1391 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const { 1392 for (LocalDepMapType::const_iterator I = LocalDeps.begin(), 1393 E = LocalDeps.end(); I != E; ++I) { 1394 assert(I->first != D && "Inst occurs in data structures"); 1395 assert(I->second.getInst() != D && 1396 "Inst occurs in data structures"); 1397 } 1398 1399 for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(), 1400 E = NonLocalPointerDeps.end(); I != E; ++I) { 1401 assert(I->first.getPointer() != D && "Inst occurs in NLPD map key"); 1402 const NonLocalDepInfo &Val = I->second.NonLocalDeps; 1403 for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end(); 1404 II != E; ++II) 1405 assert(II->getResult().getInst() != D && "Inst occurs as NLPD value"); 1406 } 1407 1408 for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(), 1409 E = NonLocalDeps.end(); I != E; ++I) { 1410 assert(I->first != D && "Inst occurs in data structures"); 1411 const PerInstNLInfo &INLD = I->second; 1412 for (NonLocalDepInfo::const_iterator II = INLD.first.begin(), 1413 EE = INLD.first.end(); II != EE; ++II) 1414 assert(II->getResult().getInst() != D && "Inst occurs in data structures"); 1415 } 1416 1417 for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(), 1418 E = ReverseLocalDeps.end(); I != E; ++I) { 1419 assert(I->first != D && "Inst occurs in data structures"); 1420 for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(), 1421 EE = I->second.end(); II != EE; ++II) 1422 assert(*II != D && "Inst occurs in data structures"); 1423 } 1424 1425 for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(), 1426 E = ReverseNonLocalDeps.end(); 1427 I != E; ++I) { 1428 assert(I->first != D && "Inst occurs in data structures"); 1429 for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(), 1430 EE = I->second.end(); II != EE; ++II) 1431 assert(*II != D && "Inst occurs in data structures"); 1432 } 1433 1434 for (ReverseNonLocalPtrDepTy::const_iterator 1435 I = ReverseNonLocalPtrDeps.begin(), 1436 E = ReverseNonLocalPtrDeps.end(); I != E; ++I) { 1437 assert(I->first != D && "Inst occurs in rev NLPD map"); 1438 1439 for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(), 1440 E = I->second.end(); II != E; ++II) 1441 assert(*II != ValueIsLoadPair(D, false) && 1442 *II != ValueIsLoadPair(D, true) && 1443 "Inst occurs in ReverseNonLocalPtrDeps map"); 1444 } 1445 1446 } 1447