1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements an analysis that determines, for a given memory 10 // operation, what preceding memory operations it depends on. It builds on 11 // alias analysis information, and tries to provide a lazy, caching interface to 12 // a common kind of alias information query. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/MemoryLocation.h" 26 #include "llvm/Analysis/OrderedBasicBlock.h" 27 #include "llvm/Analysis/PHITransAddr.h" 28 #include "llvm/Analysis/PhiValues.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/LLVMContext.h" 43 #include "llvm/IR/Metadata.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/IR/PredIteratorCache.h" 46 #include "llvm/IR/Type.h" 47 #include "llvm/IR/Use.h" 48 #include "llvm/IR/User.h" 49 #include "llvm/IR/Value.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/AtomicOrdering.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Compiler.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/MathExtras.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <cstdint> 60 #include <iterator> 61 #include <utility> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "memdep" 66 67 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); 68 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); 69 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); 70 71 STATISTIC(NumCacheNonLocalPtr, 72 "Number of fully cached non-local ptr responses"); 73 STATISTIC(NumCacheDirtyNonLocalPtr, 74 "Number of cached, but dirty, non-local ptr responses"); 75 STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses"); 76 STATISTIC(NumCacheCompleteNonLocalPtr, 77 "Number of block queries that were completely cached"); 78 79 // Limit for the number of instructions to scan in a block. 80 81 static cl::opt<unsigned> BlockScanLimit( 82 "memdep-block-scan-limit", cl::Hidden, cl::init(100), 83 cl::desc("The number of instructions to scan in a block in memory " 84 "dependency analysis (default = 100)")); 85 86 static cl::opt<unsigned> 87 BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000), 88 cl::desc("The number of blocks to scan during memory " 89 "dependency analysis (default = 1000)")); 90 91 // Limit on the number of memdep results to process. 92 static const unsigned int NumResultsLimit = 100; 93 94 /// This is a helper function that removes Val from 'Inst's set in ReverseMap. 95 /// 96 /// If the set becomes empty, remove Inst's entry. 97 template <typename KeyTy> 98 static void 99 RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap, 100 Instruction *Inst, KeyTy Val) { 101 typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt = 102 ReverseMap.find(Inst); 103 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); 104 bool Found = InstIt->second.erase(Val); 105 assert(Found && "Invalid reverse map!"); 106 (void)Found; 107 if (InstIt->second.empty()) 108 ReverseMap.erase(InstIt); 109 } 110 111 /// If the given instruction references a specific memory location, fill in Loc 112 /// with the details, otherwise set Loc.Ptr to null. 113 /// 114 /// Returns a ModRefInfo value describing the general behavior of the 115 /// instruction. 116 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc, 117 const TargetLibraryInfo &TLI) { 118 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 119 if (LI->isUnordered()) { 120 Loc = MemoryLocation::get(LI); 121 return ModRefInfo::Ref; 122 } 123 if (LI->getOrdering() == AtomicOrdering::Monotonic) { 124 Loc = MemoryLocation::get(LI); 125 return ModRefInfo::ModRef; 126 } 127 Loc = MemoryLocation(); 128 return ModRefInfo::ModRef; 129 } 130 131 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 132 if (SI->isUnordered()) { 133 Loc = MemoryLocation::get(SI); 134 return ModRefInfo::Mod; 135 } 136 if (SI->getOrdering() == AtomicOrdering::Monotonic) { 137 Loc = MemoryLocation::get(SI); 138 return ModRefInfo::ModRef; 139 } 140 Loc = MemoryLocation(); 141 return ModRefInfo::ModRef; 142 } 143 144 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { 145 Loc = MemoryLocation::get(V); 146 return ModRefInfo::ModRef; 147 } 148 149 if (const CallInst *CI = isFreeCall(Inst, &TLI)) { 150 // calls to free() deallocate the entire structure 151 Loc = MemoryLocation(CI->getArgOperand(0)); 152 return ModRefInfo::Mod; 153 } 154 155 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 156 switch (II->getIntrinsicID()) { 157 case Intrinsic::lifetime_start: 158 case Intrinsic::lifetime_end: 159 case Intrinsic::invariant_start: 160 Loc = MemoryLocation::getForArgument(II, 1, TLI); 161 // These intrinsics don't really modify the memory, but returning Mod 162 // will allow them to be handled conservatively. 163 return ModRefInfo::Mod; 164 case Intrinsic::invariant_end: 165 Loc = MemoryLocation::getForArgument(II, 2, TLI); 166 // These intrinsics don't really modify the memory, but returning Mod 167 // will allow them to be handled conservatively. 168 return ModRefInfo::Mod; 169 default: 170 break; 171 } 172 } 173 174 // Otherwise, just do the coarse-grained thing that always works. 175 if (Inst->mayWriteToMemory()) 176 return ModRefInfo::ModRef; 177 if (Inst->mayReadFromMemory()) 178 return ModRefInfo::Ref; 179 return ModRefInfo::NoModRef; 180 } 181 182 /// Private helper for finding the local dependencies of a call site. 183 MemDepResult MemoryDependenceResults::getCallDependencyFrom( 184 CallBase *Call, bool isReadOnlyCall, BasicBlock::iterator ScanIt, 185 BasicBlock *BB) { 186 unsigned Limit = BlockScanLimit; 187 188 // Walk backwards through the block, looking for dependencies. 189 while (ScanIt != BB->begin()) { 190 Instruction *Inst = &*--ScanIt; 191 // Debug intrinsics don't cause dependences and should not affect Limit 192 if (isa<DbgInfoIntrinsic>(Inst)) 193 continue; 194 195 // Limit the amount of scanning we do so we don't end up with quadratic 196 // running time on extreme testcases. 197 --Limit; 198 if (!Limit) 199 return MemDepResult::getUnknown(); 200 201 // If this inst is a memory op, get the pointer it accessed 202 MemoryLocation Loc; 203 ModRefInfo MR = GetLocation(Inst, Loc, TLI); 204 if (Loc.Ptr) { 205 // A simple instruction. 206 if (isModOrRefSet(AA.getModRefInfo(Call, Loc))) 207 return MemDepResult::getClobber(Inst); 208 continue; 209 } 210 211 if (auto *CallB = dyn_cast<CallBase>(Inst)) { 212 // If these two calls do not interfere, look past it. 213 if (isNoModRef(AA.getModRefInfo(Call, CallB))) { 214 // If the two calls are the same, return Inst as a Def, so that 215 // Call can be found redundant and eliminated. 216 if (isReadOnlyCall && !isModSet(MR) && 217 Call->isIdenticalToWhenDefined(CallB)) 218 return MemDepResult::getDef(Inst); 219 220 // Otherwise if the two calls don't interact (e.g. CallB is readnone) 221 // keep scanning. 222 continue; 223 } else 224 return MemDepResult::getClobber(Inst); 225 } 226 227 // If we could not obtain a pointer for the instruction and the instruction 228 // touches memory then assume that this is a dependency. 229 if (isModOrRefSet(MR)) 230 return MemDepResult::getClobber(Inst); 231 } 232 233 // No dependence found. If this is the entry block of the function, it is 234 // unknown, otherwise it is non-local. 235 if (BB != &BB->getParent()->getEntryBlock()) 236 return MemDepResult::getNonLocal(); 237 return MemDepResult::getNonFuncLocal(); 238 } 239 240 unsigned MemoryDependenceResults::getLoadLoadClobberFullWidthSize( 241 const Value *MemLocBase, int64_t MemLocOffs, unsigned MemLocSize, 242 const LoadInst *LI) { 243 // We can only extend simple integer loads. 244 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) 245 return 0; 246 247 // Load widening is hostile to ThreadSanitizer: it may cause false positives 248 // or make the reports more cryptic (access sizes are wrong). 249 if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread)) 250 return 0; 251 252 const DataLayout &DL = LI->getModule()->getDataLayout(); 253 254 // Get the base of this load. 255 int64_t LIOffs = 0; 256 const Value *LIBase = 257 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL); 258 259 // If the two pointers are not based on the same pointer, we can't tell that 260 // they are related. 261 if (LIBase != MemLocBase) 262 return 0; 263 264 // Okay, the two values are based on the same pointer, but returned as 265 // no-alias. This happens when we have things like two byte loads at "P+1" 266 // and "P+3". Check to see if increasing the size of the "LI" load up to its 267 // alignment (or the largest native integer type) will allow us to load all 268 // the bits required by MemLoc. 269 270 // If MemLoc is before LI, then no widening of LI will help us out. 271 if (MemLocOffs < LIOffs) 272 return 0; 273 274 // Get the alignment of the load in bytes. We assume that it is safe to load 275 // any legal integer up to this size without a problem. For example, if we're 276 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can 277 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it 278 // to i16. 279 unsigned LoadAlign = LI->getAlignment(); 280 281 int64_t MemLocEnd = MemLocOffs + MemLocSize; 282 283 // If no amount of rounding up will let MemLoc fit into LI, then bail out. 284 if (LIOffs + LoadAlign < MemLocEnd) 285 return 0; 286 287 // This is the size of the load to try. Start with the next larger power of 288 // two. 289 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits() / 8U; 290 NewLoadByteSize = NextPowerOf2(NewLoadByteSize); 291 292 while (true) { 293 // If this load size is bigger than our known alignment or would not fit 294 // into a native integer register, then we fail. 295 if (NewLoadByteSize > LoadAlign || 296 !DL.fitsInLegalInteger(NewLoadByteSize * 8)) 297 return 0; 298 299 if (LIOffs + NewLoadByteSize > MemLocEnd && 300 (LI->getParent()->getParent()->hasFnAttribute( 301 Attribute::SanitizeAddress) || 302 LI->getParent()->getParent()->hasFnAttribute( 303 Attribute::SanitizeHWAddress))) 304 // We will be reading past the location accessed by the original program. 305 // While this is safe in a regular build, Address Safety analysis tools 306 // may start reporting false warnings. So, don't do widening. 307 return 0; 308 309 // If a load of this width would include all of MemLoc, then we succeed. 310 if (LIOffs + NewLoadByteSize >= MemLocEnd) 311 return NewLoadByteSize; 312 313 NewLoadByteSize <<= 1; 314 } 315 } 316 317 static bool isVolatile(Instruction *Inst) { 318 if (auto *LI = dyn_cast<LoadInst>(Inst)) 319 return LI->isVolatile(); 320 if (auto *SI = dyn_cast<StoreInst>(Inst)) 321 return SI->isVolatile(); 322 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(Inst)) 323 return AI->isVolatile(); 324 return false; 325 } 326 327 MemDepResult MemoryDependenceResults::getPointerDependencyFrom( 328 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 329 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) { 330 MemDepResult InvariantGroupDependency = MemDepResult::getUnknown(); 331 if (QueryInst != nullptr) { 332 if (auto *LI = dyn_cast<LoadInst>(QueryInst)) { 333 InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB); 334 335 if (InvariantGroupDependency.isDef()) 336 return InvariantGroupDependency; 337 } 338 } 339 MemDepResult SimpleDep = getSimplePointerDependencyFrom( 340 MemLoc, isLoad, ScanIt, BB, QueryInst, Limit); 341 if (SimpleDep.isDef()) 342 return SimpleDep; 343 // Non-local invariant group dependency indicates there is non local Def 344 // (it only returns nonLocal if it finds nonLocal def), which is better than 345 // local clobber and everything else. 346 if (InvariantGroupDependency.isNonLocal()) 347 return InvariantGroupDependency; 348 349 assert(InvariantGroupDependency.isUnknown() && 350 "InvariantGroupDependency should be only unknown at this point"); 351 return SimpleDep; 352 } 353 354 MemDepResult 355 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI, 356 BasicBlock *BB) { 357 358 if (!LI->getMetadata(LLVMContext::MD_invariant_group)) 359 return MemDepResult::getUnknown(); 360 361 // Take the ptr operand after all casts and geps 0. This way we can search 362 // cast graph down only. 363 Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts(); 364 365 // It's is not safe to walk the use list of global value, because function 366 // passes aren't allowed to look outside their functions. 367 // FIXME: this could be fixed by filtering instructions from outside 368 // of current function. 369 if (isa<GlobalValue>(LoadOperand)) 370 return MemDepResult::getUnknown(); 371 372 // Queue to process all pointers that are equivalent to load operand. 373 SmallVector<const Value *, 8> LoadOperandsQueue; 374 LoadOperandsQueue.push_back(LoadOperand); 375 376 Instruction *ClosestDependency = nullptr; 377 // Order of instructions in uses list is unpredictible. In order to always 378 // get the same result, we will look for the closest dominance. 379 auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) { 380 assert(Other && "Must call it with not null instruction"); 381 if (Best == nullptr || DT.dominates(Best, Other)) 382 return Other; 383 return Best; 384 }; 385 386 // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case 387 // we will see all the instructions. This should be fixed in MSSA. 388 while (!LoadOperandsQueue.empty()) { 389 const Value *Ptr = LoadOperandsQueue.pop_back_val(); 390 assert(Ptr && !isa<GlobalValue>(Ptr) && 391 "Null or GlobalValue should not be inserted"); 392 393 for (const Use &Us : Ptr->uses()) { 394 auto *U = dyn_cast<Instruction>(Us.getUser()); 395 if (!U || U == LI || !DT.dominates(U, LI)) 396 continue; 397 398 // Bitcast or gep with zeros are using Ptr. Add to queue to check it's 399 // users. U = bitcast Ptr 400 if (isa<BitCastInst>(U)) { 401 LoadOperandsQueue.push_back(U); 402 continue; 403 } 404 // Gep with zeros is equivalent to bitcast. 405 // FIXME: we are not sure if some bitcast should be canonicalized to gep 0 406 // or gep 0 to bitcast because of SROA, so there are 2 forms. When 407 // typeless pointers will be ready then both cases will be gone 408 // (and this BFS also won't be needed). 409 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) 410 if (GEP->hasAllZeroIndices()) { 411 LoadOperandsQueue.push_back(U); 412 continue; 413 } 414 415 // If we hit load/store with the same invariant.group metadata (and the 416 // same pointer operand) we can assume that value pointed by pointer 417 // operand didn't change. 418 if ((isa<LoadInst>(U) || isa<StoreInst>(U)) && 419 U->getMetadata(LLVMContext::MD_invariant_group) != nullptr) 420 ClosestDependency = GetClosestDependency(ClosestDependency, U); 421 } 422 } 423 424 if (!ClosestDependency) 425 return MemDepResult::getUnknown(); 426 if (ClosestDependency->getParent() == BB) 427 return MemDepResult::getDef(ClosestDependency); 428 // Def(U) can't be returned here because it is non-local. If local 429 // dependency won't be found then return nonLocal counting that the 430 // user will call getNonLocalPointerDependency, which will return cached 431 // result. 432 NonLocalDefsCache.try_emplace( 433 LI, NonLocalDepResult(ClosestDependency->getParent(), 434 MemDepResult::getDef(ClosestDependency), nullptr)); 435 ReverseNonLocalDefsCache[ClosestDependency].insert(LI); 436 return MemDepResult::getNonLocal(); 437 } 438 439 MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom( 440 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 441 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) { 442 bool isInvariantLoad = false; 443 444 if (!Limit) { 445 unsigned DefaultLimit = BlockScanLimit; 446 return getSimplePointerDependencyFrom(MemLoc, isLoad, ScanIt, BB, QueryInst, 447 &DefaultLimit); 448 } 449 450 // We must be careful with atomic accesses, as they may allow another thread 451 // to touch this location, clobbering it. We are conservative: if the 452 // QueryInst is not a simple (non-atomic) memory access, we automatically 453 // return getClobber. 454 // If it is simple, we know based on the results of 455 // "Compiler testing via a theory of sound optimisations in the C11/C++11 456 // memory model" in PLDI 2013, that a non-atomic location can only be 457 // clobbered between a pair of a release and an acquire action, with no 458 // access to the location in between. 459 // Here is an example for giving the general intuition behind this rule. 460 // In the following code: 461 // store x 0; 462 // release action; [1] 463 // acquire action; [4] 464 // %val = load x; 465 // It is unsafe to replace %val by 0 because another thread may be running: 466 // acquire action; [2] 467 // store x 42; 468 // release action; [3] 469 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val 470 // being 42. A key property of this program however is that if either 471 // 1 or 4 were missing, there would be a race between the store of 42 472 // either the store of 0 or the load (making the whole program racy). 473 // The paper mentioned above shows that the same property is respected 474 // by every program that can detect any optimization of that kind: either 475 // it is racy (undefined) or there is a release followed by an acquire 476 // between the pair of accesses under consideration. 477 478 // If the load is invariant, we "know" that it doesn't alias *any* write. We 479 // do want to respect mustalias results since defs are useful for value 480 // forwarding, but any mayalias write can be assumed to be noalias. 481 // Arguably, this logic should be pushed inside AliasAnalysis itself. 482 if (isLoad && QueryInst) { 483 LoadInst *LI = dyn_cast<LoadInst>(QueryInst); 484 if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr) 485 isInvariantLoad = true; 486 } 487 488 const DataLayout &DL = BB->getModule()->getDataLayout(); 489 490 // Create a numbered basic block to lazily compute and cache instruction 491 // positions inside a BB. This is used to provide fast queries for relative 492 // position between two instructions in a BB and can be used by 493 // AliasAnalysis::callCapturesBefore. 494 OrderedBasicBlock OBB(BB); 495 496 // Return "true" if and only if the instruction I is either a non-simple 497 // load or a non-simple store. 498 auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool { 499 if (auto *LI = dyn_cast<LoadInst>(I)) 500 return !LI->isSimple(); 501 if (auto *SI = dyn_cast<StoreInst>(I)) 502 return !SI->isSimple(); 503 return false; 504 }; 505 506 // Return "true" if I is not a load and not a store, but it does access 507 // memory. 508 auto isOtherMemAccess = [](Instruction *I) -> bool { 509 return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory(); 510 }; 511 512 // Walk backwards through the basic block, looking for dependencies. 513 while (ScanIt != BB->begin()) { 514 Instruction *Inst = &*--ScanIt; 515 516 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 517 // Debug intrinsics don't (and can't) cause dependencies. 518 if (isa<DbgInfoIntrinsic>(II)) 519 continue; 520 521 // Limit the amount of scanning we do so we don't end up with quadratic 522 // running time on extreme testcases. 523 --*Limit; 524 if (!*Limit) 525 return MemDepResult::getUnknown(); 526 527 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 528 // If we reach a lifetime begin or end marker, then the query ends here 529 // because the value is undefined. 530 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 531 // FIXME: This only considers queries directly on the invariant-tagged 532 // pointer, not on query pointers that are indexed off of them. It'd 533 // be nice to handle that at some point (the right approach is to use 534 // GetPointerBaseWithConstantOffset). 535 if (AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc)) 536 return MemDepResult::getDef(II); 537 continue; 538 } 539 } 540 541 // Values depend on loads if the pointers are must aliased. This means 542 // that a load depends on another must aliased load from the same value. 543 // One exception is atomic loads: a value can depend on an atomic load that 544 // it does not alias with when this atomic load indicates that another 545 // thread may be accessing the location. 546 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 547 // While volatile access cannot be eliminated, they do not have to clobber 548 // non-aliasing locations, as normal accesses, for example, can be safely 549 // reordered with volatile accesses. 550 if (LI->isVolatile()) { 551 if (!QueryInst) 552 // Original QueryInst *may* be volatile 553 return MemDepResult::getClobber(LI); 554 if (isVolatile(QueryInst)) 555 // Ordering required if QueryInst is itself volatile 556 return MemDepResult::getClobber(LI); 557 // Otherwise, volatile doesn't imply any special ordering 558 } 559 560 // Atomic loads have complications involved. 561 // A Monotonic (or higher) load is OK if the query inst is itself not 562 // atomic. 563 // FIXME: This is overly conservative. 564 if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) { 565 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 566 isOtherMemAccess(QueryInst)) 567 return MemDepResult::getClobber(LI); 568 if (LI->getOrdering() != AtomicOrdering::Monotonic) 569 return MemDepResult::getClobber(LI); 570 } 571 572 MemoryLocation LoadLoc = MemoryLocation::get(LI); 573 574 // If we found a pointer, check if it could be the same as our pointer. 575 AliasResult R = AA.alias(LoadLoc, MemLoc); 576 577 if (isLoad) { 578 if (R == NoAlias) 579 continue; 580 581 // Must aliased loads are defs of each other. 582 if (R == MustAlias) 583 return MemDepResult::getDef(Inst); 584 585 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads 586 // in terms of clobbering loads, but since it does this by looking 587 // at the clobbering load directly, it doesn't know about any 588 // phi translation that may have happened along the way. 589 590 // If we have a partial alias, then return this as a clobber for the 591 // client to handle. 592 if (R == PartialAlias) 593 return MemDepResult::getClobber(Inst); 594 #endif 595 596 // Random may-alias loads don't depend on each other without a 597 // dependence. 598 continue; 599 } 600 601 // Stores don't depend on other no-aliased accesses. 602 if (R == NoAlias) 603 continue; 604 605 // Stores don't alias loads from read-only memory. 606 if (AA.pointsToConstantMemory(LoadLoc)) 607 continue; 608 609 // Stores depend on may/must aliased loads. 610 return MemDepResult::getDef(Inst); 611 } 612 613 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 614 // Atomic stores have complications involved. 615 // A Monotonic store is OK if the query inst is itself not atomic. 616 // FIXME: This is overly conservative. 617 if (!SI->isUnordered() && SI->isAtomic()) { 618 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 619 isOtherMemAccess(QueryInst)) 620 return MemDepResult::getClobber(SI); 621 if (SI->getOrdering() != AtomicOrdering::Monotonic) 622 return MemDepResult::getClobber(SI); 623 } 624 625 // FIXME: this is overly conservative. 626 // While volatile access cannot be eliminated, they do not have to clobber 627 // non-aliasing locations, as normal accesses can for example be reordered 628 // with volatile accesses. 629 if (SI->isVolatile()) 630 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 631 isOtherMemAccess(QueryInst)) 632 return MemDepResult::getClobber(SI); 633 634 // If alias analysis can tell that this store is guaranteed to not modify 635 // the query pointer, ignore it. Use getModRefInfo to handle cases where 636 // the query pointer points to constant memory etc. 637 if (!isModOrRefSet(AA.getModRefInfo(SI, MemLoc))) 638 continue; 639 640 // Ok, this store might clobber the query pointer. Check to see if it is 641 // a must alias: in this case, we want to return this as a def. 642 // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above. 643 MemoryLocation StoreLoc = MemoryLocation::get(SI); 644 645 // If we found a pointer, check if it could be the same as our pointer. 646 AliasResult R = AA.alias(StoreLoc, MemLoc); 647 648 if (R == NoAlias) 649 continue; 650 if (R == MustAlias) 651 return MemDepResult::getDef(Inst); 652 if (isInvariantLoad) 653 continue; 654 return MemDepResult::getClobber(Inst); 655 } 656 657 // If this is an allocation, and if we know that the accessed pointer is to 658 // the allocation, return Def. This means that there is no dependence and 659 // the access can be optimized based on that. For example, a load could 660 // turn into undef. Note that we can bypass the allocation itself when 661 // looking for a clobber in many cases; that's an alias property and is 662 // handled by BasicAA. 663 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) { 664 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL); 665 if (AccessPtr == Inst || AA.isMustAlias(Inst, AccessPtr)) 666 return MemDepResult::getDef(Inst); 667 } 668 669 if (isInvariantLoad) 670 continue; 671 672 // A release fence requires that all stores complete before it, but does 673 // not prevent the reordering of following loads or stores 'before' the 674 // fence. As a result, we look past it when finding a dependency for 675 // loads. DSE uses this to find preceding stores to delete and thus we 676 // can't bypass the fence if the query instruction is a store. 677 if (FenceInst *FI = dyn_cast<FenceInst>(Inst)) 678 if (isLoad && FI->getOrdering() == AtomicOrdering::Release) 679 continue; 680 681 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. 682 ModRefInfo MR = AA.getModRefInfo(Inst, MemLoc); 683 // If necessary, perform additional analysis. 684 if (isModAndRefSet(MR)) 685 MR = AA.callCapturesBefore(Inst, MemLoc, &DT, &OBB); 686 switch (clearMust(MR)) { 687 case ModRefInfo::NoModRef: 688 // If the call has no effect on the queried pointer, just ignore it. 689 continue; 690 case ModRefInfo::Mod: 691 return MemDepResult::getClobber(Inst); 692 case ModRefInfo::Ref: 693 // If the call is known to never store to the pointer, and if this is a 694 // load query, we can safely ignore it (scan past it). 695 if (isLoad) 696 continue; 697 LLVM_FALLTHROUGH; 698 default: 699 // Otherwise, there is a potential dependence. Return a clobber. 700 return MemDepResult::getClobber(Inst); 701 } 702 } 703 704 // No dependence found. If this is the entry block of the function, it is 705 // unknown, otherwise it is non-local. 706 if (BB != &BB->getParent()->getEntryBlock()) 707 return MemDepResult::getNonLocal(); 708 return MemDepResult::getNonFuncLocal(); 709 } 710 711 MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) { 712 Instruction *ScanPos = QueryInst; 713 714 // Check for a cached result 715 MemDepResult &LocalCache = LocalDeps[QueryInst]; 716 717 // If the cached entry is non-dirty, just return it. Note that this depends 718 // on MemDepResult's default constructing to 'dirty'. 719 if (!LocalCache.isDirty()) 720 return LocalCache; 721 722 // Otherwise, if we have a dirty entry, we know we can start the scan at that 723 // instruction, which may save us some work. 724 if (Instruction *Inst = LocalCache.getInst()) { 725 ScanPos = Inst; 726 727 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); 728 } 729 730 BasicBlock *QueryParent = QueryInst->getParent(); 731 732 // Do the scan. 733 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { 734 // No dependence found. If this is the entry block of the function, it is 735 // unknown, otherwise it is non-local. 736 if (QueryParent != &QueryParent->getParent()->getEntryBlock()) 737 LocalCache = MemDepResult::getNonLocal(); 738 else 739 LocalCache = MemDepResult::getNonFuncLocal(); 740 } else { 741 MemoryLocation MemLoc; 742 ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI); 743 if (MemLoc.Ptr) { 744 // If we can do a pointer scan, make it happen. 745 bool isLoad = !isModSet(MR); 746 if (auto *II = dyn_cast<IntrinsicInst>(QueryInst)) 747 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start; 748 749 LocalCache = getPointerDependencyFrom( 750 MemLoc, isLoad, ScanPos->getIterator(), QueryParent, QueryInst); 751 } else if (auto *QueryCall = dyn_cast<CallBase>(QueryInst)) { 752 bool isReadOnly = AA.onlyReadsMemory(QueryCall); 753 LocalCache = getCallDependencyFrom(QueryCall, isReadOnly, 754 ScanPos->getIterator(), QueryParent); 755 } else 756 // Non-memory instruction. 757 LocalCache = MemDepResult::getUnknown(); 758 } 759 760 // Remember the result! 761 if (Instruction *I = LocalCache.getInst()) 762 ReverseLocalDeps[I].insert(QueryInst); 763 764 return LocalCache; 765 } 766 767 #ifndef NDEBUG 768 /// This method is used when -debug is specified to verify that cache arrays 769 /// are properly kept sorted. 770 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache, 771 int Count = -1) { 772 if (Count == -1) 773 Count = Cache.size(); 774 assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) && 775 "Cache isn't sorted!"); 776 } 777 #endif 778 779 const MemoryDependenceResults::NonLocalDepInfo & 780 MemoryDependenceResults::getNonLocalCallDependency(CallBase *QueryCall) { 781 assert(getDependency(QueryCall).isNonLocal() && 782 "getNonLocalCallDependency should only be used on calls with " 783 "non-local deps!"); 784 PerInstNLInfo &CacheP = NonLocalDeps[QueryCall]; 785 NonLocalDepInfo &Cache = CacheP.first; 786 787 // This is the set of blocks that need to be recomputed. In the cached case, 788 // this can happen due to instructions being deleted etc. In the uncached 789 // case, this starts out as the set of predecessors we care about. 790 SmallVector<BasicBlock *, 32> DirtyBlocks; 791 792 if (!Cache.empty()) { 793 // Okay, we have a cache entry. If we know it is not dirty, just return it 794 // with no computation. 795 if (!CacheP.second) { 796 ++NumCacheNonLocal; 797 return Cache; 798 } 799 800 // If we already have a partially computed set of results, scan them to 801 // determine what is dirty, seeding our initial DirtyBlocks worklist. 802 for (auto &Entry : Cache) 803 if (Entry.getResult().isDirty()) 804 DirtyBlocks.push_back(Entry.getBB()); 805 806 // Sort the cache so that we can do fast binary search lookups below. 807 llvm::sort(Cache); 808 809 ++NumCacheDirtyNonLocal; 810 // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " 811 // << Cache.size() << " cached: " << *QueryInst; 812 } else { 813 // Seed DirtyBlocks with each of the preds of QueryInst's block. 814 BasicBlock *QueryBB = QueryCall->getParent(); 815 for (BasicBlock *Pred : PredCache.get(QueryBB)) 816 DirtyBlocks.push_back(Pred); 817 ++NumUncacheNonLocal; 818 } 819 820 // isReadonlyCall - If this is a read-only call, we can be more aggressive. 821 bool isReadonlyCall = AA.onlyReadsMemory(QueryCall); 822 823 SmallPtrSet<BasicBlock *, 32> Visited; 824 825 unsigned NumSortedEntries = Cache.size(); 826 LLVM_DEBUG(AssertSorted(Cache)); 827 828 // Iterate while we still have blocks to update. 829 while (!DirtyBlocks.empty()) { 830 BasicBlock *DirtyBB = DirtyBlocks.back(); 831 DirtyBlocks.pop_back(); 832 833 // Already processed this block? 834 if (!Visited.insert(DirtyBB).second) 835 continue; 836 837 // Do a binary search to see if we already have an entry for this block in 838 // the cache set. If so, find it. 839 LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries)); 840 NonLocalDepInfo::iterator Entry = 841 std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries, 842 NonLocalDepEntry(DirtyBB)); 843 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB) 844 --Entry; 845 846 NonLocalDepEntry *ExistingResult = nullptr; 847 if (Entry != Cache.begin() + NumSortedEntries && 848 Entry->getBB() == DirtyBB) { 849 // If we already have an entry, and if it isn't already dirty, the block 850 // is done. 851 if (!Entry->getResult().isDirty()) 852 continue; 853 854 // Otherwise, remember this slot so we can update the value. 855 ExistingResult = &*Entry; 856 } 857 858 // If the dirty entry has a pointer, start scanning from it so we don't have 859 // to rescan the entire block. 860 BasicBlock::iterator ScanPos = DirtyBB->end(); 861 if (ExistingResult) { 862 if (Instruction *Inst = ExistingResult->getResult().getInst()) { 863 ScanPos = Inst->getIterator(); 864 // We're removing QueryInst's use of Inst. 865 RemoveFromReverseMap<Instruction *>(ReverseNonLocalDeps, Inst, 866 QueryCall); 867 } 868 } 869 870 // Find out if this block has a local dependency for QueryInst. 871 MemDepResult Dep; 872 873 if (ScanPos != DirtyBB->begin()) { 874 Dep = getCallDependencyFrom(QueryCall, isReadonlyCall, ScanPos, DirtyBB); 875 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { 876 // No dependence found. If this is the entry block of the function, it is 877 // a clobber, otherwise it is unknown. 878 Dep = MemDepResult::getNonLocal(); 879 } else { 880 Dep = MemDepResult::getNonFuncLocal(); 881 } 882 883 // If we had a dirty entry for the block, update it. Otherwise, just add 884 // a new entry. 885 if (ExistingResult) 886 ExistingResult->setResult(Dep); 887 else 888 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); 889 890 // If the block has a dependency (i.e. it isn't completely transparent to 891 // the value), remember the association! 892 if (!Dep.isNonLocal()) { 893 // Keep the ReverseNonLocalDeps map up to date so we can efficiently 894 // update this when we remove instructions. 895 if (Instruction *Inst = Dep.getInst()) 896 ReverseNonLocalDeps[Inst].insert(QueryCall); 897 } else { 898 899 // If the block *is* completely transparent to the load, we need to check 900 // the predecessors of this block. Add them to our worklist. 901 for (BasicBlock *Pred : PredCache.get(DirtyBB)) 902 DirtyBlocks.push_back(Pred); 903 } 904 } 905 906 return Cache; 907 } 908 909 void MemoryDependenceResults::getNonLocalPointerDependency( 910 Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) { 911 const MemoryLocation Loc = MemoryLocation::get(QueryInst); 912 bool isLoad = isa<LoadInst>(QueryInst); 913 BasicBlock *FromBB = QueryInst->getParent(); 914 assert(FromBB); 915 916 assert(Loc.Ptr->getType()->isPointerTy() && 917 "Can't get pointer deps of a non-pointer!"); 918 Result.clear(); 919 { 920 // Check if there is cached Def with invariant.group. 921 auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst); 922 if (NonLocalDefIt != NonLocalDefsCache.end()) { 923 Result.push_back(NonLocalDefIt->second); 924 ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()] 925 .erase(QueryInst); 926 NonLocalDefsCache.erase(NonLocalDefIt); 927 return; 928 } 929 } 930 // This routine does not expect to deal with volatile instructions. 931 // Doing so would require piping through the QueryInst all the way through. 932 // TODO: volatiles can't be elided, but they can be reordered with other 933 // non-volatile accesses. 934 935 // We currently give up on any instruction which is ordered, but we do handle 936 // atomic instructions which are unordered. 937 // TODO: Handle ordered instructions 938 auto isOrdered = [](Instruction *Inst) { 939 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 940 return !LI->isUnordered(); 941 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 942 return !SI->isUnordered(); 943 } 944 return false; 945 }; 946 if (isVolatile(QueryInst) || isOrdered(QueryInst)) { 947 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(), 948 const_cast<Value *>(Loc.Ptr))); 949 return; 950 } 951 const DataLayout &DL = FromBB->getModule()->getDataLayout(); 952 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC); 953 954 // This is the set of blocks we've inspected, and the pointer we consider in 955 // each block. Because of critical edges, we currently bail out if querying 956 // a block with multiple different pointers. This can happen during PHI 957 // translation. 958 DenseMap<BasicBlock *, Value *> Visited; 959 if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB, 960 Result, Visited, true)) 961 return; 962 Result.clear(); 963 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(), 964 const_cast<Value *>(Loc.Ptr))); 965 } 966 967 /// Compute the memdep value for BB with Pointer/PointeeSize using either 968 /// cached information in Cache or by doing a lookup (which may use dirty cache 969 /// info if available). 970 /// 971 /// If we do a lookup, add the result to the cache. 972 MemDepResult MemoryDependenceResults::GetNonLocalInfoForBlock( 973 Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad, 974 BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) { 975 976 // Do a binary search to see if we already have an entry for this block in 977 // the cache set. If so, find it. 978 NonLocalDepInfo::iterator Entry = std::upper_bound( 979 Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB)); 980 if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB) 981 --Entry; 982 983 NonLocalDepEntry *ExistingResult = nullptr; 984 if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB) 985 ExistingResult = &*Entry; 986 987 // If we have a cached entry, and it is non-dirty, use it as the value for 988 // this dependency. 989 if (ExistingResult && !ExistingResult->getResult().isDirty()) { 990 ++NumCacheNonLocalPtr; 991 return ExistingResult->getResult(); 992 } 993 994 // Otherwise, we have to scan for the value. If we have a dirty cache 995 // entry, start scanning from its position, otherwise we scan from the end 996 // of the block. 997 BasicBlock::iterator ScanPos = BB->end(); 998 if (ExistingResult && ExistingResult->getResult().getInst()) { 999 assert(ExistingResult->getResult().getInst()->getParent() == BB && 1000 "Instruction invalidated?"); 1001 ++NumCacheDirtyNonLocalPtr; 1002 ScanPos = ExistingResult->getResult().getInst()->getIterator(); 1003 1004 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1005 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 1006 RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey); 1007 } else { 1008 ++NumUncacheNonLocalPtr; 1009 } 1010 1011 // Scan the block for the dependency. 1012 MemDepResult Dep = 1013 getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, QueryInst); 1014 1015 // If we had a dirty entry for the block, update it. Otherwise, just add 1016 // a new entry. 1017 if (ExistingResult) 1018 ExistingResult->setResult(Dep); 1019 else 1020 Cache->push_back(NonLocalDepEntry(BB, Dep)); 1021 1022 // If the block has a dependency (i.e. it isn't completely transparent to 1023 // the value), remember the reverse association because we just added it 1024 // to Cache! 1025 if (!Dep.isDef() && !Dep.isClobber()) 1026 return Dep; 1027 1028 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently 1029 // update MemDep when we remove instructions. 1030 Instruction *Inst = Dep.getInst(); 1031 assert(Inst && "Didn't depend on anything?"); 1032 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 1033 ReverseNonLocalPtrDeps[Inst].insert(CacheKey); 1034 return Dep; 1035 } 1036 1037 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the 1038 /// array that are already properly ordered. 1039 /// 1040 /// This is optimized for the case when only a few entries are added. 1041 static void 1042 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache, 1043 unsigned NumSortedEntries) { 1044 switch (Cache.size() - NumSortedEntries) { 1045 case 0: 1046 // done, no new entries. 1047 break; 1048 case 2: { 1049 // Two new entries, insert the last one into place. 1050 NonLocalDepEntry Val = Cache.back(); 1051 Cache.pop_back(); 1052 MemoryDependenceResults::NonLocalDepInfo::iterator Entry = 1053 std::upper_bound(Cache.begin(), Cache.end() - 1, Val); 1054 Cache.insert(Entry, Val); 1055 LLVM_FALLTHROUGH; 1056 } 1057 case 1: 1058 // One new entry, Just insert the new value at the appropriate position. 1059 if (Cache.size() != 1) { 1060 NonLocalDepEntry Val = Cache.back(); 1061 Cache.pop_back(); 1062 MemoryDependenceResults::NonLocalDepInfo::iterator Entry = 1063 std::upper_bound(Cache.begin(), Cache.end(), Val); 1064 Cache.insert(Entry, Val); 1065 } 1066 break; 1067 default: 1068 // Added many values, do a full scale sort. 1069 llvm::sort(Cache); 1070 break; 1071 } 1072 } 1073 1074 /// Perform a dependency query based on pointer/pointeesize starting at the end 1075 /// of StartBB. 1076 /// 1077 /// Add any clobber/def results to the results vector and keep track of which 1078 /// blocks are visited in 'Visited'. 1079 /// 1080 /// This has special behavior for the first block queries (when SkipFirstBlock 1081 /// is true). In this special case, it ignores the contents of the specified 1082 /// block and starts returning dependence info for its predecessors. 1083 /// 1084 /// This function returns true on success, or false to indicate that it could 1085 /// not compute dependence information for some reason. This should be treated 1086 /// as a clobber dependence on the first instruction in the predecessor block. 1087 bool MemoryDependenceResults::getNonLocalPointerDepFromBB( 1088 Instruction *QueryInst, const PHITransAddr &Pointer, 1089 const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB, 1090 SmallVectorImpl<NonLocalDepResult> &Result, 1091 DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock) { 1092 // Look up the cached info for Pointer. 1093 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); 1094 1095 // Set up a temporary NLPI value. If the map doesn't yet have an entry for 1096 // CacheKey, this value will be inserted as the associated value. Otherwise, 1097 // it'll be ignored, and we'll have to check to see if the cached size and 1098 // aa tags are consistent with the current query. 1099 NonLocalPointerInfo InitialNLPI; 1100 InitialNLPI.Size = Loc.Size; 1101 InitialNLPI.AATags = Loc.AATags; 1102 1103 // Get the NLPI for CacheKey, inserting one into the map if it doesn't 1104 // already have one. 1105 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = 1106 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); 1107 NonLocalPointerInfo *CacheInfo = &Pair.first->second; 1108 1109 // If we already have a cache entry for this CacheKey, we may need to do some 1110 // work to reconcile the cache entry and the current query. 1111 if (!Pair.second) { 1112 if (CacheInfo->Size != Loc.Size) { 1113 bool ThrowOutEverything; 1114 if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) { 1115 // FIXME: We may be able to do better in the face of results with mixed 1116 // precision. We don't appear to get them in practice, though, so just 1117 // be conservative. 1118 ThrowOutEverything = 1119 CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() || 1120 CacheInfo->Size.getValue() < Loc.Size.getValue(); 1121 } else { 1122 // For our purposes, unknown size > all others. 1123 ThrowOutEverything = !Loc.Size.hasValue(); 1124 } 1125 1126 if (ThrowOutEverything) { 1127 // The query's Size is greater than the cached one. Throw out the 1128 // cached data and proceed with the query at the greater size. 1129 CacheInfo->Pair = BBSkipFirstBlockPair(); 1130 CacheInfo->Size = Loc.Size; 1131 for (auto &Entry : CacheInfo->NonLocalDeps) 1132 if (Instruction *Inst = Entry.getResult().getInst()) 1133 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1134 CacheInfo->NonLocalDeps.clear(); 1135 } else { 1136 // This query's Size is less than the cached one. Conservatively restart 1137 // the query using the greater size. 1138 return getNonLocalPointerDepFromBB( 1139 QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad, 1140 StartBB, Result, Visited, SkipFirstBlock); 1141 } 1142 } 1143 1144 // If the query's AATags are inconsistent with the cached one, 1145 // conservatively throw out the cached data and restart the query with 1146 // no tag if needed. 1147 if (CacheInfo->AATags != Loc.AATags) { 1148 if (CacheInfo->AATags) { 1149 CacheInfo->Pair = BBSkipFirstBlockPair(); 1150 CacheInfo->AATags = AAMDNodes(); 1151 for (auto &Entry : CacheInfo->NonLocalDeps) 1152 if (Instruction *Inst = Entry.getResult().getInst()) 1153 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1154 CacheInfo->NonLocalDeps.clear(); 1155 } 1156 if (Loc.AATags) 1157 return getNonLocalPointerDepFromBB( 1158 QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result, 1159 Visited, SkipFirstBlock); 1160 } 1161 } 1162 1163 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; 1164 1165 // If we have valid cached information for exactly the block we are 1166 // investigating, just return it with no recomputation. 1167 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { 1168 // We have a fully cached result for this query then we can just return the 1169 // cached results and populate the visited set. However, we have to verify 1170 // that we don't already have conflicting results for these blocks. Check 1171 // to ensure that if a block in the results set is in the visited set that 1172 // it was for the same pointer query. 1173 if (!Visited.empty()) { 1174 for (auto &Entry : *Cache) { 1175 DenseMap<BasicBlock *, Value *>::iterator VI = 1176 Visited.find(Entry.getBB()); 1177 if (VI == Visited.end() || VI->second == Pointer.getAddr()) 1178 continue; 1179 1180 // We have a pointer mismatch in a block. Just return false, saying 1181 // that something was clobbered in this result. We could also do a 1182 // non-fully cached query, but there is little point in doing this. 1183 return false; 1184 } 1185 } 1186 1187 Value *Addr = Pointer.getAddr(); 1188 for (auto &Entry : *Cache) { 1189 Visited.insert(std::make_pair(Entry.getBB(), Addr)); 1190 if (Entry.getResult().isNonLocal()) { 1191 continue; 1192 } 1193 1194 if (DT.isReachableFromEntry(Entry.getBB())) { 1195 Result.push_back( 1196 NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr)); 1197 } 1198 } 1199 ++NumCacheCompleteNonLocalPtr; 1200 return true; 1201 } 1202 1203 // Otherwise, either this is a new block, a block with an invalid cache 1204 // pointer or one that we're about to invalidate by putting more info into it 1205 // than its valid cache info. If empty, the result will be valid cache info, 1206 // otherwise it isn't. 1207 if (Cache->empty()) 1208 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); 1209 else 1210 CacheInfo->Pair = BBSkipFirstBlockPair(); 1211 1212 SmallVector<BasicBlock *, 32> Worklist; 1213 Worklist.push_back(StartBB); 1214 1215 // PredList used inside loop. 1216 SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList; 1217 1218 // Keep track of the entries that we know are sorted. Previously cached 1219 // entries will all be sorted. The entries we add we only sort on demand (we 1220 // don't insert every element into its sorted position). We know that we 1221 // won't get any reuse from currently inserted values, because we don't 1222 // revisit blocks after we insert info for them. 1223 unsigned NumSortedEntries = Cache->size(); 1224 unsigned WorklistEntries = BlockNumberLimit; 1225 bool GotWorklistLimit = false; 1226 LLVM_DEBUG(AssertSorted(*Cache)); 1227 1228 while (!Worklist.empty()) { 1229 BasicBlock *BB = Worklist.pop_back_val(); 1230 1231 // If we do process a large number of blocks it becomes very expensive and 1232 // likely it isn't worth worrying about 1233 if (Result.size() > NumResultsLimit) { 1234 Worklist.clear(); 1235 // Sort it now (if needed) so that recursive invocations of 1236 // getNonLocalPointerDepFromBB and other routines that could reuse the 1237 // cache value will only see properly sorted cache arrays. 1238 if (Cache && NumSortedEntries != Cache->size()) { 1239 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1240 } 1241 // Since we bail out, the "Cache" set won't contain all of the 1242 // results for the query. This is ok (we can still use it to accelerate 1243 // specific block queries) but we can't do the fastpath "return all 1244 // results from the set". Clear out the indicator for this. 1245 CacheInfo->Pair = BBSkipFirstBlockPair(); 1246 return false; 1247 } 1248 1249 // Skip the first block if we have it. 1250 if (!SkipFirstBlock) { 1251 // Analyze the dependency of *Pointer in FromBB. See if we already have 1252 // been here. 1253 assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); 1254 1255 // Get the dependency info for Pointer in BB. If we have cached 1256 // information, we will use it, otherwise we compute it. 1257 LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries)); 1258 MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, Loc, isLoad, BB, 1259 Cache, NumSortedEntries); 1260 1261 // If we got a Def or Clobber, add this to the list of results. 1262 if (!Dep.isNonLocal()) { 1263 if (DT.isReachableFromEntry(BB)) { 1264 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); 1265 continue; 1266 } 1267 } 1268 } 1269 1270 // If 'Pointer' is an instruction defined in this block, then we need to do 1271 // phi translation to change it into a value live in the predecessor block. 1272 // If not, we just add the predecessors to the worklist and scan them with 1273 // the same Pointer. 1274 if (!Pointer.NeedsPHITranslationFromBlock(BB)) { 1275 SkipFirstBlock = false; 1276 SmallVector<BasicBlock *, 16> NewBlocks; 1277 for (BasicBlock *Pred : PredCache.get(BB)) { 1278 // Verify that we haven't looked at this block yet. 1279 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = 1280 Visited.insert(std::make_pair(Pred, Pointer.getAddr())); 1281 if (InsertRes.second) { 1282 // First time we've looked at *PI. 1283 NewBlocks.push_back(Pred); 1284 continue; 1285 } 1286 1287 // If we have seen this block before, but it was with a different 1288 // pointer then we have a phi translation failure and we have to treat 1289 // this as a clobber. 1290 if (InsertRes.first->second != Pointer.getAddr()) { 1291 // Make sure to clean up the Visited map before continuing on to 1292 // PredTranslationFailure. 1293 for (unsigned i = 0; i < NewBlocks.size(); i++) 1294 Visited.erase(NewBlocks[i]); 1295 goto PredTranslationFailure; 1296 } 1297 } 1298 if (NewBlocks.size() > WorklistEntries) { 1299 // Make sure to clean up the Visited map before continuing on to 1300 // PredTranslationFailure. 1301 for (unsigned i = 0; i < NewBlocks.size(); i++) 1302 Visited.erase(NewBlocks[i]); 1303 GotWorklistLimit = true; 1304 goto PredTranslationFailure; 1305 } 1306 WorklistEntries -= NewBlocks.size(); 1307 Worklist.append(NewBlocks.begin(), NewBlocks.end()); 1308 continue; 1309 } 1310 1311 // We do need to do phi translation, if we know ahead of time we can't phi 1312 // translate this value, don't even try. 1313 if (!Pointer.IsPotentiallyPHITranslatable()) 1314 goto PredTranslationFailure; 1315 1316 // We may have added values to the cache list before this PHI translation. 1317 // If so, we haven't done anything to ensure that the cache remains sorted. 1318 // Sort it now (if needed) so that recursive invocations of 1319 // getNonLocalPointerDepFromBB and other routines that could reuse the cache 1320 // value will only see properly sorted cache arrays. 1321 if (Cache && NumSortedEntries != Cache->size()) { 1322 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1323 NumSortedEntries = Cache->size(); 1324 } 1325 Cache = nullptr; 1326 1327 PredList.clear(); 1328 for (BasicBlock *Pred : PredCache.get(BB)) { 1329 PredList.push_back(std::make_pair(Pred, Pointer)); 1330 1331 // Get the PHI translated pointer in this predecessor. This can fail if 1332 // not translatable, in which case the getAddr() returns null. 1333 PHITransAddr &PredPointer = PredList.back().second; 1334 PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false); 1335 Value *PredPtrVal = PredPointer.getAddr(); 1336 1337 // Check to see if we have already visited this pred block with another 1338 // pointer. If so, we can't do this lookup. This failure can occur 1339 // with PHI translation when a critical edge exists and the PHI node in 1340 // the successor translates to a pointer value different than the 1341 // pointer the block was first analyzed with. 1342 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = 1343 Visited.insert(std::make_pair(Pred, PredPtrVal)); 1344 1345 if (!InsertRes.second) { 1346 // We found the pred; take it off the list of preds to visit. 1347 PredList.pop_back(); 1348 1349 // If the predecessor was visited with PredPtr, then we already did 1350 // the analysis and can ignore it. 1351 if (InsertRes.first->second == PredPtrVal) 1352 continue; 1353 1354 // Otherwise, the block was previously analyzed with a different 1355 // pointer. We can't represent the result of this case, so we just 1356 // treat this as a phi translation failure. 1357 1358 // Make sure to clean up the Visited map before continuing on to 1359 // PredTranslationFailure. 1360 for (unsigned i = 0, n = PredList.size(); i < n; ++i) 1361 Visited.erase(PredList[i].first); 1362 1363 goto PredTranslationFailure; 1364 } 1365 } 1366 1367 // Actually process results here; this need to be a separate loop to avoid 1368 // calling getNonLocalPointerDepFromBB for blocks we don't want to return 1369 // any results for. (getNonLocalPointerDepFromBB will modify our 1370 // datastructures in ways the code after the PredTranslationFailure label 1371 // doesn't expect.) 1372 for (unsigned i = 0, n = PredList.size(); i < n; ++i) { 1373 BasicBlock *Pred = PredList[i].first; 1374 PHITransAddr &PredPointer = PredList[i].second; 1375 Value *PredPtrVal = PredPointer.getAddr(); 1376 1377 bool CanTranslate = true; 1378 // If PHI translation was unable to find an available pointer in this 1379 // predecessor, then we have to assume that the pointer is clobbered in 1380 // that predecessor. We can still do PRE of the load, which would insert 1381 // a computation of the pointer in this predecessor. 1382 if (!PredPtrVal) 1383 CanTranslate = false; 1384 1385 // FIXME: it is entirely possible that PHI translating will end up with 1386 // the same value. Consider PHI translating something like: 1387 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* 1388 // to recurse here, pedantically speaking. 1389 1390 // If getNonLocalPointerDepFromBB fails here, that means the cached 1391 // result conflicted with the Visited list; we have to conservatively 1392 // assume it is unknown, but this also does not block PRE of the load. 1393 if (!CanTranslate || 1394 !getNonLocalPointerDepFromBB(QueryInst, PredPointer, 1395 Loc.getWithNewPtr(PredPtrVal), isLoad, 1396 Pred, Result, Visited)) { 1397 // Add the entry to the Result list. 1398 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal); 1399 Result.push_back(Entry); 1400 1401 // Since we had a phi translation failure, the cache for CacheKey won't 1402 // include all of the entries that we need to immediately satisfy future 1403 // queries. Mark this in NonLocalPointerDeps by setting the 1404 // BBSkipFirstBlockPair pointer to null. This requires reuse of the 1405 // cached value to do more work but not miss the phi trans failure. 1406 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; 1407 NLPI.Pair = BBSkipFirstBlockPair(); 1408 continue; 1409 } 1410 } 1411 1412 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. 1413 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1414 Cache = &CacheInfo->NonLocalDeps; 1415 NumSortedEntries = Cache->size(); 1416 1417 // Since we did phi translation, the "Cache" set won't contain all of the 1418 // results for the query. This is ok (we can still use it to accelerate 1419 // specific block queries) but we can't do the fastpath "return all 1420 // results from the set" Clear out the indicator for this. 1421 CacheInfo->Pair = BBSkipFirstBlockPair(); 1422 SkipFirstBlock = false; 1423 continue; 1424 1425 PredTranslationFailure: 1426 // The following code is "failure"; we can't produce a sane translation 1427 // for the given block. It assumes that we haven't modified any of 1428 // our datastructures while processing the current block. 1429 1430 if (!Cache) { 1431 // Refresh the CacheInfo/Cache pointer if it got invalidated. 1432 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1433 Cache = &CacheInfo->NonLocalDeps; 1434 NumSortedEntries = Cache->size(); 1435 } 1436 1437 // Since we failed phi translation, the "Cache" set won't contain all of the 1438 // results for the query. This is ok (we can still use it to accelerate 1439 // specific block queries) but we can't do the fastpath "return all 1440 // results from the set". Clear out the indicator for this. 1441 CacheInfo->Pair = BBSkipFirstBlockPair(); 1442 1443 // If *nothing* works, mark the pointer as unknown. 1444 // 1445 // If this is the magic first block, return this as a clobber of the whole 1446 // incoming value. Since we can't phi translate to one of the predecessors, 1447 // we have to bail out. 1448 if (SkipFirstBlock) 1449 return false; 1450 1451 bool foundBlock = false; 1452 for (NonLocalDepEntry &I : llvm::reverse(*Cache)) { 1453 if (I.getBB() != BB) 1454 continue; 1455 1456 assert((GotWorklistLimit || I.getResult().isNonLocal() || 1457 !DT.isReachableFromEntry(BB)) && 1458 "Should only be here with transparent block"); 1459 foundBlock = true; 1460 I.setResult(MemDepResult::getUnknown()); 1461 Result.push_back( 1462 NonLocalDepResult(I.getBB(), I.getResult(), Pointer.getAddr())); 1463 break; 1464 } 1465 (void)foundBlock; (void)GotWorklistLimit; 1466 assert((foundBlock || GotWorklistLimit) && "Current block not in cache?"); 1467 } 1468 1469 // Okay, we're done now. If we added new values to the cache, re-sort it. 1470 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1471 LLVM_DEBUG(AssertSorted(*Cache)); 1472 return true; 1473 } 1474 1475 /// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it. 1476 void MemoryDependenceResults::RemoveCachedNonLocalPointerDependencies( 1477 ValueIsLoadPair P) { 1478 1479 // Most of the time this cache is empty. 1480 if (!NonLocalDefsCache.empty()) { 1481 auto it = NonLocalDefsCache.find(P.getPointer()); 1482 if (it != NonLocalDefsCache.end()) { 1483 RemoveFromReverseMap(ReverseNonLocalDefsCache, 1484 it->second.getResult().getInst(), P.getPointer()); 1485 NonLocalDefsCache.erase(it); 1486 } 1487 1488 if (auto *I = dyn_cast<Instruction>(P.getPointer())) { 1489 auto toRemoveIt = ReverseNonLocalDefsCache.find(I); 1490 if (toRemoveIt != ReverseNonLocalDefsCache.end()) { 1491 for (const auto &entry : toRemoveIt->second) 1492 NonLocalDefsCache.erase(entry); 1493 ReverseNonLocalDefsCache.erase(toRemoveIt); 1494 } 1495 } 1496 } 1497 1498 CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P); 1499 if (It == NonLocalPointerDeps.end()) 1500 return; 1501 1502 // Remove all of the entries in the BB->val map. This involves removing 1503 // instructions from the reverse map. 1504 NonLocalDepInfo &PInfo = It->second.NonLocalDeps; 1505 1506 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { 1507 Instruction *Target = PInfo[i].getResult().getInst(); 1508 if (!Target) 1509 continue; // Ignore non-local dep results. 1510 assert(Target->getParent() == PInfo[i].getBB()); 1511 1512 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1513 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); 1514 } 1515 1516 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). 1517 NonLocalPointerDeps.erase(It); 1518 } 1519 1520 void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) { 1521 // If Ptr isn't really a pointer, just ignore it. 1522 if (!Ptr->getType()->isPointerTy()) 1523 return; 1524 // Flush store info for the pointer. 1525 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); 1526 // Flush load info for the pointer. 1527 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); 1528 // Invalidate phis that use the pointer. 1529 PV.invalidateValue(Ptr); 1530 } 1531 1532 void MemoryDependenceResults::invalidateCachedPredecessors() { 1533 PredCache.clear(); 1534 } 1535 1536 void MemoryDependenceResults::removeInstruction(Instruction *RemInst) { 1537 // Walk through the Non-local dependencies, removing this one as the value 1538 // for any cached queries. 1539 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); 1540 if (NLDI != NonLocalDeps.end()) { 1541 NonLocalDepInfo &BlockMap = NLDI->second.first; 1542 for (auto &Entry : BlockMap) 1543 if (Instruction *Inst = Entry.getResult().getInst()) 1544 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); 1545 NonLocalDeps.erase(NLDI); 1546 } 1547 1548 // If we have a cached local dependence query for this instruction, remove it. 1549 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); 1550 if (LocalDepEntry != LocalDeps.end()) { 1551 // Remove us from DepInst's reverse set now that the local dep info is gone. 1552 if (Instruction *Inst = LocalDepEntry->second.getInst()) 1553 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); 1554 1555 // Remove this local dependency info. 1556 LocalDeps.erase(LocalDepEntry); 1557 } 1558 1559 // If we have any cached pointer dependencies on this instruction, remove 1560 // them. If the instruction has non-pointer type, then it can't be a pointer 1561 // base. 1562 1563 // Remove it from both the load info and the store info. The instruction 1564 // can't be in either of these maps if it is non-pointer. 1565 if (RemInst->getType()->isPointerTy()) { 1566 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); 1567 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); 1568 } 1569 1570 // Loop over all of the things that depend on the instruction we're removing. 1571 SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd; 1572 1573 // If we find RemInst as a clobber or Def in any of the maps for other values, 1574 // we need to replace its entry with a dirty version of the instruction after 1575 // it. If RemInst is a terminator, we use a null dirty value. 1576 // 1577 // Using a dirty version of the instruction after RemInst saves having to scan 1578 // the entire block to get to this point. 1579 MemDepResult NewDirtyVal; 1580 if (!RemInst->isTerminator()) 1581 NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator()); 1582 1583 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); 1584 if (ReverseDepIt != ReverseLocalDeps.end()) { 1585 // RemInst can't be the terminator if it has local stuff depending on it. 1586 assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() && 1587 "Nothing can locally depend on a terminator"); 1588 1589 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) { 1590 assert(InstDependingOnRemInst != RemInst && 1591 "Already removed our local dep info"); 1592 1593 LocalDeps[InstDependingOnRemInst] = NewDirtyVal; 1594 1595 // Make sure to remember that new things depend on NewDepInst. 1596 assert(NewDirtyVal.getInst() && 1597 "There is no way something else can have " 1598 "a local dep on this if it is a terminator!"); 1599 ReverseDepsToAdd.push_back( 1600 std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst)); 1601 } 1602 1603 ReverseLocalDeps.erase(ReverseDepIt); 1604 1605 // Add new reverse deps after scanning the set, to avoid invalidating the 1606 // 'ReverseDeps' reference. 1607 while (!ReverseDepsToAdd.empty()) { 1608 ReverseLocalDeps[ReverseDepsToAdd.back().first].insert( 1609 ReverseDepsToAdd.back().second); 1610 ReverseDepsToAdd.pop_back(); 1611 } 1612 } 1613 1614 ReverseDepIt = ReverseNonLocalDeps.find(RemInst); 1615 if (ReverseDepIt != ReverseNonLocalDeps.end()) { 1616 for (Instruction *I : ReverseDepIt->second) { 1617 assert(I != RemInst && "Already removed NonLocalDep info for RemInst"); 1618 1619 PerInstNLInfo &INLD = NonLocalDeps[I]; 1620 // The information is now dirty! 1621 INLD.second = true; 1622 1623 for (auto &Entry : INLD.first) { 1624 if (Entry.getResult().getInst() != RemInst) 1625 continue; 1626 1627 // Convert to a dirty entry for the subsequent instruction. 1628 Entry.setResult(NewDirtyVal); 1629 1630 if (Instruction *NextI = NewDirtyVal.getInst()) 1631 ReverseDepsToAdd.push_back(std::make_pair(NextI, I)); 1632 } 1633 } 1634 1635 ReverseNonLocalDeps.erase(ReverseDepIt); 1636 1637 // Add new reverse deps after scanning the set, to avoid invalidating 'Set' 1638 while (!ReverseDepsToAdd.empty()) { 1639 ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert( 1640 ReverseDepsToAdd.back().second); 1641 ReverseDepsToAdd.pop_back(); 1642 } 1643 } 1644 1645 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a 1646 // value in the NonLocalPointerDeps info. 1647 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = 1648 ReverseNonLocalPtrDeps.find(RemInst); 1649 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { 1650 SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8> 1651 ReversePtrDepsToAdd; 1652 1653 for (ValueIsLoadPair P : ReversePtrDepIt->second) { 1654 assert(P.getPointer() != RemInst && 1655 "Already removed NonLocalPointerDeps info for RemInst"); 1656 1657 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; 1658 1659 // The cache is not valid for any specific block anymore. 1660 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); 1661 1662 // Update any entries for RemInst to use the instruction after it. 1663 for (auto &Entry : NLPDI) { 1664 if (Entry.getResult().getInst() != RemInst) 1665 continue; 1666 1667 // Convert to a dirty entry for the subsequent instruction. 1668 Entry.setResult(NewDirtyVal); 1669 1670 if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) 1671 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); 1672 } 1673 1674 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its 1675 // subsequent value may invalidate the sortedness. 1676 llvm::sort(NLPDI); 1677 } 1678 1679 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); 1680 1681 while (!ReversePtrDepsToAdd.empty()) { 1682 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert( 1683 ReversePtrDepsToAdd.back().second); 1684 ReversePtrDepsToAdd.pop_back(); 1685 } 1686 } 1687 1688 // Invalidate phis that use the removed instruction. 1689 PV.invalidateValue(RemInst); 1690 1691 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); 1692 LLVM_DEBUG(verifyRemoved(RemInst)); 1693 } 1694 1695 /// Verify that the specified instruction does not occur in our internal data 1696 /// structures. 1697 /// 1698 /// This function verifies by asserting in debug builds. 1699 void MemoryDependenceResults::verifyRemoved(Instruction *D) const { 1700 #ifndef NDEBUG 1701 for (const auto &DepKV : LocalDeps) { 1702 assert(DepKV.first != D && "Inst occurs in data structures"); 1703 assert(DepKV.second.getInst() != D && "Inst occurs in data structures"); 1704 } 1705 1706 for (const auto &DepKV : NonLocalPointerDeps) { 1707 assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key"); 1708 for (const auto &Entry : DepKV.second.NonLocalDeps) 1709 assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value"); 1710 } 1711 1712 for (const auto &DepKV : NonLocalDeps) { 1713 assert(DepKV.first != D && "Inst occurs in data structures"); 1714 const PerInstNLInfo &INLD = DepKV.second; 1715 for (const auto &Entry : INLD.first) 1716 assert(Entry.getResult().getInst() != D && 1717 "Inst occurs in data structures"); 1718 } 1719 1720 for (const auto &DepKV : ReverseLocalDeps) { 1721 assert(DepKV.first != D && "Inst occurs in data structures"); 1722 for (Instruction *Inst : DepKV.second) 1723 assert(Inst != D && "Inst occurs in data structures"); 1724 } 1725 1726 for (const auto &DepKV : ReverseNonLocalDeps) { 1727 assert(DepKV.first != D && "Inst occurs in data structures"); 1728 for (Instruction *Inst : DepKV.second) 1729 assert(Inst != D && "Inst occurs in data structures"); 1730 } 1731 1732 for (const auto &DepKV : ReverseNonLocalPtrDeps) { 1733 assert(DepKV.first != D && "Inst occurs in rev NLPD map"); 1734 1735 for (ValueIsLoadPair P : DepKV.second) 1736 assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) && 1737 "Inst occurs in ReverseNonLocalPtrDeps map"); 1738 } 1739 #endif 1740 } 1741 1742 AnalysisKey MemoryDependenceAnalysis::Key; 1743 1744 MemoryDependenceResults 1745 MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 1746 auto &AA = AM.getResult<AAManager>(F); 1747 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1748 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1749 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1750 auto &PV = AM.getResult<PhiValuesAnalysis>(F); 1751 return MemoryDependenceResults(AA, AC, TLI, DT, PV); 1752 } 1753 1754 char MemoryDependenceWrapperPass::ID = 0; 1755 1756 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep", 1757 "Memory Dependence Analysis", false, true) 1758 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1759 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1760 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1761 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1762 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass) 1763 INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep", 1764 "Memory Dependence Analysis", false, true) 1765 1766 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) { 1767 initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry()); 1768 } 1769 1770 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default; 1771 1772 void MemoryDependenceWrapperPass::releaseMemory() { 1773 MemDep.reset(); 1774 } 1775 1776 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1777 AU.setPreservesAll(); 1778 AU.addRequired<AssumptionCacheTracker>(); 1779 AU.addRequired<DominatorTreeWrapperPass>(); 1780 AU.addRequired<PhiValuesWrapperPass>(); 1781 AU.addRequiredTransitive<AAResultsWrapperPass>(); 1782 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 1783 } 1784 1785 bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA, 1786 FunctionAnalysisManager::Invalidator &Inv) { 1787 // Check whether our analysis is preserved. 1788 auto PAC = PA.getChecker<MemoryDependenceAnalysis>(); 1789 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>()) 1790 // If not, give up now. 1791 return true; 1792 1793 // Check whether the analyses we depend on became invalid for any reason. 1794 if (Inv.invalidate<AAManager>(F, PA) || 1795 Inv.invalidate<AssumptionAnalysis>(F, PA) || 1796 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 1797 Inv.invalidate<PhiValuesAnalysis>(F, PA)) 1798 return true; 1799 1800 // Otherwise this analysis result remains valid. 1801 return false; 1802 } 1803 1804 unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const { 1805 return BlockScanLimit; 1806 } 1807 1808 bool MemoryDependenceWrapperPass::runOnFunction(Function &F) { 1809 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1810 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1811 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1812 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1813 auto &PV = getAnalysis<PhiValuesWrapperPass>().getResult(); 1814 MemDep.emplace(AA, AC, TLI, DT, PV); 1815 return false; 1816 } 1817