1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements an analysis that determines, for a given memory 11 // operation, what preceding memory operations it depends on. It builds on 12 // alias analysis information, and tries to provide a lazy, caching interface to 13 // a common kind of alias information query. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/MemoryBuiltins.h" 24 #include "llvm/Analysis/PHITransAddr.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/IR/PredIteratorCache.h" 33 #include "llvm/Support/Debug.h" 34 using namespace llvm; 35 36 #define DEBUG_TYPE "memdep" 37 38 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); 39 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); 40 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); 41 42 STATISTIC(NumCacheNonLocalPtr, 43 "Number of fully cached non-local ptr responses"); 44 STATISTIC(NumCacheDirtyNonLocalPtr, 45 "Number of cached, but dirty, non-local ptr responses"); 46 STATISTIC(NumUncacheNonLocalPtr, 47 "Number of uncached non-local ptr responses"); 48 STATISTIC(NumCacheCompleteNonLocalPtr, 49 "Number of block queries that were completely cached"); 50 51 // Limit for the number of instructions to scan in a block. 52 static const unsigned int BlockScanLimit = 100; 53 54 // Limit on the number of memdep results to process. 55 static const unsigned int NumResultsLimit = 100; 56 57 char MemoryDependenceAnalysis::ID = 0; 58 59 // Register this pass... 60 INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep", 61 "Memory Dependence Analysis", false, true) 62 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 63 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 64 INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep", 65 "Memory Dependence Analysis", false, true) 66 67 MemoryDependenceAnalysis::MemoryDependenceAnalysis() 68 : FunctionPass(ID) { 69 initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry()); 70 } 71 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() { 72 } 73 74 /// Clean up memory in between runs 75 void MemoryDependenceAnalysis::releaseMemory() { 76 LocalDeps.clear(); 77 NonLocalDeps.clear(); 78 NonLocalPointerDeps.clear(); 79 ReverseLocalDeps.clear(); 80 ReverseNonLocalDeps.clear(); 81 ReverseNonLocalPtrDeps.clear(); 82 PredCache.clear(); 83 } 84 85 /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis. 86 /// 87 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 88 AU.setPreservesAll(); 89 AU.addRequired<AssumptionCacheTracker>(); 90 AU.addRequiredTransitive<AliasAnalysis>(); 91 } 92 93 bool MemoryDependenceAnalysis::runOnFunction(Function &F) { 94 AA = &getAnalysis<AliasAnalysis>(); 95 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 96 DominatorTreeWrapperPass *DTWP = 97 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 98 DT = DTWP ? &DTWP->getDomTree() : nullptr; 99 return false; 100 } 101 102 /// RemoveFromReverseMap - This is a helper function that removes Val from 103 /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry. 104 template <typename KeyTy> 105 static void RemoveFromReverseMap(DenseMap<Instruction*, 106 SmallPtrSet<KeyTy, 4> > &ReverseMap, 107 Instruction *Inst, KeyTy Val) { 108 typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator 109 InstIt = ReverseMap.find(Inst); 110 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); 111 bool Found = InstIt->second.erase(Val); 112 assert(Found && "Invalid reverse map!"); (void)Found; 113 if (InstIt->second.empty()) 114 ReverseMap.erase(InstIt); 115 } 116 117 /// GetLocation - If the given instruction references a specific memory 118 /// location, fill in Loc with the details, otherwise set Loc.Ptr to null. 119 /// Return a ModRefInfo value describing the general behavior of the 120 /// instruction. 121 static AliasAnalysis::ModRefResult 122 GetLocation(const Instruction *Inst, MemoryLocation &Loc, AliasAnalysis *AA) { 123 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 124 if (LI->isUnordered()) { 125 Loc = MemoryLocation::get(LI); 126 return AliasAnalysis::Ref; 127 } 128 if (LI->getOrdering() == Monotonic) { 129 Loc = MemoryLocation::get(LI); 130 return AliasAnalysis::ModRef; 131 } 132 Loc = MemoryLocation(); 133 return AliasAnalysis::ModRef; 134 } 135 136 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 137 if (SI->isUnordered()) { 138 Loc = MemoryLocation::get(SI); 139 return AliasAnalysis::Mod; 140 } 141 if (SI->getOrdering() == Monotonic) { 142 Loc = MemoryLocation::get(SI); 143 return AliasAnalysis::ModRef; 144 } 145 Loc = MemoryLocation(); 146 return AliasAnalysis::ModRef; 147 } 148 149 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { 150 Loc = MemoryLocation::get(V); 151 return AliasAnalysis::ModRef; 152 } 153 154 if (const CallInst *CI = isFreeCall(Inst, AA->getTargetLibraryInfo())) { 155 // calls to free() deallocate the entire structure 156 Loc = MemoryLocation(CI->getArgOperand(0)); 157 return AliasAnalysis::Mod; 158 } 159 160 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 161 AAMDNodes AAInfo; 162 163 switch (II->getIntrinsicID()) { 164 case Intrinsic::lifetime_start: 165 case Intrinsic::lifetime_end: 166 case Intrinsic::invariant_start: 167 II->getAAMetadata(AAInfo); 168 Loc = MemoryLocation( 169 II->getArgOperand(1), 170 cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(), AAInfo); 171 // These intrinsics don't really modify the memory, but returning Mod 172 // will allow them to be handled conservatively. 173 return AliasAnalysis::Mod; 174 case Intrinsic::invariant_end: 175 II->getAAMetadata(AAInfo); 176 Loc = MemoryLocation( 177 II->getArgOperand(2), 178 cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(), AAInfo); 179 // These intrinsics don't really modify the memory, but returning Mod 180 // will allow them to be handled conservatively. 181 return AliasAnalysis::Mod; 182 default: 183 break; 184 } 185 } 186 187 // Otherwise, just do the coarse-grained thing that always works. 188 if (Inst->mayWriteToMemory()) 189 return AliasAnalysis::ModRef; 190 if (Inst->mayReadFromMemory()) 191 return AliasAnalysis::Ref; 192 return AliasAnalysis::NoModRef; 193 } 194 195 /// getCallSiteDependencyFrom - Private helper for finding the local 196 /// dependencies of a call site. 197 MemDepResult MemoryDependenceAnalysis:: 198 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall, 199 BasicBlock::iterator ScanIt, BasicBlock *BB) { 200 unsigned Limit = BlockScanLimit; 201 202 // Walk backwards through the block, looking for dependencies 203 while (ScanIt != BB->begin()) { 204 // Limit the amount of scanning we do so we don't end up with quadratic 205 // running time on extreme testcases. 206 --Limit; 207 if (!Limit) 208 return MemDepResult::getUnknown(); 209 210 Instruction *Inst = --ScanIt; 211 212 // If this inst is a memory op, get the pointer it accessed 213 MemoryLocation Loc; 214 AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA); 215 if (Loc.Ptr) { 216 // A simple instruction. 217 if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef) 218 return MemDepResult::getClobber(Inst); 219 continue; 220 } 221 222 if (auto InstCS = CallSite(Inst)) { 223 // Debug intrinsics don't cause dependences. 224 if (isa<DbgInfoIntrinsic>(Inst)) continue; 225 // If these two calls do not interfere, look past it. 226 switch (AA->getModRefInfo(CS, InstCS)) { 227 case AliasAnalysis::NoModRef: 228 // If the two calls are the same, return InstCS as a Def, so that 229 // CS can be found redundant and eliminated. 230 if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) && 231 CS.getInstruction()->isIdenticalToWhenDefined(Inst)) 232 return MemDepResult::getDef(Inst); 233 234 // Otherwise if the two calls don't interact (e.g. InstCS is readnone) 235 // keep scanning. 236 continue; 237 default: 238 return MemDepResult::getClobber(Inst); 239 } 240 } 241 242 // If we could not obtain a pointer for the instruction and the instruction 243 // touches memory then assume that this is a dependency. 244 if (MR != AliasAnalysis::NoModRef) 245 return MemDepResult::getClobber(Inst); 246 } 247 248 // No dependence found. If this is the entry block of the function, it is 249 // unknown, otherwise it is non-local. 250 if (BB != &BB->getParent()->getEntryBlock()) 251 return MemDepResult::getNonLocal(); 252 return MemDepResult::getNonFuncLocal(); 253 } 254 255 /// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that 256 /// would fully overlap MemLoc if done as a wider legal integer load. 257 /// 258 /// MemLocBase, MemLocOffset are lazily computed here the first time the 259 /// base/offs of memloc is needed. 260 static bool isLoadLoadClobberIfExtendedToFullWidth(const MemoryLocation &MemLoc, 261 const Value *&MemLocBase, 262 int64_t &MemLocOffs, 263 const LoadInst *LI) { 264 const DataLayout &DL = LI->getModule()->getDataLayout(); 265 266 // If we haven't already computed the base/offset of MemLoc, do so now. 267 if (!MemLocBase) 268 MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, DL); 269 270 unsigned Size = MemoryDependenceAnalysis::getLoadLoadClobberFullWidthSize( 271 MemLocBase, MemLocOffs, MemLoc.Size, LI); 272 return Size != 0; 273 } 274 275 /// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that 276 /// looks at a memory location for a load (specified by MemLocBase, Offs, 277 /// and Size) and compares it against a load. If the specified load could 278 /// be safely widened to a larger integer load that is 1) still efficient, 279 /// 2) safe for the target, and 3) would provide the specified memory 280 /// location value, then this function returns the size in bytes of the 281 /// load width to use. If not, this returns zero. 282 unsigned MemoryDependenceAnalysis::getLoadLoadClobberFullWidthSize( 283 const Value *MemLocBase, int64_t MemLocOffs, unsigned MemLocSize, 284 const LoadInst *LI) { 285 // We can only extend simple integer loads. 286 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0; 287 288 // Load widening is hostile to ThreadSanitizer: it may cause false positives 289 // or make the reports more cryptic (access sizes are wrong). 290 if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread)) 291 return 0; 292 293 const DataLayout &DL = LI->getModule()->getDataLayout(); 294 295 // Get the base of this load. 296 int64_t LIOffs = 0; 297 const Value *LIBase = 298 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL); 299 300 // If the two pointers are not based on the same pointer, we can't tell that 301 // they are related. 302 if (LIBase != MemLocBase) return 0; 303 304 // Okay, the two values are based on the same pointer, but returned as 305 // no-alias. This happens when we have things like two byte loads at "P+1" 306 // and "P+3". Check to see if increasing the size of the "LI" load up to its 307 // alignment (or the largest native integer type) will allow us to load all 308 // the bits required by MemLoc. 309 310 // If MemLoc is before LI, then no widening of LI will help us out. 311 if (MemLocOffs < LIOffs) return 0; 312 313 // Get the alignment of the load in bytes. We assume that it is safe to load 314 // any legal integer up to this size without a problem. For example, if we're 315 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can 316 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it 317 // to i16. 318 unsigned LoadAlign = LI->getAlignment(); 319 320 int64_t MemLocEnd = MemLocOffs+MemLocSize; 321 322 // If no amount of rounding up will let MemLoc fit into LI, then bail out. 323 if (LIOffs+LoadAlign < MemLocEnd) return 0; 324 325 // This is the size of the load to try. Start with the next larger power of 326 // two. 327 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U; 328 NewLoadByteSize = NextPowerOf2(NewLoadByteSize); 329 330 while (1) { 331 // If this load size is bigger than our known alignment or would not fit 332 // into a native integer register, then we fail. 333 if (NewLoadByteSize > LoadAlign || 334 !DL.fitsInLegalInteger(NewLoadByteSize*8)) 335 return 0; 336 337 if (LIOffs + NewLoadByteSize > MemLocEnd && 338 LI->getParent()->getParent()->hasFnAttribute( 339 Attribute::SanitizeAddress)) 340 // We will be reading past the location accessed by the original program. 341 // While this is safe in a regular build, Address Safety analysis tools 342 // may start reporting false warnings. So, don't do widening. 343 return 0; 344 345 // If a load of this width would include all of MemLoc, then we succeed. 346 if (LIOffs+NewLoadByteSize >= MemLocEnd) 347 return NewLoadByteSize; 348 349 NewLoadByteSize <<= 1; 350 } 351 } 352 353 static bool isVolatile(Instruction *Inst) { 354 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 355 return LI->isVolatile(); 356 else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) 357 return SI->isVolatile(); 358 else if (AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(Inst)) 359 return AI->isVolatile(); 360 return false; 361 } 362 363 364 /// getPointerDependencyFrom - Return the instruction on which a memory 365 /// location depends. If isLoad is true, this routine ignores may-aliases with 366 /// read-only operations. If isLoad is false, this routine ignores may-aliases 367 /// with reads from read-only locations. If possible, pass the query 368 /// instruction as well; this function may take advantage of the metadata 369 /// annotated to the query instruction to refine the result. 370 MemDepResult MemoryDependenceAnalysis::getPointerDependencyFrom( 371 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 372 BasicBlock *BB, Instruction *QueryInst) { 373 374 const Value *MemLocBase = nullptr; 375 int64_t MemLocOffset = 0; 376 unsigned Limit = BlockScanLimit; 377 bool isInvariantLoad = false; 378 379 // We must be careful with atomic accesses, as they may allow another thread 380 // to touch this location, cloberring it. We are conservative: if the 381 // QueryInst is not a simple (non-atomic) memory access, we automatically 382 // return getClobber. 383 // If it is simple, we know based on the results of 384 // "Compiler testing via a theory of sound optimisations in the C11/C++11 385 // memory model" in PLDI 2013, that a non-atomic location can only be 386 // clobbered between a pair of a release and an acquire action, with no 387 // access to the location in between. 388 // Here is an example for giving the general intuition behind this rule. 389 // In the following code: 390 // store x 0; 391 // release action; [1] 392 // acquire action; [4] 393 // %val = load x; 394 // It is unsafe to replace %val by 0 because another thread may be running: 395 // acquire action; [2] 396 // store x 42; 397 // release action; [3] 398 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val 399 // being 42. A key property of this program however is that if either 400 // 1 or 4 were missing, there would be a race between the store of 42 401 // either the store of 0 or the load (making the whole progam racy). 402 // The paper mentionned above shows that the same property is respected 403 // by every program that can detect any optimisation of that kind: either 404 // it is racy (undefined) or there is a release followed by an acquire 405 // between the pair of accesses under consideration. 406 407 // If the load is invariant, we "know" that it doesn't alias *any* write. We 408 // do want to respect mustalias results since defs are useful for value 409 // forwarding, but any mayalias write can be assumed to be noalias. 410 // Arguably, this logic should be pushed inside AliasAnalysis itself. 411 if (isLoad && QueryInst) { 412 LoadInst *LI = dyn_cast<LoadInst>(QueryInst); 413 if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr) 414 isInvariantLoad = true; 415 } 416 417 const DataLayout &DL = BB->getModule()->getDataLayout(); 418 419 // Walk backwards through the basic block, looking for dependencies. 420 while (ScanIt != BB->begin()) { 421 Instruction *Inst = --ScanIt; 422 423 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 424 // Debug intrinsics don't (and can't) cause dependencies. 425 if (isa<DbgInfoIntrinsic>(II)) continue; 426 427 // Limit the amount of scanning we do so we don't end up with quadratic 428 // running time on extreme testcases. 429 --Limit; 430 if (!Limit) 431 return MemDepResult::getUnknown(); 432 433 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 434 // If we reach a lifetime begin or end marker, then the query ends here 435 // because the value is undefined. 436 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 437 // FIXME: This only considers queries directly on the invariant-tagged 438 // pointer, not on query pointers that are indexed off of them. It'd 439 // be nice to handle that at some point (the right approach is to use 440 // GetPointerBaseWithConstantOffset). 441 if (AA->isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc)) 442 return MemDepResult::getDef(II); 443 continue; 444 } 445 } 446 447 // Values depend on loads if the pointers are must aliased. This means that 448 // a load depends on another must aliased load from the same value. 449 // One exception is atomic loads: a value can depend on an atomic load that it 450 // does not alias with when this atomic load indicates that another thread may 451 // be accessing the location. 452 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 453 454 // While volatile access cannot be eliminated, they do not have to clobber 455 // non-aliasing locations, as normal accesses, for example, can be safely 456 // reordered with volatile accesses. 457 if (LI->isVolatile()) { 458 if (!QueryInst) 459 // Original QueryInst *may* be volatile 460 return MemDepResult::getClobber(LI); 461 if (isVolatile(QueryInst)) 462 // Ordering required if QueryInst is itself volatile 463 return MemDepResult::getClobber(LI); 464 // Otherwise, volatile doesn't imply any special ordering 465 } 466 467 // Atomic loads have complications involved. 468 // A Monotonic (or higher) load is OK if the query inst is itself not atomic. 469 // FIXME: This is overly conservative. 470 if (LI->isAtomic() && LI->getOrdering() > Unordered) { 471 if (!QueryInst) 472 return MemDepResult::getClobber(LI); 473 if (LI->getOrdering() != Monotonic) 474 return MemDepResult::getClobber(LI); 475 if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) { 476 if (!QueryLI->isSimple()) 477 return MemDepResult::getClobber(LI); 478 } else if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) { 479 if (!QuerySI->isSimple()) 480 return MemDepResult::getClobber(LI); 481 } else if (QueryInst->mayReadOrWriteMemory()) { 482 return MemDepResult::getClobber(LI); 483 } 484 } 485 486 MemoryLocation LoadLoc = MemoryLocation::get(LI); 487 488 // If we found a pointer, check if it could be the same as our pointer. 489 AliasResult R = AA->alias(LoadLoc, MemLoc); 490 491 if (isLoad) { 492 if (R == NoAlias) { 493 // If this is an over-aligned integer load (for example, 494 // "load i8* %P, align 4") see if it would obviously overlap with the 495 // queried location if widened to a larger load (e.g. if the queried 496 // location is 1 byte at P+1). If so, return it as a load/load 497 // clobber result, allowing the client to decide to widen the load if 498 // it wants to. 499 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) { 500 if (LI->getAlignment() * 8 > ITy->getPrimitiveSizeInBits() && 501 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase, 502 MemLocOffset, LI)) 503 return MemDepResult::getClobber(Inst); 504 } 505 continue; 506 } 507 508 // Must aliased loads are defs of each other. 509 if (R == MustAlias) 510 return MemDepResult::getDef(Inst); 511 512 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads 513 // in terms of clobbering loads, but since it does this by looking 514 // at the clobbering load directly, it doesn't know about any 515 // phi translation that may have happened along the way. 516 517 // If we have a partial alias, then return this as a clobber for the 518 // client to handle. 519 if (R == PartialAlias) 520 return MemDepResult::getClobber(Inst); 521 #endif 522 523 // Random may-alias loads don't depend on each other without a 524 // dependence. 525 continue; 526 } 527 528 // Stores don't depend on other no-aliased accesses. 529 if (R == NoAlias) 530 continue; 531 532 // Stores don't alias loads from read-only memory. 533 if (AA->pointsToConstantMemory(LoadLoc)) 534 continue; 535 536 // Stores depend on may/must aliased loads. 537 return MemDepResult::getDef(Inst); 538 } 539 540 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 541 // Atomic stores have complications involved. 542 // A Monotonic store is OK if the query inst is itself not atomic. 543 // FIXME: This is overly conservative. 544 if (!SI->isUnordered()) { 545 if (!QueryInst) 546 return MemDepResult::getClobber(SI); 547 if (SI->getOrdering() != Monotonic) 548 return MemDepResult::getClobber(SI); 549 if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) { 550 if (!QueryLI->isSimple()) 551 return MemDepResult::getClobber(SI); 552 } else if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) { 553 if (!QuerySI->isSimple()) 554 return MemDepResult::getClobber(SI); 555 } else if (QueryInst->mayReadOrWriteMemory()) { 556 return MemDepResult::getClobber(SI); 557 } 558 } 559 560 // FIXME: this is overly conservative. 561 // While volatile access cannot be eliminated, they do not have to clobber 562 // non-aliasing locations, as normal accesses can for example be reordered 563 // with volatile accesses. 564 if (SI->isVolatile()) 565 return MemDepResult::getClobber(SI); 566 567 // If alias analysis can tell that this store is guaranteed to not modify 568 // the query pointer, ignore it. Use getModRefInfo to handle cases where 569 // the query pointer points to constant memory etc. 570 if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef) 571 continue; 572 573 // Ok, this store might clobber the query pointer. Check to see if it is 574 // a must alias: in this case, we want to return this as a def. 575 MemoryLocation StoreLoc = MemoryLocation::get(SI); 576 577 // If we found a pointer, check if it could be the same as our pointer. 578 AliasResult R = AA->alias(StoreLoc, MemLoc); 579 580 if (R == NoAlias) 581 continue; 582 if (R == MustAlias) 583 return MemDepResult::getDef(Inst); 584 if (isInvariantLoad) 585 continue; 586 return MemDepResult::getClobber(Inst); 587 } 588 589 // If this is an allocation, and if we know that the accessed pointer is to 590 // the allocation, return Def. This means that there is no dependence and 591 // the access can be optimized based on that. For example, a load could 592 // turn into undef. 593 // Note: Only determine this to be a malloc if Inst is the malloc call, not 594 // a subsequent bitcast of the malloc call result. There can be stores to 595 // the malloced memory between the malloc call and its bitcast uses, and we 596 // need to continue scanning until the malloc call. 597 const TargetLibraryInfo *TLI = AA->getTargetLibraryInfo(); 598 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, TLI)) { 599 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL); 600 601 if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr)) 602 return MemDepResult::getDef(Inst); 603 if (isInvariantLoad) 604 continue; 605 // Be conservative if the accessed pointer may alias the allocation. 606 if (AA->alias(Inst, AccessPtr) != NoAlias) 607 return MemDepResult::getClobber(Inst); 608 // If the allocation is not aliased and does not read memory (like 609 // strdup), it is safe to ignore. 610 if (isa<AllocaInst>(Inst) || 611 isMallocLikeFn(Inst, TLI) || isCallocLikeFn(Inst, TLI)) 612 continue; 613 } 614 615 if (isInvariantLoad) 616 continue; 617 618 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. 619 AliasAnalysis::ModRefResult MR = AA->getModRefInfo(Inst, MemLoc); 620 // If necessary, perform additional analysis. 621 if (MR == AliasAnalysis::ModRef) 622 MR = AA->callCapturesBefore(Inst, MemLoc, DT); 623 switch (MR) { 624 case AliasAnalysis::NoModRef: 625 // If the call has no effect on the queried pointer, just ignore it. 626 continue; 627 case AliasAnalysis::Mod: 628 return MemDepResult::getClobber(Inst); 629 case AliasAnalysis::Ref: 630 // If the call is known to never store to the pointer, and if this is a 631 // load query, we can safely ignore it (scan past it). 632 if (isLoad) 633 continue; 634 default: 635 // Otherwise, there is a potential dependence. Return a clobber. 636 return MemDepResult::getClobber(Inst); 637 } 638 } 639 640 // No dependence found. If this is the entry block of the function, it is 641 // unknown, otherwise it is non-local. 642 if (BB != &BB->getParent()->getEntryBlock()) 643 return MemDepResult::getNonLocal(); 644 return MemDepResult::getNonFuncLocal(); 645 } 646 647 /// getDependency - Return the instruction on which a memory operation 648 /// depends. 649 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) { 650 Instruction *ScanPos = QueryInst; 651 652 // Check for a cached result 653 MemDepResult &LocalCache = LocalDeps[QueryInst]; 654 655 // If the cached entry is non-dirty, just return it. Note that this depends 656 // on MemDepResult's default constructing to 'dirty'. 657 if (!LocalCache.isDirty()) 658 return LocalCache; 659 660 // Otherwise, if we have a dirty entry, we know we can start the scan at that 661 // instruction, which may save us some work. 662 if (Instruction *Inst = LocalCache.getInst()) { 663 ScanPos = Inst; 664 665 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); 666 } 667 668 BasicBlock *QueryParent = QueryInst->getParent(); 669 670 // Do the scan. 671 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { 672 // No dependence found. If this is the entry block of the function, it is 673 // unknown, otherwise it is non-local. 674 if (QueryParent != &QueryParent->getParent()->getEntryBlock()) 675 LocalCache = MemDepResult::getNonLocal(); 676 else 677 LocalCache = MemDepResult::getNonFuncLocal(); 678 } else { 679 MemoryLocation MemLoc; 680 AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA); 681 if (MemLoc.Ptr) { 682 // If we can do a pointer scan, make it happen. 683 bool isLoad = !(MR & AliasAnalysis::Mod); 684 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst)) 685 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start; 686 687 LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos, 688 QueryParent, QueryInst); 689 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) { 690 CallSite QueryCS(QueryInst); 691 bool isReadOnly = AA->onlyReadsMemory(QueryCS); 692 LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos, 693 QueryParent); 694 } else 695 // Non-memory instruction. 696 LocalCache = MemDepResult::getUnknown(); 697 } 698 699 // Remember the result! 700 if (Instruction *I = LocalCache.getInst()) 701 ReverseLocalDeps[I].insert(QueryInst); 702 703 return LocalCache; 704 } 705 706 #ifndef NDEBUG 707 /// AssertSorted - This method is used when -debug is specified to verify that 708 /// cache arrays are properly kept sorted. 709 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 710 int Count = -1) { 711 if (Count == -1) Count = Cache.size(); 712 if (Count == 0) return; 713 714 for (unsigned i = 1; i != unsigned(Count); ++i) 715 assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!"); 716 } 717 #endif 718 719 /// getNonLocalCallDependency - Perform a full dependency query for the 720 /// specified call, returning the set of blocks that the value is 721 /// potentially live across. The returned set of results will include a 722 /// "NonLocal" result for all blocks where the value is live across. 723 /// 724 /// This method assumes the instruction returns a "NonLocal" dependency 725 /// within its own block. 726 /// 727 /// This returns a reference to an internal data structure that may be 728 /// invalidated on the next non-local query or when an instruction is 729 /// removed. Clients must copy this data if they want it around longer than 730 /// that. 731 const MemoryDependenceAnalysis::NonLocalDepInfo & 732 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { 733 assert(getDependency(QueryCS.getInstruction()).isNonLocal() && 734 "getNonLocalCallDependency should only be used on calls with non-local deps!"); 735 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()]; 736 NonLocalDepInfo &Cache = CacheP.first; 737 738 /// DirtyBlocks - This is the set of blocks that need to be recomputed. In 739 /// the cached case, this can happen due to instructions being deleted etc. In 740 /// the uncached case, this starts out as the set of predecessors we care 741 /// about. 742 SmallVector<BasicBlock*, 32> DirtyBlocks; 743 744 if (!Cache.empty()) { 745 // Okay, we have a cache entry. If we know it is not dirty, just return it 746 // with no computation. 747 if (!CacheP.second) { 748 ++NumCacheNonLocal; 749 return Cache; 750 } 751 752 // If we already have a partially computed set of results, scan them to 753 // determine what is dirty, seeding our initial DirtyBlocks worklist. 754 for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end(); 755 I != E; ++I) 756 if (I->getResult().isDirty()) 757 DirtyBlocks.push_back(I->getBB()); 758 759 // Sort the cache so that we can do fast binary search lookups below. 760 std::sort(Cache.begin(), Cache.end()); 761 762 ++NumCacheDirtyNonLocal; 763 //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " 764 // << Cache.size() << " cached: " << *QueryInst; 765 } else { 766 // Seed DirtyBlocks with each of the preds of QueryInst's block. 767 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent(); 768 for (BasicBlock *Pred : PredCache.get(QueryBB)) 769 DirtyBlocks.push_back(Pred); 770 ++NumUncacheNonLocal; 771 } 772 773 // isReadonlyCall - If this is a read-only call, we can be more aggressive. 774 bool isReadonlyCall = AA->onlyReadsMemory(QueryCS); 775 776 SmallPtrSet<BasicBlock*, 64> Visited; 777 778 unsigned NumSortedEntries = Cache.size(); 779 DEBUG(AssertSorted(Cache)); 780 781 // Iterate while we still have blocks to update. 782 while (!DirtyBlocks.empty()) { 783 BasicBlock *DirtyBB = DirtyBlocks.back(); 784 DirtyBlocks.pop_back(); 785 786 // Already processed this block? 787 if (!Visited.insert(DirtyBB).second) 788 continue; 789 790 // Do a binary search to see if we already have an entry for this block in 791 // the cache set. If so, find it. 792 DEBUG(AssertSorted(Cache, NumSortedEntries)); 793 NonLocalDepInfo::iterator Entry = 794 std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries, 795 NonLocalDepEntry(DirtyBB)); 796 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB) 797 --Entry; 798 799 NonLocalDepEntry *ExistingResult = nullptr; 800 if (Entry != Cache.begin()+NumSortedEntries && 801 Entry->getBB() == DirtyBB) { 802 // If we already have an entry, and if it isn't already dirty, the block 803 // is done. 804 if (!Entry->getResult().isDirty()) 805 continue; 806 807 // Otherwise, remember this slot so we can update the value. 808 ExistingResult = &*Entry; 809 } 810 811 // If the dirty entry has a pointer, start scanning from it so we don't have 812 // to rescan the entire block. 813 BasicBlock::iterator ScanPos = DirtyBB->end(); 814 if (ExistingResult) { 815 if (Instruction *Inst = ExistingResult->getResult().getInst()) { 816 ScanPos = Inst; 817 // We're removing QueryInst's use of Inst. 818 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, 819 QueryCS.getInstruction()); 820 } 821 } 822 823 // Find out if this block has a local dependency for QueryInst. 824 MemDepResult Dep; 825 826 if (ScanPos != DirtyBB->begin()) { 827 Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB); 828 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { 829 // No dependence found. If this is the entry block of the function, it is 830 // a clobber, otherwise it is unknown. 831 Dep = MemDepResult::getNonLocal(); 832 } else { 833 Dep = MemDepResult::getNonFuncLocal(); 834 } 835 836 // If we had a dirty entry for the block, update it. Otherwise, just add 837 // a new entry. 838 if (ExistingResult) 839 ExistingResult->setResult(Dep); 840 else 841 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); 842 843 // If the block has a dependency (i.e. it isn't completely transparent to 844 // the value), remember the association! 845 if (!Dep.isNonLocal()) { 846 // Keep the ReverseNonLocalDeps map up to date so we can efficiently 847 // update this when we remove instructions. 848 if (Instruction *Inst = Dep.getInst()) 849 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction()); 850 } else { 851 852 // If the block *is* completely transparent to the load, we need to check 853 // the predecessors of this block. Add them to our worklist. 854 for (BasicBlock *Pred : PredCache.get(DirtyBB)) 855 DirtyBlocks.push_back(Pred); 856 } 857 } 858 859 return Cache; 860 } 861 862 /// getNonLocalPointerDependency - Perform a full dependency query for an 863 /// access to the specified (non-volatile) memory location, returning the 864 /// set of instructions that either define or clobber the value. 865 /// 866 /// This method assumes the pointer has a "NonLocal" dependency within its 867 /// own block. 868 /// 869 void MemoryDependenceAnalysis:: 870 getNonLocalPointerDependency(Instruction *QueryInst, 871 SmallVectorImpl<NonLocalDepResult> &Result) { 872 const MemoryLocation Loc = MemoryLocation::get(QueryInst); 873 bool isLoad = isa<LoadInst>(QueryInst); 874 BasicBlock *FromBB = QueryInst->getParent(); 875 assert(FromBB); 876 877 assert(Loc.Ptr->getType()->isPointerTy() && 878 "Can't get pointer deps of a non-pointer!"); 879 Result.clear(); 880 881 // This routine does not expect to deal with volatile instructions. 882 // Doing so would require piping through the QueryInst all the way through. 883 // TODO: volatiles can't be elided, but they can be reordered with other 884 // non-volatile accesses. 885 886 // We currently give up on any instruction which is ordered, but we do handle 887 // atomic instructions which are unordered. 888 // TODO: Handle ordered instructions 889 auto isOrdered = [](Instruction *Inst) { 890 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 891 return !LI->isUnordered(); 892 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 893 return !SI->isUnordered(); 894 } 895 return false; 896 }; 897 if (isVolatile(QueryInst) || isOrdered(QueryInst)) { 898 Result.push_back(NonLocalDepResult(FromBB, 899 MemDepResult::getUnknown(), 900 const_cast<Value *>(Loc.Ptr))); 901 return; 902 } 903 const DataLayout &DL = FromBB->getModule()->getDataLayout(); 904 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, AC); 905 906 // This is the set of blocks we've inspected, and the pointer we consider in 907 // each block. Because of critical edges, we currently bail out if querying 908 // a block with multiple different pointers. This can happen during PHI 909 // translation. 910 DenseMap<BasicBlock*, Value*> Visited; 911 if (!getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB, 912 Result, Visited, true)) 913 return; 914 Result.clear(); 915 Result.push_back(NonLocalDepResult(FromBB, 916 MemDepResult::getUnknown(), 917 const_cast<Value *>(Loc.Ptr))); 918 } 919 920 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with 921 /// Pointer/PointeeSize using either cached information in Cache or by doing a 922 /// lookup (which may use dirty cache info if available). If we do a lookup, 923 /// add the result to the cache. 924 MemDepResult MemoryDependenceAnalysis::GetNonLocalInfoForBlock( 925 Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad, 926 BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) { 927 928 // Do a binary search to see if we already have an entry for this block in 929 // the cache set. If so, find it. 930 NonLocalDepInfo::iterator Entry = 931 std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries, 932 NonLocalDepEntry(BB)); 933 if (Entry != Cache->begin() && (Entry-1)->getBB() == BB) 934 --Entry; 935 936 NonLocalDepEntry *ExistingResult = nullptr; 937 if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB) 938 ExistingResult = &*Entry; 939 940 // If we have a cached entry, and it is non-dirty, use it as the value for 941 // this dependency. 942 if (ExistingResult && !ExistingResult->getResult().isDirty()) { 943 ++NumCacheNonLocalPtr; 944 return ExistingResult->getResult(); 945 } 946 947 // Otherwise, we have to scan for the value. If we have a dirty cache 948 // entry, start scanning from its position, otherwise we scan from the end 949 // of the block. 950 BasicBlock::iterator ScanPos = BB->end(); 951 if (ExistingResult && ExistingResult->getResult().getInst()) { 952 assert(ExistingResult->getResult().getInst()->getParent() == BB && 953 "Instruction invalidated?"); 954 ++NumCacheDirtyNonLocalPtr; 955 ScanPos = ExistingResult->getResult().getInst(); 956 957 // Eliminating the dirty entry from 'Cache', so update the reverse info. 958 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 959 RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey); 960 } else { 961 ++NumUncacheNonLocalPtr; 962 } 963 964 // Scan the block for the dependency. 965 MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, 966 QueryInst); 967 968 // If we had a dirty entry for the block, update it. Otherwise, just add 969 // a new entry. 970 if (ExistingResult) 971 ExistingResult->setResult(Dep); 972 else 973 Cache->push_back(NonLocalDepEntry(BB, Dep)); 974 975 // If the block has a dependency (i.e. it isn't completely transparent to 976 // the value), remember the reverse association because we just added it 977 // to Cache! 978 if (!Dep.isDef() && !Dep.isClobber()) 979 return Dep; 980 981 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently 982 // update MemDep when we remove instructions. 983 Instruction *Inst = Dep.getInst(); 984 assert(Inst && "Didn't depend on anything?"); 985 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 986 ReverseNonLocalPtrDeps[Inst].insert(CacheKey); 987 return Dep; 988 } 989 990 /// SortNonLocalDepInfoCache - Sort the NonLocalDepInfo cache, given a certain 991 /// number of elements in the array that are already properly ordered. This is 992 /// optimized for the case when only a few entries are added. 993 static void 994 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 995 unsigned NumSortedEntries) { 996 switch (Cache.size() - NumSortedEntries) { 997 case 0: 998 // done, no new entries. 999 break; 1000 case 2: { 1001 // Two new entries, insert the last one into place. 1002 NonLocalDepEntry Val = Cache.back(); 1003 Cache.pop_back(); 1004 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 1005 std::upper_bound(Cache.begin(), Cache.end()-1, Val); 1006 Cache.insert(Entry, Val); 1007 // FALL THROUGH. 1008 } 1009 case 1: 1010 // One new entry, Just insert the new value at the appropriate position. 1011 if (Cache.size() != 1) { 1012 NonLocalDepEntry Val = Cache.back(); 1013 Cache.pop_back(); 1014 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 1015 std::upper_bound(Cache.begin(), Cache.end(), Val); 1016 Cache.insert(Entry, Val); 1017 } 1018 break; 1019 default: 1020 // Added many values, do a full scale sort. 1021 std::sort(Cache.begin(), Cache.end()); 1022 break; 1023 } 1024 } 1025 1026 /// getNonLocalPointerDepFromBB - Perform a dependency query based on 1027 /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def 1028 /// results to the results vector and keep track of which blocks are visited in 1029 /// 'Visited'. 1030 /// 1031 /// This has special behavior for the first block queries (when SkipFirstBlock 1032 /// is true). In this special case, it ignores the contents of the specified 1033 /// block and starts returning dependence info for its predecessors. 1034 /// 1035 /// This function returns false on success, or true to indicate that it could 1036 /// not compute dependence information for some reason. This should be treated 1037 /// as a clobber dependence on the first instruction in the predecessor block. 1038 bool MemoryDependenceAnalysis::getNonLocalPointerDepFromBB( 1039 Instruction *QueryInst, const PHITransAddr &Pointer, 1040 const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB, 1041 SmallVectorImpl<NonLocalDepResult> &Result, 1042 DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock) { 1043 // Look up the cached info for Pointer. 1044 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); 1045 1046 // Set up a temporary NLPI value. If the map doesn't yet have an entry for 1047 // CacheKey, this value will be inserted as the associated value. Otherwise, 1048 // it'll be ignored, and we'll have to check to see if the cached size and 1049 // aa tags are consistent with the current query. 1050 NonLocalPointerInfo InitialNLPI; 1051 InitialNLPI.Size = Loc.Size; 1052 InitialNLPI.AATags = Loc.AATags; 1053 1054 // Get the NLPI for CacheKey, inserting one into the map if it doesn't 1055 // already have one. 1056 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = 1057 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); 1058 NonLocalPointerInfo *CacheInfo = &Pair.first->second; 1059 1060 // If we already have a cache entry for this CacheKey, we may need to do some 1061 // work to reconcile the cache entry and the current query. 1062 if (!Pair.second) { 1063 if (CacheInfo->Size < Loc.Size) { 1064 // The query's Size is greater than the cached one. Throw out the 1065 // cached data and proceed with the query at the greater size. 1066 CacheInfo->Pair = BBSkipFirstBlockPair(); 1067 CacheInfo->Size = Loc.Size; 1068 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(), 1069 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI) 1070 if (Instruction *Inst = DI->getResult().getInst()) 1071 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1072 CacheInfo->NonLocalDeps.clear(); 1073 } else if (CacheInfo->Size > Loc.Size) { 1074 // This query's Size is less than the cached one. Conservatively restart 1075 // the query using the greater size. 1076 return getNonLocalPointerDepFromBB(QueryInst, Pointer, 1077 Loc.getWithNewSize(CacheInfo->Size), 1078 isLoad, StartBB, Result, Visited, 1079 SkipFirstBlock); 1080 } 1081 1082 // If the query's AATags are inconsistent with the cached one, 1083 // conservatively throw out the cached data and restart the query with 1084 // no tag if needed. 1085 if (CacheInfo->AATags != Loc.AATags) { 1086 if (CacheInfo->AATags) { 1087 CacheInfo->Pair = BBSkipFirstBlockPair(); 1088 CacheInfo->AATags = AAMDNodes(); 1089 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(), 1090 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI) 1091 if (Instruction *Inst = DI->getResult().getInst()) 1092 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1093 CacheInfo->NonLocalDeps.clear(); 1094 } 1095 if (Loc.AATags) 1096 return getNonLocalPointerDepFromBB(QueryInst, 1097 Pointer, Loc.getWithoutAATags(), 1098 isLoad, StartBB, Result, Visited, 1099 SkipFirstBlock); 1100 } 1101 } 1102 1103 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; 1104 1105 // If we have valid cached information for exactly the block we are 1106 // investigating, just return it with no recomputation. 1107 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { 1108 // We have a fully cached result for this query then we can just return the 1109 // cached results and populate the visited set. However, we have to verify 1110 // that we don't already have conflicting results for these blocks. Check 1111 // to ensure that if a block in the results set is in the visited set that 1112 // it was for the same pointer query. 1113 if (!Visited.empty()) { 1114 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 1115 I != E; ++I) { 1116 DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB()); 1117 if (VI == Visited.end() || VI->second == Pointer.getAddr()) 1118 continue; 1119 1120 // We have a pointer mismatch in a block. Just return clobber, saying 1121 // that something was clobbered in this result. We could also do a 1122 // non-fully cached query, but there is little point in doing this. 1123 return true; 1124 } 1125 } 1126 1127 Value *Addr = Pointer.getAddr(); 1128 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 1129 I != E; ++I) { 1130 Visited.insert(std::make_pair(I->getBB(), Addr)); 1131 if (I->getResult().isNonLocal()) { 1132 continue; 1133 } 1134 1135 if (!DT) { 1136 Result.push_back(NonLocalDepResult(I->getBB(), 1137 MemDepResult::getUnknown(), 1138 Addr)); 1139 } else if (DT->isReachableFromEntry(I->getBB())) { 1140 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr)); 1141 } 1142 } 1143 ++NumCacheCompleteNonLocalPtr; 1144 return false; 1145 } 1146 1147 // Otherwise, either this is a new block, a block with an invalid cache 1148 // pointer or one that we're about to invalidate by putting more info into it 1149 // than its valid cache info. If empty, the result will be valid cache info, 1150 // otherwise it isn't. 1151 if (Cache->empty()) 1152 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); 1153 else 1154 CacheInfo->Pair = BBSkipFirstBlockPair(); 1155 1156 SmallVector<BasicBlock*, 32> Worklist; 1157 Worklist.push_back(StartBB); 1158 1159 // PredList used inside loop. 1160 SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList; 1161 1162 // Keep track of the entries that we know are sorted. Previously cached 1163 // entries will all be sorted. The entries we add we only sort on demand (we 1164 // don't insert every element into its sorted position). We know that we 1165 // won't get any reuse from currently inserted values, because we don't 1166 // revisit blocks after we insert info for them. 1167 unsigned NumSortedEntries = Cache->size(); 1168 DEBUG(AssertSorted(*Cache)); 1169 1170 while (!Worklist.empty()) { 1171 BasicBlock *BB = Worklist.pop_back_val(); 1172 1173 // If we do process a large number of blocks it becomes very expensive and 1174 // likely it isn't worth worrying about 1175 if (Result.size() > NumResultsLimit) { 1176 Worklist.clear(); 1177 // Sort it now (if needed) so that recursive invocations of 1178 // getNonLocalPointerDepFromBB and other routines that could reuse the 1179 // cache value will only see properly sorted cache arrays. 1180 if (Cache && NumSortedEntries != Cache->size()) { 1181 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1182 } 1183 // Since we bail out, the "Cache" set won't contain all of the 1184 // results for the query. This is ok (we can still use it to accelerate 1185 // specific block queries) but we can't do the fastpath "return all 1186 // results from the set". Clear out the indicator for this. 1187 CacheInfo->Pair = BBSkipFirstBlockPair(); 1188 return true; 1189 } 1190 1191 // Skip the first block if we have it. 1192 if (!SkipFirstBlock) { 1193 // Analyze the dependency of *Pointer in FromBB. See if we already have 1194 // been here. 1195 assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); 1196 1197 // Get the dependency info for Pointer in BB. If we have cached 1198 // information, we will use it, otherwise we compute it. 1199 DEBUG(AssertSorted(*Cache, NumSortedEntries)); 1200 MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, 1201 Loc, isLoad, BB, Cache, 1202 NumSortedEntries); 1203 1204 // If we got a Def or Clobber, add this to the list of results. 1205 if (!Dep.isNonLocal()) { 1206 if (!DT) { 1207 Result.push_back(NonLocalDepResult(BB, 1208 MemDepResult::getUnknown(), 1209 Pointer.getAddr())); 1210 continue; 1211 } else if (DT->isReachableFromEntry(BB)) { 1212 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); 1213 continue; 1214 } 1215 } 1216 } 1217 1218 // If 'Pointer' is an instruction defined in this block, then we need to do 1219 // phi translation to change it into a value live in the predecessor block. 1220 // If not, we just add the predecessors to the worklist and scan them with 1221 // the same Pointer. 1222 if (!Pointer.NeedsPHITranslationFromBlock(BB)) { 1223 SkipFirstBlock = false; 1224 SmallVector<BasicBlock*, 16> NewBlocks; 1225 for (BasicBlock *Pred : PredCache.get(BB)) { 1226 // Verify that we haven't looked at this block yet. 1227 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 1228 InsertRes = Visited.insert(std::make_pair(Pred, Pointer.getAddr())); 1229 if (InsertRes.second) { 1230 // First time we've looked at *PI. 1231 NewBlocks.push_back(Pred); 1232 continue; 1233 } 1234 1235 // If we have seen this block before, but it was with a different 1236 // pointer then we have a phi translation failure and we have to treat 1237 // this as a clobber. 1238 if (InsertRes.first->second != Pointer.getAddr()) { 1239 // Make sure to clean up the Visited map before continuing on to 1240 // PredTranslationFailure. 1241 for (unsigned i = 0; i < NewBlocks.size(); i++) 1242 Visited.erase(NewBlocks[i]); 1243 goto PredTranslationFailure; 1244 } 1245 } 1246 Worklist.append(NewBlocks.begin(), NewBlocks.end()); 1247 continue; 1248 } 1249 1250 // We do need to do phi translation, if we know ahead of time we can't phi 1251 // translate this value, don't even try. 1252 if (!Pointer.IsPotentiallyPHITranslatable()) 1253 goto PredTranslationFailure; 1254 1255 // We may have added values to the cache list before this PHI translation. 1256 // If so, we haven't done anything to ensure that the cache remains sorted. 1257 // Sort it now (if needed) so that recursive invocations of 1258 // getNonLocalPointerDepFromBB and other routines that could reuse the cache 1259 // value will only see properly sorted cache arrays. 1260 if (Cache && NumSortedEntries != Cache->size()) { 1261 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1262 NumSortedEntries = Cache->size(); 1263 } 1264 Cache = nullptr; 1265 1266 PredList.clear(); 1267 for (BasicBlock *Pred : PredCache.get(BB)) { 1268 PredList.push_back(std::make_pair(Pred, Pointer)); 1269 1270 // Get the PHI translated pointer in this predecessor. This can fail if 1271 // not translatable, in which case the getAddr() returns null. 1272 PHITransAddr &PredPointer = PredList.back().second; 1273 PredPointer.PHITranslateValue(BB, Pred, DT, /*MustDominate=*/false); 1274 Value *PredPtrVal = PredPointer.getAddr(); 1275 1276 // Check to see if we have already visited this pred block with another 1277 // pointer. If so, we can't do this lookup. This failure can occur 1278 // with PHI translation when a critical edge exists and the PHI node in 1279 // the successor translates to a pointer value different than the 1280 // pointer the block was first analyzed with. 1281 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 1282 InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal)); 1283 1284 if (!InsertRes.second) { 1285 // We found the pred; take it off the list of preds to visit. 1286 PredList.pop_back(); 1287 1288 // If the predecessor was visited with PredPtr, then we already did 1289 // the analysis and can ignore it. 1290 if (InsertRes.first->second == PredPtrVal) 1291 continue; 1292 1293 // Otherwise, the block was previously analyzed with a different 1294 // pointer. We can't represent the result of this case, so we just 1295 // treat this as a phi translation failure. 1296 1297 // Make sure to clean up the Visited map before continuing on to 1298 // PredTranslationFailure. 1299 for (unsigned i = 0, n = PredList.size(); i < n; ++i) 1300 Visited.erase(PredList[i].first); 1301 1302 goto PredTranslationFailure; 1303 } 1304 } 1305 1306 // Actually process results here; this need to be a separate loop to avoid 1307 // calling getNonLocalPointerDepFromBB for blocks we don't want to return 1308 // any results for. (getNonLocalPointerDepFromBB will modify our 1309 // datastructures in ways the code after the PredTranslationFailure label 1310 // doesn't expect.) 1311 for (unsigned i = 0, n = PredList.size(); i < n; ++i) { 1312 BasicBlock *Pred = PredList[i].first; 1313 PHITransAddr &PredPointer = PredList[i].second; 1314 Value *PredPtrVal = PredPointer.getAddr(); 1315 1316 bool CanTranslate = true; 1317 // If PHI translation was unable to find an available pointer in this 1318 // predecessor, then we have to assume that the pointer is clobbered in 1319 // that predecessor. We can still do PRE of the load, which would insert 1320 // a computation of the pointer in this predecessor. 1321 if (!PredPtrVal) 1322 CanTranslate = false; 1323 1324 // FIXME: it is entirely possible that PHI translating will end up with 1325 // the same value. Consider PHI translating something like: 1326 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* 1327 // to recurse here, pedantically speaking. 1328 1329 // If getNonLocalPointerDepFromBB fails here, that means the cached 1330 // result conflicted with the Visited list; we have to conservatively 1331 // assume it is unknown, but this also does not block PRE of the load. 1332 if (!CanTranslate || 1333 getNonLocalPointerDepFromBB(QueryInst, PredPointer, 1334 Loc.getWithNewPtr(PredPtrVal), 1335 isLoad, Pred, 1336 Result, Visited)) { 1337 // Add the entry to the Result list. 1338 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal); 1339 Result.push_back(Entry); 1340 1341 // Since we had a phi translation failure, the cache for CacheKey won't 1342 // include all of the entries that we need to immediately satisfy future 1343 // queries. Mark this in NonLocalPointerDeps by setting the 1344 // BBSkipFirstBlockPair pointer to null. This requires reuse of the 1345 // cached value to do more work but not miss the phi trans failure. 1346 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; 1347 NLPI.Pair = BBSkipFirstBlockPair(); 1348 continue; 1349 } 1350 } 1351 1352 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. 1353 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1354 Cache = &CacheInfo->NonLocalDeps; 1355 NumSortedEntries = Cache->size(); 1356 1357 // Since we did phi translation, the "Cache" set won't contain all of the 1358 // results for the query. This is ok (we can still use it to accelerate 1359 // specific block queries) but we can't do the fastpath "return all 1360 // results from the set" Clear out the indicator for this. 1361 CacheInfo->Pair = BBSkipFirstBlockPair(); 1362 SkipFirstBlock = false; 1363 continue; 1364 1365 PredTranslationFailure: 1366 // The following code is "failure"; we can't produce a sane translation 1367 // for the given block. It assumes that we haven't modified any of 1368 // our datastructures while processing the current block. 1369 1370 if (!Cache) { 1371 // Refresh the CacheInfo/Cache pointer if it got invalidated. 1372 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1373 Cache = &CacheInfo->NonLocalDeps; 1374 NumSortedEntries = Cache->size(); 1375 } 1376 1377 // Since we failed phi translation, the "Cache" set won't contain all of the 1378 // results for the query. This is ok (we can still use it to accelerate 1379 // specific block queries) but we can't do the fastpath "return all 1380 // results from the set". Clear out the indicator for this. 1381 CacheInfo->Pair = BBSkipFirstBlockPair(); 1382 1383 // If *nothing* works, mark the pointer as unknown. 1384 // 1385 // If this is the magic first block, return this as a clobber of the whole 1386 // incoming value. Since we can't phi translate to one of the predecessors, 1387 // we have to bail out. 1388 if (SkipFirstBlock) 1389 return true; 1390 1391 for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) { 1392 assert(I != Cache->rend() && "Didn't find current block??"); 1393 if (I->getBB() != BB) 1394 continue; 1395 1396 assert((I->getResult().isNonLocal() || !DT->isReachableFromEntry(BB)) && 1397 "Should only be here with transparent block"); 1398 I->setResult(MemDepResult::getUnknown()); 1399 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), 1400 Pointer.getAddr())); 1401 break; 1402 } 1403 } 1404 1405 // Okay, we're done now. If we added new values to the cache, re-sort it. 1406 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1407 DEBUG(AssertSorted(*Cache)); 1408 return false; 1409 } 1410 1411 /// RemoveCachedNonLocalPointerDependencies - If P exists in 1412 /// CachedNonLocalPointerInfo, remove it. 1413 void MemoryDependenceAnalysis:: 1414 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) { 1415 CachedNonLocalPointerInfo::iterator It = 1416 NonLocalPointerDeps.find(P); 1417 if (It == NonLocalPointerDeps.end()) return; 1418 1419 // Remove all of the entries in the BB->val map. This involves removing 1420 // instructions from the reverse map. 1421 NonLocalDepInfo &PInfo = It->second.NonLocalDeps; 1422 1423 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { 1424 Instruction *Target = PInfo[i].getResult().getInst(); 1425 if (!Target) continue; // Ignore non-local dep results. 1426 assert(Target->getParent() == PInfo[i].getBB()); 1427 1428 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1429 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); 1430 } 1431 1432 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). 1433 NonLocalPointerDeps.erase(It); 1434 } 1435 1436 1437 /// invalidateCachedPointerInfo - This method is used to invalidate cached 1438 /// information about the specified pointer, because it may be too 1439 /// conservative in memdep. This is an optional call that can be used when 1440 /// the client detects an equivalence between the pointer and some other 1441 /// value and replaces the other value with ptr. This can make Ptr available 1442 /// in more places that cached info does not necessarily keep. 1443 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) { 1444 // If Ptr isn't really a pointer, just ignore it. 1445 if (!Ptr->getType()->isPointerTy()) return; 1446 // Flush store info for the pointer. 1447 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); 1448 // Flush load info for the pointer. 1449 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); 1450 } 1451 1452 /// invalidateCachedPredecessors - Clear the PredIteratorCache info. 1453 /// This needs to be done when the CFG changes, e.g., due to splitting 1454 /// critical edges. 1455 void MemoryDependenceAnalysis::invalidateCachedPredecessors() { 1456 PredCache.clear(); 1457 } 1458 1459 /// removeInstruction - Remove an instruction from the dependence analysis, 1460 /// updating the dependence of instructions that previously depended on it. 1461 /// This method attempts to keep the cache coherent using the reverse map. 1462 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) { 1463 // Walk through the Non-local dependencies, removing this one as the value 1464 // for any cached queries. 1465 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); 1466 if (NLDI != NonLocalDeps.end()) { 1467 NonLocalDepInfo &BlockMap = NLDI->second.first; 1468 for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end(); 1469 DI != DE; ++DI) 1470 if (Instruction *Inst = DI->getResult().getInst()) 1471 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); 1472 NonLocalDeps.erase(NLDI); 1473 } 1474 1475 // If we have a cached local dependence query for this instruction, remove it. 1476 // 1477 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); 1478 if (LocalDepEntry != LocalDeps.end()) { 1479 // Remove us from DepInst's reverse set now that the local dep info is gone. 1480 if (Instruction *Inst = LocalDepEntry->second.getInst()) 1481 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); 1482 1483 // Remove this local dependency info. 1484 LocalDeps.erase(LocalDepEntry); 1485 } 1486 1487 // If we have any cached pointer dependencies on this instruction, remove 1488 // them. If the instruction has non-pointer type, then it can't be a pointer 1489 // base. 1490 1491 // Remove it from both the load info and the store info. The instruction 1492 // can't be in either of these maps if it is non-pointer. 1493 if (RemInst->getType()->isPointerTy()) { 1494 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); 1495 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); 1496 } 1497 1498 // Loop over all of the things that depend on the instruction we're removing. 1499 // 1500 SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd; 1501 1502 // If we find RemInst as a clobber or Def in any of the maps for other values, 1503 // we need to replace its entry with a dirty version of the instruction after 1504 // it. If RemInst is a terminator, we use a null dirty value. 1505 // 1506 // Using a dirty version of the instruction after RemInst saves having to scan 1507 // the entire block to get to this point. 1508 MemDepResult NewDirtyVal; 1509 if (!RemInst->isTerminator()) 1510 NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst)); 1511 1512 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); 1513 if (ReverseDepIt != ReverseLocalDeps.end()) { 1514 // RemInst can't be the terminator if it has local stuff depending on it. 1515 assert(!ReverseDepIt->second.empty() && !isa<TerminatorInst>(RemInst) && 1516 "Nothing can locally depend on a terminator"); 1517 1518 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) { 1519 assert(InstDependingOnRemInst != RemInst && 1520 "Already removed our local dep info"); 1521 1522 LocalDeps[InstDependingOnRemInst] = NewDirtyVal; 1523 1524 // Make sure to remember that new things depend on NewDepInst. 1525 assert(NewDirtyVal.getInst() && "There is no way something else can have " 1526 "a local dep on this if it is a terminator!"); 1527 ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(), 1528 InstDependingOnRemInst)); 1529 } 1530 1531 ReverseLocalDeps.erase(ReverseDepIt); 1532 1533 // Add new reverse deps after scanning the set, to avoid invalidating the 1534 // 'ReverseDeps' reference. 1535 while (!ReverseDepsToAdd.empty()) { 1536 ReverseLocalDeps[ReverseDepsToAdd.back().first] 1537 .insert(ReverseDepsToAdd.back().second); 1538 ReverseDepsToAdd.pop_back(); 1539 } 1540 } 1541 1542 ReverseDepIt = ReverseNonLocalDeps.find(RemInst); 1543 if (ReverseDepIt != ReverseNonLocalDeps.end()) { 1544 for (Instruction *I : ReverseDepIt->second) { 1545 assert(I != RemInst && "Already removed NonLocalDep info for RemInst"); 1546 1547 PerInstNLInfo &INLD = NonLocalDeps[I]; 1548 // The information is now dirty! 1549 INLD.second = true; 1550 1551 for (NonLocalDepInfo::iterator DI = INLD.first.begin(), 1552 DE = INLD.first.end(); DI != DE; ++DI) { 1553 if (DI->getResult().getInst() != RemInst) continue; 1554 1555 // Convert to a dirty entry for the subsequent instruction. 1556 DI->setResult(NewDirtyVal); 1557 1558 if (Instruction *NextI = NewDirtyVal.getInst()) 1559 ReverseDepsToAdd.push_back(std::make_pair(NextI, I)); 1560 } 1561 } 1562 1563 ReverseNonLocalDeps.erase(ReverseDepIt); 1564 1565 // Add new reverse deps after scanning the set, to avoid invalidating 'Set' 1566 while (!ReverseDepsToAdd.empty()) { 1567 ReverseNonLocalDeps[ReverseDepsToAdd.back().first] 1568 .insert(ReverseDepsToAdd.back().second); 1569 ReverseDepsToAdd.pop_back(); 1570 } 1571 } 1572 1573 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a 1574 // value in the NonLocalPointerDeps info. 1575 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = 1576 ReverseNonLocalPtrDeps.find(RemInst); 1577 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { 1578 SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd; 1579 1580 for (ValueIsLoadPair P : ReversePtrDepIt->second) { 1581 assert(P.getPointer() != RemInst && 1582 "Already removed NonLocalPointerDeps info for RemInst"); 1583 1584 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; 1585 1586 // The cache is not valid for any specific block anymore. 1587 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); 1588 1589 // Update any entries for RemInst to use the instruction after it. 1590 for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end(); 1591 DI != DE; ++DI) { 1592 if (DI->getResult().getInst() != RemInst) continue; 1593 1594 // Convert to a dirty entry for the subsequent instruction. 1595 DI->setResult(NewDirtyVal); 1596 1597 if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) 1598 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); 1599 } 1600 1601 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its 1602 // subsequent value may invalidate the sortedness. 1603 std::sort(NLPDI.begin(), NLPDI.end()); 1604 } 1605 1606 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); 1607 1608 while (!ReversePtrDepsToAdd.empty()) { 1609 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first] 1610 .insert(ReversePtrDepsToAdd.back().second); 1611 ReversePtrDepsToAdd.pop_back(); 1612 } 1613 } 1614 1615 1616 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); 1617 AA->deleteValue(RemInst); 1618 DEBUG(verifyRemoved(RemInst)); 1619 } 1620 /// verifyRemoved - Verify that the specified instruction does not occur 1621 /// in our internal data structures. This function verifies by asserting in 1622 /// debug builds. 1623 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const { 1624 #ifndef NDEBUG 1625 for (LocalDepMapType::const_iterator I = LocalDeps.begin(), 1626 E = LocalDeps.end(); I != E; ++I) { 1627 assert(I->first != D && "Inst occurs in data structures"); 1628 assert(I->second.getInst() != D && 1629 "Inst occurs in data structures"); 1630 } 1631 1632 for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(), 1633 E = NonLocalPointerDeps.end(); I != E; ++I) { 1634 assert(I->first.getPointer() != D && "Inst occurs in NLPD map key"); 1635 const NonLocalDepInfo &Val = I->second.NonLocalDeps; 1636 for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end(); 1637 II != E; ++II) 1638 assert(II->getResult().getInst() != D && "Inst occurs as NLPD value"); 1639 } 1640 1641 for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(), 1642 E = NonLocalDeps.end(); I != E; ++I) { 1643 assert(I->first != D && "Inst occurs in data structures"); 1644 const PerInstNLInfo &INLD = I->second; 1645 for (NonLocalDepInfo::const_iterator II = INLD.first.begin(), 1646 EE = INLD.first.end(); II != EE; ++II) 1647 assert(II->getResult().getInst() != D && "Inst occurs in data structures"); 1648 } 1649 1650 for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(), 1651 E = ReverseLocalDeps.end(); I != E; ++I) { 1652 assert(I->first != D && "Inst occurs in data structures"); 1653 for (Instruction *Inst : I->second) 1654 assert(Inst != D && "Inst occurs in data structures"); 1655 } 1656 1657 for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(), 1658 E = ReverseNonLocalDeps.end(); 1659 I != E; ++I) { 1660 assert(I->first != D && "Inst occurs in data structures"); 1661 for (Instruction *Inst : I->second) 1662 assert(Inst != D && "Inst occurs in data structures"); 1663 } 1664 1665 for (ReverseNonLocalPtrDepTy::const_iterator 1666 I = ReverseNonLocalPtrDeps.begin(), 1667 E = ReverseNonLocalPtrDeps.end(); I != E; ++I) { 1668 assert(I->first != D && "Inst occurs in rev NLPD map"); 1669 1670 for (ValueIsLoadPair P : I->second) 1671 assert(P != ValueIsLoadPair(D, false) && 1672 P != ValueIsLoadPair(D, true) && 1673 "Inst occurs in ReverseNonLocalPtrDeps map"); 1674 } 1675 #endif 1676 } 1677