1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements an analysis that determines, for a given memory 10 // operation, what preceding memory operations it depends on. It builds on 11 // alias analysis information, and tries to provide a lazy, caching interface to 12 // a common kind of alias information query. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/MemoryLocation.h" 26 #include "llvm/Analysis/PHITransAddr.h" 27 #include "llvm/Analysis/PhiValues.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/Attributes.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/InstrTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/Metadata.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/PredIteratorCache.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/Use.h" 47 #include "llvm/IR/User.h" 48 #include "llvm/IR/Value.h" 49 #include "llvm/InitializePasses.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/AtomicOrdering.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Compiler.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/MathExtras.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <cstdint> 60 #include <iterator> 61 #include <utility> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "memdep" 66 67 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); 68 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); 69 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); 70 71 STATISTIC(NumCacheNonLocalPtr, 72 "Number of fully cached non-local ptr responses"); 73 STATISTIC(NumCacheDirtyNonLocalPtr, 74 "Number of cached, but dirty, non-local ptr responses"); 75 STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses"); 76 STATISTIC(NumCacheCompleteNonLocalPtr, 77 "Number of block queries that were completely cached"); 78 79 // Limit for the number of instructions to scan in a block. 80 81 static cl::opt<unsigned> BlockScanLimit( 82 "memdep-block-scan-limit", cl::Hidden, cl::init(100), 83 cl::desc("The number of instructions to scan in a block in memory " 84 "dependency analysis (default = 100)")); 85 86 static cl::opt<unsigned> 87 BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000), 88 cl::desc("The number of blocks to scan during memory " 89 "dependency analysis (default = 1000)")); 90 91 // Limit on the number of memdep results to process. 92 static const unsigned int NumResultsLimit = 100; 93 94 /// This is a helper function that removes Val from 'Inst's set in ReverseMap. 95 /// 96 /// If the set becomes empty, remove Inst's entry. 97 template <typename KeyTy> 98 static void 99 RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap, 100 Instruction *Inst, KeyTy Val) { 101 typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt = 102 ReverseMap.find(Inst); 103 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); 104 bool Found = InstIt->second.erase(Val); 105 assert(Found && "Invalid reverse map!"); 106 (void)Found; 107 if (InstIt->second.empty()) 108 ReverseMap.erase(InstIt); 109 } 110 111 /// If the given instruction references a specific memory location, fill in Loc 112 /// with the details, otherwise set Loc.Ptr to null. 113 /// 114 /// Returns a ModRefInfo value describing the general behavior of the 115 /// instruction. 116 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc, 117 const TargetLibraryInfo &TLI) { 118 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 119 if (LI->isUnordered()) { 120 Loc = MemoryLocation::get(LI); 121 return ModRefInfo::Ref; 122 } 123 if (LI->getOrdering() == AtomicOrdering::Monotonic) { 124 Loc = MemoryLocation::get(LI); 125 return ModRefInfo::ModRef; 126 } 127 Loc = MemoryLocation(); 128 return ModRefInfo::ModRef; 129 } 130 131 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 132 if (SI->isUnordered()) { 133 Loc = MemoryLocation::get(SI); 134 return ModRefInfo::Mod; 135 } 136 if (SI->getOrdering() == AtomicOrdering::Monotonic) { 137 Loc = MemoryLocation::get(SI); 138 return ModRefInfo::ModRef; 139 } 140 Loc = MemoryLocation(); 141 return ModRefInfo::ModRef; 142 } 143 144 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { 145 Loc = MemoryLocation::get(V); 146 return ModRefInfo::ModRef; 147 } 148 149 if (const CallInst *CI = isFreeCall(Inst, &TLI)) { 150 // calls to free() deallocate the entire structure 151 Loc = MemoryLocation(CI->getArgOperand(0)); 152 return ModRefInfo::Mod; 153 } 154 155 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 156 switch (II->getIntrinsicID()) { 157 case Intrinsic::lifetime_start: 158 case Intrinsic::lifetime_end: 159 case Intrinsic::invariant_start: 160 Loc = MemoryLocation::getForArgument(II, 1, TLI); 161 // These intrinsics don't really modify the memory, but returning Mod 162 // will allow them to be handled conservatively. 163 return ModRefInfo::Mod; 164 case Intrinsic::invariant_end: 165 Loc = MemoryLocation::getForArgument(II, 2, TLI); 166 // These intrinsics don't really modify the memory, but returning Mod 167 // will allow them to be handled conservatively. 168 return ModRefInfo::Mod; 169 default: 170 break; 171 } 172 } 173 174 // Otherwise, just do the coarse-grained thing that always works. 175 if (Inst->mayWriteToMemory()) 176 return ModRefInfo::ModRef; 177 if (Inst->mayReadFromMemory()) 178 return ModRefInfo::Ref; 179 return ModRefInfo::NoModRef; 180 } 181 182 /// Private helper for finding the local dependencies of a call site. 183 MemDepResult MemoryDependenceResults::getCallDependencyFrom( 184 CallBase *Call, bool isReadOnlyCall, BasicBlock::iterator ScanIt, 185 BasicBlock *BB) { 186 unsigned Limit = getDefaultBlockScanLimit(); 187 188 // Walk backwards through the block, looking for dependencies. 189 while (ScanIt != BB->begin()) { 190 Instruction *Inst = &*--ScanIt; 191 // Debug intrinsics don't cause dependences and should not affect Limit 192 if (isa<DbgInfoIntrinsic>(Inst)) 193 continue; 194 195 // Limit the amount of scanning we do so we don't end up with quadratic 196 // running time on extreme testcases. 197 --Limit; 198 if (!Limit) 199 return MemDepResult::getUnknown(); 200 201 // If this inst is a memory op, get the pointer it accessed 202 MemoryLocation Loc; 203 ModRefInfo MR = GetLocation(Inst, Loc, TLI); 204 if (Loc.Ptr) { 205 // A simple instruction. 206 if (isModOrRefSet(AA.getModRefInfo(Call, Loc))) 207 return MemDepResult::getClobber(Inst); 208 continue; 209 } 210 211 if (auto *CallB = dyn_cast<CallBase>(Inst)) { 212 // If these two calls do not interfere, look past it. 213 if (isNoModRef(AA.getModRefInfo(Call, CallB))) { 214 // If the two calls are the same, return Inst as a Def, so that 215 // Call can be found redundant and eliminated. 216 if (isReadOnlyCall && !isModSet(MR) && 217 Call->isIdenticalToWhenDefined(CallB)) 218 return MemDepResult::getDef(Inst); 219 220 // Otherwise if the two calls don't interact (e.g. CallB is readnone) 221 // keep scanning. 222 continue; 223 } else 224 return MemDepResult::getClobber(Inst); 225 } 226 227 // If we could not obtain a pointer for the instruction and the instruction 228 // touches memory then assume that this is a dependency. 229 if (isModOrRefSet(MR)) 230 return MemDepResult::getClobber(Inst); 231 } 232 233 // No dependence found. If this is the entry block of the function, it is 234 // unknown, otherwise it is non-local. 235 if (BB != &BB->getParent()->getEntryBlock()) 236 return MemDepResult::getNonLocal(); 237 return MemDepResult::getNonFuncLocal(); 238 } 239 240 static bool isVolatile(Instruction *Inst) { 241 if (auto *LI = dyn_cast<LoadInst>(Inst)) 242 return LI->isVolatile(); 243 if (auto *SI = dyn_cast<StoreInst>(Inst)) 244 return SI->isVolatile(); 245 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(Inst)) 246 return AI->isVolatile(); 247 return false; 248 } 249 250 MemDepResult MemoryDependenceResults::getPointerDependencyFrom( 251 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 252 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) { 253 MemDepResult InvariantGroupDependency = MemDepResult::getUnknown(); 254 if (QueryInst != nullptr) { 255 if (auto *LI = dyn_cast<LoadInst>(QueryInst)) { 256 InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB); 257 258 if (InvariantGroupDependency.isDef()) 259 return InvariantGroupDependency; 260 } 261 } 262 MemDepResult SimpleDep = getSimplePointerDependencyFrom( 263 MemLoc, isLoad, ScanIt, BB, QueryInst, Limit); 264 if (SimpleDep.isDef()) 265 return SimpleDep; 266 // Non-local invariant group dependency indicates there is non local Def 267 // (it only returns nonLocal if it finds nonLocal def), which is better than 268 // local clobber and everything else. 269 if (InvariantGroupDependency.isNonLocal()) 270 return InvariantGroupDependency; 271 272 assert(InvariantGroupDependency.isUnknown() && 273 "InvariantGroupDependency should be only unknown at this point"); 274 return SimpleDep; 275 } 276 277 MemDepResult 278 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI, 279 BasicBlock *BB) { 280 281 if (!LI->hasMetadata(LLVMContext::MD_invariant_group)) 282 return MemDepResult::getUnknown(); 283 284 // Take the ptr operand after all casts and geps 0. This way we can search 285 // cast graph down only. 286 Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts(); 287 288 // It's is not safe to walk the use list of global value, because function 289 // passes aren't allowed to look outside their functions. 290 // FIXME: this could be fixed by filtering instructions from outside 291 // of current function. 292 if (isa<GlobalValue>(LoadOperand)) 293 return MemDepResult::getUnknown(); 294 295 // Queue to process all pointers that are equivalent to load operand. 296 SmallVector<const Value *, 8> LoadOperandsQueue; 297 LoadOperandsQueue.push_back(LoadOperand); 298 299 Instruction *ClosestDependency = nullptr; 300 // Order of instructions in uses list is unpredictible. In order to always 301 // get the same result, we will look for the closest dominance. 302 auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) { 303 assert(Other && "Must call it with not null instruction"); 304 if (Best == nullptr || DT.dominates(Best, Other)) 305 return Other; 306 return Best; 307 }; 308 309 // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case 310 // we will see all the instructions. This should be fixed in MSSA. 311 while (!LoadOperandsQueue.empty()) { 312 const Value *Ptr = LoadOperandsQueue.pop_back_val(); 313 assert(Ptr && !isa<GlobalValue>(Ptr) && 314 "Null or GlobalValue should not be inserted"); 315 316 for (const Use &Us : Ptr->uses()) { 317 auto *U = dyn_cast<Instruction>(Us.getUser()); 318 if (!U || U == LI || !DT.dominates(U, LI)) 319 continue; 320 321 // Bitcast or gep with zeros are using Ptr. Add to queue to check it's 322 // users. U = bitcast Ptr 323 if (isa<BitCastInst>(U)) { 324 LoadOperandsQueue.push_back(U); 325 continue; 326 } 327 // Gep with zeros is equivalent to bitcast. 328 // FIXME: we are not sure if some bitcast should be canonicalized to gep 0 329 // or gep 0 to bitcast because of SROA, so there are 2 forms. When 330 // typeless pointers will be ready then both cases will be gone 331 // (and this BFS also won't be needed). 332 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) 333 if (GEP->hasAllZeroIndices()) { 334 LoadOperandsQueue.push_back(U); 335 continue; 336 } 337 338 // If we hit load/store with the same invariant.group metadata (and the 339 // same pointer operand) we can assume that value pointed by pointer 340 // operand didn't change. 341 if ((isa<LoadInst>(U) || isa<StoreInst>(U)) && 342 U->hasMetadata(LLVMContext::MD_invariant_group)) 343 ClosestDependency = GetClosestDependency(ClosestDependency, U); 344 } 345 } 346 347 if (!ClosestDependency) 348 return MemDepResult::getUnknown(); 349 if (ClosestDependency->getParent() == BB) 350 return MemDepResult::getDef(ClosestDependency); 351 // Def(U) can't be returned here because it is non-local. If local 352 // dependency won't be found then return nonLocal counting that the 353 // user will call getNonLocalPointerDependency, which will return cached 354 // result. 355 NonLocalDefsCache.try_emplace( 356 LI, NonLocalDepResult(ClosestDependency->getParent(), 357 MemDepResult::getDef(ClosestDependency), nullptr)); 358 ReverseNonLocalDefsCache[ClosestDependency].insert(LI); 359 return MemDepResult::getNonLocal(); 360 } 361 362 MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom( 363 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 364 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) { 365 bool isInvariantLoad = false; 366 367 unsigned DefaultLimit = getDefaultBlockScanLimit(); 368 if (!Limit) 369 Limit = &DefaultLimit; 370 371 // We must be careful with atomic accesses, as they may allow another thread 372 // to touch this location, clobbering it. We are conservative: if the 373 // QueryInst is not a simple (non-atomic) memory access, we automatically 374 // return getClobber. 375 // If it is simple, we know based on the results of 376 // "Compiler testing via a theory of sound optimisations in the C11/C++11 377 // memory model" in PLDI 2013, that a non-atomic location can only be 378 // clobbered between a pair of a release and an acquire action, with no 379 // access to the location in between. 380 // Here is an example for giving the general intuition behind this rule. 381 // In the following code: 382 // store x 0; 383 // release action; [1] 384 // acquire action; [4] 385 // %val = load x; 386 // It is unsafe to replace %val by 0 because another thread may be running: 387 // acquire action; [2] 388 // store x 42; 389 // release action; [3] 390 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val 391 // being 42. A key property of this program however is that if either 392 // 1 or 4 were missing, there would be a race between the store of 42 393 // either the store of 0 or the load (making the whole program racy). 394 // The paper mentioned above shows that the same property is respected 395 // by every program that can detect any optimization of that kind: either 396 // it is racy (undefined) or there is a release followed by an acquire 397 // between the pair of accesses under consideration. 398 399 // If the load is invariant, we "know" that it doesn't alias *any* write. We 400 // do want to respect mustalias results since defs are useful for value 401 // forwarding, but any mayalias write can be assumed to be noalias. 402 // Arguably, this logic should be pushed inside AliasAnalysis itself. 403 if (isLoad && QueryInst) { 404 LoadInst *LI = dyn_cast<LoadInst>(QueryInst); 405 if (LI && LI->hasMetadata(LLVMContext::MD_invariant_load)) 406 isInvariantLoad = true; 407 } 408 409 // Return "true" if and only if the instruction I is either a non-simple 410 // load or a non-simple store. 411 auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool { 412 if (auto *LI = dyn_cast<LoadInst>(I)) 413 return !LI->isSimple(); 414 if (auto *SI = dyn_cast<StoreInst>(I)) 415 return !SI->isSimple(); 416 return false; 417 }; 418 419 // Return "true" if I is not a load and not a store, but it does access 420 // memory. 421 auto isOtherMemAccess = [](Instruction *I) -> bool { 422 return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory(); 423 }; 424 425 // Walk backwards through the basic block, looking for dependencies. 426 while (ScanIt != BB->begin()) { 427 Instruction *Inst = &*--ScanIt; 428 429 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 430 // Debug intrinsics don't (and can't) cause dependencies. 431 if (isa<DbgInfoIntrinsic>(II)) 432 continue; 433 434 // Limit the amount of scanning we do so we don't end up with quadratic 435 // running time on extreme testcases. 436 --*Limit; 437 if (!*Limit) 438 return MemDepResult::getUnknown(); 439 440 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 441 // If we reach a lifetime begin or end marker, then the query ends here 442 // because the value is undefined. 443 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 444 // FIXME: This only considers queries directly on the invariant-tagged 445 // pointer, not on query pointers that are indexed off of them. It'd 446 // be nice to handle that at some point (the right approach is to use 447 // GetPointerBaseWithConstantOffset). 448 if (AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc)) 449 return MemDepResult::getDef(II); 450 continue; 451 } 452 } 453 454 // Values depend on loads if the pointers are must aliased. This means 455 // that a load depends on another must aliased load from the same value. 456 // One exception is atomic loads: a value can depend on an atomic load that 457 // it does not alias with when this atomic load indicates that another 458 // thread may be accessing the location. 459 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 460 // While volatile access cannot be eliminated, they do not have to clobber 461 // non-aliasing locations, as normal accesses, for example, can be safely 462 // reordered with volatile accesses. 463 if (LI->isVolatile()) { 464 if (!QueryInst) 465 // Original QueryInst *may* be volatile 466 return MemDepResult::getClobber(LI); 467 if (isVolatile(QueryInst)) 468 // Ordering required if QueryInst is itself volatile 469 return MemDepResult::getClobber(LI); 470 // Otherwise, volatile doesn't imply any special ordering 471 } 472 473 // Atomic loads have complications involved. 474 // A Monotonic (or higher) load is OK if the query inst is itself not 475 // atomic. 476 // FIXME: This is overly conservative. 477 if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) { 478 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 479 isOtherMemAccess(QueryInst)) 480 return MemDepResult::getClobber(LI); 481 if (LI->getOrdering() != AtomicOrdering::Monotonic) 482 return MemDepResult::getClobber(LI); 483 } 484 485 MemoryLocation LoadLoc = MemoryLocation::get(LI); 486 487 // If we found a pointer, check if it could be the same as our pointer. 488 AliasResult R = AA.alias(LoadLoc, MemLoc); 489 490 if (isLoad) { 491 if (R == NoAlias) 492 continue; 493 494 // Must aliased loads are defs of each other. 495 if (R == MustAlias) 496 return MemDepResult::getDef(Inst); 497 498 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads 499 // in terms of clobbering loads, but since it does this by looking 500 // at the clobbering load directly, it doesn't know about any 501 // phi translation that may have happened along the way. 502 503 // If we have a partial alias, then return this as a clobber for the 504 // client to handle. 505 if (R == PartialAlias) 506 return MemDepResult::getClobber(Inst); 507 #endif 508 509 // Random may-alias loads don't depend on each other without a 510 // dependence. 511 continue; 512 } 513 514 // Stores don't depend on other no-aliased accesses. 515 if (R == NoAlias) 516 continue; 517 518 // Stores don't alias loads from read-only memory. 519 if (AA.pointsToConstantMemory(LoadLoc)) 520 continue; 521 522 // Stores depend on may/must aliased loads. 523 return MemDepResult::getDef(Inst); 524 } 525 526 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 527 // Atomic stores have complications involved. 528 // A Monotonic store is OK if the query inst is itself not atomic. 529 // FIXME: This is overly conservative. 530 if (!SI->isUnordered() && SI->isAtomic()) { 531 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 532 isOtherMemAccess(QueryInst)) 533 return MemDepResult::getClobber(SI); 534 if (SI->getOrdering() != AtomicOrdering::Monotonic) 535 return MemDepResult::getClobber(SI); 536 } 537 538 // FIXME: this is overly conservative. 539 // While volatile access cannot be eliminated, they do not have to clobber 540 // non-aliasing locations, as normal accesses can for example be reordered 541 // with volatile accesses. 542 if (SI->isVolatile()) 543 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 544 isOtherMemAccess(QueryInst)) 545 return MemDepResult::getClobber(SI); 546 547 // If alias analysis can tell that this store is guaranteed to not modify 548 // the query pointer, ignore it. Use getModRefInfo to handle cases where 549 // the query pointer points to constant memory etc. 550 if (!isModOrRefSet(AA.getModRefInfo(SI, MemLoc))) 551 continue; 552 553 // Ok, this store might clobber the query pointer. Check to see if it is 554 // a must alias: in this case, we want to return this as a def. 555 // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above. 556 MemoryLocation StoreLoc = MemoryLocation::get(SI); 557 558 // If we found a pointer, check if it could be the same as our pointer. 559 AliasResult R = AA.alias(StoreLoc, MemLoc); 560 561 if (R == NoAlias) 562 continue; 563 if (R == MustAlias) 564 return MemDepResult::getDef(Inst); 565 if (isInvariantLoad) 566 continue; 567 return MemDepResult::getClobber(Inst); 568 } 569 570 // If this is an allocation, and if we know that the accessed pointer is to 571 // the allocation, return Def. This means that there is no dependence and 572 // the access can be optimized based on that. For example, a load could 573 // turn into undef. Note that we can bypass the allocation itself when 574 // looking for a clobber in many cases; that's an alias property and is 575 // handled by BasicAA. 576 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) { 577 const Value *AccessPtr = getUnderlyingObject(MemLoc.Ptr); 578 if (AccessPtr == Inst || AA.isMustAlias(Inst, AccessPtr)) 579 return MemDepResult::getDef(Inst); 580 } 581 582 if (isInvariantLoad) 583 continue; 584 585 // A release fence requires that all stores complete before it, but does 586 // not prevent the reordering of following loads or stores 'before' the 587 // fence. As a result, we look past it when finding a dependency for 588 // loads. DSE uses this to find preceding stores to delete and thus we 589 // can't bypass the fence if the query instruction is a store. 590 if (FenceInst *FI = dyn_cast<FenceInst>(Inst)) 591 if (isLoad && FI->getOrdering() == AtomicOrdering::Release) 592 continue; 593 594 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. 595 ModRefInfo MR = AA.getModRefInfo(Inst, MemLoc); 596 // If necessary, perform additional analysis. 597 if (isModAndRefSet(MR)) 598 MR = AA.callCapturesBefore(Inst, MemLoc, &DT); 599 switch (clearMust(MR)) { 600 case ModRefInfo::NoModRef: 601 // If the call has no effect on the queried pointer, just ignore it. 602 continue; 603 case ModRefInfo::Mod: 604 return MemDepResult::getClobber(Inst); 605 case ModRefInfo::Ref: 606 // If the call is known to never store to the pointer, and if this is a 607 // load query, we can safely ignore it (scan past it). 608 if (isLoad) 609 continue; 610 LLVM_FALLTHROUGH; 611 default: 612 // Otherwise, there is a potential dependence. Return a clobber. 613 return MemDepResult::getClobber(Inst); 614 } 615 } 616 617 // No dependence found. If this is the entry block of the function, it is 618 // unknown, otherwise it is non-local. 619 if (BB != &BB->getParent()->getEntryBlock()) 620 return MemDepResult::getNonLocal(); 621 return MemDepResult::getNonFuncLocal(); 622 } 623 624 MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) { 625 Instruction *ScanPos = QueryInst; 626 627 // Check for a cached result 628 MemDepResult &LocalCache = LocalDeps[QueryInst]; 629 630 // If the cached entry is non-dirty, just return it. Note that this depends 631 // on MemDepResult's default constructing to 'dirty'. 632 if (!LocalCache.isDirty()) 633 return LocalCache; 634 635 // Otherwise, if we have a dirty entry, we know we can start the scan at that 636 // instruction, which may save us some work. 637 if (Instruction *Inst = LocalCache.getInst()) { 638 ScanPos = Inst; 639 640 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); 641 } 642 643 BasicBlock *QueryParent = QueryInst->getParent(); 644 645 // Do the scan. 646 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { 647 // No dependence found. If this is the entry block of the function, it is 648 // unknown, otherwise it is non-local. 649 if (QueryParent != &QueryParent->getParent()->getEntryBlock()) 650 LocalCache = MemDepResult::getNonLocal(); 651 else 652 LocalCache = MemDepResult::getNonFuncLocal(); 653 } else { 654 MemoryLocation MemLoc; 655 ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI); 656 if (MemLoc.Ptr) { 657 // If we can do a pointer scan, make it happen. 658 bool isLoad = !isModSet(MR); 659 if (auto *II = dyn_cast<IntrinsicInst>(QueryInst)) 660 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start; 661 662 LocalCache = 663 getPointerDependencyFrom(MemLoc, isLoad, ScanPos->getIterator(), 664 QueryParent, QueryInst, nullptr); 665 } else if (auto *QueryCall = dyn_cast<CallBase>(QueryInst)) { 666 bool isReadOnly = AA.onlyReadsMemory(QueryCall); 667 LocalCache = getCallDependencyFrom(QueryCall, isReadOnly, 668 ScanPos->getIterator(), QueryParent); 669 } else 670 // Non-memory instruction. 671 LocalCache = MemDepResult::getUnknown(); 672 } 673 674 // Remember the result! 675 if (Instruction *I = LocalCache.getInst()) 676 ReverseLocalDeps[I].insert(QueryInst); 677 678 return LocalCache; 679 } 680 681 #ifndef NDEBUG 682 /// This method is used when -debug is specified to verify that cache arrays 683 /// are properly kept sorted. 684 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache, 685 int Count = -1) { 686 if (Count == -1) 687 Count = Cache.size(); 688 assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) && 689 "Cache isn't sorted!"); 690 } 691 #endif 692 693 const MemoryDependenceResults::NonLocalDepInfo & 694 MemoryDependenceResults::getNonLocalCallDependency(CallBase *QueryCall) { 695 assert(getDependency(QueryCall).isNonLocal() && 696 "getNonLocalCallDependency should only be used on calls with " 697 "non-local deps!"); 698 PerInstNLInfo &CacheP = NonLocalDeps[QueryCall]; 699 NonLocalDepInfo &Cache = CacheP.first; 700 701 // This is the set of blocks that need to be recomputed. In the cached case, 702 // this can happen due to instructions being deleted etc. In the uncached 703 // case, this starts out as the set of predecessors we care about. 704 SmallVector<BasicBlock *, 32> DirtyBlocks; 705 706 if (!Cache.empty()) { 707 // Okay, we have a cache entry. If we know it is not dirty, just return it 708 // with no computation. 709 if (!CacheP.second) { 710 ++NumCacheNonLocal; 711 return Cache; 712 } 713 714 // If we already have a partially computed set of results, scan them to 715 // determine what is dirty, seeding our initial DirtyBlocks worklist. 716 for (auto &Entry : Cache) 717 if (Entry.getResult().isDirty()) 718 DirtyBlocks.push_back(Entry.getBB()); 719 720 // Sort the cache so that we can do fast binary search lookups below. 721 llvm::sort(Cache); 722 723 ++NumCacheDirtyNonLocal; 724 // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " 725 // << Cache.size() << " cached: " << *QueryInst; 726 } else { 727 // Seed DirtyBlocks with each of the preds of QueryInst's block. 728 BasicBlock *QueryBB = QueryCall->getParent(); 729 for (BasicBlock *Pred : PredCache.get(QueryBB)) 730 DirtyBlocks.push_back(Pred); 731 ++NumUncacheNonLocal; 732 } 733 734 // isReadonlyCall - If this is a read-only call, we can be more aggressive. 735 bool isReadonlyCall = AA.onlyReadsMemory(QueryCall); 736 737 SmallPtrSet<BasicBlock *, 32> Visited; 738 739 unsigned NumSortedEntries = Cache.size(); 740 LLVM_DEBUG(AssertSorted(Cache)); 741 742 // Iterate while we still have blocks to update. 743 while (!DirtyBlocks.empty()) { 744 BasicBlock *DirtyBB = DirtyBlocks.back(); 745 DirtyBlocks.pop_back(); 746 747 // Already processed this block? 748 if (!Visited.insert(DirtyBB).second) 749 continue; 750 751 // Do a binary search to see if we already have an entry for this block in 752 // the cache set. If so, find it. 753 LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries)); 754 NonLocalDepInfo::iterator Entry = 755 std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries, 756 NonLocalDepEntry(DirtyBB)); 757 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB) 758 --Entry; 759 760 NonLocalDepEntry *ExistingResult = nullptr; 761 if (Entry != Cache.begin() + NumSortedEntries && 762 Entry->getBB() == DirtyBB) { 763 // If we already have an entry, and if it isn't already dirty, the block 764 // is done. 765 if (!Entry->getResult().isDirty()) 766 continue; 767 768 // Otherwise, remember this slot so we can update the value. 769 ExistingResult = &*Entry; 770 } 771 772 // If the dirty entry has a pointer, start scanning from it so we don't have 773 // to rescan the entire block. 774 BasicBlock::iterator ScanPos = DirtyBB->end(); 775 if (ExistingResult) { 776 if (Instruction *Inst = ExistingResult->getResult().getInst()) { 777 ScanPos = Inst->getIterator(); 778 // We're removing QueryInst's use of Inst. 779 RemoveFromReverseMap<Instruction *>(ReverseNonLocalDeps, Inst, 780 QueryCall); 781 } 782 } 783 784 // Find out if this block has a local dependency for QueryInst. 785 MemDepResult Dep; 786 787 if (ScanPos != DirtyBB->begin()) { 788 Dep = getCallDependencyFrom(QueryCall, isReadonlyCall, ScanPos, DirtyBB); 789 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { 790 // No dependence found. If this is the entry block of the function, it is 791 // a clobber, otherwise it is unknown. 792 Dep = MemDepResult::getNonLocal(); 793 } else { 794 Dep = MemDepResult::getNonFuncLocal(); 795 } 796 797 // If we had a dirty entry for the block, update it. Otherwise, just add 798 // a new entry. 799 if (ExistingResult) 800 ExistingResult->setResult(Dep); 801 else 802 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); 803 804 // If the block has a dependency (i.e. it isn't completely transparent to 805 // the value), remember the association! 806 if (!Dep.isNonLocal()) { 807 // Keep the ReverseNonLocalDeps map up to date so we can efficiently 808 // update this when we remove instructions. 809 if (Instruction *Inst = Dep.getInst()) 810 ReverseNonLocalDeps[Inst].insert(QueryCall); 811 } else { 812 813 // If the block *is* completely transparent to the load, we need to check 814 // the predecessors of this block. Add them to our worklist. 815 for (BasicBlock *Pred : PredCache.get(DirtyBB)) 816 DirtyBlocks.push_back(Pred); 817 } 818 } 819 820 return Cache; 821 } 822 823 void MemoryDependenceResults::getNonLocalPointerDependency( 824 Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) { 825 const MemoryLocation Loc = MemoryLocation::get(QueryInst); 826 bool isLoad = isa<LoadInst>(QueryInst); 827 BasicBlock *FromBB = QueryInst->getParent(); 828 assert(FromBB); 829 830 assert(Loc.Ptr->getType()->isPointerTy() && 831 "Can't get pointer deps of a non-pointer!"); 832 Result.clear(); 833 { 834 // Check if there is cached Def with invariant.group. 835 auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst); 836 if (NonLocalDefIt != NonLocalDefsCache.end()) { 837 Result.push_back(NonLocalDefIt->second); 838 ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()] 839 .erase(QueryInst); 840 NonLocalDefsCache.erase(NonLocalDefIt); 841 return; 842 } 843 } 844 // This routine does not expect to deal with volatile instructions. 845 // Doing so would require piping through the QueryInst all the way through. 846 // TODO: volatiles can't be elided, but they can be reordered with other 847 // non-volatile accesses. 848 849 // We currently give up on any instruction which is ordered, but we do handle 850 // atomic instructions which are unordered. 851 // TODO: Handle ordered instructions 852 auto isOrdered = [](Instruction *Inst) { 853 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 854 return !LI->isUnordered(); 855 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 856 return !SI->isUnordered(); 857 } 858 return false; 859 }; 860 if (isVolatile(QueryInst) || isOrdered(QueryInst)) { 861 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(), 862 const_cast<Value *>(Loc.Ptr))); 863 return; 864 } 865 const DataLayout &DL = FromBB->getModule()->getDataLayout(); 866 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC); 867 868 // This is the set of blocks we've inspected, and the pointer we consider in 869 // each block. Because of critical edges, we currently bail out if querying 870 // a block with multiple different pointers. This can happen during PHI 871 // translation. 872 DenseMap<BasicBlock *, Value *> Visited; 873 if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB, 874 Result, Visited, true)) 875 return; 876 Result.clear(); 877 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(), 878 const_cast<Value *>(Loc.Ptr))); 879 } 880 881 /// Compute the memdep value for BB with Pointer/PointeeSize using either 882 /// cached information in Cache or by doing a lookup (which may use dirty cache 883 /// info if available). 884 /// 885 /// If we do a lookup, add the result to the cache. 886 MemDepResult MemoryDependenceResults::GetNonLocalInfoForBlock( 887 Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad, 888 BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) { 889 890 bool isInvariantLoad = false; 891 892 if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst)) 893 isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load); 894 895 // Do a binary search to see if we already have an entry for this block in 896 // the cache set. If so, find it. 897 NonLocalDepInfo::iterator Entry = std::upper_bound( 898 Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB)); 899 if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB) 900 --Entry; 901 902 NonLocalDepEntry *ExistingResult = nullptr; 903 if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB) 904 ExistingResult = &*Entry; 905 906 // Use cached result for invariant load only if there is no dependency for non 907 // invariant load. In this case invariant load can not have any dependency as 908 // well. 909 if (ExistingResult && isInvariantLoad && 910 !ExistingResult->getResult().isNonFuncLocal()) 911 ExistingResult = nullptr; 912 913 // If we have a cached entry, and it is non-dirty, use it as the value for 914 // this dependency. 915 if (ExistingResult && !ExistingResult->getResult().isDirty()) { 916 ++NumCacheNonLocalPtr; 917 return ExistingResult->getResult(); 918 } 919 920 // Otherwise, we have to scan for the value. If we have a dirty cache 921 // entry, start scanning from its position, otherwise we scan from the end 922 // of the block. 923 BasicBlock::iterator ScanPos = BB->end(); 924 if (ExistingResult && ExistingResult->getResult().getInst()) { 925 assert(ExistingResult->getResult().getInst()->getParent() == BB && 926 "Instruction invalidated?"); 927 ++NumCacheDirtyNonLocalPtr; 928 ScanPos = ExistingResult->getResult().getInst()->getIterator(); 929 930 // Eliminating the dirty entry from 'Cache', so update the reverse info. 931 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 932 RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey); 933 } else { 934 ++NumUncacheNonLocalPtr; 935 } 936 937 // Scan the block for the dependency. 938 MemDepResult Dep = 939 getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, QueryInst); 940 941 // Don't cache results for invariant load. 942 if (isInvariantLoad) 943 return Dep; 944 945 // If we had a dirty entry for the block, update it. Otherwise, just add 946 // a new entry. 947 if (ExistingResult) 948 ExistingResult->setResult(Dep); 949 else 950 Cache->push_back(NonLocalDepEntry(BB, Dep)); 951 952 // If the block has a dependency (i.e. it isn't completely transparent to 953 // the value), remember the reverse association because we just added it 954 // to Cache! 955 if (!Dep.isDef() && !Dep.isClobber()) 956 return Dep; 957 958 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently 959 // update MemDep when we remove instructions. 960 Instruction *Inst = Dep.getInst(); 961 assert(Inst && "Didn't depend on anything?"); 962 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 963 ReverseNonLocalPtrDeps[Inst].insert(CacheKey); 964 return Dep; 965 } 966 967 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the 968 /// array that are already properly ordered. 969 /// 970 /// This is optimized for the case when only a few entries are added. 971 static void 972 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache, 973 unsigned NumSortedEntries) { 974 switch (Cache.size() - NumSortedEntries) { 975 case 0: 976 // done, no new entries. 977 break; 978 case 2: { 979 // Two new entries, insert the last one into place. 980 NonLocalDepEntry Val = Cache.back(); 981 Cache.pop_back(); 982 MemoryDependenceResults::NonLocalDepInfo::iterator Entry = 983 std::upper_bound(Cache.begin(), Cache.end() - 1, Val); 984 Cache.insert(Entry, Val); 985 LLVM_FALLTHROUGH; 986 } 987 case 1: 988 // One new entry, Just insert the new value at the appropriate position. 989 if (Cache.size() != 1) { 990 NonLocalDepEntry Val = Cache.back(); 991 Cache.pop_back(); 992 MemoryDependenceResults::NonLocalDepInfo::iterator Entry = 993 std::upper_bound(Cache.begin(), Cache.end(), Val); 994 Cache.insert(Entry, Val); 995 } 996 break; 997 default: 998 // Added many values, do a full scale sort. 999 llvm::sort(Cache); 1000 break; 1001 } 1002 } 1003 1004 /// Perform a dependency query based on pointer/pointeesize starting at the end 1005 /// of StartBB. 1006 /// 1007 /// Add any clobber/def results to the results vector and keep track of which 1008 /// blocks are visited in 'Visited'. 1009 /// 1010 /// This has special behavior for the first block queries (when SkipFirstBlock 1011 /// is true). In this special case, it ignores the contents of the specified 1012 /// block and starts returning dependence info for its predecessors. 1013 /// 1014 /// This function returns true on success, or false to indicate that it could 1015 /// not compute dependence information for some reason. This should be treated 1016 /// as a clobber dependence on the first instruction in the predecessor block. 1017 bool MemoryDependenceResults::getNonLocalPointerDepFromBB( 1018 Instruction *QueryInst, const PHITransAddr &Pointer, 1019 const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB, 1020 SmallVectorImpl<NonLocalDepResult> &Result, 1021 DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock, 1022 bool IsIncomplete) { 1023 // Look up the cached info for Pointer. 1024 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); 1025 1026 // Set up a temporary NLPI value. If the map doesn't yet have an entry for 1027 // CacheKey, this value will be inserted as the associated value. Otherwise, 1028 // it'll be ignored, and we'll have to check to see if the cached size and 1029 // aa tags are consistent with the current query. 1030 NonLocalPointerInfo InitialNLPI; 1031 InitialNLPI.Size = Loc.Size; 1032 InitialNLPI.AATags = Loc.AATags; 1033 1034 bool isInvariantLoad = false; 1035 if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst)) 1036 isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load); 1037 1038 // Get the NLPI for CacheKey, inserting one into the map if it doesn't 1039 // already have one. 1040 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = 1041 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); 1042 NonLocalPointerInfo *CacheInfo = &Pair.first->second; 1043 1044 // If we already have a cache entry for this CacheKey, we may need to do some 1045 // work to reconcile the cache entry and the current query. 1046 // Invariant loads don't participate in caching. Thus no need to reconcile. 1047 if (!isInvariantLoad && !Pair.second) { 1048 if (CacheInfo->Size != Loc.Size) { 1049 bool ThrowOutEverything; 1050 if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) { 1051 // FIXME: We may be able to do better in the face of results with mixed 1052 // precision. We don't appear to get them in practice, though, so just 1053 // be conservative. 1054 ThrowOutEverything = 1055 CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() || 1056 CacheInfo->Size.getValue() < Loc.Size.getValue(); 1057 } else { 1058 // For our purposes, unknown size > all others. 1059 ThrowOutEverything = !Loc.Size.hasValue(); 1060 } 1061 1062 if (ThrowOutEverything) { 1063 // The query's Size is greater than the cached one. Throw out the 1064 // cached data and proceed with the query at the greater size. 1065 CacheInfo->Pair = BBSkipFirstBlockPair(); 1066 CacheInfo->Size = Loc.Size; 1067 for (auto &Entry : CacheInfo->NonLocalDeps) 1068 if (Instruction *Inst = Entry.getResult().getInst()) 1069 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1070 CacheInfo->NonLocalDeps.clear(); 1071 // The cache is cleared (in the above line) so we will have lost 1072 // information about blocks we have already visited. We therefore must 1073 // assume that the cache information is incomplete. 1074 IsIncomplete = true; 1075 } else { 1076 // This query's Size is less than the cached one. Conservatively restart 1077 // the query using the greater size. 1078 return getNonLocalPointerDepFromBB( 1079 QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad, 1080 StartBB, Result, Visited, SkipFirstBlock, IsIncomplete); 1081 } 1082 } 1083 1084 // If the query's AATags are inconsistent with the cached one, 1085 // conservatively throw out the cached data and restart the query with 1086 // no tag if needed. 1087 if (CacheInfo->AATags != Loc.AATags) { 1088 if (CacheInfo->AATags) { 1089 CacheInfo->Pair = BBSkipFirstBlockPair(); 1090 CacheInfo->AATags = AAMDNodes(); 1091 for (auto &Entry : CacheInfo->NonLocalDeps) 1092 if (Instruction *Inst = Entry.getResult().getInst()) 1093 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1094 CacheInfo->NonLocalDeps.clear(); 1095 // The cache is cleared (in the above line) so we will have lost 1096 // information about blocks we have already visited. We therefore must 1097 // assume that the cache information is incomplete. 1098 IsIncomplete = true; 1099 } 1100 if (Loc.AATags) 1101 return getNonLocalPointerDepFromBB( 1102 QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result, 1103 Visited, SkipFirstBlock, IsIncomplete); 1104 } 1105 } 1106 1107 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; 1108 1109 // If we have valid cached information for exactly the block we are 1110 // investigating, just return it with no recomputation. 1111 // Don't use cached information for invariant loads since it is valid for 1112 // non-invariant loads only. 1113 // 1114 // Don't use cached information for invariant loads since it is valid for 1115 // non-invariant loads only. 1116 if (!IsIncomplete && !isInvariantLoad && 1117 CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { 1118 // We have a fully cached result for this query then we can just return the 1119 // cached results and populate the visited set. However, we have to verify 1120 // that we don't already have conflicting results for these blocks. Check 1121 // to ensure that if a block in the results set is in the visited set that 1122 // it was for the same pointer query. 1123 if (!Visited.empty()) { 1124 for (auto &Entry : *Cache) { 1125 DenseMap<BasicBlock *, Value *>::iterator VI = 1126 Visited.find(Entry.getBB()); 1127 if (VI == Visited.end() || VI->second == Pointer.getAddr()) 1128 continue; 1129 1130 // We have a pointer mismatch in a block. Just return false, saying 1131 // that something was clobbered in this result. We could also do a 1132 // non-fully cached query, but there is little point in doing this. 1133 return false; 1134 } 1135 } 1136 1137 Value *Addr = Pointer.getAddr(); 1138 for (auto &Entry : *Cache) { 1139 Visited.insert(std::make_pair(Entry.getBB(), Addr)); 1140 if (Entry.getResult().isNonLocal()) { 1141 continue; 1142 } 1143 1144 if (DT.isReachableFromEntry(Entry.getBB())) { 1145 Result.push_back( 1146 NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr)); 1147 } 1148 } 1149 ++NumCacheCompleteNonLocalPtr; 1150 return true; 1151 } 1152 1153 // Otherwise, either this is a new block, a block with an invalid cache 1154 // pointer or one that we're about to invalidate by putting more info into 1155 // it than its valid cache info. If empty and not explicitly indicated as 1156 // incomplete, the result will be valid cache info, otherwise it isn't. 1157 // 1158 // Invariant loads don't affect cache in any way thus no need to update 1159 // CacheInfo as well. 1160 if (!isInvariantLoad) { 1161 if (!IsIncomplete && Cache->empty()) 1162 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); 1163 else 1164 CacheInfo->Pair = BBSkipFirstBlockPair(); 1165 } 1166 1167 SmallVector<BasicBlock *, 32> Worklist; 1168 Worklist.push_back(StartBB); 1169 1170 // PredList used inside loop. 1171 SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList; 1172 1173 // Keep track of the entries that we know are sorted. Previously cached 1174 // entries will all be sorted. The entries we add we only sort on demand (we 1175 // don't insert every element into its sorted position). We know that we 1176 // won't get any reuse from currently inserted values, because we don't 1177 // revisit blocks after we insert info for them. 1178 unsigned NumSortedEntries = Cache->size(); 1179 unsigned WorklistEntries = BlockNumberLimit; 1180 bool GotWorklistLimit = false; 1181 LLVM_DEBUG(AssertSorted(*Cache)); 1182 1183 while (!Worklist.empty()) { 1184 BasicBlock *BB = Worklist.pop_back_val(); 1185 1186 // If we do process a large number of blocks it becomes very expensive and 1187 // likely it isn't worth worrying about 1188 if (Result.size() > NumResultsLimit) { 1189 Worklist.clear(); 1190 // Sort it now (if needed) so that recursive invocations of 1191 // getNonLocalPointerDepFromBB and other routines that could reuse the 1192 // cache value will only see properly sorted cache arrays. 1193 if (Cache && NumSortedEntries != Cache->size()) { 1194 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1195 } 1196 // Since we bail out, the "Cache" set won't contain all of the 1197 // results for the query. This is ok (we can still use it to accelerate 1198 // specific block queries) but we can't do the fastpath "return all 1199 // results from the set". Clear out the indicator for this. 1200 CacheInfo->Pair = BBSkipFirstBlockPair(); 1201 return false; 1202 } 1203 1204 // Skip the first block if we have it. 1205 if (!SkipFirstBlock) { 1206 // Analyze the dependency of *Pointer in FromBB. See if we already have 1207 // been here. 1208 assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); 1209 1210 // Get the dependency info for Pointer in BB. If we have cached 1211 // information, we will use it, otherwise we compute it. 1212 LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries)); 1213 MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, Loc, isLoad, BB, 1214 Cache, NumSortedEntries); 1215 1216 // If we got a Def or Clobber, add this to the list of results. 1217 if (!Dep.isNonLocal()) { 1218 if (DT.isReachableFromEntry(BB)) { 1219 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); 1220 continue; 1221 } 1222 } 1223 } 1224 1225 // If 'Pointer' is an instruction defined in this block, then we need to do 1226 // phi translation to change it into a value live in the predecessor block. 1227 // If not, we just add the predecessors to the worklist and scan them with 1228 // the same Pointer. 1229 if (!Pointer.NeedsPHITranslationFromBlock(BB)) { 1230 SkipFirstBlock = false; 1231 SmallVector<BasicBlock *, 16> NewBlocks; 1232 for (BasicBlock *Pred : PredCache.get(BB)) { 1233 // Verify that we haven't looked at this block yet. 1234 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = 1235 Visited.insert(std::make_pair(Pred, Pointer.getAddr())); 1236 if (InsertRes.second) { 1237 // First time we've looked at *PI. 1238 NewBlocks.push_back(Pred); 1239 continue; 1240 } 1241 1242 // If we have seen this block before, but it was with a different 1243 // pointer then we have a phi translation failure and we have to treat 1244 // this as a clobber. 1245 if (InsertRes.first->second != Pointer.getAddr()) { 1246 // Make sure to clean up the Visited map before continuing on to 1247 // PredTranslationFailure. 1248 for (unsigned i = 0; i < NewBlocks.size(); i++) 1249 Visited.erase(NewBlocks[i]); 1250 goto PredTranslationFailure; 1251 } 1252 } 1253 if (NewBlocks.size() > WorklistEntries) { 1254 // Make sure to clean up the Visited map before continuing on to 1255 // PredTranslationFailure. 1256 for (unsigned i = 0; i < NewBlocks.size(); i++) 1257 Visited.erase(NewBlocks[i]); 1258 GotWorklistLimit = true; 1259 goto PredTranslationFailure; 1260 } 1261 WorklistEntries -= NewBlocks.size(); 1262 Worklist.append(NewBlocks.begin(), NewBlocks.end()); 1263 continue; 1264 } 1265 1266 // We do need to do phi translation, if we know ahead of time we can't phi 1267 // translate this value, don't even try. 1268 if (!Pointer.IsPotentiallyPHITranslatable()) 1269 goto PredTranslationFailure; 1270 1271 // We may have added values to the cache list before this PHI translation. 1272 // If so, we haven't done anything to ensure that the cache remains sorted. 1273 // Sort it now (if needed) so that recursive invocations of 1274 // getNonLocalPointerDepFromBB and other routines that could reuse the cache 1275 // value will only see properly sorted cache arrays. 1276 if (Cache && NumSortedEntries != Cache->size()) { 1277 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1278 NumSortedEntries = Cache->size(); 1279 } 1280 Cache = nullptr; 1281 1282 PredList.clear(); 1283 for (BasicBlock *Pred : PredCache.get(BB)) { 1284 PredList.push_back(std::make_pair(Pred, Pointer)); 1285 1286 // Get the PHI translated pointer in this predecessor. This can fail if 1287 // not translatable, in which case the getAddr() returns null. 1288 PHITransAddr &PredPointer = PredList.back().second; 1289 PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false); 1290 Value *PredPtrVal = PredPointer.getAddr(); 1291 1292 // Check to see if we have already visited this pred block with another 1293 // pointer. If so, we can't do this lookup. This failure can occur 1294 // with PHI translation when a critical edge exists and the PHI node in 1295 // the successor translates to a pointer value different than the 1296 // pointer the block was first analyzed with. 1297 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = 1298 Visited.insert(std::make_pair(Pred, PredPtrVal)); 1299 1300 if (!InsertRes.second) { 1301 // We found the pred; take it off the list of preds to visit. 1302 PredList.pop_back(); 1303 1304 // If the predecessor was visited with PredPtr, then we already did 1305 // the analysis and can ignore it. 1306 if (InsertRes.first->second == PredPtrVal) 1307 continue; 1308 1309 // Otherwise, the block was previously analyzed with a different 1310 // pointer. We can't represent the result of this case, so we just 1311 // treat this as a phi translation failure. 1312 1313 // Make sure to clean up the Visited map before continuing on to 1314 // PredTranslationFailure. 1315 for (unsigned i = 0, n = PredList.size(); i < n; ++i) 1316 Visited.erase(PredList[i].first); 1317 1318 goto PredTranslationFailure; 1319 } 1320 } 1321 1322 // Actually process results here; this need to be a separate loop to avoid 1323 // calling getNonLocalPointerDepFromBB for blocks we don't want to return 1324 // any results for. (getNonLocalPointerDepFromBB will modify our 1325 // datastructures in ways the code after the PredTranslationFailure label 1326 // doesn't expect.) 1327 for (unsigned i = 0, n = PredList.size(); i < n; ++i) { 1328 BasicBlock *Pred = PredList[i].first; 1329 PHITransAddr &PredPointer = PredList[i].second; 1330 Value *PredPtrVal = PredPointer.getAddr(); 1331 1332 bool CanTranslate = true; 1333 // If PHI translation was unable to find an available pointer in this 1334 // predecessor, then we have to assume that the pointer is clobbered in 1335 // that predecessor. We can still do PRE of the load, which would insert 1336 // a computation of the pointer in this predecessor. 1337 if (!PredPtrVal) 1338 CanTranslate = false; 1339 1340 // FIXME: it is entirely possible that PHI translating will end up with 1341 // the same value. Consider PHI translating something like: 1342 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* 1343 // to recurse here, pedantically speaking. 1344 1345 // If getNonLocalPointerDepFromBB fails here, that means the cached 1346 // result conflicted with the Visited list; we have to conservatively 1347 // assume it is unknown, but this also does not block PRE of the load. 1348 if (!CanTranslate || 1349 !getNonLocalPointerDepFromBB(QueryInst, PredPointer, 1350 Loc.getWithNewPtr(PredPtrVal), isLoad, 1351 Pred, Result, Visited)) { 1352 // Add the entry to the Result list. 1353 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal); 1354 Result.push_back(Entry); 1355 1356 // Since we had a phi translation failure, the cache for CacheKey won't 1357 // include all of the entries that we need to immediately satisfy future 1358 // queries. Mark this in NonLocalPointerDeps by setting the 1359 // BBSkipFirstBlockPair pointer to null. This requires reuse of the 1360 // cached value to do more work but not miss the phi trans failure. 1361 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; 1362 NLPI.Pair = BBSkipFirstBlockPair(); 1363 continue; 1364 } 1365 } 1366 1367 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. 1368 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1369 Cache = &CacheInfo->NonLocalDeps; 1370 NumSortedEntries = Cache->size(); 1371 1372 // Since we did phi translation, the "Cache" set won't contain all of the 1373 // results for the query. This is ok (we can still use it to accelerate 1374 // specific block queries) but we can't do the fastpath "return all 1375 // results from the set" Clear out the indicator for this. 1376 CacheInfo->Pair = BBSkipFirstBlockPair(); 1377 SkipFirstBlock = false; 1378 continue; 1379 1380 PredTranslationFailure: 1381 // The following code is "failure"; we can't produce a sane translation 1382 // for the given block. It assumes that we haven't modified any of 1383 // our datastructures while processing the current block. 1384 1385 if (!Cache) { 1386 // Refresh the CacheInfo/Cache pointer if it got invalidated. 1387 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1388 Cache = &CacheInfo->NonLocalDeps; 1389 NumSortedEntries = Cache->size(); 1390 } 1391 1392 // Since we failed phi translation, the "Cache" set won't contain all of the 1393 // results for the query. This is ok (we can still use it to accelerate 1394 // specific block queries) but we can't do the fastpath "return all 1395 // results from the set". Clear out the indicator for this. 1396 CacheInfo->Pair = BBSkipFirstBlockPair(); 1397 1398 // If *nothing* works, mark the pointer as unknown. 1399 // 1400 // If this is the magic first block, return this as a clobber of the whole 1401 // incoming value. Since we can't phi translate to one of the predecessors, 1402 // we have to bail out. 1403 if (SkipFirstBlock) 1404 return false; 1405 1406 // Results of invariant loads are not cached thus no need to update cached 1407 // information. 1408 if (!isInvariantLoad) { 1409 for (NonLocalDepEntry &I : llvm::reverse(*Cache)) { 1410 if (I.getBB() != BB) 1411 continue; 1412 1413 assert((GotWorklistLimit || I.getResult().isNonLocal() || 1414 !DT.isReachableFromEntry(BB)) && 1415 "Should only be here with transparent block"); 1416 1417 I.setResult(MemDepResult::getUnknown()); 1418 1419 1420 break; 1421 } 1422 } 1423 (void)GotWorklistLimit; 1424 // Go ahead and report unknown dependence. 1425 Result.push_back( 1426 NonLocalDepResult(BB, MemDepResult::getUnknown(), Pointer.getAddr())); 1427 } 1428 1429 // Okay, we're done now. If we added new values to the cache, re-sort it. 1430 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1431 LLVM_DEBUG(AssertSorted(*Cache)); 1432 return true; 1433 } 1434 1435 /// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it. 1436 void MemoryDependenceResults::RemoveCachedNonLocalPointerDependencies( 1437 ValueIsLoadPair P) { 1438 1439 // Most of the time this cache is empty. 1440 if (!NonLocalDefsCache.empty()) { 1441 auto it = NonLocalDefsCache.find(P.getPointer()); 1442 if (it != NonLocalDefsCache.end()) { 1443 RemoveFromReverseMap(ReverseNonLocalDefsCache, 1444 it->second.getResult().getInst(), P.getPointer()); 1445 NonLocalDefsCache.erase(it); 1446 } 1447 1448 if (auto *I = dyn_cast<Instruction>(P.getPointer())) { 1449 auto toRemoveIt = ReverseNonLocalDefsCache.find(I); 1450 if (toRemoveIt != ReverseNonLocalDefsCache.end()) { 1451 for (const auto *entry : toRemoveIt->second) 1452 NonLocalDefsCache.erase(entry); 1453 ReverseNonLocalDefsCache.erase(toRemoveIt); 1454 } 1455 } 1456 } 1457 1458 CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P); 1459 if (It == NonLocalPointerDeps.end()) 1460 return; 1461 1462 // Remove all of the entries in the BB->val map. This involves removing 1463 // instructions from the reverse map. 1464 NonLocalDepInfo &PInfo = It->second.NonLocalDeps; 1465 1466 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { 1467 Instruction *Target = PInfo[i].getResult().getInst(); 1468 if (!Target) 1469 continue; // Ignore non-local dep results. 1470 assert(Target->getParent() == PInfo[i].getBB()); 1471 1472 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1473 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); 1474 } 1475 1476 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). 1477 NonLocalPointerDeps.erase(It); 1478 } 1479 1480 void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) { 1481 // If Ptr isn't really a pointer, just ignore it. 1482 if (!Ptr->getType()->isPointerTy()) 1483 return; 1484 // Flush store info for the pointer. 1485 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); 1486 // Flush load info for the pointer. 1487 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); 1488 // Invalidate phis that use the pointer. 1489 PV.invalidateValue(Ptr); 1490 } 1491 1492 void MemoryDependenceResults::invalidateCachedPredecessors() { 1493 PredCache.clear(); 1494 } 1495 1496 void MemoryDependenceResults::removeInstruction(Instruction *RemInst) { 1497 // Walk through the Non-local dependencies, removing this one as the value 1498 // for any cached queries. 1499 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); 1500 if (NLDI != NonLocalDeps.end()) { 1501 NonLocalDepInfo &BlockMap = NLDI->second.first; 1502 for (auto &Entry : BlockMap) 1503 if (Instruction *Inst = Entry.getResult().getInst()) 1504 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); 1505 NonLocalDeps.erase(NLDI); 1506 } 1507 1508 // If we have a cached local dependence query for this instruction, remove it. 1509 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); 1510 if (LocalDepEntry != LocalDeps.end()) { 1511 // Remove us from DepInst's reverse set now that the local dep info is gone. 1512 if (Instruction *Inst = LocalDepEntry->second.getInst()) 1513 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); 1514 1515 // Remove this local dependency info. 1516 LocalDeps.erase(LocalDepEntry); 1517 } 1518 1519 // If we have any cached dependencies on this instruction, remove 1520 // them. 1521 1522 // If the instruction is a pointer, remove it from both the load info and the 1523 // store info. 1524 if (RemInst->getType()->isPointerTy()) { 1525 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); 1526 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); 1527 } else { 1528 // Otherwise, if the instructions is in the map directly, it must be a load. 1529 // Remove it. 1530 auto toRemoveIt = NonLocalDefsCache.find(RemInst); 1531 if (toRemoveIt != NonLocalDefsCache.end()) { 1532 assert(isa<LoadInst>(RemInst) && 1533 "only load instructions should be added directly"); 1534 const Instruction *DepV = toRemoveIt->second.getResult().getInst(); 1535 ReverseNonLocalDefsCache.find(DepV)->second.erase(RemInst); 1536 NonLocalDefsCache.erase(toRemoveIt); 1537 } 1538 } 1539 1540 // Loop over all of the things that depend on the instruction we're removing. 1541 SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd; 1542 1543 // If we find RemInst as a clobber or Def in any of the maps for other values, 1544 // we need to replace its entry with a dirty version of the instruction after 1545 // it. If RemInst is a terminator, we use a null dirty value. 1546 // 1547 // Using a dirty version of the instruction after RemInst saves having to scan 1548 // the entire block to get to this point. 1549 MemDepResult NewDirtyVal; 1550 if (!RemInst->isTerminator()) 1551 NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator()); 1552 1553 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); 1554 if (ReverseDepIt != ReverseLocalDeps.end()) { 1555 // RemInst can't be the terminator if it has local stuff depending on it. 1556 assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() && 1557 "Nothing can locally depend on a terminator"); 1558 1559 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) { 1560 assert(InstDependingOnRemInst != RemInst && 1561 "Already removed our local dep info"); 1562 1563 LocalDeps[InstDependingOnRemInst] = NewDirtyVal; 1564 1565 // Make sure to remember that new things depend on NewDepInst. 1566 assert(NewDirtyVal.getInst() && 1567 "There is no way something else can have " 1568 "a local dep on this if it is a terminator!"); 1569 ReverseDepsToAdd.push_back( 1570 std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst)); 1571 } 1572 1573 ReverseLocalDeps.erase(ReverseDepIt); 1574 1575 // Add new reverse deps after scanning the set, to avoid invalidating the 1576 // 'ReverseDeps' reference. 1577 while (!ReverseDepsToAdd.empty()) { 1578 ReverseLocalDeps[ReverseDepsToAdd.back().first].insert( 1579 ReverseDepsToAdd.back().second); 1580 ReverseDepsToAdd.pop_back(); 1581 } 1582 } 1583 1584 ReverseDepIt = ReverseNonLocalDeps.find(RemInst); 1585 if (ReverseDepIt != ReverseNonLocalDeps.end()) { 1586 for (Instruction *I : ReverseDepIt->second) { 1587 assert(I != RemInst && "Already removed NonLocalDep info for RemInst"); 1588 1589 PerInstNLInfo &INLD = NonLocalDeps[I]; 1590 // The information is now dirty! 1591 INLD.second = true; 1592 1593 for (auto &Entry : INLD.first) { 1594 if (Entry.getResult().getInst() != RemInst) 1595 continue; 1596 1597 // Convert to a dirty entry for the subsequent instruction. 1598 Entry.setResult(NewDirtyVal); 1599 1600 if (Instruction *NextI = NewDirtyVal.getInst()) 1601 ReverseDepsToAdd.push_back(std::make_pair(NextI, I)); 1602 } 1603 } 1604 1605 ReverseNonLocalDeps.erase(ReverseDepIt); 1606 1607 // Add new reverse deps after scanning the set, to avoid invalidating 'Set' 1608 while (!ReverseDepsToAdd.empty()) { 1609 ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert( 1610 ReverseDepsToAdd.back().second); 1611 ReverseDepsToAdd.pop_back(); 1612 } 1613 } 1614 1615 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a 1616 // value in the NonLocalPointerDeps info. 1617 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = 1618 ReverseNonLocalPtrDeps.find(RemInst); 1619 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { 1620 SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8> 1621 ReversePtrDepsToAdd; 1622 1623 for (ValueIsLoadPair P : ReversePtrDepIt->second) { 1624 assert(P.getPointer() != RemInst && 1625 "Already removed NonLocalPointerDeps info for RemInst"); 1626 1627 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; 1628 1629 // The cache is not valid for any specific block anymore. 1630 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); 1631 1632 // Update any entries for RemInst to use the instruction after it. 1633 for (auto &Entry : NLPDI) { 1634 if (Entry.getResult().getInst() != RemInst) 1635 continue; 1636 1637 // Convert to a dirty entry for the subsequent instruction. 1638 Entry.setResult(NewDirtyVal); 1639 1640 if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) 1641 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); 1642 } 1643 1644 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its 1645 // subsequent value may invalidate the sortedness. 1646 llvm::sort(NLPDI); 1647 } 1648 1649 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); 1650 1651 while (!ReversePtrDepsToAdd.empty()) { 1652 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert( 1653 ReversePtrDepsToAdd.back().second); 1654 ReversePtrDepsToAdd.pop_back(); 1655 } 1656 } 1657 1658 // Invalidate phis that use the removed instruction. 1659 PV.invalidateValue(RemInst); 1660 1661 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); 1662 LLVM_DEBUG(verifyRemoved(RemInst)); 1663 } 1664 1665 /// Verify that the specified instruction does not occur in our internal data 1666 /// structures. 1667 /// 1668 /// This function verifies by asserting in debug builds. 1669 void MemoryDependenceResults::verifyRemoved(Instruction *D) const { 1670 #ifndef NDEBUG 1671 for (const auto &DepKV : LocalDeps) { 1672 assert(DepKV.first != D && "Inst occurs in data structures"); 1673 assert(DepKV.second.getInst() != D && "Inst occurs in data structures"); 1674 } 1675 1676 for (const auto &DepKV : NonLocalPointerDeps) { 1677 assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key"); 1678 for (const auto &Entry : DepKV.second.NonLocalDeps) 1679 assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value"); 1680 } 1681 1682 for (const auto &DepKV : NonLocalDeps) { 1683 assert(DepKV.first != D && "Inst occurs in data structures"); 1684 const PerInstNLInfo &INLD = DepKV.second; 1685 for (const auto &Entry : INLD.first) 1686 assert(Entry.getResult().getInst() != D && 1687 "Inst occurs in data structures"); 1688 } 1689 1690 for (const auto &DepKV : ReverseLocalDeps) { 1691 assert(DepKV.first != D && "Inst occurs in data structures"); 1692 for (Instruction *Inst : DepKV.second) 1693 assert(Inst != D && "Inst occurs in data structures"); 1694 } 1695 1696 for (const auto &DepKV : ReverseNonLocalDeps) { 1697 assert(DepKV.first != D && "Inst occurs in data structures"); 1698 for (Instruction *Inst : DepKV.second) 1699 assert(Inst != D && "Inst occurs in data structures"); 1700 } 1701 1702 for (const auto &DepKV : ReverseNonLocalPtrDeps) { 1703 assert(DepKV.first != D && "Inst occurs in rev NLPD map"); 1704 1705 for (ValueIsLoadPair P : DepKV.second) 1706 assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) && 1707 "Inst occurs in ReverseNonLocalPtrDeps map"); 1708 } 1709 #endif 1710 } 1711 1712 AnalysisKey MemoryDependenceAnalysis::Key; 1713 1714 MemoryDependenceAnalysis::MemoryDependenceAnalysis() 1715 : DefaultBlockScanLimit(BlockScanLimit) {} 1716 1717 MemoryDependenceResults 1718 MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 1719 auto &AA = AM.getResult<AAManager>(F); 1720 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1721 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1722 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1723 auto &PV = AM.getResult<PhiValuesAnalysis>(F); 1724 return MemoryDependenceResults(AA, AC, TLI, DT, PV, DefaultBlockScanLimit); 1725 } 1726 1727 char MemoryDependenceWrapperPass::ID = 0; 1728 1729 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep", 1730 "Memory Dependence Analysis", false, true) 1731 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1732 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1733 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1734 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1735 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass) 1736 INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep", 1737 "Memory Dependence Analysis", false, true) 1738 1739 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) { 1740 initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry()); 1741 } 1742 1743 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default; 1744 1745 void MemoryDependenceWrapperPass::releaseMemory() { 1746 MemDep.reset(); 1747 } 1748 1749 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1750 AU.setPreservesAll(); 1751 AU.addRequired<AssumptionCacheTracker>(); 1752 AU.addRequired<DominatorTreeWrapperPass>(); 1753 AU.addRequired<PhiValuesWrapperPass>(); 1754 AU.addRequiredTransitive<AAResultsWrapperPass>(); 1755 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 1756 } 1757 1758 bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA, 1759 FunctionAnalysisManager::Invalidator &Inv) { 1760 // Check whether our analysis is preserved. 1761 auto PAC = PA.getChecker<MemoryDependenceAnalysis>(); 1762 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>()) 1763 // If not, give up now. 1764 return true; 1765 1766 // Check whether the analyses we depend on became invalid for any reason. 1767 if (Inv.invalidate<AAManager>(F, PA) || 1768 Inv.invalidate<AssumptionAnalysis>(F, PA) || 1769 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 1770 Inv.invalidate<PhiValuesAnalysis>(F, PA)) 1771 return true; 1772 1773 // Otherwise this analysis result remains valid. 1774 return false; 1775 } 1776 1777 unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const { 1778 return DefaultBlockScanLimit; 1779 } 1780 1781 bool MemoryDependenceWrapperPass::runOnFunction(Function &F) { 1782 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1783 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1784 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1785 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1786 auto &PV = getAnalysis<PhiValuesWrapperPass>().getResult(); 1787 MemDep.emplace(AA, AC, TLI, DT, PV, BlockScanLimit); 1788 return false; 1789 } 1790